summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/GVNHoist.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/GVNHoist.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/GVNHoist.cpp1205
1 files changed, 1205 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/GVNHoist.cpp b/llvm/lib/Transforms/Scalar/GVNHoist.cpp
new file mode 100644
index 000000000000..c87e41484b13
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/GVNHoist.cpp
@@ -0,0 +1,1205 @@
+//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass hoists expressions from branches to a common dominator. It uses
+// GVN (global value numbering) to discover expressions computing the same
+// values. The primary goals of code-hoisting are:
+// 1. To reduce the code size.
+// 2. In some cases reduce critical path (by exposing more ILP).
+//
+// The algorithm factors out the reachability of values such that multiple
+// queries to find reachability of values are fast. This is based on finding the
+// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
+// are basically the dominance-frontiers in the inverse graph. So we introduce a
+// data structure (CHI nodes) to keep track of values flowing out of a basic
+// block. We only do this for values with multiple occurrences in the function
+// as they are the potential hoistable candidates. This approach allows us to
+// hoist instructions to a basic block with more than two successors, as well as
+// deal with infinite loops in a trivial way.
+//
+// Limitations: This pass does not hoist fully redundant expressions because
+// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
+// and after gvn-pre because gvn-pre creates opportunities for more instructions
+// to be hoisted.
+//
+// Hoisting may affect the performance in some cases. To mitigate that, hoisting
+// is disabled in the following cases.
+// 1. Scalars across calls.
+// 2. geps when corresponding load/store cannot be hoisted.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/IteratedDominanceFrontier.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/GVN.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <memory>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "gvn-hoist"
+
+STATISTIC(NumHoisted, "Number of instructions hoisted");
+STATISTIC(NumRemoved, "Number of instructions removed");
+STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
+STATISTIC(NumLoadsRemoved, "Number of loads removed");
+STATISTIC(NumStoresHoisted, "Number of stores hoisted");
+STATISTIC(NumStoresRemoved, "Number of stores removed");
+STATISTIC(NumCallsHoisted, "Number of calls hoisted");
+STATISTIC(NumCallsRemoved, "Number of calls removed");
+
+static cl::opt<int>
+ MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
+ cl::desc("Max number of instructions to hoist "
+ "(default unlimited = -1)"));
+
+static cl::opt<int> MaxNumberOfBBSInPath(
+ "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
+ cl::desc("Max number of basic blocks on the path between "
+ "hoisting locations (default = 4, unlimited = -1)"));
+
+static cl::opt<int> MaxDepthInBB(
+ "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
+ cl::desc("Hoist instructions from the beginning of the BB up to the "
+ "maximum specified depth (default = 100, unlimited = -1)"));
+
+static cl::opt<int>
+ MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
+ cl::desc("Maximum length of dependent chains to hoist "
+ "(default = 10, unlimited = -1)"));
+
+namespace llvm {
+
+using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
+using SmallVecInsn = SmallVector<Instruction *, 4>;
+using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
+
+// Each element of a hoisting list contains the basic block where to hoist and
+// a list of instructions to be hoisted.
+using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
+
+using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
+
+// A map from a pair of VNs to all the instructions with those VNs.
+using VNType = std::pair<unsigned, unsigned>;
+
+using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
+
+// CHI keeps information about values flowing out of a basic block. It is
+// similar to PHI but in the inverse graph, and used for outgoing values on each
+// edge. For conciseness, it is computed only for instructions with multiple
+// occurrences in the CFG because they are the only hoistable candidates.
+// A (CHI[{V, B, I1}, {V, C, I2}]
+// / \
+// / \
+// B(I1) C (I2)
+// The Value number for both I1 and I2 is V, the CHI node will save the
+// instruction as well as the edge where the value is flowing to.
+struct CHIArg {
+ VNType VN;
+
+ // Edge destination (shows the direction of flow), may not be where the I is.
+ BasicBlock *Dest;
+
+ // The instruction (VN) which uses the values flowing out of CHI.
+ Instruction *I;
+
+ bool operator==(const CHIArg &A) { return VN == A.VN; }
+ bool operator!=(const CHIArg &A) { return !(*this == A); }
+};
+
+using CHIIt = SmallVectorImpl<CHIArg>::iterator;
+using CHIArgs = iterator_range<CHIIt>;
+using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
+using InValuesType =
+ DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
+
+// An invalid value number Used when inserting a single value number into
+// VNtoInsns.
+enum : unsigned { InvalidVN = ~2U };
+
+// Records all scalar instructions candidate for code hoisting.
+class InsnInfo {
+ VNtoInsns VNtoScalars;
+
+public:
+ // Inserts I and its value number in VNtoScalars.
+ void insert(Instruction *I, GVN::ValueTable &VN) {
+ // Scalar instruction.
+ unsigned V = VN.lookupOrAdd(I);
+ VNtoScalars[{V, InvalidVN}].push_back(I);
+ }
+
+ const VNtoInsns &getVNTable() const { return VNtoScalars; }
+};
+
+// Records all load instructions candidate for code hoisting.
+class LoadInfo {
+ VNtoInsns VNtoLoads;
+
+public:
+ // Insert Load and the value number of its memory address in VNtoLoads.
+ void insert(LoadInst *Load, GVN::ValueTable &VN) {
+ if (Load->isSimple()) {
+ unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
+ VNtoLoads[{V, InvalidVN}].push_back(Load);
+ }
+ }
+
+ const VNtoInsns &getVNTable() const { return VNtoLoads; }
+};
+
+// Records all store instructions candidate for code hoisting.
+class StoreInfo {
+ VNtoInsns VNtoStores;
+
+public:
+ // Insert the Store and a hash number of the store address and the stored
+ // value in VNtoStores.
+ void insert(StoreInst *Store, GVN::ValueTable &VN) {
+ if (!Store->isSimple())
+ return;
+ // Hash the store address and the stored value.
+ Value *Ptr = Store->getPointerOperand();
+ Value *Val = Store->getValueOperand();
+ VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
+ }
+
+ const VNtoInsns &getVNTable() const { return VNtoStores; }
+};
+
+// Records all call instructions candidate for code hoisting.
+class CallInfo {
+ VNtoInsns VNtoCallsScalars;
+ VNtoInsns VNtoCallsLoads;
+ VNtoInsns VNtoCallsStores;
+
+public:
+ // Insert Call and its value numbering in one of the VNtoCalls* containers.
+ void insert(CallInst *Call, GVN::ValueTable &VN) {
+ // A call that doesNotAccessMemory is handled as a Scalar,
+ // onlyReadsMemory will be handled as a Load instruction,
+ // all other calls will be handled as stores.
+ unsigned V = VN.lookupOrAdd(Call);
+ auto Entry = std::make_pair(V, InvalidVN);
+
+ if (Call->doesNotAccessMemory())
+ VNtoCallsScalars[Entry].push_back(Call);
+ else if (Call->onlyReadsMemory())
+ VNtoCallsLoads[Entry].push_back(Call);
+ else
+ VNtoCallsStores[Entry].push_back(Call);
+ }
+
+ const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
+ const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
+ const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
+};
+
+static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
+ static const unsigned KnownIDs[] = {
+ LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias, LLVMContext::MD_range,
+ LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
+ LLVMContext::MD_invariant_group, LLVMContext::MD_access_group};
+ combineMetadata(ReplInst, I, KnownIDs, true);
+}
+
+// This pass hoists common computations across branches sharing common
+// dominator. The primary goal is to reduce the code size, and in some
+// cases reduce critical path (by exposing more ILP).
+class GVNHoist {
+public:
+ GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
+ MemoryDependenceResults *MD, MemorySSA *MSSA)
+ : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
+ MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
+
+ bool run(Function &F) {
+ NumFuncArgs = F.arg_size();
+ VN.setDomTree(DT);
+ VN.setAliasAnalysis(AA);
+ VN.setMemDep(MD);
+ bool Res = false;
+ // Perform DFS Numbering of instructions.
+ unsigned BBI = 0;
+ for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
+ DFSNumber[BB] = ++BBI;
+ unsigned I = 0;
+ for (auto &Inst : *BB)
+ DFSNumber[&Inst] = ++I;
+ }
+
+ int ChainLength = 0;
+
+ // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
+ while (true) {
+ if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
+ return Res;
+
+ auto HoistStat = hoistExpressions(F);
+ if (HoistStat.first + HoistStat.second == 0)
+ return Res;
+
+ if (HoistStat.second > 0)
+ // To address a limitation of the current GVN, we need to rerun the
+ // hoisting after we hoisted loads or stores in order to be able to
+ // hoist all scalars dependent on the hoisted ld/st.
+ VN.clear();
+
+ Res = true;
+ }
+
+ return Res;
+ }
+
+ // Copied from NewGVN.cpp
+ // This function provides global ranking of operations so that we can place
+ // them in a canonical order. Note that rank alone is not necessarily enough
+ // for a complete ordering, as constants all have the same rank. However,
+ // generally, we will simplify an operation with all constants so that it
+ // doesn't matter what order they appear in.
+ unsigned int rank(const Value *V) const {
+ // Prefer constants to undef to anything else
+ // Undef is a constant, have to check it first.
+ // Prefer smaller constants to constantexprs
+ if (isa<ConstantExpr>(V))
+ return 2;
+ if (isa<UndefValue>(V))
+ return 1;
+ if (isa<Constant>(V))
+ return 0;
+ else if (auto *A = dyn_cast<Argument>(V))
+ return 3 + A->getArgNo();
+
+ // Need to shift the instruction DFS by number of arguments + 3 to account
+ // for the constant and argument ranking above.
+ auto Result = DFSNumber.lookup(V);
+ if (Result > 0)
+ return 4 + NumFuncArgs + Result;
+ // Unreachable or something else, just return a really large number.
+ return ~0;
+ }
+
+private:
+ GVN::ValueTable VN;
+ DominatorTree *DT;
+ PostDominatorTree *PDT;
+ AliasAnalysis *AA;
+ MemoryDependenceResults *MD;
+ MemorySSA *MSSA;
+ std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
+ DenseMap<const Value *, unsigned> DFSNumber;
+ BBSideEffectsSet BBSideEffects;
+ DenseSet<const BasicBlock *> HoistBarrier;
+ SmallVector<BasicBlock *, 32> IDFBlocks;
+ unsigned NumFuncArgs;
+ const bool HoistingGeps = false;
+
+ enum InsKind { Unknown, Scalar, Load, Store };
+
+ // Return true when there are exception handling in BB.
+ bool hasEH(const BasicBlock *BB) {
+ auto It = BBSideEffects.find(BB);
+ if (It != BBSideEffects.end())
+ return It->second;
+
+ if (BB->isEHPad() || BB->hasAddressTaken()) {
+ BBSideEffects[BB] = true;
+ return true;
+ }
+
+ if (BB->getTerminator()->mayThrow()) {
+ BBSideEffects[BB] = true;
+ return true;
+ }
+
+ BBSideEffects[BB] = false;
+ return false;
+ }
+
+ // Return true when a successor of BB dominates A.
+ bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
+ for (const BasicBlock *Succ : successors(BB))
+ if (DT->dominates(Succ, A))
+ return true;
+
+ return false;
+ }
+
+ // Return true when I1 appears before I2 in the instructions of BB.
+ bool firstInBB(const Instruction *I1, const Instruction *I2) {
+ assert(I1->getParent() == I2->getParent());
+ unsigned I1DFS = DFSNumber.lookup(I1);
+ unsigned I2DFS = DFSNumber.lookup(I2);
+ assert(I1DFS && I2DFS);
+ return I1DFS < I2DFS;
+ }
+
+ // Return true when there are memory uses of Def in BB.
+ bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
+ const BasicBlock *BB) {
+ const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
+ if (!Acc)
+ return false;
+
+ Instruction *OldPt = Def->getMemoryInst();
+ const BasicBlock *OldBB = OldPt->getParent();
+ const BasicBlock *NewBB = NewPt->getParent();
+ bool ReachedNewPt = false;
+
+ for (const MemoryAccess &MA : *Acc)
+ if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
+ Instruction *Insn = MU->getMemoryInst();
+
+ // Do not check whether MU aliases Def when MU occurs after OldPt.
+ if (BB == OldBB && firstInBB(OldPt, Insn))
+ break;
+
+ // Do not check whether MU aliases Def when MU occurs before NewPt.
+ if (BB == NewBB) {
+ if (!ReachedNewPt) {
+ if (firstInBB(Insn, NewPt))
+ continue;
+ ReachedNewPt = true;
+ }
+ }
+ if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
+ return true;
+ }
+
+ return false;
+ }
+
+ bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
+ int &NBBsOnAllPaths) {
+ // Stop walk once the limit is reached.
+ if (NBBsOnAllPaths == 0)
+ return true;
+
+ // Impossible to hoist with exceptions on the path.
+ if (hasEH(BB))
+ return true;
+
+ // No such instruction after HoistBarrier in a basic block was
+ // selected for hoisting so instructions selected within basic block with
+ // a hoist barrier can be hoisted.
+ if ((BB != SrcBB) && HoistBarrier.count(BB))
+ return true;
+
+ return false;
+ }
+
+ // Return true when there are exception handling or loads of memory Def
+ // between Def and NewPt. This function is only called for stores: Def is
+ // the MemoryDef of the store to be hoisted.
+
+ // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
+ // return true when the counter NBBsOnAllPaths reaces 0, except when it is
+ // initialized to -1 which is unlimited.
+ bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
+ int &NBBsOnAllPaths) {
+ const BasicBlock *NewBB = NewPt->getParent();
+ const BasicBlock *OldBB = Def->getBlock();
+ assert(DT->dominates(NewBB, OldBB) && "invalid path");
+ assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
+ "def does not dominate new hoisting point");
+
+ // Walk all basic blocks reachable in depth-first iteration on the inverse
+ // CFG from OldBB to NewBB. These blocks are all the blocks that may be
+ // executed between the execution of NewBB and OldBB. Hoisting an expression
+ // from OldBB into NewBB has to be safe on all execution paths.
+ for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
+ const BasicBlock *BB = *I;
+ if (BB == NewBB) {
+ // Stop traversal when reaching HoistPt.
+ I.skipChildren();
+ continue;
+ }
+
+ if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
+ return true;
+
+ // Check that we do not move a store past loads.
+ if (hasMemoryUse(NewPt, Def, BB))
+ return true;
+
+ // -1 is unlimited number of blocks on all paths.
+ if (NBBsOnAllPaths != -1)
+ --NBBsOnAllPaths;
+
+ ++I;
+ }
+
+ return false;
+ }
+
+ // Return true when there are exception handling between HoistPt and BB.
+ // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
+ // return true when the counter NBBsOnAllPaths reaches 0, except when it is
+ // initialized to -1 which is unlimited.
+ bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
+ int &NBBsOnAllPaths) {
+ assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
+
+ // Walk all basic blocks reachable in depth-first iteration on
+ // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
+ // blocks that may be executed between the execution of NewHoistPt and
+ // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
+ // on all execution paths.
+ for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
+ const BasicBlock *BB = *I;
+ if (BB == HoistPt) {
+ // Stop traversal when reaching NewHoistPt.
+ I.skipChildren();
+ continue;
+ }
+
+ if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
+ return true;
+
+ // -1 is unlimited number of blocks on all paths.
+ if (NBBsOnAllPaths != -1)
+ --NBBsOnAllPaths;
+
+ ++I;
+ }
+
+ return false;
+ }
+
+ // Return true when it is safe to hoist a memory load or store U from OldPt
+ // to NewPt.
+ bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
+ MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
+ // In place hoisting is safe.
+ if (NewPt == OldPt)
+ return true;
+
+ const BasicBlock *NewBB = NewPt->getParent();
+ const BasicBlock *OldBB = OldPt->getParent();
+ const BasicBlock *UBB = U->getBlock();
+
+ // Check for dependences on the Memory SSA.
+ MemoryAccess *D = U->getDefiningAccess();
+ BasicBlock *DBB = D->getBlock();
+ if (DT->properlyDominates(NewBB, DBB))
+ // Cannot move the load or store to NewBB above its definition in DBB.
+ return false;
+
+ if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
+ if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
+ if (!firstInBB(UD->getMemoryInst(), NewPt))
+ // Cannot move the load or store to NewPt above its definition in D.
+ return false;
+
+ // Check for unsafe hoistings due to side effects.
+ if (K == InsKind::Store) {
+ if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
+ return false;
+ } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
+ return false;
+
+ if (UBB == NewBB) {
+ if (DT->properlyDominates(DBB, NewBB))
+ return true;
+ assert(UBB == DBB);
+ assert(MSSA->locallyDominates(D, U));
+ }
+
+ // No side effects: it is safe to hoist.
+ return true;
+ }
+
+ // Return true when it is safe to hoist scalar instructions from all blocks in
+ // WL to HoistBB.
+ bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
+ int &NBBsOnAllPaths) {
+ return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
+ }
+
+ // In the inverse CFG, the dominance frontier of basic block (BB) is the
+ // point where ANTIC needs to be computed for instructions which are going
+ // to be hoisted. Since this point does not change during gvn-hoist,
+ // we compute it only once (on demand).
+ // The ides is inspired from:
+ // "Partial Redundancy Elimination in SSA Form"
+ // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
+ // They use similar idea in the forward graph to find fully redundant and
+ // partially redundant expressions, here it is used in the inverse graph to
+ // find fully anticipable instructions at merge point (post-dominator in
+ // the inverse CFG).
+ // Returns the edge via which an instruction in BB will get the values from.
+
+ // Returns true when the values are flowing out to each edge.
+ bool valueAnticipable(CHIArgs C, Instruction *TI) const {
+ if (TI->getNumSuccessors() > (unsigned)size(C))
+ return false; // Not enough args in this CHI.
+
+ for (auto CHI : C) {
+ BasicBlock *Dest = CHI.Dest;
+ // Find if all the edges have values flowing out of BB.
+ bool Found = llvm::any_of(
+ successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; });
+ if (!Found)
+ return false;
+ }
+ return true;
+ }
+
+ // Check if it is safe to hoist values tracked by CHI in the range
+ // [Begin, End) and accumulate them in Safe.
+ void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
+ SmallVectorImpl<CHIArg> &Safe) {
+ int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
+ for (auto CHI : C) {
+ Instruction *Insn = CHI.I;
+ if (!Insn) // No instruction was inserted in this CHI.
+ continue;
+ if (K == InsKind::Scalar) {
+ if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
+ Safe.push_back(CHI);
+ } else {
+ MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
+ if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
+ Safe.push_back(CHI);
+ }
+ }
+ }
+
+ using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
+
+ // Push all the VNs corresponding to BB into RenameStack.
+ void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
+ RenameStackType &RenameStack) {
+ auto it1 = ValueBBs.find(BB);
+ if (it1 != ValueBBs.end()) {
+ // Iterate in reverse order to keep lower ranked values on the top.
+ for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
+ // Get the value of instruction I
+ LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
+ RenameStack[VI.first].push_back(VI.second);
+ }
+ }
+ }
+
+ void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
+ RenameStackType &RenameStack) {
+ // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
+ for (auto Pred : predecessors(BB)) {
+ auto P = CHIBBs.find(Pred);
+ if (P == CHIBBs.end()) {
+ continue;
+ }
+ LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
+ // A CHI is found (BB -> Pred is an edge in the CFG)
+ // Pop the stack until Top(V) = Ve.
+ auto &VCHI = P->second;
+ for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
+ CHIArg &C = *It;
+ if (!C.Dest) {
+ auto si = RenameStack.find(C.VN);
+ // The Basic Block where CHI is must dominate the value we want to
+ // track in a CHI. In the PDom walk, there can be values in the
+ // stack which are not control dependent e.g., nested loop.
+ if (si != RenameStack.end() && si->second.size() &&
+ DT->properlyDominates(Pred, si->second.back()->getParent())) {
+ C.Dest = BB; // Assign the edge
+ C.I = si->second.pop_back_val(); // Assign the argument
+ LLVM_DEBUG(dbgs()
+ << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
+ << ", VN: " << C.VN.first << ", " << C.VN.second);
+ }
+ // Move to next CHI of a different value
+ It = std::find_if(It, VCHI.end(),
+ [It](CHIArg &A) { return A != *It; });
+ } else
+ ++It;
+ }
+ }
+ }
+
+ // Walk the post-dominator tree top-down and use a stack for each value to
+ // store the last value you see. When you hit a CHI from a given edge, the
+ // value to use as the argument is at the top of the stack, add the value to
+ // CHI and pop.
+ void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
+ auto Root = PDT->getNode(nullptr);
+ if (!Root)
+ return;
+ // Depth first walk on PDom tree to fill the CHIargs at each PDF.
+ RenameStackType RenameStack;
+ for (auto Node : depth_first(Root)) {
+ BasicBlock *BB = Node->getBlock();
+ if (!BB)
+ continue;
+
+ // Collect all values in BB and push to stack.
+ fillRenameStack(BB, ValueBBs, RenameStack);
+
+ // Fill outgoing values in each CHI corresponding to BB.
+ fillChiArgs(BB, CHIBBs, RenameStack);
+ }
+ }
+
+ // Walk all the CHI-nodes to find ones which have a empty-entry and remove
+ // them Then collect all the instructions which are safe to hoist and see if
+ // they form a list of anticipable values. OutValues contains CHIs
+ // corresponding to each basic block.
+ void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
+ HoistingPointList &HPL) {
+ auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
+
+ // CHIArgs now have the outgoing values, so check for anticipability and
+ // accumulate hoistable candidates in HPL.
+ for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
+ BasicBlock *BB = A.first;
+ SmallVectorImpl<CHIArg> &CHIs = A.second;
+ // Vector of PHIs contains PHIs for different instructions.
+ // Sort the args according to their VNs, such that identical
+ // instructions are together.
+ llvm::stable_sort(CHIs, cmpVN);
+ auto TI = BB->getTerminator();
+ auto B = CHIs.begin();
+ // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
+ auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
+ [B](CHIArg &A) { return A != *B; });
+ auto PrevIt = CHIs.begin();
+ while (PrevIt != PHIIt) {
+ // Collect values which satisfy safety checks.
+ SmallVector<CHIArg, 2> Safe;
+ // We check for safety first because there might be multiple values in
+ // the same path, some of which are not safe to be hoisted, but overall
+ // each edge has at least one value which can be hoisted, making the
+ // value anticipable along that path.
+ checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
+
+ // List of safe values should be anticipable at TI.
+ if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
+ HPL.push_back({BB, SmallVecInsn()});
+ SmallVecInsn &V = HPL.back().second;
+ for (auto B : Safe)
+ V.push_back(B.I);
+ }
+
+ // Check other VNs
+ PrevIt = PHIIt;
+ PHIIt = std::find_if(PrevIt, CHIs.end(),
+ [PrevIt](CHIArg &A) { return A != *PrevIt; });
+ }
+ }
+ }
+
+ // Compute insertion points for each values which can be fully anticipated at
+ // a dominator. HPL contains all such values.
+ void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
+ InsKind K) {
+ // Sort VNs based on their rankings
+ std::vector<VNType> Ranks;
+ for (const auto &Entry : Map) {
+ Ranks.push_back(Entry.first);
+ }
+
+ // TODO: Remove fully-redundant expressions.
+ // Get instruction from the Map, assume that all the Instructions
+ // with same VNs have same rank (this is an approximation).
+ llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
+ return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
+ });
+
+ // - Sort VNs according to their rank, and start with lowest ranked VN
+ // - Take a VN and for each instruction with same VN
+ // - Find the dominance frontier in the inverse graph (PDF)
+ // - Insert the chi-node at PDF
+ // - Remove the chi-nodes with missing entries
+ // - Remove values from CHI-nodes which do not truly flow out, e.g.,
+ // modified along the path.
+ // - Collect the remaining values that are still anticipable
+ SmallVector<BasicBlock *, 2> IDFBlocks;
+ ReverseIDFCalculator IDFs(*PDT);
+ OutValuesType OutValue;
+ InValuesType InValue;
+ for (const auto &R : Ranks) {
+ const SmallVecInsn &V = Map.lookup(R);
+ if (V.size() < 2)
+ continue;
+ const VNType &VN = R;
+ SmallPtrSet<BasicBlock *, 2> VNBlocks;
+ for (auto &I : V) {
+ BasicBlock *BBI = I->getParent();
+ if (!hasEH(BBI))
+ VNBlocks.insert(BBI);
+ }
+ // Compute the Post Dominance Frontiers of each basic block
+ // The dominance frontier of a live block X in the reverse
+ // control graph is the set of blocks upon which X is control
+ // dependent. The following sequence computes the set of blocks
+ // which currently have dead terminators that are control
+ // dependence sources of a block which is in NewLiveBlocks.
+ IDFs.setDefiningBlocks(VNBlocks);
+ IDFBlocks.clear();
+ IDFs.calculate(IDFBlocks);
+
+ // Make a map of BB vs instructions to be hoisted.
+ for (unsigned i = 0; i < V.size(); ++i) {
+ InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
+ }
+ // Insert empty CHI node for this VN. This is used to factor out
+ // basic blocks where the ANTIC can potentially change.
+ for (auto IDFB : IDFBlocks) {
+ for (unsigned i = 0; i < V.size(); ++i) {
+ CHIArg C = {VN, nullptr, nullptr};
+ // Ignore spurious PDFs.
+ if (DT->properlyDominates(IDFB, V[i]->getParent())) {
+ OutValue[IDFB].push_back(C);
+ LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
+ << ", for Insn: " << *V[i]);
+ }
+ }
+ }
+ }
+
+ // Insert CHI args at each PDF to iterate on factored graph of
+ // control dependence.
+ insertCHI(InValue, OutValue);
+ // Using the CHI args inserted at each PDF, find fully anticipable values.
+ findHoistableCandidates(OutValue, K, HPL);
+ }
+
+ // Return true when all operands of Instr are available at insertion point
+ // HoistPt. When limiting the number of hoisted expressions, one could hoist
+ // a load without hoisting its access function. So before hoisting any
+ // expression, make sure that all its operands are available at insert point.
+ bool allOperandsAvailable(const Instruction *I,
+ const BasicBlock *HoistPt) const {
+ for (const Use &Op : I->operands())
+ if (const auto *Inst = dyn_cast<Instruction>(&Op))
+ if (!DT->dominates(Inst->getParent(), HoistPt))
+ return false;
+
+ return true;
+ }
+
+ // Same as allOperandsAvailable with recursive check for GEP operands.
+ bool allGepOperandsAvailable(const Instruction *I,
+ const BasicBlock *HoistPt) const {
+ for (const Use &Op : I->operands())
+ if (const auto *Inst = dyn_cast<Instruction>(&Op))
+ if (!DT->dominates(Inst->getParent(), HoistPt)) {
+ if (const GetElementPtrInst *GepOp =
+ dyn_cast<GetElementPtrInst>(Inst)) {
+ if (!allGepOperandsAvailable(GepOp, HoistPt))
+ return false;
+ // Gep is available if all operands of GepOp are available.
+ } else {
+ // Gep is not available if it has operands other than GEPs that are
+ // defined in blocks not dominating HoistPt.
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // Make all operands of the GEP available.
+ void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
+ const SmallVecInsn &InstructionsToHoist,
+ Instruction *Gep) const {
+ assert(allGepOperandsAvailable(Gep, HoistPt) &&
+ "GEP operands not available");
+
+ Instruction *ClonedGep = Gep->clone();
+ for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
+ if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
+ // Check whether the operand is already available.
+ if (DT->dominates(Op->getParent(), HoistPt))
+ continue;
+
+ // As a GEP can refer to other GEPs, recursively make all the operands
+ // of this GEP available at HoistPt.
+ if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
+ makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
+ }
+
+ // Copy Gep and replace its uses in Repl with ClonedGep.
+ ClonedGep->insertBefore(HoistPt->getTerminator());
+
+ // Conservatively discard any optimization hints, they may differ on the
+ // other paths.
+ ClonedGep->dropUnknownNonDebugMetadata();
+
+ // If we have optimization hints which agree with each other along different
+ // paths, preserve them.
+ for (const Instruction *OtherInst : InstructionsToHoist) {
+ const GetElementPtrInst *OtherGep;
+ if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
+ OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
+ else
+ OtherGep = cast<GetElementPtrInst>(
+ cast<StoreInst>(OtherInst)->getPointerOperand());
+ ClonedGep->andIRFlags(OtherGep);
+ }
+
+ // Replace uses of Gep with ClonedGep in Repl.
+ Repl->replaceUsesOfWith(Gep, ClonedGep);
+ }
+
+ void updateAlignment(Instruction *I, Instruction *Repl) {
+ if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
+ ReplacementLoad->setAlignment(MaybeAlign(std::min(
+ ReplacementLoad->getAlignment(), cast<LoadInst>(I)->getAlignment())));
+ ++NumLoadsRemoved;
+ } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
+ ReplacementStore->setAlignment(
+ MaybeAlign(std::min(ReplacementStore->getAlignment(),
+ cast<StoreInst>(I)->getAlignment())));
+ ++NumStoresRemoved;
+ } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
+ ReplacementAlloca->setAlignment(
+ MaybeAlign(std::max(ReplacementAlloca->getAlignment(),
+ cast<AllocaInst>(I)->getAlignment())));
+ } else if (isa<CallInst>(Repl)) {
+ ++NumCallsRemoved;
+ }
+ }
+
+ // Remove all the instructions in Candidates and replace their usage with Repl.
+ // Returns the number of instructions removed.
+ unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
+ MemoryUseOrDef *NewMemAcc) {
+ unsigned NR = 0;
+ for (Instruction *I : Candidates) {
+ if (I != Repl) {
+ ++NR;
+ updateAlignment(I, Repl);
+ if (NewMemAcc) {
+ // Update the uses of the old MSSA access with NewMemAcc.
+ MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
+ OldMA->replaceAllUsesWith(NewMemAcc);
+ MSSAUpdater->removeMemoryAccess(OldMA);
+ }
+
+ Repl->andIRFlags(I);
+ combineKnownMetadata(Repl, I);
+ I->replaceAllUsesWith(Repl);
+ // Also invalidate the Alias Analysis cache.
+ MD->removeInstruction(I);
+ I->eraseFromParent();
+ }
+ }
+ return NR;
+ }
+
+ // Replace all Memory PHI usage with NewMemAcc.
+ void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
+ SmallPtrSet<MemoryPhi *, 4> UsePhis;
+ for (User *U : NewMemAcc->users())
+ if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
+ UsePhis.insert(Phi);
+
+ for (MemoryPhi *Phi : UsePhis) {
+ auto In = Phi->incoming_values();
+ if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
+ Phi->replaceAllUsesWith(NewMemAcc);
+ MSSAUpdater->removeMemoryAccess(Phi);
+ }
+ }
+ }
+
+ // Remove all other instructions and replace them with Repl.
+ unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
+ BasicBlock *DestBB, bool MoveAccess) {
+ MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
+ if (MoveAccess && NewMemAcc) {
+ // The definition of this ld/st will not change: ld/st hoisting is
+ // legal when the ld/st is not moved past its current definition.
+ MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
+ }
+
+ // Replace all other instructions with Repl with memory access NewMemAcc.
+ unsigned NR = rauw(Candidates, Repl, NewMemAcc);
+
+ // Remove MemorySSA phi nodes with the same arguments.
+ if (NewMemAcc)
+ raMPHIuw(NewMemAcc);
+ return NR;
+ }
+
+ // In the case Repl is a load or a store, we make all their GEPs
+ // available: GEPs are not hoisted by default to avoid the address
+ // computations to be hoisted without the associated load or store.
+ bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
+ const SmallVecInsn &InstructionsToHoist) const {
+ // Check whether the GEP of a ld/st can be synthesized at HoistPt.
+ GetElementPtrInst *Gep = nullptr;
+ Instruction *Val = nullptr;
+ if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
+ Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
+ } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
+ Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
+ Val = dyn_cast<Instruction>(St->getValueOperand());
+ // Check that the stored value is available.
+ if (Val) {
+ if (isa<GetElementPtrInst>(Val)) {
+ // Check whether we can compute the GEP at HoistPt.
+ if (!allGepOperandsAvailable(Val, HoistPt))
+ return false;
+ } else if (!DT->dominates(Val->getParent(), HoistPt))
+ return false;
+ }
+ }
+
+ // Check whether we can compute the Gep at HoistPt.
+ if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
+ return false;
+
+ makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
+
+ if (Val && isa<GetElementPtrInst>(Val))
+ makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
+
+ return true;
+ }
+
+ std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
+ unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
+ for (const HoistingPointInfo &HP : HPL) {
+ // Find out whether we already have one of the instructions in HoistPt,
+ // in which case we do not have to move it.
+ BasicBlock *DestBB = HP.first;
+ const SmallVecInsn &InstructionsToHoist = HP.second;
+ Instruction *Repl = nullptr;
+ for (Instruction *I : InstructionsToHoist)
+ if (I->getParent() == DestBB)
+ // If there are two instructions in HoistPt to be hoisted in place:
+ // update Repl to be the first one, such that we can rename the uses
+ // of the second based on the first.
+ if (!Repl || firstInBB(I, Repl))
+ Repl = I;
+
+ // Keep track of whether we moved the instruction so we know whether we
+ // should move the MemoryAccess.
+ bool MoveAccess = true;
+ if (Repl) {
+ // Repl is already in HoistPt: it remains in place.
+ assert(allOperandsAvailable(Repl, DestBB) &&
+ "instruction depends on operands that are not available");
+ MoveAccess = false;
+ } else {
+ // When we do not find Repl in HoistPt, select the first in the list
+ // and move it to HoistPt.
+ Repl = InstructionsToHoist.front();
+
+ // We can move Repl in HoistPt only when all operands are available.
+ // The order in which hoistings are done may influence the availability
+ // of operands.
+ if (!allOperandsAvailable(Repl, DestBB)) {
+ // When HoistingGeps there is nothing more we can do to make the
+ // operands available: just continue.
+ if (HoistingGeps)
+ continue;
+
+ // When not HoistingGeps we need to copy the GEPs.
+ if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
+ continue;
+ }
+
+ // Move the instruction at the end of HoistPt.
+ Instruction *Last = DestBB->getTerminator();
+ MD->removeInstruction(Repl);
+ Repl->moveBefore(Last);
+
+ DFSNumber[Repl] = DFSNumber[Last]++;
+ }
+
+ NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
+
+ if (isa<LoadInst>(Repl))
+ ++NL;
+ else if (isa<StoreInst>(Repl))
+ ++NS;
+ else if (isa<CallInst>(Repl))
+ ++NC;
+ else // Scalar
+ ++NI;
+ }
+
+ NumHoisted += NL + NS + NC + NI;
+ NumRemoved += NR;
+ NumLoadsHoisted += NL;
+ NumStoresHoisted += NS;
+ NumCallsHoisted += NC;
+ return {NI, NL + NC + NS};
+ }
+
+ // Hoist all expressions. Returns Number of scalars hoisted
+ // and number of non-scalars hoisted.
+ std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
+ InsnInfo II;
+ LoadInfo LI;
+ StoreInfo SI;
+ CallInfo CI;
+ for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
+ int InstructionNb = 0;
+ for (Instruction &I1 : *BB) {
+ // If I1 cannot guarantee progress, subsequent instructions
+ // in BB cannot be hoisted anyways.
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
+ HoistBarrier.insert(BB);
+ break;
+ }
+ // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
+ // deeper may increase the register pressure and compilation time.
+ if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
+ break;
+
+ // Do not value number terminator instructions.
+ if (I1.isTerminator())
+ break;
+
+ if (auto *Load = dyn_cast<LoadInst>(&I1))
+ LI.insert(Load, VN);
+ else if (auto *Store = dyn_cast<StoreInst>(&I1))
+ SI.insert(Store, VN);
+ else if (auto *Call = dyn_cast<CallInst>(&I1)) {
+ if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
+ if (isa<DbgInfoIntrinsic>(Intr) ||
+ Intr->getIntrinsicID() == Intrinsic::assume ||
+ Intr->getIntrinsicID() == Intrinsic::sideeffect)
+ continue;
+ }
+ if (Call->mayHaveSideEffects())
+ break;
+
+ if (Call->isConvergent())
+ break;
+
+ CI.insert(Call, VN);
+ } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
+ // Do not hoist scalars past calls that may write to memory because
+ // that could result in spills later. geps are handled separately.
+ // TODO: We can relax this for targets like AArch64 as they have more
+ // registers than X86.
+ II.insert(&I1, VN);
+ }
+ }
+
+ HoistingPointList HPL;
+ computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
+ computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
+ computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
+ computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
+ computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
+ computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
+ return hoist(HPL);
+ }
+};
+
+class GVNHoistLegacyPass : public FunctionPass {
+public:
+ static char ID;
+
+ GVNHoistLegacyPass() : FunctionPass(ID) {
+ initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
+ auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
+ auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
+
+ GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
+ return G.run(F);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PostDominatorTreeWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<MemoryDependenceWrapperPass>();
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+};
+
+} // end namespace llvm
+
+PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
+ DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
+ AliasAnalysis &AA = AM.getResult<AAManager>(F);
+ MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
+ MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
+ GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
+ if (!G.run(F))
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<MemorySSAAnalysis>();
+ PA.preserve<GlobalsAA>();
+ return PA;
+}
+
+char GVNHoistLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
+ "Early GVN Hoisting of Expressions", false, false)
+INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
+ "Early GVN Hoisting of Expressions", false, false)
+
+FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }