diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/JumpThreading.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/JumpThreading.cpp | 2756 | 
1 files changed, 2756 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/llvm/lib/Transforms/Scalar/JumpThreading.cpp new file mode 100644 index 000000000000..0cf00baaa24a --- /dev/null +++ b/llvm/lib/Transforms/Scalar/JumpThreading.cpp @@ -0,0 +1,2756 @@ +//===- JumpThreading.cpp - Thread control through conditional blocks ------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Jump Threading pass. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/JumpThreading.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/GuardUtils.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LazyValueInfo.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <memory> +#include <utility> + +using namespace llvm; +using namespace jumpthreading; + +#define DEBUG_TYPE "jump-threading" + +STATISTIC(NumThreads, "Number of jumps threaded"); +STATISTIC(NumFolds,   "Number of terminators folded"); +STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi"); + +static cl::opt<unsigned> +BBDuplicateThreshold("jump-threading-threshold", +          cl::desc("Max block size to duplicate for jump threading"), +          cl::init(6), cl::Hidden); + +static cl::opt<unsigned> +ImplicationSearchThreshold( +  "jump-threading-implication-search-threshold", +  cl::desc("The number of predecessors to search for a stronger " +           "condition to use to thread over a weaker condition"), +  cl::init(3), cl::Hidden); + +static cl::opt<bool> PrintLVIAfterJumpThreading( +    "print-lvi-after-jump-threading", +    cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), +    cl::Hidden); + +static cl::opt<bool> ThreadAcrossLoopHeaders( +    "jump-threading-across-loop-headers", +    cl::desc("Allow JumpThreading to thread across loop headers, for testing"), +    cl::init(false), cl::Hidden); + + +namespace { + +  /// This pass performs 'jump threading', which looks at blocks that have +  /// multiple predecessors and multiple successors.  If one or more of the +  /// predecessors of the block can be proven to always jump to one of the +  /// successors, we forward the edge from the predecessor to the successor by +  /// duplicating the contents of this block. +  /// +  /// An example of when this can occur is code like this: +  /// +  ///   if () { ... +  ///     X = 4; +  ///   } +  ///   if (X < 3) { +  /// +  /// In this case, the unconditional branch at the end of the first if can be +  /// revectored to the false side of the second if. +  class JumpThreading : public FunctionPass { +    JumpThreadingPass Impl; + +  public: +    static char ID; // Pass identification + +    JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { +      initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); +    } + +    bool runOnFunction(Function &F) override; + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.addRequired<DominatorTreeWrapperPass>(); +      AU.addPreserved<DominatorTreeWrapperPass>(); +      AU.addRequired<AAResultsWrapperPass>(); +      AU.addRequired<LazyValueInfoWrapperPass>(); +      AU.addPreserved<LazyValueInfoWrapperPass>(); +      AU.addPreserved<GlobalsAAWrapperPass>(); +      AU.addRequired<TargetLibraryInfoWrapperPass>(); +    } + +    void releaseMemory() override { Impl.releaseMemory(); } +  }; + +} // end anonymous namespace + +char JumpThreading::ID = 0; + +INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", +                "Jump Threading", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(JumpThreading, "jump-threading", +                "Jump Threading", false, false) + +// Public interface to the Jump Threading pass +FunctionPass *llvm::createJumpThreadingPass(int Threshold) { +  return new JumpThreading(Threshold); +} + +JumpThreadingPass::JumpThreadingPass(int T) { +  BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); +} + +// Update branch probability information according to conditional +// branch probability. This is usually made possible for cloned branches +// in inline instances by the context specific profile in the caller. +// For instance, +// +//  [Block PredBB] +//  [Branch PredBr] +//  if (t) { +//     Block A; +//  } else { +//     Block B; +//  } +// +//  [Block BB] +//  cond = PN([true, %A], [..., %B]); // PHI node +//  [Branch CondBr] +//  if (cond) { +//    ...  // P(cond == true) = 1% +//  } +// +//  Here we know that when block A is taken, cond must be true, which means +//      P(cond == true | A) = 1 +// +//  Given that P(cond == true) = P(cond == true | A) * P(A) + +//                               P(cond == true | B) * P(B) +//  we get: +//     P(cond == true ) = P(A) + P(cond == true | B) * P(B) +// +//  which gives us: +//     P(A) is less than P(cond == true), i.e. +//     P(t == true) <= P(cond == true) +// +//  In other words, if we know P(cond == true) is unlikely, we know +//  that P(t == true) is also unlikely. +// +static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { +  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); +  if (!CondBr) +    return; + +  BranchProbability BP; +  uint64_t TrueWeight, FalseWeight; +  if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) +    return; + +  // Returns the outgoing edge of the dominating predecessor block +  // that leads to the PhiNode's incoming block: +  auto GetPredOutEdge = +      [](BasicBlock *IncomingBB, +         BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { +    auto *PredBB = IncomingBB; +    auto *SuccBB = PhiBB; +    SmallPtrSet<BasicBlock *, 16> Visited; +    while (true) { +      BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); +      if (PredBr && PredBr->isConditional()) +        return {PredBB, SuccBB}; +      Visited.insert(PredBB); +      auto *SinglePredBB = PredBB->getSinglePredecessor(); +      if (!SinglePredBB) +        return {nullptr, nullptr}; + +      // Stop searching when SinglePredBB has been visited. It means we see +      // an unreachable loop. +      if (Visited.count(SinglePredBB)) +        return {nullptr, nullptr}; + +      SuccBB = PredBB; +      PredBB = SinglePredBB; +    } +  }; + +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +    Value *PhiOpnd = PN->getIncomingValue(i); +    ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); + +    if (!CI || !CI->getType()->isIntegerTy(1)) +      continue; + +    BP = (CI->isOne() ? BranchProbability::getBranchProbability( +                            TrueWeight, TrueWeight + FalseWeight) +                      : BranchProbability::getBranchProbability( +                            FalseWeight, TrueWeight + FalseWeight)); + +    auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); +    if (!PredOutEdge.first) +      return; + +    BasicBlock *PredBB = PredOutEdge.first; +    BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); +    if (!PredBr) +      return; + +    uint64_t PredTrueWeight, PredFalseWeight; +    // FIXME: We currently only set the profile data when it is missing. +    // With PGO, this can be used to refine even existing profile data with +    // context information. This needs to be done after more performance +    // testing. +    if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) +      continue; + +    // We can not infer anything useful when BP >= 50%, because BP is the +    // upper bound probability value. +    if (BP >= BranchProbability(50, 100)) +      continue; + +    SmallVector<uint32_t, 2> Weights; +    if (PredBr->getSuccessor(0) == PredOutEdge.second) { +      Weights.push_back(BP.getNumerator()); +      Weights.push_back(BP.getCompl().getNumerator()); +    } else { +      Weights.push_back(BP.getCompl().getNumerator()); +      Weights.push_back(BP.getNumerator()); +    } +    PredBr->setMetadata(LLVMContext::MD_prof, +                        MDBuilder(PredBr->getParent()->getContext()) +                            .createBranchWeights(Weights)); +  } +} + +/// runOnFunction - Toplevel algorithm. +bool JumpThreading::runOnFunction(Function &F) { +  if (skipFunction(F)) +    return false; +  auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); +  // Get DT analysis before LVI. When LVI is initialized it conditionally adds +  // DT if it's available. +  auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); +  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); +  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); +  std::unique_ptr<BlockFrequencyInfo> BFI; +  std::unique_ptr<BranchProbabilityInfo> BPI; +  bool HasProfileData = F.hasProfileData(); +  if (HasProfileData) { +    LoopInfo LI{DominatorTree(F)}; +    BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); +    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); +  } + +  bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, +                              std::move(BFI), std::move(BPI)); +  if (PrintLVIAfterJumpThreading) { +    dbgs() << "LVI for function '" << F.getName() << "':\n"; +    LVI->printLVI(F, *DT, dbgs()); +  } +  return Changed; +} + +PreservedAnalyses JumpThreadingPass::run(Function &F, +                                         FunctionAnalysisManager &AM) { +  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); +  // Get DT analysis before LVI. When LVI is initialized it conditionally adds +  // DT if it's available. +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  auto &LVI = AM.getResult<LazyValueAnalysis>(F); +  auto &AA = AM.getResult<AAManager>(F); +  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); + +  std::unique_ptr<BlockFrequencyInfo> BFI; +  std::unique_ptr<BranchProbabilityInfo> BPI; +  if (F.hasProfileData()) { +    LoopInfo LI{DominatorTree(F)}; +    BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); +    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); +  } + +  bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, +                         std::move(BFI), std::move(BPI)); + +  if (!Changed) +    return PreservedAnalyses::all(); +  PreservedAnalyses PA; +  PA.preserve<GlobalsAA>(); +  PA.preserve<DominatorTreeAnalysis>(); +  PA.preserve<LazyValueAnalysis>(); +  return PA; +} + +bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, +                                LazyValueInfo *LVI_, AliasAnalysis *AA_, +                                DomTreeUpdater *DTU_, bool HasProfileData_, +                                std::unique_ptr<BlockFrequencyInfo> BFI_, +                                std::unique_ptr<BranchProbabilityInfo> BPI_) { +  LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); +  TLI = TLI_; +  LVI = LVI_; +  AA = AA_; +  DTU = DTU_; +  BFI.reset(); +  BPI.reset(); +  // When profile data is available, we need to update edge weights after +  // successful jump threading, which requires both BPI and BFI being available. +  HasProfileData = HasProfileData_; +  auto *GuardDecl = F.getParent()->getFunction( +      Intrinsic::getName(Intrinsic::experimental_guard)); +  HasGuards = GuardDecl && !GuardDecl->use_empty(); +  if (HasProfileData) { +    BPI = std::move(BPI_); +    BFI = std::move(BFI_); +  } + +  // JumpThreading must not processes blocks unreachable from entry. It's a +  // waste of compute time and can potentially lead to hangs. +  SmallPtrSet<BasicBlock *, 16> Unreachable; +  assert(DTU && "DTU isn't passed into JumpThreading before using it."); +  assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); +  DominatorTree &DT = DTU->getDomTree(); +  for (auto &BB : F) +    if (!DT.isReachableFromEntry(&BB)) +      Unreachable.insert(&BB); + +  if (!ThreadAcrossLoopHeaders) +    FindLoopHeaders(F); + +  bool EverChanged = false; +  bool Changed; +  do { +    Changed = false; +    for (auto &BB : F) { +      if (Unreachable.count(&BB)) +        continue; +      while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. +        Changed = true; +      // Stop processing BB if it's the entry or is now deleted. The following +      // routines attempt to eliminate BB and locating a suitable replacement +      // for the entry is non-trivial. +      if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) +        continue; + +      if (pred_empty(&BB)) { +        // When ProcessBlock makes BB unreachable it doesn't bother to fix up +        // the instructions in it. We must remove BB to prevent invalid IR. +        LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName() +                          << "' with terminator: " << *BB.getTerminator() +                          << '\n'); +        LoopHeaders.erase(&BB); +        LVI->eraseBlock(&BB); +        DeleteDeadBlock(&BB, DTU); +        Changed = true; +        continue; +      } + +      // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB +      // is "almost empty", we attempt to merge BB with its sole successor. +      auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); +      if (BI && BI->isUnconditional() && +          // The terminator must be the only non-phi instruction in BB. +          BB.getFirstNonPHIOrDbg()->isTerminator() && +          // Don't alter Loop headers and latches to ensure another pass can +          // detect and transform nested loops later. +          !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && +          TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { +        // BB is valid for cleanup here because we passed in DTU. F remains +        // BB's parent until a DTU->getDomTree() event. +        LVI->eraseBlock(&BB); +        Changed = true; +      } +    } +    EverChanged |= Changed; +  } while (Changed); + +  LoopHeaders.clear(); +  // Flush only the Dominator Tree. +  DTU->getDomTree(); +  LVI->enableDT(); +  return EverChanged; +} + +// Replace uses of Cond with ToVal when safe to do so. If all uses are +// replaced, we can remove Cond. We cannot blindly replace all uses of Cond +// because we may incorrectly replace uses when guards/assumes are uses of +// of `Cond` and we used the guards/assume to reason about the `Cond` value +// at the end of block. RAUW unconditionally replaces all uses +// including the guards/assumes themselves and the uses before the +// guard/assume. +static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { +  assert(Cond->getType() == ToVal->getType()); +  auto *BB = Cond->getParent(); +  // We can unconditionally replace all uses in non-local blocks (i.e. uses +  // strictly dominated by BB), since LVI information is true from the +  // terminator of BB. +  replaceNonLocalUsesWith(Cond, ToVal); +  for (Instruction &I : reverse(*BB)) { +    // Reached the Cond whose uses we are trying to replace, so there are no +    // more uses. +    if (&I == Cond) +      break; +    // We only replace uses in instructions that are guaranteed to reach the end +    // of BB, where we know Cond is ToVal. +    if (!isGuaranteedToTransferExecutionToSuccessor(&I)) +      break; +    I.replaceUsesOfWith(Cond, ToVal); +  } +  if (Cond->use_empty() && !Cond->mayHaveSideEffects()) +    Cond->eraseFromParent(); +} + +/// Return the cost of duplicating a piece of this block from first non-phi +/// and before StopAt instruction to thread across it. Stop scanning the block +/// when exceeding the threshold. If duplication is impossible, returns ~0U. +static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, +                                             Instruction *StopAt, +                                             unsigned Threshold) { +  assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); +  /// Ignore PHI nodes, these will be flattened when duplication happens. +  BasicBlock::const_iterator I(BB->getFirstNonPHI()); + +  // FIXME: THREADING will delete values that are just used to compute the +  // branch, so they shouldn't count against the duplication cost. + +  unsigned Bonus = 0; +  if (BB->getTerminator() == StopAt) { +    // Threading through a switch statement is particularly profitable.  If this +    // block ends in a switch, decrease its cost to make it more likely to +    // happen. +    if (isa<SwitchInst>(StopAt)) +      Bonus = 6; + +    // The same holds for indirect branches, but slightly more so. +    if (isa<IndirectBrInst>(StopAt)) +      Bonus = 8; +  } + +  // Bump the threshold up so the early exit from the loop doesn't skip the +  // terminator-based Size adjustment at the end. +  Threshold += Bonus; + +  // Sum up the cost of each instruction until we get to the terminator.  Don't +  // include the terminator because the copy won't include it. +  unsigned Size = 0; +  for (; &*I != StopAt; ++I) { + +    // Stop scanning the block if we've reached the threshold. +    if (Size > Threshold) +      return Size; + +    // Debugger intrinsics don't incur code size. +    if (isa<DbgInfoIntrinsic>(I)) continue; + +    // If this is a pointer->pointer bitcast, it is free. +    if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) +      continue; + +    // Bail out if this instruction gives back a token type, it is not possible +    // to duplicate it if it is used outside this BB. +    if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) +      return ~0U; + +    // All other instructions count for at least one unit. +    ++Size; + +    // Calls are more expensive.  If they are non-intrinsic calls, we model them +    // as having cost of 4.  If they are a non-vector intrinsic, we model them +    // as having cost of 2 total, and if they are a vector intrinsic, we model +    // them as having cost 1. +    if (const CallInst *CI = dyn_cast<CallInst>(I)) { +      if (CI->cannotDuplicate() || CI->isConvergent()) +        // Blocks with NoDuplicate are modelled as having infinite cost, so they +        // are never duplicated. +        return ~0U; +      else if (!isa<IntrinsicInst>(CI)) +        Size += 3; +      else if (!CI->getType()->isVectorTy()) +        Size += 1; +    } +  } + +  return Size > Bonus ? Size - Bonus : 0; +} + +/// FindLoopHeaders - We do not want jump threading to turn proper loop +/// structures into irreducible loops.  Doing this breaks up the loop nesting +/// hierarchy and pessimizes later transformations.  To prevent this from +/// happening, we first have to find the loop headers.  Here we approximate this +/// by finding targets of backedges in the CFG. +/// +/// Note that there definitely are cases when we want to allow threading of +/// edges across a loop header.  For example, threading a jump from outside the +/// loop (the preheader) to an exit block of the loop is definitely profitable. +/// It is also almost always profitable to thread backedges from within the loop +/// to exit blocks, and is often profitable to thread backedges to other blocks +/// within the loop (forming a nested loop).  This simple analysis is not rich +/// enough to track all of these properties and keep it up-to-date as the CFG +/// mutates, so we don't allow any of these transformations. +void JumpThreadingPass::FindLoopHeaders(Function &F) { +  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; +  FindFunctionBackedges(F, Edges); + +  for (const auto &Edge : Edges) +    LoopHeaders.insert(Edge.second); +} + +/// getKnownConstant - Helper method to determine if we can thread over a +/// terminator with the given value as its condition, and if so what value to +/// use for that. What kind of value this is depends on whether we want an +/// integer or a block address, but an undef is always accepted. +/// Returns null if Val is null or not an appropriate constant. +static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { +  if (!Val) +    return nullptr; + +  // Undef is "known" enough. +  if (UndefValue *U = dyn_cast<UndefValue>(Val)) +    return U; + +  if (Preference == WantBlockAddress) +    return dyn_cast<BlockAddress>(Val->stripPointerCasts()); + +  return dyn_cast<ConstantInt>(Val); +} + +/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see +/// if we can infer that the value is a known ConstantInt/BlockAddress or undef +/// in any of our predecessors.  If so, return the known list of value and pred +/// BB in the result vector. +/// +/// This returns true if there were any known values. +bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( +    Value *V, BasicBlock *BB, PredValueInfo &Result, +    ConstantPreference Preference, +    DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, +    Instruction *CxtI) { +  // This method walks up use-def chains recursively.  Because of this, we could +  // get into an infinite loop going around loops in the use-def chain.  To +  // prevent this, keep track of what (value, block) pairs we've already visited +  // and terminate the search if we loop back to them +  if (!RecursionSet.insert(std::make_pair(V, BB)).second) +    return false; + +  // If V is a constant, then it is known in all predecessors. +  if (Constant *KC = getKnownConstant(V, Preference)) { +    for (BasicBlock *Pred : predecessors(BB)) +      Result.push_back(std::make_pair(KC, Pred)); + +    return !Result.empty(); +  } + +  // If V is a non-instruction value, or an instruction in a different block, +  // then it can't be derived from a PHI. +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I || I->getParent() != BB) { + +    // Okay, if this is a live-in value, see if it has a known value at the end +    // of any of our predecessors. +    // +    // FIXME: This should be an edge property, not a block end property. +    /// TODO: Per PR2563, we could infer value range information about a +    /// predecessor based on its terminator. +    // +    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if +    // "I" is a non-local compare-with-a-constant instruction.  This would be +    // able to handle value inequalities better, for example if the compare is +    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. +    // Perhaps getConstantOnEdge should be smart enough to do this? + +    if (DTU->hasPendingDomTreeUpdates()) +      LVI->disableDT(); +    else +      LVI->enableDT(); +    for (BasicBlock *P : predecessors(BB)) { +      // If the value is known by LazyValueInfo to be a constant in a +      // predecessor, use that information to try to thread this block. +      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); +      if (Constant *KC = getKnownConstant(PredCst, Preference)) +        Result.push_back(std::make_pair(KC, P)); +    } + +    return !Result.empty(); +  } + +  /// If I is a PHI node, then we know the incoming values for any constants. +  if (PHINode *PN = dyn_cast<PHINode>(I)) { +    if (DTU->hasPendingDomTreeUpdates()) +      LVI->disableDT(); +    else +      LVI->enableDT(); +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +      Value *InVal = PN->getIncomingValue(i); +      if (Constant *KC = getKnownConstant(InVal, Preference)) { +        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); +      } else { +        Constant *CI = LVI->getConstantOnEdge(InVal, +                                              PN->getIncomingBlock(i), +                                              BB, CxtI); +        if (Constant *KC = getKnownConstant(CI, Preference)) +          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); +      } +    } + +    return !Result.empty(); +  } + +  // Handle Cast instructions.  Only see through Cast when the source operand is +  // PHI or Cmp to save the compilation time. +  if (CastInst *CI = dyn_cast<CastInst>(I)) { +    Value *Source = CI->getOperand(0); +    if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) +      return false; +    ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, +                                        RecursionSet, CxtI); +    if (Result.empty()) +      return false; + +    // Convert the known values. +    for (auto &R : Result) +      R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); + +    return true; +  } + +  // Handle some boolean conditions. +  if (I->getType()->getPrimitiveSizeInBits() == 1) { +    assert(Preference == WantInteger && "One-bit non-integer type?"); +    // X | true -> true +    // X & false -> false +    if (I->getOpcode() == Instruction::Or || +        I->getOpcode() == Instruction::And) { +      PredValueInfoTy LHSVals, RHSVals; + +      ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, +                                      WantInteger, RecursionSet, CxtI); +      ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, +                                          WantInteger, RecursionSet, CxtI); + +      if (LHSVals.empty() && RHSVals.empty()) +        return false; + +      ConstantInt *InterestingVal; +      if (I->getOpcode() == Instruction::Or) +        InterestingVal = ConstantInt::getTrue(I->getContext()); +      else +        InterestingVal = ConstantInt::getFalse(I->getContext()); + +      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; + +      // Scan for the sentinel.  If we find an undef, force it to the +      // interesting value: x|undef -> true and x&undef -> false. +      for (const auto &LHSVal : LHSVals) +        if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { +          Result.emplace_back(InterestingVal, LHSVal.second); +          LHSKnownBBs.insert(LHSVal.second); +        } +      for (const auto &RHSVal : RHSVals) +        if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { +          // If we already inferred a value for this block on the LHS, don't +          // re-add it. +          if (!LHSKnownBBs.count(RHSVal.second)) +            Result.emplace_back(InterestingVal, RHSVal.second); +        } + +      return !Result.empty(); +    } + +    // Handle the NOT form of XOR. +    if (I->getOpcode() == Instruction::Xor && +        isa<ConstantInt>(I->getOperand(1)) && +        cast<ConstantInt>(I->getOperand(1))->isOne()) { +      ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, +                                          WantInteger, RecursionSet, CxtI); +      if (Result.empty()) +        return false; + +      // Invert the known values. +      for (auto &R : Result) +        R.first = ConstantExpr::getNot(R.first); + +      return true; +    } + +  // Try to simplify some other binary operator values. +  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { +    assert(Preference != WantBlockAddress +            && "A binary operator creating a block address?"); +    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { +      PredValueInfoTy LHSVals; +      ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, +                                          WantInteger, RecursionSet, CxtI); + +      // Try to use constant folding to simplify the binary operator. +      for (const auto &LHSVal : LHSVals) { +        Constant *V = LHSVal.first; +        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); + +        if (Constant *KC = getKnownConstant(Folded, WantInteger)) +          Result.push_back(std::make_pair(KC, LHSVal.second)); +      } +    } + +    return !Result.empty(); +  } + +  // Handle compare with phi operand, where the PHI is defined in this block. +  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { +    assert(Preference == WantInteger && "Compares only produce integers"); +    Type *CmpType = Cmp->getType(); +    Value *CmpLHS = Cmp->getOperand(0); +    Value *CmpRHS = Cmp->getOperand(1); +    CmpInst::Predicate Pred = Cmp->getPredicate(); + +    PHINode *PN = dyn_cast<PHINode>(CmpLHS); +    if (!PN) +      PN = dyn_cast<PHINode>(CmpRHS); +    if (PN && PN->getParent() == BB) { +      const DataLayout &DL = PN->getModule()->getDataLayout(); +      // We can do this simplification if any comparisons fold to true or false. +      // See if any do. +      if (DTU->hasPendingDomTreeUpdates()) +        LVI->disableDT(); +      else +        LVI->enableDT(); +      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +        BasicBlock *PredBB = PN->getIncomingBlock(i); +        Value *LHS, *RHS; +        if (PN == CmpLHS) { +          LHS = PN->getIncomingValue(i); +          RHS = CmpRHS->DoPHITranslation(BB, PredBB); +        } else { +          LHS = CmpLHS->DoPHITranslation(BB, PredBB); +          RHS = PN->getIncomingValue(i); +        } +        Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); +        if (!Res) { +          if (!isa<Constant>(RHS)) +            continue; + +          // getPredicateOnEdge call will make no sense if LHS is defined in BB. +          auto LHSInst = dyn_cast<Instruction>(LHS); +          if (LHSInst && LHSInst->getParent() == BB) +            continue; + +          LazyValueInfo::Tristate +            ResT = LVI->getPredicateOnEdge(Pred, LHS, +                                           cast<Constant>(RHS), PredBB, BB, +                                           CxtI ? CxtI : Cmp); +          if (ResT == LazyValueInfo::Unknown) +            continue; +          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); +        } + +        if (Constant *KC = getKnownConstant(Res, WantInteger)) +          Result.push_back(std::make_pair(KC, PredBB)); +      } + +      return !Result.empty(); +    } + +    // If comparing a live-in value against a constant, see if we know the +    // live-in value on any predecessors. +    if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { +      Constant *CmpConst = cast<Constant>(CmpRHS); + +      if (!isa<Instruction>(CmpLHS) || +          cast<Instruction>(CmpLHS)->getParent() != BB) { +        if (DTU->hasPendingDomTreeUpdates()) +          LVI->disableDT(); +        else +          LVI->enableDT(); +        for (BasicBlock *P : predecessors(BB)) { +          // If the value is known by LazyValueInfo to be a constant in a +          // predecessor, use that information to try to thread this block. +          LazyValueInfo::Tristate Res = +            LVI->getPredicateOnEdge(Pred, CmpLHS, +                                    CmpConst, P, BB, CxtI ? CxtI : Cmp); +          if (Res == LazyValueInfo::Unknown) +            continue; + +          Constant *ResC = ConstantInt::get(CmpType, Res); +          Result.push_back(std::make_pair(ResC, P)); +        } + +        return !Result.empty(); +      } + +      // InstCombine can fold some forms of constant range checks into +      // (icmp (add (x, C1)), C2). See if we have we have such a thing with +      // x as a live-in. +      { +        using namespace PatternMatch; + +        Value *AddLHS; +        ConstantInt *AddConst; +        if (isa<ConstantInt>(CmpConst) && +            match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { +          if (!isa<Instruction>(AddLHS) || +              cast<Instruction>(AddLHS)->getParent() != BB) { +            if (DTU->hasPendingDomTreeUpdates()) +              LVI->disableDT(); +            else +              LVI->enableDT(); +            for (BasicBlock *P : predecessors(BB)) { +              // If the value is known by LazyValueInfo to be a ConstantRange in +              // a predecessor, use that information to try to thread this +              // block. +              ConstantRange CR = LVI->getConstantRangeOnEdge( +                  AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); +              // Propagate the range through the addition. +              CR = CR.add(AddConst->getValue()); + +              // Get the range where the compare returns true. +              ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( +                  Pred, cast<ConstantInt>(CmpConst)->getValue()); + +              Constant *ResC; +              if (CmpRange.contains(CR)) +                ResC = ConstantInt::getTrue(CmpType); +              else if (CmpRange.inverse().contains(CR)) +                ResC = ConstantInt::getFalse(CmpType); +              else +                continue; + +              Result.push_back(std::make_pair(ResC, P)); +            } + +            return !Result.empty(); +          } +        } +      } + +      // Try to find a constant value for the LHS of a comparison, +      // and evaluate it statically if we can. +      PredValueInfoTy LHSVals; +      ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, +                                          WantInteger, RecursionSet, CxtI); + +      for (const auto &LHSVal : LHSVals) { +        Constant *V = LHSVal.first; +        Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); +        if (Constant *KC = getKnownConstant(Folded, WantInteger)) +          Result.push_back(std::make_pair(KC, LHSVal.second)); +      } + +      return !Result.empty(); +    } +  } + +  if (SelectInst *SI = dyn_cast<SelectInst>(I)) { +    // Handle select instructions where at least one operand is a known constant +    // and we can figure out the condition value for any predecessor block. +    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); +    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); +    PredValueInfoTy Conds; +    if ((TrueVal || FalseVal) && +        ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, +                                            WantInteger, RecursionSet, CxtI)) { +      for (auto &C : Conds) { +        Constant *Cond = C.first; + +        // Figure out what value to use for the condition. +        bool KnownCond; +        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { +          // A known boolean. +          KnownCond = CI->isOne(); +        } else { +          assert(isa<UndefValue>(Cond) && "Unexpected condition value"); +          // Either operand will do, so be sure to pick the one that's a known +          // constant. +          // FIXME: Do this more cleverly if both values are known constants? +          KnownCond = (TrueVal != nullptr); +        } + +        // See if the select has a known constant value for this predecessor. +        if (Constant *Val = KnownCond ? TrueVal : FalseVal) +          Result.push_back(std::make_pair(Val, C.second)); +      } + +      return !Result.empty(); +    } +  } + +  // If all else fails, see if LVI can figure out a constant value for us. +  if (DTU->hasPendingDomTreeUpdates()) +    LVI->disableDT(); +  else +    LVI->enableDT(); +  Constant *CI = LVI->getConstant(V, BB, CxtI); +  if (Constant *KC = getKnownConstant(CI, Preference)) { +    for (BasicBlock *Pred : predecessors(BB)) +      Result.push_back(std::make_pair(KC, Pred)); +  } + +  return !Result.empty(); +} + +/// GetBestDestForBranchOnUndef - If we determine that the specified block ends +/// in an undefined jump, decide which block is best to revector to. +/// +/// Since we can pick an arbitrary destination, we pick the successor with the +/// fewest predecessors.  This should reduce the in-degree of the others. +static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { +  Instruction *BBTerm = BB->getTerminator(); +  unsigned MinSucc = 0; +  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); +  // Compute the successor with the minimum number of predecessors. +  unsigned MinNumPreds = pred_size(TestBB); +  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { +    TestBB = BBTerm->getSuccessor(i); +    unsigned NumPreds = pred_size(TestBB); +    if (NumPreds < MinNumPreds) { +      MinSucc = i; +      MinNumPreds = NumPreds; +    } +  } + +  return MinSucc; +} + +static bool hasAddressTakenAndUsed(BasicBlock *BB) { +  if (!BB->hasAddressTaken()) return false; + +  // If the block has its address taken, it may be a tree of dead constants +  // hanging off of it.  These shouldn't keep the block alive. +  BlockAddress *BA = BlockAddress::get(BB); +  BA->removeDeadConstantUsers(); +  return !BA->use_empty(); +} + +/// ProcessBlock - If there are any predecessors whose control can be threaded +/// through to a successor, transform them now. +bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { +  // If the block is trivially dead, just return and let the caller nuke it. +  // This simplifies other transformations. +  if (DTU->isBBPendingDeletion(BB) || +      (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) +    return false; + +  // If this block has a single predecessor, and if that pred has a single +  // successor, merge the blocks.  This encourages recursive jump threading +  // because now the condition in this block can be threaded through +  // predecessors of our predecessor block. +  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { +    const Instruction *TI = SinglePred->getTerminator(); +    if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 && +        SinglePred != BB && !hasAddressTakenAndUsed(BB)) { +      // If SinglePred was a loop header, BB becomes one. +      if (LoopHeaders.erase(SinglePred)) +        LoopHeaders.insert(BB); + +      LVI->eraseBlock(SinglePred); +      MergeBasicBlockIntoOnlyPred(BB, DTU); + +      // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by +      // BB code within one basic block `BB`), we need to invalidate the LVI +      // information associated with BB, because the LVI information need not be +      // true for all of BB after the merge. For example, +      // Before the merge, LVI info and code is as follows: +      // SinglePred: <LVI info1 for %p val> +      // %y = use of %p +      // call @exit() // need not transfer execution to successor. +      // assume(%p) // from this point on %p is true +      // br label %BB +      // BB: <LVI info2 for %p val, i.e. %p is true> +      // %x = use of %p +      // br label exit +      // +      // Note that this LVI info for blocks BB and SinglPred is correct for %p +      // (info2 and info1 respectively). After the merge and the deletion of the +      // LVI info1 for SinglePred. We have the following code: +      // BB: <LVI info2 for %p val> +      // %y = use of %p +      // call @exit() +      // assume(%p) +      // %x = use of %p <-- LVI info2 is correct from here onwards. +      // br label exit +      // LVI info2 for BB is incorrect at the beginning of BB. + +      // Invalidate LVI information for BB if the LVI is not provably true for +      // all of BB. +      if (!isGuaranteedToTransferExecutionToSuccessor(BB)) +        LVI->eraseBlock(BB); +      return true; +    } +  } + +  if (TryToUnfoldSelectInCurrBB(BB)) +    return true; + +  // Look if we can propagate guards to predecessors. +  if (HasGuards && ProcessGuards(BB)) +    return true; + +  // What kind of constant we're looking for. +  ConstantPreference Preference = WantInteger; + +  // Look to see if the terminator is a conditional branch, switch or indirect +  // branch, if not we can't thread it. +  Value *Condition; +  Instruction *Terminator = BB->getTerminator(); +  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { +    // Can't thread an unconditional jump. +    if (BI->isUnconditional()) return false; +    Condition = BI->getCondition(); +  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { +    Condition = SI->getCondition(); +  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { +    // Can't thread indirect branch with no successors. +    if (IB->getNumSuccessors() == 0) return false; +    Condition = IB->getAddress()->stripPointerCasts(); +    Preference = WantBlockAddress; +  } else { +    return false; // Must be an invoke or callbr. +  } + +  // Run constant folding to see if we can reduce the condition to a simple +  // constant. +  if (Instruction *I = dyn_cast<Instruction>(Condition)) { +    Value *SimpleVal = +        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); +    if (SimpleVal) { +      I->replaceAllUsesWith(SimpleVal); +      if (isInstructionTriviallyDead(I, TLI)) +        I->eraseFromParent(); +      Condition = SimpleVal; +    } +  } + +  // If the terminator is branching on an undef, we can pick any of the +  // successors to branch to.  Let GetBestDestForJumpOnUndef decide. +  if (isa<UndefValue>(Condition)) { +    unsigned BestSucc = GetBestDestForJumpOnUndef(BB); +    std::vector<DominatorTree::UpdateType> Updates; + +    // Fold the branch/switch. +    Instruction *BBTerm = BB->getTerminator(); +    Updates.reserve(BBTerm->getNumSuccessors()); +    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { +      if (i == BestSucc) continue; +      BasicBlock *Succ = BBTerm->getSuccessor(i); +      Succ->removePredecessor(BB, true); +      Updates.push_back({DominatorTree::Delete, BB, Succ}); +    } + +    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName() +                      << "' folding undef terminator: " << *BBTerm << '\n'); +    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); +    BBTerm->eraseFromParent(); +    DTU->applyUpdatesPermissive(Updates); +    return true; +  } + +  // If the terminator of this block is branching on a constant, simplify the +  // terminator to an unconditional branch.  This can occur due to threading in +  // other blocks. +  if (getKnownConstant(Condition, Preference)) { +    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName() +                      << "' folding terminator: " << *BB->getTerminator() +                      << '\n'); +    ++NumFolds; +    ConstantFoldTerminator(BB, true, nullptr, DTU); +    return true; +  } + +  Instruction *CondInst = dyn_cast<Instruction>(Condition); + +  // All the rest of our checks depend on the condition being an instruction. +  if (!CondInst) { +    // FIXME: Unify this with code below. +    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) +      return true; +    return false; +  } + +  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { +    // If we're branching on a conditional, LVI might be able to determine +    // it's value at the branch instruction.  We only handle comparisons +    // against a constant at this time. +    // TODO: This should be extended to handle switches as well. +    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); +    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); +    if (CondBr && CondConst) { +      // We should have returned as soon as we turn a conditional branch to +      // unconditional. Because its no longer interesting as far as jump +      // threading is concerned. +      assert(CondBr->isConditional() && "Threading on unconditional terminator"); + +      if (DTU->hasPendingDomTreeUpdates()) +        LVI->disableDT(); +      else +        LVI->enableDT(); +      LazyValueInfo::Tristate Ret = +        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), +                            CondConst, CondBr); +      if (Ret != LazyValueInfo::Unknown) { +        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; +        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; +        BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); +        ToRemoveSucc->removePredecessor(BB, true); +        BranchInst *UncondBr = +          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); +        UncondBr->setDebugLoc(CondBr->getDebugLoc()); +        CondBr->eraseFromParent(); +        if (CondCmp->use_empty()) +          CondCmp->eraseFromParent(); +        // We can safely replace *some* uses of the CondInst if it has +        // exactly one value as returned by LVI. RAUW is incorrect in the +        // presence of guards and assumes, that have the `Cond` as the use. This +        // is because we use the guards/assume to reason about the `Cond` value +        // at the end of block, but RAUW unconditionally replaces all uses +        // including the guards/assumes themselves and the uses before the +        // guard/assume. +        else if (CondCmp->getParent() == BB) { +          auto *CI = Ret == LazyValueInfo::True ? +            ConstantInt::getTrue(CondCmp->getType()) : +            ConstantInt::getFalse(CondCmp->getType()); +          ReplaceFoldableUses(CondCmp, CI); +        } +        DTU->applyUpdatesPermissive( +            {{DominatorTree::Delete, BB, ToRemoveSucc}}); +        return true; +      } + +      // We did not manage to simplify this branch, try to see whether +      // CondCmp depends on a known phi-select pattern. +      if (TryToUnfoldSelect(CondCmp, BB)) +        return true; +    } +  } + +  if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) +    if (TryToUnfoldSelect(SI, BB)) +      return true; + +  // Check for some cases that are worth simplifying.  Right now we want to look +  // for loads that are used by a switch or by the condition for the branch.  If +  // we see one, check to see if it's partially redundant.  If so, insert a PHI +  // which can then be used to thread the values. +  Value *SimplifyValue = CondInst; +  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) +    if (isa<Constant>(CondCmp->getOperand(1))) +      SimplifyValue = CondCmp->getOperand(0); + +  // TODO: There are other places where load PRE would be profitable, such as +  // more complex comparisons. +  if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) +    if (SimplifyPartiallyRedundantLoad(LoadI)) +      return true; + +  // Before threading, try to propagate profile data backwards: +  if (PHINode *PN = dyn_cast<PHINode>(CondInst)) +    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) +      updatePredecessorProfileMetadata(PN, BB); + +  // Handle a variety of cases where we are branching on something derived from +  // a PHI node in the current block.  If we can prove that any predecessors +  // compute a predictable value based on a PHI node, thread those predecessors. +  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) +    return true; + +  // If this is an otherwise-unfoldable branch on a phi node in the current +  // block, see if we can simplify. +  if (PHINode *PN = dyn_cast<PHINode>(CondInst)) +    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) +      return ProcessBranchOnPHI(PN); + +  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. +  if (CondInst->getOpcode() == Instruction::Xor && +      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) +    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); + +  // Search for a stronger dominating condition that can be used to simplify a +  // conditional branch leaving BB. +  if (ProcessImpliedCondition(BB)) +    return true; + +  return false; +} + +bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { +  auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); +  if (!BI || !BI->isConditional()) +    return false; + +  Value *Cond = BI->getCondition(); +  BasicBlock *CurrentBB = BB; +  BasicBlock *CurrentPred = BB->getSinglePredecessor(); +  unsigned Iter = 0; + +  auto &DL = BB->getModule()->getDataLayout(); + +  while (CurrentPred && Iter++ < ImplicationSearchThreshold) { +    auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); +    if (!PBI || !PBI->isConditional()) +      return false; +    if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) +      return false; + +    bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; +    Optional<bool> Implication = +        isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); +    if (Implication) { +      BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); +      BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); +      RemoveSucc->removePredecessor(BB); +      BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); +      UncondBI->setDebugLoc(BI->getDebugLoc()); +      BI->eraseFromParent(); +      DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); +      return true; +    } +    CurrentBB = CurrentPred; +    CurrentPred = CurrentBB->getSinglePredecessor(); +  } + +  return false; +} + +/// Return true if Op is an instruction defined in the given block. +static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { +  if (Instruction *OpInst = dyn_cast<Instruction>(Op)) +    if (OpInst->getParent() == BB) +      return true; +  return false; +} + +/// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially +/// redundant load instruction, eliminate it by replacing it with a PHI node. +/// This is an important optimization that encourages jump threading, and needs +/// to be run interlaced with other jump threading tasks. +bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { +  // Don't hack volatile and ordered loads. +  if (!LoadI->isUnordered()) return false; + +  // If the load is defined in a block with exactly one predecessor, it can't be +  // partially redundant. +  BasicBlock *LoadBB = LoadI->getParent(); +  if (LoadBB->getSinglePredecessor()) +    return false; + +  // If the load is defined in an EH pad, it can't be partially redundant, +  // because the edges between the invoke and the EH pad cannot have other +  // instructions between them. +  if (LoadBB->isEHPad()) +    return false; + +  Value *LoadedPtr = LoadI->getOperand(0); + +  // If the loaded operand is defined in the LoadBB and its not a phi, +  // it can't be available in predecessors. +  if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) +    return false; + +  // Scan a few instructions up from the load, to see if it is obviously live at +  // the entry to its block. +  BasicBlock::iterator BBIt(LoadI); +  bool IsLoadCSE; +  if (Value *AvailableVal = FindAvailableLoadedValue( +          LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { +    // If the value of the load is locally available within the block, just use +    // it.  This frequently occurs for reg2mem'd allocas. + +    if (IsLoadCSE) { +      LoadInst *NLoadI = cast<LoadInst>(AvailableVal); +      combineMetadataForCSE(NLoadI, LoadI, false); +    }; + +    // If the returned value is the load itself, replace with an undef. This can +    // only happen in dead loops. +    if (AvailableVal == LoadI) +      AvailableVal = UndefValue::get(LoadI->getType()); +    if (AvailableVal->getType() != LoadI->getType()) +      AvailableVal = CastInst::CreateBitOrPointerCast( +          AvailableVal, LoadI->getType(), "", LoadI); +    LoadI->replaceAllUsesWith(AvailableVal); +    LoadI->eraseFromParent(); +    return true; +  } + +  // Otherwise, if we scanned the whole block and got to the top of the block, +  // we know the block is locally transparent to the load.  If not, something +  // might clobber its value. +  if (BBIt != LoadBB->begin()) +    return false; + +  // If all of the loads and stores that feed the value have the same AA tags, +  // then we can propagate them onto any newly inserted loads. +  AAMDNodes AATags; +  LoadI->getAAMetadata(AATags); + +  SmallPtrSet<BasicBlock*, 8> PredsScanned; + +  using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; + +  AvailablePredsTy AvailablePreds; +  BasicBlock *OneUnavailablePred = nullptr; +  SmallVector<LoadInst*, 8> CSELoads; + +  // If we got here, the loaded value is transparent through to the start of the +  // block.  Check to see if it is available in any of the predecessor blocks. +  for (BasicBlock *PredBB : predecessors(LoadBB)) { +    // If we already scanned this predecessor, skip it. +    if (!PredsScanned.insert(PredBB).second) +      continue; + +    BBIt = PredBB->end(); +    unsigned NumScanedInst = 0; +    Value *PredAvailable = nullptr; +    // NOTE: We don't CSE load that is volatile or anything stronger than +    // unordered, that should have been checked when we entered the function. +    assert(LoadI->isUnordered() && +           "Attempting to CSE volatile or atomic loads"); +    // If this is a load on a phi pointer, phi-translate it and search +    // for available load/store to the pointer in predecessors. +    Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); +    PredAvailable = FindAvailablePtrLoadStore( +        Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, +        DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); + +    // If PredBB has a single predecessor, continue scanning through the +    // single predecessor. +    BasicBlock *SinglePredBB = PredBB; +    while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && +           NumScanedInst < DefMaxInstsToScan) { +      SinglePredBB = SinglePredBB->getSinglePredecessor(); +      if (SinglePredBB) { +        BBIt = SinglePredBB->end(); +        PredAvailable = FindAvailablePtrLoadStore( +            Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, +            (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, +            &NumScanedInst); +      } +    } + +    if (!PredAvailable) { +      OneUnavailablePred = PredBB; +      continue; +    } + +    if (IsLoadCSE) +      CSELoads.push_back(cast<LoadInst>(PredAvailable)); + +    // If so, this load is partially redundant.  Remember this info so that we +    // can create a PHI node. +    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); +  } + +  // If the loaded value isn't available in any predecessor, it isn't partially +  // redundant. +  if (AvailablePreds.empty()) return false; + +  // Okay, the loaded value is available in at least one (and maybe all!) +  // predecessors.  If the value is unavailable in more than one unique +  // predecessor, we want to insert a merge block for those common predecessors. +  // This ensures that we only have to insert one reload, thus not increasing +  // code size. +  BasicBlock *UnavailablePred = nullptr; + +  // If the value is unavailable in one of predecessors, we will end up +  // inserting a new instruction into them. It is only valid if all the +  // instructions before LoadI are guaranteed to pass execution to its +  // successor, or if LoadI is safe to speculate. +  // TODO: If this logic becomes more complex, and we will perform PRE insertion +  // farther than to a predecessor, we need to reuse the code from GVN's PRE. +  // It requires domination tree analysis, so for this simple case it is an +  // overkill. +  if (PredsScanned.size() != AvailablePreds.size() && +      !isSafeToSpeculativelyExecute(LoadI)) +    for (auto I = LoadBB->begin(); &*I != LoadI; ++I) +      if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) +        return false; + +  // If there is exactly one predecessor where the value is unavailable, the +  // already computed 'OneUnavailablePred' block is it.  If it ends in an +  // unconditional branch, we know that it isn't a critical edge. +  if (PredsScanned.size() == AvailablePreds.size()+1 && +      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { +    UnavailablePred = OneUnavailablePred; +  } else if (PredsScanned.size() != AvailablePreds.size()) { +    // Otherwise, we had multiple unavailable predecessors or we had a critical +    // edge from the one. +    SmallVector<BasicBlock*, 8> PredsToSplit; +    SmallPtrSet<BasicBlock*, 8> AvailablePredSet; + +    for (const auto &AvailablePred : AvailablePreds) +      AvailablePredSet.insert(AvailablePred.first); + +    // Add all the unavailable predecessors to the PredsToSplit list. +    for (BasicBlock *P : predecessors(LoadBB)) { +      // If the predecessor is an indirect goto, we can't split the edge. +      // Same for CallBr. +      if (isa<IndirectBrInst>(P->getTerminator()) || +          isa<CallBrInst>(P->getTerminator())) +        return false; + +      if (!AvailablePredSet.count(P)) +        PredsToSplit.push_back(P); +    } + +    // Split them out to their own block. +    UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); +  } + +  // If the value isn't available in all predecessors, then there will be +  // exactly one where it isn't available.  Insert a load on that edge and add +  // it to the AvailablePreds list. +  if (UnavailablePred) { +    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && +           "Can't handle critical edge here!"); +    LoadInst *NewVal = new LoadInst( +        LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), +        LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()), +        LoadI->getOrdering(), LoadI->getSyncScopeID(), +        UnavailablePred->getTerminator()); +    NewVal->setDebugLoc(LoadI->getDebugLoc()); +    if (AATags) +      NewVal->setAAMetadata(AATags); + +    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); +  } + +  // Now we know that each predecessor of this block has a value in +  // AvailablePreds, sort them for efficient access as we're walking the preds. +  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); + +  // Create a PHI node at the start of the block for the PRE'd load value. +  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); +  PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", +                                &LoadBB->front()); +  PN->takeName(LoadI); +  PN->setDebugLoc(LoadI->getDebugLoc()); + +  // Insert new entries into the PHI for each predecessor.  A single block may +  // have multiple entries here. +  for (pred_iterator PI = PB; PI != PE; ++PI) { +    BasicBlock *P = *PI; +    AvailablePredsTy::iterator I = +        llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); + +    assert(I != AvailablePreds.end() && I->first == P && +           "Didn't find entry for predecessor!"); + +    // If we have an available predecessor but it requires casting, insert the +    // cast in the predecessor and use the cast. Note that we have to update the +    // AvailablePreds vector as we go so that all of the PHI entries for this +    // predecessor use the same bitcast. +    Value *&PredV = I->second; +    if (PredV->getType() != LoadI->getType()) +      PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", +                                               P->getTerminator()); + +    PN->addIncoming(PredV, I->first); +  } + +  for (LoadInst *PredLoadI : CSELoads) { +    combineMetadataForCSE(PredLoadI, LoadI, true); +  } + +  LoadI->replaceAllUsesWith(PN); +  LoadI->eraseFromParent(); + +  return true; +} + +/// FindMostPopularDest - The specified list contains multiple possible +/// threadable destinations.  Pick the one that occurs the most frequently in +/// the list. +static BasicBlock * +FindMostPopularDest(BasicBlock *BB, +                    const SmallVectorImpl<std::pair<BasicBlock *, +                                          BasicBlock *>> &PredToDestList) { +  assert(!PredToDestList.empty()); + +  // Determine popularity.  If there are multiple possible destinations, we +  // explicitly choose to ignore 'undef' destinations.  We prefer to thread +  // blocks with known and real destinations to threading undef.  We'll handle +  // them later if interesting. +  DenseMap<BasicBlock*, unsigned> DestPopularity; +  for (const auto &PredToDest : PredToDestList) +    if (PredToDest.second) +      DestPopularity[PredToDest.second]++; + +  if (DestPopularity.empty()) +    return nullptr; + +  // Find the most popular dest. +  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); +  BasicBlock *MostPopularDest = DPI->first; +  unsigned Popularity = DPI->second; +  SmallVector<BasicBlock*, 4> SamePopularity; + +  for (++DPI; DPI != DestPopularity.end(); ++DPI) { +    // If the popularity of this entry isn't higher than the popularity we've +    // seen so far, ignore it. +    if (DPI->second < Popularity) +      ; // ignore. +    else if (DPI->second == Popularity) { +      // If it is the same as what we've seen so far, keep track of it. +      SamePopularity.push_back(DPI->first); +    } else { +      // If it is more popular, remember it. +      SamePopularity.clear(); +      MostPopularDest = DPI->first; +      Popularity = DPI->second; +    } +  } + +  // Okay, now we know the most popular destination.  If there is more than one +  // destination, we need to determine one.  This is arbitrary, but we need +  // to make a deterministic decision.  Pick the first one that appears in the +  // successor list. +  if (!SamePopularity.empty()) { +    SamePopularity.push_back(MostPopularDest); +    Instruction *TI = BB->getTerminator(); +    for (unsigned i = 0; ; ++i) { +      assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); + +      if (!is_contained(SamePopularity, TI->getSuccessor(i))) +        continue; + +      MostPopularDest = TI->getSuccessor(i); +      break; +    } +  } + +  // Okay, we have finally picked the most popular destination. +  return MostPopularDest; +} + +bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, +                                               ConstantPreference Preference, +                                               Instruction *CxtI) { +  // If threading this would thread across a loop header, don't even try to +  // thread the edge. +  if (LoopHeaders.count(BB)) +    return false; + +  PredValueInfoTy PredValues; +  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) +    return false; + +  assert(!PredValues.empty() && +         "ComputeValueKnownInPredecessors returned true with no values"); + +  LLVM_DEBUG(dbgs() << "IN BB: " << *BB; +             for (const auto &PredValue : PredValues) { +               dbgs() << "  BB '" << BB->getName() +                      << "': FOUND condition = " << *PredValue.first +                      << " for pred '" << PredValue.second->getName() << "'.\n"; +  }); + +  // Decide what we want to thread through.  Convert our list of known values to +  // a list of known destinations for each pred.  This also discards duplicate +  // predecessors and keeps track of the undefined inputs (which are represented +  // as a null dest in the PredToDestList). +  SmallPtrSet<BasicBlock*, 16> SeenPreds; +  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; + +  BasicBlock *OnlyDest = nullptr; +  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; +  Constant *OnlyVal = nullptr; +  Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; + +  for (const auto &PredValue : PredValues) { +    BasicBlock *Pred = PredValue.second; +    if (!SeenPreds.insert(Pred).second) +      continue;  // Duplicate predecessor entry. + +    Constant *Val = PredValue.first; + +    BasicBlock *DestBB; +    if (isa<UndefValue>(Val)) +      DestBB = nullptr; +    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { +      assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); +      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); +    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { +      assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); +      DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); +    } else { +      assert(isa<IndirectBrInst>(BB->getTerminator()) +              && "Unexpected terminator"); +      assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); +      DestBB = cast<BlockAddress>(Val)->getBasicBlock(); +    } + +    // If we have exactly one destination, remember it for efficiency below. +    if (PredToDestList.empty()) { +      OnlyDest = DestBB; +      OnlyVal = Val; +    } else { +      if (OnlyDest != DestBB) +        OnlyDest = MultipleDestSentinel; +      // It possible we have same destination, but different value, e.g. default +      // case in switchinst. +      if (Val != OnlyVal) +        OnlyVal = MultipleVal; +    } + +    // If the predecessor ends with an indirect goto, we can't change its +    // destination. Same for CallBr. +    if (isa<IndirectBrInst>(Pred->getTerminator()) || +        isa<CallBrInst>(Pred->getTerminator())) +      continue; + +    PredToDestList.push_back(std::make_pair(Pred, DestBB)); +  } + +  // If all edges were unthreadable, we fail. +  if (PredToDestList.empty()) +    return false; + +  // If all the predecessors go to a single known successor, we want to fold, +  // not thread. By doing so, we do not need to duplicate the current block and +  // also miss potential opportunities in case we dont/cant duplicate. +  if (OnlyDest && OnlyDest != MultipleDestSentinel) { +    if (BB->hasNPredecessors(PredToDestList.size())) { +      bool SeenFirstBranchToOnlyDest = false; +      std::vector <DominatorTree::UpdateType> Updates; +      Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); +      for (BasicBlock *SuccBB : successors(BB)) { +        if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { +          SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. +        } else { +          SuccBB->removePredecessor(BB, true); // This is unreachable successor. +          Updates.push_back({DominatorTree::Delete, BB, SuccBB}); +        } +      } + +      // Finally update the terminator. +      Instruction *Term = BB->getTerminator(); +      BranchInst::Create(OnlyDest, Term); +      Term->eraseFromParent(); +      DTU->applyUpdatesPermissive(Updates); + +      // If the condition is now dead due to the removal of the old terminator, +      // erase it. +      if (auto *CondInst = dyn_cast<Instruction>(Cond)) { +        if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) +          CondInst->eraseFromParent(); +        // We can safely replace *some* uses of the CondInst if it has +        // exactly one value as returned by LVI. RAUW is incorrect in the +        // presence of guards and assumes, that have the `Cond` as the use. This +        // is because we use the guards/assume to reason about the `Cond` value +        // at the end of block, but RAUW unconditionally replaces all uses +        // including the guards/assumes themselves and the uses before the +        // guard/assume. +        else if (OnlyVal && OnlyVal != MultipleVal && +                 CondInst->getParent() == BB) +          ReplaceFoldableUses(CondInst, OnlyVal); +      } +      return true; +    } +  } + +  // Determine which is the most common successor.  If we have many inputs and +  // this block is a switch, we want to start by threading the batch that goes +  // to the most popular destination first.  If we only know about one +  // threadable destination (the common case) we can avoid this. +  BasicBlock *MostPopularDest = OnlyDest; + +  if (MostPopularDest == MultipleDestSentinel) { +    // Remove any loop headers from the Dest list, ThreadEdge conservatively +    // won't process them, but we might have other destination that are eligible +    // and we still want to process. +    erase_if(PredToDestList, +             [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { +               return LoopHeaders.count(PredToDest.second) != 0; +             }); + +    if (PredToDestList.empty()) +      return false; + +    MostPopularDest = FindMostPopularDest(BB, PredToDestList); +  } + +  // Now that we know what the most popular destination is, factor all +  // predecessors that will jump to it into a single predecessor. +  SmallVector<BasicBlock*, 16> PredsToFactor; +  for (const auto &PredToDest : PredToDestList) +    if (PredToDest.second == MostPopularDest) { +      BasicBlock *Pred = PredToDest.first; + +      // This predecessor may be a switch or something else that has multiple +      // edges to the block.  Factor each of these edges by listing them +      // according to # occurrences in PredsToFactor. +      for (BasicBlock *Succ : successors(Pred)) +        if (Succ == BB) +          PredsToFactor.push_back(Pred); +    } + +  // If the threadable edges are branching on an undefined value, we get to pick +  // the destination that these predecessors should get to. +  if (!MostPopularDest) +    MostPopularDest = BB->getTerminator()-> +                            getSuccessor(GetBestDestForJumpOnUndef(BB)); + +  // Ok, try to thread it! +  return ThreadEdge(BB, PredsToFactor, MostPopularDest); +} + +/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on +/// a PHI node in the current block.  See if there are any simplifications we +/// can do based on inputs to the phi node. +bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { +  BasicBlock *BB = PN->getParent(); + +  // TODO: We could make use of this to do it once for blocks with common PHI +  // values. +  SmallVector<BasicBlock*, 1> PredBBs; +  PredBBs.resize(1); + +  // If any of the predecessor blocks end in an unconditional branch, we can +  // *duplicate* the conditional branch into that block in order to further +  // encourage jump threading and to eliminate cases where we have branch on a +  // phi of an icmp (branch on icmp is much better). +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +    BasicBlock *PredBB = PN->getIncomingBlock(i); +    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) +      if (PredBr->isUnconditional()) { +        PredBBs[0] = PredBB; +        // Try to duplicate BB into PredBB. +        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) +          return true; +      } +  } + +  return false; +} + +/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on +/// a xor instruction in the current block.  See if there are any +/// simplifications we can do based on inputs to the xor. +bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { +  BasicBlock *BB = BO->getParent(); + +  // If either the LHS or RHS of the xor is a constant, don't do this +  // optimization. +  if (isa<ConstantInt>(BO->getOperand(0)) || +      isa<ConstantInt>(BO->getOperand(1))) +    return false; + +  // If the first instruction in BB isn't a phi, we won't be able to infer +  // anything special about any particular predecessor. +  if (!isa<PHINode>(BB->front())) +    return false; + +  // If this BB is a landing pad, we won't be able to split the edge into it. +  if (BB->isEHPad()) +    return false; + +  // If we have a xor as the branch input to this block, and we know that the +  // LHS or RHS of the xor in any predecessor is true/false, then we can clone +  // the condition into the predecessor and fix that value to true, saving some +  // logical ops on that path and encouraging other paths to simplify. +  // +  // This copies something like this: +  // +  //  BB: +  //    %X = phi i1 [1],  [%X'] +  //    %Y = icmp eq i32 %A, %B +  //    %Z = xor i1 %X, %Y +  //    br i1 %Z, ... +  // +  // Into: +  //  BB': +  //    %Y = icmp ne i32 %A, %B +  //    br i1 %Y, ... + +  PredValueInfoTy XorOpValues; +  bool isLHS = true; +  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, +                                       WantInteger, BO)) { +    assert(XorOpValues.empty()); +    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, +                                         WantInteger, BO)) +      return false; +    isLHS = false; +  } + +  assert(!XorOpValues.empty() && +         "ComputeValueKnownInPredecessors returned true with no values"); + +  // Scan the information to see which is most popular: true or false.  The +  // predecessors can be of the set true, false, or undef. +  unsigned NumTrue = 0, NumFalse = 0; +  for (const auto &XorOpValue : XorOpValues) { +    if (isa<UndefValue>(XorOpValue.first)) +      // Ignore undefs for the count. +      continue; +    if (cast<ConstantInt>(XorOpValue.first)->isZero()) +      ++NumFalse; +    else +      ++NumTrue; +  } + +  // Determine which value to split on, true, false, or undef if neither. +  ConstantInt *SplitVal = nullptr; +  if (NumTrue > NumFalse) +    SplitVal = ConstantInt::getTrue(BB->getContext()); +  else if (NumTrue != 0 || NumFalse != 0) +    SplitVal = ConstantInt::getFalse(BB->getContext()); + +  // Collect all of the blocks that this can be folded into so that we can +  // factor this once and clone it once. +  SmallVector<BasicBlock*, 8> BlocksToFoldInto; +  for (const auto &XorOpValue : XorOpValues) { +    if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) +      continue; + +    BlocksToFoldInto.push_back(XorOpValue.second); +  } + +  // If we inferred a value for all of the predecessors, then duplication won't +  // help us.  However, we can just replace the LHS or RHS with the constant. +  if (BlocksToFoldInto.size() == +      cast<PHINode>(BB->front()).getNumIncomingValues()) { +    if (!SplitVal) { +      // If all preds provide undef, just nuke the xor, because it is undef too. +      BO->replaceAllUsesWith(UndefValue::get(BO->getType())); +      BO->eraseFromParent(); +    } else if (SplitVal->isZero()) { +      // If all preds provide 0, replace the xor with the other input. +      BO->replaceAllUsesWith(BO->getOperand(isLHS)); +      BO->eraseFromParent(); +    } else { +      // If all preds provide 1, set the computed value to 1. +      BO->setOperand(!isLHS, SplitVal); +    } + +    return true; +  } + +  // Try to duplicate BB into PredBB. +  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); +} + +/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new +/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for +/// NewPred using the entries from OldPred (suitably mapped). +static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, +                                            BasicBlock *OldPred, +                                            BasicBlock *NewPred, +                                     DenseMap<Instruction*, Value*> &ValueMap) { +  for (PHINode &PN : PHIBB->phis()) { +    // Ok, we have a PHI node.  Figure out what the incoming value was for the +    // DestBlock. +    Value *IV = PN.getIncomingValueForBlock(OldPred); + +    // Remap the value if necessary. +    if (Instruction *Inst = dyn_cast<Instruction>(IV)) { +      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); +      if (I != ValueMap.end()) +        IV = I->second; +    } + +    PN.addIncoming(IV, NewPred); +  } +} + +/// ThreadEdge - We have decided that it is safe and profitable to factor the +/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB +/// across BB.  Transform the IR to reflect this change. +bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, +                                   const SmallVectorImpl<BasicBlock *> &PredBBs, +                                   BasicBlock *SuccBB) { +  // If threading to the same block as we come from, we would infinite loop. +  if (SuccBB == BB) { +    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName() +                      << "' - would thread to self!\n"); +    return false; +  } + +  // If threading this would thread across a loop header, don't thread the edge. +  // See the comments above FindLoopHeaders for justifications and caveats. +  if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { +    LLVM_DEBUG({ +      bool BBIsHeader = LoopHeaders.count(BB); +      bool SuccIsHeader = LoopHeaders.count(SuccBB); +      dbgs() << "  Not threading across " +          << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() +          << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") +          << SuccBB->getName() << "' - it might create an irreducible loop!\n"; +    }); +    return false; +  } + +  unsigned JumpThreadCost = +      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); +  if (JumpThreadCost > BBDupThreshold) { +    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName() +                      << "' - Cost is too high: " << JumpThreadCost << "\n"); +    return false; +  } + +  // And finally, do it!  Start by factoring the predecessors if needed. +  BasicBlock *PredBB; +  if (PredBBs.size() == 1) +    PredBB = PredBBs[0]; +  else { +    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size() +                      << " common predecessors.\n"); +    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); +  } + +  // And finally, do it! +  LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() +                    << "' to '" << SuccBB->getName() +                    << "' with cost: " << JumpThreadCost +                    << ", across block:\n    " << *BB << "\n"); + +  if (DTU->hasPendingDomTreeUpdates()) +    LVI->disableDT(); +  else +    LVI->enableDT(); +  LVI->threadEdge(PredBB, BB, SuccBB); + +  // We are going to have to map operands from the original BB block to the new +  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to +  // account for entry from PredBB. +  DenseMap<Instruction*, Value*> ValueMapping; + +  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), +                                         BB->getName()+".thread", +                                         BB->getParent(), BB); +  NewBB->moveAfter(PredBB); + +  // Set the block frequency of NewBB. +  if (HasProfileData) { +    auto NewBBFreq = +        BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); +    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); +  } + +  BasicBlock::iterator BI = BB->begin(); +  // Clone the phi nodes of BB into NewBB. The resulting phi nodes are trivial, +  // since NewBB only has one predecessor, but SSAUpdater might need to rewrite +  // the operand of the cloned phi. +  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { +    PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); +    NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); +    ValueMapping[PN] = NewPN; +  } + +  // Clone the non-phi instructions of BB into NewBB, keeping track of the +  // mapping and using it to remap operands in the cloned instructions. +  for (; !BI->isTerminator(); ++BI) { +    Instruction *New = BI->clone(); +    New->setName(BI->getName()); +    NewBB->getInstList().push_back(New); +    ValueMapping[&*BI] = New; + +    // Remap operands to patch up intra-block references. +    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) +      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { +        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); +        if (I != ValueMapping.end()) +          New->setOperand(i, I->second); +      } +  } + +  // We didn't copy the terminator from BB over to NewBB, because there is now +  // an unconditional jump to SuccBB.  Insert the unconditional jump. +  BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); +  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); + +  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the +  // PHI nodes for NewBB now. +  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); + +  // Update the terminator of PredBB to jump to NewBB instead of BB.  This +  // eliminates predecessors from BB, which requires us to simplify any PHI +  // nodes in BB. +  Instruction *PredTerm = PredBB->getTerminator(); +  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) +    if (PredTerm->getSuccessor(i) == BB) { +      BB->removePredecessor(PredBB, true); +      PredTerm->setSuccessor(i, NewBB); +    } + +  // Enqueue required DT updates. +  DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, +                               {DominatorTree::Insert, PredBB, NewBB}, +                               {DominatorTree::Delete, PredBB, BB}}); + +  // If there were values defined in BB that are used outside the block, then we +  // now have to update all uses of the value to use either the original value, +  // the cloned value, or some PHI derived value.  This can require arbitrary +  // PHI insertion, of which we are prepared to do, clean these up now. +  SSAUpdater SSAUpdate; +  SmallVector<Use*, 16> UsesToRename; + +  for (Instruction &I : *BB) { +    // Scan all uses of this instruction to see if their uses are no longer +    // dominated by the previous def and if so, record them in UsesToRename. +    // Also, skip phi operands from PredBB - we'll remove them anyway. +    for (Use &U : I.uses()) { +      Instruction *User = cast<Instruction>(U.getUser()); +      if (PHINode *UserPN = dyn_cast<PHINode>(User)) { +        if (UserPN->getIncomingBlock(U) == BB) +          continue; +      } else if (User->getParent() == BB) +        continue; + +      UsesToRename.push_back(&U); +    } + +    // If there are no uses outside the block, we're done with this instruction. +    if (UsesToRename.empty()) +      continue; +    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); + +    // We found a use of I outside of BB.  Rename all uses of I that are outside +    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks +    // with the two values we know. +    SSAUpdate.Initialize(I.getType(), I.getName()); +    SSAUpdate.AddAvailableValue(BB, &I); +    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); + +    while (!UsesToRename.empty()) +      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); +    LLVM_DEBUG(dbgs() << "\n"); +  } + +  // At this point, the IR is fully up to date and consistent.  Do a quick scan +  // over the new instructions and zap any that are constants or dead.  This +  // frequently happens because of phi translation. +  SimplifyInstructionsInBlock(NewBB, TLI); + +  // Update the edge weight from BB to SuccBB, which should be less than before. +  UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); + +  // Threaded an edge! +  ++NumThreads; +  return true; +} + +/// Create a new basic block that will be the predecessor of BB and successor of +/// all blocks in Preds. When profile data is available, update the frequency of +/// this new block. +BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, +                                               ArrayRef<BasicBlock *> Preds, +                                               const char *Suffix) { +  SmallVector<BasicBlock *, 2> NewBBs; + +  // Collect the frequencies of all predecessors of BB, which will be used to +  // update the edge weight of the result of splitting predecessors. +  DenseMap<BasicBlock *, BlockFrequency> FreqMap; +  if (HasProfileData) +    for (auto Pred : Preds) +      FreqMap.insert(std::make_pair( +          Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); + +  // In the case when BB is a LandingPad block we create 2 new predecessors +  // instead of just one. +  if (BB->isLandingPad()) { +    std::string NewName = std::string(Suffix) + ".split-lp"; +    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); +  } else { +    NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); +  } + +  std::vector<DominatorTree::UpdateType> Updates; +  Updates.reserve((2 * Preds.size()) + NewBBs.size()); +  for (auto NewBB : NewBBs) { +    BlockFrequency NewBBFreq(0); +    Updates.push_back({DominatorTree::Insert, NewBB, BB}); +    for (auto Pred : predecessors(NewBB)) { +      Updates.push_back({DominatorTree::Delete, Pred, BB}); +      Updates.push_back({DominatorTree::Insert, Pred, NewBB}); +      if (HasProfileData) // Update frequencies between Pred -> NewBB. +        NewBBFreq += FreqMap.lookup(Pred); +    } +    if (HasProfileData) // Apply the summed frequency to NewBB. +      BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); +  } + +  DTU->applyUpdatesPermissive(Updates); +  return NewBBs[0]; +} + +bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { +  const Instruction *TI = BB->getTerminator(); +  assert(TI->getNumSuccessors() > 1 && "not a split"); + +  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); +  if (!WeightsNode) +    return false; + +  MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); +  if (MDName->getString() != "branch_weights") +    return false; + +  // Ensure there are weights for all of the successors. Note that the first +  // operand to the metadata node is a name, not a weight. +  return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; +} + +/// Update the block frequency of BB and branch weight and the metadata on the +/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - +/// Freq(PredBB->BB) / Freq(BB->SuccBB). +void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, +                                                     BasicBlock *BB, +                                                     BasicBlock *NewBB, +                                                     BasicBlock *SuccBB) { +  if (!HasProfileData) +    return; + +  assert(BFI && BPI && "BFI & BPI should have been created here"); + +  // As the edge from PredBB to BB is deleted, we have to update the block +  // frequency of BB. +  auto BBOrigFreq = BFI->getBlockFreq(BB); +  auto NewBBFreq = BFI->getBlockFreq(NewBB); +  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); +  auto BBNewFreq = BBOrigFreq - NewBBFreq; +  BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); + +  // Collect updated outgoing edges' frequencies from BB and use them to update +  // edge probabilities. +  SmallVector<uint64_t, 4> BBSuccFreq; +  for (BasicBlock *Succ : successors(BB)) { +    auto SuccFreq = (Succ == SuccBB) +                        ? BB2SuccBBFreq - NewBBFreq +                        : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); +    BBSuccFreq.push_back(SuccFreq.getFrequency()); +  } + +  uint64_t MaxBBSuccFreq = +      *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); + +  SmallVector<BranchProbability, 4> BBSuccProbs; +  if (MaxBBSuccFreq == 0) +    BBSuccProbs.assign(BBSuccFreq.size(), +                       {1, static_cast<unsigned>(BBSuccFreq.size())}); +  else { +    for (uint64_t Freq : BBSuccFreq) +      BBSuccProbs.push_back( +          BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); +    // Normalize edge probabilities so that they sum up to one. +    BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), +                                              BBSuccProbs.end()); +  } + +  // Update edge probabilities in BPI. +  for (int I = 0, E = BBSuccProbs.size(); I < E; I++) +    BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); + +  // Update the profile metadata as well. +  // +  // Don't do this if the profile of the transformed blocks was statically +  // estimated.  (This could occur despite the function having an entry +  // frequency in completely cold parts of the CFG.) +  // +  // In this case we don't want to suggest to subsequent passes that the +  // calculated weights are fully consistent.  Consider this graph: +  // +  //                 check_1 +  //             50% /  | +  //             eq_1   | 50% +  //                 \  | +  //                 check_2 +  //             50% /  | +  //             eq_2   | 50% +  //                 \  | +  //                 check_3 +  //             50% /  | +  //             eq_3   | 50% +  //                 \  | +  // +  // Assuming the blocks check_* all compare the same value against 1, 2 and 3, +  // the overall probabilities are inconsistent; the total probability that the +  // value is either 1, 2 or 3 is 150%. +  // +  // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 +  // becomes 0%.  This is even worse if the edge whose probability becomes 0% is +  // the loop exit edge.  Then based solely on static estimation we would assume +  // the loop was extremely hot. +  // +  // FIXME this locally as well so that BPI and BFI are consistent as well.  We +  // shouldn't make edges extremely likely or unlikely based solely on static +  // estimation. +  if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { +    SmallVector<uint32_t, 4> Weights; +    for (auto Prob : BBSuccProbs) +      Weights.push_back(Prob.getNumerator()); + +    auto TI = BB->getTerminator(); +    TI->setMetadata( +        LLVMContext::MD_prof, +        MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); +  } +} + +/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch +/// to BB which contains an i1 PHI node and a conditional branch on that PHI. +/// If we can duplicate the contents of BB up into PredBB do so now, this +/// improves the odds that the branch will be on an analyzable instruction like +/// a compare. +bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( +    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { +  assert(!PredBBs.empty() && "Can't handle an empty set"); + +  // If BB is a loop header, then duplicating this block outside the loop would +  // cause us to transform this into an irreducible loop, don't do this. +  // See the comments above FindLoopHeaders for justifications and caveats. +  if (LoopHeaders.count(BB)) { +    LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName() +                      << "' into predecessor block '" << PredBBs[0]->getName() +                      << "' - it might create an irreducible loop!\n"); +    return false; +  } + +  unsigned DuplicationCost = +      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); +  if (DuplicationCost > BBDupThreshold) { +    LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName() +                      << "' - Cost is too high: " << DuplicationCost << "\n"); +    return false; +  } + +  // And finally, do it!  Start by factoring the predecessors if needed. +  std::vector<DominatorTree::UpdateType> Updates; +  BasicBlock *PredBB; +  if (PredBBs.size() == 1) +    PredBB = PredBBs[0]; +  else { +    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size() +                      << " common predecessors.\n"); +    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); +  } +  Updates.push_back({DominatorTree::Delete, PredBB, BB}); + +  // Okay, we decided to do this!  Clone all the instructions in BB onto the end +  // of PredBB. +  LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName() +                    << "' into end of '" << PredBB->getName() +                    << "' to eliminate branch on phi.  Cost: " +                    << DuplicationCost << " block is:" << *BB << "\n"); + +  // Unless PredBB ends with an unconditional branch, split the edge so that we +  // can just clone the bits from BB into the end of the new PredBB. +  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); + +  if (!OldPredBranch || !OldPredBranch->isUnconditional()) { +    BasicBlock *OldPredBB = PredBB; +    PredBB = SplitEdge(OldPredBB, BB); +    Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); +    Updates.push_back({DominatorTree::Insert, PredBB, BB}); +    Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); +    OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); +  } + +  // We are going to have to map operands from the original BB block into the +  // PredBB block.  Evaluate PHI nodes in BB. +  DenseMap<Instruction*, Value*> ValueMapping; + +  BasicBlock::iterator BI = BB->begin(); +  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) +    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); +  // Clone the non-phi instructions of BB into PredBB, keeping track of the +  // mapping and using it to remap operands in the cloned instructions. +  for (; BI != BB->end(); ++BI) { +    Instruction *New = BI->clone(); + +    // Remap operands to patch up intra-block references. +    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) +      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { +        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); +        if (I != ValueMapping.end()) +          New->setOperand(i, I->second); +      } + +    // If this instruction can be simplified after the operands are updated, +    // just use the simplified value instead.  This frequently happens due to +    // phi translation. +    if (Value *IV = SimplifyInstruction( +            New, +            {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { +      ValueMapping[&*BI] = IV; +      if (!New->mayHaveSideEffects()) { +        New->deleteValue(); +        New = nullptr; +      } +    } else { +      ValueMapping[&*BI] = New; +    } +    if (New) { +      // Otherwise, insert the new instruction into the block. +      New->setName(BI->getName()); +      PredBB->getInstList().insert(OldPredBranch->getIterator(), New); +      // Update Dominance from simplified New instruction operands. +      for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) +        if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) +          Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); +    } +  } + +  // Check to see if the targets of the branch had PHI nodes. If so, we need to +  // add entries to the PHI nodes for branch from PredBB now. +  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); +  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, +                                  ValueMapping); +  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, +                                  ValueMapping); + +  // If there were values defined in BB that are used outside the block, then we +  // now have to update all uses of the value to use either the original value, +  // the cloned value, or some PHI derived value.  This can require arbitrary +  // PHI insertion, of which we are prepared to do, clean these up now. +  SSAUpdater SSAUpdate; +  SmallVector<Use*, 16> UsesToRename; +  for (Instruction &I : *BB) { +    // Scan all uses of this instruction to see if it is used outside of its +    // block, and if so, record them in UsesToRename. +    for (Use &U : I.uses()) { +      Instruction *User = cast<Instruction>(U.getUser()); +      if (PHINode *UserPN = dyn_cast<PHINode>(User)) { +        if (UserPN->getIncomingBlock(U) == BB) +          continue; +      } else if (User->getParent() == BB) +        continue; + +      UsesToRename.push_back(&U); +    } + +    // If there are no uses outside the block, we're done with this instruction. +    if (UsesToRename.empty()) +      continue; + +    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); + +    // We found a use of I outside of BB.  Rename all uses of I that are outside +    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks +    // with the two values we know. +    SSAUpdate.Initialize(I.getType(), I.getName()); +    SSAUpdate.AddAvailableValue(BB, &I); +    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); + +    while (!UsesToRename.empty()) +      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); +    LLVM_DEBUG(dbgs() << "\n"); +  } + +  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge +  // that we nuked. +  BB->removePredecessor(PredBB, true); + +  // Remove the unconditional branch at the end of the PredBB block. +  OldPredBranch->eraseFromParent(); +  DTU->applyUpdatesPermissive(Updates); + +  ++NumDupes; +  return true; +} + +// Pred is a predecessor of BB with an unconditional branch to BB. SI is +// a Select instruction in Pred. BB has other predecessors and SI is used in +// a PHI node in BB. SI has no other use. +// A new basic block, NewBB, is created and SI is converted to compare and  +// conditional branch. SI is erased from parent. +void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, +                                          SelectInst *SI, PHINode *SIUse, +                                          unsigned Idx) { +  // Expand the select. +  // +  // Pred -- +  //  |    v +  //  |  NewBB +  //  |    | +  //  |----- +  //  v +  // BB +  BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); +  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", +                                         BB->getParent(), BB); +  // Move the unconditional branch to NewBB. +  PredTerm->removeFromParent(); +  NewBB->getInstList().insert(NewBB->end(), PredTerm); +  // Create a conditional branch and update PHI nodes. +  BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); +  SIUse->setIncomingValue(Idx, SI->getFalseValue()); +  SIUse->addIncoming(SI->getTrueValue(), NewBB); + +  // The select is now dead. +  SI->eraseFromParent(); +  DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, +                               {DominatorTree::Insert, Pred, NewBB}}); + +  // Update any other PHI nodes in BB. +  for (BasicBlock::iterator BI = BB->begin(); +       PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) +    if (Phi != SIUse) +      Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); +} + +bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { +  PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); + +  if (!CondPHI || CondPHI->getParent() != BB) +    return false; + +  for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { +    BasicBlock *Pred = CondPHI->getIncomingBlock(I); +    SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); + +    // The second and third condition can be potentially relaxed. Currently +    // the conditions help to simplify the code and allow us to reuse existing +    // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) +    if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) +      continue; + +    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); +    if (!PredTerm || !PredTerm->isUnconditional()) +      continue; + +    UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); +    return true; +  } +  return false; +} + +/// TryToUnfoldSelect - Look for blocks of the form +/// bb1: +///   %a = select +///   br bb2 +/// +/// bb2: +///   %p = phi [%a, %bb1] ... +///   %c = icmp %p +///   br i1 %c +/// +/// And expand the select into a branch structure if one of its arms allows %c +/// to be folded. This later enables threading from bb1 over bb2. +bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { +  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); +  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); +  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); + +  if (!CondBr || !CondBr->isConditional() || !CondLHS || +      CondLHS->getParent() != BB) +    return false; + +  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { +    BasicBlock *Pred = CondLHS->getIncomingBlock(I); +    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); + +    // Look if one of the incoming values is a select in the corresponding +    // predecessor. +    if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) +      continue; + +    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); +    if (!PredTerm || !PredTerm->isUnconditional()) +      continue; + +    // Now check if one of the select values would allow us to constant fold the +    // terminator in BB. We don't do the transform if both sides fold, those +    // cases will be threaded in any case. +    if (DTU->hasPendingDomTreeUpdates()) +      LVI->disableDT(); +    else +      LVI->enableDT(); +    LazyValueInfo::Tristate LHSFolds = +        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), +                                CondRHS, Pred, BB, CondCmp); +    LazyValueInfo::Tristate RHSFolds = +        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), +                                CondRHS, Pred, BB, CondCmp); +    if ((LHSFolds != LazyValueInfo::Unknown || +         RHSFolds != LazyValueInfo::Unknown) && +        LHSFolds != RHSFolds) { +      UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); +      return true; +    } +  } +  return false; +} + +/// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the +/// same BB in the form +/// bb: +///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... +///   %s = select %p, trueval, falseval +/// +/// or +/// +/// bb: +///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... +///   %c = cmp %p, 0 +///   %s = select %c, trueval, falseval +/// +/// And expand the select into a branch structure. This later enables +/// jump-threading over bb in this pass. +/// +/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold +/// select if the associated PHI has at least one constant.  If the unfolded +/// select is not jump-threaded, it will be folded again in the later +/// optimizations. +bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { +  // If threading this would thread across a loop header, don't thread the edge. +  // See the comments above FindLoopHeaders for justifications and caveats. +  if (LoopHeaders.count(BB)) +    return false; + +  for (BasicBlock::iterator BI = BB->begin(); +       PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { +    // Look for a Phi having at least one constant incoming value. +    if (llvm::all_of(PN->incoming_values(), +                     [](Value *V) { return !isa<ConstantInt>(V); })) +      continue; + +    auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { +      // Check if SI is in BB and use V as condition. +      if (SI->getParent() != BB) +        return false; +      Value *Cond = SI->getCondition(); +      return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); +    }; + +    SelectInst *SI = nullptr; +    for (Use &U : PN->uses()) { +      if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { +        // Look for a ICmp in BB that compares PN with a constant and is the +        // condition of a Select. +        if (Cmp->getParent() == BB && Cmp->hasOneUse() && +            isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) +          if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) +            if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { +              SI = SelectI; +              break; +            } +      } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { +        // Look for a Select in BB that uses PN as condition. +        if (isUnfoldCandidate(SelectI, U.get())) { +          SI = SelectI; +          break; +        } +      } +    } + +    if (!SI) +      continue; +    // Expand the select. +    Instruction *Term = +        SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); +    BasicBlock *SplitBB = SI->getParent(); +    BasicBlock *NewBB = Term->getParent(); +    PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); +    NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); +    NewPN->addIncoming(SI->getFalseValue(), BB); +    SI->replaceAllUsesWith(NewPN); +    SI->eraseFromParent(); +    // NewBB and SplitBB are newly created blocks which require insertion. +    std::vector<DominatorTree::UpdateType> Updates; +    Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); +    Updates.push_back({DominatorTree::Insert, BB, SplitBB}); +    Updates.push_back({DominatorTree::Insert, BB, NewBB}); +    Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); +    // BB's successors were moved to SplitBB, update DTU accordingly. +    for (auto *Succ : successors(SplitBB)) { +      Updates.push_back({DominatorTree::Delete, BB, Succ}); +      Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); +    } +    DTU->applyUpdatesPermissive(Updates); +    return true; +  } +  return false; +} + +/// Try to propagate a guard from the current BB into one of its predecessors +/// in case if another branch of execution implies that the condition of this +/// guard is always true. Currently we only process the simplest case that +/// looks like: +/// +/// Start: +///   %cond = ... +///   br i1 %cond, label %T1, label %F1 +/// T1: +///   br label %Merge +/// F1: +///   br label %Merge +/// Merge: +///   %condGuard = ... +///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] +/// +/// And cond either implies condGuard or !condGuard. In this case all the +/// instructions before the guard can be duplicated in both branches, and the +/// guard is then threaded to one of them. +bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { +  using namespace PatternMatch; + +  // We only want to deal with two predecessors. +  BasicBlock *Pred1, *Pred2; +  auto PI = pred_begin(BB), PE = pred_end(BB); +  if (PI == PE) +    return false; +  Pred1 = *PI++; +  if (PI == PE) +    return false; +  Pred2 = *PI++; +  if (PI != PE) +    return false; +  if (Pred1 == Pred2) +    return false; + +  // Try to thread one of the guards of the block. +  // TODO: Look up deeper than to immediate predecessor? +  auto *Parent = Pred1->getSinglePredecessor(); +  if (!Parent || Parent != Pred2->getSinglePredecessor()) +    return false; + +  if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) +    for (auto &I : *BB) +      if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) +        return true; + +  return false; +} + +/// Try to propagate the guard from BB which is the lower block of a diamond +/// to one of its branches, in case if diamond's condition implies guard's +/// condition. +bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, +                                    BranchInst *BI) { +  assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); +  assert(BI->isConditional() && "Unconditional branch has 2 successors?"); +  Value *GuardCond = Guard->getArgOperand(0); +  Value *BranchCond = BI->getCondition(); +  BasicBlock *TrueDest = BI->getSuccessor(0); +  BasicBlock *FalseDest = BI->getSuccessor(1); + +  auto &DL = BB->getModule()->getDataLayout(); +  bool TrueDestIsSafe = false; +  bool FalseDestIsSafe = false; + +  // True dest is safe if BranchCond => GuardCond. +  auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); +  if (Impl && *Impl) +    TrueDestIsSafe = true; +  else { +    // False dest is safe if !BranchCond => GuardCond. +    Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); +    if (Impl && *Impl) +      FalseDestIsSafe = true; +  } + +  if (!TrueDestIsSafe && !FalseDestIsSafe) +    return false; + +  BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; +  BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; + +  ValueToValueMapTy UnguardedMapping, GuardedMapping; +  Instruction *AfterGuard = Guard->getNextNode(); +  unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); +  if (Cost > BBDupThreshold) +    return false; +  // Duplicate all instructions before the guard and the guard itself to the +  // branch where implication is not proved. +  BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( +      BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); +  assert(GuardedBlock && "Could not create the guarded block?"); +  // Duplicate all instructions before the guard in the unguarded branch. +  // Since we have successfully duplicated the guarded block and this block +  // has fewer instructions, we expect it to succeed. +  BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( +      BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); +  assert(UnguardedBlock && "Could not create the unguarded block?"); +  LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " +                    << GuardedBlock->getName() << "\n"); +  // Some instructions before the guard may still have uses. For them, we need +  // to create Phi nodes merging their copies in both guarded and unguarded +  // branches. Those instructions that have no uses can be just removed. +  SmallVector<Instruction *, 4> ToRemove; +  for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) +    if (!isa<PHINode>(&*BI)) +      ToRemove.push_back(&*BI); + +  Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); +  assert(InsertionPoint && "Empty block?"); +  // Substitute with Phis & remove. +  for (auto *Inst : reverse(ToRemove)) { +    if (!Inst->use_empty()) { +      PHINode *NewPN = PHINode::Create(Inst->getType(), 2); +      NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); +      NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); +      NewPN->insertBefore(InsertionPoint); +      Inst->replaceAllUsesWith(NewPN); +    } +    Inst->eraseFromParent(); +  } +  return true; +} | 
