summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/LICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/LICM.cpp2336
1 files changed, 2336 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LICM.cpp b/llvm/lib/Transforms/Scalar/LICM.cpp
new file mode 100644
index 000000000000..6ce4831a7359
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -0,0 +1,2336 @@
+//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion, attempting to remove as much
+// code from the body of a loop as possible. It does this by either hoisting
+// code into the preheader block, or by sinking code to the exit blocks if it is
+// safe. This pass also promotes must-aliased memory locations in the loop to
+// live in registers, thus hoisting and sinking "invariant" loads and stores.
+//
+// This pass uses alias analysis for two purposes:
+//
+// 1. Moving loop invariant loads and calls out of loops. If we can determine
+// that a load or call inside of a loop never aliases anything stored to,
+// we can hoist it or sink it like any other instruction.
+// 2. Scalar Promotion of Memory - If there is a store instruction inside of
+// the loop, we try to move the store to happen AFTER the loop instead of
+// inside of the loop. This can only happen if a few conditions are true:
+// A. The pointer stored through is loop invariant
+// B. There are no stores or loads in the loop which _may_ alias the
+// pointer. There are no calls in the loop which mod/ref the pointer.
+// If these conditions are true, we can promote the loads and stores in the
+// loop of the pointer to use a temporary alloca'd variable. We then use
+// the SSAUpdater to construct the appropriate SSA form for the value.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LICM.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/PredIteratorCache.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include <algorithm>
+#include <utility>
+using namespace llvm;
+
+#define DEBUG_TYPE "licm"
+
+STATISTIC(NumCreatedBlocks, "Number of blocks created");
+STATISTIC(NumClonedBranches, "Number of branches cloned");
+STATISTIC(NumSunk, "Number of instructions sunk out of loop");
+STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
+STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
+STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
+STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
+
+/// Memory promotion is enabled by default.
+static cl::opt<bool>
+ DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
+ cl::desc("Disable memory promotion in LICM pass"));
+
+static cl::opt<bool> ControlFlowHoisting(
+ "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
+ cl::desc("Enable control flow (and PHI) hoisting in LICM"));
+
+static cl::opt<uint32_t> MaxNumUsesTraversed(
+ "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
+ cl::desc("Max num uses visited for identifying load "
+ "invariance in loop using invariant start (default = 8)"));
+
+// Default value of zero implies we use the regular alias set tracker mechanism
+// instead of the cross product using AA to identify aliasing of the memory
+// location we are interested in.
+static cl::opt<int>
+LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
+ cl::desc("How many instruction to cross product using AA"));
+
+// Experimental option to allow imprecision in LICM in pathological cases, in
+// exchange for faster compile. This is to be removed if MemorySSA starts to
+// address the same issue. This flag applies only when LICM uses MemorySSA
+// instead on AliasSetTracker. LICM calls MemorySSAWalker's
+// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
+// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
+// which may not be precise, since optimizeUses is capped. The result is
+// correct, but we may not get as "far up" as possible to get which access is
+// clobbering the one queried.
+cl::opt<unsigned> llvm::SetLicmMssaOptCap(
+ "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
+ cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
+ "for faster compile. Caps the MemorySSA clobbering calls."));
+
+// Experimentally, memory promotion carries less importance than sinking and
+// hoisting. Limit when we do promotion when using MemorySSA, in order to save
+// compile time.
+cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
+ "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
+ cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
+ "effect. When MSSA in LICM is enabled, then this is the maximum "
+ "number of accesses allowed to be present in a loop in order to "
+ "enable memory promotion."));
+
+static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
+static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ TargetTransformInfo *TTI, bool &FreeInLoop);
+static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
+ BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
+static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
+ const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
+static bool isSafeToExecuteUnconditionally(Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ OptimizationRemarkEmitter *ORE,
+ const Instruction *CtxI = nullptr);
+static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
+ AliasSetTracker *CurAST, Loop *CurLoop,
+ AliasAnalysis *AA);
+static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
+ Loop *CurLoop,
+ SinkAndHoistLICMFlags &Flags);
+static Instruction *CloneInstructionInExitBlock(
+ Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
+ const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
+
+static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
+ AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
+
+static void moveInstructionBefore(Instruction &I, Instruction &Dest,
+ ICFLoopSafetyInfo &SafetyInfo,
+ MemorySSAUpdater *MSSAU);
+
+namespace {
+struct LoopInvariantCodeMotion {
+ using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
+ bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
+ TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
+ ScalarEvolution *SE, MemorySSA *MSSA,
+ OptimizationRemarkEmitter *ORE, bool DeleteAST);
+
+ ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
+ LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
+ unsigned LicmMssaNoAccForPromotionCap)
+ : LicmMssaOptCap(LicmMssaOptCap),
+ LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
+
+private:
+ ASTrackerMapTy LoopToAliasSetMap;
+ unsigned LicmMssaOptCap;
+ unsigned LicmMssaNoAccForPromotionCap;
+
+ std::unique_ptr<AliasSetTracker>
+ collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
+ std::unique_ptr<AliasSetTracker>
+ collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
+ MemorySSAUpdater *MSSAU);
+};
+
+struct LegacyLICMPass : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+ LegacyLICMPass(
+ unsigned LicmMssaOptCap = SetLicmMssaOptCap,
+ unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
+ : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
+ initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L)) {
+ // If we have run LICM on a previous loop but now we are skipping
+ // (because we've hit the opt-bisect limit), we need to clear the
+ // loop alias information.
+ LICM.getLoopToAliasSetMap().clear();
+ return false;
+ }
+
+ auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ MemorySSA *MSSA = EnableMSSALoopDependency
+ ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
+ : nullptr;
+ // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
+ // pass. Function analyses need to be preserved across loop transformations
+ // but ORE cannot be preserved (see comment before the pass definition).
+ OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
+ return LICM.runOnLoop(L,
+ &getAnalysis<AAResultsWrapperPass>().getAAResults(),
+ &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
+ &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
+ *L->getHeader()->getParent()),
+ &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
+ *L->getHeader()->getParent()),
+ SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
+ }
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ if (EnableMSSALoopDependency) {
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ }
+
+ using llvm::Pass::doFinalization;
+
+ bool doFinalization() override {
+ auto &AliasSetMap = LICM.getLoopToAliasSetMap();
+ // All loops in the AliasSetMap should be cleaned up already. The only case
+ // where we fail to do so is if an outer loop gets deleted before LICM
+ // visits it.
+ assert(all_of(AliasSetMap,
+ [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
+ return !KV.first->getParentLoop();
+ }) &&
+ "Didn't free loop alias sets");
+ AliasSetMap.clear();
+ return false;
+ }
+
+private:
+ LoopInvariantCodeMotion LICM;
+
+ /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
+ void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
+ Loop *L) override;
+
+ /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
+ /// set.
+ void deleteAnalysisValue(Value *V, Loop *L) override;
+
+ /// Simple Analysis hook. Delete loop L from alias set map.
+ void deleteAnalysisLoop(Loop *L) override;
+};
+} // namespace
+
+PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR, LPMUpdater &) {
+ const auto &FAM =
+ AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
+ Function *F = L.getHeader()->getParent();
+
+ auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
+ // FIXME: This should probably be optional rather than required.
+ if (!ORE)
+ report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
+ "cached at a higher level");
+
+ LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
+ if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
+ AR.MSSA, ORE, true))
+ return PreservedAnalyses::all();
+
+ auto PA = getLoopPassPreservedAnalyses();
+
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<LoopAnalysis>();
+ if (AR.MSSA)
+ PA.preserve<MemorySSAAnalysis>();
+
+ return PA;
+}
+
+char LegacyLICMPass::ID = 0;
+INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
+ false)
+
+Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
+Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
+ unsigned LicmMssaNoAccForPromotionCap) {
+ return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
+}
+
+/// Hoist expressions out of the specified loop. Note, alias info for inner
+/// loop is not preserved so it is not a good idea to run LICM multiple
+/// times on one loop.
+/// We should delete AST for inner loops in the new pass manager to avoid
+/// memory leak.
+///
+bool LoopInvariantCodeMotion::runOnLoop(
+ Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
+ TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
+ MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
+ bool Changed = false;
+
+ assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
+
+ // If this loop has metadata indicating that LICM is not to be performed then
+ // just exit.
+ if (hasDisableLICMTransformsHint(L)) {
+ return false;
+ }
+
+ std::unique_ptr<AliasSetTracker> CurAST;
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ bool NoOfMemAccTooLarge = false;
+ unsigned LicmMssaOptCounter = 0;
+
+ if (!MSSA) {
+ LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
+ CurAST = collectAliasInfoForLoop(L, LI, AA);
+ } else {
+ LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+
+ unsigned AccessCapCount = 0;
+ for (auto *BB : L->getBlocks()) {
+ if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
+ for (const auto &MA : *Accesses) {
+ (void)MA;
+ AccessCapCount++;
+ if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
+ NoOfMemAccTooLarge = true;
+ break;
+ }
+ }
+ }
+ if (NoOfMemAccTooLarge)
+ break;
+ }
+ }
+
+ // Get the preheader block to move instructions into...
+ BasicBlock *Preheader = L->getLoopPreheader();
+
+ // Compute loop safety information.
+ ICFLoopSafetyInfo SafetyInfo(DT);
+ SafetyInfo.computeLoopSafetyInfo(L);
+
+ // We want to visit all of the instructions in this loop... that are not parts
+ // of our subloops (they have already had their invariants hoisted out of
+ // their loop, into this loop, so there is no need to process the BODIES of
+ // the subloops).
+ //
+ // Traverse the body of the loop in depth first order on the dominator tree so
+ // that we are guaranteed to see definitions before we see uses. This allows
+ // us to sink instructions in one pass, without iteration. After sinking
+ // instructions, we perform another pass to hoist them out of the loop.
+ SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
+ LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
+ /*IsSink=*/true};
+ if (L->hasDedicatedExits())
+ Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
+ CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
+ Flags.IsSink = false;
+ if (Preheader)
+ Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
+ CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
+
+ // Now that all loop invariants have been removed from the loop, promote any
+ // memory references to scalars that we can.
+ // Don't sink stores from loops without dedicated block exits. Exits
+ // containing indirect branches are not transformed by loop simplify,
+ // make sure we catch that. An additional load may be generated in the
+ // preheader for SSA updater, so also avoid sinking when no preheader
+ // is available.
+ if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
+ !NoOfMemAccTooLarge) {
+ // Figure out the loop exits and their insertion points
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ // We can't insert into a catchswitch.
+ bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
+ return isa<CatchSwitchInst>(Exit->getTerminator());
+ });
+
+ if (!HasCatchSwitch) {
+ SmallVector<Instruction *, 8> InsertPts;
+ SmallVector<MemoryAccess *, 8> MSSAInsertPts;
+ InsertPts.reserve(ExitBlocks.size());
+ if (MSSAU)
+ MSSAInsertPts.reserve(ExitBlocks.size());
+ for (BasicBlock *ExitBlock : ExitBlocks) {
+ InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
+ if (MSSAU)
+ MSSAInsertPts.push_back(nullptr);
+ }
+
+ PredIteratorCache PIC;
+
+ bool Promoted = false;
+
+ // Build an AST using MSSA.
+ if (!CurAST.get())
+ CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
+
+ // Loop over all of the alias sets in the tracker object.
+ for (AliasSet &AS : *CurAST) {
+ // We can promote this alias set if it has a store, if it is a "Must"
+ // alias set, if the pointer is loop invariant, and if we are not
+ // eliminating any volatile loads or stores.
+ if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
+ !L->isLoopInvariant(AS.begin()->getValue()))
+ continue;
+
+ assert(
+ !AS.empty() &&
+ "Must alias set should have at least one pointer element in it!");
+
+ SmallSetVector<Value *, 8> PointerMustAliases;
+ for (const auto &ASI : AS)
+ PointerMustAliases.insert(ASI.getValue());
+
+ Promoted |= promoteLoopAccessesToScalars(
+ PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
+ DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
+ }
+
+ // Once we have promoted values across the loop body we have to
+ // recursively reform LCSSA as any nested loop may now have values defined
+ // within the loop used in the outer loop.
+ // FIXME: This is really heavy handed. It would be a bit better to use an
+ // SSAUpdater strategy during promotion that was LCSSA aware and reformed
+ // it as it went.
+ if (Promoted)
+ formLCSSARecursively(*L, *DT, LI, SE);
+
+ Changed |= Promoted;
+ }
+ }
+
+ // Check that neither this loop nor its parent have had LCSSA broken. LICM is
+ // specifically moving instructions across the loop boundary and so it is
+ // especially in need of sanity checking here.
+ assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
+ assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
+ "Parent loop not left in LCSSA form after LICM!");
+
+ // If this loop is nested inside of another one, save the alias information
+ // for when we process the outer loop.
+ if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
+ LoopToAliasSetMap[L] = std::move(CurAST);
+
+ if (MSSAU.get() && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ if (Changed && SE)
+ SE->forgetLoopDispositions(L);
+ return Changed;
+}
+
+/// Walk the specified region of the CFG (defined by all blocks dominated by
+/// the specified block, and that are in the current loop) in reverse depth
+/// first order w.r.t the DominatorTree. This allows us to visit uses before
+/// definitions, allowing us to sink a loop body in one pass without iteration.
+///
+bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
+ DominatorTree *DT, TargetLibraryInfo *TLI,
+ TargetTransformInfo *TTI, Loop *CurLoop,
+ AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
+ ICFLoopSafetyInfo *SafetyInfo,
+ SinkAndHoistLICMFlags &Flags,
+ OptimizationRemarkEmitter *ORE) {
+
+ // Verify inputs.
+ assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
+ CurLoop != nullptr && SafetyInfo != nullptr &&
+ "Unexpected input to sinkRegion.");
+ assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
+ "Either AliasSetTracker or MemorySSA should be initialized.");
+
+ // We want to visit children before parents. We will enque all the parents
+ // before their children in the worklist and process the worklist in reverse
+ // order.
+ SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
+
+ bool Changed = false;
+ for (DomTreeNode *DTN : reverse(Worklist)) {
+ BasicBlock *BB = DTN->getBlock();
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (inSubLoop(BB, CurLoop, LI))
+ continue;
+
+ for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
+ Instruction &I = *--II;
+
+ // If the instruction is dead, we would try to sink it because it isn't
+ // used in the loop, instead, just delete it.
+ if (isInstructionTriviallyDead(&I, TLI)) {
+ LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
+ salvageDebugInfo(I);
+ ++II;
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+ Changed = true;
+ continue;
+ }
+
+ // Check to see if we can sink this instruction to the exit blocks
+ // of the loop. We can do this if the all users of the instruction are
+ // outside of the loop. In this case, it doesn't even matter if the
+ // operands of the instruction are loop invariant.
+ //
+ bool FreeInLoop = false;
+ if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
+ ORE) &&
+ !I.mayHaveSideEffects()) {
+ if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
+ if (!FreeInLoop) {
+ ++II;
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+ }
+ Changed = true;
+ }
+ }
+ }
+ }
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ return Changed;
+}
+
+namespace {
+// This is a helper class for hoistRegion to make it able to hoist control flow
+// in order to be able to hoist phis. The way this works is that we initially
+// start hoisting to the loop preheader, and when we see a loop invariant branch
+// we make note of this. When we then come to hoist an instruction that's
+// conditional on such a branch we duplicate the branch and the relevant control
+// flow, then hoist the instruction into the block corresponding to its original
+// block in the duplicated control flow.
+class ControlFlowHoister {
+private:
+ // Information about the loop we are hoisting from
+ LoopInfo *LI;
+ DominatorTree *DT;
+ Loop *CurLoop;
+ MemorySSAUpdater *MSSAU;
+
+ // A map of blocks in the loop to the block their instructions will be hoisted
+ // to.
+ DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
+
+ // The branches that we can hoist, mapped to the block that marks a
+ // convergence point of their control flow.
+ DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
+
+public:
+ ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
+ MemorySSAUpdater *MSSAU)
+ : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
+
+ void registerPossiblyHoistableBranch(BranchInst *BI) {
+ // We can only hoist conditional branches with loop invariant operands.
+ if (!ControlFlowHoisting || !BI->isConditional() ||
+ !CurLoop->hasLoopInvariantOperands(BI))
+ return;
+
+ // The branch destinations need to be in the loop, and we don't gain
+ // anything by duplicating conditional branches with duplicate successors,
+ // as it's essentially the same as an unconditional branch.
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+ if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
+ TrueDest == FalseDest)
+ return;
+
+ // We can hoist BI if one branch destination is the successor of the other,
+ // or both have common successor which we check by seeing if the
+ // intersection of their successors is non-empty.
+ // TODO: This could be expanded to allowing branches where both ends
+ // eventually converge to a single block.
+ SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
+ TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
+ FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
+ BasicBlock *CommonSucc = nullptr;
+ if (TrueDestSucc.count(FalseDest)) {
+ CommonSucc = FalseDest;
+ } else if (FalseDestSucc.count(TrueDest)) {
+ CommonSucc = TrueDest;
+ } else {
+ set_intersect(TrueDestSucc, FalseDestSucc);
+ // If there's one common successor use that.
+ if (TrueDestSucc.size() == 1)
+ CommonSucc = *TrueDestSucc.begin();
+ // If there's more than one pick whichever appears first in the block list
+ // (we can't use the value returned by TrueDestSucc.begin() as it's
+ // unpredicatable which element gets returned).
+ else if (!TrueDestSucc.empty()) {
+ Function *F = TrueDest->getParent();
+ auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
+ auto It = std::find_if(F->begin(), F->end(), IsSucc);
+ assert(It != F->end() && "Could not find successor in function");
+ CommonSucc = &*It;
+ }
+ }
+ // The common successor has to be dominated by the branch, as otherwise
+ // there will be some other path to the successor that will not be
+ // controlled by this branch so any phi we hoist would be controlled by the
+ // wrong condition. This also takes care of avoiding hoisting of loop back
+ // edges.
+ // TODO: In some cases this could be relaxed if the successor is dominated
+ // by another block that's been hoisted and we can guarantee that the
+ // control flow has been replicated exactly.
+ if (CommonSucc && DT->dominates(BI, CommonSucc))
+ HoistableBranches[BI] = CommonSucc;
+ }
+
+ bool canHoistPHI(PHINode *PN) {
+ // The phi must have loop invariant operands.
+ if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
+ return false;
+ // We can hoist phis if the block they are in is the target of hoistable
+ // branches which cover all of the predecessors of the block.
+ SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
+ BasicBlock *BB = PN->getParent();
+ for (BasicBlock *PredBB : predecessors(BB))
+ PredecessorBlocks.insert(PredBB);
+ // If we have less predecessor blocks than predecessors then the phi will
+ // have more than one incoming value for the same block which we can't
+ // handle.
+ // TODO: This could be handled be erasing some of the duplicate incoming
+ // values.
+ if (PredecessorBlocks.size() != pred_size(BB))
+ return false;
+ for (auto &Pair : HoistableBranches) {
+ if (Pair.second == BB) {
+ // Which blocks are predecessors via this branch depends on if the
+ // branch is triangle-like or diamond-like.
+ if (Pair.first->getSuccessor(0) == BB) {
+ PredecessorBlocks.erase(Pair.first->getParent());
+ PredecessorBlocks.erase(Pair.first->getSuccessor(1));
+ } else if (Pair.first->getSuccessor(1) == BB) {
+ PredecessorBlocks.erase(Pair.first->getParent());
+ PredecessorBlocks.erase(Pair.first->getSuccessor(0));
+ } else {
+ PredecessorBlocks.erase(Pair.first->getSuccessor(0));
+ PredecessorBlocks.erase(Pair.first->getSuccessor(1));
+ }
+ }
+ }
+ // PredecessorBlocks will now be empty if for every predecessor of BB we
+ // found a hoistable branch source.
+ return PredecessorBlocks.empty();
+ }
+
+ BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
+ if (!ControlFlowHoisting)
+ return CurLoop->getLoopPreheader();
+ // If BB has already been hoisted, return that
+ if (HoistDestinationMap.count(BB))
+ return HoistDestinationMap[BB];
+
+ // Check if this block is conditional based on a pending branch
+ auto HasBBAsSuccessor =
+ [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
+ return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
+ Pair.first->getSuccessor(1) == BB);
+ };
+ auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
+ HasBBAsSuccessor);
+
+ // If not involved in a pending branch, hoist to preheader
+ BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
+ if (It == HoistableBranches.end()) {
+ LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
+ << " as hoist destination for " << BB->getName()
+ << "\n");
+ HoistDestinationMap[BB] = InitialPreheader;
+ return InitialPreheader;
+ }
+ BranchInst *BI = It->first;
+ assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
+ HoistableBranches.end() &&
+ "BB is expected to be the target of at most one branch");
+
+ LLVMContext &C = BB->getContext();
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+ BasicBlock *CommonSucc = HoistableBranches[BI];
+ BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
+
+ // Create hoisted versions of blocks that currently don't have them
+ auto CreateHoistedBlock = [&](BasicBlock *Orig) {
+ if (HoistDestinationMap.count(Orig))
+ return HoistDestinationMap[Orig];
+ BasicBlock *New =
+ BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
+ HoistDestinationMap[Orig] = New;
+ DT->addNewBlock(New, HoistTarget);
+ if (CurLoop->getParentLoop())
+ CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
+ ++NumCreatedBlocks;
+ LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
+ << " as hoist destination for " << Orig->getName()
+ << "\n");
+ return New;
+ };
+ BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
+ BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
+ BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
+
+ // Link up these blocks with branches.
+ if (!HoistCommonSucc->getTerminator()) {
+ // The new common successor we've generated will branch to whatever that
+ // hoist target branched to.
+ BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
+ assert(TargetSucc && "Expected hoist target to have a single successor");
+ HoistCommonSucc->moveBefore(TargetSucc);
+ BranchInst::Create(TargetSucc, HoistCommonSucc);
+ }
+ if (!HoistTrueDest->getTerminator()) {
+ HoistTrueDest->moveBefore(HoistCommonSucc);
+ BranchInst::Create(HoistCommonSucc, HoistTrueDest);
+ }
+ if (!HoistFalseDest->getTerminator()) {
+ HoistFalseDest->moveBefore(HoistCommonSucc);
+ BranchInst::Create(HoistCommonSucc, HoistFalseDest);
+ }
+
+ // If BI is being cloned to what was originally the preheader then
+ // HoistCommonSucc will now be the new preheader.
+ if (HoistTarget == InitialPreheader) {
+ // Phis in the loop header now need to use the new preheader.
+ InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
+ if (MSSAU)
+ MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
+ HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
+ // The new preheader dominates the loop header.
+ DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
+ DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
+ DT->changeImmediateDominator(HeaderNode, PreheaderNode);
+ // The preheader hoist destination is now the new preheader, with the
+ // exception of the hoist destination of this branch.
+ for (auto &Pair : HoistDestinationMap)
+ if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
+ Pair.second = HoistCommonSucc;
+ }
+
+ // Now finally clone BI.
+ ReplaceInstWithInst(
+ HoistTarget->getTerminator(),
+ BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
+ ++NumClonedBranches;
+
+ assert(CurLoop->getLoopPreheader() &&
+ "Hoisting blocks should not have destroyed preheader");
+ return HoistDestinationMap[BB];
+ }
+};
+} // namespace
+
+/// Walk the specified region of the CFG (defined by all blocks dominated by
+/// the specified block, and that are in the current loop) in depth first
+/// order w.r.t the DominatorTree. This allows us to visit definitions before
+/// uses, allowing us to hoist a loop body in one pass without iteration.
+///
+bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
+ DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
+ AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
+ ICFLoopSafetyInfo *SafetyInfo,
+ SinkAndHoistLICMFlags &Flags,
+ OptimizationRemarkEmitter *ORE) {
+ // Verify inputs.
+ assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
+ CurLoop != nullptr && SafetyInfo != nullptr &&
+ "Unexpected input to hoistRegion.");
+ assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
+ "Either AliasSetTracker or MemorySSA should be initialized.");
+
+ ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
+
+ // Keep track of instructions that have been hoisted, as they may need to be
+ // re-hoisted if they end up not dominating all of their uses.
+ SmallVector<Instruction *, 16> HoistedInstructions;
+
+ // For PHI hoisting to work we need to hoist blocks before their successors.
+ // We can do this by iterating through the blocks in the loop in reverse
+ // post-order.
+ LoopBlocksRPO Worklist(CurLoop);
+ Worklist.perform(LI);
+ bool Changed = false;
+ for (BasicBlock *BB : Worklist) {
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (inSubLoop(BB, CurLoop, LI))
+ continue;
+
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
+ Instruction &I = *II++;
+ // Try constant folding this instruction. If all the operands are
+ // constants, it is technically hoistable, but it would be better to
+ // just fold it.
+ if (Constant *C = ConstantFoldInstruction(
+ &I, I.getModule()->getDataLayout(), TLI)) {
+ LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
+ << '\n');
+ if (CurAST)
+ CurAST->copyValue(&I, C);
+ // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
+ I.replaceAllUsesWith(C);
+ if (isInstructionTriviallyDead(&I, TLI))
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+ Changed = true;
+ continue;
+ }
+
+ // Try hoisting the instruction out to the preheader. We can only do
+ // this if all of the operands of the instruction are loop invariant and
+ // if it is safe to hoist the instruction.
+ // TODO: It may be safe to hoist if we are hoisting to a conditional block
+ // and we have accurately duplicated the control flow from the loop header
+ // to that block.
+ if (CurLoop->hasLoopInvariantOperands(&I) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
+ ORE) &&
+ isSafeToExecuteUnconditionally(
+ I, DT, CurLoop, SafetyInfo, ORE,
+ CurLoop->getLoopPreheader()->getTerminator())) {
+ hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
+ MSSAU, ORE);
+ HoistedInstructions.push_back(&I);
+ Changed = true;
+ continue;
+ }
+
+ // Attempt to remove floating point division out of the loop by
+ // converting it to a reciprocal multiplication.
+ if (I.getOpcode() == Instruction::FDiv &&
+ CurLoop->isLoopInvariant(I.getOperand(1)) &&
+ I.hasAllowReciprocal()) {
+ auto Divisor = I.getOperand(1);
+ auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
+ auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
+ ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
+ SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
+ ReciprocalDivisor->insertBefore(&I);
+
+ auto Product =
+ BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
+ Product->setFastMathFlags(I.getFastMathFlags());
+ SafetyInfo->insertInstructionTo(Product, I.getParent());
+ Product->insertAfter(&I);
+ I.replaceAllUsesWith(Product);
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+
+ hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
+ SafetyInfo, MSSAU, ORE);
+ HoistedInstructions.push_back(ReciprocalDivisor);
+ Changed = true;
+ continue;
+ }
+
+ auto IsInvariantStart = [&](Instruction &I) {
+ using namespace PatternMatch;
+ return I.use_empty() &&
+ match(&I, m_Intrinsic<Intrinsic::invariant_start>());
+ };
+ auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
+ return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
+ SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
+ };
+ if ((IsInvariantStart(I) || isGuard(&I)) &&
+ CurLoop->hasLoopInvariantOperands(&I) &&
+ MustExecuteWithoutWritesBefore(I)) {
+ hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
+ MSSAU, ORE);
+ HoistedInstructions.push_back(&I);
+ Changed = true;
+ continue;
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(&I)) {
+ if (CFH.canHoistPHI(PN)) {
+ // Redirect incoming blocks first to ensure that we create hoisted
+ // versions of those blocks before we hoist the phi.
+ for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
+ PN->setIncomingBlock(
+ i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
+ hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
+ MSSAU, ORE);
+ assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
+ Changed = true;
+ continue;
+ }
+ }
+
+ // Remember possibly hoistable branches so we can actually hoist them
+ // later if needed.
+ if (BranchInst *BI = dyn_cast<BranchInst>(&I))
+ CFH.registerPossiblyHoistableBranch(BI);
+ }
+ }
+
+ // If we hoisted instructions to a conditional block they may not dominate
+ // their uses that weren't hoisted (such as phis where some operands are not
+ // loop invariant). If so make them unconditional by moving them to their
+ // immediate dominator. We iterate through the instructions in reverse order
+ // which ensures that when we rehoist an instruction we rehoist its operands,
+ // and also keep track of where in the block we are rehoisting to to make sure
+ // that we rehoist instructions before the instructions that use them.
+ Instruction *HoistPoint = nullptr;
+ if (ControlFlowHoisting) {
+ for (Instruction *I : reverse(HoistedInstructions)) {
+ if (!llvm::all_of(I->uses(),
+ [&](Use &U) { return DT->dominates(I, U); })) {
+ BasicBlock *Dominator =
+ DT->getNode(I->getParent())->getIDom()->getBlock();
+ if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
+ if (HoistPoint)
+ assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
+ "New hoist point expected to dominate old hoist point");
+ HoistPoint = Dominator->getTerminator();
+ }
+ LLVM_DEBUG(dbgs() << "LICM rehoisting to "
+ << HoistPoint->getParent()->getName()
+ << ": " << *I << "\n");
+ moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU);
+ HoistPoint = I;
+ Changed = true;
+ }
+ }
+ }
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Now that we've finished hoisting make sure that LI and DT are still
+ // valid.
+#ifdef EXPENSIVE_CHECKS
+ if (Changed) {
+ assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
+ "Dominator tree verification failed");
+ LI->verify(*DT);
+ }
+#endif
+
+ return Changed;
+}
+
+// Return true if LI is invariant within scope of the loop. LI is invariant if
+// CurLoop is dominated by an invariant.start representing the same memory
+// location and size as the memory location LI loads from, and also the
+// invariant.start has no uses.
+static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
+ Loop *CurLoop) {
+ Value *Addr = LI->getOperand(0);
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
+
+ // if the type is i8 addrspace(x)*, we know this is the type of
+ // llvm.invariant.start operand
+ auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
+ LI->getPointerAddressSpace());
+ unsigned BitcastsVisited = 0;
+ // Look through bitcasts until we reach the i8* type (this is invariant.start
+ // operand type).
+ while (Addr->getType() != PtrInt8Ty) {
+ auto *BC = dyn_cast<BitCastInst>(Addr);
+ // Avoid traversing high number of bitcast uses.
+ if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
+ return false;
+ Addr = BC->getOperand(0);
+ }
+
+ unsigned UsesVisited = 0;
+ // Traverse all uses of the load operand value, to see if invariant.start is
+ // one of the uses, and whether it dominates the load instruction.
+ for (auto *U : Addr->users()) {
+ // Avoid traversing for Load operand with high number of users.
+ if (++UsesVisited > MaxNumUsesTraversed)
+ return false;
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ // If there are escaping uses of invariant.start instruction, the load maybe
+ // non-invariant.
+ if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
+ !II->use_empty())
+ continue;
+ unsigned InvariantSizeInBits =
+ cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
+ // Confirm the invariant.start location size contains the load operand size
+ // in bits. Also, the invariant.start should dominate the load, and we
+ // should not hoist the load out of a loop that contains this dominating
+ // invariant.start.
+ if (LocSizeInBits <= InvariantSizeInBits &&
+ DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
+ return true;
+ }
+
+ return false;
+}
+
+namespace {
+/// Return true if-and-only-if we know how to (mechanically) both hoist and
+/// sink a given instruction out of a loop. Does not address legality
+/// concerns such as aliasing or speculation safety.
+bool isHoistableAndSinkableInst(Instruction &I) {
+ // Only these instructions are hoistable/sinkable.
+ return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
+ isa<FenceInst>(I) || isa<CastInst>(I) ||
+ isa<UnaryOperator>(I) || isa<BinaryOperator>(I) ||
+ isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
+ isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+ isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
+ isa<InsertValueInst>(I));
+}
+/// Return true if all of the alias sets within this AST are known not to
+/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
+bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
+ const Loop *L) {
+ if (CurAST) {
+ for (AliasSet &AS : *CurAST) {
+ if (!AS.isForwardingAliasSet() && AS.isMod()) {
+ return false;
+ }
+ }
+ return true;
+ } else { /*MSSAU*/
+ for (auto *BB : L->getBlocks())
+ if (MSSAU->getMemorySSA()->getBlockDefs(BB))
+ return false;
+ return true;
+ }
+}
+
+/// Return true if I is the only Instruction with a MemoryAccess in L.
+bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
+ const MemorySSAUpdater *MSSAU) {
+ for (auto *BB : L->getBlocks())
+ if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
+ int NotAPhi = 0;
+ for (const auto &Acc : *Accs) {
+ if (isa<MemoryPhi>(&Acc))
+ continue;
+ const auto *MUD = cast<MemoryUseOrDef>(&Acc);
+ if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
+ return false;
+ }
+ }
+ return true;
+}
+}
+
+bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
+ Loop *CurLoop, AliasSetTracker *CurAST,
+ MemorySSAUpdater *MSSAU,
+ bool TargetExecutesOncePerLoop,
+ SinkAndHoistLICMFlags *Flags,
+ OptimizationRemarkEmitter *ORE) {
+ // If we don't understand the instruction, bail early.
+ if (!isHoistableAndSinkableInst(I))
+ return false;
+
+ MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
+ if (MSSA)
+ assert(Flags != nullptr && "Flags cannot be null.");
+
+ // Loads have extra constraints we have to verify before we can hoist them.
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (!LI->isUnordered())
+ return false; // Don't sink/hoist volatile or ordered atomic loads!
+
+ // Loads from constant memory are always safe to move, even if they end up
+ // in the same alias set as something that ends up being modified.
+ if (AA->pointsToConstantMemory(LI->getOperand(0)))
+ return true;
+ if (LI->hasMetadata(LLVMContext::MD_invariant_load))
+ return true;
+
+ if (LI->isAtomic() && !TargetExecutesOncePerLoop)
+ return false; // Don't risk duplicating unordered loads
+
+ // This checks for an invariant.start dominating the load.
+ if (isLoadInvariantInLoop(LI, DT, CurLoop))
+ return true;
+
+ bool Invalidated;
+ if (CurAST)
+ Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
+ CurLoop, AA);
+ else
+ Invalidated = pointerInvalidatedByLoopWithMSSA(
+ MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
+ // Check loop-invariant address because this may also be a sinkable load
+ // whose address is not necessarily loop-invariant.
+ if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(
+ DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
+ << "failed to move load with loop-invariant address "
+ "because the loop may invalidate its value";
+ });
+
+ return !Invalidated;
+ } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Don't sink or hoist dbg info; it's legal, but not useful.
+ if (isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // Don't sink calls which can throw.
+ if (CI->mayThrow())
+ return false;
+
+ using namespace PatternMatch;
+ if (match(CI, m_Intrinsic<Intrinsic::assume>()))
+ // Assumes don't actually alias anything or throw
+ return true;
+
+ // Handle simple cases by querying alias analysis.
+ FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
+ if (Behavior == FMRB_DoesNotAccessMemory)
+ return true;
+ if (AliasAnalysis::onlyReadsMemory(Behavior)) {
+ // A readonly argmemonly function only reads from memory pointed to by
+ // it's arguments with arbitrary offsets. If we can prove there are no
+ // writes to this memory in the loop, we can hoist or sink.
+ if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
+ // TODO: expand to writeable arguments
+ for (Value *Op : CI->arg_operands())
+ if (Op->getType()->isPointerTy()) {
+ bool Invalidated;
+ if (CurAST)
+ Invalidated = pointerInvalidatedByLoop(
+ MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
+ CurAST, CurLoop, AA);
+ else
+ Invalidated = pointerInvalidatedByLoopWithMSSA(
+ MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
+ *Flags);
+ if (Invalidated)
+ return false;
+ }
+ return true;
+ }
+
+ // If this call only reads from memory and there are no writes to memory
+ // in the loop, we can hoist or sink the call as appropriate.
+ if (isReadOnly(CurAST, MSSAU, CurLoop))
+ return true;
+ }
+
+ // FIXME: This should use mod/ref information to see if we can hoist or
+ // sink the call.
+
+ return false;
+ } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
+ // Fences alias (most) everything to provide ordering. For the moment,
+ // just give up if there are any other memory operations in the loop.
+ if (CurAST) {
+ auto Begin = CurAST->begin();
+ assert(Begin != CurAST->end() && "must contain FI");
+ if (std::next(Begin) != CurAST->end())
+ // constant memory for instance, TODO: handle better
+ return false;
+ auto *UniqueI = Begin->getUniqueInstruction();
+ if (!UniqueI)
+ // other memory op, give up
+ return false;
+ (void)FI; // suppress unused variable warning
+ assert(UniqueI == FI && "AS must contain FI");
+ return true;
+ } else // MSSAU
+ return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
+ } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ if (!SI->isUnordered())
+ return false; // Don't sink/hoist volatile or ordered atomic store!
+
+ // We can only hoist a store that we can prove writes a value which is not
+ // read or overwritten within the loop. For those cases, we fallback to
+ // load store promotion instead. TODO: We can extend this to cases where
+ // there is exactly one write to the location and that write dominates an
+ // arbitrary number of reads in the loop.
+ if (CurAST) {
+ auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
+
+ if (AS.isRef() || !AS.isMustAlias())
+ // Quick exit test, handled by the full path below as well.
+ return false;
+ auto *UniqueI = AS.getUniqueInstruction();
+ if (!UniqueI)
+ // other memory op, give up
+ return false;
+ assert(UniqueI == SI && "AS must contain SI");
+ return true;
+ } else { // MSSAU
+ if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
+ return true;
+ // If there are more accesses than the Promotion cap, give up, we're not
+ // walking a list that long.
+ if (Flags->NoOfMemAccTooLarge)
+ return false;
+ // Check store only if there's still "quota" to check clobber.
+ if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
+ return false;
+ // If there are interfering Uses (i.e. their defining access is in the
+ // loop), or ordered loads (stored as Defs!), don't move this store.
+ // Could do better here, but this is conservatively correct.
+ // TODO: Cache set of Uses on the first walk in runOnLoop, update when
+ // moving accesses. Can also extend to dominating uses.
+ auto *SIMD = MSSA->getMemoryAccess(SI);
+ for (auto *BB : CurLoop->getBlocks())
+ if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
+ for (const auto &MA : *Accesses)
+ if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
+ auto *MD = MU->getDefiningAccess();
+ if (!MSSA->isLiveOnEntryDef(MD) &&
+ CurLoop->contains(MD->getBlock()))
+ return false;
+ // Disable hoisting past potentially interfering loads. Optimized
+ // Uses may point to an access outside the loop, as getClobbering
+ // checks the previous iteration when walking the backedge.
+ // FIXME: More precise: no Uses that alias SI.
+ if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
+ return false;
+ } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
+ if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
+ (void)LI; // Silence warning.
+ assert(!LI->isUnordered() && "Expected unordered load");
+ return false;
+ }
+ // Any call, while it may not be clobbering SI, it may be a use.
+ if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
+ // Check if the call may read from the memory locattion written
+ // to by SI. Check CI's attributes and arguments; the number of
+ // such checks performed is limited above by NoOfMemAccTooLarge.
+ ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
+ if (isModOrRefSet(MRI))
+ return false;
+ }
+ }
+ }
+
+ auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
+ Flags->LicmMssaOptCounter++;
+ // If there are no clobbering Defs in the loop, store is safe to hoist.
+ return MSSA->isLiveOnEntryDef(Source) ||
+ !CurLoop->contains(Source->getBlock());
+ }
+ }
+
+ assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
+
+ // We've established mechanical ability and aliasing, it's up to the caller
+ // to check fault safety
+ return true;
+}
+
+/// Returns true if a PHINode is a trivially replaceable with an
+/// Instruction.
+/// This is true when all incoming values are that instruction.
+/// This pattern occurs most often with LCSSA PHI nodes.
+///
+static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
+ for (const Value *IncValue : PN.incoming_values())
+ if (IncValue != &I)
+ return false;
+
+ return true;
+}
+
+/// Return true if the instruction is free in the loop.
+static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
+ const TargetTransformInfo *TTI) {
+
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
+ return false;
+ // For a GEP, we cannot simply use getUserCost because currently it
+ // optimistically assume that a GEP will fold into addressing mode
+ // regardless of its users.
+ const BasicBlock *BB = GEP->getParent();
+ for (const User *U : GEP->users()) {
+ const Instruction *UI = cast<Instruction>(U);
+ if (CurLoop->contains(UI) &&
+ (BB != UI->getParent() ||
+ (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
+ return false;
+ }
+ return true;
+ } else
+ return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
+}
+
+/// Return true if the only users of this instruction are outside of
+/// the loop. If this is true, we can sink the instruction to the exit
+/// blocks of the loop.
+///
+/// We also return true if the instruction could be folded away in lowering.
+/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
+static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ TargetTransformInfo *TTI, bool &FreeInLoop) {
+ const auto &BlockColors = SafetyInfo->getBlockColors();
+ bool IsFree = isFreeInLoop(I, CurLoop, TTI);
+ for (const User *U : I.users()) {
+ const Instruction *UI = cast<Instruction>(U);
+ if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
+ const BasicBlock *BB = PN->getParent();
+ // We cannot sink uses in catchswitches.
+ if (isa<CatchSwitchInst>(BB->getTerminator()))
+ return false;
+
+ // We need to sink a callsite to a unique funclet. Avoid sinking if the
+ // phi use is too muddled.
+ if (isa<CallInst>(I))
+ if (!BlockColors.empty() &&
+ BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
+ return false;
+ }
+
+ if (CurLoop->contains(UI)) {
+ if (IsFree) {
+ FreeInLoop = true;
+ continue;
+ }
+ return false;
+ }
+ }
+ return true;
+}
+
+static Instruction *CloneInstructionInExitBlock(
+ Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
+ const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
+ Instruction *New;
+ if (auto *CI = dyn_cast<CallInst>(&I)) {
+ const auto &BlockColors = SafetyInfo->getBlockColors();
+
+ // Sinking call-sites need to be handled differently from other
+ // instructions. The cloned call-site needs a funclet bundle operand
+ // appropriate for its location in the CFG.
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
+ BundleIdx != BundleEnd; ++BundleIdx) {
+ OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
+ if (Bundle.getTagID() == LLVMContext::OB_funclet)
+ continue;
+
+ OpBundles.emplace_back(Bundle);
+ }
+
+ if (!BlockColors.empty()) {
+ const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
+ assert(CV.size() == 1 && "non-unique color for exit block!");
+ BasicBlock *BBColor = CV.front();
+ Instruction *EHPad = BBColor->getFirstNonPHI();
+ if (EHPad->isEHPad())
+ OpBundles.emplace_back("funclet", EHPad);
+ }
+
+ New = CallInst::Create(CI, OpBundles);
+ } else {
+ New = I.clone();
+ }
+
+ ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
+ if (!I.getName().empty())
+ New->setName(I.getName() + ".le");
+
+ if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
+ // Create a new MemoryAccess and let MemorySSA set its defining access.
+ MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
+ New, nullptr, New->getParent(), MemorySSA::Beginning);
+ if (NewMemAcc) {
+ if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
+ MSSAU->insertDef(MemDef, /*RenameUses=*/true);
+ else {
+ auto *MemUse = cast<MemoryUse>(NewMemAcc);
+ MSSAU->insertUse(MemUse, /*RenameUses=*/true);
+ }
+ }
+ }
+
+ // Build LCSSA PHI nodes for any in-loop operands. Note that this is
+ // particularly cheap because we can rip off the PHI node that we're
+ // replacing for the number and blocks of the predecessors.
+ // OPT: If this shows up in a profile, we can instead finish sinking all
+ // invariant instructions, and then walk their operands to re-establish
+ // LCSSA. That will eliminate creating PHI nodes just to nuke them when
+ // sinking bottom-up.
+ for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
+ ++OI)
+ if (Instruction *OInst = dyn_cast<Instruction>(*OI))
+ if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
+ if (!OLoop->contains(&PN)) {
+ PHINode *OpPN =
+ PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
+ OInst->getName() + ".lcssa", &ExitBlock.front());
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
+ *OI = OpPN;
+ }
+ return New;
+}
+
+static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
+ AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
+ if (AST)
+ AST->deleteValue(&I);
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(&I);
+ SafetyInfo.removeInstruction(&I);
+ I.eraseFromParent();
+}
+
+static void moveInstructionBefore(Instruction &I, Instruction &Dest,
+ ICFLoopSafetyInfo &SafetyInfo,
+ MemorySSAUpdater *MSSAU) {
+ SafetyInfo.removeInstruction(&I);
+ SafetyInfo.insertInstructionTo(&I, Dest.getParent());
+ I.moveBefore(&Dest);
+ if (MSSAU)
+ if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
+ MSSAU->getMemorySSA()->getMemoryAccess(&I)))
+ MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End);
+}
+
+static Instruction *sinkThroughTriviallyReplaceablePHI(
+ PHINode *TPN, Instruction *I, LoopInfo *LI,
+ SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
+ const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
+ MemorySSAUpdater *MSSAU) {
+ assert(isTriviallyReplaceablePHI(*TPN, *I) &&
+ "Expect only trivially replaceable PHI");
+ BasicBlock *ExitBlock = TPN->getParent();
+ Instruction *New;
+ auto It = SunkCopies.find(ExitBlock);
+ if (It != SunkCopies.end())
+ New = It->second;
+ else
+ New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
+ *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
+ return New;
+}
+
+static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
+ BasicBlock *BB = PN->getParent();
+ if (!BB->canSplitPredecessors())
+ return false;
+ // It's not impossible to split EHPad blocks, but if BlockColors already exist
+ // it require updating BlockColors for all offspring blocks accordingly. By
+ // skipping such corner case, we can make updating BlockColors after splitting
+ // predecessor fairly simple.
+ if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
+ return false;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *BBPred = *PI;
+ if (isa<IndirectBrInst>(BBPred->getTerminator()))
+ return false;
+ }
+ return true;
+}
+
+static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
+ LoopInfo *LI, const Loop *CurLoop,
+ LoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU) {
+#ifndef NDEBUG
+ SmallVector<BasicBlock *, 32> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+#endif
+ BasicBlock *ExitBB = PN->getParent();
+ assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
+
+ // Split predecessors of the loop exit to make instructions in the loop are
+ // exposed to exit blocks through trivially replaceable PHIs while keeping the
+ // loop in the canonical form where each predecessor of each exit block should
+ // be contained within the loop. For example, this will convert the loop below
+ // from
+ //
+ // LB1:
+ // %v1 =
+ // br %LE, %LB2
+ // LB2:
+ // %v2 =
+ // br %LE, %LB1
+ // LE:
+ // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
+ //
+ // to
+ //
+ // LB1:
+ // %v1 =
+ // br %LE.split, %LB2
+ // LB2:
+ // %v2 =
+ // br %LE.split2, %LB1
+ // LE.split:
+ // %p1 = phi [%v1, %LB1] <-- trivially replaceable
+ // br %LE
+ // LE.split2:
+ // %p2 = phi [%v2, %LB2] <-- trivially replaceable
+ // br %LE
+ // LE:
+ // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
+ //
+ const auto &BlockColors = SafetyInfo->getBlockColors();
+ SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
+ while (!PredBBs.empty()) {
+ BasicBlock *PredBB = *PredBBs.begin();
+ assert(CurLoop->contains(PredBB) &&
+ "Expect all predecessors are in the loop");
+ if (PN->getBasicBlockIndex(PredBB) >= 0) {
+ BasicBlock *NewPred = SplitBlockPredecessors(
+ ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
+ // Since we do not allow splitting EH-block with BlockColors in
+ // canSplitPredecessors(), we can simply assign predecessor's color to
+ // the new block.
+ if (!BlockColors.empty())
+ // Grab a reference to the ColorVector to be inserted before getting the
+ // reference to the vector we are copying because inserting the new
+ // element in BlockColors might cause the map to be reallocated.
+ SafetyInfo->copyColors(NewPred, PredBB);
+ }
+ PredBBs.remove(PredBB);
+ }
+}
+
+/// When an instruction is found to only be used outside of the loop, this
+/// function moves it to the exit blocks and patches up SSA form as needed.
+/// This method is guaranteed to remove the original instruction from its
+/// position, and may either delete it or move it to outside of the loop.
+///
+static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
+ const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
+ LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
+ << "sinking " << ore::NV("Inst", &I);
+ });
+ bool Changed = false;
+ if (isa<LoadInst>(I))
+ ++NumMovedLoads;
+ else if (isa<CallInst>(I))
+ ++NumMovedCalls;
+ ++NumSunk;
+
+ // Iterate over users to be ready for actual sinking. Replace users via
+ // unreachable blocks with undef and make all user PHIs trivially replaceable.
+ SmallPtrSet<Instruction *, 8> VisitedUsers;
+ for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
+ auto *User = cast<Instruction>(*UI);
+ Use &U = UI.getUse();
+ ++UI;
+
+ if (VisitedUsers.count(User) || CurLoop->contains(User))
+ continue;
+
+ if (!DT->isReachableFromEntry(User->getParent())) {
+ U = UndefValue::get(I.getType());
+ Changed = true;
+ continue;
+ }
+
+ // The user must be a PHI node.
+ PHINode *PN = cast<PHINode>(User);
+
+ // Surprisingly, instructions can be used outside of loops without any
+ // exits. This can only happen in PHI nodes if the incoming block is
+ // unreachable.
+ BasicBlock *BB = PN->getIncomingBlock(U);
+ if (!DT->isReachableFromEntry(BB)) {
+ U = UndefValue::get(I.getType());
+ Changed = true;
+ continue;
+ }
+
+ VisitedUsers.insert(PN);
+ if (isTriviallyReplaceablePHI(*PN, I))
+ continue;
+
+ if (!canSplitPredecessors(PN, SafetyInfo))
+ return Changed;
+
+ // Split predecessors of the PHI so that we can make users trivially
+ // replaceable.
+ splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
+
+ // Should rebuild the iterators, as they may be invalidated by
+ // splitPredecessorsOfLoopExit().
+ UI = I.user_begin();
+ UE = I.user_end();
+ }
+
+ if (VisitedUsers.empty())
+ return Changed;
+
+#ifndef NDEBUG
+ SmallVector<BasicBlock *, 32> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+#endif
+
+ // Clones of this instruction. Don't create more than one per exit block!
+ SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
+
+ // If this instruction is only used outside of the loop, then all users are
+ // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
+ // the instruction.
+ SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
+ for (auto *UI : Users) {
+ auto *User = cast<Instruction>(UI);
+
+ if (CurLoop->contains(User))
+ continue;
+
+ PHINode *PN = cast<PHINode>(User);
+ assert(ExitBlockSet.count(PN->getParent()) &&
+ "The LCSSA PHI is not in an exit block!");
+ // The PHI must be trivially replaceable.
+ Instruction *New = sinkThroughTriviallyReplaceablePHI(
+ PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
+ PN->replaceAllUsesWith(New);
+ eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
+ Changed = true;
+ }
+ return Changed;
+}
+
+/// When an instruction is found to only use loop invariant operands that
+/// is safe to hoist, this instruction is called to do the dirty work.
+///
+static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
+ BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
+ LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
+ << "\n");
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
+ << ore::NV("Inst", &I);
+ });
+
+ // Metadata can be dependent on conditions we are hoisting above.
+ // Conservatively strip all metadata on the instruction unless we were
+ // guaranteed to execute I if we entered the loop, in which case the metadata
+ // is valid in the loop preheader.
+ if (I.hasMetadataOtherThanDebugLoc() &&
+ // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
+ // time in isGuaranteedToExecute if we don't actually have anything to
+ // drop. It is a compile time optimization, not required for correctness.
+ !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
+ I.dropUnknownNonDebugMetadata();
+
+ if (isa<PHINode>(I))
+ // Move the new node to the end of the phi list in the destination block.
+ moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU);
+ else
+ // Move the new node to the destination block, before its terminator.
+ moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU);
+
+ // Apply line 0 debug locations when we are moving instructions to different
+ // basic blocks because we want to avoid jumpy line tables.
+ if (const DebugLoc &DL = I.getDebugLoc())
+ I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
+
+ if (isa<LoadInst>(I))
+ ++NumMovedLoads;
+ else if (isa<CallInst>(I))
+ ++NumMovedCalls;
+ ++NumHoisted;
+}
+
+/// Only sink or hoist an instruction if it is not a trapping instruction,
+/// or if the instruction is known not to trap when moved to the preheader.
+/// or if it is a trapping instruction and is guaranteed to execute.
+static bool isSafeToExecuteUnconditionally(Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ OptimizationRemarkEmitter *ORE,
+ const Instruction *CtxI) {
+ if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
+ return true;
+
+ bool GuaranteedToExecute =
+ SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
+
+ if (!GuaranteedToExecute) {
+ auto *LI = dyn_cast<LoadInst>(&Inst);
+ if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(
+ DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
+ << "failed to hoist load with loop-invariant address "
+ "because load is conditionally executed";
+ });
+ }
+
+ return GuaranteedToExecute;
+}
+
+namespace {
+class LoopPromoter : public LoadAndStorePromoter {
+ Value *SomePtr; // Designated pointer to store to.
+ const SmallSetVector<Value *, 8> &PointerMustAliases;
+ SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
+ SmallVectorImpl<Instruction *> &LoopInsertPts;
+ SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
+ PredIteratorCache &PredCache;
+ AliasSetTracker &AST;
+ MemorySSAUpdater *MSSAU;
+ LoopInfo &LI;
+ DebugLoc DL;
+ int Alignment;
+ bool UnorderedAtomic;
+ AAMDNodes AATags;
+ ICFLoopSafetyInfo &SafetyInfo;
+
+ Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (Loop *L = LI.getLoopFor(I->getParent()))
+ if (!L->contains(BB)) {
+ // We need to create an LCSSA PHI node for the incoming value and
+ // store that.
+ PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
+ I->getName() + ".lcssa", &BB->front());
+ for (BasicBlock *Pred : PredCache.get(BB))
+ PN->addIncoming(I, Pred);
+ return PN;
+ }
+ return V;
+ }
+
+public:
+ LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
+ const SmallSetVector<Value *, 8> &PMA,
+ SmallVectorImpl<BasicBlock *> &LEB,
+ SmallVectorImpl<Instruction *> &LIP,
+ SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
+ AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
+ DebugLoc dl, int alignment, bool UnorderedAtomic,
+ const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
+ : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
+ LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
+ PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
+ Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
+ SafetyInfo(SafetyInfo) {}
+
+ bool isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction *> &) const override {
+ Value *Ptr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ Ptr = LI->getOperand(0);
+ else
+ Ptr = cast<StoreInst>(I)->getPointerOperand();
+ return PointerMustAliases.count(Ptr);
+ }
+
+ void doExtraRewritesBeforeFinalDeletion() override {
+ // Insert stores after in the loop exit blocks. Each exit block gets a
+ // store of the live-out values that feed them. Since we've already told
+ // the SSA updater about the defs in the loop and the preheader
+ // definition, it is all set and we can start using it.
+ for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = LoopExitBlocks[i];
+ Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
+ LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
+ Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
+ Instruction *InsertPos = LoopInsertPts[i];
+ StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
+ if (UnorderedAtomic)
+ NewSI->setOrdering(AtomicOrdering::Unordered);
+ NewSI->setAlignment(MaybeAlign(Alignment));
+ NewSI->setDebugLoc(DL);
+ if (AATags)
+ NewSI->setAAMetadata(AATags);
+
+ if (MSSAU) {
+ MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
+ MemoryAccess *NewMemAcc;
+ if (!MSSAInsertPoint) {
+ NewMemAcc = MSSAU->createMemoryAccessInBB(
+ NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
+ } else {
+ NewMemAcc =
+ MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
+ }
+ MSSAInsertPts[i] = NewMemAcc;
+ MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
+ // FIXME: true for safety, false may still be correct.
+ }
+ }
+ }
+
+ void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
+ // Update alias analysis.
+ AST.copyValue(LI, V);
+ }
+ void instructionDeleted(Instruction *I) const override {
+ SafetyInfo.removeInstruction(I);
+ AST.deleteValue(I);
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(I);
+ }
+};
+
+
+/// Return true iff we can prove that a caller of this function can not inspect
+/// the contents of the provided object in a well defined program.
+bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
+ if (isa<AllocaInst>(Object))
+ // Since the alloca goes out of scope, we know the caller can't retain a
+ // reference to it and be well defined. Thus, we don't need to check for
+ // capture.
+ return true;
+
+ // For all other objects we need to know that the caller can't possibly
+ // have gotten a reference to the object. There are two components of
+ // that:
+ // 1) Object can't be escaped by this function. This is what
+ // PointerMayBeCaptured checks.
+ // 2) Object can't have been captured at definition site. For this, we
+ // need to know the return value is noalias. At the moment, we use a
+ // weaker condition and handle only AllocLikeFunctions (which are
+ // known to be noalias). TODO
+ return isAllocLikeFn(Object, TLI) &&
+ !PointerMayBeCaptured(Object, true, true);
+}
+
+} // namespace
+
+/// Try to promote memory values to scalars by sinking stores out of the
+/// loop and moving loads to before the loop. We do this by looping over
+/// the stores in the loop, looking for stores to Must pointers which are
+/// loop invariant.
+///
+bool llvm::promoteLoopAccessesToScalars(
+ const SmallSetVector<Value *, 8> &PointerMustAliases,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks,
+ SmallVectorImpl<Instruction *> &InsertPts,
+ SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
+ LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
+ Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
+ ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
+ // Verify inputs.
+ assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
+ CurAST != nullptr && SafetyInfo != nullptr &&
+ "Unexpected Input to promoteLoopAccessesToScalars");
+
+ Value *SomePtr = *PointerMustAliases.begin();
+ BasicBlock *Preheader = CurLoop->getLoopPreheader();
+
+ // It is not safe to promote a load/store from the loop if the load/store is
+ // conditional. For example, turning:
+ //
+ // for () { if (c) *P += 1; }
+ //
+ // into:
+ //
+ // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
+ //
+ // is not safe, because *P may only be valid to access if 'c' is true.
+ //
+ // The safety property divides into two parts:
+ // p1) The memory may not be dereferenceable on entry to the loop. In this
+ // case, we can't insert the required load in the preheader.
+ // p2) The memory model does not allow us to insert a store along any dynamic
+ // path which did not originally have one.
+ //
+ // If at least one store is guaranteed to execute, both properties are
+ // satisfied, and promotion is legal.
+ //
+ // This, however, is not a necessary condition. Even if no store/load is
+ // guaranteed to execute, we can still establish these properties.
+ // We can establish (p1) by proving that hoisting the load into the preheader
+ // is safe (i.e. proving dereferenceability on all paths through the loop). We
+ // can use any access within the alias set to prove dereferenceability,
+ // since they're all must alias.
+ //
+ // There are two ways establish (p2):
+ // a) Prove the location is thread-local. In this case the memory model
+ // requirement does not apply, and stores are safe to insert.
+ // b) Prove a store dominates every exit block. In this case, if an exit
+ // blocks is reached, the original dynamic path would have taken us through
+ // the store, so inserting a store into the exit block is safe. Note that this
+ // is different from the store being guaranteed to execute. For instance,
+ // if an exception is thrown on the first iteration of the loop, the original
+ // store is never executed, but the exit blocks are not executed either.
+
+ bool DereferenceableInPH = false;
+ bool SafeToInsertStore = false;
+
+ SmallVector<Instruction *, 64> LoopUses;
+
+ // We start with an alignment of one and try to find instructions that allow
+ // us to prove better alignment.
+ unsigned Alignment = 1;
+ // Keep track of which types of access we see
+ bool SawUnorderedAtomic = false;
+ bool SawNotAtomic = false;
+ AAMDNodes AATags;
+
+ const DataLayout &MDL = Preheader->getModule()->getDataLayout();
+
+ bool IsKnownThreadLocalObject = false;
+ if (SafetyInfo->anyBlockMayThrow()) {
+ // If a loop can throw, we have to insert a store along each unwind edge.
+ // That said, we can't actually make the unwind edge explicit. Therefore,
+ // we have to prove that the store is dead along the unwind edge. We do
+ // this by proving that the caller can't have a reference to the object
+ // after return and thus can't possibly load from the object.
+ Value *Object = GetUnderlyingObject(SomePtr, MDL);
+ if (!isKnownNonEscaping(Object, TLI))
+ return false;
+ // Subtlety: Alloca's aren't visible to callers, but *are* potentially
+ // visible to other threads if captured and used during their lifetimes.
+ IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
+ }
+
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes. While we are at it, collect alignment and AA info.
+ for (Value *ASIV : PointerMustAliases) {
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes.
+ if (SomePtr->getType() != ASIV->getType())
+ return false;
+
+ for (User *U : ASIV->users()) {
+ // Ignore instructions that are outside the loop.
+ Instruction *UI = dyn_cast<Instruction>(U);
+ if (!UI || !CurLoop->contains(UI))
+ continue;
+
+ // If there is an non-load/store instruction in the loop, we can't promote
+ // it.
+ if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
+ if (!Load->isUnordered())
+ return false;
+
+ SawUnorderedAtomic |= Load->isAtomic();
+ SawNotAtomic |= !Load->isAtomic();
+
+ unsigned InstAlignment = Load->getAlignment();
+ if (!InstAlignment)
+ InstAlignment =
+ MDL.getABITypeAlignment(Load->getType());
+
+ // Note that proving a load safe to speculate requires proving
+ // sufficient alignment at the target location. Proving it guaranteed
+ // to execute does as well. Thus we can increase our guaranteed
+ // alignment as well.
+ if (!DereferenceableInPH || (InstAlignment > Alignment))
+ if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
+ ORE, Preheader->getTerminator())) {
+ DereferenceableInPH = true;
+ Alignment = std::max(Alignment, InstAlignment);
+ }
+ } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
+ // Stores *of* the pointer are not interesting, only stores *to* the
+ // pointer.
+ if (UI->getOperand(1) != ASIV)
+ continue;
+ if (!Store->isUnordered())
+ return false;
+
+ SawUnorderedAtomic |= Store->isAtomic();
+ SawNotAtomic |= !Store->isAtomic();
+
+ // If the store is guaranteed to execute, both properties are satisfied.
+ // We may want to check if a store is guaranteed to execute even if we
+ // already know that promotion is safe, since it may have higher
+ // alignment than any other guaranteed stores, in which case we can
+ // raise the alignment on the promoted store.
+ unsigned InstAlignment = Store->getAlignment();
+ if (!InstAlignment)
+ InstAlignment =
+ MDL.getABITypeAlignment(Store->getValueOperand()->getType());
+
+ if (!DereferenceableInPH || !SafeToInsertStore ||
+ (InstAlignment > Alignment)) {
+ if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
+ DereferenceableInPH = true;
+ SafeToInsertStore = true;
+ Alignment = std::max(Alignment, InstAlignment);
+ }
+ }
+
+ // If a store dominates all exit blocks, it is safe to sink.
+ // As explained above, if an exit block was executed, a dominating
+ // store must have been executed at least once, so we are not
+ // introducing stores on paths that did not have them.
+ // Note that this only looks at explicit exit blocks. If we ever
+ // start sinking stores into unwind edges (see above), this will break.
+ if (!SafeToInsertStore)
+ SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
+ return DT->dominates(Store->getParent(), Exit);
+ });
+
+ // If the store is not guaranteed to execute, we may still get
+ // deref info through it.
+ if (!DereferenceableInPH) {
+ DereferenceableInPH = isDereferenceableAndAlignedPointer(
+ Store->getPointerOperand(), Store->getValueOperand()->getType(),
+ MaybeAlign(Store->getAlignment()), MDL,
+ Preheader->getTerminator(), DT);
+ }
+ } else
+ return false; // Not a load or store.
+
+ // Merge the AA tags.
+ if (LoopUses.empty()) {
+ // On the first load/store, just take its AA tags.
+ UI->getAAMetadata(AATags);
+ } else if (AATags) {
+ UI->getAAMetadata(AATags, /* Merge = */ true);
+ }
+
+ LoopUses.push_back(UI);
+ }
+ }
+
+ // If we found both an unordered atomic instruction and a non-atomic memory
+ // access, bail. We can't blindly promote non-atomic to atomic since we
+ // might not be able to lower the result. We can't downgrade since that
+ // would violate memory model. Also, align 0 is an error for atomics.
+ if (SawUnorderedAtomic && SawNotAtomic)
+ return false;
+
+ // If we're inserting an atomic load in the preheader, we must be able to
+ // lower it. We're only guaranteed to be able to lower naturally aligned
+ // atomics.
+ auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
+ if (SawUnorderedAtomic &&
+ Alignment < MDL.getTypeStoreSize(SomePtrElemType))
+ return false;
+
+ // If we couldn't prove we can hoist the load, bail.
+ if (!DereferenceableInPH)
+ return false;
+
+ // We know we can hoist the load, but don't have a guaranteed store.
+ // Check whether the location is thread-local. If it is, then we can insert
+ // stores along paths which originally didn't have them without violating the
+ // memory model.
+ if (!SafeToInsertStore) {
+ if (IsKnownThreadLocalObject)
+ SafeToInsertStore = true;
+ else {
+ Value *Object = GetUnderlyingObject(SomePtr, MDL);
+ SafeToInsertStore =
+ (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
+ !PointerMayBeCaptured(Object, true, true);
+ }
+ }
+
+ // If we've still failed to prove we can sink the store, give up.
+ if (!SafeToInsertStore)
+ return false;
+
+ // Otherwise, this is safe to promote, lets do it!
+ LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
+ << '\n');
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
+ LoopUses[0])
+ << "Moving accesses to memory location out of the loop";
+ });
+ ++NumPromoted;
+
+ // Grab a debug location for the inserted loads/stores; given that the
+ // inserted loads/stores have little relation to the original loads/stores,
+ // this code just arbitrarily picks a location from one, since any debug
+ // location is better than none.
+ DebugLoc DL = LoopUses[0]->getDebugLoc();
+
+ // We use the SSAUpdater interface to insert phi nodes as required.
+ SmallVector<PHINode *, 16> NewPHIs;
+ SSAUpdater SSA(&NewPHIs);
+ LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
+ InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
+ Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
+
+ // Set up the preheader to have a definition of the value. It is the live-out
+ // value from the preheader that uses in the loop will use.
+ LoadInst *PreheaderLoad = new LoadInst(
+ SomePtr->getType()->getPointerElementType(), SomePtr,
+ SomePtr->getName() + ".promoted", Preheader->getTerminator());
+ if (SawUnorderedAtomic)
+ PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
+ PreheaderLoad->setAlignment(MaybeAlign(Alignment));
+ PreheaderLoad->setDebugLoc(DL);
+ if (AATags)
+ PreheaderLoad->setAAMetadata(AATags);
+ SSA.AddAvailableValue(Preheader, PreheaderLoad);
+
+ if (MSSAU) {
+ MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
+ PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
+ MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
+ MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ // Rewrite all the loads in the loop and remember all the definitions from
+ // stores in the loop.
+ Promoter.run(LoopUses);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ // If the SSAUpdater didn't use the load in the preheader, just zap it now.
+ if (PreheaderLoad->use_empty())
+ eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
+
+ return true;
+}
+
+/// Returns an owning pointer to an alias set which incorporates aliasing info
+/// from L and all subloops of L.
+/// FIXME: In new pass manager, there is no helper function to handle loop
+/// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
+/// from scratch for every loop. Hook up with the helper functions when
+/// available in the new pass manager to avoid redundant computation.
+std::unique_ptr<AliasSetTracker>
+LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
+ AliasAnalysis *AA) {
+ std::unique_ptr<AliasSetTracker> CurAST;
+ SmallVector<Loop *, 4> RecomputeLoops;
+ for (Loop *InnerL : L->getSubLoops()) {
+ auto MapI = LoopToAliasSetMap.find(InnerL);
+ // If the AST for this inner loop is missing it may have been merged into
+ // some other loop's AST and then that loop unrolled, and so we need to
+ // recompute it.
+ if (MapI == LoopToAliasSetMap.end()) {
+ RecomputeLoops.push_back(InnerL);
+ continue;
+ }
+ std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
+
+ if (CurAST) {
+ // What if InnerLoop was modified by other passes ?
+ // Once we've incorporated the inner loop's AST into ours, we don't need
+ // the subloop's anymore.
+ CurAST->add(*InnerAST);
+ } else {
+ CurAST = std::move(InnerAST);
+ }
+ LoopToAliasSetMap.erase(MapI);
+ }
+ if (!CurAST)
+ CurAST = std::make_unique<AliasSetTracker>(*AA);
+
+ // Add everything from the sub loops that are no longer directly available.
+ for (Loop *InnerL : RecomputeLoops)
+ for (BasicBlock *BB : InnerL->blocks())
+ CurAST->add(*BB);
+
+ // And merge in this loop (without anything from inner loops).
+ for (BasicBlock *BB : L->blocks())
+ if (LI->getLoopFor(BB) == L)
+ CurAST->add(*BB);
+
+ return CurAST;
+}
+
+std::unique_ptr<AliasSetTracker>
+LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
+ Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
+ auto *MSSA = MSSAU->getMemorySSA();
+ auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
+ CurAST->addAllInstructionsInLoopUsingMSSA();
+ return CurAST;
+}
+
+/// Simple analysis hook. Clone alias set info.
+///
+void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
+ Loop *L) {
+ auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
+ if (ASTIt == LICM.getLoopToAliasSetMap().end())
+ return;
+
+ ASTIt->second->copyValue(From, To);
+}
+
+/// Simple Analysis hook. Delete value V from alias set
+///
+void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
+ auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
+ if (ASTIt == LICM.getLoopToAliasSetMap().end())
+ return;
+
+ ASTIt->second->deleteValue(V);
+}
+
+/// Simple Analysis hook. Delete value L from alias set map.
+///
+void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
+ if (!LICM.getLoopToAliasSetMap().count(L))
+ return;
+
+ LICM.getLoopToAliasSetMap().erase(L);
+}
+
+static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
+ AliasSetTracker *CurAST, Loop *CurLoop,
+ AliasAnalysis *AA) {
+ // First check to see if any of the basic blocks in CurLoop invalidate *V.
+ bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
+
+ if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
+ return isInvalidatedAccordingToAST;
+
+ // Check with a diagnostic analysis if we can refine the information above.
+ // This is to identify the limitations of using the AST.
+ // The alias set mechanism used by LICM has a major weakness in that it
+ // combines all things which may alias into a single set *before* asking
+ // modref questions. As a result, a single readonly call within a loop will
+ // collapse all loads and stores into a single alias set and report
+ // invalidation if the loop contains any store. For example, readonly calls
+ // with deopt states have this form and create a general alias set with all
+ // loads and stores. In order to get any LICM in loops containing possible
+ // deopt states we need a more precise invalidation of checking the mod ref
+ // info of each instruction within the loop and LI. This has a complexity of
+ // O(N^2), so currently, it is used only as a diagnostic tool since the
+ // default value of LICMN2Threshold is zero.
+
+ // Don't look at nested loops.
+ if (CurLoop->begin() != CurLoop->end())
+ return true;
+
+ int N = 0;
+ for (BasicBlock *BB : CurLoop->getBlocks())
+ for (Instruction &I : *BB) {
+ if (N >= LICMN2Theshold) {
+ LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
+ << *(MemLoc.Ptr) << "\n");
+ return true;
+ }
+ N++;
+ auto Res = AA->getModRefInfo(&I, MemLoc);
+ if (isModSet(Res)) {
+ LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
+ << *(MemLoc.Ptr) << "\n");
+ return true;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
+ return false;
+}
+
+static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
+ Loop *CurLoop,
+ SinkAndHoistLICMFlags &Flags) {
+ // For hoisting, use the walker to determine safety
+ if (!Flags.IsSink) {
+ MemoryAccess *Source;
+ // See declaration of SetLicmMssaOptCap for usage details.
+ if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
+ Source = MU->getDefiningAccess();
+ else {
+ Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
+ Flags.LicmMssaOptCounter++;
+ }
+ return !MSSA->isLiveOnEntryDef(Source) &&
+ CurLoop->contains(Source->getBlock());
+ }
+
+ // For sinking, we'd need to check all Defs below this use. The getClobbering
+ // call will look on the backedge of the loop, but will check aliasing with
+ // the instructions on the previous iteration.
+ // For example:
+ // for (i ... )
+ // load a[i] ( Use (LoE)
+ // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
+ // i++;
+ // The load sees no clobbering inside the loop, as the backedge alias check
+ // does phi translation, and will check aliasing against store a[i-1].
+ // However sinking the load outside the loop, below the store is incorrect.
+
+ // For now, only sink if there are no Defs in the loop, and the existing ones
+ // precede the use and are in the same block.
+ // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
+ // needs PostDominatorTreeAnalysis.
+ // FIXME: More precise: no Defs that alias this Use.
+ if (Flags.NoOfMemAccTooLarge)
+ return true;
+ for (auto *BB : CurLoop->getBlocks())
+ if (auto *Accesses = MSSA->getBlockDefs(BB))
+ for (const auto &MA : *Accesses)
+ if (const auto *MD = dyn_cast<MemoryDef>(&MA))
+ if (MU->getBlock() != MD->getBlock() ||
+ !MSSA->locallyDominates(MD, MU))
+ return true;
+ return false;
+}
+
+/// Little predicate that returns true if the specified basic block is in
+/// a subloop of the current one, not the current one itself.
+///
+static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
+ assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
+ return LI->getLoopFor(BB) != CurLoop;
+}