diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp | 5776 | 
1 files changed, 5776 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp new file mode 100644 index 000000000000..7f119175c4a8 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp @@ -0,0 +1,5776 @@ +//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This transformation analyzes and transforms the induction variables (and +// computations derived from them) into forms suitable for efficient execution +// on the target. +// +// This pass performs a strength reduction on array references inside loops that +// have as one or more of their components the loop induction variable, it +// rewrites expressions to take advantage of scaled-index addressing modes +// available on the target, and it performs a variety of other optimizations +// related to loop induction variables. +// +// Terminology note: this code has a lot of handling for "post-increment" or +// "post-inc" users. This is not talking about post-increment addressing modes; +// it is instead talking about code like this: +// +//   %i = phi [ 0, %entry ], [ %i.next, %latch ] +//   ... +//   %i.next = add %i, 1 +//   %c = icmp eq %i.next, %n +// +// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however +// it's useful to think about these as the same register, with some uses using +// the value of the register before the add and some using it after. In this +// example, the icmp is a post-increment user, since it uses %i.next, which is +// the value of the induction variable after the increment. The other common +// case of post-increment users is users outside the loop. +// +// TODO: More sophistication in the way Formulae are generated and filtered. +// +// TODO: Handle multiple loops at a time. +// +// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead +//       of a GlobalValue? +// +// TODO: When truncation is free, truncate ICmp users' operands to make it a +//       smaller encoding (on x86 at least). +// +// TODO: When a negated register is used by an add (such as in a list of +//       multiple base registers, or as the increment expression in an addrec), +//       we may not actually need both reg and (-1 * reg) in registers; the +//       negation can be implemented by using a sub instead of an add. The +//       lack of support for taking this into consideration when making +//       register pressure decisions is partly worked around by the "Special" +//       use kind. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopStrengthReduce.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/IVUsers.h" +#include "llvm/Analysis/LoopAnalysisManager.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ScalarEvolutionNormalization.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/OperandTraits.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstdlib> +#include <iterator> +#include <limits> +#include <numeric> +#include <map> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "loop-reduce" + +/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for +/// bail out. This threshold is far beyond the number of users that LSR can +/// conceivably solve, so it should not affect generated code, but catches the +/// worst cases before LSR burns too much compile time and stack space. +static const unsigned MaxIVUsers = 200; + +// Temporary flag to cleanup congruent phis after LSR phi expansion. +// It's currently disabled until we can determine whether it's truly useful or +// not. The flag should be removed after the v3.0 release. +// This is now needed for ivchains. +static cl::opt<bool> EnablePhiElim( +  "enable-lsr-phielim", cl::Hidden, cl::init(true), +  cl::desc("Enable LSR phi elimination")); + +// The flag adds instruction count to solutions cost comparision. +static cl::opt<bool> InsnsCost( +  "lsr-insns-cost", cl::Hidden, cl::init(true), +  cl::desc("Add instruction count to a LSR cost model")); + +// Flag to choose how to narrow complex lsr solution +static cl::opt<bool> LSRExpNarrow( +  "lsr-exp-narrow", cl::Hidden, cl::init(false), +  cl::desc("Narrow LSR complex solution using" +           " expectation of registers number")); + +// Flag to narrow search space by filtering non-optimal formulae with +// the same ScaledReg and Scale. +static cl::opt<bool> FilterSameScaledReg( +    "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), +    cl::desc("Narrow LSR search space by filtering non-optimal formulae" +             " with the same ScaledReg and Scale")); + +static cl::opt<bool> EnableBackedgeIndexing( +  "lsr-backedge-indexing", cl::Hidden, cl::init(true), +  cl::desc("Enable the generation of cross iteration indexed memops")); + +static cl::opt<unsigned> ComplexityLimit( +  "lsr-complexity-limit", cl::Hidden, +  cl::init(std::numeric_limits<uint16_t>::max()), +  cl::desc("LSR search space complexity limit")); + +static cl::opt<unsigned> SetupCostDepthLimit( +    "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), +    cl::desc("The limit on recursion depth for LSRs setup cost")); + +#ifndef NDEBUG +// Stress test IV chain generation. +static cl::opt<bool> StressIVChain( +  "stress-ivchain", cl::Hidden, cl::init(false), +  cl::desc("Stress test LSR IV chains")); +#else +static bool StressIVChain = false; +#endif + +namespace { + +struct MemAccessTy { +  /// Used in situations where the accessed memory type is unknown. +  static const unsigned UnknownAddressSpace = +      std::numeric_limits<unsigned>::max(); + +  Type *MemTy = nullptr; +  unsigned AddrSpace = UnknownAddressSpace; + +  MemAccessTy() = default; +  MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} + +  bool operator==(MemAccessTy Other) const { +    return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; +  } + +  bool operator!=(MemAccessTy Other) const { return !(*this == Other); } + +  static MemAccessTy getUnknown(LLVMContext &Ctx, +                                unsigned AS = UnknownAddressSpace) { +    return MemAccessTy(Type::getVoidTy(Ctx), AS); +  } + +  Type *getType() { return MemTy; } +}; + +/// This class holds data which is used to order reuse candidates. +class RegSortData { +public: +  /// This represents the set of LSRUse indices which reference +  /// a particular register. +  SmallBitVector UsedByIndices; + +  void print(raw_ostream &OS) const; +  void dump() const; +}; + +} // end anonymous namespace + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void RegSortData::print(raw_ostream &OS) const { +  OS << "[NumUses=" << UsedByIndices.count() << ']'; +} + +LLVM_DUMP_METHOD void RegSortData::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +namespace { + +/// Map register candidates to information about how they are used. +class RegUseTracker { +  using RegUsesTy = DenseMap<const SCEV *, RegSortData>; + +  RegUsesTy RegUsesMap; +  SmallVector<const SCEV *, 16> RegSequence; + +public: +  void countRegister(const SCEV *Reg, size_t LUIdx); +  void dropRegister(const SCEV *Reg, size_t LUIdx); +  void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); + +  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; + +  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; + +  void clear(); + +  using iterator = SmallVectorImpl<const SCEV *>::iterator; +  using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; + +  iterator begin() { return RegSequence.begin(); } +  iterator end()   { return RegSequence.end(); } +  const_iterator begin() const { return RegSequence.begin(); } +  const_iterator end() const   { return RegSequence.end(); } +}; + +} // end anonymous namespace + +void +RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { +  std::pair<RegUsesTy::iterator, bool> Pair = +    RegUsesMap.insert(std::make_pair(Reg, RegSortData())); +  RegSortData &RSD = Pair.first->second; +  if (Pair.second) +    RegSequence.push_back(Reg); +  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); +  RSD.UsedByIndices.set(LUIdx); +} + +void +RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { +  RegUsesTy::iterator It = RegUsesMap.find(Reg); +  assert(It != RegUsesMap.end()); +  RegSortData &RSD = It->second; +  assert(RSD.UsedByIndices.size() > LUIdx); +  RSD.UsedByIndices.reset(LUIdx); +} + +void +RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { +  assert(LUIdx <= LastLUIdx); + +  // Update RegUses. The data structure is not optimized for this purpose; +  // we must iterate through it and update each of the bit vectors. +  for (auto &Pair : RegUsesMap) { +    SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; +    if (LUIdx < UsedByIndices.size()) +      UsedByIndices[LUIdx] = +        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; +    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); +  } +} + +bool +RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { +  RegUsesTy::const_iterator I = RegUsesMap.find(Reg); +  if (I == RegUsesMap.end()) +    return false; +  const SmallBitVector &UsedByIndices = I->second.UsedByIndices; +  int i = UsedByIndices.find_first(); +  if (i == -1) return false; +  if ((size_t)i != LUIdx) return true; +  return UsedByIndices.find_next(i) != -1; +} + +const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { +  RegUsesTy::const_iterator I = RegUsesMap.find(Reg); +  assert(I != RegUsesMap.end() && "Unknown register!"); +  return I->second.UsedByIndices; +} + +void RegUseTracker::clear() { +  RegUsesMap.clear(); +  RegSequence.clear(); +} + +namespace { + +/// This class holds information that describes a formula for computing +/// satisfying a use. It may include broken-out immediates and scaled registers. +struct Formula { +  /// Global base address used for complex addressing. +  GlobalValue *BaseGV = nullptr; + +  /// Base offset for complex addressing. +  int64_t BaseOffset = 0; + +  /// Whether any complex addressing has a base register. +  bool HasBaseReg = false; + +  /// The scale of any complex addressing. +  int64_t Scale = 0; + +  /// The list of "base" registers for this use. When this is non-empty. The +  /// canonical representation of a formula is +  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and +  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). +  /// 3. The reg containing recurrent expr related with currect loop in the +  /// formula should be put in the ScaledReg. +  /// #1 enforces that the scaled register is always used when at least two +  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. +  /// #2 enforces that 1 * reg is reg. +  /// #3 ensures invariant regs with respect to current loop can be combined +  /// together in LSR codegen. +  /// This invariant can be temporarily broken while building a formula. +  /// However, every formula inserted into the LSRInstance must be in canonical +  /// form. +  SmallVector<const SCEV *, 4> BaseRegs; + +  /// The 'scaled' register for this use. This should be non-null when Scale is +  /// not zero. +  const SCEV *ScaledReg = nullptr; + +  /// An additional constant offset which added near the use. This requires a +  /// temporary register, but the offset itself can live in an add immediate +  /// field rather than a register. +  int64_t UnfoldedOffset = 0; + +  Formula() = default; + +  void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); + +  bool isCanonical(const Loop &L) const; + +  void canonicalize(const Loop &L); + +  bool unscale(); + +  bool hasZeroEnd() const; + +  size_t getNumRegs() const; +  Type *getType() const; + +  void deleteBaseReg(const SCEV *&S); + +  bool referencesReg(const SCEV *S) const; +  bool hasRegsUsedByUsesOtherThan(size_t LUIdx, +                                  const RegUseTracker &RegUses) const; + +  void print(raw_ostream &OS) const; +  void dump() const; +}; + +} // end anonymous namespace + +/// Recursion helper for initialMatch. +static void DoInitialMatch(const SCEV *S, Loop *L, +                           SmallVectorImpl<const SCEV *> &Good, +                           SmallVectorImpl<const SCEV *> &Bad, +                           ScalarEvolution &SE) { +  // Collect expressions which properly dominate the loop header. +  if (SE.properlyDominates(S, L->getHeader())) { +    Good.push_back(S); +    return; +  } + +  // Look at add operands. +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { +    for (const SCEV *S : Add->operands()) +      DoInitialMatch(S, L, Good, Bad, SE); +    return; +  } + +  // Look at addrec operands. +  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) +    if (!AR->getStart()->isZero() && AR->isAffine()) { +      DoInitialMatch(AR->getStart(), L, Good, Bad, SE); +      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), +                                      AR->getStepRecurrence(SE), +                                      // FIXME: AR->getNoWrapFlags() +                                      AR->getLoop(), SCEV::FlagAnyWrap), +                     L, Good, Bad, SE); +      return; +    } + +  // Handle a multiplication by -1 (negation) if it didn't fold. +  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) +    if (Mul->getOperand(0)->isAllOnesValue()) { +      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); +      const SCEV *NewMul = SE.getMulExpr(Ops); + +      SmallVector<const SCEV *, 4> MyGood; +      SmallVector<const SCEV *, 4> MyBad; +      DoInitialMatch(NewMul, L, MyGood, MyBad, SE); +      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( +        SE.getEffectiveSCEVType(NewMul->getType()))); +      for (const SCEV *S : MyGood) +        Good.push_back(SE.getMulExpr(NegOne, S)); +      for (const SCEV *S : MyBad) +        Bad.push_back(SE.getMulExpr(NegOne, S)); +      return; +    } + +  // Ok, we can't do anything interesting. Just stuff the whole thing into a +  // register and hope for the best. +  Bad.push_back(S); +} + +/// Incorporate loop-variant parts of S into this Formula, attempting to keep +/// all loop-invariant and loop-computable values in a single base register. +void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { +  SmallVector<const SCEV *, 4> Good; +  SmallVector<const SCEV *, 4> Bad; +  DoInitialMatch(S, L, Good, Bad, SE); +  if (!Good.empty()) { +    const SCEV *Sum = SE.getAddExpr(Good); +    if (!Sum->isZero()) +      BaseRegs.push_back(Sum); +    HasBaseReg = true; +  } +  if (!Bad.empty()) { +    const SCEV *Sum = SE.getAddExpr(Bad); +    if (!Sum->isZero()) +      BaseRegs.push_back(Sum); +    HasBaseReg = true; +  } +  canonicalize(*L); +} + +/// Check whether or not this formula satisfies the canonical +/// representation. +/// \see Formula::BaseRegs. +bool Formula::isCanonical(const Loop &L) const { +  if (!ScaledReg) +    return BaseRegs.size() <= 1; + +  if (Scale != 1) +    return true; + +  if (Scale == 1 && BaseRegs.empty()) +    return false; + +  const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); +  if (SAR && SAR->getLoop() == &L) +    return true; + +  // If ScaledReg is not a recurrent expr, or it is but its loop is not current +  // loop, meanwhile BaseRegs contains a recurrent expr reg related with current +  // loop, we want to swap the reg in BaseRegs with ScaledReg. +  auto I = +      find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { +        return isa<const SCEVAddRecExpr>(S) && +               (cast<SCEVAddRecExpr>(S)->getLoop() == &L); +      }); +  return I == BaseRegs.end(); +} + +/// Helper method to morph a formula into its canonical representation. +/// \see Formula::BaseRegs. +/// Every formula having more than one base register, must use the ScaledReg +/// field. Otherwise, we would have to do special cases everywhere in LSR +/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... +/// On the other hand, 1*reg should be canonicalized into reg. +void Formula::canonicalize(const Loop &L) { +  if (isCanonical(L)) +    return; +  // So far we did not need this case. This is easy to implement but it is +  // useless to maintain dead code. Beside it could hurt compile time. +  assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); + +  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. +  if (!ScaledReg) { +    ScaledReg = BaseRegs.back(); +    BaseRegs.pop_back(); +    Scale = 1; +  } + +  // If ScaledReg is an invariant with respect to L, find the reg from +  // BaseRegs containing the recurrent expr related with Loop L. Swap the +  // reg with ScaledReg. +  const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); +  if (!SAR || SAR->getLoop() != &L) { +    auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), +                     [&](const SCEV *S) { +                       return isa<const SCEVAddRecExpr>(S) && +                              (cast<SCEVAddRecExpr>(S)->getLoop() == &L); +                     }); +    if (I != BaseRegs.end()) +      std::swap(ScaledReg, *I); +  } +} + +/// Get rid of the scale in the formula. +/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. +/// \return true if it was possible to get rid of the scale, false otherwise. +/// \note After this operation the formula may not be in the canonical form. +bool Formula::unscale() { +  if (Scale != 1) +    return false; +  Scale = 0; +  BaseRegs.push_back(ScaledReg); +  ScaledReg = nullptr; +  return true; +} + +bool Formula::hasZeroEnd() const { +  if (UnfoldedOffset || BaseOffset) +    return false; +  if (BaseRegs.size() != 1 || ScaledReg) +    return false; +  return true; +} + +/// Return the total number of register operands used by this formula. This does +/// not include register uses implied by non-constant addrec strides. +size_t Formula::getNumRegs() const { +  return !!ScaledReg + BaseRegs.size(); +} + +/// Return the type of this formula, if it has one, or null otherwise. This type +/// is meaningless except for the bit size. +Type *Formula::getType() const { +  return !BaseRegs.empty() ? BaseRegs.front()->getType() : +         ScaledReg ? ScaledReg->getType() : +         BaseGV ? BaseGV->getType() : +         nullptr; +} + +/// Delete the given base reg from the BaseRegs list. +void Formula::deleteBaseReg(const SCEV *&S) { +  if (&S != &BaseRegs.back()) +    std::swap(S, BaseRegs.back()); +  BaseRegs.pop_back(); +} + +/// Test if this formula references the given register. +bool Formula::referencesReg(const SCEV *S) const { +  return S == ScaledReg || is_contained(BaseRegs, S); +} + +/// Test whether this formula uses registers which are used by uses other than +/// the use with the given index. +bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, +                                         const RegUseTracker &RegUses) const { +  if (ScaledReg) +    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) +      return true; +  for (const SCEV *BaseReg : BaseRegs) +    if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) +      return true; +  return false; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void Formula::print(raw_ostream &OS) const { +  bool First = true; +  if (BaseGV) { +    if (!First) OS << " + "; else First = false; +    BaseGV->printAsOperand(OS, /*PrintType=*/false); +  } +  if (BaseOffset != 0) { +    if (!First) OS << " + "; else First = false; +    OS << BaseOffset; +  } +  for (const SCEV *BaseReg : BaseRegs) { +    if (!First) OS << " + "; else First = false; +    OS << "reg(" << *BaseReg << ')'; +  } +  if (HasBaseReg && BaseRegs.empty()) { +    if (!First) OS << " + "; else First = false; +    OS << "**error: HasBaseReg**"; +  } else if (!HasBaseReg && !BaseRegs.empty()) { +    if (!First) OS << " + "; else First = false; +    OS << "**error: !HasBaseReg**"; +  } +  if (Scale != 0) { +    if (!First) OS << " + "; else First = false; +    OS << Scale << "*reg("; +    if (ScaledReg) +      OS << *ScaledReg; +    else +      OS << "<unknown>"; +    OS << ')'; +  } +  if (UnfoldedOffset != 0) { +    if (!First) OS << " + "; +    OS << "imm(" << UnfoldedOffset << ')'; +  } +} + +LLVM_DUMP_METHOD void Formula::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +/// Return true if the given addrec can be sign-extended without changing its +/// value. +static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { +  Type *WideTy = +    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); +  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); +} + +/// Return true if the given add can be sign-extended without changing its +/// value. +static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { +  Type *WideTy = +    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); +  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); +} + +/// Return true if the given mul can be sign-extended without changing its +/// value. +static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { +  Type *WideTy = +    IntegerType::get(SE.getContext(), +                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); +  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); +} + +/// Return an expression for LHS /s RHS, if it can be determined and if the +/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits +/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that +/// the multiplication may overflow, which is useful when the result will be +/// used in a context where the most significant bits are ignored. +static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, +                                ScalarEvolution &SE, +                                bool IgnoreSignificantBits = false) { +  // Handle the trivial case, which works for any SCEV type. +  if (LHS == RHS) +    return SE.getConstant(LHS->getType(), 1); + +  // Handle a few RHS special cases. +  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); +  if (RC) { +    const APInt &RA = RC->getAPInt(); +    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do +    // some folding. +    if (RA.isAllOnesValue()) +      return SE.getMulExpr(LHS, RC); +    // Handle x /s 1 as x. +    if (RA == 1) +      return LHS; +  } + +  // Check for a division of a constant by a constant. +  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { +    if (!RC) +      return nullptr; +    const APInt &LA = C->getAPInt(); +    const APInt &RA = RC->getAPInt(); +    if (LA.srem(RA) != 0) +      return nullptr; +    return SE.getConstant(LA.sdiv(RA)); +  } + +  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. +  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { +    if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { +      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, +                                      IgnoreSignificantBits); +      if (!Step) return nullptr; +      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, +                                       IgnoreSignificantBits); +      if (!Start) return nullptr; +      // FlagNW is independent of the start value, step direction, and is +      // preserved with smaller magnitude steps. +      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) +      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); +    } +    return nullptr; +  } + +  // Distribute the sdiv over add operands, if the add doesn't overflow. +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { +    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { +      SmallVector<const SCEV *, 8> Ops; +      for (const SCEV *S : Add->operands()) { +        const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); +        if (!Op) return nullptr; +        Ops.push_back(Op); +      } +      return SE.getAddExpr(Ops); +    } +    return nullptr; +  } + +  // Check for a multiply operand that we can pull RHS out of. +  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { +    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { +      SmallVector<const SCEV *, 4> Ops; +      bool Found = false; +      for (const SCEV *S : Mul->operands()) { +        if (!Found) +          if (const SCEV *Q = getExactSDiv(S, RHS, SE, +                                           IgnoreSignificantBits)) { +            S = Q; +            Found = true; +          } +        Ops.push_back(S); +      } +      return Found ? SE.getMulExpr(Ops) : nullptr; +    } +    return nullptr; +  } + +  // Otherwise we don't know. +  return nullptr; +} + +/// If S involves the addition of a constant integer value, return that integer +/// value, and mutate S to point to a new SCEV with that value excluded. +static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { +  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { +    if (C->getAPInt().getMinSignedBits() <= 64) { +      S = SE.getConstant(C->getType(), 0); +      return C->getValue()->getSExtValue(); +    } +  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { +    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); +    int64_t Result = ExtractImmediate(NewOps.front(), SE); +    if (Result != 0) +      S = SE.getAddExpr(NewOps); +    return Result; +  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { +    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); +    int64_t Result = ExtractImmediate(NewOps.front(), SE); +    if (Result != 0) +      S = SE.getAddRecExpr(NewOps, AR->getLoop(), +                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) +                           SCEV::FlagAnyWrap); +    return Result; +  } +  return 0; +} + +/// If S involves the addition of a GlobalValue address, return that symbol, and +/// mutate S to point to a new SCEV with that value excluded. +static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { +  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { +    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { +      S = SE.getConstant(GV->getType(), 0); +      return GV; +    } +  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { +    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); +    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); +    if (Result) +      S = SE.getAddExpr(NewOps); +    return Result; +  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { +    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); +    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); +    if (Result) +      S = SE.getAddRecExpr(NewOps, AR->getLoop(), +                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) +                           SCEV::FlagAnyWrap); +    return Result; +  } +  return nullptr; +} + +/// Returns true if the specified instruction is using the specified value as an +/// address. +static bool isAddressUse(const TargetTransformInfo &TTI, +                         Instruction *Inst, Value *OperandVal) { +  bool isAddress = isa<LoadInst>(Inst); +  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { +    if (SI->getPointerOperand() == OperandVal) +      isAddress = true; +  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +    // Addressing modes can also be folded into prefetches and a variety +    // of intrinsics. +    switch (II->getIntrinsicID()) { +    case Intrinsic::memset: +    case Intrinsic::prefetch: +      if (II->getArgOperand(0) == OperandVal) +        isAddress = true; +      break; +    case Intrinsic::memmove: +    case Intrinsic::memcpy: +      if (II->getArgOperand(0) == OperandVal || +          II->getArgOperand(1) == OperandVal) +        isAddress = true; +      break; +    default: { +      MemIntrinsicInfo IntrInfo; +      if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { +        if (IntrInfo.PtrVal == OperandVal) +          isAddress = true; +      } +    } +    } +  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { +    if (RMW->getPointerOperand() == OperandVal) +      isAddress = true; +  } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { +    if (CmpX->getPointerOperand() == OperandVal) +      isAddress = true; +  } +  return isAddress; +} + +/// Return the type of the memory being accessed. +static MemAccessTy getAccessType(const TargetTransformInfo &TTI, +                                 Instruction *Inst, Value *OperandVal) { +  MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); +  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { +    AccessTy.MemTy = SI->getOperand(0)->getType(); +    AccessTy.AddrSpace = SI->getPointerAddressSpace(); +  } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { +    AccessTy.AddrSpace = LI->getPointerAddressSpace(); +  } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { +    AccessTy.AddrSpace = RMW->getPointerAddressSpace(); +  } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { +    AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); +  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +    switch (II->getIntrinsicID()) { +    case Intrinsic::prefetch: +    case Intrinsic::memset: +      AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); +      AccessTy.MemTy = OperandVal->getType(); +      break; +    case Intrinsic::memmove: +    case Intrinsic::memcpy: +      AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); +      AccessTy.MemTy = OperandVal->getType(); +      break; +    default: { +      MemIntrinsicInfo IntrInfo; +      if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { +        AccessTy.AddrSpace +          = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); +      } + +      break; +    } +    } +  } + +  // All pointers have the same requirements, so canonicalize them to an +  // arbitrary pointer type to minimize variation. +  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) +    AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), +                                      PTy->getAddressSpace()); + +  return AccessTy; +} + +/// Return true if this AddRec is already a phi in its loop. +static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { +  for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { +    if (SE.isSCEVable(PN.getType()) && +        (SE.getEffectiveSCEVType(PN.getType()) == +         SE.getEffectiveSCEVType(AR->getType())) && +        SE.getSCEV(&PN) == AR) +      return true; +  } +  return false; +} + +/// Check if expanding this expression is likely to incur significant cost. This +/// is tricky because SCEV doesn't track which expressions are actually computed +/// by the current IR. +/// +/// We currently allow expansion of IV increments that involve adds, +/// multiplication by constants, and AddRecs from existing phis. +/// +/// TODO: Allow UDivExpr if we can find an existing IV increment that is an +/// obvious multiple of the UDivExpr. +static bool isHighCostExpansion(const SCEV *S, +                                SmallPtrSetImpl<const SCEV*> &Processed, +                                ScalarEvolution &SE) { +  // Zero/One operand expressions +  switch (S->getSCEVType()) { +  case scUnknown: +  case scConstant: +    return false; +  case scTruncate: +    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), +                               Processed, SE); +  case scZeroExtend: +    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), +                               Processed, SE); +  case scSignExtend: +    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), +                               Processed, SE); +  } + +  if (!Processed.insert(S).second) +    return false; + +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { +    for (const SCEV *S : Add->operands()) { +      if (isHighCostExpansion(S, Processed, SE)) +        return true; +    } +    return false; +  } + +  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { +    if (Mul->getNumOperands() == 2) { +      // Multiplication by a constant is ok +      if (isa<SCEVConstant>(Mul->getOperand(0))) +        return isHighCostExpansion(Mul->getOperand(1), Processed, SE); + +      // If we have the value of one operand, check if an existing +      // multiplication already generates this expression. +      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { +        Value *UVal = U->getValue(); +        for (User *UR : UVal->users()) { +          // If U is a constant, it may be used by a ConstantExpr. +          Instruction *UI = dyn_cast<Instruction>(UR); +          if (UI && UI->getOpcode() == Instruction::Mul && +              SE.isSCEVable(UI->getType())) { +            return SE.getSCEV(UI) == Mul; +          } +        } +      } +    } +  } + +  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { +    if (isExistingPhi(AR, SE)) +      return false; +  } + +  // Fow now, consider any other type of expression (div/mul/min/max) high cost. +  return true; +} + +/// If any of the instructions in the specified set are trivially dead, delete +/// them and see if this makes any of their operands subsequently dead. +static bool +DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { +  bool Changed = false; + +  while (!DeadInsts.empty()) { +    Value *V = DeadInsts.pop_back_val(); +    Instruction *I = dyn_cast_or_null<Instruction>(V); + +    if (!I || !isInstructionTriviallyDead(I)) +      continue; + +    for (Use &O : I->operands()) +      if (Instruction *U = dyn_cast<Instruction>(O)) { +        O = nullptr; +        if (U->use_empty()) +          DeadInsts.emplace_back(U); +      } + +    I->eraseFromParent(); +    Changed = true; +  } + +  return Changed; +} + +namespace { + +class LSRUse; + +} // end anonymous namespace + +/// Check if the addressing mode defined by \p F is completely +/// folded in \p LU at isel time. +/// This includes address-mode folding and special icmp tricks. +/// This function returns true if \p LU can accommodate what \p F +/// defines and up to 1 base + 1 scaled + offset. +/// In other words, if \p F has several base registers, this function may +/// still return true. Therefore, users still need to account for +/// additional base registers and/or unfolded offsets to derive an +/// accurate cost model. +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, +                                 const LSRUse &LU, const Formula &F); + +// Get the cost of the scaling factor used in F for LU. +static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, +                                     const LSRUse &LU, const Formula &F, +                                     const Loop &L); + +namespace { + +/// This class is used to measure and compare candidate formulae. +class Cost { +  const Loop *L = nullptr; +  ScalarEvolution *SE = nullptr; +  const TargetTransformInfo *TTI = nullptr; +  TargetTransformInfo::LSRCost C; + +public: +  Cost() = delete; +  Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : +    L(L), SE(&SE), TTI(&TTI) { +    C.Insns = 0; +    C.NumRegs = 0; +    C.AddRecCost = 0; +    C.NumIVMuls = 0; +    C.NumBaseAdds = 0; +    C.ImmCost = 0; +    C.SetupCost = 0; +    C.ScaleCost = 0; +  } + +  bool isLess(Cost &Other); + +  void Lose(); + +#ifndef NDEBUG +  // Once any of the metrics loses, they must all remain losers. +  bool isValid() { +    return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds +             | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) +      || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds +           & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); +  } +#endif + +  bool isLoser() { +    assert(isValid() && "invalid cost"); +    return C.NumRegs == ~0u; +  } + +  void RateFormula(const Formula &F, +                   SmallPtrSetImpl<const SCEV *> &Regs, +                   const DenseSet<const SCEV *> &VisitedRegs, +                   const LSRUse &LU, +                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); + +  void print(raw_ostream &OS) const; +  void dump() const; + +private: +  void RateRegister(const Formula &F, const SCEV *Reg, +                    SmallPtrSetImpl<const SCEV *> &Regs); +  void RatePrimaryRegister(const Formula &F, const SCEV *Reg, +                           SmallPtrSetImpl<const SCEV *> &Regs, +                           SmallPtrSetImpl<const SCEV *> *LoserRegs); +}; + +/// An operand value in an instruction which is to be replaced with some +/// equivalent, possibly strength-reduced, replacement. +struct LSRFixup { +  /// The instruction which will be updated. +  Instruction *UserInst = nullptr; + +  /// The operand of the instruction which will be replaced. The operand may be +  /// used more than once; every instance will be replaced. +  Value *OperandValToReplace = nullptr; + +  /// If this user is to use the post-incremented value of an induction +  /// variable, this set is non-empty and holds the loops associated with the +  /// induction variable. +  PostIncLoopSet PostIncLoops; + +  /// A constant offset to be added to the LSRUse expression.  This allows +  /// multiple fixups to share the same LSRUse with different offsets, for +  /// example in an unrolled loop. +  int64_t Offset = 0; + +  LSRFixup() = default; + +  bool isUseFullyOutsideLoop(const Loop *L) const; + +  void print(raw_ostream &OS) const; +  void dump() const; +}; + +/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted +/// SmallVectors of const SCEV*. +struct UniquifierDenseMapInfo { +  static SmallVector<const SCEV *, 4> getEmptyKey() { +    SmallVector<const SCEV *, 4>  V; +    V.push_back(reinterpret_cast<const SCEV *>(-1)); +    return V; +  } + +  static SmallVector<const SCEV *, 4> getTombstoneKey() { +    SmallVector<const SCEV *, 4> V; +    V.push_back(reinterpret_cast<const SCEV *>(-2)); +    return V; +  } + +  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { +    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); +  } + +  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, +                      const SmallVector<const SCEV *, 4> &RHS) { +    return LHS == RHS; +  } +}; + +/// This class holds the state that LSR keeps for each use in IVUsers, as well +/// as uses invented by LSR itself. It includes information about what kinds of +/// things can be folded into the user, information about the user itself, and +/// information about how the use may be satisfied.  TODO: Represent multiple +/// users of the same expression in common? +class LSRUse { +  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; + +public: +  /// An enum for a kind of use, indicating what types of scaled and immediate +  /// operands it might support. +  enum KindType { +    Basic,   ///< A normal use, with no folding. +    Special, ///< A special case of basic, allowing -1 scales. +    Address, ///< An address use; folding according to TargetLowering +    ICmpZero ///< An equality icmp with both operands folded into one. +    // TODO: Add a generic icmp too? +  }; + +  using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; + +  KindType Kind; +  MemAccessTy AccessTy; + +  /// The list of operands which are to be replaced. +  SmallVector<LSRFixup, 8> Fixups; + +  /// Keep track of the min and max offsets of the fixups. +  int64_t MinOffset = std::numeric_limits<int64_t>::max(); +  int64_t MaxOffset = std::numeric_limits<int64_t>::min(); + +  /// This records whether all of the fixups using this LSRUse are outside of +  /// the loop, in which case some special-case heuristics may be used. +  bool AllFixupsOutsideLoop = true; + +  /// RigidFormula is set to true to guarantee that this use will be associated +  /// with a single formula--the one that initially matched. Some SCEV +  /// expressions cannot be expanded. This allows LSR to consider the registers +  /// used by those expressions without the need to expand them later after +  /// changing the formula. +  bool RigidFormula = false; + +  /// This records the widest use type for any fixup using this +  /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max +  /// fixup widths to be equivalent, because the narrower one may be relying on +  /// the implicit truncation to truncate away bogus bits. +  Type *WidestFixupType = nullptr; + +  /// A list of ways to build a value that can satisfy this user.  After the +  /// list is populated, one of these is selected heuristically and used to +  /// formulate a replacement for OperandValToReplace in UserInst. +  SmallVector<Formula, 12> Formulae; + +  /// The set of register candidates used by all formulae in this LSRUse. +  SmallPtrSet<const SCEV *, 4> Regs; + +  LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} + +  LSRFixup &getNewFixup() { +    Fixups.push_back(LSRFixup()); +    return Fixups.back(); +  } + +  void pushFixup(LSRFixup &f) { +    Fixups.push_back(f); +    if (f.Offset > MaxOffset) +      MaxOffset = f.Offset; +    if (f.Offset < MinOffset) +      MinOffset = f.Offset; +  } + +  bool HasFormulaWithSameRegs(const Formula &F) const; +  float getNotSelectedProbability(const SCEV *Reg) const; +  bool InsertFormula(const Formula &F, const Loop &L); +  void DeleteFormula(Formula &F); +  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); + +  void print(raw_ostream &OS) const; +  void dump() const; +}; + +} // end anonymous namespace + +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, +                                 LSRUse::KindType Kind, MemAccessTy AccessTy, +                                 GlobalValue *BaseGV, int64_t BaseOffset, +                                 bool HasBaseReg, int64_t Scale, +                                 Instruction *Fixup = nullptr); + +static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { +  if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) +    return 1; +  if (Depth == 0) +    return 0; +  if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) +    return getSetupCost(S->getStart(), Depth - 1); +  if (auto S = dyn_cast<SCEVCastExpr>(Reg)) +    return getSetupCost(S->getOperand(), Depth - 1); +  if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) +    return std::accumulate(S->op_begin(), S->op_end(), 0, +                           [&](unsigned i, const SCEV *Reg) { +                             return i + getSetupCost(Reg, Depth - 1); +                           }); +  if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) +    return getSetupCost(S->getLHS(), Depth - 1) + +           getSetupCost(S->getRHS(), Depth - 1); +  return 0; +} + +/// Tally up interesting quantities from the given register. +void Cost::RateRegister(const Formula &F, const SCEV *Reg, +                        SmallPtrSetImpl<const SCEV *> &Regs) { +  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { +    // If this is an addrec for another loop, it should be an invariant +    // with respect to L since L is the innermost loop (at least +    // for now LSR only handles innermost loops). +    if (AR->getLoop() != L) { +      // If the AddRec exists, consider it's register free and leave it alone. +      if (isExistingPhi(AR, *SE)) +        return; + +      // It is bad to allow LSR for current loop to add induction variables +      // for its sibling loops. +      if (!AR->getLoop()->contains(L)) { +        Lose(); +        return; +      } + +      // Otherwise, it will be an invariant with respect to Loop L. +      ++C.NumRegs; +      return; +    } + +    unsigned LoopCost = 1; +    if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || +        TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { + +      // If the step size matches the base offset, we could use pre-indexed +      // addressing. +      if (TTI->shouldFavorBackedgeIndex(L)) { +        if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) +          if (Step->getAPInt() == F.BaseOffset) +            LoopCost = 0; +      } + +      if (TTI->shouldFavorPostInc()) { +        const SCEV *LoopStep = AR->getStepRecurrence(*SE); +        if (isa<SCEVConstant>(LoopStep)) { +          const SCEV *LoopStart = AR->getStart(); +          if (!isa<SCEVConstant>(LoopStart) && +              SE->isLoopInvariant(LoopStart, L)) +            LoopCost = 0; +        } +      } +    } +    C.AddRecCost += LoopCost; + +    // Add the step value register, if it needs one. +    // TODO: The non-affine case isn't precisely modeled here. +    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { +      if (!Regs.count(AR->getOperand(1))) { +        RateRegister(F, AR->getOperand(1), Regs); +        if (isLoser()) +          return; +      } +    } +  } +  ++C.NumRegs; + +  // Rough heuristic; favor registers which don't require extra setup +  // instructions in the preheader. +  C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); +  // Ensure we don't, even with the recusion limit, produce invalid costs. +  C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); + +  C.NumIVMuls += isa<SCEVMulExpr>(Reg) && +               SE->hasComputableLoopEvolution(Reg, L); +} + +/// Record this register in the set. If we haven't seen it before, rate +/// it. Optional LoserRegs provides a way to declare any formula that refers to +/// one of those regs an instant loser. +void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, +                               SmallPtrSetImpl<const SCEV *> &Regs, +                               SmallPtrSetImpl<const SCEV *> *LoserRegs) { +  if (LoserRegs && LoserRegs->count(Reg)) { +    Lose(); +    return; +  } +  if (Regs.insert(Reg).second) { +    RateRegister(F, Reg, Regs); +    if (LoserRegs && isLoser()) +      LoserRegs->insert(Reg); +  } +} + +void Cost::RateFormula(const Formula &F, +                       SmallPtrSetImpl<const SCEV *> &Regs, +                       const DenseSet<const SCEV *> &VisitedRegs, +                       const LSRUse &LU, +                       SmallPtrSetImpl<const SCEV *> *LoserRegs) { +  assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); +  // Tally up the registers. +  unsigned PrevAddRecCost = C.AddRecCost; +  unsigned PrevNumRegs = C.NumRegs; +  unsigned PrevNumBaseAdds = C.NumBaseAdds; +  if (const SCEV *ScaledReg = F.ScaledReg) { +    if (VisitedRegs.count(ScaledReg)) { +      Lose(); +      return; +    } +    RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); +    if (isLoser()) +      return; +  } +  for (const SCEV *BaseReg : F.BaseRegs) { +    if (VisitedRegs.count(BaseReg)) { +      Lose(); +      return; +    } +    RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); +    if (isLoser()) +      return; +  } + +  // Determine how many (unfolded) adds we'll need inside the loop. +  size_t NumBaseParts = F.getNumRegs(); +  if (NumBaseParts > 1) +    // Do not count the base and a possible second register if the target +    // allows to fold 2 registers. +    C.NumBaseAdds += +        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); +  C.NumBaseAdds += (F.UnfoldedOffset != 0); + +  // Accumulate non-free scaling amounts. +  C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); + +  // Tally up the non-zero immediates. +  for (const LSRFixup &Fixup : LU.Fixups) { +    int64_t O = Fixup.Offset; +    int64_t Offset = (uint64_t)O + F.BaseOffset; +    if (F.BaseGV) +      C.ImmCost += 64; // Handle symbolic values conservatively. +                     // TODO: This should probably be the pointer size. +    else if (Offset != 0) +      C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); + +    // Check with target if this offset with this instruction is +    // specifically not supported. +    if (LU.Kind == LSRUse::Address && Offset != 0 && +        !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, +                              Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) +      C.NumBaseAdds++; +  } + +  // If we don't count instruction cost exit here. +  if (!InsnsCost) { +    assert(isValid() && "invalid cost"); +    return; +  } + +  // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as +  // additional instruction (at least fill). +  // TODO: Need distinguish register class? +  unsigned TTIRegNum = TTI->getNumberOfRegisters( +                       TTI->getRegisterClassForType(false, F.getType())) - 1; +  if (C.NumRegs > TTIRegNum) { +    // Cost already exceeded TTIRegNum, then only newly added register can add +    // new instructions. +    if (PrevNumRegs > TTIRegNum) +      C.Insns += (C.NumRegs - PrevNumRegs); +    else +      C.Insns += (C.NumRegs - TTIRegNum); +  } + +  // If ICmpZero formula ends with not 0, it could not be replaced by +  // just add or sub. We'll need to compare final result of AddRec. +  // That means we'll need an additional instruction. But if the target can +  // macro-fuse a compare with a branch, don't count this extra instruction. +  // For -10 + {0, +, 1}: +  // i = i + 1; +  // cmp i, 10 +  // +  // For {-10, +, 1}: +  // i = i + 1; +  if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && +      !TTI->canMacroFuseCmp()) +    C.Insns++; +  // Each new AddRec adds 1 instruction to calculation. +  C.Insns += (C.AddRecCost - PrevAddRecCost); + +  // BaseAdds adds instructions for unfolded registers. +  if (LU.Kind != LSRUse::ICmpZero) +    C.Insns += C.NumBaseAdds - PrevNumBaseAdds; +  assert(isValid() && "invalid cost"); +} + +/// Set this cost to a losing value. +void Cost::Lose() { +  C.Insns = std::numeric_limits<unsigned>::max(); +  C.NumRegs = std::numeric_limits<unsigned>::max(); +  C.AddRecCost = std::numeric_limits<unsigned>::max(); +  C.NumIVMuls = std::numeric_limits<unsigned>::max(); +  C.NumBaseAdds = std::numeric_limits<unsigned>::max(); +  C.ImmCost = std::numeric_limits<unsigned>::max(); +  C.SetupCost = std::numeric_limits<unsigned>::max(); +  C.ScaleCost = std::numeric_limits<unsigned>::max(); +} + +/// Choose the lower cost. +bool Cost::isLess(Cost &Other) { +  if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && +      C.Insns != Other.C.Insns) +    return C.Insns < Other.C.Insns; +  return TTI->isLSRCostLess(C, Other.C); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void Cost::print(raw_ostream &OS) const { +  if (InsnsCost) +    OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); +  OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); +  if (C.AddRecCost != 0) +    OS << ", with addrec cost " << C.AddRecCost; +  if (C.NumIVMuls != 0) +    OS << ", plus " << C.NumIVMuls << " IV mul" +       << (C.NumIVMuls == 1 ? "" : "s"); +  if (C.NumBaseAdds != 0) +    OS << ", plus " << C.NumBaseAdds << " base add" +       << (C.NumBaseAdds == 1 ? "" : "s"); +  if (C.ScaleCost != 0) +    OS << ", plus " << C.ScaleCost << " scale cost"; +  if (C.ImmCost != 0) +    OS << ", plus " << C.ImmCost << " imm cost"; +  if (C.SetupCost != 0) +    OS << ", plus " << C.SetupCost << " setup cost"; +} + +LLVM_DUMP_METHOD void Cost::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +/// Test whether this fixup always uses its value outside of the given loop. +bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { +  // PHI nodes use their value in their incoming blocks. +  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (PN->getIncomingValue(i) == OperandValToReplace && +          L->contains(PN->getIncomingBlock(i))) +        return false; +    return true; +  } + +  return !L->contains(UserInst); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LSRFixup::print(raw_ostream &OS) const { +  OS << "UserInst="; +  // Store is common and interesting enough to be worth special-casing. +  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { +    OS << "store "; +    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); +  } else if (UserInst->getType()->isVoidTy()) +    OS << UserInst->getOpcodeName(); +  else +    UserInst->printAsOperand(OS, /*PrintType=*/false); + +  OS << ", OperandValToReplace="; +  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); + +  for (const Loop *PIL : PostIncLoops) { +    OS << ", PostIncLoop="; +    PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); +  } + +  if (Offset != 0) +    OS << ", Offset=" << Offset; +} + +LLVM_DUMP_METHOD void LSRFixup::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +/// Test whether this use as a formula which has the same registers as the given +/// formula. +bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { +  SmallVector<const SCEV *, 4> Key = F.BaseRegs; +  if (F.ScaledReg) Key.push_back(F.ScaledReg); +  // Unstable sort by host order ok, because this is only used for uniquifying. +  llvm::sort(Key); +  return Uniquifier.count(Key); +} + +/// The function returns a probability of selecting formula without Reg. +float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { +  unsigned FNum = 0; +  for (const Formula &F : Formulae) +    if (F.referencesReg(Reg)) +      FNum++; +  return ((float)(Formulae.size() - FNum)) / Formulae.size(); +} + +/// If the given formula has not yet been inserted, add it to the list, and +/// return true. Return false otherwise.  The formula must be in canonical form. +bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { +  assert(F.isCanonical(L) && "Invalid canonical representation"); + +  if (!Formulae.empty() && RigidFormula) +    return false; + +  SmallVector<const SCEV *, 4> Key = F.BaseRegs; +  if (F.ScaledReg) Key.push_back(F.ScaledReg); +  // Unstable sort by host order ok, because this is only used for uniquifying. +  llvm::sort(Key); + +  if (!Uniquifier.insert(Key).second) +    return false; + +  // Using a register to hold the value of 0 is not profitable. +  assert((!F.ScaledReg || !F.ScaledReg->isZero()) && +         "Zero allocated in a scaled register!"); +#ifndef NDEBUG +  for (const SCEV *BaseReg : F.BaseRegs) +    assert(!BaseReg->isZero() && "Zero allocated in a base register!"); +#endif + +  // Add the formula to the list. +  Formulae.push_back(F); + +  // Record registers now being used by this use. +  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); +  if (F.ScaledReg) +    Regs.insert(F.ScaledReg); + +  return true; +} + +/// Remove the given formula from this use's list. +void LSRUse::DeleteFormula(Formula &F) { +  if (&F != &Formulae.back()) +    std::swap(F, Formulae.back()); +  Formulae.pop_back(); +} + +/// Recompute the Regs field, and update RegUses. +void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { +  // Now that we've filtered out some formulae, recompute the Regs set. +  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); +  Regs.clear(); +  for (const Formula &F : Formulae) { +    if (F.ScaledReg) Regs.insert(F.ScaledReg); +    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); +  } + +  // Update the RegTracker. +  for (const SCEV *S : OldRegs) +    if (!Regs.count(S)) +      RegUses.dropRegister(S, LUIdx); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LSRUse::print(raw_ostream &OS) const { +  OS << "LSR Use: Kind="; +  switch (Kind) { +  case Basic:    OS << "Basic"; break; +  case Special:  OS << "Special"; break; +  case ICmpZero: OS << "ICmpZero"; break; +  case Address: +    OS << "Address of "; +    if (AccessTy.MemTy->isPointerTy()) +      OS << "pointer"; // the full pointer type could be really verbose +    else { +      OS << *AccessTy.MemTy; +    } + +    OS << " in addrspace(" << AccessTy.AddrSpace << ')'; +  } + +  OS << ", Offsets={"; +  bool NeedComma = false; +  for (const LSRFixup &Fixup : Fixups) { +    if (NeedComma) OS << ','; +    OS << Fixup.Offset; +    NeedComma = true; +  } +  OS << '}'; + +  if (AllFixupsOutsideLoop) +    OS << ", all-fixups-outside-loop"; + +  if (WidestFixupType) +    OS << ", widest fixup type: " << *WidestFixupType; +} + +LLVM_DUMP_METHOD void LSRUse::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, +                                 LSRUse::KindType Kind, MemAccessTy AccessTy, +                                 GlobalValue *BaseGV, int64_t BaseOffset, +                                 bool HasBaseReg, int64_t Scale, +                                 Instruction *Fixup/*= nullptr*/) { +  switch (Kind) { +  case LSRUse::Address: +    return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, +                                     HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); + +  case LSRUse::ICmpZero: +    // There's not even a target hook for querying whether it would be legal to +    // fold a GV into an ICmp. +    if (BaseGV) +      return false; + +    // ICmp only has two operands; don't allow more than two non-trivial parts. +    if (Scale != 0 && HasBaseReg && BaseOffset != 0) +      return false; + +    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by +    // putting the scaled register in the other operand of the icmp. +    if (Scale != 0 && Scale != -1) +      return false; + +    // If we have low-level target information, ask the target if it can fold an +    // integer immediate on an icmp. +    if (BaseOffset != 0) { +      // We have one of: +      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset +      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset +      // Offs is the ICmp immediate. +      if (Scale == 0) +        // The cast does the right thing with +        // std::numeric_limits<int64_t>::min(). +        BaseOffset = -(uint64_t)BaseOffset; +      return TTI.isLegalICmpImmediate(BaseOffset); +    } + +    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg +    return true; + +  case LSRUse::Basic: +    // Only handle single-register values. +    return !BaseGV && Scale == 0 && BaseOffset == 0; + +  case LSRUse::Special: +    // Special case Basic to handle -1 scales. +    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; +  } + +  llvm_unreachable("Invalid LSRUse Kind!"); +} + +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, +                                 int64_t MinOffset, int64_t MaxOffset, +                                 LSRUse::KindType Kind, MemAccessTy AccessTy, +                                 GlobalValue *BaseGV, int64_t BaseOffset, +                                 bool HasBaseReg, int64_t Scale) { +  // Check for overflow. +  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != +      (MinOffset > 0)) +    return false; +  MinOffset = (uint64_t)BaseOffset + MinOffset; +  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != +      (MaxOffset > 0)) +    return false; +  MaxOffset = (uint64_t)BaseOffset + MaxOffset; + +  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, +                              HasBaseReg, Scale) && +         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, +                              HasBaseReg, Scale); +} + +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, +                                 int64_t MinOffset, int64_t MaxOffset, +                                 LSRUse::KindType Kind, MemAccessTy AccessTy, +                                 const Formula &F, const Loop &L) { +  // For the purpose of isAMCompletelyFolded either having a canonical formula +  // or a scale not equal to zero is correct. +  // Problems may arise from non canonical formulae having a scale == 0. +  // Strictly speaking it would best to just rely on canonical formulae. +  // However, when we generate the scaled formulae, we first check that the +  // scaling factor is profitable before computing the actual ScaledReg for +  // compile time sake. +  assert((F.isCanonical(L) || F.Scale != 0)); +  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, +                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); +} + +/// Test whether we know how to expand the current formula. +static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, +                       int64_t MaxOffset, LSRUse::KindType Kind, +                       MemAccessTy AccessTy, GlobalValue *BaseGV, +                       int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { +  // We know how to expand completely foldable formulae. +  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, +                              BaseOffset, HasBaseReg, Scale) || +         // Or formulae that use a base register produced by a sum of base +         // registers. +         (Scale == 1 && +          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, +                               BaseGV, BaseOffset, true, 0)); +} + +static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, +                       int64_t MaxOffset, LSRUse::KindType Kind, +                       MemAccessTy AccessTy, const Formula &F) { +  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, +                    F.BaseOffset, F.HasBaseReg, F.Scale); +} + +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, +                                 const LSRUse &LU, const Formula &F) { +  // Target may want to look at the user instructions. +  if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { +    for (const LSRFixup &Fixup : LU.Fixups) +      if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, +                                (F.BaseOffset + Fixup.Offset), F.HasBaseReg, +                                F.Scale, Fixup.UserInst)) +        return false; +    return true; +  } + +  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, +                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, +                              F.Scale); +} + +static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, +                                     const LSRUse &LU, const Formula &F, +                                     const Loop &L) { +  if (!F.Scale) +    return 0; + +  // If the use is not completely folded in that instruction, we will have to +  // pay an extra cost only for scale != 1. +  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, +                            LU.AccessTy, F, L)) +    return F.Scale != 1; + +  switch (LU.Kind) { +  case LSRUse::Address: { +    // Check the scaling factor cost with both the min and max offsets. +    int ScaleCostMinOffset = TTI.getScalingFactorCost( +        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, +        F.Scale, LU.AccessTy.AddrSpace); +    int ScaleCostMaxOffset = TTI.getScalingFactorCost( +        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, +        F.Scale, LU.AccessTy.AddrSpace); + +    assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && +           "Legal addressing mode has an illegal cost!"); +    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); +  } +  case LSRUse::ICmpZero: +  case LSRUse::Basic: +  case LSRUse::Special: +    // The use is completely folded, i.e., everything is folded into the +    // instruction. +    return 0; +  } + +  llvm_unreachable("Invalid LSRUse Kind!"); +} + +static bool isAlwaysFoldable(const TargetTransformInfo &TTI, +                             LSRUse::KindType Kind, MemAccessTy AccessTy, +                             GlobalValue *BaseGV, int64_t BaseOffset, +                             bool HasBaseReg) { +  // Fast-path: zero is always foldable. +  if (BaseOffset == 0 && !BaseGV) return true; + +  // Conservatively, create an address with an immediate and a +  // base and a scale. +  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; + +  // Canonicalize a scale of 1 to a base register if the formula doesn't +  // already have a base register. +  if (!HasBaseReg && Scale == 1) { +    Scale = 0; +    HasBaseReg = true; +  } + +  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, +                              HasBaseReg, Scale); +} + +static bool isAlwaysFoldable(const TargetTransformInfo &TTI, +                             ScalarEvolution &SE, int64_t MinOffset, +                             int64_t MaxOffset, LSRUse::KindType Kind, +                             MemAccessTy AccessTy, const SCEV *S, +                             bool HasBaseReg) { +  // Fast-path: zero is always foldable. +  if (S->isZero()) return true; + +  // Conservatively, create an address with an immediate and a +  // base and a scale. +  int64_t BaseOffset = ExtractImmediate(S, SE); +  GlobalValue *BaseGV = ExtractSymbol(S, SE); + +  // If there's anything else involved, it's not foldable. +  if (!S->isZero()) return false; + +  // Fast-path: zero is always foldable. +  if (BaseOffset == 0 && !BaseGV) return true; + +  // Conservatively, create an address with an immediate and a +  // base and a scale. +  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; + +  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, +                              BaseOffset, HasBaseReg, Scale); +} + +namespace { + +/// An individual increment in a Chain of IV increments.  Relate an IV user to +/// an expression that computes the IV it uses from the IV used by the previous +/// link in the Chain. +/// +/// For the head of a chain, IncExpr holds the absolute SCEV expression for the +/// original IVOperand. The head of the chain's IVOperand is only valid during +/// chain collection, before LSR replaces IV users. During chain generation, +/// IncExpr can be used to find the new IVOperand that computes the same +/// expression. +struct IVInc { +  Instruction *UserInst; +  Value* IVOperand; +  const SCEV *IncExpr; + +  IVInc(Instruction *U, Value *O, const SCEV *E) +      : UserInst(U), IVOperand(O), IncExpr(E) {} +}; + +// The list of IV increments in program order.  We typically add the head of a +// chain without finding subsequent links. +struct IVChain { +  SmallVector<IVInc, 1> Incs; +  const SCEV *ExprBase = nullptr; + +  IVChain() = default; +  IVChain(const IVInc &Head, const SCEV *Base) +      : Incs(1, Head), ExprBase(Base) {} + +  using const_iterator = SmallVectorImpl<IVInc>::const_iterator; + +  // Return the first increment in the chain. +  const_iterator begin() const { +    assert(!Incs.empty()); +    return std::next(Incs.begin()); +  } +  const_iterator end() const { +    return Incs.end(); +  } + +  // Returns true if this chain contains any increments. +  bool hasIncs() const { return Incs.size() >= 2; } + +  // Add an IVInc to the end of this chain. +  void add(const IVInc &X) { Incs.push_back(X); } + +  // Returns the last UserInst in the chain. +  Instruction *tailUserInst() const { return Incs.back().UserInst; } + +  // Returns true if IncExpr can be profitably added to this chain. +  bool isProfitableIncrement(const SCEV *OperExpr, +                             const SCEV *IncExpr, +                             ScalarEvolution&); +}; + +/// Helper for CollectChains to track multiple IV increment uses.  Distinguish +/// between FarUsers that definitely cross IV increments and NearUsers that may +/// be used between IV increments. +struct ChainUsers { +  SmallPtrSet<Instruction*, 4> FarUsers; +  SmallPtrSet<Instruction*, 4> NearUsers; +}; + +/// This class holds state for the main loop strength reduction logic. +class LSRInstance { +  IVUsers &IU; +  ScalarEvolution &SE; +  DominatorTree &DT; +  LoopInfo &LI; +  AssumptionCache &AC; +  TargetLibraryInfo &LibInfo; +  const TargetTransformInfo &TTI; +  Loop *const L; +  bool FavorBackedgeIndex = false; +  bool Changed = false; + +  /// This is the insert position that the current loop's induction variable +  /// increment should be placed. In simple loops, this is the latch block's +  /// terminator. But in more complicated cases, this is a position which will +  /// dominate all the in-loop post-increment users. +  Instruction *IVIncInsertPos = nullptr; + +  /// Interesting factors between use strides. +  /// +  /// We explicitly use a SetVector which contains a SmallSet, instead of the +  /// default, a SmallDenseSet, because we need to use the full range of +  /// int64_ts, and there's currently no good way of doing that with +  /// SmallDenseSet. +  SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; + +  /// Interesting use types, to facilitate truncation reuse. +  SmallSetVector<Type *, 4> Types; + +  /// The list of interesting uses. +  mutable SmallVector<LSRUse, 16> Uses; + +  /// Track which uses use which register candidates. +  RegUseTracker RegUses; + +  // Limit the number of chains to avoid quadratic behavior. We don't expect to +  // have more than a few IV increment chains in a loop. Missing a Chain falls +  // back to normal LSR behavior for those uses. +  static const unsigned MaxChains = 8; + +  /// IV users can form a chain of IV increments. +  SmallVector<IVChain, MaxChains> IVChainVec; + +  /// IV users that belong to profitable IVChains. +  SmallPtrSet<Use*, MaxChains> IVIncSet; + +  void OptimizeShadowIV(); +  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); +  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); +  void OptimizeLoopTermCond(); + +  void ChainInstruction(Instruction *UserInst, Instruction *IVOper, +                        SmallVectorImpl<ChainUsers> &ChainUsersVec); +  void FinalizeChain(IVChain &Chain); +  void CollectChains(); +  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, +                       SmallVectorImpl<WeakTrackingVH> &DeadInsts); + +  void CollectInterestingTypesAndFactors(); +  void CollectFixupsAndInitialFormulae(); + +  // Support for sharing of LSRUses between LSRFixups. +  using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; +  UseMapTy UseMap; + +  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, +                          LSRUse::KindType Kind, MemAccessTy AccessTy); + +  std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, +                                    MemAccessTy AccessTy); + +  void DeleteUse(LSRUse &LU, size_t LUIdx); + +  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); + +  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); +  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); +  void CountRegisters(const Formula &F, size_t LUIdx); +  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); + +  void CollectLoopInvariantFixupsAndFormulae(); + +  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, +                              unsigned Depth = 0); + +  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, +                                  const Formula &Base, unsigned Depth, +                                  size_t Idx, bool IsScaledReg = false); +  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); +  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, +                                   const Formula &Base, size_t Idx, +                                   bool IsScaledReg = false); +  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); +  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, +                                   const Formula &Base, +                                   const SmallVectorImpl<int64_t> &Worklist, +                                   size_t Idx, bool IsScaledReg = false); +  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); +  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); +  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); +  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); +  void GenerateCrossUseConstantOffsets(); +  void GenerateAllReuseFormulae(); + +  void FilterOutUndesirableDedicatedRegisters(); + +  size_t EstimateSearchSpaceComplexity() const; +  void NarrowSearchSpaceByDetectingSupersets(); +  void NarrowSearchSpaceByCollapsingUnrolledCode(); +  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); +  void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); +  void NarrowSearchSpaceByDeletingCostlyFormulas(); +  void NarrowSearchSpaceByPickingWinnerRegs(); +  void NarrowSearchSpaceUsingHeuristics(); + +  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, +                    Cost &SolutionCost, +                    SmallVectorImpl<const Formula *> &Workspace, +                    const Cost &CurCost, +                    const SmallPtrSet<const SCEV *, 16> &CurRegs, +                    DenseSet<const SCEV *> &VisitedRegs) const; +  void Solve(SmallVectorImpl<const Formula *> &Solution) const; + +  BasicBlock::iterator +    HoistInsertPosition(BasicBlock::iterator IP, +                        const SmallVectorImpl<Instruction *> &Inputs) const; +  BasicBlock::iterator +    AdjustInsertPositionForExpand(BasicBlock::iterator IP, +                                  const LSRFixup &LF, +                                  const LSRUse &LU, +                                  SCEVExpander &Rewriter) const; + +  Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, +                BasicBlock::iterator IP, SCEVExpander &Rewriter, +                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; +  void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, +                     const Formula &F, SCEVExpander &Rewriter, +                     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; +  void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, +               SCEVExpander &Rewriter, +               SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; +  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); + +public: +  LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, +              LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, +              TargetLibraryInfo &LibInfo); + +  bool getChanged() const { return Changed; } + +  void print_factors_and_types(raw_ostream &OS) const; +  void print_fixups(raw_ostream &OS) const; +  void print_uses(raw_ostream &OS) const; +  void print(raw_ostream &OS) const; +  void dump() const; +}; + +} // end anonymous namespace + +/// If IV is used in a int-to-float cast inside the loop then try to eliminate +/// the cast operation. +void LSRInstance::OptimizeShadowIV() { +  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); +  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) +    return; + +  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); +       UI != E; /* empty */) { +    IVUsers::const_iterator CandidateUI = UI; +    ++UI; +    Instruction *ShadowUse = CandidateUI->getUser(); +    Type *DestTy = nullptr; +    bool IsSigned = false; + +    /* If shadow use is a int->float cast then insert a second IV +       to eliminate this cast. + +         for (unsigned i = 0; i < n; ++i) +           foo((double)i); + +       is transformed into + +         double d = 0.0; +         for (unsigned i = 0; i < n; ++i, ++d) +           foo(d); +    */ +    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { +      IsSigned = false; +      DestTy = UCast->getDestTy(); +    } +    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { +      IsSigned = true; +      DestTy = SCast->getDestTy(); +    } +    if (!DestTy) continue; + +    // If target does not support DestTy natively then do not apply +    // this transformation. +    if (!TTI.isTypeLegal(DestTy)) continue; + +    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); +    if (!PH) continue; +    if (PH->getNumIncomingValues() != 2) continue; + +    // If the calculation in integers overflows, the result in FP type will +    // differ. So we only can do this transformation if we are guaranteed to not +    // deal with overflowing values +    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); +    if (!AR) continue; +    if (IsSigned && !AR->hasNoSignedWrap()) continue; +    if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; + +    Type *SrcTy = PH->getType(); +    int Mantissa = DestTy->getFPMantissaWidth(); +    if (Mantissa == -1) continue; +    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) +      continue; + +    unsigned Entry, Latch; +    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { +      Entry = 0; +      Latch = 1; +    } else { +      Entry = 1; +      Latch = 0; +    } + +    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); +    if (!Init) continue; +    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? +                                        (double)Init->getSExtValue() : +                                        (double)Init->getZExtValue()); + +    BinaryOperator *Incr = +      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); +    if (!Incr) continue; +    if (Incr->getOpcode() != Instruction::Add +        && Incr->getOpcode() != Instruction::Sub) +      continue; + +    /* Initialize new IV, double d = 0.0 in above example. */ +    ConstantInt *C = nullptr; +    if (Incr->getOperand(0) == PH) +      C = dyn_cast<ConstantInt>(Incr->getOperand(1)); +    else if (Incr->getOperand(1) == PH) +      C = dyn_cast<ConstantInt>(Incr->getOperand(0)); +    else +      continue; + +    if (!C) continue; + +    // Ignore negative constants, as the code below doesn't handle them +    // correctly. TODO: Remove this restriction. +    if (!C->getValue().isStrictlyPositive()) continue; + +    /* Add new PHINode. */ +    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); + +    /* create new increment. '++d' in above example. */ +    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); +    BinaryOperator *NewIncr = +      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? +                               Instruction::FAdd : Instruction::FSub, +                             NewPH, CFP, "IV.S.next.", Incr); + +    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); +    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); + +    /* Remove cast operation */ +    ShadowUse->replaceAllUsesWith(NewPH); +    ShadowUse->eraseFromParent(); +    Changed = true; +    break; +  } +} + +/// If Cond has an operand that is an expression of an IV, set the IV user and +/// stride information and return true, otherwise return false. +bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { +  for (IVStrideUse &U : IU) +    if (U.getUser() == Cond) { +      // NOTE: we could handle setcc instructions with multiple uses here, but +      // InstCombine does it as well for simple uses, it's not clear that it +      // occurs enough in real life to handle. +      CondUse = &U; +      return true; +    } +  return false; +} + +/// Rewrite the loop's terminating condition if it uses a max computation. +/// +/// This is a narrow solution to a specific, but acute, problem. For loops +/// like this: +/// +///   i = 0; +///   do { +///     p[i] = 0.0; +///   } while (++i < n); +/// +/// the trip count isn't just 'n', because 'n' might not be positive. And +/// unfortunately this can come up even for loops where the user didn't use +/// a C do-while loop. For example, seemingly well-behaved top-test loops +/// will commonly be lowered like this: +/// +///   if (n > 0) { +///     i = 0; +///     do { +///       p[i] = 0.0; +///     } while (++i < n); +///   } +/// +/// and then it's possible for subsequent optimization to obscure the if +/// test in such a way that indvars can't find it. +/// +/// When indvars can't find the if test in loops like this, it creates a +/// max expression, which allows it to give the loop a canonical +/// induction variable: +/// +///   i = 0; +///   max = n < 1 ? 1 : n; +///   do { +///     p[i] = 0.0; +///   } while (++i != max); +/// +/// Canonical induction variables are necessary because the loop passes +/// are designed around them. The most obvious example of this is the +/// LoopInfo analysis, which doesn't remember trip count values. It +/// expects to be able to rediscover the trip count each time it is +/// needed, and it does this using a simple analysis that only succeeds if +/// the loop has a canonical induction variable. +/// +/// However, when it comes time to generate code, the maximum operation +/// can be quite costly, especially if it's inside of an outer loop. +/// +/// This function solves this problem by detecting this type of loop and +/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting +/// the instructions for the maximum computation. +ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { +  // Check that the loop matches the pattern we're looking for. +  if (Cond->getPredicate() != CmpInst::ICMP_EQ && +      Cond->getPredicate() != CmpInst::ICMP_NE) +    return Cond; + +  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); +  if (!Sel || !Sel->hasOneUse()) return Cond; + +  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); +  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) +    return Cond; +  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); + +  // Add one to the backedge-taken count to get the trip count. +  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); +  if (IterationCount != SE.getSCEV(Sel)) return Cond; + +  // Check for a max calculation that matches the pattern. There's no check +  // for ICMP_ULE here because the comparison would be with zero, which +  // isn't interesting. +  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; +  const SCEVNAryExpr *Max = nullptr; +  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { +    Pred = ICmpInst::ICMP_SLE; +    Max = S; +  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { +    Pred = ICmpInst::ICMP_SLT; +    Max = S; +  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { +    Pred = ICmpInst::ICMP_ULT; +    Max = U; +  } else { +    // No match; bail. +    return Cond; +  } + +  // To handle a max with more than two operands, this optimization would +  // require additional checking and setup. +  if (Max->getNumOperands() != 2) +    return Cond; + +  const SCEV *MaxLHS = Max->getOperand(0); +  const SCEV *MaxRHS = Max->getOperand(1); + +  // ScalarEvolution canonicalizes constants to the left. For < and >, look +  // for a comparison with 1. For <= and >=, a comparison with zero. +  if (!MaxLHS || +      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) +    return Cond; + +  // Check the relevant induction variable for conformance to +  // the pattern. +  const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); +  if (!AR || !AR->isAffine() || +      AR->getStart() != One || +      AR->getStepRecurrence(SE) != One) +    return Cond; + +  assert(AR->getLoop() == L && +         "Loop condition operand is an addrec in a different loop!"); + +  // Check the right operand of the select, and remember it, as it will +  // be used in the new comparison instruction. +  Value *NewRHS = nullptr; +  if (ICmpInst::isTrueWhenEqual(Pred)) { +    // Look for n+1, and grab n. +    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) +      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) +         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) +           NewRHS = BO->getOperand(0); +    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) +      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) +        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) +          NewRHS = BO->getOperand(0); +    if (!NewRHS) +      return Cond; +  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) +    NewRHS = Sel->getOperand(1); +  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) +    NewRHS = Sel->getOperand(2); +  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) +    NewRHS = SU->getValue(); +  else +    // Max doesn't match expected pattern. +    return Cond; + +  // Determine the new comparison opcode. It may be signed or unsigned, +  // and the original comparison may be either equality or inequality. +  if (Cond->getPredicate() == CmpInst::ICMP_EQ) +    Pred = CmpInst::getInversePredicate(Pred); + +  // Ok, everything looks ok to change the condition into an SLT or SGE and +  // delete the max calculation. +  ICmpInst *NewCond = +    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); + +  // Delete the max calculation instructions. +  Cond->replaceAllUsesWith(NewCond); +  CondUse->setUser(NewCond); +  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); +  Cond->eraseFromParent(); +  Sel->eraseFromParent(); +  if (Cmp->use_empty()) +    Cmp->eraseFromParent(); +  return NewCond; +} + +/// Change loop terminating condition to use the postinc iv when possible. +void +LSRInstance::OptimizeLoopTermCond() { +  SmallPtrSet<Instruction *, 4> PostIncs; + +  // We need a different set of heuristics for rotated and non-rotated loops. +  // If a loop is rotated then the latch is also the backedge, so inserting +  // post-inc expressions just before the latch is ideal. To reduce live ranges +  // it also makes sense to rewrite terminating conditions to use post-inc +  // expressions. +  // +  // If the loop is not rotated then the latch is not a backedge; the latch +  // check is done in the loop head. Adding post-inc expressions before the +  // latch will cause overlapping live-ranges of pre-inc and post-inc expressions +  // in the loop body. In this case we do *not* want to use post-inc expressions +  // in the latch check, and we want to insert post-inc expressions before +  // the backedge. +  BasicBlock *LatchBlock = L->getLoopLatch(); +  SmallVector<BasicBlock*, 8> ExitingBlocks; +  L->getExitingBlocks(ExitingBlocks); +  if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { +        return LatchBlock != BB; +      })) { +    // The backedge doesn't exit the loop; treat this as a head-tested loop. +    IVIncInsertPos = LatchBlock->getTerminator(); +    return; +  } + +  // Otherwise treat this as a rotated loop. +  for (BasicBlock *ExitingBlock : ExitingBlocks) { +    // Get the terminating condition for the loop if possible.  If we +    // can, we want to change it to use a post-incremented version of its +    // induction variable, to allow coalescing the live ranges for the IV into +    // one register value. + +    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); +    if (!TermBr) +      continue; +    // FIXME: Overly conservative, termination condition could be an 'or' etc.. +    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) +      continue; + +    // Search IVUsesByStride to find Cond's IVUse if there is one. +    IVStrideUse *CondUse = nullptr; +    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); +    if (!FindIVUserForCond(Cond, CondUse)) +      continue; + +    // If the trip count is computed in terms of a max (due to ScalarEvolution +    // being unable to find a sufficient guard, for example), change the loop +    // comparison to use SLT or ULT instead of NE. +    // One consequence of doing this now is that it disrupts the count-down +    // optimization. That's not always a bad thing though, because in such +    // cases it may still be worthwhile to avoid a max. +    Cond = OptimizeMax(Cond, CondUse); + +    // If this exiting block dominates the latch block, it may also use +    // the post-inc value if it won't be shared with other uses. +    // Check for dominance. +    if (!DT.dominates(ExitingBlock, LatchBlock)) +      continue; + +    // Conservatively avoid trying to use the post-inc value in non-latch +    // exits if there may be pre-inc users in intervening blocks. +    if (LatchBlock != ExitingBlock) +      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) +        // Test if the use is reachable from the exiting block. This dominator +        // query is a conservative approximation of reachability. +        if (&*UI != CondUse && +            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { +          // Conservatively assume there may be reuse if the quotient of their +          // strides could be a legal scale. +          const SCEV *A = IU.getStride(*CondUse, L); +          const SCEV *B = IU.getStride(*UI, L); +          if (!A || !B) continue; +          if (SE.getTypeSizeInBits(A->getType()) != +              SE.getTypeSizeInBits(B->getType())) { +            if (SE.getTypeSizeInBits(A->getType()) > +                SE.getTypeSizeInBits(B->getType())) +              B = SE.getSignExtendExpr(B, A->getType()); +            else +              A = SE.getSignExtendExpr(A, B->getType()); +          } +          if (const SCEVConstant *D = +                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { +            const ConstantInt *C = D->getValue(); +            // Stride of one or negative one can have reuse with non-addresses. +            if (C->isOne() || C->isMinusOne()) +              goto decline_post_inc; +            // Avoid weird situations. +            if (C->getValue().getMinSignedBits() >= 64 || +                C->getValue().isMinSignedValue()) +              goto decline_post_inc; +            // Check for possible scaled-address reuse. +            if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { +              MemAccessTy AccessTy = getAccessType( +                  TTI, UI->getUser(), UI->getOperandValToReplace()); +              int64_t Scale = C->getSExtValue(); +              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, +                                            /*BaseOffset=*/0, +                                            /*HasBaseReg=*/false, Scale, +                                            AccessTy.AddrSpace)) +                goto decline_post_inc; +              Scale = -Scale; +              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, +                                            /*BaseOffset=*/0, +                                            /*HasBaseReg=*/false, Scale, +                                            AccessTy.AddrSpace)) +                goto decline_post_inc; +            } +          } +        } + +    LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: " +                      << *Cond << '\n'); + +    // It's possible for the setcc instruction to be anywhere in the loop, and +    // possible for it to have multiple users.  If it is not immediately before +    // the exiting block branch, move it. +    if (&*++BasicBlock::iterator(Cond) != TermBr) { +      if (Cond->hasOneUse()) { +        Cond->moveBefore(TermBr); +      } else { +        // Clone the terminating condition and insert into the loopend. +        ICmpInst *OldCond = Cond; +        Cond = cast<ICmpInst>(Cond->clone()); +        Cond->setName(L->getHeader()->getName() + ".termcond"); +        ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); + +        // Clone the IVUse, as the old use still exists! +        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); +        TermBr->replaceUsesOfWith(OldCond, Cond); +      } +    } + +    // If we get to here, we know that we can transform the setcc instruction to +    // use the post-incremented version of the IV, allowing us to coalesce the +    // live ranges for the IV correctly. +    CondUse->transformToPostInc(L); +    Changed = true; + +    PostIncs.insert(Cond); +  decline_post_inc:; +  } + +  // Determine an insertion point for the loop induction variable increment. It +  // must dominate all the post-inc comparisons we just set up, and it must +  // dominate the loop latch edge. +  IVIncInsertPos = L->getLoopLatch()->getTerminator(); +  for (Instruction *Inst : PostIncs) { +    BasicBlock *BB = +      DT.findNearestCommonDominator(IVIncInsertPos->getParent(), +                                    Inst->getParent()); +    if (BB == Inst->getParent()) +      IVIncInsertPos = Inst; +    else if (BB != IVIncInsertPos->getParent()) +      IVIncInsertPos = BB->getTerminator(); +  } +} + +/// Determine if the given use can accommodate a fixup at the given offset and +/// other details. If so, update the use and return true. +bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, +                                     bool HasBaseReg, LSRUse::KindType Kind, +                                     MemAccessTy AccessTy) { +  int64_t NewMinOffset = LU.MinOffset; +  int64_t NewMaxOffset = LU.MaxOffset; +  MemAccessTy NewAccessTy = AccessTy; + +  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to +  // something conservative, however this can pessimize in the case that one of +  // the uses will have all its uses outside the loop, for example. +  if (LU.Kind != Kind) +    return false; + +  // Check for a mismatched access type, and fall back conservatively as needed. +  // TODO: Be less conservative when the type is similar and can use the same +  // addressing modes. +  if (Kind == LSRUse::Address) { +    if (AccessTy.MemTy != LU.AccessTy.MemTy) { +      NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), +                                            AccessTy.AddrSpace); +    } +  } + +  // Conservatively assume HasBaseReg is true for now. +  if (NewOffset < LU.MinOffset) { +    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, +                          LU.MaxOffset - NewOffset, HasBaseReg)) +      return false; +    NewMinOffset = NewOffset; +  } else if (NewOffset > LU.MaxOffset) { +    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, +                          NewOffset - LU.MinOffset, HasBaseReg)) +      return false; +    NewMaxOffset = NewOffset; +  } + +  // Update the use. +  LU.MinOffset = NewMinOffset; +  LU.MaxOffset = NewMaxOffset; +  LU.AccessTy = NewAccessTy; +  return true; +} + +/// Return an LSRUse index and an offset value for a fixup which needs the given +/// expression, with the given kind and optional access type.  Either reuse an +/// existing use or create a new one, as needed. +std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, +                                               LSRUse::KindType Kind, +                                               MemAccessTy AccessTy) { +  const SCEV *Copy = Expr; +  int64_t Offset = ExtractImmediate(Expr, SE); + +  // Basic uses can't accept any offset, for example. +  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, +                        Offset, /*HasBaseReg=*/ true)) { +    Expr = Copy; +    Offset = 0; +  } + +  std::pair<UseMapTy::iterator, bool> P = +    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); +  if (!P.second) { +    // A use already existed with this base. +    size_t LUIdx = P.first->second; +    LSRUse &LU = Uses[LUIdx]; +    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) +      // Reuse this use. +      return std::make_pair(LUIdx, Offset); +  } + +  // Create a new use. +  size_t LUIdx = Uses.size(); +  P.first->second = LUIdx; +  Uses.push_back(LSRUse(Kind, AccessTy)); +  LSRUse &LU = Uses[LUIdx]; + +  LU.MinOffset = Offset; +  LU.MaxOffset = Offset; +  return std::make_pair(LUIdx, Offset); +} + +/// Delete the given use from the Uses list. +void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { +  if (&LU != &Uses.back()) +    std::swap(LU, Uses.back()); +  Uses.pop_back(); + +  // Update RegUses. +  RegUses.swapAndDropUse(LUIdx, Uses.size()); +} + +/// Look for a use distinct from OrigLU which is has a formula that has the same +/// registers as the given formula. +LSRUse * +LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, +                                       const LSRUse &OrigLU) { +  // Search all uses for the formula. This could be more clever. +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    // Check whether this use is close enough to OrigLU, to see whether it's +    // worthwhile looking through its formulae. +    // Ignore ICmpZero uses because they may contain formulae generated by +    // GenerateICmpZeroScales, in which case adding fixup offsets may +    // be invalid. +    if (&LU != &OrigLU && +        LU.Kind != LSRUse::ICmpZero && +        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && +        LU.WidestFixupType == OrigLU.WidestFixupType && +        LU.HasFormulaWithSameRegs(OrigF)) { +      // Scan through this use's formulae. +      for (const Formula &F : LU.Formulae) { +        // Check to see if this formula has the same registers and symbols +        // as OrigF. +        if (F.BaseRegs == OrigF.BaseRegs && +            F.ScaledReg == OrigF.ScaledReg && +            F.BaseGV == OrigF.BaseGV && +            F.Scale == OrigF.Scale && +            F.UnfoldedOffset == OrigF.UnfoldedOffset) { +          if (F.BaseOffset == 0) +            return &LU; +          // This is the formula where all the registers and symbols matched; +          // there aren't going to be any others. Since we declined it, we +          // can skip the rest of the formulae and proceed to the next LSRUse. +          break; +        } +      } +    } +  } + +  // Nothing looked good. +  return nullptr; +} + +void LSRInstance::CollectInterestingTypesAndFactors() { +  SmallSetVector<const SCEV *, 4> Strides; + +  // Collect interesting types and strides. +  SmallVector<const SCEV *, 4> Worklist; +  for (const IVStrideUse &U : IU) { +    const SCEV *Expr = IU.getExpr(U); + +    // Collect interesting types. +    Types.insert(SE.getEffectiveSCEVType(Expr->getType())); + +    // Add strides for mentioned loops. +    Worklist.push_back(Expr); +    do { +      const SCEV *S = Worklist.pop_back_val(); +      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { +        if (AR->getLoop() == L) +          Strides.insert(AR->getStepRecurrence(SE)); +        Worklist.push_back(AR->getStart()); +      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { +        Worklist.append(Add->op_begin(), Add->op_end()); +      } +    } while (!Worklist.empty()); +  } + +  // Compute interesting factors from the set of interesting strides. +  for (SmallSetVector<const SCEV *, 4>::const_iterator +       I = Strides.begin(), E = Strides.end(); I != E; ++I) +    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = +         std::next(I); NewStrideIter != E; ++NewStrideIter) { +      const SCEV *OldStride = *I; +      const SCEV *NewStride = *NewStrideIter; + +      if (SE.getTypeSizeInBits(OldStride->getType()) != +          SE.getTypeSizeInBits(NewStride->getType())) { +        if (SE.getTypeSizeInBits(OldStride->getType()) > +            SE.getTypeSizeInBits(NewStride->getType())) +          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); +        else +          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); +      } +      if (const SCEVConstant *Factor = +            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, +                                                        SE, true))) { +        if (Factor->getAPInt().getMinSignedBits() <= 64) +          Factors.insert(Factor->getAPInt().getSExtValue()); +      } else if (const SCEVConstant *Factor = +                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, +                                                               NewStride, +                                                               SE, true))) { +        if (Factor->getAPInt().getMinSignedBits() <= 64) +          Factors.insert(Factor->getAPInt().getSExtValue()); +      } +    } + +  // If all uses use the same type, don't bother looking for truncation-based +  // reuse. +  if (Types.size() == 1) +    Types.clear(); + +  LLVM_DEBUG(print_factors_and_types(dbgs())); +} + +/// Helper for CollectChains that finds an IV operand (computed by an AddRec in +/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to +/// IVStrideUses, we could partially skip this. +static User::op_iterator +findIVOperand(User::op_iterator OI, User::op_iterator OE, +              Loop *L, ScalarEvolution &SE) { +  for(; OI != OE; ++OI) { +    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { +      if (!SE.isSCEVable(Oper->getType())) +        continue; + +      if (const SCEVAddRecExpr *AR = +          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { +        if (AR->getLoop() == L) +          break; +      } +    } +  } +  return OI; +} + +/// IVChain logic must consistently peek base TruncInst operands, so wrap it in +/// a convenient helper. +static Value *getWideOperand(Value *Oper) { +  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) +    return Trunc->getOperand(0); +  return Oper; +} + +/// Return true if we allow an IV chain to include both types. +static bool isCompatibleIVType(Value *LVal, Value *RVal) { +  Type *LType = LVal->getType(); +  Type *RType = RVal->getType(); +  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && +                              // Different address spaces means (possibly) +                              // different types of the pointer implementation, +                              // e.g. i16 vs i32 so disallow that. +                              (LType->getPointerAddressSpace() == +                               RType->getPointerAddressSpace())); +} + +/// Return an approximation of this SCEV expression's "base", or NULL for any +/// constant. Returning the expression itself is conservative. Returning a +/// deeper subexpression is more precise and valid as long as it isn't less +/// complex than another subexpression. For expressions involving multiple +/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids +/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], +/// IVInc==b-a. +/// +/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost +/// SCEVUnknown, we simply return the rightmost SCEV operand. +static const SCEV *getExprBase(const SCEV *S) { +  switch (S->getSCEVType()) { +  default: // uncluding scUnknown. +    return S; +  case scConstant: +    return nullptr; +  case scTruncate: +    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); +  case scZeroExtend: +    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); +  case scSignExtend: +    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); +  case scAddExpr: { +    // Skip over scaled operands (scMulExpr) to follow add operands as long as +    // there's nothing more complex. +    // FIXME: not sure if we want to recognize negation. +    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); +    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), +           E(Add->op_begin()); I != E; ++I) { +      const SCEV *SubExpr = *I; +      if (SubExpr->getSCEVType() == scAddExpr) +        return getExprBase(SubExpr); + +      if (SubExpr->getSCEVType() != scMulExpr) +        return SubExpr; +    } +    return S; // all operands are scaled, be conservative. +  } +  case scAddRecExpr: +    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); +  } +} + +/// Return true if the chain increment is profitable to expand into a loop +/// invariant value, which may require its own register. A profitable chain +/// increment will be an offset relative to the same base. We allow such offsets +/// to potentially be used as chain increment as long as it's not obviously +/// expensive to expand using real instructions. +bool IVChain::isProfitableIncrement(const SCEV *OperExpr, +                                    const SCEV *IncExpr, +                                    ScalarEvolution &SE) { +  // Aggressively form chains when -stress-ivchain. +  if (StressIVChain) +    return true; + +  // Do not replace a constant offset from IV head with a nonconstant IV +  // increment. +  if (!isa<SCEVConstant>(IncExpr)) { +    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); +    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) +      return false; +  } + +  SmallPtrSet<const SCEV*, 8> Processed; +  return !isHighCostExpansion(IncExpr, Processed, SE); +} + +/// Return true if the number of registers needed for the chain is estimated to +/// be less than the number required for the individual IV users. First prohibit +/// any IV users that keep the IV live across increments (the Users set should +/// be empty). Next count the number and type of increments in the chain. +/// +/// Chaining IVs can lead to considerable code bloat if ISEL doesn't +/// effectively use postinc addressing modes. Only consider it profitable it the +/// increments can be computed in fewer registers when chained. +/// +/// TODO: Consider IVInc free if it's already used in another chains. +static bool +isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, +                  ScalarEvolution &SE) { +  if (StressIVChain) +    return true; + +  if (!Chain.hasIncs()) +    return false; + +  if (!Users.empty()) { +    LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; +               for (Instruction *Inst +                    : Users) { dbgs() << "  " << *Inst << "\n"; }); +    return false; +  } +  assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); + +  // The chain itself may require a register, so intialize cost to 1. +  int cost = 1; + +  // A complete chain likely eliminates the need for keeping the original IV in +  // a register. LSR does not currently know how to form a complete chain unless +  // the header phi already exists. +  if (isa<PHINode>(Chain.tailUserInst()) +      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { +    --cost; +  } +  const SCEV *LastIncExpr = nullptr; +  unsigned NumConstIncrements = 0; +  unsigned NumVarIncrements = 0; +  unsigned NumReusedIncrements = 0; +  for (const IVInc &Inc : Chain) { +    if (Inc.IncExpr->isZero()) +      continue; + +    // Incrementing by zero or some constant is neutral. We assume constants can +    // be folded into an addressing mode or an add's immediate operand. +    if (isa<SCEVConstant>(Inc.IncExpr)) { +      ++NumConstIncrements; +      continue; +    } + +    if (Inc.IncExpr == LastIncExpr) +      ++NumReusedIncrements; +    else +      ++NumVarIncrements; + +    LastIncExpr = Inc.IncExpr; +  } +  // An IV chain with a single increment is handled by LSR's postinc +  // uses. However, a chain with multiple increments requires keeping the IV's +  // value live longer than it needs to be if chained. +  if (NumConstIncrements > 1) +    --cost; + +  // Materializing increment expressions in the preheader that didn't exist in +  // the original code may cost a register. For example, sign-extended array +  // indices can produce ridiculous increments like this: +  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) +  cost += NumVarIncrements; + +  // Reusing variable increments likely saves a register to hold the multiple of +  // the stride. +  cost -= NumReusedIncrements; + +  LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost +                    << "\n"); + +  return cost < 0; +} + +/// Add this IV user to an existing chain or make it the head of a new chain. +void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, +                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) { +  // When IVs are used as types of varying widths, they are generally converted +  // to a wider type with some uses remaining narrow under a (free) trunc. +  Value *const NextIV = getWideOperand(IVOper); +  const SCEV *const OperExpr = SE.getSCEV(NextIV); +  const SCEV *const OperExprBase = getExprBase(OperExpr); + +  // Visit all existing chains. Check if its IVOper can be computed as a +  // profitable loop invariant increment from the last link in the Chain. +  unsigned ChainIdx = 0, NChains = IVChainVec.size(); +  const SCEV *LastIncExpr = nullptr; +  for (; ChainIdx < NChains; ++ChainIdx) { +    IVChain &Chain = IVChainVec[ChainIdx]; + +    // Prune the solution space aggressively by checking that both IV operands +    // are expressions that operate on the same unscaled SCEVUnknown. This +    // "base" will be canceled by the subsequent getMinusSCEV call. Checking +    // first avoids creating extra SCEV expressions. +    if (!StressIVChain && Chain.ExprBase != OperExprBase) +      continue; + +    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); +    if (!isCompatibleIVType(PrevIV, NextIV)) +      continue; + +    // A phi node terminates a chain. +    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) +      continue; + +    // The increment must be loop-invariant so it can be kept in a register. +    const SCEV *PrevExpr = SE.getSCEV(PrevIV); +    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); +    if (!SE.isLoopInvariant(IncExpr, L)) +      continue; + +    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { +      LastIncExpr = IncExpr; +      break; +    } +  } +  // If we haven't found a chain, create a new one, unless we hit the max. Don't +  // bother for phi nodes, because they must be last in the chain. +  if (ChainIdx == NChains) { +    if (isa<PHINode>(UserInst)) +      return; +    if (NChains >= MaxChains && !StressIVChain) { +      LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); +      return; +    } +    LastIncExpr = OperExpr; +    // IVUsers may have skipped over sign/zero extensions. We don't currently +    // attempt to form chains involving extensions unless they can be hoisted +    // into this loop's AddRec. +    if (!isa<SCEVAddRecExpr>(LastIncExpr)) +      return; +    ++NChains; +    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), +                                 OperExprBase)); +    ChainUsersVec.resize(NChains); +    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst +                      << ") IV=" << *LastIncExpr << "\n"); +  } else { +    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst +                      << ") IV+" << *LastIncExpr << "\n"); +    // Add this IV user to the end of the chain. +    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); +  } +  IVChain &Chain = IVChainVec[ChainIdx]; + +  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; +  // This chain's NearUsers become FarUsers. +  if (!LastIncExpr->isZero()) { +    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), +                                            NearUsers.end()); +    NearUsers.clear(); +  } + +  // All other uses of IVOperand become near uses of the chain. +  // We currently ignore intermediate values within SCEV expressions, assuming +  // they will eventually be used be the current chain, or can be computed +  // from one of the chain increments. To be more precise we could +  // transitively follow its user and only add leaf IV users to the set. +  for (User *U : IVOper->users()) { +    Instruction *OtherUse = dyn_cast<Instruction>(U); +    if (!OtherUse) +      continue; +    // Uses in the chain will no longer be uses if the chain is formed. +    // Include the head of the chain in this iteration (not Chain.begin()). +    IVChain::const_iterator IncIter = Chain.Incs.begin(); +    IVChain::const_iterator IncEnd = Chain.Incs.end(); +    for( ; IncIter != IncEnd; ++IncIter) { +      if (IncIter->UserInst == OtherUse) +        break; +    } +    if (IncIter != IncEnd) +      continue; + +    if (SE.isSCEVable(OtherUse->getType()) +        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) +        && IU.isIVUserOrOperand(OtherUse)) { +      continue; +    } +    NearUsers.insert(OtherUse); +  } + +  // Since this user is part of the chain, it's no longer considered a use +  // of the chain. +  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); +} + +/// Populate the vector of Chains. +/// +/// This decreases ILP at the architecture level. Targets with ample registers, +/// multiple memory ports, and no register renaming probably don't want +/// this. However, such targets should probably disable LSR altogether. +/// +/// The job of LSR is to make a reasonable choice of induction variables across +/// the loop. Subsequent passes can easily "unchain" computation exposing more +/// ILP *within the loop* if the target wants it. +/// +/// Finding the best IV chain is potentially a scheduling problem. Since LSR +/// will not reorder memory operations, it will recognize this as a chain, but +/// will generate redundant IV increments. Ideally this would be corrected later +/// by a smart scheduler: +///        = A[i] +///        = A[i+x] +/// A[i]   = +/// A[i+x] = +/// +/// TODO: Walk the entire domtree within this loop, not just the path to the +/// loop latch. This will discover chains on side paths, but requires +/// maintaining multiple copies of the Chains state. +void LSRInstance::CollectChains() { +  LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); +  SmallVector<ChainUsers, 8> ChainUsersVec; + +  SmallVector<BasicBlock *,8> LatchPath; +  BasicBlock *LoopHeader = L->getHeader(); +  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); +       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { +    LatchPath.push_back(Rung->getBlock()); +  } +  LatchPath.push_back(LoopHeader); + +  // Walk the instruction stream from the loop header to the loop latch. +  for (BasicBlock *BB : reverse(LatchPath)) { +    for (Instruction &I : *BB) { +      // Skip instructions that weren't seen by IVUsers analysis. +      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) +        continue; + +      // Ignore users that are part of a SCEV expression. This way we only +      // consider leaf IV Users. This effectively rediscovers a portion of +      // IVUsers analysis but in program order this time. +      if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) +          continue; + +      // Remove this instruction from any NearUsers set it may be in. +      for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); +           ChainIdx < NChains; ++ChainIdx) { +        ChainUsersVec[ChainIdx].NearUsers.erase(&I); +      } +      // Search for operands that can be chained. +      SmallPtrSet<Instruction*, 4> UniqueOperands; +      User::op_iterator IVOpEnd = I.op_end(); +      User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); +      while (IVOpIter != IVOpEnd) { +        Instruction *IVOpInst = cast<Instruction>(*IVOpIter); +        if (UniqueOperands.insert(IVOpInst).second) +          ChainInstruction(&I, IVOpInst, ChainUsersVec); +        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); +      } +    } // Continue walking down the instructions. +  } // Continue walking down the domtree. +  // Visit phi backedges to determine if the chain can generate the IV postinc. +  for (PHINode &PN : L->getHeader()->phis()) { +    if (!SE.isSCEVable(PN.getType())) +      continue; + +    Instruction *IncV = +        dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); +    if (IncV) +      ChainInstruction(&PN, IncV, ChainUsersVec); +  } +  // Remove any unprofitable chains. +  unsigned ChainIdx = 0; +  for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); +       UsersIdx < NChains; ++UsersIdx) { +    if (!isProfitableChain(IVChainVec[UsersIdx], +                           ChainUsersVec[UsersIdx].FarUsers, SE)) +      continue; +    // Preserve the chain at UsesIdx. +    if (ChainIdx != UsersIdx) +      IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; +    FinalizeChain(IVChainVec[ChainIdx]); +    ++ChainIdx; +  } +  IVChainVec.resize(ChainIdx); +} + +void LSRInstance::FinalizeChain(IVChain &Chain) { +  assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); +  LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); +   +  for (const IVInc &Inc : Chain) { +    LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n"); +    auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); +    assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); +    IVIncSet.insert(UseI); +  } +} + +/// Return true if the IVInc can be folded into an addressing mode. +static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, +                             Value *Operand, const TargetTransformInfo &TTI) { +  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); +  if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) +    return false; + +  if (IncConst->getAPInt().getMinSignedBits() > 64) +    return false; + +  MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); +  int64_t IncOffset = IncConst->getValue()->getSExtValue(); +  if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, +                        IncOffset, /*HasBaseReg=*/false)) +    return false; + +  return true; +} + +/// Generate an add or subtract for each IVInc in a chain to materialize the IV +/// user's operand from the previous IV user's operand. +void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, +                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts) { +  // Find the new IVOperand for the head of the chain. It may have been replaced +  // by LSR. +  const IVInc &Head = Chain.Incs[0]; +  User::op_iterator IVOpEnd = Head.UserInst->op_end(); +  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. +  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), +                                             IVOpEnd, L, SE); +  Value *IVSrc = nullptr; +  while (IVOpIter != IVOpEnd) { +    IVSrc = getWideOperand(*IVOpIter); + +    // If this operand computes the expression that the chain needs, we may use +    // it. (Check this after setting IVSrc which is used below.) +    // +    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too +    // narrow for the chain, so we can no longer use it. We do allow using a +    // wider phi, assuming the LSR checked for free truncation. In that case we +    // should already have a truncate on this operand such that +    // getSCEV(IVSrc) == IncExpr. +    if (SE.getSCEV(*IVOpIter) == Head.IncExpr +        || SE.getSCEV(IVSrc) == Head.IncExpr) { +      break; +    } +    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); +  } +  if (IVOpIter == IVOpEnd) { +    // Gracefully give up on this chain. +    LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); +    return; +  } +  assert(IVSrc && "Failed to find IV chain source"); + +  LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); +  Type *IVTy = IVSrc->getType(); +  Type *IntTy = SE.getEffectiveSCEVType(IVTy); +  const SCEV *LeftOverExpr = nullptr; +  for (const IVInc &Inc : Chain) { +    Instruction *InsertPt = Inc.UserInst; +    if (isa<PHINode>(InsertPt)) +      InsertPt = L->getLoopLatch()->getTerminator(); + +    // IVOper will replace the current IV User's operand. IVSrc is the IV +    // value currently held in a register. +    Value *IVOper = IVSrc; +    if (!Inc.IncExpr->isZero()) { +      // IncExpr was the result of subtraction of two narrow values, so must +      // be signed. +      const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); +      LeftOverExpr = LeftOverExpr ? +        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; +    } +    if (LeftOverExpr && !LeftOverExpr->isZero()) { +      // Expand the IV increment. +      Rewriter.clearPostInc(); +      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); +      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), +                                             SE.getUnknown(IncV)); +      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); + +      // If an IV increment can't be folded, use it as the next IV value. +      if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { +        assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); +        IVSrc = IVOper; +        LeftOverExpr = nullptr; +      } +    } +    Type *OperTy = Inc.IVOperand->getType(); +    if (IVTy != OperTy) { +      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && +             "cannot extend a chained IV"); +      IRBuilder<> Builder(InsertPt); +      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); +    } +    Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); +    DeadInsts.emplace_back(Inc.IVOperand); +  } +  // If LSR created a new, wider phi, we may also replace its postinc. We only +  // do this if we also found a wide value for the head of the chain. +  if (isa<PHINode>(Chain.tailUserInst())) { +    for (PHINode &Phi : L->getHeader()->phis()) { +      if (!isCompatibleIVType(&Phi, IVSrc)) +        continue; +      Instruction *PostIncV = dyn_cast<Instruction>( +          Phi.getIncomingValueForBlock(L->getLoopLatch())); +      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) +        continue; +      Value *IVOper = IVSrc; +      Type *PostIncTy = PostIncV->getType(); +      if (IVTy != PostIncTy) { +        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); +        IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); +        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); +        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); +      } +      Phi.replaceUsesOfWith(PostIncV, IVOper); +      DeadInsts.emplace_back(PostIncV); +    } +  } +} + +void LSRInstance::CollectFixupsAndInitialFormulae() { +  BranchInst *ExitBranch = nullptr; +  bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo); + +  for (const IVStrideUse &U : IU) { +    Instruction *UserInst = U.getUser(); +    // Skip IV users that are part of profitable IV Chains. +    User::op_iterator UseI = +        find(UserInst->operands(), U.getOperandValToReplace()); +    assert(UseI != UserInst->op_end() && "cannot find IV operand"); +    if (IVIncSet.count(UseI)) { +      LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); +      continue; +    } + +    LSRUse::KindType Kind = LSRUse::Basic; +    MemAccessTy AccessTy; +    if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { +      Kind = LSRUse::Address; +      AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); +    } + +    const SCEV *S = IU.getExpr(U); +    PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); + +    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as +    // (N - i == 0), and this allows (N - i) to be the expression that we work +    // with rather than just N or i, so we can consider the register +    // requirements for both N and i at the same time. Limiting this code to +    // equality icmps is not a problem because all interesting loops use +    // equality icmps, thanks to IndVarSimplify. +    if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { +      // If CI can be saved in some target, like replaced inside hardware loop +      // in PowerPC, no need to generate initial formulae for it. +      if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) +        continue; +      if (CI->isEquality()) { +        // Swap the operands if needed to put the OperandValToReplace on the +        // left, for consistency. +        Value *NV = CI->getOperand(1); +        if (NV == U.getOperandValToReplace()) { +          CI->setOperand(1, CI->getOperand(0)); +          CI->setOperand(0, NV); +          NV = CI->getOperand(1); +          Changed = true; +        } + +        // x == y  -->  x - y == 0 +        const SCEV *N = SE.getSCEV(NV); +        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { +          // S is normalized, so normalize N before folding it into S +          // to keep the result normalized. +          N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); +          Kind = LSRUse::ICmpZero; +          S = SE.getMinusSCEV(N, S); +        } + +        // -1 and the negations of all interesting strides (except the negation +        // of -1) are now also interesting. +        for (size_t i = 0, e = Factors.size(); i != e; ++i) +          if (Factors[i] != -1) +            Factors.insert(-(uint64_t)Factors[i]); +        Factors.insert(-1); +      } +    } + +    // Get or create an LSRUse. +    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); +    size_t LUIdx = P.first; +    int64_t Offset = P.second; +    LSRUse &LU = Uses[LUIdx]; + +    // Record the fixup. +    LSRFixup &LF = LU.getNewFixup(); +    LF.UserInst = UserInst; +    LF.OperandValToReplace = U.getOperandValToReplace(); +    LF.PostIncLoops = TmpPostIncLoops; +    LF.Offset = Offset; +    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); + +    if (!LU.WidestFixupType || +        SE.getTypeSizeInBits(LU.WidestFixupType) < +        SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) +      LU.WidestFixupType = LF.OperandValToReplace->getType(); + +    // If this is the first use of this LSRUse, give it a formula. +    if (LU.Formulae.empty()) { +      InsertInitialFormula(S, LU, LUIdx); +      CountRegisters(LU.Formulae.back(), LUIdx); +    } +  } + +  LLVM_DEBUG(print_fixups(dbgs())); +} + +/// Insert a formula for the given expression into the given use, separating out +/// loop-variant portions from loop-invariant and loop-computable portions. +void +LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { +  // Mark uses whose expressions cannot be expanded. +  if (!isSafeToExpand(S, SE)) +    LU.RigidFormula = true; + +  Formula F; +  F.initialMatch(S, L, SE); +  bool Inserted = InsertFormula(LU, LUIdx, F); +  assert(Inserted && "Initial formula already exists!"); (void)Inserted; +} + +/// Insert a simple single-register formula for the given expression into the +/// given use. +void +LSRInstance::InsertSupplementalFormula(const SCEV *S, +                                       LSRUse &LU, size_t LUIdx) { +  Formula F; +  F.BaseRegs.push_back(S); +  F.HasBaseReg = true; +  bool Inserted = InsertFormula(LU, LUIdx, F); +  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; +} + +/// Note which registers are used by the given formula, updating RegUses. +void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { +  if (F.ScaledReg) +    RegUses.countRegister(F.ScaledReg, LUIdx); +  for (const SCEV *BaseReg : F.BaseRegs) +    RegUses.countRegister(BaseReg, LUIdx); +} + +/// If the given formula has not yet been inserted, add it to the list, and +/// return true. Return false otherwise. +bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { +  // Do not insert formula that we will not be able to expand. +  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && +         "Formula is illegal"); + +  if (!LU.InsertFormula(F, *L)) +    return false; + +  CountRegisters(F, LUIdx); +  return true; +} + +/// Check for other uses of loop-invariant values which we're tracking. These +/// other uses will pin these values in registers, making them less profitable +/// for elimination. +/// TODO: This currently misses non-constant addrec step registers. +/// TODO: Should this give more weight to users inside the loop? +void +LSRInstance::CollectLoopInvariantFixupsAndFormulae() { +  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); +  SmallPtrSet<const SCEV *, 32> Visited; + +  while (!Worklist.empty()) { +    const SCEV *S = Worklist.pop_back_val(); + +    // Don't process the same SCEV twice +    if (!Visited.insert(S).second) +      continue; + +    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) +      Worklist.append(N->op_begin(), N->op_end()); +    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) +      Worklist.push_back(C->getOperand()); +    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { +      Worklist.push_back(D->getLHS()); +      Worklist.push_back(D->getRHS()); +    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { +      const Value *V = US->getValue(); +      if (const Instruction *Inst = dyn_cast<Instruction>(V)) { +        // Look for instructions defined outside the loop. +        if (L->contains(Inst)) continue; +      } else if (isa<UndefValue>(V)) +        // Undef doesn't have a live range, so it doesn't matter. +        continue; +      for (const Use &U : V->uses()) { +        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); +        // Ignore non-instructions. +        if (!UserInst) +          continue; +        // Ignore instructions in other functions (as can happen with +        // Constants). +        if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) +          continue; +        // Ignore instructions not dominated by the loop. +        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? +          UserInst->getParent() : +          cast<PHINode>(UserInst)->getIncomingBlock( +            PHINode::getIncomingValueNumForOperand(U.getOperandNo())); +        if (!DT.dominates(L->getHeader(), UseBB)) +          continue; +        // Don't bother if the instruction is in a BB which ends in an EHPad. +        if (UseBB->getTerminator()->isEHPad()) +          continue; +        // Don't bother rewriting PHIs in catchswitch blocks. +        if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) +          continue; +        // Ignore uses which are part of other SCEV expressions, to avoid +        // analyzing them multiple times. +        if (SE.isSCEVable(UserInst->getType())) { +          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); +          // If the user is a no-op, look through to its uses. +          if (!isa<SCEVUnknown>(UserS)) +            continue; +          if (UserS == US) { +            Worklist.push_back( +              SE.getUnknown(const_cast<Instruction *>(UserInst))); +            continue; +          } +        } +        // Ignore icmp instructions which are already being analyzed. +        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { +          unsigned OtherIdx = !U.getOperandNo(); +          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); +          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) +            continue; +        } + +        std::pair<size_t, int64_t> P = getUse( +            S, LSRUse::Basic, MemAccessTy()); +        size_t LUIdx = P.first; +        int64_t Offset = P.second; +        LSRUse &LU = Uses[LUIdx]; +        LSRFixup &LF = LU.getNewFixup(); +        LF.UserInst = const_cast<Instruction *>(UserInst); +        LF.OperandValToReplace = U; +        LF.Offset = Offset; +        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); +        if (!LU.WidestFixupType || +            SE.getTypeSizeInBits(LU.WidestFixupType) < +            SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) +          LU.WidestFixupType = LF.OperandValToReplace->getType(); +        InsertSupplementalFormula(US, LU, LUIdx); +        CountRegisters(LU.Formulae.back(), Uses.size() - 1); +        break; +      } +    } +  } +} + +/// Split S into subexpressions which can be pulled out into separate +/// registers. If C is non-null, multiply each subexpression by C. +/// +/// Return remainder expression after factoring the subexpressions captured by +/// Ops. If Ops is complete, return NULL. +static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, +                                   SmallVectorImpl<const SCEV *> &Ops, +                                   const Loop *L, +                                   ScalarEvolution &SE, +                                   unsigned Depth = 0) { +  // Arbitrarily cap recursion to protect compile time. +  if (Depth >= 3) +    return S; + +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { +    // Break out add operands. +    for (const SCEV *S : Add->operands()) { +      const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); +      if (Remainder) +        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); +    } +    return nullptr; +  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { +    // Split a non-zero base out of an addrec. +    if (AR->getStart()->isZero() || !AR->isAffine()) +      return S; + +    const SCEV *Remainder = CollectSubexprs(AR->getStart(), +                                            C, Ops, L, SE, Depth+1); +    // Split the non-zero AddRec unless it is part of a nested recurrence that +    // does not pertain to this loop. +    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { +      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); +      Remainder = nullptr; +    } +    if (Remainder != AR->getStart()) { +      if (!Remainder) +        Remainder = SE.getConstant(AR->getType(), 0); +      return SE.getAddRecExpr(Remainder, +                              AR->getStepRecurrence(SE), +                              AR->getLoop(), +                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) +                              SCEV::FlagAnyWrap); +    } +  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { +    // Break (C * (a + b + c)) into C*a + C*b + C*c. +    if (Mul->getNumOperands() != 2) +      return S; +    if (const SCEVConstant *Op0 = +        dyn_cast<SCEVConstant>(Mul->getOperand(0))) { +      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; +      const SCEV *Remainder = +        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); +      if (Remainder) +        Ops.push_back(SE.getMulExpr(C, Remainder)); +      return nullptr; +    } +  } +  return S; +} + +/// Return true if the SCEV represents a value that may end up as a +/// post-increment operation. +static bool mayUsePostIncMode(const TargetTransformInfo &TTI, +                              LSRUse &LU, const SCEV *S, const Loop *L, +                              ScalarEvolution &SE) { +  if (LU.Kind != LSRUse::Address || +      !LU.AccessTy.getType()->isIntOrIntVectorTy()) +    return false; +  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); +  if (!AR) +    return false; +  const SCEV *LoopStep = AR->getStepRecurrence(SE); +  if (!isa<SCEVConstant>(LoopStep)) +    return false; +  if (LU.AccessTy.getType()->getScalarSizeInBits() != +      LoopStep->getType()->getScalarSizeInBits()) +    return false; +  // Check if a post-indexed load/store can be used. +  if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || +      TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { +    const SCEV *LoopStart = AR->getStart(); +    if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) +      return true; +  } +  return false; +} + +/// Helper function for LSRInstance::GenerateReassociations. +void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, +                                             const Formula &Base, +                                             unsigned Depth, size_t Idx, +                                             bool IsScaledReg) { +  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; +  // Don't generate reassociations for the base register of a value that +  // may generate a post-increment operator. The reason is that the +  // reassociations cause extra base+register formula to be created, +  // and possibly chosen, but the post-increment is more efficient. +  if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) +    return; +  SmallVector<const SCEV *, 8> AddOps; +  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); +  if (Remainder) +    AddOps.push_back(Remainder); + +  if (AddOps.size() == 1) +    return; + +  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), +                                                     JE = AddOps.end(); +       J != JE; ++J) { +    // Loop-variant "unknown" values are uninteresting; we won't be able to +    // do anything meaningful with them. +    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) +      continue; + +    // Don't pull a constant into a register if the constant could be folded +    // into an immediate field. +    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, +                         LU.AccessTy, *J, Base.getNumRegs() > 1)) +      continue; + +    // Collect all operands except *J. +    SmallVector<const SCEV *, 8> InnerAddOps( +        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); +    InnerAddOps.append(std::next(J), +                       ((const SmallVector<const SCEV *, 8> &)AddOps).end()); + +    // Don't leave just a constant behind in a register if the constant could +    // be folded into an immediate field. +    if (InnerAddOps.size() == 1 && +        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, +                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) +      continue; + +    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); +    if (InnerSum->isZero()) +      continue; +    Formula F = Base; + +    // Add the remaining pieces of the add back into the new formula. +    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); +    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && +        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + +                                InnerSumSC->getValue()->getZExtValue())) { +      F.UnfoldedOffset = +          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); +      if (IsScaledReg) +        F.ScaledReg = nullptr; +      else +        F.BaseRegs.erase(F.BaseRegs.begin() + Idx); +    } else if (IsScaledReg) +      F.ScaledReg = InnerSum; +    else +      F.BaseRegs[Idx] = InnerSum; + +    // Add J as its own register, or an unfolded immediate. +    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); +    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && +        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + +                                SC->getValue()->getZExtValue())) +      F.UnfoldedOffset = +          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); +    else +      F.BaseRegs.push_back(*J); +    // We may have changed the number of register in base regs, adjust the +    // formula accordingly. +    F.canonicalize(*L); + +    if (InsertFormula(LU, LUIdx, F)) +      // If that formula hadn't been seen before, recurse to find more like +      // it. +      // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) +      // Because just Depth is not enough to bound compile time. +      // This means that every time AddOps.size() is greater 16^x we will add +      // x to Depth. +      GenerateReassociations(LU, LUIdx, LU.Formulae.back(), +                             Depth + 1 + (Log2_32(AddOps.size()) >> 2)); +  } +} + +/// Split out subexpressions from adds and the bases of addrecs. +void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, +                                         Formula Base, unsigned Depth) { +  assert(Base.isCanonical(*L) && "Input must be in the canonical form"); +  // Arbitrarily cap recursion to protect compile time. +  if (Depth >= 3) +    return; + +  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) +    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); + +  if (Base.Scale == 1) +    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, +                               /* Idx */ -1, /* IsScaledReg */ true); +} + +///  Generate a formula consisting of all of the loop-dominating registers added +/// into a single register. +void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, +                                       Formula Base) { +  // This method is only interesting on a plurality of registers. +  if (Base.BaseRegs.size() + (Base.Scale == 1) + +      (Base.UnfoldedOffset != 0) <= 1) +    return; + +  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before +  // processing the formula. +  Base.unscale(); +  SmallVector<const SCEV *, 4> Ops; +  Formula NewBase = Base; +  NewBase.BaseRegs.clear(); +  Type *CombinedIntegerType = nullptr; +  for (const SCEV *BaseReg : Base.BaseRegs) { +    if (SE.properlyDominates(BaseReg, L->getHeader()) && +        !SE.hasComputableLoopEvolution(BaseReg, L)) { +      if (!CombinedIntegerType) +        CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); +      Ops.push_back(BaseReg); +    } +    else +      NewBase.BaseRegs.push_back(BaseReg); +  } + +  // If no register is relevant, we're done. +  if (Ops.size() == 0) +    return; + +  // Utility function for generating the required variants of the combined +  // registers. +  auto GenerateFormula = [&](const SCEV *Sum) { +    Formula F = NewBase; + +    // TODO: If Sum is zero, it probably means ScalarEvolution missed an +    // opportunity to fold something. For now, just ignore such cases +    // rather than proceed with zero in a register. +    if (Sum->isZero()) +      return; + +    F.BaseRegs.push_back(Sum); +    F.canonicalize(*L); +    (void)InsertFormula(LU, LUIdx, F); +  }; + +  // If we collected at least two registers, generate a formula combining them. +  if (Ops.size() > 1) { +    SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. +    GenerateFormula(SE.getAddExpr(OpsCopy)); +  } + +  // If we have an unfolded offset, generate a formula combining it with the +  // registers collected. +  if (NewBase.UnfoldedOffset) { +    assert(CombinedIntegerType && "Missing a type for the unfolded offset"); +    Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, +                                 true)); +    NewBase.UnfoldedOffset = 0; +    GenerateFormula(SE.getAddExpr(Ops)); +  } +} + +/// Helper function for LSRInstance::GenerateSymbolicOffsets. +void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, +                                              const Formula &Base, size_t Idx, +                                              bool IsScaledReg) { +  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; +  GlobalValue *GV = ExtractSymbol(G, SE); +  if (G->isZero() || !GV) +    return; +  Formula F = Base; +  F.BaseGV = GV; +  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) +    return; +  if (IsScaledReg) +    F.ScaledReg = G; +  else +    F.BaseRegs[Idx] = G; +  (void)InsertFormula(LU, LUIdx, F); +} + +/// Generate reuse formulae using symbolic offsets. +void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, +                                          Formula Base) { +  // We can't add a symbolic offset if the address already contains one. +  if (Base.BaseGV) return; + +  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) +    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); +  if (Base.Scale == 1) +    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, +                                /* IsScaledReg */ true); +} + +/// Helper function for LSRInstance::GenerateConstantOffsets. +void LSRInstance::GenerateConstantOffsetsImpl( +    LSRUse &LU, unsigned LUIdx, const Formula &Base, +    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { + +  auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { +    Formula F = Base; +    F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; + +    if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, +                   LU.AccessTy, F)) { +      // Add the offset to the base register. +      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); +      // If it cancelled out, drop the base register, otherwise update it. +      if (NewG->isZero()) { +        if (IsScaledReg) { +          F.Scale = 0; +          F.ScaledReg = nullptr; +        } else +          F.deleteBaseReg(F.BaseRegs[Idx]); +        F.canonicalize(*L); +      } else if (IsScaledReg) +        F.ScaledReg = NewG; +      else +        F.BaseRegs[Idx] = NewG; + +      (void)InsertFormula(LU, LUIdx, F); +    } +  }; + +  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; + +  // With constant offsets and constant steps, we can generate pre-inc +  // accesses by having the offset equal the step. So, for access #0 with a +  // step of 8, we generate a G - 8 base which would require the first access +  // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer +  // for itself and hopefully becomes the base for other accesses. This means +  // means that a single pre-indexed access can be generated to become the new +  // base pointer for each iteration of the loop, resulting in no extra add/sub +  // instructions for pointer updating. +  if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { +    if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { +      if (auto *StepRec = +          dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { +        const APInt &StepInt = StepRec->getAPInt(); +        int64_t Step = StepInt.isNegative() ? +          StepInt.getSExtValue() : StepInt.getZExtValue(); + +        for (int64_t Offset : Worklist) { +          Offset -= Step; +          GenerateOffset(G, Offset); +        } +      } +    } +  } +  for (int64_t Offset : Worklist) +    GenerateOffset(G, Offset); + +  int64_t Imm = ExtractImmediate(G, SE); +  if (G->isZero() || Imm == 0) +    return; +  Formula F = Base; +  F.BaseOffset = (uint64_t)F.BaseOffset + Imm; +  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) +    return; +  if (IsScaledReg) +    F.ScaledReg = G; +  else +    F.BaseRegs[Idx] = G; +  (void)InsertFormula(LU, LUIdx, F); +} + +/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. +void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, +                                          Formula Base) { +  // TODO: For now, just add the min and max offset, because it usually isn't +  // worthwhile looking at everything inbetween. +  SmallVector<int64_t, 2> Worklist; +  Worklist.push_back(LU.MinOffset); +  if (LU.MaxOffset != LU.MinOffset) +    Worklist.push_back(LU.MaxOffset); + +  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) +    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); +  if (Base.Scale == 1) +    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, +                                /* IsScaledReg */ true); +} + +/// For ICmpZero, check to see if we can scale up the comparison. For example, x +/// == y -> x*c == y*c. +void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, +                                         Formula Base) { +  if (LU.Kind != LSRUse::ICmpZero) return; + +  // Determine the integer type for the base formula. +  Type *IntTy = Base.getType(); +  if (!IntTy) return; +  if (SE.getTypeSizeInBits(IntTy) > 64) return; + +  // Don't do this if there is more than one offset. +  if (LU.MinOffset != LU.MaxOffset) return; + +  // Check if transformation is valid. It is illegal to multiply pointer. +  if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) +    return; +  for (const SCEV *BaseReg : Base.BaseRegs) +    if (BaseReg->getType()->isPointerTy()) +      return; +  assert(!Base.BaseGV && "ICmpZero use is not legal!"); + +  // Check each interesting stride. +  for (int64_t Factor : Factors) { +    // Check that the multiplication doesn't overflow. +    if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) +      continue; +    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; +    if (NewBaseOffset / Factor != Base.BaseOffset) +      continue; +    // If the offset will be truncated at this use, check that it is in bounds. +    if (!IntTy->isPointerTy() && +        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) +      continue; + +    // Check that multiplying with the use offset doesn't overflow. +    int64_t Offset = LU.MinOffset; +    if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) +      continue; +    Offset = (uint64_t)Offset * Factor; +    if (Offset / Factor != LU.MinOffset) +      continue; +    // If the offset will be truncated at this use, check that it is in bounds. +    if (!IntTy->isPointerTy() && +        !ConstantInt::isValueValidForType(IntTy, Offset)) +      continue; + +    Formula F = Base; +    F.BaseOffset = NewBaseOffset; + +    // Check that this scale is legal. +    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) +      continue; + +    // Compensate for the use having MinOffset built into it. +    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; + +    const SCEV *FactorS = SE.getConstant(IntTy, Factor); + +    // Check that multiplying with each base register doesn't overflow. +    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { +      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); +      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) +        goto next; +    } + +    // Check that multiplying with the scaled register doesn't overflow. +    if (F.ScaledReg) { +      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); +      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) +        continue; +    } + +    // Check that multiplying with the unfolded offset doesn't overflow. +    if (F.UnfoldedOffset != 0) { +      if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && +          Factor == -1) +        continue; +      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; +      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) +        continue; +      // If the offset will be truncated, check that it is in bounds. +      if (!IntTy->isPointerTy() && +          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) +        continue; +    } + +    // If we make it here and it's legal, add it. +    (void)InsertFormula(LU, LUIdx, F); +  next:; +  } +} + +/// Generate stride factor reuse formulae by making use of scaled-offset address +/// modes, for example. +void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { +  // Determine the integer type for the base formula. +  Type *IntTy = Base.getType(); +  if (!IntTy) return; + +  // If this Formula already has a scaled register, we can't add another one. +  // Try to unscale the formula to generate a better scale. +  if (Base.Scale != 0 && !Base.unscale()) +    return; + +  assert(Base.Scale == 0 && "unscale did not did its job!"); + +  // Check each interesting stride. +  for (int64_t Factor : Factors) { +    Base.Scale = Factor; +    Base.HasBaseReg = Base.BaseRegs.size() > 1; +    // Check whether this scale is going to be legal. +    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, +                    Base)) { +      // As a special-case, handle special out-of-loop Basic users specially. +      // TODO: Reconsider this special case. +      if (LU.Kind == LSRUse::Basic && +          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, +                     LU.AccessTy, Base) && +          LU.AllFixupsOutsideLoop) +        LU.Kind = LSRUse::Special; +      else +        continue; +    } +    // For an ICmpZero, negating a solitary base register won't lead to +    // new solutions. +    if (LU.Kind == LSRUse::ICmpZero && +        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) +      continue; +    // For each addrec base reg, if its loop is current loop, apply the scale. +    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { +      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); +      if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { +        const SCEV *FactorS = SE.getConstant(IntTy, Factor); +        if (FactorS->isZero()) +          continue; +        // Divide out the factor, ignoring high bits, since we'll be +        // scaling the value back up in the end. +        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { +          // TODO: This could be optimized to avoid all the copying. +          Formula F = Base; +          F.ScaledReg = Quotient; +          F.deleteBaseReg(F.BaseRegs[i]); +          // The canonical representation of 1*reg is reg, which is already in +          // Base. In that case, do not try to insert the formula, it will be +          // rejected anyway. +          if (F.Scale == 1 && (F.BaseRegs.empty() || +                               (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) +            continue; +          // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate +          // non canonical Formula with ScaledReg's loop not being L. +          if (F.Scale == 1 && LU.AllFixupsOutsideLoop) +            F.canonicalize(*L); +          (void)InsertFormula(LU, LUIdx, F); +        } +      } +    } +  } +} + +/// Generate reuse formulae from different IV types. +void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { +  // Don't bother truncating symbolic values. +  if (Base.BaseGV) return; + +  // Determine the integer type for the base formula. +  Type *DstTy = Base.getType(); +  if (!DstTy) return; +  DstTy = SE.getEffectiveSCEVType(DstTy); + +  for (Type *SrcTy : Types) { +    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { +      Formula F = Base; + +      // Sometimes SCEV is able to prove zero during ext transform. It may +      // happen if SCEV did not do all possible transforms while creating the +      // initial node (maybe due to depth limitations), but it can do them while +      // taking ext. +      if (F.ScaledReg) { +        const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); +        if (NewScaledReg->isZero()) +         continue; +        F.ScaledReg = NewScaledReg; +      } +      bool HasZeroBaseReg = false; +      for (const SCEV *&BaseReg : F.BaseRegs) { +        const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); +        if (NewBaseReg->isZero()) { +          HasZeroBaseReg = true; +          break; +        } +        BaseReg = NewBaseReg; +      } +      if (HasZeroBaseReg) +        continue; + +      // TODO: This assumes we've done basic processing on all uses and +      // have an idea what the register usage is. +      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) +        continue; + +      F.canonicalize(*L); +      (void)InsertFormula(LU, LUIdx, F); +    } +  } +} + +namespace { + +/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer +/// modifications so that the search phase doesn't have to worry about the data +/// structures moving underneath it. +struct WorkItem { +  size_t LUIdx; +  int64_t Imm; +  const SCEV *OrigReg; + +  WorkItem(size_t LI, int64_t I, const SCEV *R) +      : LUIdx(LI), Imm(I), OrigReg(R) {} + +  void print(raw_ostream &OS) const; +  void dump() const; +}; + +} // end anonymous namespace + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void WorkItem::print(raw_ostream &OS) const { +  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx +     << " , add offset " << Imm; +} + +LLVM_DUMP_METHOD void WorkItem::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +/// Look for registers which are a constant distance apart and try to form reuse +/// opportunities between them. +void LSRInstance::GenerateCrossUseConstantOffsets() { +  // Group the registers by their value without any added constant offset. +  using ImmMapTy = std::map<int64_t, const SCEV *>; + +  DenseMap<const SCEV *, ImmMapTy> Map; +  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; +  SmallVector<const SCEV *, 8> Sequence; +  for (const SCEV *Use : RegUses) { +    const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. +    int64_t Imm = ExtractImmediate(Reg, SE); +    auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); +    if (Pair.second) +      Sequence.push_back(Reg); +    Pair.first->second.insert(std::make_pair(Imm, Use)); +    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); +  } + +  // Now examine each set of registers with the same base value. Build up +  // a list of work to do and do the work in a separate step so that we're +  // not adding formulae and register counts while we're searching. +  SmallVector<WorkItem, 32> WorkItems; +  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; +  for (const SCEV *Reg : Sequence) { +    const ImmMapTy &Imms = Map.find(Reg)->second; + +    // It's not worthwhile looking for reuse if there's only one offset. +    if (Imms.size() == 1) +      continue; + +    LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; +               for (const auto &Entry +                    : Imms) dbgs() +               << ' ' << Entry.first; +               dbgs() << '\n'); + +    // Examine each offset. +    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); +         J != JE; ++J) { +      const SCEV *OrigReg = J->second; + +      int64_t JImm = J->first; +      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); + +      if (!isa<SCEVConstant>(OrigReg) && +          UsedByIndicesMap[Reg].count() == 1) { +        LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg +                          << '\n'); +        continue; +      } + +      // Conservatively examine offsets between this orig reg a few selected +      // other orig regs. +      int64_t First = Imms.begin()->first; +      int64_t Last = std::prev(Imms.end())->first; +      // Compute (First + Last)  / 2 without overflow using the fact that +      // First + Last = 2 * (First + Last) + (First ^ Last). +      int64_t Avg = (First & Last) + ((First ^ Last) >> 1); +      // If the result is negative and First is odd and Last even (or vice versa), +      // we rounded towards -inf. Add 1 in that case, to round towards 0. +      Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); +      ImmMapTy::const_iterator OtherImms[] = { +          Imms.begin(), std::prev(Imms.end()), +         Imms.lower_bound(Avg)}; +      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { +        ImmMapTy::const_iterator M = OtherImms[i]; +        if (M == J || M == JE) continue; + +        // Compute the difference between the two. +        int64_t Imm = (uint64_t)JImm - M->first; +        for (unsigned LUIdx : UsedByIndices.set_bits()) +          // Make a memo of this use, offset, and register tuple. +          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) +            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); +      } +    } +  } + +  Map.clear(); +  Sequence.clear(); +  UsedByIndicesMap.clear(); +  UniqueItems.clear(); + +  // Now iterate through the worklist and add new formulae. +  for (const WorkItem &WI : WorkItems) { +    size_t LUIdx = WI.LUIdx; +    LSRUse &LU = Uses[LUIdx]; +    int64_t Imm = WI.Imm; +    const SCEV *OrigReg = WI.OrigReg; + +    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); +    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); +    unsigned BitWidth = SE.getTypeSizeInBits(IntTy); + +    // TODO: Use a more targeted data structure. +    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { +      Formula F = LU.Formulae[L]; +      // FIXME: The code for the scaled and unscaled registers looks +      // very similar but slightly different. Investigate if they +      // could be merged. That way, we would not have to unscale the +      // Formula. +      F.unscale(); +      // Use the immediate in the scaled register. +      if (F.ScaledReg == OrigReg) { +        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; +        // Don't create 50 + reg(-50). +        if (F.referencesReg(SE.getSCEV( +                   ConstantInt::get(IntTy, -(uint64_t)Offset)))) +          continue; +        Formula NewF = F; +        NewF.BaseOffset = Offset; +        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, +                        NewF)) +          continue; +        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); + +        // If the new scale is a constant in a register, and adding the constant +        // value to the immediate would produce a value closer to zero than the +        // immediate itself, then the formula isn't worthwhile. +        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) +          if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && +              (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) +                  .ule(std::abs(NewF.BaseOffset))) +            continue; + +        // OK, looks good. +        NewF.canonicalize(*this->L); +        (void)InsertFormula(LU, LUIdx, NewF); +      } else { +        // Use the immediate in a base register. +        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { +          const SCEV *BaseReg = F.BaseRegs[N]; +          if (BaseReg != OrigReg) +            continue; +          Formula NewF = F; +          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; +          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, +                          LU.Kind, LU.AccessTy, NewF)) { +            if (TTI.shouldFavorPostInc() && +                mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) +              continue; +            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) +              continue; +            NewF = F; +            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; +          } +          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); + +          // If the new formula has a constant in a register, and adding the +          // constant value to the immediate would produce a value closer to +          // zero than the immediate itself, then the formula isn't worthwhile. +          for (const SCEV *NewReg : NewF.BaseRegs) +            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) +              if ((C->getAPInt() + NewF.BaseOffset) +                      .abs() +                      .slt(std::abs(NewF.BaseOffset)) && +                  (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= +                      countTrailingZeros<uint64_t>(NewF.BaseOffset)) +                goto skip_formula; + +          // Ok, looks good. +          NewF.canonicalize(*this->L); +          (void)InsertFormula(LU, LUIdx, NewF); +          break; +        skip_formula:; +        } +      } +    } +  } +} + +/// Generate formulae for each use. +void +LSRInstance::GenerateAllReuseFormulae() { +  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan +  // queries are more precise. +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateReassociations(LU, LUIdx, LU.Formulae[i]); +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateCombinations(LU, LUIdx, LU.Formulae[i]); +  } +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateScales(LU, LUIdx, LU.Formulae[i]); +  } +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) +      GenerateTruncates(LU, LUIdx, LU.Formulae[i]); +  } + +  GenerateCrossUseConstantOffsets(); + +  LLVM_DEBUG(dbgs() << "\n" +                       "After generating reuse formulae:\n"; +             print_uses(dbgs())); +} + +/// If there are multiple formulae with the same set of registers used +/// by other uses, pick the best one and delete the others. +void LSRInstance::FilterOutUndesirableDedicatedRegisters() { +  DenseSet<const SCEV *> VisitedRegs; +  SmallPtrSet<const SCEV *, 16> Regs; +  SmallPtrSet<const SCEV *, 16> LoserRegs; +#ifndef NDEBUG +  bool ChangedFormulae = false; +#endif + +  // Collect the best formula for each unique set of shared registers. This +  // is reset for each use. +  using BestFormulaeTy = +      DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; + +  BestFormulaeTy BestFormulae; + +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); +               dbgs() << '\n'); + +    bool Any = false; +    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); +         FIdx != NumForms; ++FIdx) { +      Formula &F = LU.Formulae[FIdx]; + +      // Some formulas are instant losers. For example, they may depend on +      // nonexistent AddRecs from other loops. These need to be filtered +      // immediately, otherwise heuristics could choose them over others leading +      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here +      // avoids the need to recompute this information across formulae using the +      // same bad AddRec. Passing LoserRegs is also essential unless we remove +      // the corresponding bad register from the Regs set. +      Cost CostF(L, SE, TTI); +      Regs.clear(); +      CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); +      if (CostF.isLoser()) { +        // During initial formula generation, undesirable formulae are generated +        // by uses within other loops that have some non-trivial address mode or +        // use the postinc form of the IV. LSR needs to provide these formulae +        // as the basis of rediscovering the desired formula that uses an AddRec +        // corresponding to the existing phi. Once all formulae have been +        // generated, these initial losers may be pruned. +        LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs()); +                   dbgs() << "\n"); +      } +      else { +        SmallVector<const SCEV *, 4> Key; +        for (const SCEV *Reg : F.BaseRegs) { +          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) +            Key.push_back(Reg); +        } +        if (F.ScaledReg && +            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) +          Key.push_back(F.ScaledReg); +        // Unstable sort by host order ok, because this is only used for +        // uniquifying. +        llvm::sort(Key); + +        std::pair<BestFormulaeTy::const_iterator, bool> P = +          BestFormulae.insert(std::make_pair(Key, FIdx)); +        if (P.second) +          continue; + +        Formula &Best = LU.Formulae[P.first->second]; + +        Cost CostBest(L, SE, TTI); +        Regs.clear(); +        CostBest.RateFormula(Best, Regs, VisitedRegs, LU); +        if (CostF.isLess(CostBest)) +          std::swap(F, Best); +        LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs()); +                   dbgs() << "\n" +                             "    in favor of formula "; +                   Best.print(dbgs()); dbgs() << '\n'); +      } +#ifndef NDEBUG +      ChangedFormulae = true; +#endif +      LU.DeleteFormula(F); +      --FIdx; +      --NumForms; +      Any = true; +    } + +    // Now that we've filtered out some formulae, recompute the Regs set. +    if (Any) +      LU.RecomputeRegs(LUIdx, RegUses); + +    // Reset this to prepare for the next use. +    BestFormulae.clear(); +  } + +  LLVM_DEBUG(if (ChangedFormulae) { +    dbgs() << "\n" +              "After filtering out undesirable candidates:\n"; +    print_uses(dbgs()); +  }); +} + +/// Estimate the worst-case number of solutions the solver might have to +/// consider. It almost never considers this many solutions because it prune the +/// search space, but the pruning isn't always sufficient. +size_t LSRInstance::EstimateSearchSpaceComplexity() const { +  size_t Power = 1; +  for (const LSRUse &LU : Uses) { +    size_t FSize = LU.Formulae.size(); +    if (FSize >= ComplexityLimit) { +      Power = ComplexityLimit; +      break; +    } +    Power *= FSize; +    if (Power >= ComplexityLimit) +      break; +  } +  return Power; +} + +/// When one formula uses a superset of the registers of another formula, it +/// won't help reduce register pressure (though it may not necessarily hurt +/// register pressure); remove it to simplify the system. +void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { +  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { +    LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); + +    LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " +                         "which use a superset of registers used by other " +                         "formulae.\n"); + +    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +      LSRUse &LU = Uses[LUIdx]; +      bool Any = false; +      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { +        Formula &F = LU.Formulae[i]; +        // Look for a formula with a constant or GV in a register. If the use +        // also has a formula with that same value in an immediate field, +        // delete the one that uses a register. +        for (SmallVectorImpl<const SCEV *>::const_iterator +             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { +          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { +            Formula NewF = F; +            //FIXME: Formulas should store bitwidth to do wrapping properly. +            //       See PR41034. +            NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); +            NewF.BaseRegs.erase(NewF.BaseRegs.begin() + +                                (I - F.BaseRegs.begin())); +            if (LU.HasFormulaWithSameRegs(NewF)) { +              LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); +                         dbgs() << '\n'); +              LU.DeleteFormula(F); +              --i; +              --e; +              Any = true; +              break; +            } +          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { +            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) +              if (!F.BaseGV) { +                Formula NewF = F; +                NewF.BaseGV = GV; +                NewF.BaseRegs.erase(NewF.BaseRegs.begin() + +                                    (I - F.BaseRegs.begin())); +                if (LU.HasFormulaWithSameRegs(NewF)) { +                  LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); +                             dbgs() << '\n'); +                  LU.DeleteFormula(F); +                  --i; +                  --e; +                  Any = true; +                  break; +                } +              } +          } +        } +      } +      if (Any) +        LU.RecomputeRegs(LUIdx, RegUses); +    } + +    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); +  } +} + +/// When there are many registers for expressions like A, A+1, A+2, etc., +/// allocate a single register for them. +void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { +  if (EstimateSearchSpaceComplexity() < ComplexityLimit)  +    return; + +  LLVM_DEBUG( +      dbgs() << "The search space is too complex.\n" +                "Narrowing the search space by assuming that uses separated " +                "by a constant offset will use the same registers.\n"); + +  // This is especially useful for unrolled loops. + +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    for (const Formula &F : LU.Formulae) { +      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) +        continue; + +      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); +      if (!LUThatHas) +        continue; + +      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, +                              LU.Kind, LU.AccessTy)) +        continue; + +      LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n'); + +      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; + +      // Transfer the fixups of LU to LUThatHas. +      for (LSRFixup &Fixup : LU.Fixups) { +        Fixup.Offset += F.BaseOffset; +        LUThatHas->pushFixup(Fixup); +        LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); +      } + +      // Delete formulae from the new use which are no longer legal. +      bool Any = false; +      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { +        Formula &F = LUThatHas->Formulae[i]; +        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, +                        LUThatHas->Kind, LUThatHas->AccessTy, F)) { +          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n'); +          LUThatHas->DeleteFormula(F); +          --i; +          --e; +          Any = true; +        } +      } + +      if (Any) +        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); + +      // Delete the old use. +      DeleteUse(LU, LUIdx); +      --LUIdx; +      --NumUses; +      break; +    } +  } + +  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); +} + +/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that +/// we've done more filtering, as it may be able to find more formulae to +/// eliminate. +void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ +  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { +    LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); + +    LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " +                         "undesirable dedicated registers.\n"); + +    FilterOutUndesirableDedicatedRegisters(); + +    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); +  } +} + +/// If a LSRUse has multiple formulae with the same ScaledReg and Scale. +/// Pick the best one and delete the others. +/// This narrowing heuristic is to keep as many formulae with different +/// Scale and ScaledReg pair as possible while narrowing the search space. +/// The benefit is that it is more likely to find out a better solution +/// from a formulae set with more Scale and ScaledReg variations than +/// a formulae set with the same Scale and ScaledReg. The picking winner +/// reg heuristic will often keep the formulae with the same Scale and +/// ScaledReg and filter others, and we want to avoid that if possible. +void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { +  if (EstimateSearchSpaceComplexity() < ComplexityLimit) +    return; + +  LLVM_DEBUG( +      dbgs() << "The search space is too complex.\n" +                "Narrowing the search space by choosing the best Formula " +                "from the Formulae with the same Scale and ScaledReg.\n"); + +  // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. +  using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; + +  BestFormulaeTy BestFormulae; +#ifndef NDEBUG +  bool ChangedFormulae = false; +#endif +  DenseSet<const SCEV *> VisitedRegs; +  SmallPtrSet<const SCEV *, 16> Regs; + +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); +               dbgs() << '\n'); + +    // Return true if Formula FA is better than Formula FB. +    auto IsBetterThan = [&](Formula &FA, Formula &FB) { +      // First we will try to choose the Formula with fewer new registers. +      // For a register used by current Formula, the more the register is +      // shared among LSRUses, the less we increase the register number +      // counter of the formula. +      size_t FARegNum = 0; +      for (const SCEV *Reg : FA.BaseRegs) { +        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); +        FARegNum += (NumUses - UsedByIndices.count() + 1); +      } +      size_t FBRegNum = 0; +      for (const SCEV *Reg : FB.BaseRegs) { +        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); +        FBRegNum += (NumUses - UsedByIndices.count() + 1); +      } +      if (FARegNum != FBRegNum) +        return FARegNum < FBRegNum; + +      // If the new register numbers are the same, choose the Formula with +      // less Cost. +      Cost CostFA(L, SE, TTI); +      Cost CostFB(L, SE, TTI); +      Regs.clear(); +      CostFA.RateFormula(FA, Regs, VisitedRegs, LU); +      Regs.clear(); +      CostFB.RateFormula(FB, Regs, VisitedRegs, LU); +      return CostFA.isLess(CostFB); +    }; + +    bool Any = false; +    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; +         ++FIdx) { +      Formula &F = LU.Formulae[FIdx]; +      if (!F.ScaledReg) +        continue; +      auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); +      if (P.second) +        continue; + +      Formula &Best = LU.Formulae[P.first->second]; +      if (IsBetterThan(F, Best)) +        std::swap(F, Best); +      LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs()); +                 dbgs() << "\n" +                           "    in favor of formula "; +                 Best.print(dbgs()); dbgs() << '\n'); +#ifndef NDEBUG +      ChangedFormulae = true; +#endif +      LU.DeleteFormula(F); +      --FIdx; +      --NumForms; +      Any = true; +    } +    if (Any) +      LU.RecomputeRegs(LUIdx, RegUses); + +    // Reset this to prepare for the next use. +    BestFormulae.clear(); +  } + +  LLVM_DEBUG(if (ChangedFormulae) { +    dbgs() << "\n" +              "After filtering out undesirable candidates:\n"; +    print_uses(dbgs()); +  }); +} + +/// The function delete formulas with high registers number expectation. +/// Assuming we don't know the value of each formula (already delete +/// all inefficient), generate probability of not selecting for each +/// register. +/// For example, +/// Use1: +///  reg(a) + reg({0,+,1}) +///  reg(a) + reg({-1,+,1}) + 1 +///  reg({a,+,1}) +/// Use2: +///  reg(b) + reg({0,+,1}) +///  reg(b) + reg({-1,+,1}) + 1 +///  reg({b,+,1}) +/// Use3: +///  reg(c) + reg(b) + reg({0,+,1}) +///  reg(c) + reg({b,+,1}) +/// +/// Probability of not selecting +///                 Use1   Use2    Use3 +/// reg(a)         (1/3) *   1   *   1 +/// reg(b)           1   * (1/3) * (1/2) +/// reg({0,+,1})   (2/3) * (2/3) * (1/2) +/// reg({-1,+,1})  (2/3) * (2/3) *   1 +/// reg({a,+,1})   (2/3) *   1   *   1 +/// reg({b,+,1})     1   * (2/3) * (2/3) +/// reg(c)           1   *   1   *   0 +/// +/// Now count registers number mathematical expectation for each formula: +/// Note that for each use we exclude probability if not selecting for the use. +/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding +/// probabilty 1/3 of not selecting for Use1). +/// Use1: +///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted +///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted +///  reg({a,+,1})                   1 +/// Use2: +///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted +///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted +///  reg({b,+,1})                   2/3 +/// Use3: +///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted +///  reg(c) + reg({b,+,1})          1 + 2/3 +void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { +  if (EstimateSearchSpaceComplexity() < ComplexityLimit) +    return; +  // Ok, we have too many of formulae on our hands to conveniently handle. +  // Use a rough heuristic to thin out the list. + +  // Set of Regs wich will be 100% used in final solution. +  // Used in each formula of a solution (in example above this is reg(c)). +  // We can skip them in calculations. +  SmallPtrSet<const SCEV *, 4> UniqRegs; +  LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); + +  // Map each register to probability of not selecting +  DenseMap <const SCEV *, float> RegNumMap; +  for (const SCEV *Reg : RegUses) { +    if (UniqRegs.count(Reg)) +      continue; +    float PNotSel = 1; +    for (const LSRUse &LU : Uses) { +      if (!LU.Regs.count(Reg)) +        continue; +      float P = LU.getNotSelectedProbability(Reg); +      if (P != 0.0) +        PNotSel *= P; +      else +        UniqRegs.insert(Reg); +    } +    RegNumMap.insert(std::make_pair(Reg, PNotSel)); +  } + +  LLVM_DEBUG( +      dbgs() << "Narrowing the search space by deleting costly formulas\n"); + +  // Delete formulas where registers number expectation is high. +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +    LSRUse &LU = Uses[LUIdx]; +    // If nothing to delete - continue. +    if (LU.Formulae.size() < 2) +      continue; +    // This is temporary solution to test performance. Float should be +    // replaced with round independent type (based on integers) to avoid +    // different results for different target builds. +    float FMinRegNum = LU.Formulae[0].getNumRegs(); +    float FMinARegNum = LU.Formulae[0].getNumRegs(); +    size_t MinIdx = 0; +    for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { +      Formula &F = LU.Formulae[i]; +      float FRegNum = 0; +      float FARegNum = 0; +      for (const SCEV *BaseReg : F.BaseRegs) { +        if (UniqRegs.count(BaseReg)) +          continue; +        FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); +        if (isa<SCEVAddRecExpr>(BaseReg)) +          FARegNum += +              RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); +      } +      if (const SCEV *ScaledReg = F.ScaledReg) { +        if (!UniqRegs.count(ScaledReg)) { +          FRegNum += +              RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); +          if (isa<SCEVAddRecExpr>(ScaledReg)) +            FARegNum += +                RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); +        } +      } +      if (FMinRegNum > FRegNum || +          (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { +        FMinRegNum = FRegNum; +        FMinARegNum = FARegNum; +        MinIdx = i; +      } +    } +    LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs()); +               dbgs() << " with min reg num " << FMinRegNum << '\n'); +    if (MinIdx != 0) +      std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); +    while (LU.Formulae.size() != 1) { +      LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs()); +                 dbgs() << '\n'); +      LU.Formulae.pop_back(); +    } +    LU.RecomputeRegs(LUIdx, RegUses); +    assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); +    Formula &F = LU.Formulae[0]; +    LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n'); +    // When we choose the formula, the regs become unique. +    UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); +    if (F.ScaledReg) +      UniqRegs.insert(F.ScaledReg); +  } +  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); +} + +/// Pick a register which seems likely to be profitable, and then in any use +/// which has any reference to that register, delete all formulae which do not +/// reference that register. +void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { +  // With all other options exhausted, loop until the system is simple +  // enough to handle. +  SmallPtrSet<const SCEV *, 4> Taken; +  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { +    // Ok, we have too many of formulae on our hands to conveniently handle. +    // Use a rough heuristic to thin out the list. +    LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); + +    // Pick the register which is used by the most LSRUses, which is likely +    // to be a good reuse register candidate. +    const SCEV *Best = nullptr; +    unsigned BestNum = 0; +    for (const SCEV *Reg : RegUses) { +      if (Taken.count(Reg)) +        continue; +      if (!Best) { +        Best = Reg; +        BestNum = RegUses.getUsedByIndices(Reg).count(); +      } else { +        unsigned Count = RegUses.getUsedByIndices(Reg).count(); +        if (Count > BestNum) { +          Best = Reg; +          BestNum = Count; +        } +      } +    } +    assert(Best && "Failed to find best LSRUse candidate"); + +    LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best +                      << " will yield profitable reuse.\n"); +    Taken.insert(Best); + +    // In any use with formulae which references this register, delete formulae +    // which don't reference it. +    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { +      LSRUse &LU = Uses[LUIdx]; +      if (!LU.Regs.count(Best)) continue; + +      bool Any = false; +      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { +        Formula &F = LU.Formulae[i]; +        if (!F.referencesReg(Best)) { +          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n'); +          LU.DeleteFormula(F); +          --e; +          --i; +          Any = true; +          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); +          continue; +        } +      } + +      if (Any) +        LU.RecomputeRegs(LUIdx, RegUses); +    } + +    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); +  } +} + +/// If there are an extraordinary number of formulae to choose from, use some +/// rough heuristics to prune down the number of formulae. This keeps the main +/// solver from taking an extraordinary amount of time in some worst-case +/// scenarios. +void LSRInstance::NarrowSearchSpaceUsingHeuristics() { +  NarrowSearchSpaceByDetectingSupersets(); +  NarrowSearchSpaceByCollapsingUnrolledCode(); +  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); +  if (FilterSameScaledReg) +    NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); +  if (LSRExpNarrow) +    NarrowSearchSpaceByDeletingCostlyFormulas(); +  else +    NarrowSearchSpaceByPickingWinnerRegs(); +} + +/// This is the recursive solver. +void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, +                               Cost &SolutionCost, +                               SmallVectorImpl<const Formula *> &Workspace, +                               const Cost &CurCost, +                               const SmallPtrSet<const SCEV *, 16> &CurRegs, +                               DenseSet<const SCEV *> &VisitedRegs) const { +  // Some ideas: +  //  - prune more: +  //    - use more aggressive filtering +  //    - sort the formula so that the most profitable solutions are found first +  //    - sort the uses too +  //  - search faster: +  //    - don't compute a cost, and then compare. compare while computing a cost +  //      and bail early. +  //    - track register sets with SmallBitVector + +  const LSRUse &LU = Uses[Workspace.size()]; + +  // If this use references any register that's already a part of the +  // in-progress solution, consider it a requirement that a formula must +  // reference that register in order to be considered. This prunes out +  // unprofitable searching. +  SmallSetVector<const SCEV *, 4> ReqRegs; +  for (const SCEV *S : CurRegs) +    if (LU.Regs.count(S)) +      ReqRegs.insert(S); + +  SmallPtrSet<const SCEV *, 16> NewRegs; +  Cost NewCost(L, SE, TTI); +  for (const Formula &F : LU.Formulae) { +    // Ignore formulae which may not be ideal in terms of register reuse of +    // ReqRegs.  The formula should use all required registers before +    // introducing new ones. +    int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); +    for (const SCEV *Reg : ReqRegs) { +      if ((F.ScaledReg && F.ScaledReg == Reg) || +          is_contained(F.BaseRegs, Reg)) { +        --NumReqRegsToFind; +        if (NumReqRegsToFind == 0) +          break; +      } +    } +    if (NumReqRegsToFind != 0) { +      // If none of the formulae satisfied the required registers, then we could +      // clear ReqRegs and try again. Currently, we simply give up in this case. +      continue; +    } + +    // Evaluate the cost of the current formula. If it's already worse than +    // the current best, prune the search at that point. +    NewCost = CurCost; +    NewRegs = CurRegs; +    NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); +    if (NewCost.isLess(SolutionCost)) { +      Workspace.push_back(&F); +      if (Workspace.size() != Uses.size()) { +        SolveRecurse(Solution, SolutionCost, Workspace, NewCost, +                     NewRegs, VisitedRegs); +        if (F.getNumRegs() == 1 && Workspace.size() == 1) +          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); +      } else { +        LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); +                   dbgs() << ".\nRegs:\n"; +                   for (const SCEV *S : NewRegs) dbgs() +                      << "- " << *S << "\n"; +                   dbgs() << '\n'); + +        SolutionCost = NewCost; +        Solution = Workspace; +      } +      Workspace.pop_back(); +    } +  } +} + +/// Choose one formula from each use. Return the results in the given Solution +/// vector. +void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { +  SmallVector<const Formula *, 8> Workspace; +  Cost SolutionCost(L, SE, TTI); +  SolutionCost.Lose(); +  Cost CurCost(L, SE, TTI); +  SmallPtrSet<const SCEV *, 16> CurRegs; +  DenseSet<const SCEV *> VisitedRegs; +  Workspace.reserve(Uses.size()); + +  // SolveRecurse does all the work. +  SolveRecurse(Solution, SolutionCost, Workspace, CurCost, +               CurRegs, VisitedRegs); +  if (Solution.empty()) { +    LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); +    return; +  } + +  // Ok, we've now made all our decisions. +  LLVM_DEBUG(dbgs() << "\n" +                       "The chosen solution requires "; +             SolutionCost.print(dbgs()); dbgs() << ":\n"; +             for (size_t i = 0, e = Uses.size(); i != e; ++i) { +               dbgs() << "  "; +               Uses[i].print(dbgs()); +               dbgs() << "\n" +                         "    "; +               Solution[i]->print(dbgs()); +               dbgs() << '\n'; +             }); + +  assert(Solution.size() == Uses.size() && "Malformed solution!"); +} + +/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as +/// we can go while still being dominated by the input positions. This helps +/// canonicalize the insert position, which encourages sharing. +BasicBlock::iterator +LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, +                                 const SmallVectorImpl<Instruction *> &Inputs) +                                                                         const { +  Instruction *Tentative = &*IP; +  while (true) { +    bool AllDominate = true; +    Instruction *BetterPos = nullptr; +    // Don't bother attempting to insert before a catchswitch, their basic block +    // cannot have other non-PHI instructions. +    if (isa<CatchSwitchInst>(Tentative)) +      return IP; + +    for (Instruction *Inst : Inputs) { +      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { +        AllDominate = false; +        break; +      } +      // Attempt to find an insert position in the middle of the block, +      // instead of at the end, so that it can be used for other expansions. +      if (Tentative->getParent() == Inst->getParent() && +          (!BetterPos || !DT.dominates(Inst, BetterPos))) +        BetterPos = &*std::next(BasicBlock::iterator(Inst)); +    } +    if (!AllDominate) +      break; +    if (BetterPos) +      IP = BetterPos->getIterator(); +    else +      IP = Tentative->getIterator(); + +    const Loop *IPLoop = LI.getLoopFor(IP->getParent()); +    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; + +    BasicBlock *IDom; +    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { +      if (!Rung) return IP; +      Rung = Rung->getIDom(); +      if (!Rung) return IP; +      IDom = Rung->getBlock(); + +      // Don't climb into a loop though. +      const Loop *IDomLoop = LI.getLoopFor(IDom); +      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; +      if (IDomDepth <= IPLoopDepth && +          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) +        break; +    } + +    Tentative = IDom->getTerminator(); +  } + +  return IP; +} + +/// Determine an input position which will be dominated by the operands and +/// which will dominate the result. +BasicBlock::iterator +LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, +                                           const LSRFixup &LF, +                                           const LSRUse &LU, +                                           SCEVExpander &Rewriter) const { +  // Collect some instructions which must be dominated by the +  // expanding replacement. These must be dominated by any operands that +  // will be required in the expansion. +  SmallVector<Instruction *, 4> Inputs; +  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) +    Inputs.push_back(I); +  if (LU.Kind == LSRUse::ICmpZero) +    if (Instruction *I = +          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) +      Inputs.push_back(I); +  if (LF.PostIncLoops.count(L)) { +    if (LF.isUseFullyOutsideLoop(L)) +      Inputs.push_back(L->getLoopLatch()->getTerminator()); +    else +      Inputs.push_back(IVIncInsertPos); +  } +  // The expansion must also be dominated by the increment positions of any +  // loops it for which it is using post-inc mode. +  for (const Loop *PIL : LF.PostIncLoops) { +    if (PIL == L) continue; + +    // Be dominated by the loop exit. +    SmallVector<BasicBlock *, 4> ExitingBlocks; +    PIL->getExitingBlocks(ExitingBlocks); +    if (!ExitingBlocks.empty()) { +      BasicBlock *BB = ExitingBlocks[0]; +      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) +        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); +      Inputs.push_back(BB->getTerminator()); +    } +  } + +  assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() +         && !isa<DbgInfoIntrinsic>(LowestIP) && +         "Insertion point must be a normal instruction"); + +  // Then, climb up the immediate dominator tree as far as we can go while +  // still being dominated by the input positions. +  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); + +  // Don't insert instructions before PHI nodes. +  while (isa<PHINode>(IP)) ++IP; + +  // Ignore landingpad instructions. +  while (IP->isEHPad()) ++IP; + +  // Ignore debug intrinsics. +  while (isa<DbgInfoIntrinsic>(IP)) ++IP; + +  // Set IP below instructions recently inserted by SCEVExpander. This keeps the +  // IP consistent across expansions and allows the previously inserted +  // instructions to be reused by subsequent expansion. +  while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) +    ++IP; + +  return IP; +} + +/// Emit instructions for the leading candidate expression for this LSRUse (this +/// is called "expanding"). +Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, +                           const Formula &F, BasicBlock::iterator IP, +                           SCEVExpander &Rewriter, +                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { +  if (LU.RigidFormula) +    return LF.OperandValToReplace; + +  // Determine an input position which will be dominated by the operands and +  // which will dominate the result. +  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); +  Rewriter.setInsertPoint(&*IP); + +  // Inform the Rewriter if we have a post-increment use, so that it can +  // perform an advantageous expansion. +  Rewriter.setPostInc(LF.PostIncLoops); + +  // This is the type that the user actually needs. +  Type *OpTy = LF.OperandValToReplace->getType(); +  // This will be the type that we'll initially expand to. +  Type *Ty = F.getType(); +  if (!Ty) +    // No type known; just expand directly to the ultimate type. +    Ty = OpTy; +  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) +    // Expand directly to the ultimate type if it's the right size. +    Ty = OpTy; +  // This is the type to do integer arithmetic in. +  Type *IntTy = SE.getEffectiveSCEVType(Ty); + +  // Build up a list of operands to add together to form the full base. +  SmallVector<const SCEV *, 8> Ops; + +  // Expand the BaseRegs portion. +  for (const SCEV *Reg : F.BaseRegs) { +    assert(!Reg->isZero() && "Zero allocated in a base register!"); + +    // If we're expanding for a post-inc user, make the post-inc adjustment. +    Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); +    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); +  } + +  // Expand the ScaledReg portion. +  Value *ICmpScaledV = nullptr; +  if (F.Scale != 0) { +    const SCEV *ScaledS = F.ScaledReg; + +    // If we're expanding for a post-inc user, make the post-inc adjustment. +    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); +    ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); + +    if (LU.Kind == LSRUse::ICmpZero) { +      // Expand ScaleReg as if it was part of the base regs. +      if (F.Scale == 1) +        Ops.push_back( +            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); +      else { +        // An interesting way of "folding" with an icmp is to use a negated +        // scale, which we'll implement by inserting it into the other operand +        // of the icmp. +        assert(F.Scale == -1 && +               "The only scale supported by ICmpZero uses is -1!"); +        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); +      } +    } else { +      // Otherwise just expand the scaled register and an explicit scale, +      // which is expected to be matched as part of the address. + +      // Flush the operand list to suppress SCEVExpander hoisting address modes. +      // Unless the addressing mode will not be folded. +      if (!Ops.empty() && LU.Kind == LSRUse::Address && +          isAMCompletelyFolded(TTI, LU, F)) { +        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); +        Ops.clear(); +        Ops.push_back(SE.getUnknown(FullV)); +      } +      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); +      if (F.Scale != 1) +        ScaledS = +            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); +      Ops.push_back(ScaledS); +    } +  } + +  // Expand the GV portion. +  if (F.BaseGV) { +    // Flush the operand list to suppress SCEVExpander hoisting. +    if (!Ops.empty()) { +      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); +      Ops.clear(); +      Ops.push_back(SE.getUnknown(FullV)); +    } +    Ops.push_back(SE.getUnknown(F.BaseGV)); +  } + +  // Flush the operand list to suppress SCEVExpander hoisting of both folded and +  // unfolded offsets. LSR assumes they both live next to their uses. +  if (!Ops.empty()) { +    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); +    Ops.clear(); +    Ops.push_back(SE.getUnknown(FullV)); +  } + +  // Expand the immediate portion. +  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; +  if (Offset != 0) { +    if (LU.Kind == LSRUse::ICmpZero) { +      // The other interesting way of "folding" with an ICmpZero is to use a +      // negated immediate. +      if (!ICmpScaledV) +        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); +      else { +        Ops.push_back(SE.getUnknown(ICmpScaledV)); +        ICmpScaledV = ConstantInt::get(IntTy, Offset); +      } +    } else { +      // Just add the immediate values. These again are expected to be matched +      // as part of the address. +      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); +    } +  } + +  // Expand the unfolded offset portion. +  int64_t UnfoldedOffset = F.UnfoldedOffset; +  if (UnfoldedOffset != 0) { +    // Just add the immediate values. +    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, +                                                       UnfoldedOffset))); +  } + +  // Emit instructions summing all the operands. +  const SCEV *FullS = Ops.empty() ? +                      SE.getConstant(IntTy, 0) : +                      SE.getAddExpr(Ops); +  Value *FullV = Rewriter.expandCodeFor(FullS, Ty); + +  // We're done expanding now, so reset the rewriter. +  Rewriter.clearPostInc(); + +  // An ICmpZero Formula represents an ICmp which we're handling as a +  // comparison against zero. Now that we've expanded an expression for that +  // form, update the ICmp's other operand. +  if (LU.Kind == LSRUse::ICmpZero) { +    ICmpInst *CI = cast<ICmpInst>(LF.UserInst); +    DeadInsts.emplace_back(CI->getOperand(1)); +    assert(!F.BaseGV && "ICmp does not support folding a global value and " +                           "a scale at the same time!"); +    if (F.Scale == -1) { +      if (ICmpScaledV->getType() != OpTy) { +        Instruction *Cast = +          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, +                                                   OpTy, false), +                           ICmpScaledV, OpTy, "tmp", CI); +        ICmpScaledV = Cast; +      } +      CI->setOperand(1, ICmpScaledV); +    } else { +      // A scale of 1 means that the scale has been expanded as part of the +      // base regs. +      assert((F.Scale == 0 || F.Scale == 1) && +             "ICmp does not support folding a global value and " +             "a scale at the same time!"); +      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), +                                           -(uint64_t)Offset); +      if (C->getType() != OpTy) +        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, +                                                          OpTy, false), +                                  C, OpTy); + +      CI->setOperand(1, C); +    } +  } + +  return FullV; +} + +/// Helper for Rewrite. PHI nodes are special because the use of their operands +/// effectively happens in their predecessor blocks, so the expression may need +/// to be expanded in multiple places. +void LSRInstance::RewriteForPHI( +    PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, +    SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { +  DenseMap<BasicBlock *, Value *> Inserted; +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +    if (PN->getIncomingValue(i) == LF.OperandValToReplace) { +      bool needUpdateFixups = false; +      BasicBlock *BB = PN->getIncomingBlock(i); + +      // If this is a critical edge, split the edge so that we do not insert +      // the code on all predecessor/successor paths.  We do this unless this +      // is the canonical backedge for this loop, which complicates post-inc +      // users. +      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && +          !isa<IndirectBrInst>(BB->getTerminator()) && +          !isa<CatchSwitchInst>(BB->getTerminator())) { +        BasicBlock *Parent = PN->getParent(); +        Loop *PNLoop = LI.getLoopFor(Parent); +        if (!PNLoop || Parent != PNLoop->getHeader()) { +          // Split the critical edge. +          BasicBlock *NewBB = nullptr; +          if (!Parent->isLandingPad()) { +            NewBB = SplitCriticalEdge(BB, Parent, +                                      CriticalEdgeSplittingOptions(&DT, &LI) +                                          .setMergeIdenticalEdges() +                                          .setKeepOneInputPHIs()); +          } else { +            SmallVector<BasicBlock*, 2> NewBBs; +            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); +            NewBB = NewBBs[0]; +          } +          // If NewBB==NULL, then SplitCriticalEdge refused to split because all +          // phi predecessors are identical. The simple thing to do is skip +          // splitting in this case rather than complicate the API. +          if (NewBB) { +            // If PN is outside of the loop and BB is in the loop, we want to +            // move the block to be immediately before the PHI block, not +            // immediately after BB. +            if (L->contains(BB) && !L->contains(PN)) +              NewBB->moveBefore(PN->getParent()); + +            // Splitting the edge can reduce the number of PHI entries we have. +            e = PN->getNumIncomingValues(); +            BB = NewBB; +            i = PN->getBasicBlockIndex(BB); + +            needUpdateFixups = true; +          } +        } +      } + +      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = +        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); +      if (!Pair.second) +        PN->setIncomingValue(i, Pair.first->second); +      else { +        Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), +                              Rewriter, DeadInsts); + +        // If this is reuse-by-noop-cast, insert the noop cast. +        Type *OpTy = LF.OperandValToReplace->getType(); +        if (FullV->getType() != OpTy) +          FullV = +            CastInst::Create(CastInst::getCastOpcode(FullV, false, +                                                     OpTy, false), +                             FullV, LF.OperandValToReplace->getType(), +                             "tmp", BB->getTerminator()); + +        PN->setIncomingValue(i, FullV); +        Pair.first->second = FullV; +      } + +      // If LSR splits critical edge and phi node has other pending +      // fixup operands, we need to update those pending fixups. Otherwise +      // formulae will not be implemented completely and some instructions +      // will not be eliminated. +      if (needUpdateFixups) { +        for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) +          for (LSRFixup &Fixup : Uses[LUIdx].Fixups) +            // If fixup is supposed to rewrite some operand in the phi +            // that was just updated, it may be already moved to +            // another phi node. Such fixup requires update. +            if (Fixup.UserInst == PN) { +              // Check if the operand we try to replace still exists in the +              // original phi. +              bool foundInOriginalPHI = false; +              for (const auto &val : PN->incoming_values()) +                if (val == Fixup.OperandValToReplace) { +                  foundInOriginalPHI = true; +                  break; +                } + +              // If fixup operand found in original PHI - nothing to do. +              if (foundInOriginalPHI) +                continue; + +              // Otherwise it might be moved to another PHI and requires update. +              // If fixup operand not found in any of the incoming blocks that +              // means we have already rewritten it - nothing to do. +              for (const auto &Block : PN->blocks()) +                for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); +                     ++I) { +                  PHINode *NewPN = cast<PHINode>(I); +                  for (const auto &val : NewPN->incoming_values()) +                    if (val == Fixup.OperandValToReplace) +                      Fixup.UserInst = NewPN; +                } +            } +      } +    } +} + +/// Emit instructions for the leading candidate expression for this LSRUse (this +/// is called "expanding"), and update the UserInst to reference the newly +/// expanded value. +void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, +                          const Formula &F, SCEVExpander &Rewriter, +                          SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { +  // First, find an insertion point that dominates UserInst. For PHI nodes, +  // find the nearest block which dominates all the relevant uses. +  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { +    RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); +  } else { +    Value *FullV = +      Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); + +    // If this is reuse-by-noop-cast, insert the noop cast. +    Type *OpTy = LF.OperandValToReplace->getType(); +    if (FullV->getType() != OpTy) { +      Instruction *Cast = +        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), +                         FullV, OpTy, "tmp", LF.UserInst); +      FullV = Cast; +    } + +    // Update the user. ICmpZero is handled specially here (for now) because +    // Expand may have updated one of the operands of the icmp already, and +    // its new value may happen to be equal to LF.OperandValToReplace, in +    // which case doing replaceUsesOfWith leads to replacing both operands +    // with the same value. TODO: Reorganize this. +    if (LU.Kind == LSRUse::ICmpZero) +      LF.UserInst->setOperand(0, FullV); +    else +      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); +  } + +  DeadInsts.emplace_back(LF.OperandValToReplace); +} + +/// Rewrite all the fixup locations with new values, following the chosen +/// solution. +void LSRInstance::ImplementSolution( +    const SmallVectorImpl<const Formula *> &Solution) { +  // Keep track of instructions we may have made dead, so that +  // we can remove them after we are done working. +  SmallVector<WeakTrackingVH, 16> DeadInsts; + +  SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), +                        "lsr"); +#ifndef NDEBUG +  Rewriter.setDebugType(DEBUG_TYPE); +#endif +  Rewriter.disableCanonicalMode(); +  Rewriter.enableLSRMode(); +  Rewriter.setIVIncInsertPos(L, IVIncInsertPos); + +  // Mark phi nodes that terminate chains so the expander tries to reuse them. +  for (const IVChain &Chain : IVChainVec) { +    if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) +      Rewriter.setChainedPhi(PN); +  } + +  // Expand the new value definitions and update the users. +  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) +    for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { +      Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); +      Changed = true; +    } + +  for (const IVChain &Chain : IVChainVec) { +    GenerateIVChain(Chain, Rewriter, DeadInsts); +    Changed = true; +  } +  // Clean up after ourselves. This must be done before deleting any +  // instructions. +  Rewriter.clear(); + +  Changed |= DeleteTriviallyDeadInstructions(DeadInsts); +} + +LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, +                         DominatorTree &DT, LoopInfo &LI, +                         const TargetTransformInfo &TTI, AssumptionCache &AC, +                         TargetLibraryInfo &LibInfo) +    : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L), +      FavorBackedgeIndex(EnableBackedgeIndexing && +                         TTI.shouldFavorBackedgeIndex(L)) { +  // If LoopSimplify form is not available, stay out of trouble. +  if (!L->isLoopSimplifyForm()) +    return; + +  // If there's no interesting work to be done, bail early. +  if (IU.empty()) return; + +  // If there's too much analysis to be done, bail early. We won't be able to +  // model the problem anyway. +  unsigned NumUsers = 0; +  for (const IVStrideUse &U : IU) { +    if (++NumUsers > MaxIVUsers) { +      (void)U; +      LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U +                        << "\n"); +      return; +    } +    // Bail out if we have a PHI on an EHPad that gets a value from a +    // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is +    // no good place to stick any instructions. +    if (auto *PN = dyn_cast<PHINode>(U.getUser())) { +       auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); +       if (isa<FuncletPadInst>(FirstNonPHI) || +           isa<CatchSwitchInst>(FirstNonPHI)) +         for (BasicBlock *PredBB : PN->blocks()) +           if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) +             return; +    } +  } + +#ifndef NDEBUG +  // All dominating loops must have preheaders, or SCEVExpander may not be able +  // to materialize an AddRecExpr whose Start is an outer AddRecExpr. +  // +  // IVUsers analysis should only create users that are dominated by simple loop +  // headers. Since this loop should dominate all of its users, its user list +  // should be empty if this loop itself is not within a simple loop nest. +  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); +       Rung; Rung = Rung->getIDom()) { +    BasicBlock *BB = Rung->getBlock(); +    const Loop *DomLoop = LI.getLoopFor(BB); +    if (DomLoop && DomLoop->getHeader() == BB) { +      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); +    } +  } +#endif // DEBUG + +  LLVM_DEBUG(dbgs() << "\nLSR on loop "; +             L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); +             dbgs() << ":\n"); + +  // First, perform some low-level loop optimizations. +  OptimizeShadowIV(); +  OptimizeLoopTermCond(); + +  // If loop preparation eliminates all interesting IV users, bail. +  if (IU.empty()) return; + +  // Skip nested loops until we can model them better with formulae. +  if (!L->empty()) { +    LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); +    return; +  } + +  // Start collecting data and preparing for the solver. +  CollectChains(); +  CollectInterestingTypesAndFactors(); +  CollectFixupsAndInitialFormulae(); +  CollectLoopInvariantFixupsAndFormulae(); + +  if (Uses.empty()) +    return; + +  LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; +             print_uses(dbgs())); + +  // Now use the reuse data to generate a bunch of interesting ways +  // to formulate the values needed for the uses. +  GenerateAllReuseFormulae(); + +  FilterOutUndesirableDedicatedRegisters(); +  NarrowSearchSpaceUsingHeuristics(); + +  SmallVector<const Formula *, 8> Solution; +  Solve(Solution); + +  // Release memory that is no longer needed. +  Factors.clear(); +  Types.clear(); +  RegUses.clear(); + +  if (Solution.empty()) +    return; + +#ifndef NDEBUG +  // Formulae should be legal. +  for (const LSRUse &LU : Uses) { +    for (const Formula &F : LU.Formulae) +      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, +                        F) && "Illegal formula generated!"); +  }; +#endif + +  // Now that we've decided what we want, make it so. +  ImplementSolution(Solution); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LSRInstance::print_factors_and_types(raw_ostream &OS) const { +  if (Factors.empty() && Types.empty()) return; + +  OS << "LSR has identified the following interesting factors and types: "; +  bool First = true; + +  for (int64_t Factor : Factors) { +    if (!First) OS << ", "; +    First = false; +    OS << '*' << Factor; +  } + +  for (Type *Ty : Types) { +    if (!First) OS << ", "; +    First = false; +    OS << '(' << *Ty << ')'; +  } +  OS << '\n'; +} + +void LSRInstance::print_fixups(raw_ostream &OS) const { +  OS << "LSR is examining the following fixup sites:\n"; +  for (const LSRUse &LU : Uses) +    for (const LSRFixup &LF : LU.Fixups) { +      dbgs() << "  "; +      LF.print(OS); +      OS << '\n'; +    } +} + +void LSRInstance::print_uses(raw_ostream &OS) const { +  OS << "LSR is examining the following uses:\n"; +  for (const LSRUse &LU : Uses) { +    dbgs() << "  "; +    LU.print(OS); +    OS << '\n'; +    for (const Formula &F : LU.Formulae) { +      OS << "    "; +      F.print(OS); +      OS << '\n'; +    } +  } +} + +void LSRInstance::print(raw_ostream &OS) const { +  print_factors_and_types(OS); +  print_fixups(OS); +  print_uses(OS); +} + +LLVM_DUMP_METHOD void LSRInstance::dump() const { +  print(errs()); errs() << '\n'; +} +#endif + +namespace { + +class LoopStrengthReduce : public LoopPass { +public: +  static char ID; // Pass ID, replacement for typeid + +  LoopStrengthReduce(); + +private: +  bool runOnLoop(Loop *L, LPPassManager &LPM) override; +  void getAnalysisUsage(AnalysisUsage &AU) const override; +}; + +} // end anonymous namespace + +LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { +  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); +} + +void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { +  // We split critical edges, so we change the CFG.  However, we do update +  // many analyses if they are around. +  AU.addPreservedID(LoopSimplifyID); + +  AU.addRequired<LoopInfoWrapperPass>(); +  AU.addPreserved<LoopInfoWrapperPass>(); +  AU.addRequiredID(LoopSimplifyID); +  AU.addRequired<DominatorTreeWrapperPass>(); +  AU.addPreserved<DominatorTreeWrapperPass>(); +  AU.addRequired<ScalarEvolutionWrapperPass>(); +  AU.addPreserved<ScalarEvolutionWrapperPass>(); +  AU.addRequired<AssumptionCacheTracker>(); +  AU.addRequired<TargetLibraryInfoWrapperPass>(); +  // Requiring LoopSimplify a second time here prevents IVUsers from running +  // twice, since LoopSimplify was invalidated by running ScalarEvolution. +  AU.addRequiredID(LoopSimplifyID); +  AU.addRequired<IVUsersWrapperPass>(); +  AU.addPreserved<IVUsersWrapperPass>(); +  AU.addRequired<TargetTransformInfoWrapperPass>(); +} + +static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, +                               DominatorTree &DT, LoopInfo &LI, +                               const TargetTransformInfo &TTI, +                               AssumptionCache &AC, +                               TargetLibraryInfo &LibInfo) { + +  bool Changed = false; + +  // Run the main LSR transformation. +  Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged(); + +  // Remove any extra phis created by processing inner loops. +  Changed |= DeleteDeadPHIs(L->getHeader()); +  if (EnablePhiElim && L->isLoopSimplifyForm()) { +    SmallVector<WeakTrackingVH, 16> DeadInsts; +    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); +    SCEVExpander Rewriter(SE, DL, "lsr"); +#ifndef NDEBUG +    Rewriter.setDebugType(DEBUG_TYPE); +#endif +    unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); +    if (numFolded) { +      Changed = true; +      DeleteTriviallyDeadInstructions(DeadInsts); +      DeleteDeadPHIs(L->getHeader()); +    } +  } +  return Changed; +} + +bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { +  if (skipLoop(L)) +    return false; + +  auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); +  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +  const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( +      *L->getHeader()->getParent()); +  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( +      *L->getHeader()->getParent()); +  auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( +      *L->getHeader()->getParent()); +  return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo); +} + +PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, +                                              LoopStandardAnalysisResults &AR, +                                              LPMUpdater &) { +  if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, +                          AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI)) +    return PreservedAnalyses::all(); + +  return getLoopPassPreservedAnalyses(); +} + +char LoopStrengthReduce::ID = 0; + +INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", +                      "Loop Strength Reduction", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", +                    "Loop Strength Reduction", false, false) + +Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } | 
