summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp1487
1 files changed, 1487 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
new file mode 100644
index 000000000000..a6d4164c3645
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -0,0 +1,1487 @@
+//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a simple loop unroller. It works best when loops have
+// been canonicalized by the -indvars pass, allowing it to determine the trip
+// counts of loops easily.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/LoopUnrollAnalyzer.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <limits>
+#include <string>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
+ "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
+ cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
+ " the current top-most loop. This is somtimes preferred to reduce"
+ " compile time."));
+
+static cl::opt<unsigned>
+ UnrollThreshold("unroll-threshold", cl::Hidden,
+ cl::desc("The cost threshold for loop unrolling"));
+
+static cl::opt<unsigned> UnrollPartialThreshold(
+ "unroll-partial-threshold", cl::Hidden,
+ cl::desc("The cost threshold for partial loop unrolling"));
+
+static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
+ "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
+ cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
+ "to the threshold when aggressively unrolling a loop due to the "
+ "dynamic cost savings. If completely unrolling a loop will reduce "
+ "the total runtime from X to Y, we boost the loop unroll "
+ "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
+ "X/Y). This limit avoids excessive code bloat."));
+
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+ "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
+ cl::desc("Don't allow loop unrolling to simulate more than this number of"
+ "iterations when checking full unroll profitability"));
+
+static cl::opt<unsigned> UnrollCount(
+ "unroll-count", cl::Hidden,
+ cl::desc("Use this unroll count for all loops including those with "
+ "unroll_count pragma values, for testing purposes"));
+
+static cl::opt<unsigned> UnrollMaxCount(
+ "unroll-max-count", cl::Hidden,
+ cl::desc("Set the max unroll count for partial and runtime unrolling, for"
+ "testing purposes"));
+
+static cl::opt<unsigned> UnrollFullMaxCount(
+ "unroll-full-max-count", cl::Hidden,
+ cl::desc(
+ "Set the max unroll count for full unrolling, for testing purposes"));
+
+static cl::opt<unsigned> UnrollPeelCount(
+ "unroll-peel-count", cl::Hidden,
+ cl::desc("Set the unroll peeling count, for testing purposes"));
+
+static cl::opt<bool>
+ UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
+ cl::desc("Allows loops to be partially unrolled until "
+ "-unroll-threshold loop size is reached."));
+
+static cl::opt<bool> UnrollAllowRemainder(
+ "unroll-allow-remainder", cl::Hidden,
+ cl::desc("Allow generation of a loop remainder (extra iterations) "
+ "when unrolling a loop."));
+
+static cl::opt<bool>
+ UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
+ cl::desc("Unroll loops with run-time trip counts"));
+
+static cl::opt<unsigned> UnrollMaxUpperBound(
+ "unroll-max-upperbound", cl::init(8), cl::Hidden,
+ cl::desc(
+ "The max of trip count upper bound that is considered in unrolling"));
+
+static cl::opt<unsigned> PragmaUnrollThreshold(
+ "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
+ cl::desc("Unrolled size limit for loops with an unroll(full) or "
+ "unroll_count pragma."));
+
+static cl::opt<unsigned> FlatLoopTripCountThreshold(
+ "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
+ cl::desc("If the runtime tripcount for the loop is lower than the "
+ "threshold, the loop is considered as flat and will be less "
+ "aggressively unrolled."));
+
+static cl::opt<bool>
+ UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
+ cl::desc("Allows loops to be peeled when the dynamic "
+ "trip count is known to be low."));
+
+static cl::opt<bool> UnrollUnrollRemainder(
+ "unroll-remainder", cl::Hidden,
+ cl::desc("Allow the loop remainder to be unrolled."));
+
+// This option isn't ever intended to be enabled, it serves to allow
+// experiments to check the assumptions about when this kind of revisit is
+// necessary.
+static cl::opt<bool> UnrollRevisitChildLoops(
+ "unroll-revisit-child-loops", cl::Hidden,
+ cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
+ "This shouldn't typically be needed as child loops (or their "
+ "clones) were already visited."));
+
+/// A magic value for use with the Threshold parameter to indicate
+/// that the loop unroll should be performed regardless of how much
+/// code expansion would result.
+static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
+
+/// Gather the various unrolling parameters based on the defaults, compiler
+/// flags, TTI overrides and user specified parameters.
+TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
+ Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
+ BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
+ Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
+ Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
+ Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling,
+ Optional<bool> UserAllowProfileBasedPeeling,
+ Optional<unsigned> UserFullUnrollMaxCount) {
+ TargetTransformInfo::UnrollingPreferences UP;
+
+ // Set up the defaults
+ UP.Threshold = OptLevel > 2 ? 300 : 150;
+ UP.MaxPercentThresholdBoost = 400;
+ UP.OptSizeThreshold = 0;
+ UP.PartialThreshold = 150;
+ UP.PartialOptSizeThreshold = 0;
+ UP.Count = 0;
+ UP.PeelCount = 0;
+ UP.DefaultUnrollRuntimeCount = 8;
+ UP.MaxCount = std::numeric_limits<unsigned>::max();
+ UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
+ UP.BEInsns = 2;
+ UP.Partial = false;
+ UP.Runtime = false;
+ UP.AllowRemainder = true;
+ UP.UnrollRemainder = false;
+ UP.AllowExpensiveTripCount = false;
+ UP.Force = false;
+ UP.UpperBound = false;
+ UP.AllowPeeling = true;
+ UP.UnrollAndJam = false;
+ UP.PeelProfiledIterations = true;
+ UP.UnrollAndJamInnerLoopThreshold = 60;
+
+ // Override with any target specific settings
+ TTI.getUnrollingPreferences(L, SE, UP);
+
+ // Apply size attributes
+ bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
+ llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
+ if (OptForSize) {
+ UP.Threshold = UP.OptSizeThreshold;
+ UP.PartialThreshold = UP.PartialOptSizeThreshold;
+ UP.MaxPercentThresholdBoost = 100;
+ }
+
+ // Apply any user values specified by cl::opt
+ if (UnrollThreshold.getNumOccurrences() > 0)
+ UP.Threshold = UnrollThreshold;
+ if (UnrollPartialThreshold.getNumOccurrences() > 0)
+ UP.PartialThreshold = UnrollPartialThreshold;
+ if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
+ UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
+ if (UnrollMaxCount.getNumOccurrences() > 0)
+ UP.MaxCount = UnrollMaxCount;
+ if (UnrollFullMaxCount.getNumOccurrences() > 0)
+ UP.FullUnrollMaxCount = UnrollFullMaxCount;
+ if (UnrollPeelCount.getNumOccurrences() > 0)
+ UP.PeelCount = UnrollPeelCount;
+ if (UnrollAllowPartial.getNumOccurrences() > 0)
+ UP.Partial = UnrollAllowPartial;
+ if (UnrollAllowRemainder.getNumOccurrences() > 0)
+ UP.AllowRemainder = UnrollAllowRemainder;
+ if (UnrollRuntime.getNumOccurrences() > 0)
+ UP.Runtime = UnrollRuntime;
+ if (UnrollMaxUpperBound == 0)
+ UP.UpperBound = false;
+ if (UnrollAllowPeeling.getNumOccurrences() > 0)
+ UP.AllowPeeling = UnrollAllowPeeling;
+ if (UnrollUnrollRemainder.getNumOccurrences() > 0)
+ UP.UnrollRemainder = UnrollUnrollRemainder;
+
+ // Apply user values provided by argument
+ if (UserThreshold.hasValue()) {
+ UP.Threshold = *UserThreshold;
+ UP.PartialThreshold = *UserThreshold;
+ }
+ if (UserCount.hasValue())
+ UP.Count = *UserCount;
+ if (UserAllowPartial.hasValue())
+ UP.Partial = *UserAllowPartial;
+ if (UserRuntime.hasValue())
+ UP.Runtime = *UserRuntime;
+ if (UserUpperBound.hasValue())
+ UP.UpperBound = *UserUpperBound;
+ if (UserAllowPeeling.hasValue())
+ UP.AllowPeeling = *UserAllowPeeling;
+ if (UserAllowProfileBasedPeeling.hasValue())
+ UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
+ if (UserFullUnrollMaxCount.hasValue())
+ UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
+
+ return UP;
+}
+
+namespace {
+
+/// A struct to densely store the state of an instruction after unrolling at
+/// each iteration.
+///
+/// This is designed to work like a tuple of <Instruction *, int> for the
+/// purposes of hashing and lookup, but to be able to associate two boolean
+/// states with each key.
+struct UnrolledInstState {
+ Instruction *I;
+ int Iteration : 30;
+ unsigned IsFree : 1;
+ unsigned IsCounted : 1;
+};
+
+/// Hashing and equality testing for a set of the instruction states.
+struct UnrolledInstStateKeyInfo {
+ using PtrInfo = DenseMapInfo<Instruction *>;
+ using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
+
+ static inline UnrolledInstState getEmptyKey() {
+ return {PtrInfo::getEmptyKey(), 0, 0, 0};
+ }
+
+ static inline UnrolledInstState getTombstoneKey() {
+ return {PtrInfo::getTombstoneKey(), 0, 0, 0};
+ }
+
+ static inline unsigned getHashValue(const UnrolledInstState &S) {
+ return PairInfo::getHashValue({S.I, S.Iteration});
+ }
+
+ static inline bool isEqual(const UnrolledInstState &LHS,
+ const UnrolledInstState &RHS) {
+ return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
+ }
+};
+
+struct EstimatedUnrollCost {
+ /// The estimated cost after unrolling.
+ unsigned UnrolledCost;
+
+ /// The estimated dynamic cost of executing the instructions in the
+ /// rolled form.
+ unsigned RolledDynamicCost;
+};
+
+} // end anonymous namespace
+
+/// Figure out if the loop is worth full unrolling.
+///
+/// Complete loop unrolling can make some loads constant, and we need to know
+/// if that would expose any further optimization opportunities. This routine
+/// estimates this optimization. It computes cost of unrolled loop
+/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
+/// dynamic cost we mean that we won't count costs of blocks that are known not
+/// to be executed (i.e. if we have a branch in the loop and we know that at the
+/// given iteration its condition would be resolved to true, we won't add up the
+/// cost of the 'false'-block).
+/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
+/// the analysis failed (no benefits expected from the unrolling, or the loop is
+/// too big to analyze), the returned value is None.
+static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
+ const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
+ const SmallPtrSetImpl<const Value *> &EphValues,
+ const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
+ // We want to be able to scale offsets by the trip count and add more offsets
+ // to them without checking for overflows, and we already don't want to
+ // analyze *massive* trip counts, so we force the max to be reasonably small.
+ assert(UnrollMaxIterationsCountToAnalyze <
+ (unsigned)(std::numeric_limits<int>::max() / 2) &&
+ "The unroll iterations max is too large!");
+
+ // Only analyze inner loops. We can't properly estimate cost of nested loops
+ // and we won't visit inner loops again anyway.
+ if (!L->empty())
+ return None;
+
+ // Don't simulate loops with a big or unknown tripcount
+ if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
+ TripCount > UnrollMaxIterationsCountToAnalyze)
+ return None;
+
+ SmallSetVector<BasicBlock *, 16> BBWorklist;
+ SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
+ DenseMap<Value *, Constant *> SimplifiedValues;
+ SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
+
+ // The estimated cost of the unrolled form of the loop. We try to estimate
+ // this by simplifying as much as we can while computing the estimate.
+ unsigned UnrolledCost = 0;
+
+ // We also track the estimated dynamic (that is, actually executed) cost in
+ // the rolled form. This helps identify cases when the savings from unrolling
+ // aren't just exposing dead control flows, but actual reduced dynamic
+ // instructions due to the simplifications which we expect to occur after
+ // unrolling.
+ unsigned RolledDynamicCost = 0;
+
+ // We track the simplification of each instruction in each iteration. We use
+ // this to recursively merge costs into the unrolled cost on-demand so that
+ // we don't count the cost of any dead code. This is essentially a map from
+ // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
+ DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
+
+ // A small worklist used to accumulate cost of instructions from each
+ // observable and reached root in the loop.
+ SmallVector<Instruction *, 16> CostWorklist;
+
+ // PHI-used worklist used between iterations while accumulating cost.
+ SmallVector<Instruction *, 4> PHIUsedList;
+
+ // Helper function to accumulate cost for instructions in the loop.
+ auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
+ assert(Iteration >= 0 && "Cannot have a negative iteration!");
+ assert(CostWorklist.empty() && "Must start with an empty cost list");
+ assert(PHIUsedList.empty() && "Must start with an empty phi used list");
+ CostWorklist.push_back(&RootI);
+ for (;; --Iteration) {
+ do {
+ Instruction *I = CostWorklist.pop_back_val();
+
+ // InstCostMap only uses I and Iteration as a key, the other two values
+ // don't matter here.
+ auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
+ if (CostIter == InstCostMap.end())
+ // If an input to a PHI node comes from a dead path through the loop
+ // we may have no cost data for it here. What that actually means is
+ // that it is free.
+ continue;
+ auto &Cost = *CostIter;
+ if (Cost.IsCounted)
+ // Already counted this instruction.
+ continue;
+
+ // Mark that we are counting the cost of this instruction now.
+ Cost.IsCounted = true;
+
+ // If this is a PHI node in the loop header, just add it to the PHI set.
+ if (auto *PhiI = dyn_cast<PHINode>(I))
+ if (PhiI->getParent() == L->getHeader()) {
+ assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
+ "inherently simplify during unrolling.");
+ if (Iteration == 0)
+ continue;
+
+ // Push the incoming value from the backedge into the PHI used list
+ // if it is an in-loop instruction. We'll use this to populate the
+ // cost worklist for the next iteration (as we count backwards).
+ if (auto *OpI = dyn_cast<Instruction>(
+ PhiI->getIncomingValueForBlock(L->getLoopLatch())))
+ if (L->contains(OpI))
+ PHIUsedList.push_back(OpI);
+ continue;
+ }
+
+ // First accumulate the cost of this instruction.
+ if (!Cost.IsFree) {
+ UnrolledCost += TTI.getUserCost(I);
+ LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
+ << Iteration << "): ");
+ LLVM_DEBUG(I->dump());
+ }
+
+ // We must count the cost of every operand which is not free,
+ // recursively. If we reach a loop PHI node, simply add it to the set
+ // to be considered on the next iteration (backwards!).
+ for (Value *Op : I->operands()) {
+ // Check whether this operand is free due to being a constant or
+ // outside the loop.
+ auto *OpI = dyn_cast<Instruction>(Op);
+ if (!OpI || !L->contains(OpI))
+ continue;
+
+ // Otherwise accumulate its cost.
+ CostWorklist.push_back(OpI);
+ }
+ } while (!CostWorklist.empty());
+
+ if (PHIUsedList.empty())
+ // We've exhausted the search.
+ break;
+
+ assert(Iteration > 0 &&
+ "Cannot track PHI-used values past the first iteration!");
+ CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
+ PHIUsedList.clear();
+ }
+ };
+
+ // Ensure that we don't violate the loop structure invariants relied on by
+ // this analysis.
+ assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
+ assert(L->isLCSSAForm(DT) &&
+ "Must have loops in LCSSA form to track live-out values.");
+
+ LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
+
+ // Simulate execution of each iteration of the loop counting instructions,
+ // which would be simplified.
+ // Since the same load will take different values on different iterations,
+ // we literally have to go through all loop's iterations.
+ for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+ LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
+
+ // Prepare for the iteration by collecting any simplified entry or backedge
+ // inputs.
+ for (Instruction &I : *L->getHeader()) {
+ auto *PHI = dyn_cast<PHINode>(&I);
+ if (!PHI)
+ break;
+
+ // The loop header PHI nodes must have exactly two input: one from the
+ // loop preheader and one from the loop latch.
+ assert(
+ PHI->getNumIncomingValues() == 2 &&
+ "Must have an incoming value only for the preheader and the latch.");
+
+ Value *V = PHI->getIncomingValueForBlock(
+ Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
+ Constant *C = dyn_cast<Constant>(V);
+ if (Iteration != 0 && !C)
+ C = SimplifiedValues.lookup(V);
+ if (C)
+ SimplifiedInputValues.push_back({PHI, C});
+ }
+
+ // Now clear and re-populate the map for the next iteration.
+ SimplifiedValues.clear();
+ while (!SimplifiedInputValues.empty())
+ SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
+
+ UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
+
+ BBWorklist.clear();
+ BBWorklist.insert(L->getHeader());
+ // Note that we *must not* cache the size, this loop grows the worklist.
+ for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+ BasicBlock *BB = BBWorklist[Idx];
+
+ // Visit all instructions in the given basic block and try to simplify
+ // it. We don't change the actual IR, just count optimization
+ // opportunities.
+ for (Instruction &I : *BB) {
+ // These won't get into the final code - don't even try calculating the
+ // cost for them.
+ if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
+ continue;
+
+ // Track this instruction's expected baseline cost when executing the
+ // rolled loop form.
+ RolledDynamicCost += TTI.getUserCost(&I);
+
+ // Visit the instruction to analyze its loop cost after unrolling,
+ // and if the visitor returns true, mark the instruction as free after
+ // unrolling and continue.
+ bool IsFree = Analyzer.visit(I);
+ bool Inserted = InstCostMap.insert({&I, (int)Iteration,
+ (unsigned)IsFree,
+ /*IsCounted*/ false}).second;
+ (void)Inserted;
+ assert(Inserted && "Cannot have a state for an unvisited instruction!");
+
+ if (IsFree)
+ continue;
+
+ // Can't properly model a cost of a call.
+ // FIXME: With a proper cost model we should be able to do it.
+ if (auto *CI = dyn_cast<CallInst>(&I)) {
+ const Function *Callee = CI->getCalledFunction();
+ if (!Callee || TTI.isLoweredToCall(Callee)) {
+ LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
+ return None;
+ }
+ }
+
+ // If the instruction might have a side-effect recursively account for
+ // the cost of it and all the instructions leading up to it.
+ if (I.mayHaveSideEffects())
+ AddCostRecursively(I, Iteration);
+
+ // If unrolled body turns out to be too big, bail out.
+ if (UnrolledCost > MaxUnrolledLoopSize) {
+ LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
+ << " UnrolledCost: " << UnrolledCost
+ << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
+ << "\n");
+ return None;
+ }
+ }
+
+ Instruction *TI = BB->getTerminator();
+
+ // Add in the live successors by first checking whether we have terminator
+ // that may be simplified based on the values simplified by this call.
+ BasicBlock *KnownSucc = nullptr;
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional()) {
+ if (Constant *SimpleCond =
+ SimplifiedValues.lookup(BI->getCondition())) {
+ // Just take the first successor if condition is undef
+ if (isa<UndefValue>(SimpleCond))
+ KnownSucc = BI->getSuccessor(0);
+ else if (ConstantInt *SimpleCondVal =
+ dyn_cast<ConstantInt>(SimpleCond))
+ KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (Constant *SimpleCond =
+ SimplifiedValues.lookup(SI->getCondition())) {
+ // Just take the first successor if condition is undef
+ if (isa<UndefValue>(SimpleCond))
+ KnownSucc = SI->getSuccessor(0);
+ else if (ConstantInt *SimpleCondVal =
+ dyn_cast<ConstantInt>(SimpleCond))
+ KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
+ }
+ }
+ if (KnownSucc) {
+ if (L->contains(KnownSucc))
+ BBWorklist.insert(KnownSucc);
+ else
+ ExitWorklist.insert({BB, KnownSucc});
+ continue;
+ }
+
+ // Add BB's successors to the worklist.
+ for (BasicBlock *Succ : successors(BB))
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ else
+ ExitWorklist.insert({BB, Succ});
+ AddCostRecursively(*TI, Iteration);
+ }
+
+ // If we found no optimization opportunities on the first iteration, we
+ // won't find them on later ones too.
+ if (UnrolledCost == RolledDynamicCost) {
+ LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
+ << " UnrolledCost: " << UnrolledCost << "\n");
+ return None;
+ }
+ }
+
+ while (!ExitWorklist.empty()) {
+ BasicBlock *ExitingBB, *ExitBB;
+ std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
+
+ for (Instruction &I : *ExitBB) {
+ auto *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ break;
+
+ Value *Op = PN->getIncomingValueForBlock(ExitingBB);
+ if (auto *OpI = dyn_cast<Instruction>(Op))
+ if (L->contains(OpI))
+ AddCostRecursively(*OpI, TripCount - 1);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Analysis finished:\n"
+ << "UnrolledCost: " << UnrolledCost << ", "
+ << "RolledDynamicCost: " << RolledDynamicCost << "\n");
+ return {{UnrolledCost, RolledDynamicCost}};
+}
+
+/// ApproximateLoopSize - Approximate the size of the loop.
+unsigned llvm::ApproximateLoopSize(
+ const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
+ const TargetTransformInfo &TTI,
+ const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
+ CodeMetrics Metrics;
+ for (BasicBlock *BB : L->blocks())
+ Metrics.analyzeBasicBlock(BB, TTI, EphValues);
+ NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
+ Convergent = Metrics.convergent;
+
+ unsigned LoopSize = Metrics.NumInsts;
+
+ // Don't allow an estimate of size zero. This would allows unrolling of loops
+ // with huge iteration counts, which is a compile time problem even if it's
+ // not a problem for code quality. Also, the code using this size may assume
+ // that each loop has at least three instructions (likely a conditional
+ // branch, a comparison feeding that branch, and some kind of loop increment
+ // feeding that comparison instruction).
+ LoopSize = std::max(LoopSize, BEInsns + 1);
+
+ return LoopSize;
+}
+
+// Returns the loop hint metadata node with the given name (for example,
+// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
+// returned.
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+ if (MDNode *LoopID = L->getLoopID())
+ return GetUnrollMetadata(LoopID, Name);
+ return nullptr;
+}
+
+// Returns true if the loop has an unroll(full) pragma.
+static bool HasUnrollFullPragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
+}
+
+// Returns true if the loop has an unroll(enable) pragma. This metadata is used
+// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
+static bool HasUnrollEnablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
+}
+
+// Returns true if the loop has an runtime unroll(disable) pragma.
+static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
+}
+
+// If loop has an unroll_count pragma return the (necessarily
+// positive) value from the pragma. Otherwise return 0.
+static unsigned UnrollCountPragmaValue(const Loop *L) {
+ MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
+ if (MD) {
+ assert(MD->getNumOperands() == 2 &&
+ "Unroll count hint metadata should have two operands.");
+ unsigned Count =
+ mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
+ assert(Count >= 1 && "Unroll count must be positive.");
+ return Count;
+ }
+ return 0;
+}
+
+// Computes the boosting factor for complete unrolling.
+// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
+// be beneficial to fully unroll the loop even if unrolledcost is large. We
+// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
+// the unroll threshold.
+static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
+ unsigned MaxPercentThresholdBoost) {
+ if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
+ return 100;
+ else if (Cost.UnrolledCost != 0)
+ // The boosting factor is RolledDynamicCost / UnrolledCost
+ return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
+ MaxPercentThresholdBoost);
+ else
+ return MaxPercentThresholdBoost;
+}
+
+// Returns loop size estimation for unrolled loop.
+static uint64_t getUnrolledLoopSize(
+ unsigned LoopSize,
+ TargetTransformInfo::UnrollingPreferences &UP) {
+ assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
+ return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
+}
+
+// Returns true if unroll count was set explicitly.
+// Calculates unroll count and writes it to UP.Count.
+// Unless IgnoreUser is true, will also use metadata and command-line options
+// that are specific to to the LoopUnroll pass (which, for instance, are
+// irrelevant for the LoopUnrollAndJam pass).
+// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
+// many LoopUnroll-specific options. The shared functionality should be
+// refactored into it own function.
+bool llvm::computeUnrollCount(
+ Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
+ ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
+ OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
+ bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
+ TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
+
+ // Check for explicit Count.
+ // 1st priority is unroll count set by "unroll-count" option.
+ bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
+ if (UserUnrollCount) {
+ UP.Count = UnrollCount;
+ UP.AllowExpensiveTripCount = true;
+ UP.Force = true;
+ if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
+ return true;
+ }
+
+ // 2nd priority is unroll count set by pragma.
+ unsigned PragmaCount = UnrollCountPragmaValue(L);
+ if (PragmaCount > 0) {
+ UP.Count = PragmaCount;
+ UP.Runtime = true;
+ UP.AllowExpensiveTripCount = true;
+ UP.Force = true;
+ if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
+ getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
+ return true;
+ }
+ bool PragmaFullUnroll = HasUnrollFullPragma(L);
+ if (PragmaFullUnroll && TripCount != 0) {
+ UP.Count = TripCount;
+ if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
+ return false;
+ }
+
+ bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
+ bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
+ PragmaEnableUnroll || UserUnrollCount;
+
+ if (ExplicitUnroll && TripCount != 0) {
+ // If the loop has an unrolling pragma, we want to be more aggressive with
+ // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
+ // value which is larger than the default limits.
+ UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
+ UP.PartialThreshold =
+ std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
+ }
+
+ // 3rd priority is full unroll count.
+ // Full unroll makes sense only when TripCount or its upper bound could be
+ // statically calculated.
+ // Also we need to check if we exceed FullUnrollMaxCount.
+ // If using the upper bound to unroll, TripMultiple should be set to 1 because
+ // we do not know when loop may exit.
+
+ // We can unroll by the upper bound amount if it's generally allowed or if
+ // we know that the loop is executed either the upper bound or zero times.
+ // (MaxOrZero unrolling keeps only the first loop test, so the number of
+ // loop tests remains the same compared to the non-unrolled version, whereas
+ // the generic upper bound unrolling keeps all but the last loop test so the
+ // number of loop tests goes up which may end up being worse on targets with
+ // constrained branch predictor resources so is controlled by an option.)
+ // In addition we only unroll small upper bounds.
+ unsigned FullUnrollMaxTripCount = MaxTripCount;
+ if (!(UP.UpperBound || MaxOrZero) ||
+ FullUnrollMaxTripCount > UnrollMaxUpperBound)
+ FullUnrollMaxTripCount = 0;
+
+ // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
+ // compute the former when the latter is zero.
+ unsigned ExactTripCount = TripCount;
+ assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
+ "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
+
+ unsigned FullUnrollTripCount =
+ ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
+ UP.Count = FullUnrollTripCount;
+ if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
+ // When computing the unrolled size, note that BEInsns are not replicated
+ // like the rest of the loop body.
+ if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
+ UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
+ TripCount = FullUnrollTripCount;
+ TripMultiple = UP.UpperBound ? 1 : TripMultiple;
+ return ExplicitUnroll;
+ } else {
+ // The loop isn't that small, but we still can fully unroll it if that
+ // helps to remove a significant number of instructions.
+ // To check that, run additional analysis on the loop.
+ if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
+ L, FullUnrollTripCount, DT, SE, EphValues, TTI,
+ UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
+ unsigned Boost =
+ getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
+ if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
+ UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
+ TripCount = FullUnrollTripCount;
+ TripMultiple = UP.UpperBound ? 1 : TripMultiple;
+ return ExplicitUnroll;
+ }
+ }
+ }
+ }
+
+ // 4th priority is loop peeling.
+ computePeelCount(L, LoopSize, UP, TripCount, SE);
+ if (UP.PeelCount) {
+ UP.Runtime = false;
+ UP.Count = 1;
+ return ExplicitUnroll;
+ }
+
+ // 5th priority is partial unrolling.
+ // Try partial unroll only when TripCount could be statically calculated.
+ if (TripCount) {
+ UP.Partial |= ExplicitUnroll;
+ if (!UP.Partial) {
+ LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
+ << "-unroll-allow-partial not given\n");
+ UP.Count = 0;
+ return false;
+ }
+ if (UP.Count == 0)
+ UP.Count = TripCount;
+ if (UP.PartialThreshold != NoThreshold) {
+ // Reduce unroll count to be modulo of TripCount for partial unrolling.
+ if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
+ UP.Count =
+ (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
+ (LoopSize - UP.BEInsns);
+ if (UP.Count > UP.MaxCount)
+ UP.Count = UP.MaxCount;
+ while (UP.Count != 0 && TripCount % UP.Count != 0)
+ UP.Count--;
+ if (UP.AllowRemainder && UP.Count <= 1) {
+ // If there is no Count that is modulo of TripCount, set Count to
+ // largest power-of-two factor that satisfies the threshold limit.
+ // As we'll create fixup loop, do the type of unrolling only if
+ // remainder loop is allowed.
+ UP.Count = UP.DefaultUnrollRuntimeCount;
+ while (UP.Count != 0 &&
+ getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
+ UP.Count >>= 1;
+ }
+ if (UP.Count < 2) {
+ if (PragmaEnableUnroll)
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE,
+ "UnrollAsDirectedTooLarge",
+ L->getStartLoc(), L->getHeader())
+ << "Unable to unroll loop as directed by unroll(enable) "
+ "pragma "
+ "because unrolled size is too large.";
+ });
+ UP.Count = 0;
+ }
+ } else {
+ UP.Count = TripCount;
+ }
+ if (UP.Count > UP.MaxCount)
+ UP.Count = UP.MaxCount;
+ if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
+ UP.Count != TripCount)
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE,
+ "FullUnrollAsDirectedTooLarge",
+ L->getStartLoc(), L->getHeader())
+ << "Unable to fully unroll loop as directed by unroll pragma "
+ "because "
+ "unrolled size is too large.";
+ });
+ LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count
+ << "\n");
+ return ExplicitUnroll;
+ }
+ assert(TripCount == 0 &&
+ "All cases when TripCount is constant should be covered here.");
+ if (PragmaFullUnroll)
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(
+ DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
+ L->getStartLoc(), L->getHeader())
+ << "Unable to fully unroll loop as directed by unroll(full) "
+ "pragma "
+ "because loop has a runtime trip count.";
+ });
+
+ // 6th priority is runtime unrolling.
+ // Don't unroll a runtime trip count loop when it is disabled.
+ if (HasRuntimeUnrollDisablePragma(L)) {
+ UP.Count = 0;
+ return false;
+ }
+
+ // Don't unroll a small upper bound loop unless user or TTI asked to do so.
+ if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
+ UP.Count = 0;
+ return false;
+ }
+
+ // Check if the runtime trip count is too small when profile is available.
+ if (L->getHeader()->getParent()->hasProfileData()) {
+ if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
+ if (*ProfileTripCount < FlatLoopTripCountThreshold)
+ return false;
+ else
+ UP.AllowExpensiveTripCount = true;
+ }
+ }
+
+ // Reduce count based on the type of unrolling and the threshold values.
+ UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
+ if (!UP.Runtime) {
+ LLVM_DEBUG(
+ dbgs() << " will not try to unroll loop with runtime trip count "
+ << "-unroll-runtime not given\n");
+ UP.Count = 0;
+ return false;
+ }
+ if (UP.Count == 0)
+ UP.Count = UP.DefaultUnrollRuntimeCount;
+
+ // Reduce unroll count to be the largest power-of-two factor of
+ // the original count which satisfies the threshold limit.
+ while (UP.Count != 0 &&
+ getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
+ UP.Count >>= 1;
+
+#ifndef NDEBUG
+ unsigned OrigCount = UP.Count;
+#endif
+
+ if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
+ while (UP.Count != 0 && TripMultiple % UP.Count != 0)
+ UP.Count >>= 1;
+ LLVM_DEBUG(
+ dbgs() << "Remainder loop is restricted (that could architecture "
+ "specific or because the loop contains a convergent "
+ "instruction), so unroll count must divide the trip "
+ "multiple, "
+ << TripMultiple << ". Reducing unroll count from " << OrigCount
+ << " to " << UP.Count << ".\n");
+
+ using namespace ore;
+
+ if (PragmaCount > 0 && !UP.AllowRemainder)
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE,
+ "DifferentUnrollCountFromDirected",
+ L->getStartLoc(), L->getHeader())
+ << "Unable to unroll loop the number of times directed by "
+ "unroll_count pragma because remainder loop is restricted "
+ "(that could architecture specific or because the loop "
+ "contains a convergent instruction) and so must have an "
+ "unroll "
+ "count that divides the loop trip multiple of "
+ << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
+ << NV("UnrollCount", UP.Count) << " time(s).";
+ });
+ }
+
+ if (UP.Count > UP.MaxCount)
+ UP.Count = UP.MaxCount;
+
+ if (MaxTripCount && UP.Count > MaxTripCount)
+ UP.Count = MaxTripCount;
+
+ LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
+ << "\n");
+ if (UP.Count < 2)
+ UP.Count = 0;
+ return ExplicitUnroll;
+}
+
+static LoopUnrollResult tryToUnrollLoop(
+ Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
+ const TargetTransformInfo &TTI, AssumptionCache &AC,
+ OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
+ ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
+ bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
+ Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
+ Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
+ Optional<bool> ProvidedAllowPeeling,
+ Optional<bool> ProvidedAllowProfileBasedPeeling,
+ Optional<unsigned> ProvidedFullUnrollMaxCount) {
+ LLVM_DEBUG(dbgs() << "Loop Unroll: F["
+ << L->getHeader()->getParent()->getName() << "] Loop %"
+ << L->getHeader()->getName() << "\n");
+ TransformationMode TM = hasUnrollTransformation(L);
+ if (TM & TM_Disable)
+ return LoopUnrollResult::Unmodified;
+ if (!L->isLoopSimplifyForm()) {
+ LLVM_DEBUG(
+ dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // When automtatic unrolling is disabled, do not unroll unless overridden for
+ // this loop.
+ if (OnlyWhenForced && !(TM & TM_Enable))
+ return LoopUnrollResult::Unmodified;
+
+ bool OptForSize = L->getHeader()->getParent()->hasOptSize();
+ unsigned NumInlineCandidates;
+ bool NotDuplicatable;
+ bool Convergent;
+ TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
+ L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
+ ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
+ ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
+ ProvidedFullUnrollMaxCount);
+
+ // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
+ // as threshold later on.
+ if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
+ !OptForSize)
+ return LoopUnrollResult::Unmodified;
+
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
+
+ unsigned LoopSize =
+ ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
+ TTI, EphValues, UP.BEInsns);
+ LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+ if (NotDuplicatable) {
+ LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
+ << " instructions.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
+ // later), to (fully) unroll loops, if it does not increase code size.
+ if (OptForSize)
+ UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
+
+ if (NumInlineCandidates != 0) {
+ LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // Find trip count and trip multiple if count is not available
+ unsigned TripCount = 0;
+ unsigned TripMultiple = 1;
+ // If there are multiple exiting blocks but one of them is the latch, use the
+ // latch for the trip count estimation. Otherwise insist on a single exiting
+ // block for the trip count estimation.
+ BasicBlock *ExitingBlock = L->getLoopLatch();
+ if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
+ ExitingBlock = L->getExitingBlock();
+ if (ExitingBlock) {
+ TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
+ TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
+ }
+
+ // If the loop contains a convergent operation, the prelude we'd add
+ // to do the first few instructions before we hit the unrolled loop
+ // is unsafe -- it adds a control-flow dependency to the convergent
+ // operation. Therefore restrict remainder loop (try unrollig without).
+ //
+ // TODO: This is quite conservative. In practice, convergent_op()
+ // is likely to be called unconditionally in the loop. In this
+ // case, the program would be ill-formed (on most architectures)
+ // unless n were the same on all threads in a thread group.
+ // Assuming n is the same on all threads, any kind of unrolling is
+ // safe. But currently llvm's notion of convergence isn't powerful
+ // enough to express this.
+ if (Convergent)
+ UP.AllowRemainder = false;
+
+ // Try to find the trip count upper bound if we cannot find the exact trip
+ // count.
+ unsigned MaxTripCount = 0;
+ bool MaxOrZero = false;
+ if (!TripCount) {
+ MaxTripCount = SE.getSmallConstantMaxTripCount(L);
+ MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
+ }
+
+ // computeUnrollCount() decides whether it is beneficial to use upper bound to
+ // fully unroll the loop.
+ bool UseUpperBound = false;
+ bool IsCountSetExplicitly = computeUnrollCount(
+ L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
+ TripMultiple, LoopSize, UP, UseUpperBound);
+ if (!UP.Count)
+ return LoopUnrollResult::Unmodified;
+ // Unroll factor (Count) must be less or equal to TripCount.
+ if (TripCount && UP.Count > TripCount)
+ UP.Count = TripCount;
+
+ // Save loop properties before it is transformed.
+ MDNode *OrigLoopID = L->getLoopID();
+
+ // Unroll the loop.
+ Loop *RemainderLoop = nullptr;
+ LoopUnrollResult UnrollResult = UnrollLoop(
+ L,
+ {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
+ UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
+ ForgetAllSCEV},
+ LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
+ if (UnrollResult == LoopUnrollResult::Unmodified)
+ return LoopUnrollResult::Unmodified;
+
+ if (RemainderLoop) {
+ Optional<MDNode *> RemainderLoopID =
+ makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
+ LLVMLoopUnrollFollowupRemainder});
+ if (RemainderLoopID.hasValue())
+ RemainderLoop->setLoopID(RemainderLoopID.getValue());
+ }
+
+ if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
+ Optional<MDNode *> NewLoopID =
+ makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
+ LLVMLoopUnrollFollowupUnrolled});
+ if (NewLoopID.hasValue()) {
+ L->setLoopID(NewLoopID.getValue());
+
+ // Do not setLoopAlreadyUnrolled if loop attributes have been specified
+ // explicitly.
+ return UnrollResult;
+ }
+ }
+
+ // If loop has an unroll count pragma or unrolled by explicitly set count
+ // mark loop as unrolled to prevent unrolling beyond that requested.
+ // If the loop was peeled, we already "used up" the profile information
+ // we had, so we don't want to unroll or peel again.
+ if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
+ (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount)))
+ L->setLoopAlreadyUnrolled();
+
+ return UnrollResult;
+}
+
+namespace {
+
+class LoopUnroll : public LoopPass {
+public:
+ static char ID; // Pass ID, replacement for typeid
+
+ int OptLevel;
+
+ /// If false, use a cost model to determine whether unrolling of a loop is
+ /// profitable. If true, only loops that explicitly request unrolling via
+ /// metadata are considered. All other loops are skipped.
+ bool OnlyWhenForced;
+
+ /// If false, when SCEV is invalidated, only forget everything in the
+ /// top-most loop (call forgetTopMostLoop), of the loop being processed.
+ /// Otherwise, forgetAllLoops and rebuild when needed next.
+ bool ForgetAllSCEV;
+
+ Optional<unsigned> ProvidedCount;
+ Optional<unsigned> ProvidedThreshold;
+ Optional<bool> ProvidedAllowPartial;
+ Optional<bool> ProvidedRuntime;
+ Optional<bool> ProvidedUpperBound;
+ Optional<bool> ProvidedAllowPeeling;
+ Optional<bool> ProvidedAllowProfileBasedPeeling;
+ Optional<unsigned> ProvidedFullUnrollMaxCount;
+
+ LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
+ bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
+ Optional<unsigned> Count = None,
+ Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
+ Optional<bool> UpperBound = None,
+ Optional<bool> AllowPeeling = None,
+ Optional<bool> AllowProfileBasedPeeling = None,
+ Optional<unsigned> ProvidedFullUnrollMaxCount = None)
+ : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
+ ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
+ ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
+ ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
+ ProvidedAllowPeeling(AllowPeeling),
+ ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
+ ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
+ initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
+ // pass. Function analyses need to be preserved across loop transformations
+ // but ORE cannot be preserved (see comment before the pass definition).
+ OptimizationRemarkEmitter ORE(&F);
+ bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+
+ LoopUnrollResult Result = tryToUnrollLoop(
+ L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
+ OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
+ ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
+ ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
+ ProvidedFullUnrollMaxCount);
+
+ if (Result == LoopUnrollResult::FullyUnrolled)
+ LPM.markLoopAsDeleted(*L);
+
+ return Result != LoopUnrollResult::Unmodified;
+ }
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ // FIXME: Loop passes are required to preserve domtree, and for now we just
+ // recreate dom info if anything gets unrolled.
+ getLoopAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char LoopUnroll::ID = 0;
+
+INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+
+Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
+ bool ForgetAllSCEV, int Threshold, int Count,
+ int AllowPartial, int Runtime, int UpperBound,
+ int AllowPeeling) {
+ // TODO: It would make more sense for this function to take the optionals
+ // directly, but that's dangerous since it would silently break out of tree
+ // callers.
+ return new LoopUnroll(
+ OptLevel, OnlyWhenForced, ForgetAllSCEV,
+ Threshold == -1 ? None : Optional<unsigned>(Threshold),
+ Count == -1 ? None : Optional<unsigned>(Count),
+ AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
+ Runtime == -1 ? None : Optional<bool>(Runtime),
+ UpperBound == -1 ? None : Optional<bool>(UpperBound),
+ AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
+}
+
+Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
+ bool ForgetAllSCEV) {
+ return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
+ 0, 0, 0, 0);
+}
+
+PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &Updater) {
+ const auto &FAM =
+ AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
+ Function *F = L.getHeader()->getParent();
+
+ auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
+ // FIXME: This should probably be optional rather than required.
+ if (!ORE)
+ report_fatal_error(
+ "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
+ "cached at a higher level");
+
+ // Keep track of the previous loop structure so we can identify new loops
+ // created by unrolling.
+ Loop *ParentL = L.getParentLoop();
+ SmallPtrSet<Loop *, 4> OldLoops;
+ if (ParentL)
+ OldLoops.insert(ParentL->begin(), ParentL->end());
+ else
+ OldLoops.insert(AR.LI.begin(), AR.LI.end());
+
+ std::string LoopName = L.getName();
+
+ bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
+ /*BFI*/ nullptr, /*PSI*/ nullptr,
+ /*PreserveLCSSA*/ true, OptLevel,
+ OnlyWhenForced, ForgetSCEV, /*Count*/ None,
+ /*Threshold*/ None, /*AllowPartial*/ false,
+ /*Runtime*/ false, /*UpperBound*/ false,
+ /*AllowPeeling*/ false,
+ /*AllowProfileBasedPeeling*/ false,
+ /*FullUnrollMaxCount*/ None) !=
+ LoopUnrollResult::Unmodified;
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ // The parent must not be damaged by unrolling!
+#ifndef NDEBUG
+ if (ParentL)
+ ParentL->verifyLoop();
+#endif
+
+ // Unrolling can do several things to introduce new loops into a loop nest:
+ // - Full unrolling clones child loops within the current loop but then
+ // removes the current loop making all of the children appear to be new
+ // sibling loops.
+ //
+ // When a new loop appears as a sibling loop after fully unrolling,
+ // its nesting structure has fundamentally changed and we want to revisit
+ // it to reflect that.
+ //
+ // When unrolling has removed the current loop, we need to tell the
+ // infrastructure that it is gone.
+ //
+ // Finally, we support a debugging/testing mode where we revisit child loops
+ // as well. These are not expected to require further optimizations as either
+ // they or the loop they were cloned from have been directly visited already.
+ // But the debugging mode allows us to check this assumption.
+ bool IsCurrentLoopValid = false;
+ SmallVector<Loop *, 4> SibLoops;
+ if (ParentL)
+ SibLoops.append(ParentL->begin(), ParentL->end());
+ else
+ SibLoops.append(AR.LI.begin(), AR.LI.end());
+ erase_if(SibLoops, [&](Loop *SibLoop) {
+ if (SibLoop == &L) {
+ IsCurrentLoopValid = true;
+ return true;
+ }
+
+ // Otherwise erase the loop from the list if it was in the old loops.
+ return OldLoops.count(SibLoop) != 0;
+ });
+ Updater.addSiblingLoops(SibLoops);
+
+ if (!IsCurrentLoopValid) {
+ Updater.markLoopAsDeleted(L, LoopName);
+ } else {
+ // We can only walk child loops if the current loop remained valid.
+ if (UnrollRevisitChildLoops) {
+ // Walk *all* of the child loops.
+ SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
+ Updater.addChildLoops(ChildLoops);
+ }
+ }
+
+ return getLoopPassPreservedAnalyses();
+}
+
+template <typename RangeT>
+static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
+ SmallVector<Loop *, 8> Worklist;
+ // We use an internal worklist to build up the preorder traversal without
+ // recursion.
+ SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
+
+ for (Loop *RootL : Loops) {
+ assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
+ assert(PreOrderWorklist.empty() &&
+ "Must start with an empty preorder walk worklist.");
+ PreOrderWorklist.push_back(RootL);
+ do {
+ Loop *L = PreOrderWorklist.pop_back_val();
+ PreOrderWorklist.append(L->begin(), L->end());
+ PreOrderLoops.push_back(L);
+ } while (!PreOrderWorklist.empty());
+
+ Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
+ PreOrderLoops.clear();
+ }
+ return Worklist;
+}
+
+PreservedAnalyses LoopUnrollPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
+ auto &LI = AM.getResult<LoopAnalysis>(F);
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+
+ LoopAnalysisManager *LAM = nullptr;
+ if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
+ LAM = &LAMProxy->getManager();
+
+ const ModuleAnalysisManager &MAM =
+ AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
+ ProfileSummaryInfo *PSI =
+ MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
+ auto *BFI = (PSI && PSI->hasProfileSummary()) ?
+ &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
+
+ bool Changed = false;
+
+ // The unroller requires loops to be in simplified form, and also needs LCSSA.
+ // Since simplification may add new inner loops, it has to run before the
+ // legality and profitability checks. This means running the loop unroller
+ // will simplify all loops, regardless of whether anything end up being
+ // unrolled.
+ for (auto &L : LI) {
+ Changed |=
+ simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
+ Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
+ }
+
+ SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
+
+ while (!Worklist.empty()) {
+ // Because the LoopInfo stores the loops in RPO, we walk the worklist
+ // from back to front so that we work forward across the CFG, which
+ // for unrolling is only needed to get optimization remarks emitted in
+ // a forward order.
+ Loop &L = *Worklist.pop_back_val();
+#ifndef NDEBUG
+ Loop *ParentL = L.getParentLoop();
+#endif
+
+ // Check if the profile summary indicates that the profiled application
+ // has a huge working set size, in which case we disable peeling to avoid
+ // bloating it further.
+ Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
+ if (PSI && PSI->hasHugeWorkingSetSize())
+ LocalAllowPeeling = false;
+ std::string LoopName = L.getName();
+ // The API here is quite complex to call and we allow to select some
+ // flavors of unrolling during construction time (by setting UnrollOpts).
+ LoopUnrollResult Result = tryToUnrollLoop(
+ &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
+ /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
+ UnrollOpts.ForgetSCEV, /*Count*/ None,
+ /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
+ UnrollOpts.AllowUpperBound, LocalAllowPeeling,
+ UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
+ Changed |= Result != LoopUnrollResult::Unmodified;
+
+ // The parent must not be damaged by unrolling!
+#ifndef NDEBUG
+ if (Result != LoopUnrollResult::Unmodified && ParentL)
+ ParentL->verifyLoop();
+#endif
+
+ // Clear any cached analysis results for L if we removed it completely.
+ if (LAM && Result == LoopUnrollResult::FullyUnrolled)
+ LAM->clear(L, LoopName);
+ }
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ return getLoopPassPreservedAnalyses();
+}