diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp | 1487 | 
1 files changed, 1487 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp new file mode 100644 index 000000000000..a6d4164c3645 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp @@ -0,0 +1,1487 @@ +//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass implements a simple loop unroller.  It works best when loops have +// been canonicalized by the -indvars pass, allowing it to determine the trip +// counts of loops easily. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopUnrollPass.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/LazyBlockFrequencyInfo.h" +#include "llvm/Analysis/LoopAnalysisManager.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/LoopUnrollAnalyzer.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/LoopPassManager.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/LoopSimplify.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <limits> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" + +cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( +    "forget-scev-loop-unroll", cl::init(false), cl::Hidden, +    cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" +             " the current top-most loop. This is somtimes preferred to reduce" +             " compile time.")); + +static cl::opt<unsigned> +    UnrollThreshold("unroll-threshold", cl::Hidden, +                    cl::desc("The cost threshold for loop unrolling")); + +static cl::opt<unsigned> UnrollPartialThreshold( +    "unroll-partial-threshold", cl::Hidden, +    cl::desc("The cost threshold for partial loop unrolling")); + +static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( +    "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, +    cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " +             "to the threshold when aggressively unrolling a loop due to the " +             "dynamic cost savings. If completely unrolling a loop will reduce " +             "the total runtime from X to Y, we boost the loop unroll " +             "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " +             "X/Y). This limit avoids excessive code bloat.")); + +static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( +    "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, +    cl::desc("Don't allow loop unrolling to simulate more than this number of" +             "iterations when checking full unroll profitability")); + +static cl::opt<unsigned> UnrollCount( +    "unroll-count", cl::Hidden, +    cl::desc("Use this unroll count for all loops including those with " +             "unroll_count pragma values, for testing purposes")); + +static cl::opt<unsigned> UnrollMaxCount( +    "unroll-max-count", cl::Hidden, +    cl::desc("Set the max unroll count for partial and runtime unrolling, for" +             "testing purposes")); + +static cl::opt<unsigned> UnrollFullMaxCount( +    "unroll-full-max-count", cl::Hidden, +    cl::desc( +        "Set the max unroll count for full unrolling, for testing purposes")); + +static cl::opt<unsigned> UnrollPeelCount( +    "unroll-peel-count", cl::Hidden, +    cl::desc("Set the unroll peeling count, for testing purposes")); + +static cl::opt<bool> +    UnrollAllowPartial("unroll-allow-partial", cl::Hidden, +                       cl::desc("Allows loops to be partially unrolled until " +                                "-unroll-threshold loop size is reached.")); + +static cl::opt<bool> UnrollAllowRemainder( +    "unroll-allow-remainder", cl::Hidden, +    cl::desc("Allow generation of a loop remainder (extra iterations) " +             "when unrolling a loop.")); + +static cl::opt<bool> +    UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, +                  cl::desc("Unroll loops with run-time trip counts")); + +static cl::opt<unsigned> UnrollMaxUpperBound( +    "unroll-max-upperbound", cl::init(8), cl::Hidden, +    cl::desc( +        "The max of trip count upper bound that is considered in unrolling")); + +static cl::opt<unsigned> PragmaUnrollThreshold( +    "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, +    cl::desc("Unrolled size limit for loops with an unroll(full) or " +             "unroll_count pragma.")); + +static cl::opt<unsigned> FlatLoopTripCountThreshold( +    "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, +    cl::desc("If the runtime tripcount for the loop is lower than the " +             "threshold, the loop is considered as flat and will be less " +             "aggressively unrolled.")); + +static cl::opt<bool> +    UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, +                       cl::desc("Allows loops to be peeled when the dynamic " +                                "trip count is known to be low.")); + +static cl::opt<bool> UnrollUnrollRemainder( +  "unroll-remainder", cl::Hidden, +  cl::desc("Allow the loop remainder to be unrolled.")); + +// This option isn't ever intended to be enabled, it serves to allow +// experiments to check the assumptions about when this kind of revisit is +// necessary. +static cl::opt<bool> UnrollRevisitChildLoops( +    "unroll-revisit-child-loops", cl::Hidden, +    cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " +             "This shouldn't typically be needed as child loops (or their " +             "clones) were already visited.")); + +/// A magic value for use with the Threshold parameter to indicate +/// that the loop unroll should be performed regardless of how much +/// code expansion would result. +static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); + +/// Gather the various unrolling parameters based on the defaults, compiler +/// flags, TTI overrides and user specified parameters. +TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( +    Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, +    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, +    Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, +    Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, +    Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, +    Optional<bool> UserAllowProfileBasedPeeling, +    Optional<unsigned> UserFullUnrollMaxCount) { +  TargetTransformInfo::UnrollingPreferences UP; + +  // Set up the defaults +  UP.Threshold = OptLevel > 2 ? 300 : 150; +  UP.MaxPercentThresholdBoost = 400; +  UP.OptSizeThreshold = 0; +  UP.PartialThreshold = 150; +  UP.PartialOptSizeThreshold = 0; +  UP.Count = 0; +  UP.PeelCount = 0; +  UP.DefaultUnrollRuntimeCount = 8; +  UP.MaxCount = std::numeric_limits<unsigned>::max(); +  UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); +  UP.BEInsns = 2; +  UP.Partial = false; +  UP.Runtime = false; +  UP.AllowRemainder = true; +  UP.UnrollRemainder = false; +  UP.AllowExpensiveTripCount = false; +  UP.Force = false; +  UP.UpperBound = false; +  UP.AllowPeeling = true; +  UP.UnrollAndJam = false; +  UP.PeelProfiledIterations = true; +  UP.UnrollAndJamInnerLoopThreshold = 60; + +  // Override with any target specific settings +  TTI.getUnrollingPreferences(L, SE, UP); + +  // Apply size attributes +  bool OptForSize = L->getHeader()->getParent()->hasOptSize() || +                    llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); +  if (OptForSize) { +    UP.Threshold = UP.OptSizeThreshold; +    UP.PartialThreshold = UP.PartialOptSizeThreshold; +    UP.MaxPercentThresholdBoost = 100; +  } + +  // Apply any user values specified by cl::opt +  if (UnrollThreshold.getNumOccurrences() > 0) +    UP.Threshold = UnrollThreshold; +  if (UnrollPartialThreshold.getNumOccurrences() > 0) +    UP.PartialThreshold = UnrollPartialThreshold; +  if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) +    UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; +  if (UnrollMaxCount.getNumOccurrences() > 0) +    UP.MaxCount = UnrollMaxCount; +  if (UnrollFullMaxCount.getNumOccurrences() > 0) +    UP.FullUnrollMaxCount = UnrollFullMaxCount; +  if (UnrollPeelCount.getNumOccurrences() > 0) +    UP.PeelCount = UnrollPeelCount; +  if (UnrollAllowPartial.getNumOccurrences() > 0) +    UP.Partial = UnrollAllowPartial; +  if (UnrollAllowRemainder.getNumOccurrences() > 0) +    UP.AllowRemainder = UnrollAllowRemainder; +  if (UnrollRuntime.getNumOccurrences() > 0) +    UP.Runtime = UnrollRuntime; +  if (UnrollMaxUpperBound == 0) +    UP.UpperBound = false; +  if (UnrollAllowPeeling.getNumOccurrences() > 0) +    UP.AllowPeeling = UnrollAllowPeeling; +  if (UnrollUnrollRemainder.getNumOccurrences() > 0) +    UP.UnrollRemainder = UnrollUnrollRemainder; + +  // Apply user values provided by argument +  if (UserThreshold.hasValue()) { +    UP.Threshold = *UserThreshold; +    UP.PartialThreshold = *UserThreshold; +  } +  if (UserCount.hasValue()) +    UP.Count = *UserCount; +  if (UserAllowPartial.hasValue()) +    UP.Partial = *UserAllowPartial; +  if (UserRuntime.hasValue()) +    UP.Runtime = *UserRuntime; +  if (UserUpperBound.hasValue()) +    UP.UpperBound = *UserUpperBound; +  if (UserAllowPeeling.hasValue()) +    UP.AllowPeeling = *UserAllowPeeling; +  if (UserAllowProfileBasedPeeling.hasValue()) +    UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; +  if (UserFullUnrollMaxCount.hasValue()) +    UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; + +  return UP; +} + +namespace { + +/// A struct to densely store the state of an instruction after unrolling at +/// each iteration. +/// +/// This is designed to work like a tuple of <Instruction *, int> for the +/// purposes of hashing and lookup, but to be able to associate two boolean +/// states with each key. +struct UnrolledInstState { +  Instruction *I; +  int Iteration : 30; +  unsigned IsFree : 1; +  unsigned IsCounted : 1; +}; + +/// Hashing and equality testing for a set of the instruction states. +struct UnrolledInstStateKeyInfo { +  using PtrInfo = DenseMapInfo<Instruction *>; +  using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; + +  static inline UnrolledInstState getEmptyKey() { +    return {PtrInfo::getEmptyKey(), 0, 0, 0}; +  } + +  static inline UnrolledInstState getTombstoneKey() { +    return {PtrInfo::getTombstoneKey(), 0, 0, 0}; +  } + +  static inline unsigned getHashValue(const UnrolledInstState &S) { +    return PairInfo::getHashValue({S.I, S.Iteration}); +  } + +  static inline bool isEqual(const UnrolledInstState &LHS, +                             const UnrolledInstState &RHS) { +    return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); +  } +}; + +struct EstimatedUnrollCost { +  /// The estimated cost after unrolling. +  unsigned UnrolledCost; + +  /// The estimated dynamic cost of executing the instructions in the +  /// rolled form. +  unsigned RolledDynamicCost; +}; + +} // end anonymous namespace + +/// Figure out if the loop is worth full unrolling. +/// +/// Complete loop unrolling can make some loads constant, and we need to know +/// if that would expose any further optimization opportunities.  This routine +/// estimates this optimization.  It computes cost of unrolled loop +/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By +/// dynamic cost we mean that we won't count costs of blocks that are known not +/// to be executed (i.e. if we have a branch in the loop and we know that at the +/// given iteration its condition would be resolved to true, we won't add up the +/// cost of the 'false'-block). +/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If +/// the analysis failed (no benefits expected from the unrolling, or the loop is +/// too big to analyze), the returned value is None. +static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( +    const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, +    const SmallPtrSetImpl<const Value *> &EphValues, +    const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { +  // We want to be able to scale offsets by the trip count and add more offsets +  // to them without checking for overflows, and we already don't want to +  // analyze *massive* trip counts, so we force the max to be reasonably small. +  assert(UnrollMaxIterationsCountToAnalyze < +             (unsigned)(std::numeric_limits<int>::max() / 2) && +         "The unroll iterations max is too large!"); + +  // Only analyze inner loops. We can't properly estimate cost of nested loops +  // and we won't visit inner loops again anyway. +  if (!L->empty()) +    return None; + +  // Don't simulate loops with a big or unknown tripcount +  if (!UnrollMaxIterationsCountToAnalyze || !TripCount || +      TripCount > UnrollMaxIterationsCountToAnalyze) +    return None; + +  SmallSetVector<BasicBlock *, 16> BBWorklist; +  SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; +  DenseMap<Value *, Constant *> SimplifiedValues; +  SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; + +  // The estimated cost of the unrolled form of the loop. We try to estimate +  // this by simplifying as much as we can while computing the estimate. +  unsigned UnrolledCost = 0; + +  // We also track the estimated dynamic (that is, actually executed) cost in +  // the rolled form. This helps identify cases when the savings from unrolling +  // aren't just exposing dead control flows, but actual reduced dynamic +  // instructions due to the simplifications which we expect to occur after +  // unrolling. +  unsigned RolledDynamicCost = 0; + +  // We track the simplification of each instruction in each iteration. We use +  // this to recursively merge costs into the unrolled cost on-demand so that +  // we don't count the cost of any dead code. This is essentially a map from +  // <instruction, int> to <bool, bool>, but stored as a densely packed struct. +  DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; + +  // A small worklist used to accumulate cost of instructions from each +  // observable and reached root in the loop. +  SmallVector<Instruction *, 16> CostWorklist; + +  // PHI-used worklist used between iterations while accumulating cost. +  SmallVector<Instruction *, 4> PHIUsedList; + +  // Helper function to accumulate cost for instructions in the loop. +  auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { +    assert(Iteration >= 0 && "Cannot have a negative iteration!"); +    assert(CostWorklist.empty() && "Must start with an empty cost list"); +    assert(PHIUsedList.empty() && "Must start with an empty phi used list"); +    CostWorklist.push_back(&RootI); +    for (;; --Iteration) { +      do { +        Instruction *I = CostWorklist.pop_back_val(); + +        // InstCostMap only uses I and Iteration as a key, the other two values +        // don't matter here. +        auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); +        if (CostIter == InstCostMap.end()) +          // If an input to a PHI node comes from a dead path through the loop +          // we may have no cost data for it here. What that actually means is +          // that it is free. +          continue; +        auto &Cost = *CostIter; +        if (Cost.IsCounted) +          // Already counted this instruction. +          continue; + +        // Mark that we are counting the cost of this instruction now. +        Cost.IsCounted = true; + +        // If this is a PHI node in the loop header, just add it to the PHI set. +        if (auto *PhiI = dyn_cast<PHINode>(I)) +          if (PhiI->getParent() == L->getHeader()) { +            assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " +                                  "inherently simplify during unrolling."); +            if (Iteration == 0) +              continue; + +            // Push the incoming value from the backedge into the PHI used list +            // if it is an in-loop instruction. We'll use this to populate the +            // cost worklist for the next iteration (as we count backwards). +            if (auto *OpI = dyn_cast<Instruction>( +                    PhiI->getIncomingValueForBlock(L->getLoopLatch()))) +              if (L->contains(OpI)) +                PHIUsedList.push_back(OpI); +            continue; +          } + +        // First accumulate the cost of this instruction. +        if (!Cost.IsFree) { +          UnrolledCost += TTI.getUserCost(I); +          LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " +                            << Iteration << "): "); +          LLVM_DEBUG(I->dump()); +        } + +        // We must count the cost of every operand which is not free, +        // recursively. If we reach a loop PHI node, simply add it to the set +        // to be considered on the next iteration (backwards!). +        for (Value *Op : I->operands()) { +          // Check whether this operand is free due to being a constant or +          // outside the loop. +          auto *OpI = dyn_cast<Instruction>(Op); +          if (!OpI || !L->contains(OpI)) +            continue; + +          // Otherwise accumulate its cost. +          CostWorklist.push_back(OpI); +        } +      } while (!CostWorklist.empty()); + +      if (PHIUsedList.empty()) +        // We've exhausted the search. +        break; + +      assert(Iteration > 0 && +             "Cannot track PHI-used values past the first iteration!"); +      CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); +      PHIUsedList.clear(); +    } +  }; + +  // Ensure that we don't violate the loop structure invariants relied on by +  // this analysis. +  assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); +  assert(L->isLCSSAForm(DT) && +         "Must have loops in LCSSA form to track live-out values."); + +  LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); + +  // Simulate execution of each iteration of the loop counting instructions, +  // which would be simplified. +  // Since the same load will take different values on different iterations, +  // we literally have to go through all loop's iterations. +  for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { +    LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); + +    // Prepare for the iteration by collecting any simplified entry or backedge +    // inputs. +    for (Instruction &I : *L->getHeader()) { +      auto *PHI = dyn_cast<PHINode>(&I); +      if (!PHI) +        break; + +      // The loop header PHI nodes must have exactly two input: one from the +      // loop preheader and one from the loop latch. +      assert( +          PHI->getNumIncomingValues() == 2 && +          "Must have an incoming value only for the preheader and the latch."); + +      Value *V = PHI->getIncomingValueForBlock( +          Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); +      Constant *C = dyn_cast<Constant>(V); +      if (Iteration != 0 && !C) +        C = SimplifiedValues.lookup(V); +      if (C) +        SimplifiedInputValues.push_back({PHI, C}); +    } + +    // Now clear and re-populate the map for the next iteration. +    SimplifiedValues.clear(); +    while (!SimplifiedInputValues.empty()) +      SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); + +    UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); + +    BBWorklist.clear(); +    BBWorklist.insert(L->getHeader()); +    // Note that we *must not* cache the size, this loop grows the worklist. +    for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { +      BasicBlock *BB = BBWorklist[Idx]; + +      // Visit all instructions in the given basic block and try to simplify +      // it.  We don't change the actual IR, just count optimization +      // opportunities. +      for (Instruction &I : *BB) { +        // These won't get into the final code - don't even try calculating the +        // cost for them. +        if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) +          continue; + +        // Track this instruction's expected baseline cost when executing the +        // rolled loop form. +        RolledDynamicCost += TTI.getUserCost(&I); + +        // Visit the instruction to analyze its loop cost after unrolling, +        // and if the visitor returns true, mark the instruction as free after +        // unrolling and continue. +        bool IsFree = Analyzer.visit(I); +        bool Inserted = InstCostMap.insert({&I, (int)Iteration, +                                           (unsigned)IsFree, +                                           /*IsCounted*/ false}).second; +        (void)Inserted; +        assert(Inserted && "Cannot have a state for an unvisited instruction!"); + +        if (IsFree) +          continue; + +        // Can't properly model a cost of a call. +        // FIXME: With a proper cost model we should be able to do it. +        if (auto *CI = dyn_cast<CallInst>(&I)) { +          const Function *Callee = CI->getCalledFunction(); +          if (!Callee || TTI.isLoweredToCall(Callee)) { +            LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); +            return None; +          } +        } + +        // If the instruction might have a side-effect recursively account for +        // the cost of it and all the instructions leading up to it. +        if (I.mayHaveSideEffects()) +          AddCostRecursively(I, Iteration); + +        // If unrolled body turns out to be too big, bail out. +        if (UnrolledCost > MaxUnrolledLoopSize) { +          LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n" +                            << "  UnrolledCost: " << UnrolledCost +                            << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize +                            << "\n"); +          return None; +        } +      } + +      Instruction *TI = BB->getTerminator(); + +      // Add in the live successors by first checking whether we have terminator +      // that may be simplified based on the values simplified by this call. +      BasicBlock *KnownSucc = nullptr; +      if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { +        if (BI->isConditional()) { +          if (Constant *SimpleCond = +                  SimplifiedValues.lookup(BI->getCondition())) { +            // Just take the first successor if condition is undef +            if (isa<UndefValue>(SimpleCond)) +              KnownSucc = BI->getSuccessor(0); +            else if (ConstantInt *SimpleCondVal = +                         dyn_cast<ConstantInt>(SimpleCond)) +              KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); +          } +        } +      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { +        if (Constant *SimpleCond = +                SimplifiedValues.lookup(SI->getCondition())) { +          // Just take the first successor if condition is undef +          if (isa<UndefValue>(SimpleCond)) +            KnownSucc = SI->getSuccessor(0); +          else if (ConstantInt *SimpleCondVal = +                       dyn_cast<ConstantInt>(SimpleCond)) +            KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); +        } +      } +      if (KnownSucc) { +        if (L->contains(KnownSucc)) +          BBWorklist.insert(KnownSucc); +        else +          ExitWorklist.insert({BB, KnownSucc}); +        continue; +      } + +      // Add BB's successors to the worklist. +      for (BasicBlock *Succ : successors(BB)) +        if (L->contains(Succ)) +          BBWorklist.insert(Succ); +        else +          ExitWorklist.insert({BB, Succ}); +      AddCostRecursively(*TI, Iteration); +    } + +    // If we found no optimization opportunities on the first iteration, we +    // won't find them on later ones too. +    if (UnrolledCost == RolledDynamicCost) { +      LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n" +                        << "  UnrolledCost: " << UnrolledCost << "\n"); +      return None; +    } +  } + +  while (!ExitWorklist.empty()) { +    BasicBlock *ExitingBB, *ExitBB; +    std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); + +    for (Instruction &I : *ExitBB) { +      auto *PN = dyn_cast<PHINode>(&I); +      if (!PN) +        break; + +      Value *Op = PN->getIncomingValueForBlock(ExitingBB); +      if (auto *OpI = dyn_cast<Instruction>(Op)) +        if (L->contains(OpI)) +          AddCostRecursively(*OpI, TripCount - 1); +    } +  } + +  LLVM_DEBUG(dbgs() << "Analysis finished:\n" +                    << "UnrolledCost: " << UnrolledCost << ", " +                    << "RolledDynamicCost: " << RolledDynamicCost << "\n"); +  return {{UnrolledCost, RolledDynamicCost}}; +} + +/// ApproximateLoopSize - Approximate the size of the loop. +unsigned llvm::ApproximateLoopSize( +    const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, +    const TargetTransformInfo &TTI, +    const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { +  CodeMetrics Metrics; +  for (BasicBlock *BB : L->blocks()) +    Metrics.analyzeBasicBlock(BB, TTI, EphValues); +  NumCalls = Metrics.NumInlineCandidates; +  NotDuplicatable = Metrics.notDuplicatable; +  Convergent = Metrics.convergent; + +  unsigned LoopSize = Metrics.NumInsts; + +  // Don't allow an estimate of size zero.  This would allows unrolling of loops +  // with huge iteration counts, which is a compile time problem even if it's +  // not a problem for code quality. Also, the code using this size may assume +  // that each loop has at least three instructions (likely a conditional +  // branch, a comparison feeding that branch, and some kind of loop increment +  // feeding that comparison instruction). +  LoopSize = std::max(LoopSize, BEInsns + 1); + +  return LoopSize; +} + +// Returns the loop hint metadata node with the given name (for example, +// "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is +// returned. +static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { +  if (MDNode *LoopID = L->getLoopID()) +    return GetUnrollMetadata(LoopID, Name); +  return nullptr; +} + +// Returns true if the loop has an unroll(full) pragma. +static bool HasUnrollFullPragma(const Loop *L) { +  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); +} + +// Returns true if the loop has an unroll(enable) pragma. This metadata is used +// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. +static bool HasUnrollEnablePragma(const Loop *L) { +  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); +} + +// Returns true if the loop has an runtime unroll(disable) pragma. +static bool HasRuntimeUnrollDisablePragma(const Loop *L) { +  return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); +} + +// If loop has an unroll_count pragma return the (necessarily +// positive) value from the pragma.  Otherwise return 0. +static unsigned UnrollCountPragmaValue(const Loop *L) { +  MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); +  if (MD) { +    assert(MD->getNumOperands() == 2 && +           "Unroll count hint metadata should have two operands."); +    unsigned Count = +        mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); +    assert(Count >= 1 && "Unroll count must be positive."); +    return Count; +  } +  return 0; +} + +// Computes the boosting factor for complete unrolling. +// If fully unrolling the loop would save a lot of RolledDynamicCost, it would +// be beneficial to fully unroll the loop even if unrolledcost is large. We +// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust +// the unroll threshold. +static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, +                                            unsigned MaxPercentThresholdBoost) { +  if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) +    return 100; +  else if (Cost.UnrolledCost != 0) +    // The boosting factor is RolledDynamicCost / UnrolledCost +    return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, +                    MaxPercentThresholdBoost); +  else +    return MaxPercentThresholdBoost; +} + +// Returns loop size estimation for unrolled loop. +static uint64_t getUnrolledLoopSize( +    unsigned LoopSize, +    TargetTransformInfo::UnrollingPreferences &UP) { +  assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); +  return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; +} + +// Returns true if unroll count was set explicitly. +// Calculates unroll count and writes it to UP.Count. +// Unless IgnoreUser is true, will also use metadata and command-line options +// that are specific to to the LoopUnroll pass (which, for instance, are +// irrelevant for the LoopUnrollAndJam pass). +// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes +// many LoopUnroll-specific options. The shared functionality should be +// refactored into it own function. +bool llvm::computeUnrollCount( +    Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, +    ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, +    OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, +    bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, +    TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { + +  // Check for explicit Count. +  // 1st priority is unroll count set by "unroll-count" option. +  bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; +  if (UserUnrollCount) { +    UP.Count = UnrollCount; +    UP.AllowExpensiveTripCount = true; +    UP.Force = true; +    if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) +      return true; +  } + +  // 2nd priority is unroll count set by pragma. +  unsigned PragmaCount = UnrollCountPragmaValue(L); +  if (PragmaCount > 0) { +    UP.Count = PragmaCount; +    UP.Runtime = true; +    UP.AllowExpensiveTripCount = true; +    UP.Force = true; +    if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && +        getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) +      return true; +  } +  bool PragmaFullUnroll = HasUnrollFullPragma(L); +  if (PragmaFullUnroll && TripCount != 0) { +    UP.Count = TripCount; +    if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) +      return false; +  } + +  bool PragmaEnableUnroll = HasUnrollEnablePragma(L); +  bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || +                        PragmaEnableUnroll || UserUnrollCount; + +  if (ExplicitUnroll && TripCount != 0) { +    // If the loop has an unrolling pragma, we want to be more aggressive with +    // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold +    // value which is larger than the default limits. +    UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); +    UP.PartialThreshold = +        std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); +  } + +  // 3rd priority is full unroll count. +  // Full unroll makes sense only when TripCount or its upper bound could be +  // statically calculated. +  // Also we need to check if we exceed FullUnrollMaxCount. +  // If using the upper bound to unroll, TripMultiple should be set to 1 because +  // we do not know when loop may exit. + +  // We can unroll by the upper bound amount if it's generally allowed or if +  // we know that the loop is executed either the upper bound or zero times. +  // (MaxOrZero unrolling keeps only the first loop test, so the number of +  // loop tests remains the same compared to the non-unrolled version, whereas +  // the generic upper bound unrolling keeps all but the last loop test so the +  // number of loop tests goes up which may end up being worse on targets with +  // constrained branch predictor resources so is controlled by an option.) +  // In addition we only unroll small upper bounds. +  unsigned FullUnrollMaxTripCount = MaxTripCount; +  if (!(UP.UpperBound || MaxOrZero) || +      FullUnrollMaxTripCount > UnrollMaxUpperBound) +    FullUnrollMaxTripCount = 0; + +  // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only +  // compute the former when the latter is zero. +  unsigned ExactTripCount = TripCount; +  assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && +         "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); + +  unsigned FullUnrollTripCount = +      ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; +  UP.Count = FullUnrollTripCount; +  if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { +    // When computing the unrolled size, note that BEInsns are not replicated +    // like the rest of the loop body. +    if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { +      UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); +      TripCount = FullUnrollTripCount; +      TripMultiple = UP.UpperBound ? 1 : TripMultiple; +      return ExplicitUnroll; +    } else { +      // The loop isn't that small, but we still can fully unroll it if that +      // helps to remove a significant number of instructions. +      // To check that, run additional analysis on the loop. +      if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( +              L, FullUnrollTripCount, DT, SE, EphValues, TTI, +              UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { +        unsigned Boost = +            getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); +        if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { +          UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); +          TripCount = FullUnrollTripCount; +          TripMultiple = UP.UpperBound ? 1 : TripMultiple; +          return ExplicitUnroll; +        } +      } +    } +  } + +  // 4th priority is loop peeling. +  computePeelCount(L, LoopSize, UP, TripCount, SE); +  if (UP.PeelCount) { +    UP.Runtime = false; +    UP.Count = 1; +    return ExplicitUnroll; +  } + +  // 5th priority is partial unrolling. +  // Try partial unroll only when TripCount could be statically calculated. +  if (TripCount) { +    UP.Partial |= ExplicitUnroll; +    if (!UP.Partial) { +      LLVM_DEBUG(dbgs() << "  will not try to unroll partially because " +                        << "-unroll-allow-partial not given\n"); +      UP.Count = 0; +      return false; +    } +    if (UP.Count == 0) +      UP.Count = TripCount; +    if (UP.PartialThreshold != NoThreshold) { +      // Reduce unroll count to be modulo of TripCount for partial unrolling. +      if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) +        UP.Count = +            (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / +            (LoopSize - UP.BEInsns); +      if (UP.Count > UP.MaxCount) +        UP.Count = UP.MaxCount; +      while (UP.Count != 0 && TripCount % UP.Count != 0) +        UP.Count--; +      if (UP.AllowRemainder && UP.Count <= 1) { +        // If there is no Count that is modulo of TripCount, set Count to +        // largest power-of-two factor that satisfies the threshold limit. +        // As we'll create fixup loop, do the type of unrolling only if +        // remainder loop is allowed. +        UP.Count = UP.DefaultUnrollRuntimeCount; +        while (UP.Count != 0 && +               getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) +          UP.Count >>= 1; +      } +      if (UP.Count < 2) { +        if (PragmaEnableUnroll) +          ORE->emit([&]() { +            return OptimizationRemarkMissed(DEBUG_TYPE, +                                            "UnrollAsDirectedTooLarge", +                                            L->getStartLoc(), L->getHeader()) +                   << "Unable to unroll loop as directed by unroll(enable) " +                      "pragma " +                      "because unrolled size is too large."; +          }); +        UP.Count = 0; +      } +    } else { +      UP.Count = TripCount; +    } +    if (UP.Count > UP.MaxCount) +      UP.Count = UP.MaxCount; +    if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && +        UP.Count != TripCount) +      ORE->emit([&]() { +        return OptimizationRemarkMissed(DEBUG_TYPE, +                                        "FullUnrollAsDirectedTooLarge", +                                        L->getStartLoc(), L->getHeader()) +               << "Unable to fully unroll loop as directed by unroll pragma " +                  "because " +                  "unrolled size is too large."; +      }); +    LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count +                      << "\n"); +    return ExplicitUnroll; +  } +  assert(TripCount == 0 && +         "All cases when TripCount is constant should be covered here."); +  if (PragmaFullUnroll) +    ORE->emit([&]() { +      return OptimizationRemarkMissed( +                 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", +                 L->getStartLoc(), L->getHeader()) +             << "Unable to fully unroll loop as directed by unroll(full) " +                "pragma " +                "because loop has a runtime trip count."; +    }); + +  // 6th priority is runtime unrolling. +  // Don't unroll a runtime trip count loop when it is disabled. +  if (HasRuntimeUnrollDisablePragma(L)) { +    UP.Count = 0; +    return false; +  } + +  // Don't unroll a small upper bound loop unless user or TTI asked to do so. +  if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { +    UP.Count = 0; +    return false; +  } + +  // Check if the runtime trip count is too small when profile is available. +  if (L->getHeader()->getParent()->hasProfileData()) { +    if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { +      if (*ProfileTripCount < FlatLoopTripCountThreshold) +        return false; +      else +        UP.AllowExpensiveTripCount = true; +    } +  } + +  // Reduce count based on the type of unrolling and the threshold values. +  UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; +  if (!UP.Runtime) { +    LLVM_DEBUG( +        dbgs() << "  will not try to unroll loop with runtime trip count " +               << "-unroll-runtime not given\n"); +    UP.Count = 0; +    return false; +  } +  if (UP.Count == 0) +    UP.Count = UP.DefaultUnrollRuntimeCount; + +  // Reduce unroll count to be the largest power-of-two factor of +  // the original count which satisfies the threshold limit. +  while (UP.Count != 0 && +         getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) +    UP.Count >>= 1; + +#ifndef NDEBUG +  unsigned OrigCount = UP.Count; +#endif + +  if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { +    while (UP.Count != 0 && TripMultiple % UP.Count != 0) +      UP.Count >>= 1; +    LLVM_DEBUG( +        dbgs() << "Remainder loop is restricted (that could architecture " +                  "specific or because the loop contains a convergent " +                  "instruction), so unroll count must divide the trip " +                  "multiple, " +               << TripMultiple << ".  Reducing unroll count from " << OrigCount +               << " to " << UP.Count << ".\n"); + +    using namespace ore; + +    if (PragmaCount > 0 && !UP.AllowRemainder) +      ORE->emit([&]() { +        return OptimizationRemarkMissed(DEBUG_TYPE, +                                        "DifferentUnrollCountFromDirected", +                                        L->getStartLoc(), L->getHeader()) +               << "Unable to unroll loop the number of times directed by " +                  "unroll_count pragma because remainder loop is restricted " +                  "(that could architecture specific or because the loop " +                  "contains a convergent instruction) and so must have an " +                  "unroll " +                  "count that divides the loop trip multiple of " +               << NV("TripMultiple", TripMultiple) << ".  Unrolling instead " +               << NV("UnrollCount", UP.Count) << " time(s)."; +      }); +  } + +  if (UP.Count > UP.MaxCount) +    UP.Count = UP.MaxCount; + +  if (MaxTripCount && UP.Count > MaxTripCount) +    UP.Count = MaxTripCount; + +  LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count +                    << "\n"); +  if (UP.Count < 2) +    UP.Count = 0; +  return ExplicitUnroll; +} + +static LoopUnrollResult tryToUnrollLoop( +    Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, +    const TargetTransformInfo &TTI, AssumptionCache &AC, +    OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, +    ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, +    bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, +    Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, +    Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, +    Optional<bool> ProvidedAllowPeeling, +    Optional<bool> ProvidedAllowProfileBasedPeeling, +    Optional<unsigned> ProvidedFullUnrollMaxCount) { +  LLVM_DEBUG(dbgs() << "Loop Unroll: F[" +                    << L->getHeader()->getParent()->getName() << "] Loop %" +                    << L->getHeader()->getName() << "\n"); +  TransformationMode TM = hasUnrollTransformation(L); +  if (TM & TM_Disable) +    return LoopUnrollResult::Unmodified; +  if (!L->isLoopSimplifyForm()) { +    LLVM_DEBUG( +        dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  // When automtatic unrolling is disabled, do not unroll unless overridden for +  // this loop. +  if (OnlyWhenForced && !(TM & TM_Enable)) +    return LoopUnrollResult::Unmodified; + +  bool OptForSize = L->getHeader()->getParent()->hasOptSize(); +  unsigned NumInlineCandidates; +  bool NotDuplicatable; +  bool Convergent; +  TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( +      L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, +      ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, +      ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, +      ProvidedFullUnrollMaxCount); + +  // Exit early if unrolling is disabled. For OptForSize, we pick the loop size +  // as threshold later on. +  if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && +      !OptForSize) +    return LoopUnrollResult::Unmodified; + +  SmallPtrSet<const Value *, 32> EphValues; +  CodeMetrics::collectEphemeralValues(L, &AC, EphValues); + +  unsigned LoopSize = +      ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, +                          TTI, EphValues, UP.BEInsns); +  LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n"); +  if (NotDuplicatable) { +    LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable" +                      << " instructions.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold +  // later), to (fully) unroll loops, if it does not increase code size. +  if (OptForSize) +    UP.Threshold = std::max(UP.Threshold, LoopSize + 1); + +  if (NumInlineCandidates != 0) { +    LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  // Find trip count and trip multiple if count is not available +  unsigned TripCount = 0; +  unsigned TripMultiple = 1; +  // If there are multiple exiting blocks but one of them is the latch, use the +  // latch for the trip count estimation. Otherwise insist on a single exiting +  // block for the trip count estimation. +  BasicBlock *ExitingBlock = L->getLoopLatch(); +  if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) +    ExitingBlock = L->getExitingBlock(); +  if (ExitingBlock) { +    TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); +    TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); +  } + +  // If the loop contains a convergent operation, the prelude we'd add +  // to do the first few instructions before we hit the unrolled loop +  // is unsafe -- it adds a control-flow dependency to the convergent +  // operation.  Therefore restrict remainder loop (try unrollig without). +  // +  // TODO: This is quite conservative.  In practice, convergent_op() +  // is likely to be called unconditionally in the loop.  In this +  // case, the program would be ill-formed (on most architectures) +  // unless n were the same on all threads in a thread group. +  // Assuming n is the same on all threads, any kind of unrolling is +  // safe.  But currently llvm's notion of convergence isn't powerful +  // enough to express this. +  if (Convergent) +    UP.AllowRemainder = false; + +  // Try to find the trip count upper bound if we cannot find the exact trip +  // count. +  unsigned MaxTripCount = 0; +  bool MaxOrZero = false; +  if (!TripCount) { +    MaxTripCount = SE.getSmallConstantMaxTripCount(L); +    MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); +  } + +  // computeUnrollCount() decides whether it is beneficial to use upper bound to +  // fully unroll the loop. +  bool UseUpperBound = false; +  bool IsCountSetExplicitly = computeUnrollCount( +      L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, +      TripMultiple, LoopSize, UP, UseUpperBound); +  if (!UP.Count) +    return LoopUnrollResult::Unmodified; +  // Unroll factor (Count) must be less or equal to TripCount. +  if (TripCount && UP.Count > TripCount) +    UP.Count = TripCount; + +  // Save loop properties before it is transformed. +  MDNode *OrigLoopID = L->getLoopID(); + +  // Unroll the loop. +  Loop *RemainderLoop = nullptr; +  LoopUnrollResult UnrollResult = UnrollLoop( +      L, +      {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, +       UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, +       ForgetAllSCEV}, +      LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); +  if (UnrollResult == LoopUnrollResult::Unmodified) +    return LoopUnrollResult::Unmodified; + +  if (RemainderLoop) { +    Optional<MDNode *> RemainderLoopID = +        makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, +                                        LLVMLoopUnrollFollowupRemainder}); +    if (RemainderLoopID.hasValue()) +      RemainderLoop->setLoopID(RemainderLoopID.getValue()); +  } + +  if (UnrollResult != LoopUnrollResult::FullyUnrolled) { +    Optional<MDNode *> NewLoopID = +        makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, +                                        LLVMLoopUnrollFollowupUnrolled}); +    if (NewLoopID.hasValue()) { +      L->setLoopID(NewLoopID.getValue()); + +      // Do not setLoopAlreadyUnrolled if loop attributes have been specified +      // explicitly. +      return UnrollResult; +    } +  } + +  // If loop has an unroll count pragma or unrolled by explicitly set count +  // mark loop as unrolled to prevent unrolling beyond that requested. +  // If the loop was peeled, we already "used up" the profile information +  // we had, so we don't want to unroll or peel again. +  if (UnrollResult != LoopUnrollResult::FullyUnrolled && +      (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) +    L->setLoopAlreadyUnrolled(); + +  return UnrollResult; +} + +namespace { + +class LoopUnroll : public LoopPass { +public: +  static char ID; // Pass ID, replacement for typeid + +  int OptLevel; + +  /// If false, use a cost model to determine whether unrolling of a loop is +  /// profitable. If true, only loops that explicitly request unrolling via +  /// metadata are considered. All other loops are skipped. +  bool OnlyWhenForced; + +  /// If false, when SCEV is invalidated, only forget everything in the +  /// top-most loop (call forgetTopMostLoop), of the loop being processed. +  /// Otherwise, forgetAllLoops and rebuild when needed next. +  bool ForgetAllSCEV; + +  Optional<unsigned> ProvidedCount; +  Optional<unsigned> ProvidedThreshold; +  Optional<bool> ProvidedAllowPartial; +  Optional<bool> ProvidedRuntime; +  Optional<bool> ProvidedUpperBound; +  Optional<bool> ProvidedAllowPeeling; +  Optional<bool> ProvidedAllowProfileBasedPeeling; +  Optional<unsigned> ProvidedFullUnrollMaxCount; + +  LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, +             bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, +             Optional<unsigned> Count = None, +             Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, +             Optional<bool> UpperBound = None, +             Optional<bool> AllowPeeling = None, +             Optional<bool> AllowProfileBasedPeeling = None, +             Optional<unsigned> ProvidedFullUnrollMaxCount = None) +      : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), +        ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), +        ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), +        ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), +        ProvidedAllowPeeling(AllowPeeling), +        ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), +        ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { +    initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnLoop(Loop *L, LPPassManager &LPM) override { +    if (skipLoop(L)) +      return false; + +    Function &F = *L->getHeader()->getParent(); + +    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +    ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +    const TargetTransformInfo &TTI = +        getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); +    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); +    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis +    // pass.  Function analyses need to be preserved across loop transformations +    // but ORE cannot be preserved (see comment before the pass definition). +    OptimizationRemarkEmitter ORE(&F); +    bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); + +    LoopUnrollResult Result = tryToUnrollLoop( +        L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, +        OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, +        ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, +        ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, +        ProvidedFullUnrollMaxCount); + +    if (Result == LoopUnrollResult::FullyUnrolled) +      LPM.markLoopAsDeleted(*L); + +    return Result != LoopUnrollResult::Unmodified; +  } + +  /// This transformation requires natural loop information & requires that +  /// loop preheaders be inserted into the CFG... +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<AssumptionCacheTracker>(); +    AU.addRequired<TargetTransformInfoWrapperPass>(); +    // FIXME: Loop passes are required to preserve domtree, and for now we just +    // recreate dom info if anything gets unrolled. +    getLoopAnalysisUsage(AU); +  } +}; + +} // end anonymous namespace + +char LoopUnroll::ID = 0; + +INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) + +Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, +                                 bool ForgetAllSCEV, int Threshold, int Count, +                                 int AllowPartial, int Runtime, int UpperBound, +                                 int AllowPeeling) { +  // TODO: It would make more sense for this function to take the optionals +  // directly, but that's dangerous since it would silently break out of tree +  // callers. +  return new LoopUnroll( +      OptLevel, OnlyWhenForced, ForgetAllSCEV, +      Threshold == -1 ? None : Optional<unsigned>(Threshold), +      Count == -1 ? None : Optional<unsigned>(Count), +      AllowPartial == -1 ? None : Optional<bool>(AllowPartial), +      Runtime == -1 ? None : Optional<bool>(Runtime), +      UpperBound == -1 ? None : Optional<bool>(UpperBound), +      AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); +} + +Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, +                                       bool ForgetAllSCEV) { +  return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, +                              0, 0, 0, 0); +} + +PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, +                                          LoopStandardAnalysisResults &AR, +                                          LPMUpdater &Updater) { +  const auto &FAM = +      AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); +  Function *F = L.getHeader()->getParent(); + +  auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); +  // FIXME: This should probably be optional rather than required. +  if (!ORE) +    report_fatal_error( +        "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " +        "cached at a higher level"); + +  // Keep track of the previous loop structure so we can identify new loops +  // created by unrolling. +  Loop *ParentL = L.getParentLoop(); +  SmallPtrSet<Loop *, 4> OldLoops; +  if (ParentL) +    OldLoops.insert(ParentL->begin(), ParentL->end()); +  else +    OldLoops.insert(AR.LI.begin(), AR.LI.end()); + +  std::string LoopName = L.getName(); + +  bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, +                                 /*BFI*/ nullptr, /*PSI*/ nullptr, +                                 /*PreserveLCSSA*/ true, OptLevel, +                                 OnlyWhenForced, ForgetSCEV, /*Count*/ None, +                                 /*Threshold*/ None, /*AllowPartial*/ false, +                                 /*Runtime*/ false, /*UpperBound*/ false, +                                 /*AllowPeeling*/ false, +                                 /*AllowProfileBasedPeeling*/ false, +                                 /*FullUnrollMaxCount*/ None) != +                 LoopUnrollResult::Unmodified; +  if (!Changed) +    return PreservedAnalyses::all(); + +  // The parent must not be damaged by unrolling! +#ifndef NDEBUG +  if (ParentL) +    ParentL->verifyLoop(); +#endif + +  // Unrolling can do several things to introduce new loops into a loop nest: +  // - Full unrolling clones child loops within the current loop but then +  //   removes the current loop making all of the children appear to be new +  //   sibling loops. +  // +  // When a new loop appears as a sibling loop after fully unrolling, +  // its nesting structure has fundamentally changed and we want to revisit +  // it to reflect that. +  // +  // When unrolling has removed the current loop, we need to tell the +  // infrastructure that it is gone. +  // +  // Finally, we support a debugging/testing mode where we revisit child loops +  // as well. These are not expected to require further optimizations as either +  // they or the loop they were cloned from have been directly visited already. +  // But the debugging mode allows us to check this assumption. +  bool IsCurrentLoopValid = false; +  SmallVector<Loop *, 4> SibLoops; +  if (ParentL) +    SibLoops.append(ParentL->begin(), ParentL->end()); +  else +    SibLoops.append(AR.LI.begin(), AR.LI.end()); +  erase_if(SibLoops, [&](Loop *SibLoop) { +    if (SibLoop == &L) { +      IsCurrentLoopValid = true; +      return true; +    } + +    // Otherwise erase the loop from the list if it was in the old loops. +    return OldLoops.count(SibLoop) != 0; +  }); +  Updater.addSiblingLoops(SibLoops); + +  if (!IsCurrentLoopValid) { +    Updater.markLoopAsDeleted(L, LoopName); +  } else { +    // We can only walk child loops if the current loop remained valid. +    if (UnrollRevisitChildLoops) { +      // Walk *all* of the child loops. +      SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); +      Updater.addChildLoops(ChildLoops); +    } +  } + +  return getLoopPassPreservedAnalyses(); +} + +template <typename RangeT> +static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { +  SmallVector<Loop *, 8> Worklist; +  // We use an internal worklist to build up the preorder traversal without +  // recursion. +  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; + +  for (Loop *RootL : Loops) { +    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); +    assert(PreOrderWorklist.empty() && +           "Must start with an empty preorder walk worklist."); +    PreOrderWorklist.push_back(RootL); +    do { +      Loop *L = PreOrderWorklist.pop_back_val(); +      PreOrderWorklist.append(L->begin(), L->end()); +      PreOrderLoops.push_back(L); +    } while (!PreOrderWorklist.empty()); + +    Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); +    PreOrderLoops.clear(); +  } +  return Worklist; +} + +PreservedAnalyses LoopUnrollPass::run(Function &F, +                                      FunctionAnalysisManager &AM) { +  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); +  auto &LI = AM.getResult<LoopAnalysis>(F); +  auto &TTI = AM.getResult<TargetIRAnalysis>(F); +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  auto &AC = AM.getResult<AssumptionAnalysis>(F); +  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); + +  LoopAnalysisManager *LAM = nullptr; +  if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) +    LAM = &LAMProxy->getManager(); + +  const ModuleAnalysisManager &MAM = +      AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); +  ProfileSummaryInfo *PSI = +      MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); +  auto *BFI = (PSI && PSI->hasProfileSummary()) ? +      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; + +  bool Changed = false; + +  // The unroller requires loops to be in simplified form, and also needs LCSSA. +  // Since simplification may add new inner loops, it has to run before the +  // legality and profitability checks. This means running the loop unroller +  // will simplify all loops, regardless of whether anything end up being +  // unrolled. +  for (auto &L : LI) { +    Changed |= +        simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); +    Changed |= formLCSSARecursively(*L, DT, &LI, &SE); +  } + +  SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); + +  while (!Worklist.empty()) { +    // Because the LoopInfo stores the loops in RPO, we walk the worklist +    // from back to front so that we work forward across the CFG, which +    // for unrolling is only needed to get optimization remarks emitted in +    // a forward order. +    Loop &L = *Worklist.pop_back_val(); +#ifndef NDEBUG +    Loop *ParentL = L.getParentLoop(); +#endif + +    // Check if the profile summary indicates that the profiled application +    // has a huge working set size, in which case we disable peeling to avoid +    // bloating it further. +    Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; +    if (PSI && PSI->hasHugeWorkingSetSize()) +      LocalAllowPeeling = false; +    std::string LoopName = L.getName(); +    // The API here is quite complex to call and we allow to select some +    // flavors of unrolling during construction time (by setting UnrollOpts). +    LoopUnrollResult Result = tryToUnrollLoop( +        &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, +        /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, +        UnrollOpts.ForgetSCEV, /*Count*/ None, +        /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, +        UnrollOpts.AllowUpperBound, LocalAllowPeeling, +        UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); +    Changed |= Result != LoopUnrollResult::Unmodified; + +    // The parent must not be damaged by unrolling! +#ifndef NDEBUG +    if (Result != LoopUnrollResult::Unmodified && ParentL) +      ParentL->verifyLoop(); +#endif + +    // Clear any cached analysis results for L if we removed it completely. +    if (LAM && Result == LoopUnrollResult::FullyUnrolled) +      LAM->clear(L, LoopName); +  } + +  if (!Changed) +    return PreservedAnalyses::all(); + +  return getLoopPassPreservedAnalyses(); +} | 
