diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp | 1453 | 
1 files changed, 1453 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp new file mode 100644 index 000000000000..2364748efb05 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -0,0 +1,1453 @@ +//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass performs various transformations related to eliminating memcpy +// calls, or transforming sets of stores into memset's. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/MemCpyOptimizer.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "memcpyopt" + +STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); +STATISTIC(NumMemSetInfer, "Number of memsets inferred"); +STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy"); +STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset"); + +namespace { + +/// Represents a range of memset'd bytes with the ByteVal value. +/// This allows us to analyze stores like: +///   store 0 -> P+1 +///   store 0 -> P+0 +///   store 0 -> P+3 +///   store 0 -> P+2 +/// which sometimes happens with stores to arrays of structs etc.  When we see +/// the first store, we make a range [1, 2).  The second store extends the range +/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the +/// two ranges into [0, 3) which is memset'able. +struct MemsetRange { +  // Start/End - A semi range that describes the span that this range covers. +  // The range is closed at the start and open at the end: [Start, End). +  int64_t Start, End; + +  /// StartPtr - The getelementptr instruction that points to the start of the +  /// range. +  Value *StartPtr; + +  /// Alignment - The known alignment of the first store. +  unsigned Alignment; + +  /// TheStores - The actual stores that make up this range. +  SmallVector<Instruction*, 16> TheStores; + +  bool isProfitableToUseMemset(const DataLayout &DL) const; +}; + +} // end anonymous namespace + +bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { +  // If we found more than 4 stores to merge or 16 bytes, use memset. +  if (TheStores.size() >= 4 || End-Start >= 16) return true; + +  // If there is nothing to merge, don't do anything. +  if (TheStores.size() < 2) return false; + +  // If any of the stores are a memset, then it is always good to extend the +  // memset. +  for (Instruction *SI : TheStores) +    if (!isa<StoreInst>(SI)) +      return true; + +  // Assume that the code generator is capable of merging pairs of stores +  // together if it wants to. +  if (TheStores.size() == 2) return false; + +  // If we have fewer than 8 stores, it can still be worthwhile to do this. +  // For example, merging 4 i8 stores into an i32 store is useful almost always. +  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the +  // memset will be split into 2 32-bit stores anyway) and doing so can +  // pessimize the llvm optimizer. +  // +  // Since we don't have perfect knowledge here, make some assumptions: assume +  // the maximum GPR width is the same size as the largest legal integer +  // size. If so, check to see whether we will end up actually reducing the +  // number of stores used. +  unsigned Bytes = unsigned(End-Start); +  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; +  if (MaxIntSize == 0) +    MaxIntSize = 1; +  unsigned NumPointerStores = Bytes / MaxIntSize; + +  // Assume the remaining bytes if any are done a byte at a time. +  unsigned NumByteStores = Bytes % MaxIntSize; + +  // If we will reduce the # stores (according to this heuristic), do the +  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 +  // etc. +  return TheStores.size() > NumPointerStores+NumByteStores; +} + +namespace { + +class MemsetRanges { +  using range_iterator = SmallVectorImpl<MemsetRange>::iterator; + +  /// A sorted list of the memset ranges. +  SmallVector<MemsetRange, 8> Ranges; + +  const DataLayout &DL; + +public: +  MemsetRanges(const DataLayout &DL) : DL(DL) {} + +  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; + +  const_iterator begin() const { return Ranges.begin(); } +  const_iterator end() const { return Ranges.end(); } +  bool empty() const { return Ranges.empty(); } + +  void addInst(int64_t OffsetFromFirst, Instruction *Inst) { +    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) +      addStore(OffsetFromFirst, SI); +    else +      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); +  } + +  void addStore(int64_t OffsetFromFirst, StoreInst *SI) { +    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); + +    addRange(OffsetFromFirst, StoreSize, +             SI->getPointerOperand(), SI->getAlignment(), SI); +  } + +  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { +    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); +    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); +  } + +  void addRange(int64_t Start, int64_t Size, Value *Ptr, +                unsigned Alignment, Instruction *Inst); +}; + +} // end anonymous namespace + +/// Add a new store to the MemsetRanges data structure.  This adds a +/// new range for the specified store at the specified offset, merging into +/// existing ranges as appropriate. +void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, +                            unsigned Alignment, Instruction *Inst) { +  int64_t End = Start+Size; + +  range_iterator I = partition_point( +      Ranges, [=](const MemsetRange &O) { return O.End < Start; }); + +  // We now know that I == E, in which case we didn't find anything to merge +  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need +  // to insert a new range.  Handle this now. +  if (I == Ranges.end() || End < I->Start) { +    MemsetRange &R = *Ranges.insert(I, MemsetRange()); +    R.Start        = Start; +    R.End          = End; +    R.StartPtr     = Ptr; +    R.Alignment    = Alignment; +    R.TheStores.push_back(Inst); +    return; +  } + +  // This store overlaps with I, add it. +  I->TheStores.push_back(Inst); + +  // At this point, we may have an interval that completely contains our store. +  // If so, just add it to the interval and return. +  if (I->Start <= Start && I->End >= End) +    return; + +  // Now we know that Start <= I->End and End >= I->Start so the range overlaps +  // but is not entirely contained within the range. + +  // See if the range extends the start of the range.  In this case, it couldn't +  // possibly cause it to join the prior range, because otherwise we would have +  // stopped on *it*. +  if (Start < I->Start) { +    I->Start = Start; +    I->StartPtr = Ptr; +    I->Alignment = Alignment; +  } + +  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint +  // is in or right at the end of I), and that End >= I->Start.  Extend I out to +  // End. +  if (End > I->End) { +    I->End = End; +    range_iterator NextI = I; +    while (++NextI != Ranges.end() && End >= NextI->Start) { +      // Merge the range in. +      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); +      if (NextI->End > I->End) +        I->End = NextI->End; +      Ranges.erase(NextI); +      NextI = I; +    } +  } +} + +//===----------------------------------------------------------------------===// +//                         MemCpyOptLegacyPass Pass +//===----------------------------------------------------------------------===// + +namespace { + +class MemCpyOptLegacyPass : public FunctionPass { +  MemCpyOptPass Impl; + +public: +  static char ID; // Pass identification, replacement for typeid + +  MemCpyOptLegacyPass() : FunctionPass(ID) { +    initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnFunction(Function &F) override; + +private: +  // This transformation requires dominator postdominator info +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.setPreservesCFG(); +    AU.addRequired<AssumptionCacheTracker>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<MemoryDependenceWrapperPass>(); +    AU.addRequired<AAResultsWrapperPass>(); +    AU.addRequired<TargetLibraryInfoWrapperPass>(); +    AU.addPreserved<GlobalsAAWrapperPass>(); +    AU.addPreserved<MemoryDependenceWrapperPass>(); +  } +}; + +} // end anonymous namespace + +char MemCpyOptLegacyPass::ID = 0; + +/// The public interface to this file... +FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } + +INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", +                      false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", +                    false, false) + +/// When scanning forward over instructions, we look for some other patterns to +/// fold away. In particular, this looks for stores to neighboring locations of +/// memory. If it sees enough consecutive ones, it attempts to merge them +/// together into a memcpy/memset. +Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, +                                                 Value *StartPtr, +                                                 Value *ByteVal) { +  const DataLayout &DL = StartInst->getModule()->getDataLayout(); + +  // Okay, so we now have a single store that can be splatable.  Scan to find +  // all subsequent stores of the same value to offset from the same pointer. +  // Join these together into ranges, so we can decide whether contiguous blocks +  // are stored. +  MemsetRanges Ranges(DL); + +  BasicBlock::iterator BI(StartInst); +  for (++BI; !BI->isTerminator(); ++BI) { +    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { +      // If the instruction is readnone, ignore it, otherwise bail out.  We +      // don't even allow readonly here because we don't want something like: +      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). +      if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) +        break; +      continue; +    } + +    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { +      // If this is a store, see if we can merge it in. +      if (!NextStore->isSimple()) break; + +      // Check to see if this stored value is of the same byte-splattable value. +      Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL); +      if (isa<UndefValue>(ByteVal) && StoredByte) +        ByteVal = StoredByte; +      if (ByteVal != StoredByte) +        break; + +      // Check to see if this store is to a constant offset from the start ptr. +      Optional<int64_t> Offset = +          isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); +      if (!Offset) +        break; + +      Ranges.addStore(*Offset, NextStore); +    } else { +      MemSetInst *MSI = cast<MemSetInst>(BI); + +      if (MSI->isVolatile() || ByteVal != MSI->getValue() || +          !isa<ConstantInt>(MSI->getLength())) +        break; + +      // Check to see if this store is to a constant offset from the start ptr. +      Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); +      if (!Offset) +        break; + +      Ranges.addMemSet(*Offset, MSI); +    } +  } + +  // If we have no ranges, then we just had a single store with nothing that +  // could be merged in.  This is a very common case of course. +  if (Ranges.empty()) +    return nullptr; + +  // If we had at least one store that could be merged in, add the starting +  // store as well.  We try to avoid this unless there is at least something +  // interesting as a small compile-time optimization. +  Ranges.addInst(0, StartInst); + +  // If we create any memsets, we put it right before the first instruction that +  // isn't part of the memset block.  This ensure that the memset is dominated +  // by any addressing instruction needed by the start of the block. +  IRBuilder<> Builder(&*BI); + +  // Now that we have full information about ranges, loop over the ranges and +  // emit memset's for anything big enough to be worthwhile. +  Instruction *AMemSet = nullptr; +  for (const MemsetRange &Range : Ranges) { +    if (Range.TheStores.size() == 1) continue; + +    // If it is profitable to lower this range to memset, do so now. +    if (!Range.isProfitableToUseMemset(DL)) +      continue; + +    // Otherwise, we do want to transform this!  Create a new memset. +    // Get the starting pointer of the block. +    StartPtr = Range.StartPtr; + +    // Determine alignment +    unsigned Alignment = Range.Alignment; +    if (Alignment == 0) { +      Type *EltType = +        cast<PointerType>(StartPtr->getType())->getElementType(); +      Alignment = DL.getABITypeAlignment(EltType); +    } + +    AMemSet = +      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); + +    LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI +                                                   : Range.TheStores) dbgs() +                                              << *SI << '\n'; +               dbgs() << "With: " << *AMemSet << '\n'); + +    if (!Range.TheStores.empty()) +      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); + +    // Zap all the stores. +    for (Instruction *SI : Range.TheStores) { +      MD->removeInstruction(SI); +      SI->eraseFromParent(); +    } +    ++NumMemSetInfer; +  } + +  return AMemSet; +} + +static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) { +  unsigned StoreAlign = SI->getAlignment(); +  if (!StoreAlign) +    StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); +  return StoreAlign; +} + +static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) { +  unsigned LoadAlign = LI->getAlignment(); +  if (!LoadAlign) +    LoadAlign = DL.getABITypeAlignment(LI->getType()); +  return LoadAlign; +} + +static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, +                                     const LoadInst *LI) { +  unsigned StoreAlign = findStoreAlignment(DL, SI); +  unsigned LoadAlign = findLoadAlignment(DL, LI); +  return MinAlign(StoreAlign, LoadAlign); +} + +// This method try to lift a store instruction before position P. +// It will lift the store and its argument + that anything that +// may alias with these. +// The method returns true if it was successful. +static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, +                   const LoadInst *LI) { +  // If the store alias this position, early bail out. +  MemoryLocation StoreLoc = MemoryLocation::get(SI); +  if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc))) +    return false; + +  // Keep track of the arguments of all instruction we plan to lift +  // so we can make sure to lift them as well if appropriate. +  DenseSet<Instruction*> Args; +  if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) +    if (Ptr->getParent() == SI->getParent()) +      Args.insert(Ptr); + +  // Instruction to lift before P. +  SmallVector<Instruction*, 8> ToLift; + +  // Memory locations of lifted instructions. +  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; + +  // Lifted calls. +  SmallVector<const CallBase *, 8> Calls; + +  const MemoryLocation LoadLoc = MemoryLocation::get(LI); + +  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { +    auto *C = &*I; + +    bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None)); + +    bool NeedLift = false; +    if (Args.erase(C)) +      NeedLift = true; +    else if (MayAlias) { +      NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) { +        return isModOrRefSet(AA.getModRefInfo(C, ML)); +      }); + +      if (!NeedLift) +        NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) { +          return isModOrRefSet(AA.getModRefInfo(C, Call)); +        }); +    } + +    if (!NeedLift) +      continue; + +    if (MayAlias) { +      // Since LI is implicitly moved downwards past the lifted instructions, +      // none of them may modify its source. +      if (isModSet(AA.getModRefInfo(C, LoadLoc))) +        return false; +      else if (const auto *Call = dyn_cast<CallBase>(C)) { +        // If we can't lift this before P, it's game over. +        if (isModOrRefSet(AA.getModRefInfo(P, Call))) +          return false; + +        Calls.push_back(Call); +      } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { +        // If we can't lift this before P, it's game over. +        auto ML = MemoryLocation::get(C); +        if (isModOrRefSet(AA.getModRefInfo(P, ML))) +          return false; + +        MemLocs.push_back(ML); +      } else +        // We don't know how to lift this instruction. +        return false; +    } + +    ToLift.push_back(C); +    for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) +      if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { +        if (A->getParent() == SI->getParent()) { +          // Cannot hoist user of P above P +          if(A == P) return false; +          Args.insert(A); +        } +      } +  } + +  // We made it, we need to lift +  for (auto *I : llvm::reverse(ToLift)) { +    LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); +    I->moveBefore(P); +  } + +  return true; +} + +bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { +  if (!SI->isSimple()) return false; + +  // Avoid merging nontemporal stores since the resulting +  // memcpy/memset would not be able to preserve the nontemporal hint. +  // In theory we could teach how to propagate the !nontemporal metadata to +  // memset calls. However, that change would force the backend to +  // conservatively expand !nontemporal memset calls back to sequences of +  // store instructions (effectively undoing the merging). +  if (SI->getMetadata(LLVMContext::MD_nontemporal)) +    return false; + +  const DataLayout &DL = SI->getModule()->getDataLayout(); + +  // Load to store forwarding can be interpreted as memcpy. +  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { +    if (LI->isSimple() && LI->hasOneUse() && +        LI->getParent() == SI->getParent()) { + +      auto *T = LI->getType(); +      if (T->isAggregateType()) { +        AliasAnalysis &AA = LookupAliasAnalysis(); +        MemoryLocation LoadLoc = MemoryLocation::get(LI); + +        // We use alias analysis to check if an instruction may store to +        // the memory we load from in between the load and the store. If +        // such an instruction is found, we try to promote there instead +        // of at the store position. +        Instruction *P = SI; +        for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { +          if (isModSet(AA.getModRefInfo(&I, LoadLoc))) { +            P = &I; +            break; +          } +        } + +        // We found an instruction that may write to the loaded memory. +        // We can try to promote at this position instead of the store +        // position if nothing alias the store memory after this and the store +        // destination is not in the range. +        if (P && P != SI) { +          if (!moveUp(AA, SI, P, LI)) +            P = nullptr; +        } + +        // If a valid insertion position is found, then we can promote +        // the load/store pair to a memcpy. +        if (P) { +          // If we load from memory that may alias the memory we store to, +          // memmove must be used to preserve semantic. If not, memcpy can +          // be used. +          bool UseMemMove = false; +          if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) +            UseMemMove = true; + +          uint64_t Size = DL.getTypeStoreSize(T); + +          IRBuilder<> Builder(P); +          Instruction *M; +          if (UseMemMove) +            M = Builder.CreateMemMove( +                SI->getPointerOperand(), findStoreAlignment(DL, SI), +                LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); +          else +            M = Builder.CreateMemCpy( +                SI->getPointerOperand(), findStoreAlignment(DL, SI), +                LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); + +          LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " +                            << *M << "\n"); + +          MD->removeInstruction(SI); +          SI->eraseFromParent(); +          MD->removeInstruction(LI); +          LI->eraseFromParent(); +          ++NumMemCpyInstr; + +          // Make sure we do not invalidate the iterator. +          BBI = M->getIterator(); +          return true; +        } +      } + +      // Detect cases where we're performing call slot forwarding, but +      // happen to be using a load-store pair to implement it, rather than +      // a memcpy. +      MemDepResult ldep = MD->getDependency(LI); +      CallInst *C = nullptr; +      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) +        C = dyn_cast<CallInst>(ldep.getInst()); + +      if (C) { +        // Check that nothing touches the dest of the "copy" between +        // the call and the store. +        Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); +        bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); +        AliasAnalysis &AA = LookupAliasAnalysis(); +        MemoryLocation StoreLoc = MemoryLocation::get(SI); +        for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); +             I != E; --I) { +          if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) { +            C = nullptr; +            break; +          } +          // The store to dest may never happen if an exception can be thrown +          // between the load and the store. +          if (I->mayThrow() && !CpyDestIsLocal) { +            C = nullptr; +            break; +          } +        } +      } + +      if (C) { +        bool changed = performCallSlotOptzn( +            LI, SI->getPointerOperand()->stripPointerCasts(), +            LI->getPointerOperand()->stripPointerCasts(), +            DL.getTypeStoreSize(SI->getOperand(0)->getType()), +            findCommonAlignment(DL, SI, LI), C); +        if (changed) { +          MD->removeInstruction(SI); +          SI->eraseFromParent(); +          MD->removeInstruction(LI); +          LI->eraseFromParent(); +          ++NumMemCpyInstr; +          return true; +        } +      } +    } +  } + +  // There are two cases that are interesting for this code to handle: memcpy +  // and memset.  Right now we only handle memset. + +  // Ensure that the value being stored is something that can be memset'able a +  // byte at a time like "0" or "-1" or any width, as well as things like +  // 0xA0A0A0A0 and 0.0. +  auto *V = SI->getOperand(0); +  if (Value *ByteVal = isBytewiseValue(V, DL)) { +    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), +                                              ByteVal)) { +      BBI = I->getIterator(); // Don't invalidate iterator. +      return true; +    } + +    // If we have an aggregate, we try to promote it to memset regardless +    // of opportunity for merging as it can expose optimization opportunities +    // in subsequent passes. +    auto *T = V->getType(); +    if (T->isAggregateType()) { +      uint64_t Size = DL.getTypeStoreSize(T); +      unsigned Align = SI->getAlignment(); +      if (!Align) +        Align = DL.getABITypeAlignment(T); +      IRBuilder<> Builder(SI); +      auto *M = +          Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align); + +      LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); + +      MD->removeInstruction(SI); +      SI->eraseFromParent(); +      NumMemSetInfer++; + +      // Make sure we do not invalidate the iterator. +      BBI = M->getIterator(); +      return true; +    } +  } + +  return false; +} + +bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { +  // See if there is another memset or store neighboring this memset which +  // allows us to widen out the memset to do a single larger store. +  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) +    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), +                                              MSI->getValue())) { +      BBI = I->getIterator(); // Don't invalidate iterator. +      return true; +    } +  return false; +} + +/// Takes a memcpy and a call that it depends on, +/// and checks for the possibility of a call slot optimization by having +/// the call write its result directly into the destination of the memcpy. +bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, +                                         Value *cpySrc, uint64_t cpyLen, +                                         unsigned cpyAlign, CallInst *C) { +  // The general transformation to keep in mind is +  // +  //   call @func(..., src, ...) +  //   memcpy(dest, src, ...) +  // +  // -> +  // +  //   memcpy(dest, src, ...) +  //   call @func(..., dest, ...) +  // +  // Since moving the memcpy is technically awkward, we additionally check that +  // src only holds uninitialized values at the moment of the call, meaning that +  // the memcpy can be discarded rather than moved. + +  // Lifetime marks shouldn't be operated on. +  if (Function *F = C->getCalledFunction()) +    if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) +      return false; + +  // Deliberately get the source and destination with bitcasts stripped away, +  // because we'll need to do type comparisons based on the underlying type. +  CallSite CS(C); + +  // Require that src be an alloca.  This simplifies the reasoning considerably. +  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); +  if (!srcAlloca) +    return false; + +  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); +  if (!srcArraySize) +    return false; + +  const DataLayout &DL = cpy->getModule()->getDataLayout(); +  uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * +                     srcArraySize->getZExtValue(); + +  if (cpyLen < srcSize) +    return false; + +  // Check that accessing the first srcSize bytes of dest will not cause a +  // trap.  Otherwise the transform is invalid since it might cause a trap +  // to occur earlier than it otherwise would. +  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { +    // The destination is an alloca.  Check it is larger than srcSize. +    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); +    if (!destArraySize) +      return false; + +    uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * +                        destArraySize->getZExtValue(); + +    if (destSize < srcSize) +      return false; +  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { +    // The store to dest may never happen if the call can throw. +    if (C->mayThrow()) +      return false; + +    if (A->getDereferenceableBytes() < srcSize) { +      // If the destination is an sret parameter then only accesses that are +      // outside of the returned struct type can trap. +      if (!A->hasStructRetAttr()) +        return false; + +      Type *StructTy = cast<PointerType>(A->getType())->getElementType(); +      if (!StructTy->isSized()) { +        // The call may never return and hence the copy-instruction may never +        // be executed, and therefore it's not safe to say "the destination +        // has at least <cpyLen> bytes, as implied by the copy-instruction", +        return false; +      } + +      uint64_t destSize = DL.getTypeAllocSize(StructTy); +      if (destSize < srcSize) +        return false; +    } +  } else { +    return false; +  } + +  // Check that dest points to memory that is at least as aligned as src. +  unsigned srcAlign = srcAlloca->getAlignment(); +  if (!srcAlign) +    srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); +  bool isDestSufficientlyAligned = srcAlign <= cpyAlign; +  // If dest is not aligned enough and we can't increase its alignment then +  // bail out. +  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) +    return false; + +  // Check that src is not accessed except via the call and the memcpy.  This +  // guarantees that it holds only undefined values when passed in (so the final +  // memcpy can be dropped), that it is not read or written between the call and +  // the memcpy, and that writing beyond the end of it is undefined. +  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), +                                   srcAlloca->user_end()); +  while (!srcUseList.empty()) { +    User *U = srcUseList.pop_back_val(); + +    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { +      for (User *UU : U->users()) +        srcUseList.push_back(UU); +      continue; +    } +    if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { +      if (!G->hasAllZeroIndices()) +        return false; + +      for (User *UU : U->users()) +        srcUseList.push_back(UU); +      continue; +    } +    if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) +      if (IT->isLifetimeStartOrEnd()) +        continue; + +    if (U != C && U != cpy) +      return false; +  } + +  // Check that src isn't captured by the called function since the +  // transformation can cause aliasing issues in that case. +  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) +    if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) +      return false; + +  // Since we're changing the parameter to the callsite, we need to make sure +  // that what would be the new parameter dominates the callsite. +  DominatorTree &DT = LookupDomTree(); +  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) +    if (!DT.dominates(cpyDestInst, C)) +      return false; + +  // In addition to knowing that the call does not access src in some +  // unexpected manner, for example via a global, which we deduce from +  // the use analysis, we also need to know that it does not sneakily +  // access dest.  We rely on AA to figure this out for us. +  AliasAnalysis &AA = LookupAliasAnalysis(); +  ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); +  // If necessary, perform additional analysis. +  if (isModOrRefSet(MR)) +    MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT); +  if (isModOrRefSet(MR)) +    return false; + +  // We can't create address space casts here because we don't know if they're +  // safe for the target. +  if (cpySrc->getType()->getPointerAddressSpace() != +      cpyDest->getType()->getPointerAddressSpace()) +    return false; +  for (unsigned i = 0; i < CS.arg_size(); ++i) +    if (CS.getArgument(i)->stripPointerCasts() == cpySrc && +        cpySrc->getType()->getPointerAddressSpace() != +        CS.getArgument(i)->getType()->getPointerAddressSpace()) +      return false; + +  // All the checks have passed, so do the transformation. +  bool changedArgument = false; +  for (unsigned i = 0; i < CS.arg_size(); ++i) +    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { +      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest +        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), +                                      cpyDest->getName(), C); +      changedArgument = true; +      if (CS.getArgument(i)->getType() == Dest->getType()) +        CS.setArgument(i, Dest); +      else +        CS.setArgument(i, CastInst::CreatePointerCast(Dest, +                          CS.getArgument(i)->getType(), Dest->getName(), C)); +    } + +  if (!changedArgument) +    return false; + +  // If the destination wasn't sufficiently aligned then increase its alignment. +  if (!isDestSufficientlyAligned) { +    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); +    cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign)); +  } + +  // Drop any cached information about the call, because we may have changed +  // its dependence information by changing its parameter. +  MD->removeInstruction(C); + +  // Update AA metadata +  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be +  // handled here, but combineMetadata doesn't support them yet +  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, +                         LLVMContext::MD_noalias, +                         LLVMContext::MD_invariant_group, +                         LLVMContext::MD_access_group}; +  combineMetadata(C, cpy, KnownIDs, true); + +  // Remove the memcpy. +  MD->removeInstruction(cpy); +  ++NumMemCpyInstr; + +  return true; +} + +/// We've found that the (upward scanning) memory dependence of memcpy 'M' is +/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. +bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, +                                                  MemCpyInst *MDep) { +  // We can only transforms memcpy's where the dest of one is the source of the +  // other. +  if (M->getSource() != MDep->getDest() || MDep->isVolatile()) +    return false; + +  // If dep instruction is reading from our current input, then it is a noop +  // transfer and substituting the input won't change this instruction.  Just +  // ignore the input and let someone else zap MDep.  This handles cases like: +  //    memcpy(a <- a) +  //    memcpy(b <- a) +  if (M->getSource() == MDep->getSource()) +    return false; + +  // Second, the length of the memcpy's must be the same, or the preceding one +  // must be larger than the following one. +  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); +  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); +  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) +    return false; + +  AliasAnalysis &AA = LookupAliasAnalysis(); + +  // Verify that the copied-from memory doesn't change in between the two +  // transfers.  For example, in: +  //    memcpy(a <- b) +  //    *b = 42; +  //    memcpy(c <- a) +  // It would be invalid to transform the second memcpy into memcpy(c <- b). +  // +  // TODO: If the code between M and MDep is transparent to the destination "c", +  // then we could still perform the xform by moving M up to the first memcpy. +  // +  // NOTE: This is conservative, it will stop on any read from the source loc, +  // not just the defining memcpy. +  MemDepResult SourceDep = +      MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, +                                   M->getIterator(), M->getParent()); +  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) +    return false; + +  // If the dest of the second might alias the source of the first, then the +  // source and dest might overlap.  We still want to eliminate the intermediate +  // value, but we have to generate a memmove instead of memcpy. +  bool UseMemMove = false; +  if (!AA.isNoAlias(MemoryLocation::getForDest(M), +                    MemoryLocation::getForSource(MDep))) +    UseMemMove = true; + +  // If all checks passed, then we can transform M. +  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" +                    << *MDep << '\n' << *M << '\n'); + +  // TODO: Is this worth it if we're creating a less aligned memcpy? For +  // example we could be moving from movaps -> movq on x86. +  IRBuilder<> Builder(M); +  if (UseMemMove) +    Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(), +                          MDep->getRawSource(), MDep->getSourceAlignment(), +                          M->getLength(), M->isVolatile()); +  else +    Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(), +                         MDep->getRawSource(), MDep->getSourceAlignment(), +                         M->getLength(), M->isVolatile()); + +  // Remove the instruction we're replacing. +  MD->removeInstruction(M); +  M->eraseFromParent(); +  ++NumMemCpyInstr; +  return true; +} + +/// We've found that the (upward scanning) memory dependence of \p MemCpy is +/// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that +/// weren't copied over by \p MemCpy. +/// +/// In other words, transform: +/// \code +///   memset(dst, c, dst_size); +///   memcpy(dst, src, src_size); +/// \endcode +/// into: +/// \code +///   memcpy(dst, src, src_size); +///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); +/// \endcode +bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, +                                                  MemSetInst *MemSet) { +  // We can only transform memset/memcpy with the same destination. +  if (MemSet->getDest() != MemCpy->getDest()) +    return false; + +  // Check that there are no other dependencies on the memset destination. +  MemDepResult DstDepInfo = +      MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, +                                   MemCpy->getIterator(), MemCpy->getParent()); +  if (DstDepInfo.getInst() != MemSet) +    return false; + +  // Use the same i8* dest as the memcpy, killing the memset dest if different. +  Value *Dest = MemCpy->getRawDest(); +  Value *DestSize = MemSet->getLength(); +  Value *SrcSize = MemCpy->getLength(); + +  // By default, create an unaligned memset. +  unsigned Align = 1; +  // If Dest is aligned, and SrcSize is constant, use the minimum alignment +  // of the sum. +  const unsigned DestAlign = +      std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); +  if (DestAlign > 1) +    if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) +      Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); + +  IRBuilder<> Builder(MemCpy); + +  // If the sizes have different types, zext the smaller one. +  if (DestSize->getType() != SrcSize->getType()) { +    if (DestSize->getType()->getIntegerBitWidth() > +        SrcSize->getType()->getIntegerBitWidth()) +      SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); +    else +      DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); +  } + +  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); +  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); +  Value *MemsetLen = Builder.CreateSelect( +      Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); +  Builder.CreateMemSet( +      Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest, +                        SrcSize), +      MemSet->getOperand(1), MemsetLen, Align); + +  MD->removeInstruction(MemSet); +  MemSet->eraseFromParent(); +  return true; +} + +/// Determine whether the instruction has undefined content for the given Size, +/// either because it was freshly alloca'd or started its lifetime. +static bool hasUndefContents(Instruction *I, ConstantInt *Size) { +  if (isa<AllocaInst>(I)) +    return true; + +  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) +    if (II->getIntrinsicID() == Intrinsic::lifetime_start) +      if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) +        if (LTSize->getZExtValue() >= Size->getZExtValue()) +          return true; + +  return false; +} + +/// Transform memcpy to memset when its source was just memset. +/// In other words, turn: +/// \code +///   memset(dst1, c, dst1_size); +///   memcpy(dst2, dst1, dst2_size); +/// \endcode +/// into: +/// \code +///   memset(dst1, c, dst1_size); +///   memset(dst2, c, dst2_size); +/// \endcode +/// When dst2_size <= dst1_size. +/// +/// The \p MemCpy must have a Constant length. +bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, +                                               MemSetInst *MemSet) { +  AliasAnalysis &AA = LookupAliasAnalysis(); + +  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and +  // memcpying from the same address. Otherwise it is hard to reason about. +  if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) +    return false; + +  // A known memset size is required. +  ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); +  if (!MemSetSize) +    return false; + +  // Make sure the memcpy doesn't read any more than what the memset wrote. +  // Don't worry about sizes larger than i64. +  ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); +  if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) { +    // If the memcpy is larger than the memset, but the memory was undef prior +    // to the memset, we can just ignore the tail. Technically we're only +    // interested in the bytes from MemSetSize..CopySize here, but as we can't +    // easily represent this location, we use the full 0..CopySize range. +    MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); +    MemDepResult DepInfo = MD->getPointerDependencyFrom( +        MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); +    if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) +      CopySize = MemSetSize; +    else +      return false; +  } + +  IRBuilder<> Builder(MemCpy); +  Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), +                       CopySize, MemCpy->getDestAlignment()); +  return true; +} + +/// Perform simplification of memcpy's.  If we have memcpy A +/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite +/// B to be a memcpy from X to Z (or potentially a memmove, depending on +/// circumstances). This allows later passes to remove the first memcpy +/// altogether. +bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { +  // We can only optimize non-volatile memcpy's. +  if (M->isVolatile()) return false; + +  // If the source and destination of the memcpy are the same, then zap it. +  if (M->getSource() == M->getDest()) { +    MD->removeInstruction(M); +    M->eraseFromParent(); +    return false; +  } + +  // If copying from a constant, try to turn the memcpy into a memset. +  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) +    if (GV->isConstant() && GV->hasDefinitiveInitializer()) +      if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), +                                           M->getModule()->getDataLayout())) { +        IRBuilder<> Builder(M); +        Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), +                             M->getDestAlignment(), false); +        MD->removeInstruction(M); +        M->eraseFromParent(); +        ++NumCpyToSet; +        return true; +      } + +  MemDepResult DepInfo = MD->getDependency(M); + +  // Try to turn a partially redundant memset + memcpy into +  // memcpy + smaller memset.  We don't need the memcpy size for this. +  if (DepInfo.isClobber()) +    if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) +      if (processMemSetMemCpyDependence(M, MDep)) +        return true; + +  // The optimizations after this point require the memcpy size. +  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); +  if (!CopySize) return false; + +  // There are four possible optimizations we can do for memcpy: +  //   a) memcpy-memcpy xform which exposes redundance for DSE. +  //   b) call-memcpy xform for return slot optimization. +  //   c) memcpy from freshly alloca'd space or space that has just started its +  //      lifetime copies undefined data, and we can therefore eliminate the +  //      memcpy in favor of the data that was already at the destination. +  //   d) memcpy from a just-memset'd source can be turned into memset. +  if (DepInfo.isClobber()) { +    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { +      // FIXME: Can we pass in either of dest/src alignment here instead +      // of conservatively taking the minimum? +      unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment()); +      if (performCallSlotOptzn(M, M->getDest(), M->getSource(), +                               CopySize->getZExtValue(), Align, +                               C)) { +        MD->removeInstruction(M); +        M->eraseFromParent(); +        return true; +      } +    } +  } + +  MemoryLocation SrcLoc = MemoryLocation::getForSource(M); +  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( +      SrcLoc, true, M->getIterator(), M->getParent()); + +  if (SrcDepInfo.isClobber()) { +    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) +      return processMemCpyMemCpyDependence(M, MDep); +  } else if (SrcDepInfo.isDef()) { +    if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) { +      MD->removeInstruction(M); +      M->eraseFromParent(); +      ++NumMemCpyInstr; +      return true; +    } +  } + +  if (SrcDepInfo.isClobber()) +    if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) +      if (performMemCpyToMemSetOptzn(M, MDep)) { +        MD->removeInstruction(M); +        M->eraseFromParent(); +        ++NumCpyToSet; +        return true; +      } + +  return false; +} + +/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed +/// not to alias. +bool MemCpyOptPass::processMemMove(MemMoveInst *M) { +  AliasAnalysis &AA = LookupAliasAnalysis(); + +  if (!TLI->has(LibFunc_memmove)) +    return false; + +  // See if the pointers alias. +  if (!AA.isNoAlias(MemoryLocation::getForDest(M), +                    MemoryLocation::getForSource(M))) +    return false; + +  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M +                    << "\n"); + +  // If not, then we know we can transform this. +  Type *ArgTys[3] = { M->getRawDest()->getType(), +                      M->getRawSource()->getType(), +                      M->getLength()->getType() }; +  M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), +                                                 Intrinsic::memcpy, ArgTys)); + +  // MemDep may have over conservative information about this instruction, just +  // conservatively flush it from the cache. +  MD->removeInstruction(M); + +  ++NumMoveToCpy; +  return true; +} + +/// This is called on every byval argument in call sites. +bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { +  const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); +  // Find out what feeds this byval argument. +  Value *ByValArg = CS.getArgument(ArgNo); +  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); +  uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); +  MemDepResult DepInfo = MD->getPointerDependencyFrom( +      MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true, +      CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); +  if (!DepInfo.isClobber()) +    return false; + +  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by +  // a memcpy, see if we can byval from the source of the memcpy instead of the +  // result. +  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); +  if (!MDep || MDep->isVolatile() || +      ByValArg->stripPointerCasts() != MDep->getDest()) +    return false; + +  // The length of the memcpy must be larger or equal to the size of the byval. +  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); +  if (!C1 || C1->getValue().getZExtValue() < ByValSize) +    return false; + +  // Get the alignment of the byval.  If the call doesn't specify the alignment, +  // then it is some target specific value that we can't know. +  unsigned ByValAlign = CS.getParamAlignment(ArgNo); +  if (ByValAlign == 0) return false; + +  // If it is greater than the memcpy, then we check to see if we can force the +  // source of the memcpy to the alignment we need.  If we fail, we bail out. +  AssumptionCache &AC = LookupAssumptionCache(); +  DominatorTree &DT = LookupDomTree(); +  if (MDep->getSourceAlignment() < ByValAlign && +      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, +                                 CS.getInstruction(), &AC, &DT) < ByValAlign) +    return false; + +  // The address space of the memcpy source must match the byval argument +  if (MDep->getSource()->getType()->getPointerAddressSpace() != +      ByValArg->getType()->getPointerAddressSpace()) +    return false; + +  // Verify that the copied-from memory doesn't change in between the memcpy and +  // the byval call. +  //    memcpy(a <- b) +  //    *b = 42; +  //    foo(*a) +  // It would be invalid to transform the second memcpy into foo(*b). +  // +  // NOTE: This is conservative, it will stop on any read from the source loc, +  // not just the defining memcpy. +  MemDepResult SourceDep = MD->getPointerDependencyFrom( +      MemoryLocation::getForSource(MDep), false, +      CS.getInstruction()->getIterator(), MDep->getParent()); +  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) +    return false; + +  Value *TmpCast = MDep->getSource(); +  if (MDep->getSource()->getType() != ByValArg->getType()) +    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), +                              "tmpcast", CS.getInstruction()); + +  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" +                    << "  " << *MDep << "\n" +                    << "  " << *CS.getInstruction() << "\n"); + +  // Otherwise we're good!  Update the byval argument. +  CS.setArgument(ArgNo, TmpCast); +  ++NumMemCpyInstr; +  return true; +} + +/// Executes one iteration of MemCpyOptPass. +bool MemCpyOptPass::iterateOnFunction(Function &F) { +  bool MadeChange = false; + +  DominatorTree &DT = LookupDomTree(); + +  // Walk all instruction in the function. +  for (BasicBlock &BB : F) { +    // Skip unreachable blocks. For example processStore assumes that an +    // instruction in a BB can't be dominated by a later instruction in the +    // same BB (which is a scenario that can happen for an unreachable BB that +    // has itself as a predecessor). +    if (!DT.isReachableFromEntry(&BB)) +      continue; + +    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { +        // Avoid invalidating the iterator. +      Instruction *I = &*BI++; + +      bool RepeatInstruction = false; + +      if (StoreInst *SI = dyn_cast<StoreInst>(I)) +        MadeChange |= processStore(SI, BI); +      else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) +        RepeatInstruction = processMemSet(M, BI); +      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) +        RepeatInstruction = processMemCpy(M); +      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) +        RepeatInstruction = processMemMove(M); +      else if (auto CS = CallSite(I)) { +        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) +          if (CS.isByValArgument(i)) +            MadeChange |= processByValArgument(CS, i); +      } + +      // Reprocess the instruction if desired. +      if (RepeatInstruction) { +        if (BI != BB.begin()) +          --BI; +        MadeChange = true; +      } +    } +  } + +  return MadeChange; +} + +PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { +  auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); +  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); + +  auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { +    return AM.getResult<AAManager>(F); +  }; +  auto LookupAssumptionCache = [&]() -> AssumptionCache & { +    return AM.getResult<AssumptionAnalysis>(F); +  }; +  auto LookupDomTree = [&]() -> DominatorTree & { +    return AM.getResult<DominatorTreeAnalysis>(F); +  }; + +  bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, +                            LookupAssumptionCache, LookupDomTree); +  if (!MadeChange) +    return PreservedAnalyses::all(); + +  PreservedAnalyses PA; +  PA.preserveSet<CFGAnalyses>(); +  PA.preserve<GlobalsAA>(); +  PA.preserve<MemoryDependenceAnalysis>(); +  return PA; +} + +bool MemCpyOptPass::runImpl( +    Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, +    std::function<AliasAnalysis &()> LookupAliasAnalysis_, +    std::function<AssumptionCache &()> LookupAssumptionCache_, +    std::function<DominatorTree &()> LookupDomTree_) { +  bool MadeChange = false; +  MD = MD_; +  TLI = TLI_; +  LookupAliasAnalysis = std::move(LookupAliasAnalysis_); +  LookupAssumptionCache = std::move(LookupAssumptionCache_); +  LookupDomTree = std::move(LookupDomTree_); + +  // If we don't have at least memset and memcpy, there is little point of doing +  // anything here.  These are required by a freestanding implementation, so if +  // even they are disabled, there is no point in trying hard. +  if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) +    return false; + +  while (true) { +    if (!iterateOnFunction(F)) +      break; +    MadeChange = true; +  } + +  MD = nullptr; +  return MadeChange; +} + +/// This is the main transformation entry point for a function. +bool MemCpyOptLegacyPass::runOnFunction(Function &F) { +  if (skipFunction(F)) +    return false; + +  auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); +  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + +  auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { +    return getAnalysis<AAResultsWrapperPass>().getAAResults(); +  }; +  auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { +    return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); +  }; +  auto LookupDomTree = [this]() -> DominatorTree & { +    return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  }; + +  return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, +                      LookupDomTree); +} | 
