summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/MergeICmps.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/MergeICmps.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/MergeICmps.cpp945
1 files changed, 945 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/MergeICmps.cpp b/llvm/lib/Transforms/Scalar/MergeICmps.cpp
new file mode 100644
index 000000000000..98a45b391319
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/MergeICmps.cpp
@@ -0,0 +1,945 @@
+//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass turns chains of integer comparisons into memcmp (the memcmp is
+// later typically inlined as a chain of efficient hardware comparisons). This
+// typically benefits c++ member or nonmember operator==().
+//
+// The basic idea is to replace a longer chain of integer comparisons loaded
+// from contiguous memory locations into a shorter chain of larger integer
+// comparisons. Benefits are double:
+// - There are less jumps, and therefore less opportunities for mispredictions
+// and I-cache misses.
+// - Code size is smaller, both because jumps are removed and because the
+// encoding of a 2*n byte compare is smaller than that of two n-byte
+// compares.
+//
+// Example:
+//
+// struct S {
+// int a;
+// char b;
+// char c;
+// uint16_t d;
+// bool operator==(const S& o) const {
+// return a == o.a && b == o.b && c == o.c && d == o.d;
+// }
+// };
+//
+// Is optimized as :
+//
+// bool S::operator==(const S& o) const {
+// return memcmp(this, &o, 8) == 0;
+// }
+//
+// Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/MergeICmps.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Pass.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include <algorithm>
+#include <numeric>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+namespace {
+
+#define DEBUG_TYPE "mergeicmps"
+
+// Returns true if the instruction is a simple load or a simple store
+static bool isSimpleLoadOrStore(const Instruction *I) {
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->isSimple();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->isSimple();
+ return false;
+}
+
+// A BCE atom "Binary Compare Expression Atom" represents an integer load
+// that is a constant offset from a base value, e.g. `a` or `o.c` in the example
+// at the top.
+struct BCEAtom {
+ BCEAtom() = default;
+ BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
+ : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
+
+ BCEAtom(const BCEAtom &) = delete;
+ BCEAtom &operator=(const BCEAtom &) = delete;
+
+ BCEAtom(BCEAtom &&that) = default;
+ BCEAtom &operator=(BCEAtom &&that) {
+ if (this == &that)
+ return *this;
+ GEP = that.GEP;
+ LoadI = that.LoadI;
+ BaseId = that.BaseId;
+ Offset = std::move(that.Offset);
+ return *this;
+ }
+
+ // We want to order BCEAtoms by (Base, Offset). However we cannot use
+ // the pointer values for Base because these are non-deterministic.
+ // To make sure that the sort order is stable, we first assign to each atom
+ // base value an index based on its order of appearance in the chain of
+ // comparisons. We call this index `BaseOrdering`. For example, for:
+ // b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
+ // | block 1 | | block 2 | | block 3 |
+ // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
+ // which is before block 2.
+ // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
+ bool operator<(const BCEAtom &O) const {
+ return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
+ }
+
+ GetElementPtrInst *GEP = nullptr;
+ LoadInst *LoadI = nullptr;
+ unsigned BaseId = 0;
+ APInt Offset;
+};
+
+// A class that assigns increasing ids to values in the order in which they are
+// seen. See comment in `BCEAtom::operator<()``.
+class BaseIdentifier {
+public:
+ // Returns the id for value `Base`, after assigning one if `Base` has not been
+ // seen before.
+ int getBaseId(const Value *Base) {
+ assert(Base && "invalid base");
+ const auto Insertion = BaseToIndex.try_emplace(Base, Order);
+ if (Insertion.second)
+ ++Order;
+ return Insertion.first->second;
+ }
+
+private:
+ unsigned Order = 1;
+ DenseMap<const Value*, int> BaseToIndex;
+};
+
+// If this value is a load from a constant offset w.r.t. a base address, and
+// there are no other users of the load or address, returns the base address and
+// the offset.
+BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
+ auto *const LoadI = dyn_cast<LoadInst>(Val);
+ if (!LoadI)
+ return {};
+ LLVM_DEBUG(dbgs() << "load\n");
+ if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
+ LLVM_DEBUG(dbgs() << "used outside of block\n");
+ return {};
+ }
+ // Do not optimize atomic loads to non-atomic memcmp
+ if (!LoadI->isSimple()) {
+ LLVM_DEBUG(dbgs() << "volatile or atomic\n");
+ return {};
+ }
+ Value *const Addr = LoadI->getOperand(0);
+ auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
+ if (!GEP)
+ return {};
+ LLVM_DEBUG(dbgs() << "GEP\n");
+ if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
+ LLVM_DEBUG(dbgs() << "used outside of block\n");
+ return {};
+ }
+ const auto &DL = GEP->getModule()->getDataLayout();
+ if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
+ LLVM_DEBUG(dbgs() << "not dereferenceable\n");
+ // We need to make sure that we can do comparison in any order, so we
+ // require memory to be unconditionnally dereferencable.
+ return {};
+ }
+ APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
+ if (!GEP->accumulateConstantOffset(DL, Offset))
+ return {};
+ return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
+ Offset);
+}
+
+// A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
+// example at the top.
+// The block might do extra work besides the atom comparison, in which case
+// doesOtherWork() returns true. Under some conditions, the block can be
+// split into the atom comparison part and the "other work" part
+// (see canSplit()).
+// Note: the terminology is misleading: the comparison is symmetric, so there
+// is no real {l/r}hs. What we want though is to have the same base on the
+// left (resp. right), so that we can detect consecutive loads. To ensure this
+// we put the smallest atom on the left.
+class BCECmpBlock {
+ public:
+ BCECmpBlock() {}
+
+ BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
+ : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) {
+ if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
+ }
+
+ bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }
+
+ // Assert the block is consistent: If valid, it should also have
+ // non-null members besides Lhs_ and Rhs_.
+ void AssertConsistent() const {
+ if (IsValid()) {
+ assert(BB);
+ assert(CmpI);
+ assert(BranchI);
+ }
+ }
+
+ const BCEAtom &Lhs() const { return Lhs_; }
+ const BCEAtom &Rhs() const { return Rhs_; }
+ int SizeBits() const { return SizeBits_; }
+
+ // Returns true if the block does other works besides comparison.
+ bool doesOtherWork() const;
+
+ // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
+ // instructions in the block.
+ bool canSplit(AliasAnalysis &AA) const;
+
+ // Return true if this all the relevant instructions in the BCE-cmp-block can
+ // be sunk below this instruction. By doing this, we know we can separate the
+ // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
+ // block.
+ bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
+ AliasAnalysis &AA) const;
+
+ // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
+ // instructions. Split the old block and move all non-BCE-cmp-insts into the
+ // new parent block.
+ void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
+
+ // The basic block where this comparison happens.
+ BasicBlock *BB = nullptr;
+ // The ICMP for this comparison.
+ ICmpInst *CmpI = nullptr;
+ // The terminating branch.
+ BranchInst *BranchI = nullptr;
+ // The block requires splitting.
+ bool RequireSplit = false;
+
+private:
+ BCEAtom Lhs_;
+ BCEAtom Rhs_;
+ int SizeBits_ = 0;
+};
+
+bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
+ DenseSet<Instruction *> &BlockInsts,
+ AliasAnalysis &AA) const {
+ // If this instruction has side effects and its in middle of the BCE cmp block
+ // instructions, then bail for now.
+ if (Inst->mayHaveSideEffects()) {
+ // Bail if this is not a simple load or store
+ if (!isSimpleLoadOrStore(Inst))
+ return false;
+ // Disallow stores that might alias the BCE operands
+ MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
+ MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
+ if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
+ isModSet(AA.getModRefInfo(Inst, RLoc)))
+ return false;
+ }
+ // Make sure this instruction does not use any of the BCE cmp block
+ // instructions as operand.
+ for (auto BI : BlockInsts) {
+ if (is_contained(Inst->operands(), BI))
+ return false;
+ }
+ return true;
+}
+
+void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
+ DenseSet<Instruction *> BlockInsts(
+ {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
+ llvm::SmallVector<Instruction *, 4> OtherInsts;
+ for (Instruction &Inst : *BB) {
+ if (BlockInsts.count(&Inst))
+ continue;
+ assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
+ "Split unsplittable block");
+ // This is a non-BCE-cmp-block instruction. And it can be separated
+ // from the BCE-cmp-block instruction.
+ OtherInsts.push_back(&Inst);
+ }
+
+ // Do the actual spliting.
+ for (Instruction *Inst : reverse(OtherInsts)) {
+ Inst->moveBefore(&*NewParent->begin());
+ }
+}
+
+bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
+ DenseSet<Instruction *> BlockInsts(
+ {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
+ for (Instruction &Inst : *BB) {
+ if (!BlockInsts.count(&Inst)) {
+ if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool BCECmpBlock::doesOtherWork() const {
+ AssertConsistent();
+ // All the instructions we care about in the BCE cmp block.
+ DenseSet<Instruction *> BlockInsts(
+ {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
+ // TODO(courbet): Can we allow some other things ? This is very conservative.
+ // We might be able to get away with anything does not have any side
+ // effects outside of the basic block.
+ // Note: The GEPs and/or loads are not necessarily in the same block.
+ for (const Instruction &Inst : *BB) {
+ if (!BlockInsts.count(&Inst))
+ return true;
+ }
+ return false;
+}
+
+// Visit the given comparison. If this is a comparison between two valid
+// BCE atoms, returns the comparison.
+BCECmpBlock visitICmp(const ICmpInst *const CmpI,
+ const ICmpInst::Predicate ExpectedPredicate,
+ BaseIdentifier &BaseId) {
+ // The comparison can only be used once:
+ // - For intermediate blocks, as a branch condition.
+ // - For the final block, as an incoming value for the Phi.
+ // If there are any other uses of the comparison, we cannot merge it with
+ // other comparisons as we would create an orphan use of the value.
+ if (!CmpI->hasOneUse()) {
+ LLVM_DEBUG(dbgs() << "cmp has several uses\n");
+ return {};
+ }
+ if (CmpI->getPredicate() != ExpectedPredicate)
+ return {};
+ LLVM_DEBUG(dbgs() << "cmp "
+ << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
+ << "\n");
+ auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
+ if (!Lhs.BaseId)
+ return {};
+ auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
+ if (!Rhs.BaseId)
+ return {};
+ const auto &DL = CmpI->getModule()->getDataLayout();
+ return BCECmpBlock(std::move(Lhs), std::move(Rhs),
+ DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
+}
+
+// Visit the given comparison block. If this is a comparison between two valid
+// BCE atoms, returns the comparison.
+BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
+ const BasicBlock *const PhiBlock,
+ BaseIdentifier &BaseId) {
+ if (Block->empty()) return {};
+ auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
+ if (!BranchI) return {};
+ LLVM_DEBUG(dbgs() << "branch\n");
+ if (BranchI->isUnconditional()) {
+ // In this case, we expect an incoming value which is the result of the
+ // comparison. This is the last link in the chain of comparisons (note
+ // that this does not mean that this is the last incoming value, blocks
+ // can be reordered).
+ auto *const CmpI = dyn_cast<ICmpInst>(Val);
+ if (!CmpI) return {};
+ LLVM_DEBUG(dbgs() << "icmp\n");
+ auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
+ Result.CmpI = CmpI;
+ Result.BranchI = BranchI;
+ return Result;
+ } else {
+ // In this case, we expect a constant incoming value (the comparison is
+ // chained).
+ const auto *const Const = dyn_cast<ConstantInt>(Val);
+ LLVM_DEBUG(dbgs() << "const\n");
+ if (!Const->isZero()) return {};
+ LLVM_DEBUG(dbgs() << "false\n");
+ auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
+ if (!CmpI) return {};
+ LLVM_DEBUG(dbgs() << "icmp\n");
+ assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
+ BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
+ auto Result = visitICmp(
+ CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
+ BaseId);
+ Result.CmpI = CmpI;
+ Result.BranchI = BranchI;
+ return Result;
+ }
+ return {};
+}
+
+static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
+ BCECmpBlock &&Comparison) {
+ LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
+ << "': Found cmp of " << Comparison.SizeBits()
+ << " bits between " << Comparison.Lhs().BaseId << " + "
+ << Comparison.Lhs().Offset << " and "
+ << Comparison.Rhs().BaseId << " + "
+ << Comparison.Rhs().Offset << "\n");
+ LLVM_DEBUG(dbgs() << "\n");
+ Comparisons.push_back(std::move(Comparison));
+}
+
+// A chain of comparisons.
+class BCECmpChain {
+ public:
+ BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
+ AliasAnalysis &AA);
+
+ int size() const { return Comparisons_.size(); }
+
+#ifdef MERGEICMPS_DOT_ON
+ void dump() const;
+#endif // MERGEICMPS_DOT_ON
+
+ bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
+ DomTreeUpdater &DTU);
+
+private:
+ static bool IsContiguous(const BCECmpBlock &First,
+ const BCECmpBlock &Second) {
+ return First.Lhs().BaseId == Second.Lhs().BaseId &&
+ First.Rhs().BaseId == Second.Rhs().BaseId &&
+ First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
+ First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
+ }
+
+ PHINode &Phi_;
+ std::vector<BCECmpBlock> Comparisons_;
+ // The original entry block (before sorting);
+ BasicBlock *EntryBlock_;
+};
+
+BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
+ AliasAnalysis &AA)
+ : Phi_(Phi) {
+ assert(!Blocks.empty() && "a chain should have at least one block");
+ // Now look inside blocks to check for BCE comparisons.
+ std::vector<BCECmpBlock> Comparisons;
+ BaseIdentifier BaseId;
+ for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
+ BasicBlock *const Block = Blocks[BlockIdx];
+ assert(Block && "invalid block");
+ BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
+ Block, Phi.getParent(), BaseId);
+ Comparison.BB = Block;
+ if (!Comparison.IsValid()) {
+ LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
+ return;
+ }
+ if (Comparison.doesOtherWork()) {
+ LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
+ << "' does extra work besides compare\n");
+ if (Comparisons.empty()) {
+ // This is the initial block in the chain, in case this block does other
+ // work, we can try to split the block and move the irrelevant
+ // instructions to the predecessor.
+ //
+ // If this is not the initial block in the chain, splitting it wont
+ // work.
+ //
+ // As once split, there will still be instructions before the BCE cmp
+ // instructions that do other work in program order, i.e. within the
+ // chain before sorting. Unless we can abort the chain at this point
+ // and start anew.
+ //
+ // NOTE: we only handle blocks a with single predecessor for now.
+ if (Comparison.canSplit(AA)) {
+ LLVM_DEBUG(dbgs()
+ << "Split initial block '" << Comparison.BB->getName()
+ << "' that does extra work besides compare\n");
+ Comparison.RequireSplit = true;
+ enqueueBlock(Comparisons, std::move(Comparison));
+ } else {
+ LLVM_DEBUG(dbgs()
+ << "ignoring initial block '" << Comparison.BB->getName()
+ << "' that does extra work besides compare\n");
+ }
+ continue;
+ }
+ // TODO(courbet): Right now we abort the whole chain. We could be
+ // merging only the blocks that don't do other work and resume the
+ // chain from there. For example:
+ // if (a[0] == b[0]) { // bb1
+ // if (a[1] == b[1]) { // bb2
+ // some_value = 3; //bb3
+ // if (a[2] == b[2]) { //bb3
+ // do a ton of stuff //bb4
+ // }
+ // }
+ // }
+ //
+ // This is:
+ //
+ // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
+ // \ \ \ \
+ // ne ne ne \
+ // \ \ \ v
+ // +------------+-----------+----------> bb_phi
+ //
+ // We can only merge the first two comparisons, because bb3* does
+ // "other work" (setting some_value to 3).
+ // We could still merge bb1 and bb2 though.
+ return;
+ }
+ enqueueBlock(Comparisons, std::move(Comparison));
+ }
+
+ // It is possible we have no suitable comparison to merge.
+ if (Comparisons.empty()) {
+ LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
+ return;
+ }
+ EntryBlock_ = Comparisons[0].BB;
+ Comparisons_ = std::move(Comparisons);
+#ifdef MERGEICMPS_DOT_ON
+ errs() << "BEFORE REORDERING:\n\n";
+ dump();
+#endif // MERGEICMPS_DOT_ON
+ // Reorder blocks by LHS. We can do that without changing the
+ // semantics because we are only accessing dereferencable memory.
+ llvm::sort(Comparisons_,
+ [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
+ return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
+ std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
+ });
+#ifdef MERGEICMPS_DOT_ON
+ errs() << "AFTER REORDERING:\n\n";
+ dump();
+#endif // MERGEICMPS_DOT_ON
+}
+
+#ifdef MERGEICMPS_DOT_ON
+void BCECmpChain::dump() const {
+ errs() << "digraph dag {\n";
+ errs() << " graph [bgcolor=transparent];\n";
+ errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
+ errs() << " edge [color=black];\n";
+ for (size_t I = 0; I < Comparisons_.size(); ++I) {
+ const auto &Comparison = Comparisons_[I];
+ errs() << " \"" << I << "\" [label=\"%"
+ << Comparison.Lhs().Base()->getName() << " + "
+ << Comparison.Lhs().Offset << " == %"
+ << Comparison.Rhs().Base()->getName() << " + "
+ << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
+ << " bytes)\"];\n";
+ const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
+ if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
+ errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
+ }
+ errs() << " \"Phi\" [label=\"Phi\"];\n";
+ errs() << "}\n\n";
+}
+#endif // MERGEICMPS_DOT_ON
+
+namespace {
+
+// A class to compute the name of a set of merged basic blocks.
+// This is optimized for the common case of no block names.
+class MergedBlockName {
+ // Storage for the uncommon case of several named blocks.
+ SmallString<16> Scratch;
+
+public:
+ explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
+ : Name(makeName(Comparisons)) {}
+ const StringRef Name;
+
+private:
+ StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
+ assert(!Comparisons.empty() && "no basic block");
+ // Fast path: only one block, or no names at all.
+ if (Comparisons.size() == 1)
+ return Comparisons[0].BB->getName();
+ const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
+ [](int i, const BCECmpBlock &Cmp) {
+ return i + Cmp.BB->getName().size();
+ });
+ if (size == 0)
+ return StringRef("", 0);
+
+ // Slow path: at least two blocks, at least one block with a name.
+ Scratch.clear();
+ // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
+ // separators.
+ Scratch.reserve(size + Comparisons.size() - 1);
+ const auto append = [this](StringRef str) {
+ Scratch.append(str.begin(), str.end());
+ };
+ append(Comparisons[0].BB->getName());
+ for (int I = 1, E = Comparisons.size(); I < E; ++I) {
+ const BasicBlock *const BB = Comparisons[I].BB;
+ if (!BB->getName().empty()) {
+ append("+");
+ append(BB->getName());
+ }
+ }
+ return StringRef(Scratch);
+ }
+};
+} // namespace
+
+// Merges the given contiguous comparison blocks into one memcmp block.
+static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
+ BasicBlock *const InsertBefore,
+ BasicBlock *const NextCmpBlock,
+ PHINode &Phi, const TargetLibraryInfo &TLI,
+ AliasAnalysis &AA, DomTreeUpdater &DTU) {
+ assert(!Comparisons.empty() && "merging zero comparisons");
+ LLVMContext &Context = NextCmpBlock->getContext();
+ const BCECmpBlock &FirstCmp = Comparisons[0];
+
+ // Create a new cmp block before next cmp block.
+ BasicBlock *const BB =
+ BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
+ NextCmpBlock->getParent(), InsertBefore);
+ IRBuilder<> Builder(BB);
+ // Add the GEPs from the first BCECmpBlock.
+ Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
+ Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
+
+ Value *IsEqual = nullptr;
+ LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
+ << BB->getName() << "\n");
+ if (Comparisons.size() == 1) {
+ LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
+ Value *const LhsLoad =
+ Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
+ Value *const RhsLoad =
+ Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
+ // There are no blocks to merge, just do the comparison.
+ IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
+ } else {
+ // If there is one block that requires splitting, we do it now, i.e.
+ // just before we know we will collapse the chain. The instructions
+ // can be executed before any of the instructions in the chain.
+ const auto ToSplit =
+ std::find_if(Comparisons.begin(), Comparisons.end(),
+ [](const BCECmpBlock &B) { return B.RequireSplit; });
+ if (ToSplit != Comparisons.end()) {
+ LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
+ ToSplit->split(BB, AA);
+ }
+
+ const unsigned TotalSizeBits = std::accumulate(
+ Comparisons.begin(), Comparisons.end(), 0u,
+ [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
+
+ // Create memcmp() == 0.
+ const auto &DL = Phi.getModule()->getDataLayout();
+ Value *const MemCmpCall = emitMemCmp(
+ Lhs, Rhs,
+ ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
+ DL, &TLI);
+ IsEqual = Builder.CreateICmpEQ(
+ MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
+ }
+
+ BasicBlock *const PhiBB = Phi.getParent();
+ // Add a branch to the next basic block in the chain.
+ if (NextCmpBlock == PhiBB) {
+ // Continue to phi, passing it the comparison result.
+ Builder.CreateBr(PhiBB);
+ Phi.addIncoming(IsEqual, BB);
+ DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
+ } else {
+ // Continue to next block if equal, exit to phi else.
+ Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
+ Phi.addIncoming(ConstantInt::getFalse(Context), BB);
+ DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
+ {DominatorTree::Insert, BB, PhiBB}});
+ }
+ return BB;
+}
+
+bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
+ DomTreeUpdater &DTU) {
+ assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
+ // First pass to check if there is at least one merge. If not, we don't do
+ // anything and we keep analysis passes intact.
+ const auto AtLeastOneMerged = [this]() {
+ for (size_t I = 1; I < Comparisons_.size(); ++I) {
+ if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
+ return true;
+ }
+ return false;
+ };
+ if (!AtLeastOneMerged())
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
+ << EntryBlock_->getName() << "\n");
+
+ // Effectively merge blocks. We go in the reverse direction from the phi block
+ // so that the next block is always available to branch to.
+ const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
+ BasicBlock *InsertBefore,
+ BasicBlock *Next) {
+ return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
+ InsertBefore, Next, Phi_, TLI, AA, DTU);
+ };
+ int NumMerged = 1;
+ BasicBlock *NextCmpBlock = Phi_.getParent();
+ for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
+ if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
+ LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
+ << " into " << Comparisons_[I + 1].BB->getName()
+ << "\n");
+ ++NumMerged;
+ } else {
+ NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
+ NumMerged = 1;
+ }
+ }
+ // Insert the entry block for the new chain before the old entry block.
+ // If the old entry block was the function entry, this ensures that the new
+ // entry can become the function entry.
+ NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
+
+ // Replace the original cmp chain with the new cmp chain by pointing all
+ // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
+ // blocks in the old chain unreachable.
+ while (!pred_empty(EntryBlock_)) {
+ BasicBlock* const Pred = *pred_begin(EntryBlock_);
+ LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
+ << "\n");
+ Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
+ DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
+ {DominatorTree::Insert, Pred, NextCmpBlock}});
+ }
+
+ // If the old cmp chain was the function entry, we need to update the function
+ // entry.
+ const bool ChainEntryIsFnEntry =
+ (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock());
+ if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
+ LLVM_DEBUG(dbgs() << "Changing function entry from "
+ << EntryBlock_->getName() << " to "
+ << NextCmpBlock->getName() << "\n");
+ DTU.getDomTree().setNewRoot(NextCmpBlock);
+ DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
+ }
+ EntryBlock_ = nullptr;
+
+ // Delete merged blocks. This also removes incoming values in phi.
+ SmallVector<BasicBlock *, 16> DeadBlocks;
+ for (auto &Cmp : Comparisons_) {
+ LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
+ DeadBlocks.push_back(Cmp.BB);
+ }
+ DeleteDeadBlocks(DeadBlocks, &DTU);
+
+ Comparisons_.clear();
+ return true;
+}
+
+std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
+ BasicBlock *const LastBlock,
+ int NumBlocks) {
+ // Walk up from the last block to find other blocks.
+ std::vector<BasicBlock *> Blocks(NumBlocks);
+ assert(LastBlock && "invalid last block");
+ BasicBlock *CurBlock = LastBlock;
+ for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
+ if (CurBlock->hasAddressTaken()) {
+ // Somebody is jumping to the block through an address, all bets are
+ // off.
+ LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
+ << " has its address taken\n");
+ return {};
+ }
+ Blocks[BlockIndex] = CurBlock;
+ auto *SinglePredecessor = CurBlock->getSinglePredecessor();
+ if (!SinglePredecessor) {
+ // The block has two or more predecessors.
+ LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
+ << " has two or more predecessors\n");
+ return {};
+ }
+ if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
+ // The block does not link back to the phi.
+ LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
+ << " does not link back to the phi\n");
+ return {};
+ }
+ CurBlock = SinglePredecessor;
+ }
+ Blocks[0] = CurBlock;
+ return Blocks;
+}
+
+bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
+ DomTreeUpdater &DTU) {
+ LLVM_DEBUG(dbgs() << "processPhi()\n");
+ if (Phi.getNumIncomingValues() <= 1) {
+ LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
+ return false;
+ }
+ // We are looking for something that has the following structure:
+ // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
+ // \ \ \ \
+ // ne ne ne \
+ // \ \ \ v
+ // +------------+-----------+----------> bb_phi
+ //
+ // - The last basic block (bb4 here) must branch unconditionally to bb_phi.
+ // It's the only block that contributes a non-constant value to the Phi.
+ // - All other blocks (b1, b2, b3) must have exactly two successors, one of
+ // them being the phi block.
+ // - All intermediate blocks (bb2, bb3) must have only one predecessor.
+ // - Blocks cannot do other work besides the comparison, see doesOtherWork()
+
+ // The blocks are not necessarily ordered in the phi, so we start from the
+ // last block and reconstruct the order.
+ BasicBlock *LastBlock = nullptr;
+ for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
+ if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
+ if (LastBlock) {
+ // There are several non-constant values.
+ LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
+ return false;
+ }
+ if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
+ cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
+ Phi.getIncomingBlock(I)) {
+ // Non-constant incoming value is not from a cmp instruction or not
+ // produced by the last block. We could end up processing the value
+ // producing block more than once.
+ //
+ // This is an uncommon case, so we bail.
+ LLVM_DEBUG(
+ dbgs()
+ << "skip: non-constant value not from cmp or not from last block.\n");
+ return false;
+ }
+ LastBlock = Phi.getIncomingBlock(I);
+ }
+ if (!LastBlock) {
+ // There is no non-constant block.
+ LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
+ return false;
+ }
+ if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
+ LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
+ return false;
+ }
+
+ const auto Blocks =
+ getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
+ if (Blocks.empty()) return false;
+ BCECmpChain CmpChain(Blocks, Phi, AA);
+
+ if (CmpChain.size() < 2) {
+ LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
+ return false;
+ }
+
+ return CmpChain.simplify(TLI, AA, DTU);
+}
+
+static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
+ const TargetTransformInfo &TTI, AliasAnalysis &AA,
+ DominatorTree *DT) {
+ LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
+
+ // We only try merging comparisons if the target wants to expand memcmp later.
+ // The rationale is to avoid turning small chains into memcmp calls.
+ if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
+ return false;
+
+ // If we don't have memcmp avaiable we can't emit calls to it.
+ if (!TLI.has(LibFunc_memcmp))
+ return false;
+
+ DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
+ DomTreeUpdater::UpdateStrategy::Eager);
+
+ bool MadeChange = false;
+
+ for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
+ // A Phi operation is always first in a basic block.
+ if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
+ MadeChange |= processPhi(*Phi, TLI, AA, DTU);
+ }
+
+ return MadeChange;
+}
+
+class MergeICmpsLegacyPass : public FunctionPass {
+public:
+ static char ID;
+
+ MergeICmpsLegacyPass() : FunctionPass(ID) {
+ initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F)) return false;
+ const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ // MergeICmps does not need the DominatorTree, but we update it if it's
+ // already available.
+ auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
+ }
+
+ private:
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+};
+
+} // namespace
+
+char MergeICmpsLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
+ "Merge contiguous icmps into a memcmp", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
+ "Merge contiguous icmps into a memcmp", false, false)
+
+Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
+
+PreservedAnalyses MergeICmpsPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+ auto &AA = AM.getResult<AAManager>(F);
+ auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
+ const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
+ if (!MadeChanges)
+ return PreservedAnalyses::all();
+ PreservedAnalyses PA;
+ PA.preserve<GlobalsAA>();
+ PA.preserve<DominatorTreeAnalysis>();
+ return PA;
+}