summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/NewGVN.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/NewGVN.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/NewGVN.cpp4243
1 files changed, 4243 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/NewGVN.cpp b/llvm/lib/Transforms/Scalar/NewGVN.cpp
new file mode 100644
index 000000000000..b213264de557
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/NewGVN.cpp
@@ -0,0 +1,4243 @@
+//===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file implements the new LLVM's Global Value Numbering pass.
+/// GVN partitions values computed by a function into congruence classes.
+/// Values ending up in the same congruence class are guaranteed to be the same
+/// for every execution of the program. In that respect, congruency is a
+/// compile-time approximation of equivalence of values at runtime.
+/// The algorithm implemented here uses a sparse formulation and it's based
+/// on the ideas described in the paper:
+/// "A Sparse Algorithm for Predicated Global Value Numbering" from
+/// Karthik Gargi.
+///
+/// A brief overview of the algorithm: The algorithm is essentially the same as
+/// the standard RPO value numbering algorithm (a good reference is the paper
+/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
+/// The RPO algorithm proceeds, on every iteration, to process every reachable
+/// block and every instruction in that block. This is because the standard RPO
+/// algorithm does not track what things have the same value number, it only
+/// tracks what the value number of a given operation is (the mapping is
+/// operation -> value number). Thus, when a value number of an operation
+/// changes, it must reprocess everything to ensure all uses of a value number
+/// get updated properly. In constrast, the sparse algorithm we use *also*
+/// tracks what operations have a given value number (IE it also tracks the
+/// reverse mapping from value number -> operations with that value number), so
+/// that it only needs to reprocess the instructions that are affected when
+/// something's value number changes. The vast majority of complexity and code
+/// in this file is devoted to tracking what value numbers could change for what
+/// instructions when various things happen. The rest of the algorithm is
+/// devoted to performing symbolic evaluation, forward propagation, and
+/// simplification of operations based on the value numbers deduced so far
+///
+/// In order to make the GVN mostly-complete, we use a technique derived from
+/// "Detection of Redundant Expressions: A Complete and Polynomial-time
+/// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
+/// based GVN algorithms is related to their inability to detect equivalence
+/// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
+/// We resolve this issue by generating the equivalent "phi of ops" form for
+/// each op of phis we see, in a way that only takes polynomial time to resolve.
+///
+/// We also do not perform elimination by using any published algorithm. All
+/// published algorithms are O(Instructions). Instead, we use a technique that
+/// is O(number of operations with the same value number), enabling us to skip
+/// trying to eliminate things that have unique value numbers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/NewGVN.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFGPrinter.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/ArrayRecycler.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/PointerLikeTypeTraits.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/GVNExpression.h"
+#include "llvm/Transforms/Utils/PredicateInfo.h"
+#include "llvm/Transforms/Utils/VNCoercion.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <memory>
+#include <set>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::GVNExpression;
+using namespace llvm::VNCoercion;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "newgvn"
+
+STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
+STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
+STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
+STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
+STATISTIC(NumGVNMaxIterations,
+ "Maximum Number of iterations it took to converge GVN");
+STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
+STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
+STATISTIC(NumGVNAvoidedSortedLeaderChanges,
+ "Number of avoided sorted leader changes");
+STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
+STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
+STATISTIC(NumGVNPHIOfOpsEliminations,
+ "Number of things eliminated using PHI of ops");
+DEBUG_COUNTER(VNCounter, "newgvn-vn",
+ "Controls which instructions are value numbered");
+DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
+ "Controls which instructions we create phi of ops for");
+// Currently store defining access refinement is too slow due to basicaa being
+// egregiously slow. This flag lets us keep it working while we work on this
+// issue.
+static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
+ cl::init(false), cl::Hidden);
+
+/// Currently, the generation "phi of ops" can result in correctness issues.
+static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
+ cl::Hidden);
+
+//===----------------------------------------------------------------------===//
+// GVN Pass
+//===----------------------------------------------------------------------===//
+
+// Anchor methods.
+namespace llvm {
+namespace GVNExpression {
+
+Expression::~Expression() = default;
+BasicExpression::~BasicExpression() = default;
+CallExpression::~CallExpression() = default;
+LoadExpression::~LoadExpression() = default;
+StoreExpression::~StoreExpression() = default;
+AggregateValueExpression::~AggregateValueExpression() = default;
+PHIExpression::~PHIExpression() = default;
+
+} // end namespace GVNExpression
+} // end namespace llvm
+
+namespace {
+
+// Tarjan's SCC finding algorithm with Nuutila's improvements
+// SCCIterator is actually fairly complex for the simple thing we want.
+// It also wants to hand us SCC's that are unrelated to the phi node we ask
+// about, and have us process them there or risk redoing work.
+// Graph traits over a filter iterator also doesn't work that well here.
+// This SCC finder is specialized to walk use-def chains, and only follows
+// instructions,
+// not generic values (arguments, etc).
+struct TarjanSCC {
+ TarjanSCC() : Components(1) {}
+
+ void Start(const Instruction *Start) {
+ if (Root.lookup(Start) == 0)
+ FindSCC(Start);
+ }
+
+ const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
+ unsigned ComponentID = ValueToComponent.lookup(V);
+
+ assert(ComponentID > 0 &&
+ "Asking for a component for a value we never processed");
+ return Components[ComponentID];
+ }
+
+private:
+ void FindSCC(const Instruction *I) {
+ Root[I] = ++DFSNum;
+ // Store the DFS Number we had before it possibly gets incremented.
+ unsigned int OurDFS = DFSNum;
+ for (auto &Op : I->operands()) {
+ if (auto *InstOp = dyn_cast<Instruction>(Op)) {
+ if (Root.lookup(Op) == 0)
+ FindSCC(InstOp);
+ if (!InComponent.count(Op))
+ Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
+ }
+ }
+ // See if we really were the root of a component, by seeing if we still have
+ // our DFSNumber. If we do, we are the root of the component, and we have
+ // completed a component. If we do not, we are not the root of a component,
+ // and belong on the component stack.
+ if (Root.lookup(I) == OurDFS) {
+ unsigned ComponentID = Components.size();
+ Components.resize(Components.size() + 1);
+ auto &Component = Components.back();
+ Component.insert(I);
+ LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
+ InComponent.insert(I);
+ ValueToComponent[I] = ComponentID;
+ // Pop a component off the stack and label it.
+ while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
+ auto *Member = Stack.back();
+ LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
+ Component.insert(Member);
+ InComponent.insert(Member);
+ ValueToComponent[Member] = ComponentID;
+ Stack.pop_back();
+ }
+ } else {
+ // Part of a component, push to stack
+ Stack.push_back(I);
+ }
+ }
+
+ unsigned int DFSNum = 1;
+ SmallPtrSet<const Value *, 8> InComponent;
+ DenseMap<const Value *, unsigned int> Root;
+ SmallVector<const Value *, 8> Stack;
+
+ // Store the components as vector of ptr sets, because we need the topo order
+ // of SCC's, but not individual member order
+ SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
+
+ DenseMap<const Value *, unsigned> ValueToComponent;
+};
+
+// Congruence classes represent the set of expressions/instructions
+// that are all the same *during some scope in the function*.
+// That is, because of the way we perform equality propagation, and
+// because of memory value numbering, it is not correct to assume
+// you can willy-nilly replace any member with any other at any
+// point in the function.
+//
+// For any Value in the Member set, it is valid to replace any dominated member
+// with that Value.
+//
+// Every congruence class has a leader, and the leader is used to symbolize
+// instructions in a canonical way (IE every operand of an instruction that is a
+// member of the same congruence class will always be replaced with leader
+// during symbolization). To simplify symbolization, we keep the leader as a
+// constant if class can be proved to be a constant value. Otherwise, the
+// leader is the member of the value set with the smallest DFS number. Each
+// congruence class also has a defining expression, though the expression may be
+// null. If it exists, it can be used for forward propagation and reassociation
+// of values.
+
+// For memory, we also track a representative MemoryAccess, and a set of memory
+// members for MemoryPhis (which have no real instructions). Note that for
+// memory, it seems tempting to try to split the memory members into a
+// MemoryCongruenceClass or something. Unfortunately, this does not work
+// easily. The value numbering of a given memory expression depends on the
+// leader of the memory congruence class, and the leader of memory congruence
+// class depends on the value numbering of a given memory expression. This
+// leads to wasted propagation, and in some cases, missed optimization. For
+// example: If we had value numbered two stores together before, but now do not,
+// we move them to a new value congruence class. This in turn will move at one
+// of the memorydefs to a new memory congruence class. Which in turn, affects
+// the value numbering of the stores we just value numbered (because the memory
+// congruence class is part of the value number). So while theoretically
+// possible to split them up, it turns out to be *incredibly* complicated to get
+// it to work right, because of the interdependency. While structurally
+// slightly messier, it is algorithmically much simpler and faster to do what we
+// do here, and track them both at once in the same class.
+// Note: The default iterators for this class iterate over values
+class CongruenceClass {
+public:
+ using MemberType = Value;
+ using MemberSet = SmallPtrSet<MemberType *, 4>;
+ using MemoryMemberType = MemoryPhi;
+ using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
+
+ explicit CongruenceClass(unsigned ID) : ID(ID) {}
+ CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
+ : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
+
+ unsigned getID() const { return ID; }
+
+ // True if this class has no members left. This is mainly used for assertion
+ // purposes, and for skipping empty classes.
+ bool isDead() const {
+ // If it's both dead from a value perspective, and dead from a memory
+ // perspective, it's really dead.
+ return empty() && memory_empty();
+ }
+
+ // Leader functions
+ Value *getLeader() const { return RepLeader; }
+ void setLeader(Value *Leader) { RepLeader = Leader; }
+ const std::pair<Value *, unsigned int> &getNextLeader() const {
+ return NextLeader;
+ }
+ void resetNextLeader() { NextLeader = {nullptr, ~0}; }
+ void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
+ if (LeaderPair.second < NextLeader.second)
+ NextLeader = LeaderPair;
+ }
+
+ Value *getStoredValue() const { return RepStoredValue; }
+ void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
+ const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
+ void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
+
+ // Forward propagation info
+ const Expression *getDefiningExpr() const { return DefiningExpr; }
+
+ // Value member set
+ bool empty() const { return Members.empty(); }
+ unsigned size() const { return Members.size(); }
+ MemberSet::const_iterator begin() const { return Members.begin(); }
+ MemberSet::const_iterator end() const { return Members.end(); }
+ void insert(MemberType *M) { Members.insert(M); }
+ void erase(MemberType *M) { Members.erase(M); }
+ void swap(MemberSet &Other) { Members.swap(Other); }
+
+ // Memory member set
+ bool memory_empty() const { return MemoryMembers.empty(); }
+ unsigned memory_size() const { return MemoryMembers.size(); }
+ MemoryMemberSet::const_iterator memory_begin() const {
+ return MemoryMembers.begin();
+ }
+ MemoryMemberSet::const_iterator memory_end() const {
+ return MemoryMembers.end();
+ }
+ iterator_range<MemoryMemberSet::const_iterator> memory() const {
+ return make_range(memory_begin(), memory_end());
+ }
+
+ void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
+ void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
+
+ // Store count
+ unsigned getStoreCount() const { return StoreCount; }
+ void incStoreCount() { ++StoreCount; }
+ void decStoreCount() {
+ assert(StoreCount != 0 && "Store count went negative");
+ --StoreCount;
+ }
+
+ // True if this class has no memory members.
+ bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
+
+ // Return true if two congruence classes are equivalent to each other. This
+ // means that every field but the ID number and the dead field are equivalent.
+ bool isEquivalentTo(const CongruenceClass *Other) const {
+ if (!Other)
+ return false;
+ if (this == Other)
+ return true;
+
+ if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
+ std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
+ Other->RepMemoryAccess))
+ return false;
+ if (DefiningExpr != Other->DefiningExpr)
+ if (!DefiningExpr || !Other->DefiningExpr ||
+ *DefiningExpr != *Other->DefiningExpr)
+ return false;
+
+ if (Members.size() != Other->Members.size())
+ return false;
+
+ return all_of(Members,
+ [&](const Value *V) { return Other->Members.count(V); });
+ }
+
+private:
+ unsigned ID;
+
+ // Representative leader.
+ Value *RepLeader = nullptr;
+
+ // The most dominating leader after our current leader, because the member set
+ // is not sorted and is expensive to keep sorted all the time.
+ std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
+
+ // If this is represented by a store, the value of the store.
+ Value *RepStoredValue = nullptr;
+
+ // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
+ // access.
+ const MemoryAccess *RepMemoryAccess = nullptr;
+
+ // Defining Expression.
+ const Expression *DefiningExpr = nullptr;
+
+ // Actual members of this class.
+ MemberSet Members;
+
+ // This is the set of MemoryPhis that exist in the class. MemoryDefs and
+ // MemoryUses have real instructions representing them, so we only need to
+ // track MemoryPhis here.
+ MemoryMemberSet MemoryMembers;
+
+ // Number of stores in this congruence class.
+ // This is used so we can detect store equivalence changes properly.
+ int StoreCount = 0;
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+struct ExactEqualsExpression {
+ const Expression &E;
+
+ explicit ExactEqualsExpression(const Expression &E) : E(E) {}
+
+ hash_code getComputedHash() const { return E.getComputedHash(); }
+
+ bool operator==(const Expression &Other) const {
+ return E.exactlyEquals(Other);
+ }
+};
+
+template <> struct DenseMapInfo<const Expression *> {
+ static const Expression *getEmptyKey() {
+ auto Val = static_cast<uintptr_t>(-1);
+ Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
+ return reinterpret_cast<const Expression *>(Val);
+ }
+
+ static const Expression *getTombstoneKey() {
+ auto Val = static_cast<uintptr_t>(~1U);
+ Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
+ return reinterpret_cast<const Expression *>(Val);
+ }
+
+ static unsigned getHashValue(const Expression *E) {
+ return E->getComputedHash();
+ }
+
+ static unsigned getHashValue(const ExactEqualsExpression &E) {
+ return E.getComputedHash();
+ }
+
+ static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
+ if (RHS == getTombstoneKey() || RHS == getEmptyKey())
+ return false;
+ return LHS == *RHS;
+ }
+
+ static bool isEqual(const Expression *LHS, const Expression *RHS) {
+ if (LHS == RHS)
+ return true;
+ if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
+ LHS == getEmptyKey() || RHS == getEmptyKey())
+ return false;
+ // Compare hashes before equality. This is *not* what the hashtable does,
+ // since it is computing it modulo the number of buckets, whereas we are
+ // using the full hash keyspace. Since the hashes are precomputed, this
+ // check is *much* faster than equality.
+ if (LHS->getComputedHash() != RHS->getComputedHash())
+ return false;
+ return *LHS == *RHS;
+ }
+};
+
+} // end namespace llvm
+
+namespace {
+
+class NewGVN {
+ Function &F;
+ DominatorTree *DT;
+ const TargetLibraryInfo *TLI;
+ AliasAnalysis *AA;
+ MemorySSA *MSSA;
+ MemorySSAWalker *MSSAWalker;
+ const DataLayout &DL;
+ std::unique_ptr<PredicateInfo> PredInfo;
+
+ // These are the only two things the create* functions should have
+ // side-effects on due to allocating memory.
+ mutable BumpPtrAllocator ExpressionAllocator;
+ mutable ArrayRecycler<Value *> ArgRecycler;
+ mutable TarjanSCC SCCFinder;
+ const SimplifyQuery SQ;
+
+ // Number of function arguments, used by ranking
+ unsigned int NumFuncArgs;
+
+ // RPOOrdering of basic blocks
+ DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
+
+ // Congruence class info.
+
+ // This class is called INITIAL in the paper. It is the class everything
+ // startsout in, and represents any value. Being an optimistic analysis,
+ // anything in the TOP class has the value TOP, which is indeterminate and
+ // equivalent to everything.
+ CongruenceClass *TOPClass;
+ std::vector<CongruenceClass *> CongruenceClasses;
+ unsigned NextCongruenceNum;
+
+ // Value Mappings.
+ DenseMap<Value *, CongruenceClass *> ValueToClass;
+ DenseMap<Value *, const Expression *> ValueToExpression;
+
+ // Value PHI handling, used to make equivalence between phi(op, op) and
+ // op(phi, phi).
+ // These mappings just store various data that would normally be part of the
+ // IR.
+ SmallPtrSet<const Instruction *, 8> PHINodeUses;
+
+ DenseMap<const Value *, bool> OpSafeForPHIOfOps;
+
+ // Map a temporary instruction we created to a parent block.
+ DenseMap<const Value *, BasicBlock *> TempToBlock;
+
+ // Map between the already in-program instructions and the temporary phis we
+ // created that they are known equivalent to.
+ DenseMap<const Value *, PHINode *> RealToTemp;
+
+ // In order to know when we should re-process instructions that have
+ // phi-of-ops, we track the set of expressions that they needed as
+ // leaders. When we discover new leaders for those expressions, we process the
+ // associated phi-of-op instructions again in case they have changed. The
+ // other way they may change is if they had leaders, and those leaders
+ // disappear. However, at the point they have leaders, there are uses of the
+ // relevant operands in the created phi node, and so they will get reprocessed
+ // through the normal user marking we perform.
+ mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
+ DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
+ ExpressionToPhiOfOps;
+
+ // Map from temporary operation to MemoryAccess.
+ DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
+
+ // Set of all temporary instructions we created.
+ // Note: This will include instructions that were just created during value
+ // numbering. The way to test if something is using them is to check
+ // RealToTemp.
+ DenseSet<Instruction *> AllTempInstructions;
+
+ // This is the set of instructions to revisit on a reachability change. At
+ // the end of the main iteration loop it will contain at least all the phi of
+ // ops instructions that will be changed to phis, as well as regular phis.
+ // During the iteration loop, it may contain other things, such as phi of ops
+ // instructions that used edge reachability to reach a result, and so need to
+ // be revisited when the edge changes, independent of whether the phi they
+ // depended on changes.
+ DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
+
+ // Mapping from predicate info we used to the instructions we used it with.
+ // In order to correctly ensure propagation, we must keep track of what
+ // comparisons we used, so that when the values of the comparisons change, we
+ // propagate the information to the places we used the comparison.
+ mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
+ PredicateToUsers;
+
+ // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
+ // stores, we no longer can rely solely on the def-use chains of MemorySSA.
+ mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
+ MemoryToUsers;
+
+ // A table storing which memorydefs/phis represent a memory state provably
+ // equivalent to another memory state.
+ // We could use the congruence class machinery, but the MemoryAccess's are
+ // abstract memory states, so they can only ever be equivalent to each other,
+ // and not to constants, etc.
+ DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
+
+ // We could, if we wanted, build MemoryPhiExpressions and
+ // MemoryVariableExpressions, etc, and value number them the same way we value
+ // number phi expressions. For the moment, this seems like overkill. They
+ // can only exist in one of three states: they can be TOP (equal to
+ // everything), Equivalent to something else, or unique. Because we do not
+ // create expressions for them, we need to simulate leader change not just
+ // when they change class, but when they change state. Note: We can do the
+ // same thing for phis, and avoid having phi expressions if we wanted, We
+ // should eventually unify in one direction or the other, so this is a little
+ // bit of an experiment in which turns out easier to maintain.
+ enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
+ DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
+
+ enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
+ mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
+
+ // Expression to class mapping.
+ using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
+ ExpressionClassMap ExpressionToClass;
+
+ // We have a single expression that represents currently DeadExpressions.
+ // For dead expressions we can prove will stay dead, we mark them with
+ // DFS number zero. However, it's possible in the case of phi nodes
+ // for us to assume/prove all arguments are dead during fixpointing.
+ // We use DeadExpression for that case.
+ DeadExpression *SingletonDeadExpression = nullptr;
+
+ // Which values have changed as a result of leader changes.
+ SmallPtrSet<Value *, 8> LeaderChanges;
+
+ // Reachability info.
+ using BlockEdge = BasicBlockEdge;
+ DenseSet<BlockEdge> ReachableEdges;
+ SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
+
+ // This is a bitvector because, on larger functions, we may have
+ // thousands of touched instructions at once (entire blocks,
+ // instructions with hundreds of uses, etc). Even with optimization
+ // for when we mark whole blocks as touched, when this was a
+ // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
+ // the time in GVN just managing this list. The bitvector, on the
+ // other hand, efficiently supports test/set/clear of both
+ // individual and ranges, as well as "find next element" This
+ // enables us to use it as a worklist with essentially 0 cost.
+ BitVector TouchedInstructions;
+
+ DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
+
+#ifndef NDEBUG
+ // Debugging for how many times each block and instruction got processed.
+ DenseMap<const Value *, unsigned> ProcessedCount;
+#endif
+
+ // DFS info.
+ // This contains a mapping from Instructions to DFS numbers.
+ // The numbering starts at 1. An instruction with DFS number zero
+ // means that the instruction is dead.
+ DenseMap<const Value *, unsigned> InstrDFS;
+
+ // This contains the mapping DFS numbers to instructions.
+ SmallVector<Value *, 32> DFSToInstr;
+
+ // Deletion info.
+ SmallPtrSet<Instruction *, 8> InstructionsToErase;
+
+public:
+ NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
+ TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
+ const DataLayout &DL)
+ : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
+ PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
+ SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
+
+ bool runGVN();
+
+private:
+ // Expression handling.
+ const Expression *createExpression(Instruction *) const;
+ const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
+ Instruction *) const;
+
+ // Our canonical form for phi arguments is a pair of incoming value, incoming
+ // basic block.
+ using ValPair = std::pair<Value *, BasicBlock *>;
+
+ PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
+ BasicBlock *, bool &HasBackEdge,
+ bool &OriginalOpsConstant) const;
+ const DeadExpression *createDeadExpression() const;
+ const VariableExpression *createVariableExpression(Value *) const;
+ const ConstantExpression *createConstantExpression(Constant *) const;
+ const Expression *createVariableOrConstant(Value *V) const;
+ const UnknownExpression *createUnknownExpression(Instruction *) const;
+ const StoreExpression *createStoreExpression(StoreInst *,
+ const MemoryAccess *) const;
+ LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
+ const MemoryAccess *) const;
+ const CallExpression *createCallExpression(CallInst *,
+ const MemoryAccess *) const;
+ const AggregateValueExpression *
+ createAggregateValueExpression(Instruction *) const;
+ bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
+
+ // Congruence class handling.
+ CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
+ auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
+ CongruenceClasses.emplace_back(result);
+ return result;
+ }
+
+ CongruenceClass *createMemoryClass(MemoryAccess *MA) {
+ auto *CC = createCongruenceClass(nullptr, nullptr);
+ CC->setMemoryLeader(MA);
+ return CC;
+ }
+
+ CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
+ auto *CC = getMemoryClass(MA);
+ if (CC->getMemoryLeader() != MA)
+ CC = createMemoryClass(MA);
+ return CC;
+ }
+
+ CongruenceClass *createSingletonCongruenceClass(Value *Member) {
+ CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
+ CClass->insert(Member);
+ ValueToClass[Member] = CClass;
+ return CClass;
+ }
+
+ void initializeCongruenceClasses(Function &F);
+ const Expression *makePossiblePHIOfOps(Instruction *,
+ SmallPtrSetImpl<Value *> &);
+ Value *findLeaderForInst(Instruction *ValueOp,
+ SmallPtrSetImpl<Value *> &Visited,
+ MemoryAccess *MemAccess, Instruction *OrigInst,
+ BasicBlock *PredBB);
+ bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
+ SmallPtrSetImpl<const Value *> &Visited,
+ SmallVectorImpl<Instruction *> &Worklist);
+ bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
+ SmallPtrSetImpl<const Value *> &);
+ void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
+ void removePhiOfOps(Instruction *I, PHINode *PHITemp);
+
+ // Value number an Instruction or MemoryPhi.
+ void valueNumberMemoryPhi(MemoryPhi *);
+ void valueNumberInstruction(Instruction *);
+
+ // Symbolic evaluation.
+ const Expression *checkSimplificationResults(Expression *, Instruction *,
+ Value *) const;
+ const Expression *performSymbolicEvaluation(Value *,
+ SmallPtrSetImpl<Value *> &) const;
+ const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
+ Instruction *,
+ MemoryAccess *) const;
+ const Expression *performSymbolicLoadEvaluation(Instruction *) const;
+ const Expression *performSymbolicStoreEvaluation(Instruction *) const;
+ const Expression *performSymbolicCallEvaluation(Instruction *) const;
+ void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
+ const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
+ Instruction *I,
+ BasicBlock *PHIBlock) const;
+ const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
+ const Expression *performSymbolicCmpEvaluation(Instruction *) const;
+ const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
+
+ // Congruence finding.
+ bool someEquivalentDominates(const Instruction *, const Instruction *) const;
+ Value *lookupOperandLeader(Value *) const;
+ CongruenceClass *getClassForExpression(const Expression *E) const;
+ void performCongruenceFinding(Instruction *, const Expression *);
+ void moveValueToNewCongruenceClass(Instruction *, const Expression *,
+ CongruenceClass *, CongruenceClass *);
+ void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
+ CongruenceClass *, CongruenceClass *);
+ Value *getNextValueLeader(CongruenceClass *) const;
+ const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
+ bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
+ CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
+ const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
+ bool isMemoryAccessTOP(const MemoryAccess *) const;
+
+ // Ranking
+ unsigned int getRank(const Value *) const;
+ bool shouldSwapOperands(const Value *, const Value *) const;
+
+ // Reachability handling.
+ void updateReachableEdge(BasicBlock *, BasicBlock *);
+ void processOutgoingEdges(Instruction *, BasicBlock *);
+ Value *findConditionEquivalence(Value *) const;
+
+ // Elimination.
+ struct ValueDFS;
+ void convertClassToDFSOrdered(const CongruenceClass &,
+ SmallVectorImpl<ValueDFS> &,
+ DenseMap<const Value *, unsigned int> &,
+ SmallPtrSetImpl<Instruction *> &) const;
+ void convertClassToLoadsAndStores(const CongruenceClass &,
+ SmallVectorImpl<ValueDFS> &) const;
+
+ bool eliminateInstructions(Function &);
+ void replaceInstruction(Instruction *, Value *);
+ void markInstructionForDeletion(Instruction *);
+ void deleteInstructionsInBlock(BasicBlock *);
+ Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
+ const BasicBlock *) const;
+
+ // New instruction creation.
+ void handleNewInstruction(Instruction *) {}
+
+ // Various instruction touch utilities
+ template <typename Map, typename KeyType, typename Func>
+ void for_each_found(Map &, const KeyType &, Func);
+ template <typename Map, typename KeyType>
+ void touchAndErase(Map &, const KeyType &);
+ void markUsersTouched(Value *);
+ void markMemoryUsersTouched(const MemoryAccess *);
+ void markMemoryDefTouched(const MemoryAccess *);
+ void markPredicateUsersTouched(Instruction *);
+ void markValueLeaderChangeTouched(CongruenceClass *CC);
+ void markMemoryLeaderChangeTouched(CongruenceClass *CC);
+ void markPhiOfOpsChanged(const Expression *E);
+ void addPredicateUsers(const PredicateBase *, Instruction *) const;
+ void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
+ void addAdditionalUsers(Value *To, Value *User) const;
+
+ // Main loop of value numbering
+ void iterateTouchedInstructions();
+
+ // Utilities.
+ void cleanupTables();
+ std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
+ void updateProcessedCount(const Value *V);
+ void verifyMemoryCongruency() const;
+ void verifyIterationSettled(Function &F);
+ void verifyStoreExpressions() const;
+ bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
+ const MemoryAccess *, const MemoryAccess *) const;
+ BasicBlock *getBlockForValue(Value *V) const;
+ void deleteExpression(const Expression *E) const;
+ MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
+ MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
+ MemoryPhi *getMemoryAccess(const BasicBlock *) const;
+ template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
+
+ unsigned InstrToDFSNum(const Value *V) const {
+ assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
+ return InstrDFS.lookup(V);
+ }
+
+ unsigned InstrToDFSNum(const MemoryAccess *MA) const {
+ return MemoryToDFSNum(MA);
+ }
+
+ Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
+
+ // Given a MemoryAccess, return the relevant instruction DFS number. Note:
+ // This deliberately takes a value so it can be used with Use's, which will
+ // auto-convert to Value's but not to MemoryAccess's.
+ unsigned MemoryToDFSNum(const Value *MA) const {
+ assert(isa<MemoryAccess>(MA) &&
+ "This should not be used with instructions");
+ return isa<MemoryUseOrDef>(MA)
+ ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
+ : InstrDFS.lookup(MA);
+ }
+
+ bool isCycleFree(const Instruction *) const;
+ bool isBackedge(BasicBlock *From, BasicBlock *To) const;
+
+ // Debug counter info. When verifying, we have to reset the value numbering
+ // debug counter to the same state it started in to get the same results.
+ int64_t StartingVNCounter;
+};
+
+} // end anonymous namespace
+
+template <typename T>
+static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
+ if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
+ return false;
+ return LHS.MemoryExpression::equals(RHS);
+}
+
+bool LoadExpression::equals(const Expression &Other) const {
+ return equalsLoadStoreHelper(*this, Other);
+}
+
+bool StoreExpression::equals(const Expression &Other) const {
+ if (!equalsLoadStoreHelper(*this, Other))
+ return false;
+ // Make sure that store vs store includes the value operand.
+ if (const auto *S = dyn_cast<StoreExpression>(&Other))
+ if (getStoredValue() != S->getStoredValue())
+ return false;
+ return true;
+}
+
+// Determine if the edge From->To is a backedge
+bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
+ return From == To ||
+ RPOOrdering.lookup(DT->getNode(From)) >=
+ RPOOrdering.lookup(DT->getNode(To));
+}
+
+#ifndef NDEBUG
+static std::string getBlockName(const BasicBlock *B) {
+ return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
+}
+#endif
+
+// Get a MemoryAccess for an instruction, fake or real.
+MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
+ auto *Result = MSSA->getMemoryAccess(I);
+ return Result ? Result : TempToMemory.lookup(I);
+}
+
+// Get a MemoryPhi for a basic block. These are all real.
+MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
+ return MSSA->getMemoryAccess(BB);
+}
+
+// Get the basic block from an instruction/memory value.
+BasicBlock *NewGVN::getBlockForValue(Value *V) const {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ auto *Parent = I->getParent();
+ if (Parent)
+ return Parent;
+ Parent = TempToBlock.lookup(V);
+ assert(Parent && "Every fake instruction should have a block");
+ return Parent;
+ }
+
+ auto *MP = dyn_cast<MemoryPhi>(V);
+ assert(MP && "Should have been an instruction or a MemoryPhi");
+ return MP->getBlock();
+}
+
+// Delete a definitely dead expression, so it can be reused by the expression
+// allocator. Some of these are not in creation functions, so we have to accept
+// const versions.
+void NewGVN::deleteExpression(const Expression *E) const {
+ assert(isa<BasicExpression>(E));
+ auto *BE = cast<BasicExpression>(E);
+ const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
+ ExpressionAllocator.Deallocate(E);
+}
+
+// If V is a predicateinfo copy, get the thing it is a copy of.
+static Value *getCopyOf(const Value *V) {
+ if (auto *II = dyn_cast<IntrinsicInst>(V))
+ if (II->getIntrinsicID() == Intrinsic::ssa_copy)
+ return II->getOperand(0);
+ return nullptr;
+}
+
+// Return true if V is really PN, even accounting for predicateinfo copies.
+static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
+ return V == PN || getCopyOf(V) == PN;
+}
+
+static bool isCopyOfAPHI(const Value *V) {
+ auto *CO = getCopyOf(V);
+ return CO && isa<PHINode>(CO);
+}
+
+// Sort PHI Operands into a canonical order. What we use here is an RPO
+// order. The BlockInstRange numbers are generated in an RPO walk of the basic
+// blocks.
+void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
+ llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
+ return BlockInstRange.lookup(P1.second).first <
+ BlockInstRange.lookup(P2.second).first;
+ });
+}
+
+// Return true if V is a value that will always be available (IE can
+// be placed anywhere) in the function. We don't do globals here
+// because they are often worse to put in place.
+static bool alwaysAvailable(Value *V) {
+ return isa<Constant>(V) || isa<Argument>(V);
+}
+
+// Create a PHIExpression from an array of {incoming edge, value} pairs. I is
+// the original instruction we are creating a PHIExpression for (but may not be
+// a phi node). We require, as an invariant, that all the PHIOperands in the
+// same block are sorted the same way. sortPHIOps will sort them into a
+// canonical order.
+PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
+ const Instruction *I,
+ BasicBlock *PHIBlock,
+ bool &HasBackedge,
+ bool &OriginalOpsConstant) const {
+ unsigned NumOps = PHIOperands.size();
+ auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
+
+ E->allocateOperands(ArgRecycler, ExpressionAllocator);
+ E->setType(PHIOperands.begin()->first->getType());
+ E->setOpcode(Instruction::PHI);
+
+ // Filter out unreachable phi operands.
+ auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
+ auto *BB = P.second;
+ if (auto *PHIOp = dyn_cast<PHINode>(I))
+ if (isCopyOfPHI(P.first, PHIOp))
+ return false;
+ if (!ReachableEdges.count({BB, PHIBlock}))
+ return false;
+ // Things in TOPClass are equivalent to everything.
+ if (ValueToClass.lookup(P.first) == TOPClass)
+ return false;
+ OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
+ HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
+ return lookupOperandLeader(P.first) != I;
+ });
+ std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
+ [&](const ValPair &P) -> Value * {
+ return lookupOperandLeader(P.first);
+ });
+ return E;
+}
+
+// Set basic expression info (Arguments, type, opcode) for Expression
+// E from Instruction I in block B.
+bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
+ bool AllConstant = true;
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
+ E->setType(GEP->getSourceElementType());
+ else
+ E->setType(I->getType());
+ E->setOpcode(I->getOpcode());
+ E->allocateOperands(ArgRecycler, ExpressionAllocator);
+
+ // Transform the operand array into an operand leader array, and keep track of
+ // whether all members are constant.
+ std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
+ auto Operand = lookupOperandLeader(O);
+ AllConstant = AllConstant && isa<Constant>(Operand);
+ return Operand;
+ });
+
+ return AllConstant;
+}
+
+const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
+ Value *Arg1, Value *Arg2,
+ Instruction *I) const {
+ auto *E = new (ExpressionAllocator) BasicExpression(2);
+
+ E->setType(T);
+ E->setOpcode(Opcode);
+ E->allocateOperands(ArgRecycler, ExpressionAllocator);
+ if (Instruction::isCommutative(Opcode)) {
+ // Ensure that commutative instructions that only differ by a permutation
+ // of their operands get the same value number by sorting the operand value
+ // numbers. Since all commutative instructions have two operands it is more
+ // efficient to sort by hand rather than using, say, std::sort.
+ if (shouldSwapOperands(Arg1, Arg2))
+ std::swap(Arg1, Arg2);
+ }
+ E->op_push_back(lookupOperandLeader(Arg1));
+ E->op_push_back(lookupOperandLeader(Arg2));
+
+ Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ return E;
+}
+
+// Take a Value returned by simplification of Expression E/Instruction
+// I, and see if it resulted in a simpler expression. If so, return
+// that expression.
+const Expression *NewGVN::checkSimplificationResults(Expression *E,
+ Instruction *I,
+ Value *V) const {
+ if (!V)
+ return nullptr;
+ if (auto *C = dyn_cast<Constant>(V)) {
+ if (I)
+ LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
+ << " constant " << *C << "\n");
+ NumGVNOpsSimplified++;
+ assert(isa<BasicExpression>(E) &&
+ "We should always have had a basic expression here");
+ deleteExpression(E);
+ return createConstantExpression(C);
+ } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
+ if (I)
+ LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
+ << " variable " << *V << "\n");
+ deleteExpression(E);
+ return createVariableExpression(V);
+ }
+
+ CongruenceClass *CC = ValueToClass.lookup(V);
+ if (CC) {
+ if (CC->getLeader() && CC->getLeader() != I) {
+ // If we simplified to something else, we need to communicate
+ // that we're users of the value we simplified to.
+ if (I != V) {
+ // Don't add temporary instructions to the user lists.
+ if (!AllTempInstructions.count(I))
+ addAdditionalUsers(V, I);
+ }
+ return createVariableOrConstant(CC->getLeader());
+ }
+ if (CC->getDefiningExpr()) {
+ // If we simplified to something else, we need to communicate
+ // that we're users of the value we simplified to.
+ if (I != V) {
+ // Don't add temporary instructions to the user lists.
+ if (!AllTempInstructions.count(I))
+ addAdditionalUsers(V, I);
+ }
+
+ if (I)
+ LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
+ << " expression " << *CC->getDefiningExpr() << "\n");
+ NumGVNOpsSimplified++;
+ deleteExpression(E);
+ return CC->getDefiningExpr();
+ }
+ }
+
+ return nullptr;
+}
+
+// Create a value expression from the instruction I, replacing operands with
+// their leaders.
+
+const Expression *NewGVN::createExpression(Instruction *I) const {
+ auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
+
+ bool AllConstant = setBasicExpressionInfo(I, E);
+
+ if (I->isCommutative()) {
+ // Ensure that commutative instructions that only differ by a permutation
+ // of their operands get the same value number by sorting the operand value
+ // numbers. Since all commutative instructions have two operands it is more
+ // efficient to sort by hand rather than using, say, std::sort.
+ assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
+ if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
+ E->swapOperands(0, 1);
+ }
+ // Perform simplification.
+ if (auto *CI = dyn_cast<CmpInst>(I)) {
+ // Sort the operand value numbers so x<y and y>x get the same value
+ // number.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
+ E->swapOperands(0, 1);
+ Predicate = CmpInst::getSwappedPredicate(Predicate);
+ }
+ E->setOpcode((CI->getOpcode() << 8) | Predicate);
+ // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
+ assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
+ "Wrong types on cmp instruction");
+ assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
+ E->getOperand(1)->getType() == I->getOperand(1)->getType()));
+ Value *V =
+ SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ } else if (isa<SelectInst>(I)) {
+ if (isa<Constant>(E->getOperand(0)) ||
+ E->getOperand(1) == E->getOperand(2)) {
+ assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
+ E->getOperand(2)->getType() == I->getOperand(2)->getType());
+ Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
+ E->getOperand(2), SQ);
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ }
+ } else if (I->isBinaryOp()) {
+ Value *V =
+ SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ } else if (auto *CI = dyn_cast<CastInst>(I)) {
+ Value *V =
+ SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ } else if (isa<GetElementPtrInst>(I)) {
+ Value *V = SimplifyGEPInst(
+ E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ } else if (AllConstant) {
+ // We don't bother trying to simplify unless all of the operands
+ // were constant.
+ // TODO: There are a lot of Simplify*'s we could call here, if we
+ // wanted to. The original motivating case for this code was a
+ // zext i1 false to i8, which we don't have an interface to
+ // simplify (IE there is no SimplifyZExt).
+
+ SmallVector<Constant *, 8> C;
+ for (Value *Arg : E->operands())
+ C.emplace_back(cast<Constant>(Arg));
+
+ if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
+ if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
+ return SimplifiedE;
+ }
+ return E;
+}
+
+const AggregateValueExpression *
+NewGVN::createAggregateValueExpression(Instruction *I) const {
+ if (auto *II = dyn_cast<InsertValueInst>(I)) {
+ auto *E = new (ExpressionAllocator)
+ AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
+ setBasicExpressionInfo(I, E);
+ E->allocateIntOperands(ExpressionAllocator);
+ std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
+ return E;
+ } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
+ auto *E = new (ExpressionAllocator)
+ AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
+ setBasicExpressionInfo(EI, E);
+ E->allocateIntOperands(ExpressionAllocator);
+ std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
+ return E;
+ }
+ llvm_unreachable("Unhandled type of aggregate value operation");
+}
+
+const DeadExpression *NewGVN::createDeadExpression() const {
+ // DeadExpression has no arguments and all DeadExpression's are the same,
+ // so we only need one of them.
+ return SingletonDeadExpression;
+}
+
+const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
+ auto *E = new (ExpressionAllocator) VariableExpression(V);
+ E->setOpcode(V->getValueID());
+ return E;
+}
+
+const Expression *NewGVN::createVariableOrConstant(Value *V) const {
+ if (auto *C = dyn_cast<Constant>(V))
+ return createConstantExpression(C);
+ return createVariableExpression(V);
+}
+
+const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
+ auto *E = new (ExpressionAllocator) ConstantExpression(C);
+ E->setOpcode(C->getValueID());
+ return E;
+}
+
+const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
+ auto *E = new (ExpressionAllocator) UnknownExpression(I);
+ E->setOpcode(I->getOpcode());
+ return E;
+}
+
+const CallExpression *
+NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
+ // FIXME: Add operand bundles for calls.
+ auto *E =
+ new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
+ setBasicExpressionInfo(CI, E);
+ return E;
+}
+
+// Return true if some equivalent of instruction Inst dominates instruction U.
+bool NewGVN::someEquivalentDominates(const Instruction *Inst,
+ const Instruction *U) const {
+ auto *CC = ValueToClass.lookup(Inst);
+ // This must be an instruction because we are only called from phi nodes
+ // in the case that the value it needs to check against is an instruction.
+
+ // The most likely candidates for dominance are the leader and the next leader.
+ // The leader or nextleader will dominate in all cases where there is an
+ // equivalent that is higher up in the dom tree.
+ // We can't *only* check them, however, because the
+ // dominator tree could have an infinite number of non-dominating siblings
+ // with instructions that are in the right congruence class.
+ // A
+ // B C D E F G
+ // |
+ // H
+ // Instruction U could be in H, with equivalents in every other sibling.
+ // Depending on the rpo order picked, the leader could be the equivalent in
+ // any of these siblings.
+ if (!CC)
+ return false;
+ if (alwaysAvailable(CC->getLeader()))
+ return true;
+ if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
+ return true;
+ if (CC->getNextLeader().first &&
+ DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
+ return true;
+ return llvm::any_of(*CC, [&](const Value *Member) {
+ return Member != CC->getLeader() &&
+ DT->dominates(cast<Instruction>(Member), U);
+ });
+}
+
+// See if we have a congruence class and leader for this operand, and if so,
+// return it. Otherwise, return the operand itself.
+Value *NewGVN::lookupOperandLeader(Value *V) const {
+ CongruenceClass *CC = ValueToClass.lookup(V);
+ if (CC) {
+ // Everything in TOP is represented by undef, as it can be any value.
+ // We do have to make sure we get the type right though, so we can't set the
+ // RepLeader to undef.
+ if (CC == TOPClass)
+ return UndefValue::get(V->getType());
+ return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
+ }
+
+ return V;
+}
+
+const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
+ auto *CC = getMemoryClass(MA);
+ assert(CC->getMemoryLeader() &&
+ "Every MemoryAccess should be mapped to a congruence class with a "
+ "representative memory access");
+ return CC->getMemoryLeader();
+}
+
+// Return true if the MemoryAccess is really equivalent to everything. This is
+// equivalent to the lattice value "TOP" in most lattices. This is the initial
+// state of all MemoryAccesses.
+bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
+ return getMemoryClass(MA) == TOPClass;
+}
+
+LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
+ LoadInst *LI,
+ const MemoryAccess *MA) const {
+ auto *E =
+ new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
+ E->allocateOperands(ArgRecycler, ExpressionAllocator);
+ E->setType(LoadType);
+
+ // Give store and loads same opcode so they value number together.
+ E->setOpcode(0);
+ E->op_push_back(PointerOp);
+ if (LI)
+ E->setAlignment(MaybeAlign(LI->getAlignment()));
+
+ // TODO: Value number heap versions. We may be able to discover
+ // things alias analysis can't on it's own (IE that a store and a
+ // load have the same value, and thus, it isn't clobbering the load).
+ return E;
+}
+
+const StoreExpression *
+NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
+ auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
+ auto *E = new (ExpressionAllocator)
+ StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
+ E->allocateOperands(ArgRecycler, ExpressionAllocator);
+ E->setType(SI->getValueOperand()->getType());
+
+ // Give store and loads same opcode so they value number together.
+ E->setOpcode(0);
+ E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
+
+ // TODO: Value number heap versions. We may be able to discover
+ // things alias analysis can't on it's own (IE that a store and a
+ // load have the same value, and thus, it isn't clobbering the load).
+ return E;
+}
+
+const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
+ // Unlike loads, we never try to eliminate stores, so we do not check if they
+ // are simple and avoid value numbering them.
+ auto *SI = cast<StoreInst>(I);
+ auto *StoreAccess = getMemoryAccess(SI);
+ // Get the expression, if any, for the RHS of the MemoryDef.
+ const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
+ if (EnableStoreRefinement)
+ StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
+ // If we bypassed the use-def chains, make sure we add a use.
+ StoreRHS = lookupMemoryLeader(StoreRHS);
+ if (StoreRHS != StoreAccess->getDefiningAccess())
+ addMemoryUsers(StoreRHS, StoreAccess);
+ // If we are defined by ourselves, use the live on entry def.
+ if (StoreRHS == StoreAccess)
+ StoreRHS = MSSA->getLiveOnEntryDef();
+
+ if (SI->isSimple()) {
+ // See if we are defined by a previous store expression, it already has a
+ // value, and it's the same value as our current store. FIXME: Right now, we
+ // only do this for simple stores, we should expand to cover memcpys, etc.
+ const auto *LastStore = createStoreExpression(SI, StoreRHS);
+ const auto *LastCC = ExpressionToClass.lookup(LastStore);
+ // We really want to check whether the expression we matched was a store. No
+ // easy way to do that. However, we can check that the class we found has a
+ // store, which, assuming the value numbering state is not corrupt, is
+ // sufficient, because we must also be equivalent to that store's expression
+ // for it to be in the same class as the load.
+ if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
+ return LastStore;
+ // Also check if our value operand is defined by a load of the same memory
+ // location, and the memory state is the same as it was then (otherwise, it
+ // could have been overwritten later. See test32 in
+ // transforms/DeadStoreElimination/simple.ll).
+ if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
+ if ((lookupOperandLeader(LI->getPointerOperand()) ==
+ LastStore->getOperand(0)) &&
+ (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
+ StoreRHS))
+ return LastStore;
+ deleteExpression(LastStore);
+ }
+
+ // If the store is not equivalent to anything, value number it as a store that
+ // produces a unique memory state (instead of using it's MemoryUse, we use
+ // it's MemoryDef).
+ return createStoreExpression(SI, StoreAccess);
+}
+
+// See if we can extract the value of a loaded pointer from a load, a store, or
+// a memory instruction.
+const Expression *
+NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
+ LoadInst *LI, Instruction *DepInst,
+ MemoryAccess *DefiningAccess) const {
+ assert((!LI || LI->isSimple()) && "Not a simple load");
+ if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
+ // Can't forward from non-atomic to atomic without violating memory model.
+ // Also don't need to coerce if they are the same type, we will just
+ // propagate.
+ if (LI->isAtomic() > DepSI->isAtomic() ||
+ LoadType == DepSI->getValueOperand()->getType())
+ return nullptr;
+ int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
+ if (Offset >= 0) {
+ if (auto *C = dyn_cast<Constant>(
+ lookupOperandLeader(DepSI->getValueOperand()))) {
+ LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
+ << " to constant " << *C << "\n");
+ return createConstantExpression(
+ getConstantStoreValueForLoad(C, Offset, LoadType, DL));
+ }
+ }
+ } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
+ // Can't forward from non-atomic to atomic without violating memory model.
+ if (LI->isAtomic() > DepLI->isAtomic())
+ return nullptr;
+ int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
+ if (Offset >= 0) {
+ // We can coerce a constant load into a load.
+ if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
+ if (auto *PossibleConstant =
+ getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
+ LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
+ << " to constant " << *PossibleConstant << "\n");
+ return createConstantExpression(PossibleConstant);
+ }
+ }
+ } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
+ int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
+ if (Offset >= 0) {
+ if (auto *PossibleConstant =
+ getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
+ LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
+ << " to constant " << *PossibleConstant << "\n");
+ return createConstantExpression(PossibleConstant);
+ }
+ }
+ }
+
+ // All of the below are only true if the loaded pointer is produced
+ // by the dependent instruction.
+ if (LoadPtr != lookupOperandLeader(DepInst) &&
+ !AA->isMustAlias(LoadPtr, DepInst))
+ return nullptr;
+ // If this load really doesn't depend on anything, then we must be loading an
+ // undef value. This can happen when loading for a fresh allocation with no
+ // intervening stores, for example. Note that this is only true in the case
+ // that the result of the allocation is pointer equal to the load ptr.
+ if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
+ return createConstantExpression(UndefValue::get(LoadType));
+ }
+ // If this load occurs either right after a lifetime begin,
+ // then the loaded value is undefined.
+ else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
+ if (II->getIntrinsicID() == Intrinsic::lifetime_start)
+ return createConstantExpression(UndefValue::get(LoadType));
+ }
+ // If this load follows a calloc (which zero initializes memory),
+ // then the loaded value is zero
+ else if (isCallocLikeFn(DepInst, TLI)) {
+ return createConstantExpression(Constant::getNullValue(LoadType));
+ }
+
+ return nullptr;
+}
+
+const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
+ auto *LI = cast<LoadInst>(I);
+
+ // We can eliminate in favor of non-simple loads, but we won't be able to
+ // eliminate the loads themselves.
+ if (!LI->isSimple())
+ return nullptr;
+
+ Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
+ // Load of undef is undef.
+ if (isa<UndefValue>(LoadAddressLeader))
+ return createConstantExpression(UndefValue::get(LI->getType()));
+ MemoryAccess *OriginalAccess = getMemoryAccess(I);
+ MemoryAccess *DefiningAccess =
+ MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
+
+ if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
+ if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
+ Instruction *DefiningInst = MD->getMemoryInst();
+ // If the defining instruction is not reachable, replace with undef.
+ if (!ReachableBlocks.count(DefiningInst->getParent()))
+ return createConstantExpression(UndefValue::get(LI->getType()));
+ // This will handle stores and memory insts. We only do if it the
+ // defining access has a different type, or it is a pointer produced by
+ // certain memory operations that cause the memory to have a fixed value
+ // (IE things like calloc).
+ if (const auto *CoercionResult =
+ performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
+ DefiningInst, DefiningAccess))
+ return CoercionResult;
+ }
+ }
+
+ const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
+ DefiningAccess);
+ // If our MemoryLeader is not our defining access, add a use to the
+ // MemoryLeader, so that we get reprocessed when it changes.
+ if (LE->getMemoryLeader() != DefiningAccess)
+ addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
+ return LE;
+}
+
+const Expression *
+NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
+ auto *PI = PredInfo->getPredicateInfoFor(I);
+ if (!PI)
+ return nullptr;
+
+ LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
+
+ auto *PWC = dyn_cast<PredicateWithCondition>(PI);
+ if (!PWC)
+ return nullptr;
+
+ auto *CopyOf = I->getOperand(0);
+ auto *Cond = PWC->Condition;
+
+ // If this a copy of the condition, it must be either true or false depending
+ // on the predicate info type and edge.
+ if (CopyOf == Cond) {
+ // We should not need to add predicate users because the predicate info is
+ // already a use of this operand.
+ if (isa<PredicateAssume>(PI))
+ return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
+ if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
+ if (PBranch->TrueEdge)
+ return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
+ return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
+ }
+ if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
+ return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
+ }
+
+ // Not a copy of the condition, so see what the predicates tell us about this
+ // value. First, though, we check to make sure the value is actually a copy
+ // of one of the condition operands. It's possible, in certain cases, for it
+ // to be a copy of a predicateinfo copy. In particular, if two branch
+ // operations use the same condition, and one branch dominates the other, we
+ // will end up with a copy of a copy. This is currently a small deficiency in
+ // predicateinfo. What will end up happening here is that we will value
+ // number both copies the same anyway.
+
+ // Everything below relies on the condition being a comparison.
+ auto *Cmp = dyn_cast<CmpInst>(Cond);
+ if (!Cmp)
+ return nullptr;
+
+ if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
+ LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
+ return nullptr;
+ }
+ Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
+ Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
+ bool SwappedOps = false;
+ // Sort the ops.
+ if (shouldSwapOperands(FirstOp, SecondOp)) {
+ std::swap(FirstOp, SecondOp);
+ SwappedOps = true;
+ }
+ CmpInst::Predicate Predicate =
+ SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
+
+ if (isa<PredicateAssume>(PI)) {
+ // If we assume the operands are equal, then they are equal.
+ if (Predicate == CmpInst::ICMP_EQ) {
+ addPredicateUsers(PI, I);
+ addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
+ I);
+ return createVariableOrConstant(FirstOp);
+ }
+ }
+ if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
+ // If we are *not* a copy of the comparison, we may equal to the other
+ // operand when the predicate implies something about equality of
+ // operations. In particular, if the comparison is true/false when the
+ // operands are equal, and we are on the right edge, we know this operation
+ // is equal to something.
+ if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
+ (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
+ addPredicateUsers(PI, I);
+ addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
+ I);
+ return createVariableOrConstant(FirstOp);
+ }
+ // Handle the special case of floating point.
+ if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
+ (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
+ isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
+ addPredicateUsers(PI, I);
+ addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
+ I);
+ return createConstantExpression(cast<Constant>(FirstOp));
+ }
+ }
+ return nullptr;
+}
+
+// Evaluate read only and pure calls, and create an expression result.
+const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
+ auto *CI = cast<CallInst>(I);
+ if (auto *II = dyn_cast<IntrinsicInst>(I)) {
+ // Intrinsics with the returned attribute are copies of arguments.
+ if (auto *ReturnedValue = II->getReturnedArgOperand()) {
+ if (II->getIntrinsicID() == Intrinsic::ssa_copy)
+ if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
+ return Result;
+ return createVariableOrConstant(ReturnedValue);
+ }
+ }
+ if (AA->doesNotAccessMemory(CI)) {
+ return createCallExpression(CI, TOPClass->getMemoryLeader());
+ } else if (AA->onlyReadsMemory(CI)) {
+ if (auto *MA = MSSA->getMemoryAccess(CI)) {
+ auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
+ return createCallExpression(CI, DefiningAccess);
+ } else // MSSA determined that CI does not access memory.
+ return createCallExpression(CI, TOPClass->getMemoryLeader());
+ }
+ return nullptr;
+}
+
+// Retrieve the memory class for a given MemoryAccess.
+CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
+ auto *Result = MemoryAccessToClass.lookup(MA);
+ assert(Result && "Should have found memory class");
+ return Result;
+}
+
+// Update the MemoryAccess equivalence table to say that From is equal to To,
+// and return true if this is different from what already existed in the table.
+bool NewGVN::setMemoryClass(const MemoryAccess *From,
+ CongruenceClass *NewClass) {
+ assert(NewClass &&
+ "Every MemoryAccess should be getting mapped to a non-null class");
+ LLVM_DEBUG(dbgs() << "Setting " << *From);
+ LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
+ LLVM_DEBUG(dbgs() << NewClass->getID()
+ << " with current MemoryAccess leader ");
+ LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
+
+ auto LookupResult = MemoryAccessToClass.find(From);
+ bool Changed = false;
+ // If it's already in the table, see if the value changed.
+ if (LookupResult != MemoryAccessToClass.end()) {
+ auto *OldClass = LookupResult->second;
+ if (OldClass != NewClass) {
+ // If this is a phi, we have to handle memory member updates.
+ if (auto *MP = dyn_cast<MemoryPhi>(From)) {
+ OldClass->memory_erase(MP);
+ NewClass->memory_insert(MP);
+ // This may have killed the class if it had no non-memory members
+ if (OldClass->getMemoryLeader() == From) {
+ if (OldClass->definesNoMemory()) {
+ OldClass->setMemoryLeader(nullptr);
+ } else {
+ OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
+ LLVM_DEBUG(dbgs() << "Memory class leader change for class "
+ << OldClass->getID() << " to "
+ << *OldClass->getMemoryLeader()
+ << " due to removal of a memory member " << *From
+ << "\n");
+ markMemoryLeaderChangeTouched(OldClass);
+ }
+ }
+ }
+ // It wasn't equivalent before, and now it is.
+ LookupResult->second = NewClass;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+// Determine if a instruction is cycle-free. That means the values in the
+// instruction don't depend on any expressions that can change value as a result
+// of the instruction. For example, a non-cycle free instruction would be v =
+// phi(0, v+1).
+bool NewGVN::isCycleFree(const Instruction *I) const {
+ // In order to compute cycle-freeness, we do SCC finding on the instruction,
+ // and see what kind of SCC it ends up in. If it is a singleton, it is
+ // cycle-free. If it is not in a singleton, it is only cycle free if the
+ // other members are all phi nodes (as they do not compute anything, they are
+ // copies).
+ auto ICS = InstCycleState.lookup(I);
+ if (ICS == ICS_Unknown) {
+ SCCFinder.Start(I);
+ auto &SCC = SCCFinder.getComponentFor(I);
+ // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
+ if (SCC.size() == 1)
+ InstCycleState.insert({I, ICS_CycleFree});
+ else {
+ bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
+ return isa<PHINode>(V) || isCopyOfAPHI(V);
+ });
+ ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
+ for (auto *Member : SCC)
+ if (auto *MemberPhi = dyn_cast<PHINode>(Member))
+ InstCycleState.insert({MemberPhi, ICS});
+ }
+ }
+ if (ICS == ICS_Cycle)
+ return false;
+ return true;
+}
+
+// Evaluate PHI nodes symbolically and create an expression result.
+const Expression *
+NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
+ Instruction *I,
+ BasicBlock *PHIBlock) const {
+ // True if one of the incoming phi edges is a backedge.
+ bool HasBackedge = false;
+ // All constant tracks the state of whether all the *original* phi operands
+ // This is really shorthand for "this phi cannot cycle due to forward
+ // change in value of the phi is guaranteed not to later change the value of
+ // the phi. IE it can't be v = phi(undef, v+1)
+ bool OriginalOpsConstant = true;
+ auto *E = cast<PHIExpression>(createPHIExpression(
+ PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
+ // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
+ // See if all arguments are the same.
+ // We track if any were undef because they need special handling.
+ bool HasUndef = false;
+ auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
+ if (isa<UndefValue>(Arg)) {
+ HasUndef = true;
+ return false;
+ }
+ return true;
+ });
+ // If we are left with no operands, it's dead.
+ if (Filtered.empty()) {
+ // If it has undef at this point, it means there are no-non-undef arguments,
+ // and thus, the value of the phi node must be undef.
+ if (HasUndef) {
+ LLVM_DEBUG(
+ dbgs() << "PHI Node " << *I
+ << " has no non-undef arguments, valuing it as undef\n");
+ return createConstantExpression(UndefValue::get(I->getType()));
+ }
+
+ LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
+ deleteExpression(E);
+ return createDeadExpression();
+ }
+ Value *AllSameValue = *(Filtered.begin());
+ ++Filtered.begin();
+ // Can't use std::equal here, sadly, because filter.begin moves.
+ if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
+ // In LLVM's non-standard representation of phi nodes, it's possible to have
+ // phi nodes with cycles (IE dependent on other phis that are .... dependent
+ // on the original phi node), especially in weird CFG's where some arguments
+ // are unreachable, or uninitialized along certain paths. This can cause
+ // infinite loops during evaluation. We work around this by not trying to
+ // really evaluate them independently, but instead using a variable
+ // expression to say if one is equivalent to the other.
+ // We also special case undef, so that if we have an undef, we can't use the
+ // common value unless it dominates the phi block.
+ if (HasUndef) {
+ // If we have undef and at least one other value, this is really a
+ // multivalued phi, and we need to know if it's cycle free in order to
+ // evaluate whether we can ignore the undef. The other parts of this are
+ // just shortcuts. If there is no backedge, or all operands are
+ // constants, it also must be cycle free.
+ if (HasBackedge && !OriginalOpsConstant &&
+ !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
+ return E;
+
+ // Only have to check for instructions
+ if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
+ if (!someEquivalentDominates(AllSameInst, I))
+ return E;
+ }
+ // Can't simplify to something that comes later in the iteration.
+ // Otherwise, when and if it changes congruence class, we will never catch
+ // up. We will always be a class behind it.
+ if (isa<Instruction>(AllSameValue) &&
+ InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
+ return E;
+ NumGVNPhisAllSame++;
+ LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
+ << "\n");
+ deleteExpression(E);
+ return createVariableOrConstant(AllSameValue);
+ }
+ return E;
+}
+
+const Expression *
+NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
+ if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
+ auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
+ if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
+ // EI is an extract from one of our with.overflow intrinsics. Synthesize
+ // a semantically equivalent expression instead of an extract value
+ // expression.
+ return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
+ WO->getLHS(), WO->getRHS(), I);
+ }
+
+ return createAggregateValueExpression(I);
+}
+
+const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
+ assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
+
+ auto *CI = cast<CmpInst>(I);
+ // See if our operands are equal to those of a previous predicate, and if so,
+ // if it implies true or false.
+ auto Op0 = lookupOperandLeader(CI->getOperand(0));
+ auto Op1 = lookupOperandLeader(CI->getOperand(1));
+ auto OurPredicate = CI->getPredicate();
+ if (shouldSwapOperands(Op0, Op1)) {
+ std::swap(Op0, Op1);
+ OurPredicate = CI->getSwappedPredicate();
+ }
+
+ // Avoid processing the same info twice.
+ const PredicateBase *LastPredInfo = nullptr;
+ // See if we know something about the comparison itself, like it is the target
+ // of an assume.
+ auto *CmpPI = PredInfo->getPredicateInfoFor(I);
+ if (dyn_cast_or_null<PredicateAssume>(CmpPI))
+ return createConstantExpression(ConstantInt::getTrue(CI->getType()));
+
+ if (Op0 == Op1) {
+ // This condition does not depend on predicates, no need to add users
+ if (CI->isTrueWhenEqual())
+ return createConstantExpression(ConstantInt::getTrue(CI->getType()));
+ else if (CI->isFalseWhenEqual())
+ return createConstantExpression(ConstantInt::getFalse(CI->getType()));
+ }
+
+ // NOTE: Because we are comparing both operands here and below, and using
+ // previous comparisons, we rely on fact that predicateinfo knows to mark
+ // comparisons that use renamed operands as users of the earlier comparisons.
+ // It is *not* enough to just mark predicateinfo renamed operands as users of
+ // the earlier comparisons, because the *other* operand may have changed in a
+ // previous iteration.
+ // Example:
+ // icmp slt %a, %b
+ // %b.0 = ssa.copy(%b)
+ // false branch:
+ // icmp slt %c, %b.0
+
+ // %c and %a may start out equal, and thus, the code below will say the second
+ // %icmp is false. c may become equal to something else, and in that case the
+ // %second icmp *must* be reexamined, but would not if only the renamed
+ // %operands are considered users of the icmp.
+
+ // *Currently* we only check one level of comparisons back, and only mark one
+ // level back as touched when changes happen. If you modify this code to look
+ // back farther through comparisons, you *must* mark the appropriate
+ // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
+ // we know something just from the operands themselves
+
+ // See if our operands have predicate info, so that we may be able to derive
+ // something from a previous comparison.
+ for (const auto &Op : CI->operands()) {
+ auto *PI = PredInfo->getPredicateInfoFor(Op);
+ if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
+ if (PI == LastPredInfo)
+ continue;
+ LastPredInfo = PI;
+ // In phi of ops cases, we may have predicate info that we are evaluating
+ // in a different context.
+ if (!DT->dominates(PBranch->To, getBlockForValue(I)))
+ continue;
+ // TODO: Along the false edge, we may know more things too, like
+ // icmp of
+ // same operands is false.
+ // TODO: We only handle actual comparison conditions below, not
+ // and/or.
+ auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
+ if (!BranchCond)
+ continue;
+ auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
+ auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
+ auto BranchPredicate = BranchCond->getPredicate();
+ if (shouldSwapOperands(BranchOp0, BranchOp1)) {
+ std::swap(BranchOp0, BranchOp1);
+ BranchPredicate = BranchCond->getSwappedPredicate();
+ }
+ if (BranchOp0 == Op0 && BranchOp1 == Op1) {
+ if (PBranch->TrueEdge) {
+ // If we know the previous predicate is true and we are in the true
+ // edge then we may be implied true or false.
+ if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
+ OurPredicate)) {
+ addPredicateUsers(PI, I);
+ return createConstantExpression(
+ ConstantInt::getTrue(CI->getType()));
+ }
+
+ if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
+ OurPredicate)) {
+ addPredicateUsers(PI, I);
+ return createConstantExpression(
+ ConstantInt::getFalse(CI->getType()));
+ }
+ } else {
+ // Just handle the ne and eq cases, where if we have the same
+ // operands, we may know something.
+ if (BranchPredicate == OurPredicate) {
+ addPredicateUsers(PI, I);
+ // Same predicate, same ops,we know it was false, so this is false.
+ return createConstantExpression(
+ ConstantInt::getFalse(CI->getType()));
+ } else if (BranchPredicate ==
+ CmpInst::getInversePredicate(OurPredicate)) {
+ addPredicateUsers(PI, I);
+ // Inverse predicate, we know the other was false, so this is true.
+ return createConstantExpression(
+ ConstantInt::getTrue(CI->getType()));
+ }
+ }
+ }
+ }
+ }
+ // Create expression will take care of simplifyCmpInst
+ return createExpression(I);
+}
+
+// Substitute and symbolize the value before value numbering.
+const Expression *
+NewGVN::performSymbolicEvaluation(Value *V,
+ SmallPtrSetImpl<Value *> &Visited) const {
+ const Expression *E = nullptr;
+ if (auto *C = dyn_cast<Constant>(V))
+ E = createConstantExpression(C);
+ else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
+ E = createVariableExpression(V);
+ } else {
+ // TODO: memory intrinsics.
+ // TODO: Some day, we should do the forward propagation and reassociation
+ // parts of the algorithm.
+ auto *I = cast<Instruction>(V);
+ switch (I->getOpcode()) {
+ case Instruction::ExtractValue:
+ case Instruction::InsertValue:
+ E = performSymbolicAggrValueEvaluation(I);
+ break;
+ case Instruction::PHI: {
+ SmallVector<ValPair, 3> Ops;
+ auto *PN = cast<PHINode>(I);
+ for (unsigned i = 0; i < PN->getNumOperands(); ++i)
+ Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
+ // Sort to ensure the invariant createPHIExpression requires is met.
+ sortPHIOps(Ops);
+ E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
+ } break;
+ case Instruction::Call:
+ E = performSymbolicCallEvaluation(I);
+ break;
+ case Instruction::Store:
+ E = performSymbolicStoreEvaluation(I);
+ break;
+ case Instruction::Load:
+ E = performSymbolicLoadEvaluation(I);
+ break;
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ E = createExpression(I);
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ E = performSymbolicCmpEvaluation(I);
+ break;
+ case Instruction::FNeg:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::Select:
+ case Instruction::ExtractElement:
+ case Instruction::InsertElement:
+ case Instruction::ShuffleVector:
+ case Instruction::GetElementPtr:
+ E = createExpression(I);
+ break;
+ default:
+ return nullptr;
+ }
+ }
+ return E;
+}
+
+// Look up a container in a map, and then call a function for each thing in the
+// found container.
+template <typename Map, typename KeyType, typename Func>
+void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
+ const auto Result = M.find_as(Key);
+ if (Result != M.end())
+ for (typename Map::mapped_type::value_type Mapped : Result->second)
+ F(Mapped);
+}
+
+// Look up a container of values/instructions in a map, and touch all the
+// instructions in the container. Then erase value from the map.
+template <typename Map, typename KeyType>
+void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
+ const auto Result = M.find_as(Key);
+ if (Result != M.end()) {
+ for (const typename Map::mapped_type::value_type Mapped : Result->second)
+ TouchedInstructions.set(InstrToDFSNum(Mapped));
+ M.erase(Result);
+ }
+}
+
+void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
+ assert(User && To != User);
+ if (isa<Instruction>(To))
+ AdditionalUsers[To].insert(User);
+}
+
+void NewGVN::markUsersTouched(Value *V) {
+ // Now mark the users as touched.
+ for (auto *User : V->users()) {
+ assert(isa<Instruction>(User) && "Use of value not within an instruction?");
+ TouchedInstructions.set(InstrToDFSNum(User));
+ }
+ touchAndErase(AdditionalUsers, V);
+}
+
+void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
+ LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
+ MemoryToUsers[To].insert(U);
+}
+
+void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
+ TouchedInstructions.set(MemoryToDFSNum(MA));
+}
+
+void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
+ if (isa<MemoryUse>(MA))
+ return;
+ for (auto U : MA->users())
+ TouchedInstructions.set(MemoryToDFSNum(U));
+ touchAndErase(MemoryToUsers, MA);
+}
+
+// Add I to the set of users of a given predicate.
+void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
+ // Don't add temporary instructions to the user lists.
+ if (AllTempInstructions.count(I))
+ return;
+
+ if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
+ PredicateToUsers[PBranch->Condition].insert(I);
+ else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
+ PredicateToUsers[PAssume->Condition].insert(I);
+}
+
+// Touch all the predicates that depend on this instruction.
+void NewGVN::markPredicateUsersTouched(Instruction *I) {
+ touchAndErase(PredicateToUsers, I);
+}
+
+// Mark users affected by a memory leader change.
+void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
+ for (auto M : CC->memory())
+ markMemoryDefTouched(M);
+}
+
+// Touch the instructions that need to be updated after a congruence class has a
+// leader change, and mark changed values.
+void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
+ for (auto M : *CC) {
+ if (auto *I = dyn_cast<Instruction>(M))
+ TouchedInstructions.set(InstrToDFSNum(I));
+ LeaderChanges.insert(M);
+ }
+}
+
+// Give a range of things that have instruction DFS numbers, this will return
+// the member of the range with the smallest dfs number.
+template <class T, class Range>
+T *NewGVN::getMinDFSOfRange(const Range &R) const {
+ std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
+ for (const auto X : R) {
+ auto DFSNum = InstrToDFSNum(X);
+ if (DFSNum < MinDFS.second)
+ MinDFS = {X, DFSNum};
+ }
+ return MinDFS.first;
+}
+
+// This function returns the MemoryAccess that should be the next leader of
+// congruence class CC, under the assumption that the current leader is going to
+// disappear.
+const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
+ // TODO: If this ends up to slow, we can maintain a next memory leader like we
+ // do for regular leaders.
+ // Make sure there will be a leader to find.
+ assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
+ if (CC->getStoreCount() > 0) {
+ if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
+ return getMemoryAccess(NL);
+ // Find the store with the minimum DFS number.
+ auto *V = getMinDFSOfRange<Value>(make_filter_range(
+ *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
+ return getMemoryAccess(cast<StoreInst>(V));
+ }
+ assert(CC->getStoreCount() == 0);
+
+ // Given our assertion, hitting this part must mean
+ // !OldClass->memory_empty()
+ if (CC->memory_size() == 1)
+ return *CC->memory_begin();
+ return getMinDFSOfRange<const MemoryPhi>(CC->memory());
+}
+
+// This function returns the next value leader of a congruence class, under the
+// assumption that the current leader is going away. This should end up being
+// the next most dominating member.
+Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
+ // We don't need to sort members if there is only 1, and we don't care about
+ // sorting the TOP class because everything either gets out of it or is
+ // unreachable.
+
+ if (CC->size() == 1 || CC == TOPClass) {
+ return *(CC->begin());
+ } else if (CC->getNextLeader().first) {
+ ++NumGVNAvoidedSortedLeaderChanges;
+ return CC->getNextLeader().first;
+ } else {
+ ++NumGVNSortedLeaderChanges;
+ // NOTE: If this ends up to slow, we can maintain a dual structure for
+ // member testing/insertion, or keep things mostly sorted, and sort only
+ // here, or use SparseBitVector or ....
+ return getMinDFSOfRange<Value>(*CC);
+ }
+}
+
+// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
+// the memory members, etc for the move.
+//
+// The invariants of this function are:
+//
+// - I must be moving to NewClass from OldClass
+// - The StoreCount of OldClass and NewClass is expected to have been updated
+// for I already if it is a store.
+// - The OldClass memory leader has not been updated yet if I was the leader.
+void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
+ MemoryAccess *InstMA,
+ CongruenceClass *OldClass,
+ CongruenceClass *NewClass) {
+ // If the leader is I, and we had a representative MemoryAccess, it should
+ // be the MemoryAccess of OldClass.
+ assert((!InstMA || !OldClass->getMemoryLeader() ||
+ OldClass->getLeader() != I ||
+ MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
+ MemoryAccessToClass.lookup(InstMA)) &&
+ "Representative MemoryAccess mismatch");
+ // First, see what happens to the new class
+ if (!NewClass->getMemoryLeader()) {
+ // Should be a new class, or a store becoming a leader of a new class.
+ assert(NewClass->size() == 1 ||
+ (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
+ NewClass->setMemoryLeader(InstMA);
+ // Mark it touched if we didn't just create a singleton
+ LLVM_DEBUG(dbgs() << "Memory class leader change for class "
+ << NewClass->getID()
+ << " due to new memory instruction becoming leader\n");
+ markMemoryLeaderChangeTouched(NewClass);
+ }
+ setMemoryClass(InstMA, NewClass);
+ // Now, fixup the old class if necessary
+ if (OldClass->getMemoryLeader() == InstMA) {
+ if (!OldClass->definesNoMemory()) {
+ OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
+ LLVM_DEBUG(dbgs() << "Memory class leader change for class "
+ << OldClass->getID() << " to "
+ << *OldClass->getMemoryLeader()
+ << " due to removal of old leader " << *InstMA << "\n");
+ markMemoryLeaderChangeTouched(OldClass);
+ } else
+ OldClass->setMemoryLeader(nullptr);
+ }
+}
+
+// Move a value, currently in OldClass, to be part of NewClass
+// Update OldClass and NewClass for the move (including changing leaders, etc).
+void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
+ CongruenceClass *OldClass,
+ CongruenceClass *NewClass) {
+ if (I == OldClass->getNextLeader().first)
+ OldClass->resetNextLeader();
+
+ OldClass->erase(I);
+ NewClass->insert(I);
+
+ if (NewClass->getLeader() != I)
+ NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
+ // Handle our special casing of stores.
+ if (auto *SI = dyn_cast<StoreInst>(I)) {
+ OldClass->decStoreCount();
+ // Okay, so when do we want to make a store a leader of a class?
+ // If we have a store defined by an earlier load, we want the earlier load
+ // to lead the class.
+ // If we have a store defined by something else, we want the store to lead
+ // the class so everything else gets the "something else" as a value.
+ // If we have a store as the single member of the class, we want the store
+ // as the leader
+ if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
+ // If it's a store expression we are using, it means we are not equivalent
+ // to something earlier.
+ if (auto *SE = dyn_cast<StoreExpression>(E)) {
+ NewClass->setStoredValue(SE->getStoredValue());
+ markValueLeaderChangeTouched(NewClass);
+ // Shift the new class leader to be the store
+ LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
+ << NewClass->getID() << " from "
+ << *NewClass->getLeader() << " to " << *SI
+ << " because store joined class\n");
+ // If we changed the leader, we have to mark it changed because we don't
+ // know what it will do to symbolic evaluation.
+ NewClass->setLeader(SI);
+ }
+ // We rely on the code below handling the MemoryAccess change.
+ }
+ NewClass->incStoreCount();
+ }
+ // True if there is no memory instructions left in a class that had memory
+ // instructions before.
+
+ // If it's not a memory use, set the MemoryAccess equivalence
+ auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
+ if (InstMA)
+ moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
+ ValueToClass[I] = NewClass;
+ // See if we destroyed the class or need to swap leaders.
+ if (OldClass->empty() && OldClass != TOPClass) {
+ if (OldClass->getDefiningExpr()) {
+ LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
+ << " from table\n");
+ // We erase it as an exact expression to make sure we don't just erase an
+ // equivalent one.
+ auto Iter = ExpressionToClass.find_as(
+ ExactEqualsExpression(*OldClass->getDefiningExpr()));
+ if (Iter != ExpressionToClass.end())
+ ExpressionToClass.erase(Iter);
+#ifdef EXPENSIVE_CHECKS
+ assert(
+ (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
+ "We erased the expression we just inserted, which should not happen");
+#endif
+ }
+ } else if (OldClass->getLeader() == I) {
+ // When the leader changes, the value numbering of
+ // everything may change due to symbolization changes, so we need to
+ // reprocess.
+ LLVM_DEBUG(dbgs() << "Value class leader change for class "
+ << OldClass->getID() << "\n");
+ ++NumGVNLeaderChanges;
+ // Destroy the stored value if there are no more stores to represent it.
+ // Note that this is basically clean up for the expression removal that
+ // happens below. If we remove stores from a class, we may leave it as a
+ // class of equivalent memory phis.
+ if (OldClass->getStoreCount() == 0) {
+ if (OldClass->getStoredValue())
+ OldClass->setStoredValue(nullptr);
+ }
+ OldClass->setLeader(getNextValueLeader(OldClass));
+ OldClass->resetNextLeader();
+ markValueLeaderChangeTouched(OldClass);
+ }
+}
+
+// For a given expression, mark the phi of ops instructions that could have
+// changed as a result.
+void NewGVN::markPhiOfOpsChanged(const Expression *E) {
+ touchAndErase(ExpressionToPhiOfOps, E);
+}
+
+// Perform congruence finding on a given value numbering expression.
+void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
+ // This is guaranteed to return something, since it will at least find
+ // TOP.
+
+ CongruenceClass *IClass = ValueToClass.lookup(I);
+ assert(IClass && "Should have found a IClass");
+ // Dead classes should have been eliminated from the mapping.
+ assert(!IClass->isDead() && "Found a dead class");
+
+ CongruenceClass *EClass = nullptr;
+ if (const auto *VE = dyn_cast<VariableExpression>(E)) {
+ EClass = ValueToClass.lookup(VE->getVariableValue());
+ } else if (isa<DeadExpression>(E)) {
+ EClass = TOPClass;
+ }
+ if (!EClass) {
+ auto lookupResult = ExpressionToClass.insert({E, nullptr});
+
+ // If it's not in the value table, create a new congruence class.
+ if (lookupResult.second) {
+ CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
+ auto place = lookupResult.first;
+ place->second = NewClass;
+
+ // Constants and variables should always be made the leader.
+ if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
+ NewClass->setLeader(CE->getConstantValue());
+ } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
+ StoreInst *SI = SE->getStoreInst();
+ NewClass->setLeader(SI);
+ NewClass->setStoredValue(SE->getStoredValue());
+ // The RepMemoryAccess field will be filled in properly by the
+ // moveValueToNewCongruenceClass call.
+ } else {
+ NewClass->setLeader(I);
+ }
+ assert(!isa<VariableExpression>(E) &&
+ "VariableExpression should have been handled already");
+
+ EClass = NewClass;
+ LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
+ << " using expression " << *E << " at "
+ << NewClass->getID() << " and leader "
+ << *(NewClass->getLeader()));
+ if (NewClass->getStoredValue())
+ LLVM_DEBUG(dbgs() << " and stored value "
+ << *(NewClass->getStoredValue()));
+ LLVM_DEBUG(dbgs() << "\n");
+ } else {
+ EClass = lookupResult.first->second;
+ if (isa<ConstantExpression>(E))
+ assert((isa<Constant>(EClass->getLeader()) ||
+ (EClass->getStoredValue() &&
+ isa<Constant>(EClass->getStoredValue()))) &&
+ "Any class with a constant expression should have a "
+ "constant leader");
+
+ assert(EClass && "Somehow don't have an eclass");
+
+ assert(!EClass->isDead() && "We accidentally looked up a dead class");
+ }
+ }
+ bool ClassChanged = IClass != EClass;
+ bool LeaderChanged = LeaderChanges.erase(I);
+ if (ClassChanged || LeaderChanged) {
+ LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
+ << *E << "\n");
+ if (ClassChanged) {
+ moveValueToNewCongruenceClass(I, E, IClass, EClass);
+ markPhiOfOpsChanged(E);
+ }
+
+ markUsersTouched(I);
+ if (MemoryAccess *MA = getMemoryAccess(I))
+ markMemoryUsersTouched(MA);
+ if (auto *CI = dyn_cast<CmpInst>(I))
+ markPredicateUsersTouched(CI);
+ }
+ // If we changed the class of the store, we want to ensure nothing finds the
+ // old store expression. In particular, loads do not compare against stored
+ // value, so they will find old store expressions (and associated class
+ // mappings) if we leave them in the table.
+ if (ClassChanged && isa<StoreInst>(I)) {
+ auto *OldE = ValueToExpression.lookup(I);
+ // It could just be that the old class died. We don't want to erase it if we
+ // just moved classes.
+ if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
+ // Erase this as an exact expression to ensure we don't erase expressions
+ // equivalent to it.
+ auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
+ if (Iter != ExpressionToClass.end())
+ ExpressionToClass.erase(Iter);
+ }
+ }
+ ValueToExpression[I] = E;
+}
+
+// Process the fact that Edge (from, to) is reachable, including marking
+// any newly reachable blocks and instructions for processing.
+void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
+ // Check if the Edge was reachable before.
+ if (ReachableEdges.insert({From, To}).second) {
+ // If this block wasn't reachable before, all instructions are touched.
+ if (ReachableBlocks.insert(To).second) {
+ LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
+ << " marked reachable\n");
+ const auto &InstRange = BlockInstRange.lookup(To);
+ TouchedInstructions.set(InstRange.first, InstRange.second);
+ } else {
+ LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
+ << " was reachable, but new edge {"
+ << getBlockName(From) << "," << getBlockName(To)
+ << "} to it found\n");
+
+ // We've made an edge reachable to an existing block, which may
+ // impact predicates. Otherwise, only mark the phi nodes as touched, as
+ // they are the only thing that depend on new edges. Anything using their
+ // values will get propagated to if necessary.
+ if (MemoryAccess *MemPhi = getMemoryAccess(To))
+ TouchedInstructions.set(InstrToDFSNum(MemPhi));
+
+ // FIXME: We should just add a union op on a Bitvector and
+ // SparseBitVector. We can do it word by word faster than we are doing it
+ // here.
+ for (auto InstNum : RevisitOnReachabilityChange[To])
+ TouchedInstructions.set(InstNum);
+ }
+ }
+}
+
+// Given a predicate condition (from a switch, cmp, or whatever) and a block,
+// see if we know some constant value for it already.
+Value *NewGVN::findConditionEquivalence(Value *Cond) const {
+ auto Result = lookupOperandLeader(Cond);
+ return isa<Constant>(Result) ? Result : nullptr;
+}
+
+// Process the outgoing edges of a block for reachability.
+void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
+ // Evaluate reachability of terminator instruction.
+ Value *Cond;
+ BasicBlock *TrueSucc, *FalseSucc;
+ if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
+ Value *CondEvaluated = findConditionEquivalence(Cond);
+ if (!CondEvaluated) {
+ if (auto *I = dyn_cast<Instruction>(Cond)) {
+ const Expression *E = createExpression(I);
+ if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
+ CondEvaluated = CE->getConstantValue();
+ }
+ } else if (isa<ConstantInt>(Cond)) {
+ CondEvaluated = Cond;
+ }
+ }
+ ConstantInt *CI;
+ if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
+ if (CI->isOne()) {
+ LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
+ << " evaluated to true\n");
+ updateReachableEdge(B, TrueSucc);
+ } else if (CI->isZero()) {
+ LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
+ << " evaluated to false\n");
+ updateReachableEdge(B, FalseSucc);
+ }
+ } else {
+ updateReachableEdge(B, TrueSucc);
+ updateReachableEdge(B, FalseSucc);
+ }
+ } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
+ // For switches, propagate the case values into the case
+ // destinations.
+
+ Value *SwitchCond = SI->getCondition();
+ Value *CondEvaluated = findConditionEquivalence(SwitchCond);
+ // See if we were able to turn this switch statement into a constant.
+ if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
+ auto *CondVal = cast<ConstantInt>(CondEvaluated);
+ // We should be able to get case value for this.
+ auto Case = *SI->findCaseValue(CondVal);
+ if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
+ // We proved the value is outside of the range of the case.
+ // We can't do anything other than mark the default dest as reachable,
+ // and go home.
+ updateReachableEdge(B, SI->getDefaultDest());
+ return;
+ }
+ // Now get where it goes and mark it reachable.
+ BasicBlock *TargetBlock = Case.getCaseSuccessor();
+ updateReachableEdge(B, TargetBlock);
+ } else {
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
+ BasicBlock *TargetBlock = SI->getSuccessor(i);
+ updateReachableEdge(B, TargetBlock);
+ }
+ }
+ } else {
+ // Otherwise this is either unconditional, or a type we have no
+ // idea about. Just mark successors as reachable.
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
+ BasicBlock *TargetBlock = TI->getSuccessor(i);
+ updateReachableEdge(B, TargetBlock);
+ }
+
+ // This also may be a memory defining terminator, in which case, set it
+ // equivalent only to itself.
+ //
+ auto *MA = getMemoryAccess(TI);
+ if (MA && !isa<MemoryUse>(MA)) {
+ auto *CC = ensureLeaderOfMemoryClass(MA);
+ if (setMemoryClass(MA, CC))
+ markMemoryUsersTouched(MA);
+ }
+ }
+}
+
+// Remove the PHI of Ops PHI for I
+void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
+ InstrDFS.erase(PHITemp);
+ // It's still a temp instruction. We keep it in the array so it gets erased.
+ // However, it's no longer used by I, or in the block
+ TempToBlock.erase(PHITemp);
+ RealToTemp.erase(I);
+ // We don't remove the users from the phi node uses. This wastes a little
+ // time, but such is life. We could use two sets to track which were there
+ // are the start of NewGVN, and which were added, but right nowt he cost of
+ // tracking is more than the cost of checking for more phi of ops.
+}
+
+// Add PHI Op in BB as a PHI of operations version of ExistingValue.
+void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
+ Instruction *ExistingValue) {
+ InstrDFS[Op] = InstrToDFSNum(ExistingValue);
+ AllTempInstructions.insert(Op);
+ TempToBlock[Op] = BB;
+ RealToTemp[ExistingValue] = Op;
+ // Add all users to phi node use, as they are now uses of the phi of ops phis
+ // and may themselves be phi of ops.
+ for (auto *U : ExistingValue->users())
+ if (auto *UI = dyn_cast<Instruction>(U))
+ PHINodeUses.insert(UI);
+}
+
+static bool okayForPHIOfOps(const Instruction *I) {
+ if (!EnablePhiOfOps)
+ return false;
+ return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
+ isa<LoadInst>(I);
+}
+
+bool NewGVN::OpIsSafeForPHIOfOpsHelper(
+ Value *V, const BasicBlock *PHIBlock,
+ SmallPtrSetImpl<const Value *> &Visited,
+ SmallVectorImpl<Instruction *> &Worklist) {
+
+ if (!isa<Instruction>(V))
+ return true;
+ auto OISIt = OpSafeForPHIOfOps.find(V);
+ if (OISIt != OpSafeForPHIOfOps.end())
+ return OISIt->second;
+
+ // Keep walking until we either dominate the phi block, or hit a phi, or run
+ // out of things to check.
+ if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
+ OpSafeForPHIOfOps.insert({V, true});
+ return true;
+ }
+ // PHI in the same block.
+ if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
+ OpSafeForPHIOfOps.insert({V, false});
+ return false;
+ }
+
+ auto *OrigI = cast<Instruction>(V);
+ for (auto *Op : OrigI->operand_values()) {
+ if (!isa<Instruction>(Op))
+ continue;
+ // Stop now if we find an unsafe operand.
+ auto OISIt = OpSafeForPHIOfOps.find(OrigI);
+ if (OISIt != OpSafeForPHIOfOps.end()) {
+ if (!OISIt->second) {
+ OpSafeForPHIOfOps.insert({V, false});
+ return false;
+ }
+ continue;
+ }
+ if (!Visited.insert(Op).second)
+ continue;
+ Worklist.push_back(cast<Instruction>(Op));
+ }
+ return true;
+}
+
+// Return true if this operand will be safe to use for phi of ops.
+//
+// The reason some operands are unsafe is that we are not trying to recursively
+// translate everything back through phi nodes. We actually expect some lookups
+// of expressions to fail. In particular, a lookup where the expression cannot
+// exist in the predecessor. This is true even if the expression, as shown, can
+// be determined to be constant.
+bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
+ SmallPtrSetImpl<const Value *> &Visited) {
+ SmallVector<Instruction *, 4> Worklist;
+ if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
+ return false;
+ while (!Worklist.empty()) {
+ auto *I = Worklist.pop_back_val();
+ if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
+ return false;
+ }
+ OpSafeForPHIOfOps.insert({V, true});
+ return true;
+}
+
+// Try to find a leader for instruction TransInst, which is a phi translated
+// version of something in our original program. Visited is used to ensure we
+// don't infinite loop during translations of cycles. OrigInst is the
+// instruction in the original program, and PredBB is the predecessor we
+// translated it through.
+Value *NewGVN::findLeaderForInst(Instruction *TransInst,
+ SmallPtrSetImpl<Value *> &Visited,
+ MemoryAccess *MemAccess, Instruction *OrigInst,
+ BasicBlock *PredBB) {
+ unsigned IDFSNum = InstrToDFSNum(OrigInst);
+ // Make sure it's marked as a temporary instruction.
+ AllTempInstructions.insert(TransInst);
+ // and make sure anything that tries to add it's DFS number is
+ // redirected to the instruction we are making a phi of ops
+ // for.
+ TempToBlock.insert({TransInst, PredBB});
+ InstrDFS.insert({TransInst, IDFSNum});
+
+ const Expression *E = performSymbolicEvaluation(TransInst, Visited);
+ InstrDFS.erase(TransInst);
+ AllTempInstructions.erase(TransInst);
+ TempToBlock.erase(TransInst);
+ if (MemAccess)
+ TempToMemory.erase(TransInst);
+ if (!E)
+ return nullptr;
+ auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
+ if (!FoundVal) {
+ ExpressionToPhiOfOps[E].insert(OrigInst);
+ LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
+ << " in block " << getBlockName(PredBB) << "\n");
+ return nullptr;
+ }
+ if (auto *SI = dyn_cast<StoreInst>(FoundVal))
+ FoundVal = SI->getValueOperand();
+ return FoundVal;
+}
+
+// When we see an instruction that is an op of phis, generate the equivalent phi
+// of ops form.
+const Expression *
+NewGVN::makePossiblePHIOfOps(Instruction *I,
+ SmallPtrSetImpl<Value *> &Visited) {
+ if (!okayForPHIOfOps(I))
+ return nullptr;
+
+ if (!Visited.insert(I).second)
+ return nullptr;
+ // For now, we require the instruction be cycle free because we don't
+ // *always* create a phi of ops for instructions that could be done as phi
+ // of ops, we only do it if we think it is useful. If we did do it all the
+ // time, we could remove the cycle free check.
+ if (!isCycleFree(I))
+ return nullptr;
+
+ SmallPtrSet<const Value *, 8> ProcessedPHIs;
+ // TODO: We don't do phi translation on memory accesses because it's
+ // complicated. For a load, we'd need to be able to simulate a new memoryuse,
+ // which we don't have a good way of doing ATM.
+ auto *MemAccess = getMemoryAccess(I);
+ // If the memory operation is defined by a memory operation this block that
+ // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
+ // can't help, as it would still be killed by that memory operation.
+ if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
+ MemAccess->getDefiningAccess()->getBlock() == I->getParent())
+ return nullptr;
+
+ // Convert op of phis to phi of ops
+ SmallPtrSet<const Value *, 10> VisitedOps;
+ SmallVector<Value *, 4> Ops(I->operand_values());
+ BasicBlock *SamePHIBlock = nullptr;
+ PHINode *OpPHI = nullptr;
+ if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
+ return nullptr;
+ for (auto *Op : Ops) {
+ if (!isa<PHINode>(Op)) {
+ auto *ValuePHI = RealToTemp.lookup(Op);
+ if (!ValuePHI)
+ continue;
+ LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
+ Op = ValuePHI;
+ }
+ OpPHI = cast<PHINode>(Op);
+ if (!SamePHIBlock) {
+ SamePHIBlock = getBlockForValue(OpPHI);
+ } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
+ LLVM_DEBUG(
+ dbgs()
+ << "PHIs for operands are not all in the same block, aborting\n");
+ return nullptr;
+ }
+ // No point in doing this for one-operand phis.
+ if (OpPHI->getNumOperands() == 1) {
+ OpPHI = nullptr;
+ continue;
+ }
+ }
+
+ if (!OpPHI)
+ return nullptr;
+
+ SmallVector<ValPair, 4> PHIOps;
+ SmallPtrSet<Value *, 4> Deps;
+ auto *PHIBlock = getBlockForValue(OpPHI);
+ RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
+ for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
+ auto *PredBB = OpPHI->getIncomingBlock(PredNum);
+ Value *FoundVal = nullptr;
+ SmallPtrSet<Value *, 4> CurrentDeps;
+ // We could just skip unreachable edges entirely but it's tricky to do
+ // with rewriting existing phi nodes.
+ if (ReachableEdges.count({PredBB, PHIBlock})) {
+ // Clone the instruction, create an expression from it that is
+ // translated back into the predecessor, and see if we have a leader.
+ Instruction *ValueOp = I->clone();
+ if (MemAccess)
+ TempToMemory.insert({ValueOp, MemAccess});
+ bool SafeForPHIOfOps = true;
+ VisitedOps.clear();
+ for (auto &Op : ValueOp->operands()) {
+ auto *OrigOp = &*Op;
+ // When these operand changes, it could change whether there is a
+ // leader for us or not, so we have to add additional users.
+ if (isa<PHINode>(Op)) {
+ Op = Op->DoPHITranslation(PHIBlock, PredBB);
+ if (Op != OrigOp && Op != I)
+ CurrentDeps.insert(Op);
+ } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
+ if (getBlockForValue(ValuePHI) == PHIBlock)
+ Op = ValuePHI->getIncomingValueForBlock(PredBB);
+ }
+ // If we phi-translated the op, it must be safe.
+ SafeForPHIOfOps =
+ SafeForPHIOfOps &&
+ (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
+ }
+ // FIXME: For those things that are not safe we could generate
+ // expressions all the way down, and see if this comes out to a
+ // constant. For anything where that is true, and unsafe, we should
+ // have made a phi-of-ops (or value numbered it equivalent to something)
+ // for the pieces already.
+ FoundVal = !SafeForPHIOfOps ? nullptr
+ : findLeaderForInst(ValueOp, Visited,
+ MemAccess, I, PredBB);
+ ValueOp->deleteValue();
+ if (!FoundVal) {
+ // We failed to find a leader for the current ValueOp, but this might
+ // change in case of the translated operands change.
+ if (SafeForPHIOfOps)
+ for (auto Dep : CurrentDeps)
+ addAdditionalUsers(Dep, I);
+
+ return nullptr;
+ }
+ Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
+ } else {
+ LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
+ << getBlockName(PredBB)
+ << " because the block is unreachable\n");
+ FoundVal = UndefValue::get(I->getType());
+ RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
+ }
+
+ PHIOps.push_back({FoundVal, PredBB});
+ LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
+ << getBlockName(PredBB) << "\n");
+ }
+ for (auto Dep : Deps)
+ addAdditionalUsers(Dep, I);
+ sortPHIOps(PHIOps);
+ auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
+ if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Not creating real PHI of ops because it simplified to existing "
+ "value or constant\n");
+ return E;
+ }
+ auto *ValuePHI = RealToTemp.lookup(I);
+ bool NewPHI = false;
+ if (!ValuePHI) {
+ ValuePHI =
+ PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
+ addPhiOfOps(ValuePHI, PHIBlock, I);
+ NewPHI = true;
+ NumGVNPHIOfOpsCreated++;
+ }
+ if (NewPHI) {
+ for (auto PHIOp : PHIOps)
+ ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
+ } else {
+ TempToBlock[ValuePHI] = PHIBlock;
+ unsigned int i = 0;
+ for (auto PHIOp : PHIOps) {
+ ValuePHI->setIncomingValue(i, PHIOp.first);
+ ValuePHI->setIncomingBlock(i, PHIOp.second);
+ ++i;
+ }
+ }
+ RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
+ LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
+ << "\n");
+
+ return E;
+}
+
+// The algorithm initially places the values of the routine in the TOP
+// congruence class. The leader of TOP is the undetermined value `undef`.
+// When the algorithm has finished, values still in TOP are unreachable.
+void NewGVN::initializeCongruenceClasses(Function &F) {
+ NextCongruenceNum = 0;
+
+ // Note that even though we use the live on entry def as a representative
+ // MemoryAccess, it is *not* the same as the actual live on entry def. We
+ // have no real equivalemnt to undef for MemoryAccesses, and so we really
+ // should be checking whether the MemoryAccess is top if we want to know if it
+ // is equivalent to everything. Otherwise, what this really signifies is that
+ // the access "it reaches all the way back to the beginning of the function"
+
+ // Initialize all other instructions to be in TOP class.
+ TOPClass = createCongruenceClass(nullptr, nullptr);
+ TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
+ // The live on entry def gets put into it's own class
+ MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
+ createMemoryClass(MSSA->getLiveOnEntryDef());
+
+ for (auto DTN : nodes(DT)) {
+ BasicBlock *BB = DTN->getBlock();
+ // All MemoryAccesses are equivalent to live on entry to start. They must
+ // be initialized to something so that initial changes are noticed. For
+ // the maximal answer, we initialize them all to be the same as
+ // liveOnEntry.
+ auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
+ if (MemoryBlockDefs)
+ for (const auto &Def : *MemoryBlockDefs) {
+ MemoryAccessToClass[&Def] = TOPClass;
+ auto *MD = dyn_cast<MemoryDef>(&Def);
+ // Insert the memory phis into the member list.
+ if (!MD) {
+ const MemoryPhi *MP = cast<MemoryPhi>(&Def);
+ TOPClass->memory_insert(MP);
+ MemoryPhiState.insert({MP, MPS_TOP});
+ }
+
+ if (MD && isa<StoreInst>(MD->getMemoryInst()))
+ TOPClass->incStoreCount();
+ }
+
+ // FIXME: This is trying to discover which instructions are uses of phi
+ // nodes. We should move this into one of the myriad of places that walk
+ // all the operands already.
+ for (auto &I : *BB) {
+ if (isa<PHINode>(&I))
+ for (auto *U : I.users())
+ if (auto *UInst = dyn_cast<Instruction>(U))
+ if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
+ PHINodeUses.insert(UInst);
+ // Don't insert void terminators into the class. We don't value number
+ // them, and they just end up sitting in TOP.
+ if (I.isTerminator() && I.getType()->isVoidTy())
+ continue;
+ TOPClass->insert(&I);
+ ValueToClass[&I] = TOPClass;
+ }
+ }
+
+ // Initialize arguments to be in their own unique congruence classes
+ for (auto &FA : F.args())
+ createSingletonCongruenceClass(&FA);
+}
+
+void NewGVN::cleanupTables() {
+ for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
+ LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
+ << " has " << CongruenceClasses[i]->size()
+ << " members\n");
+ // Make sure we delete the congruence class (probably worth switching to
+ // a unique_ptr at some point.
+ delete CongruenceClasses[i];
+ CongruenceClasses[i] = nullptr;
+ }
+
+ // Destroy the value expressions
+ SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
+ AllTempInstructions.end());
+ AllTempInstructions.clear();
+
+ // We have to drop all references for everything first, so there are no uses
+ // left as we delete them.
+ for (auto *I : TempInst) {
+ I->dropAllReferences();
+ }
+
+ while (!TempInst.empty()) {
+ auto *I = TempInst.back();
+ TempInst.pop_back();
+ I->deleteValue();
+ }
+
+ ValueToClass.clear();
+ ArgRecycler.clear(ExpressionAllocator);
+ ExpressionAllocator.Reset();
+ CongruenceClasses.clear();
+ ExpressionToClass.clear();
+ ValueToExpression.clear();
+ RealToTemp.clear();
+ AdditionalUsers.clear();
+ ExpressionToPhiOfOps.clear();
+ TempToBlock.clear();
+ TempToMemory.clear();
+ PHINodeUses.clear();
+ OpSafeForPHIOfOps.clear();
+ ReachableBlocks.clear();
+ ReachableEdges.clear();
+#ifndef NDEBUG
+ ProcessedCount.clear();
+#endif
+ InstrDFS.clear();
+ InstructionsToErase.clear();
+ DFSToInstr.clear();
+ BlockInstRange.clear();
+ TouchedInstructions.clear();
+ MemoryAccessToClass.clear();
+ PredicateToUsers.clear();
+ MemoryToUsers.clear();
+ RevisitOnReachabilityChange.clear();
+}
+
+// Assign local DFS number mapping to instructions, and leave space for Value
+// PHI's.
+std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
+ unsigned Start) {
+ unsigned End = Start;
+ if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
+ InstrDFS[MemPhi] = End++;
+ DFSToInstr.emplace_back(MemPhi);
+ }
+
+ // Then the real block goes next.
+ for (auto &I : *B) {
+ // There's no need to call isInstructionTriviallyDead more than once on
+ // an instruction. Therefore, once we know that an instruction is dead
+ // we change its DFS number so that it doesn't get value numbered.
+ if (isInstructionTriviallyDead(&I, TLI)) {
+ InstrDFS[&I] = 0;
+ LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
+ markInstructionForDeletion(&I);
+ continue;
+ }
+ if (isa<PHINode>(&I))
+ RevisitOnReachabilityChange[B].set(End);
+ InstrDFS[&I] = End++;
+ DFSToInstr.emplace_back(&I);
+ }
+
+ // All of the range functions taken half-open ranges (open on the end side).
+ // So we do not subtract one from count, because at this point it is one
+ // greater than the last instruction.
+ return std::make_pair(Start, End);
+}
+
+void NewGVN::updateProcessedCount(const Value *V) {
+#ifndef NDEBUG
+ if (ProcessedCount.count(V) == 0) {
+ ProcessedCount.insert({V, 1});
+ } else {
+ ++ProcessedCount[V];
+ assert(ProcessedCount[V] < 100 &&
+ "Seem to have processed the same Value a lot");
+ }
+#endif
+}
+
+// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
+void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
+ // If all the arguments are the same, the MemoryPhi has the same value as the
+ // argument. Filter out unreachable blocks and self phis from our operands.
+ // TODO: We could do cycle-checking on the memory phis to allow valueizing for
+ // self-phi checking.
+ const BasicBlock *PHIBlock = MP->getBlock();
+ auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
+ return cast<MemoryAccess>(U) != MP &&
+ !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
+ ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
+ });
+ // If all that is left is nothing, our memoryphi is undef. We keep it as
+ // InitialClass. Note: The only case this should happen is if we have at
+ // least one self-argument.
+ if (Filtered.begin() == Filtered.end()) {
+ if (setMemoryClass(MP, TOPClass))
+ markMemoryUsersTouched(MP);
+ return;
+ }
+
+ // Transform the remaining operands into operand leaders.
+ // FIXME: mapped_iterator should have a range version.
+ auto LookupFunc = [&](const Use &U) {
+ return lookupMemoryLeader(cast<MemoryAccess>(U));
+ };
+ auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
+ auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
+
+ // and now check if all the elements are equal.
+ // Sadly, we can't use std::equals since these are random access iterators.
+ const auto *AllSameValue = *MappedBegin;
+ ++MappedBegin;
+ bool AllEqual = std::all_of(
+ MappedBegin, MappedEnd,
+ [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
+
+ if (AllEqual)
+ LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
+ << "\n");
+ else
+ LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
+ // If it's equal to something, it's in that class. Otherwise, it has to be in
+ // a class where it is the leader (other things may be equivalent to it, but
+ // it needs to start off in its own class, which means it must have been the
+ // leader, and it can't have stopped being the leader because it was never
+ // removed).
+ CongruenceClass *CC =
+ AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
+ auto OldState = MemoryPhiState.lookup(MP);
+ assert(OldState != MPS_Invalid && "Invalid memory phi state");
+ auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
+ MemoryPhiState[MP] = NewState;
+ if (setMemoryClass(MP, CC) || OldState != NewState)
+ markMemoryUsersTouched(MP);
+}
+
+// Value number a single instruction, symbolically evaluating, performing
+// congruence finding, and updating mappings.
+void NewGVN::valueNumberInstruction(Instruction *I) {
+ LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
+ if (!I->isTerminator()) {
+ const Expression *Symbolized = nullptr;
+ SmallPtrSet<Value *, 2> Visited;
+ if (DebugCounter::shouldExecute(VNCounter)) {
+ Symbolized = performSymbolicEvaluation(I, Visited);
+ // Make a phi of ops if necessary
+ if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
+ !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
+ auto *PHIE = makePossiblePHIOfOps(I, Visited);
+ // If we created a phi of ops, use it.
+ // If we couldn't create one, make sure we don't leave one lying around
+ if (PHIE) {
+ Symbolized = PHIE;
+ } else if (auto *Op = RealToTemp.lookup(I)) {
+ removePhiOfOps(I, Op);
+ }
+ }
+ } else {
+ // Mark the instruction as unused so we don't value number it again.
+ InstrDFS[I] = 0;
+ }
+ // If we couldn't come up with a symbolic expression, use the unknown
+ // expression
+ if (Symbolized == nullptr)
+ Symbolized = createUnknownExpression(I);
+ performCongruenceFinding(I, Symbolized);
+ } else {
+ // Handle terminators that return values. All of them produce values we
+ // don't currently understand. We don't place non-value producing
+ // terminators in a class.
+ if (!I->getType()->isVoidTy()) {
+ auto *Symbolized = createUnknownExpression(I);
+ performCongruenceFinding(I, Symbolized);
+ }
+ processOutgoingEdges(I, I->getParent());
+ }
+}
+
+// Check if there is a path, using single or equal argument phi nodes, from
+// First to Second.
+bool NewGVN::singleReachablePHIPath(
+ SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
+ const MemoryAccess *Second) const {
+ if (First == Second)
+ return true;
+ if (MSSA->isLiveOnEntryDef(First))
+ return false;
+
+ // This is not perfect, but as we're just verifying here, we can live with
+ // the loss of precision. The real solution would be that of doing strongly
+ // connected component finding in this routine, and it's probably not worth
+ // the complexity for the time being. So, we just keep a set of visited
+ // MemoryAccess and return true when we hit a cycle.
+ if (Visited.count(First))
+ return true;
+ Visited.insert(First);
+
+ const auto *EndDef = First;
+ for (auto *ChainDef : optimized_def_chain(First)) {
+ if (ChainDef == Second)
+ return true;
+ if (MSSA->isLiveOnEntryDef(ChainDef))
+ return false;
+ EndDef = ChainDef;
+ }
+ auto *MP = cast<MemoryPhi>(EndDef);
+ auto ReachableOperandPred = [&](const Use &U) {
+ return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
+ };
+ auto FilteredPhiArgs =
+ make_filter_range(MP->operands(), ReachableOperandPred);
+ SmallVector<const Value *, 32> OperandList;
+ llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
+ bool Okay = is_splat(OperandList);
+ if (Okay)
+ return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
+ Second);
+ return false;
+}
+
+// Verify the that the memory equivalence table makes sense relative to the
+// congruence classes. Note that this checking is not perfect, and is currently
+// subject to very rare false negatives. It is only useful for
+// testing/debugging.
+void NewGVN::verifyMemoryCongruency() const {
+#ifndef NDEBUG
+ // Verify that the memory table equivalence and memory member set match
+ for (const auto *CC : CongruenceClasses) {
+ if (CC == TOPClass || CC->isDead())
+ continue;
+ if (CC->getStoreCount() != 0) {
+ assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
+ "Any class with a store as a leader should have a "
+ "representative stored value");
+ assert(CC->getMemoryLeader() &&
+ "Any congruence class with a store should have a "
+ "representative access");
+ }
+
+ if (CC->getMemoryLeader())
+ assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
+ "Representative MemoryAccess does not appear to be reverse "
+ "mapped properly");
+ for (auto M : CC->memory())
+ assert(MemoryAccessToClass.lookup(M) == CC &&
+ "Memory member does not appear to be reverse mapped properly");
+ }
+
+ // Anything equivalent in the MemoryAccess table should be in the same
+ // congruence class.
+
+ // Filter out the unreachable and trivially dead entries, because they may
+ // never have been updated if the instructions were not processed.
+ auto ReachableAccessPred =
+ [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
+ bool Result = ReachableBlocks.count(Pair.first->getBlock());
+ if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
+ MemoryToDFSNum(Pair.first) == 0)
+ return false;
+ if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
+ return !isInstructionTriviallyDead(MemDef->getMemoryInst());
+
+ // We could have phi nodes which operands are all trivially dead,
+ // so we don't process them.
+ if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
+ for (auto &U : MemPHI->incoming_values()) {
+ if (auto *I = dyn_cast<Instruction>(&*U)) {
+ if (!isInstructionTriviallyDead(I))
+ return true;
+ }
+ }
+ return false;
+ }
+
+ return true;
+ };
+
+ auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
+ for (auto KV : Filtered) {
+ if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
+ auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
+ if (FirstMUD && SecondMUD) {
+ SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
+ assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
+ ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
+ ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
+ "The instructions for these memory operations should have "
+ "been in the same congruence class or reachable through"
+ "a single argument phi");
+ }
+ } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
+ // We can only sanely verify that MemoryDefs in the operand list all have
+ // the same class.
+ auto ReachableOperandPred = [&](const Use &U) {
+ return ReachableEdges.count(
+ {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
+ isa<MemoryDef>(U);
+
+ };
+ // All arguments should in the same class, ignoring unreachable arguments
+ auto FilteredPhiArgs =
+ make_filter_range(FirstMP->operands(), ReachableOperandPred);
+ SmallVector<const CongruenceClass *, 16> PhiOpClasses;
+ std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
+ std::back_inserter(PhiOpClasses), [&](const Use &U) {
+ const MemoryDef *MD = cast<MemoryDef>(U);
+ return ValueToClass.lookup(MD->getMemoryInst());
+ });
+ assert(is_splat(PhiOpClasses) &&
+ "All MemoryPhi arguments should be in the same class");
+ }
+ }
+#endif
+}
+
+// Verify that the sparse propagation we did actually found the maximal fixpoint
+// We do this by storing the value to class mapping, touching all instructions,
+// and redoing the iteration to see if anything changed.
+void NewGVN::verifyIterationSettled(Function &F) {
+#ifndef NDEBUG
+ LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
+ if (DebugCounter::isCounterSet(VNCounter))
+ DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
+
+ // Note that we have to store the actual classes, as we may change existing
+ // classes during iteration. This is because our memory iteration propagation
+ // is not perfect, and so may waste a little work. But it should generate
+ // exactly the same congruence classes we have now, with different IDs.
+ std::map<const Value *, CongruenceClass> BeforeIteration;
+
+ for (auto &KV : ValueToClass) {
+ if (auto *I = dyn_cast<Instruction>(KV.first))
+ // Skip unused/dead instructions.
+ if (InstrToDFSNum(I) == 0)
+ continue;
+ BeforeIteration.insert({KV.first, *KV.second});
+ }
+
+ TouchedInstructions.set();
+ TouchedInstructions.reset(0);
+ iterateTouchedInstructions();
+ DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
+ EqualClasses;
+ for (const auto &KV : ValueToClass) {
+ if (auto *I = dyn_cast<Instruction>(KV.first))
+ // Skip unused/dead instructions.
+ if (InstrToDFSNum(I) == 0)
+ continue;
+ // We could sink these uses, but i think this adds a bit of clarity here as
+ // to what we are comparing.
+ auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
+ auto *AfterCC = KV.second;
+ // Note that the classes can't change at this point, so we memoize the set
+ // that are equal.
+ if (!EqualClasses.count({BeforeCC, AfterCC})) {
+ assert(BeforeCC->isEquivalentTo(AfterCC) &&
+ "Value number changed after main loop completed!");
+ EqualClasses.insert({BeforeCC, AfterCC});
+ }
+ }
+#endif
+}
+
+// Verify that for each store expression in the expression to class mapping,
+// only the latest appears, and multiple ones do not appear.
+// Because loads do not use the stored value when doing equality with stores,
+// if we don't erase the old store expressions from the table, a load can find
+// a no-longer valid StoreExpression.
+void NewGVN::verifyStoreExpressions() const {
+#ifndef NDEBUG
+ // This is the only use of this, and it's not worth defining a complicated
+ // densemapinfo hash/equality function for it.
+ std::set<
+ std::pair<const Value *,
+ std::tuple<const Value *, const CongruenceClass *, Value *>>>
+ StoreExpressionSet;
+ for (const auto &KV : ExpressionToClass) {
+ if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
+ // Make sure a version that will conflict with loads is not already there
+ auto Res = StoreExpressionSet.insert(
+ {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
+ SE->getStoredValue())});
+ bool Okay = Res.second;
+ // It's okay to have the same expression already in there if it is
+ // identical in nature.
+ // This can happen when the leader of the stored value changes over time.
+ if (!Okay)
+ Okay = (std::get<1>(Res.first->second) == KV.second) &&
+ (lookupOperandLeader(std::get<2>(Res.first->second)) ==
+ lookupOperandLeader(SE->getStoredValue()));
+ assert(Okay && "Stored expression conflict exists in expression table");
+ auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
+ assert(ValueExpr && ValueExpr->equals(*SE) &&
+ "StoreExpression in ExpressionToClass is not latest "
+ "StoreExpression for value");
+ }
+ }
+#endif
+}
+
+// This is the main value numbering loop, it iterates over the initial touched
+// instruction set, propagating value numbers, marking things touched, etc,
+// until the set of touched instructions is completely empty.
+void NewGVN::iterateTouchedInstructions() {
+ unsigned int Iterations = 0;
+ // Figure out where touchedinstructions starts
+ int FirstInstr = TouchedInstructions.find_first();
+ // Nothing set, nothing to iterate, just return.
+ if (FirstInstr == -1)
+ return;
+ const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
+ while (TouchedInstructions.any()) {
+ ++Iterations;
+ // Walk through all the instructions in all the blocks in RPO.
+ // TODO: As we hit a new block, we should push and pop equalities into a
+ // table lookupOperandLeader can use, to catch things PredicateInfo
+ // might miss, like edge-only equivalences.
+ for (unsigned InstrNum : TouchedInstructions.set_bits()) {
+
+ // This instruction was found to be dead. We don't bother looking
+ // at it again.
+ if (InstrNum == 0) {
+ TouchedInstructions.reset(InstrNum);
+ continue;
+ }
+
+ Value *V = InstrFromDFSNum(InstrNum);
+ const BasicBlock *CurrBlock = getBlockForValue(V);
+
+ // If we hit a new block, do reachability processing.
+ if (CurrBlock != LastBlock) {
+ LastBlock = CurrBlock;
+ bool BlockReachable = ReachableBlocks.count(CurrBlock);
+ const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
+
+ // If it's not reachable, erase any touched instructions and move on.
+ if (!BlockReachable) {
+ TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
+ LLVM_DEBUG(dbgs() << "Skipping instructions in block "
+ << getBlockName(CurrBlock)
+ << " because it is unreachable\n");
+ continue;
+ }
+ updateProcessedCount(CurrBlock);
+ }
+ // Reset after processing (because we may mark ourselves as touched when
+ // we propagate equalities).
+ TouchedInstructions.reset(InstrNum);
+
+ if (auto *MP = dyn_cast<MemoryPhi>(V)) {
+ LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
+ valueNumberMemoryPhi(MP);
+ } else if (auto *I = dyn_cast<Instruction>(V)) {
+ valueNumberInstruction(I);
+ } else {
+ llvm_unreachable("Should have been a MemoryPhi or Instruction");
+ }
+ updateProcessedCount(V);
+ }
+ }
+ NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
+}
+
+// This is the main transformation entry point.
+bool NewGVN::runGVN() {
+ if (DebugCounter::isCounterSet(VNCounter))
+ StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
+ bool Changed = false;
+ NumFuncArgs = F.arg_size();
+ MSSAWalker = MSSA->getWalker();
+ SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
+
+ // Count number of instructions for sizing of hash tables, and come
+ // up with a global dfs numbering for instructions.
+ unsigned ICount = 1;
+ // Add an empty instruction to account for the fact that we start at 1
+ DFSToInstr.emplace_back(nullptr);
+ // Note: We want ideal RPO traversal of the blocks, which is not quite the
+ // same as dominator tree order, particularly with regard whether backedges
+ // get visited first or second, given a block with multiple successors.
+ // If we visit in the wrong order, we will end up performing N times as many
+ // iterations.
+ // The dominator tree does guarantee that, for a given dom tree node, it's
+ // parent must occur before it in the RPO ordering. Thus, we only need to sort
+ // the siblings.
+ ReversePostOrderTraversal<Function *> RPOT(&F);
+ unsigned Counter = 0;
+ for (auto &B : RPOT) {
+ auto *Node = DT->getNode(B);
+ assert(Node && "RPO and Dominator tree should have same reachability");
+ RPOOrdering[Node] = ++Counter;
+ }
+ // Sort dominator tree children arrays into RPO.
+ for (auto &B : RPOT) {
+ auto *Node = DT->getNode(B);
+ if (Node->getChildren().size() > 1)
+ llvm::sort(Node->begin(), Node->end(),
+ [&](const DomTreeNode *A, const DomTreeNode *B) {
+ return RPOOrdering[A] < RPOOrdering[B];
+ });
+ }
+
+ // Now a standard depth first ordering of the domtree is equivalent to RPO.
+ for (auto DTN : depth_first(DT->getRootNode())) {
+ BasicBlock *B = DTN->getBlock();
+ const auto &BlockRange = assignDFSNumbers(B, ICount);
+ BlockInstRange.insert({B, BlockRange});
+ ICount += BlockRange.second - BlockRange.first;
+ }
+ initializeCongruenceClasses(F);
+
+ TouchedInstructions.resize(ICount);
+ // Ensure we don't end up resizing the expressionToClass map, as
+ // that can be quite expensive. At most, we have one expression per
+ // instruction.
+ ExpressionToClass.reserve(ICount);
+
+ // Initialize the touched instructions to include the entry block.
+ const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
+ TouchedInstructions.set(InstRange.first, InstRange.second);
+ LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
+ << " marked reachable\n");
+ ReachableBlocks.insert(&F.getEntryBlock());
+
+ iterateTouchedInstructions();
+ verifyMemoryCongruency();
+ verifyIterationSettled(F);
+ verifyStoreExpressions();
+
+ Changed |= eliminateInstructions(F);
+
+ // Delete all instructions marked for deletion.
+ for (Instruction *ToErase : InstructionsToErase) {
+ if (!ToErase->use_empty())
+ ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
+
+ assert(ToErase->getParent() &&
+ "BB containing ToErase deleted unexpectedly!");
+ ToErase->eraseFromParent();
+ }
+ Changed |= !InstructionsToErase.empty();
+
+ // Delete all unreachable blocks.
+ auto UnreachableBlockPred = [&](const BasicBlock &BB) {
+ return !ReachableBlocks.count(&BB);
+ };
+
+ for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
+ LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
+ << " is unreachable\n");
+ deleteInstructionsInBlock(&BB);
+ Changed = true;
+ }
+
+ cleanupTables();
+ return Changed;
+}
+
+struct NewGVN::ValueDFS {
+ int DFSIn = 0;
+ int DFSOut = 0;
+ int LocalNum = 0;
+
+ // Only one of Def and U will be set.
+ // The bool in the Def tells us whether the Def is the stored value of a
+ // store.
+ PointerIntPair<Value *, 1, bool> Def;
+ Use *U = nullptr;
+
+ bool operator<(const ValueDFS &Other) const {
+ // It's not enough that any given field be less than - we have sets
+ // of fields that need to be evaluated together to give a proper ordering.
+ // For example, if you have;
+ // DFS (1, 3)
+ // Val 0
+ // DFS (1, 2)
+ // Val 50
+ // We want the second to be less than the first, but if we just go field
+ // by field, we will get to Val 0 < Val 50 and say the first is less than
+ // the second. We only want it to be less than if the DFS orders are equal.
+ //
+ // Each LLVM instruction only produces one value, and thus the lowest-level
+ // differentiator that really matters for the stack (and what we use as as a
+ // replacement) is the local dfs number.
+ // Everything else in the structure is instruction level, and only affects
+ // the order in which we will replace operands of a given instruction.
+ //
+ // For a given instruction (IE things with equal dfsin, dfsout, localnum),
+ // the order of replacement of uses does not matter.
+ // IE given,
+ // a = 5
+ // b = a + a
+ // When you hit b, you will have two valuedfs with the same dfsin, out, and
+ // localnum.
+ // The .val will be the same as well.
+ // The .u's will be different.
+ // You will replace both, and it does not matter what order you replace them
+ // in (IE whether you replace operand 2, then operand 1, or operand 1, then
+ // operand 2).
+ // Similarly for the case of same dfsin, dfsout, localnum, but different
+ // .val's
+ // a = 5
+ // b = 6
+ // c = a + b
+ // in c, we will a valuedfs for a, and one for b,with everything the same
+ // but .val and .u.
+ // It does not matter what order we replace these operands in.
+ // You will always end up with the same IR, and this is guaranteed.
+ return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
+ std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
+ Other.U);
+ }
+};
+
+// This function converts the set of members for a congruence class from values,
+// to sets of defs and uses with associated DFS info. The total number of
+// reachable uses for each value is stored in UseCount, and instructions that
+// seem
+// dead (have no non-dead uses) are stored in ProbablyDead.
+void NewGVN::convertClassToDFSOrdered(
+ const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
+ DenseMap<const Value *, unsigned int> &UseCounts,
+ SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
+ for (auto D : Dense) {
+ // First add the value.
+ BasicBlock *BB = getBlockForValue(D);
+ // Constants are handled prior to ever calling this function, so
+ // we should only be left with instructions as members.
+ assert(BB && "Should have figured out a basic block for value");
+ ValueDFS VDDef;
+ DomTreeNode *DomNode = DT->getNode(BB);
+ VDDef.DFSIn = DomNode->getDFSNumIn();
+ VDDef.DFSOut = DomNode->getDFSNumOut();
+ // If it's a store, use the leader of the value operand, if it's always
+ // available, or the value operand. TODO: We could do dominance checks to
+ // find a dominating leader, but not worth it ATM.
+ if (auto *SI = dyn_cast<StoreInst>(D)) {
+ auto Leader = lookupOperandLeader(SI->getValueOperand());
+ if (alwaysAvailable(Leader)) {
+ VDDef.Def.setPointer(Leader);
+ } else {
+ VDDef.Def.setPointer(SI->getValueOperand());
+ VDDef.Def.setInt(true);
+ }
+ } else {
+ VDDef.Def.setPointer(D);
+ }
+ assert(isa<Instruction>(D) &&
+ "The dense set member should always be an instruction");
+ Instruction *Def = cast<Instruction>(D);
+ VDDef.LocalNum = InstrToDFSNum(D);
+ DFSOrderedSet.push_back(VDDef);
+ // If there is a phi node equivalent, add it
+ if (auto *PN = RealToTemp.lookup(Def)) {
+ auto *PHIE =
+ dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
+ if (PHIE) {
+ VDDef.Def.setInt(false);
+ VDDef.Def.setPointer(PN);
+ VDDef.LocalNum = 0;
+ DFSOrderedSet.push_back(VDDef);
+ }
+ }
+
+ unsigned int UseCount = 0;
+ // Now add the uses.
+ for (auto &U : Def->uses()) {
+ if (auto *I = dyn_cast<Instruction>(U.getUser())) {
+ // Don't try to replace into dead uses
+ if (InstructionsToErase.count(I))
+ continue;
+ ValueDFS VDUse;
+ // Put the phi node uses in the incoming block.
+ BasicBlock *IBlock;
+ if (auto *P = dyn_cast<PHINode>(I)) {
+ IBlock = P->getIncomingBlock(U);
+ // Make phi node users appear last in the incoming block
+ // they are from.
+ VDUse.LocalNum = InstrDFS.size() + 1;
+ } else {
+ IBlock = getBlockForValue(I);
+ VDUse.LocalNum = InstrToDFSNum(I);
+ }
+
+ // Skip uses in unreachable blocks, as we're going
+ // to delete them.
+ if (ReachableBlocks.count(IBlock) == 0)
+ continue;
+
+ DomTreeNode *DomNode = DT->getNode(IBlock);
+ VDUse.DFSIn = DomNode->getDFSNumIn();
+ VDUse.DFSOut = DomNode->getDFSNumOut();
+ VDUse.U = &U;
+ ++UseCount;
+ DFSOrderedSet.emplace_back(VDUse);
+ }
+ }
+
+ // If there are no uses, it's probably dead (but it may have side-effects,
+ // so not definitely dead. Otherwise, store the number of uses so we can
+ // track if it becomes dead later).
+ if (UseCount == 0)
+ ProbablyDead.insert(Def);
+ else
+ UseCounts[Def] = UseCount;
+ }
+}
+
+// This function converts the set of members for a congruence class from values,
+// to the set of defs for loads and stores, with associated DFS info.
+void NewGVN::convertClassToLoadsAndStores(
+ const CongruenceClass &Dense,
+ SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
+ for (auto D : Dense) {
+ if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
+ continue;
+
+ BasicBlock *BB = getBlockForValue(D);
+ ValueDFS VD;
+ DomTreeNode *DomNode = DT->getNode(BB);
+ VD.DFSIn = DomNode->getDFSNumIn();
+ VD.DFSOut = DomNode->getDFSNumOut();
+ VD.Def.setPointer(D);
+
+ // If it's an instruction, use the real local dfs number.
+ if (auto *I = dyn_cast<Instruction>(D))
+ VD.LocalNum = InstrToDFSNum(I);
+ else
+ llvm_unreachable("Should have been an instruction");
+
+ LoadsAndStores.emplace_back(VD);
+ }
+}
+
+static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
+ patchReplacementInstruction(I, Repl);
+ I->replaceAllUsesWith(Repl);
+}
+
+void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
+ LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
+ ++NumGVNBlocksDeleted;
+
+ // Delete the instructions backwards, as it has a reduced likelihood of having
+ // to update as many def-use and use-def chains. Start after the terminator.
+ auto StartPoint = BB->rbegin();
+ ++StartPoint;
+ // Note that we explicitly recalculate BB->rend() on each iteration,
+ // as it may change when we remove the first instruction.
+ for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
+ Instruction &Inst = *I++;
+ if (!Inst.use_empty())
+ Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
+ if (isa<LandingPadInst>(Inst))
+ continue;
+
+ Inst.eraseFromParent();
+ ++NumGVNInstrDeleted;
+ }
+ // Now insert something that simplifycfg will turn into an unreachable.
+ Type *Int8Ty = Type::getInt8Ty(BB->getContext());
+ new StoreInst(UndefValue::get(Int8Ty),
+ Constant::getNullValue(Int8Ty->getPointerTo()),
+ BB->getTerminator());
+}
+
+void NewGVN::markInstructionForDeletion(Instruction *I) {
+ LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
+ InstructionsToErase.insert(I);
+}
+
+void NewGVN::replaceInstruction(Instruction *I, Value *V) {
+ LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
+ patchAndReplaceAllUsesWith(I, V);
+ // We save the actual erasing to avoid invalidating memory
+ // dependencies until we are done with everything.
+ markInstructionForDeletion(I);
+}
+
+namespace {
+
+// This is a stack that contains both the value and dfs info of where
+// that value is valid.
+class ValueDFSStack {
+public:
+ Value *back() const { return ValueStack.back(); }
+ std::pair<int, int> dfs_back() const { return DFSStack.back(); }
+
+ void push_back(Value *V, int DFSIn, int DFSOut) {
+ ValueStack.emplace_back(V);
+ DFSStack.emplace_back(DFSIn, DFSOut);
+ }
+
+ bool empty() const { return DFSStack.empty(); }
+
+ bool isInScope(int DFSIn, int DFSOut) const {
+ if (empty())
+ return false;
+ return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
+ }
+
+ void popUntilDFSScope(int DFSIn, int DFSOut) {
+
+ // These two should always be in sync at this point.
+ assert(ValueStack.size() == DFSStack.size() &&
+ "Mismatch between ValueStack and DFSStack");
+ while (
+ !DFSStack.empty() &&
+ !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
+ DFSStack.pop_back();
+ ValueStack.pop_back();
+ }
+ }
+
+private:
+ SmallVector<Value *, 8> ValueStack;
+ SmallVector<std::pair<int, int>, 8> DFSStack;
+};
+
+} // end anonymous namespace
+
+// Given an expression, get the congruence class for it.
+CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
+ if (auto *VE = dyn_cast<VariableExpression>(E))
+ return ValueToClass.lookup(VE->getVariableValue());
+ else if (isa<DeadExpression>(E))
+ return TOPClass;
+ return ExpressionToClass.lookup(E);
+}
+
+// Given a value and a basic block we are trying to see if it is available in,
+// see if the value has a leader available in that block.
+Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
+ const Instruction *OrigInst,
+ const BasicBlock *BB) const {
+ // It would already be constant if we could make it constant
+ if (auto *CE = dyn_cast<ConstantExpression>(E))
+ return CE->getConstantValue();
+ if (auto *VE = dyn_cast<VariableExpression>(E)) {
+ auto *V = VE->getVariableValue();
+ if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
+ return VE->getVariableValue();
+ }
+
+ auto *CC = getClassForExpression(E);
+ if (!CC)
+ return nullptr;
+ if (alwaysAvailable(CC->getLeader()))
+ return CC->getLeader();
+
+ for (auto Member : *CC) {
+ auto *MemberInst = dyn_cast<Instruction>(Member);
+ if (MemberInst == OrigInst)
+ continue;
+ // Anything that isn't an instruction is always available.
+ if (!MemberInst)
+ return Member;
+ if (DT->dominates(getBlockForValue(MemberInst), BB))
+ return Member;
+ }
+ return nullptr;
+}
+
+bool NewGVN::eliminateInstructions(Function &F) {
+ // This is a non-standard eliminator. The normal way to eliminate is
+ // to walk the dominator tree in order, keeping track of available
+ // values, and eliminating them. However, this is mildly
+ // pointless. It requires doing lookups on every instruction,
+ // regardless of whether we will ever eliminate it. For
+ // instructions part of most singleton congruence classes, we know we
+ // will never eliminate them.
+
+ // Instead, this eliminator looks at the congruence classes directly, sorts
+ // them into a DFS ordering of the dominator tree, and then we just
+ // perform elimination straight on the sets by walking the congruence
+ // class member uses in order, and eliminate the ones dominated by the
+ // last member. This is worst case O(E log E) where E = number of
+ // instructions in a single congruence class. In theory, this is all
+ // instructions. In practice, it is much faster, as most instructions are
+ // either in singleton congruence classes or can't possibly be eliminated
+ // anyway (if there are no overlapping DFS ranges in class).
+ // When we find something not dominated, it becomes the new leader
+ // for elimination purposes.
+ // TODO: If we wanted to be faster, We could remove any members with no
+ // overlapping ranges while sorting, as we will never eliminate anything
+ // with those members, as they don't dominate anything else in our set.
+
+ bool AnythingReplaced = false;
+
+ // Since we are going to walk the domtree anyway, and we can't guarantee the
+ // DFS numbers are updated, we compute some ourselves.
+ DT->updateDFSNumbers();
+
+ // Go through all of our phi nodes, and kill the arguments associated with
+ // unreachable edges.
+ auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
+ for (auto &Operand : PHI->incoming_values())
+ if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
+ LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
+ << " for block "
+ << getBlockName(PHI->getIncomingBlock(Operand))
+ << " with undef due to it being unreachable\n");
+ Operand.set(UndefValue::get(PHI->getType()));
+ }
+ };
+ // Replace unreachable phi arguments.
+ // At this point, RevisitOnReachabilityChange only contains:
+ //
+ // 1. PHIs
+ // 2. Temporaries that will convert to PHIs
+ // 3. Operations that are affected by an unreachable edge but do not fit into
+ // 1 or 2 (rare).
+ // So it is a slight overshoot of what we want. We could make it exact by
+ // using two SparseBitVectors per block.
+ DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
+ for (auto &KV : ReachableEdges)
+ ReachablePredCount[KV.getEnd()]++;
+ for (auto &BBPair : RevisitOnReachabilityChange) {
+ for (auto InstNum : BBPair.second) {
+ auto *Inst = InstrFromDFSNum(InstNum);
+ auto *PHI = dyn_cast<PHINode>(Inst);
+ PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
+ if (!PHI)
+ continue;
+ auto *BB = BBPair.first;
+ if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
+ ReplaceUnreachablePHIArgs(PHI, BB);
+ }
+ }
+
+ // Map to store the use counts
+ DenseMap<const Value *, unsigned int> UseCounts;
+ for (auto *CC : reverse(CongruenceClasses)) {
+ LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
+ << "\n");
+ // Track the equivalent store info so we can decide whether to try
+ // dead store elimination.
+ SmallVector<ValueDFS, 8> PossibleDeadStores;
+ SmallPtrSet<Instruction *, 8> ProbablyDead;
+ if (CC->isDead() || CC->empty())
+ continue;
+ // Everything still in the TOP class is unreachable or dead.
+ if (CC == TOPClass) {
+ for (auto M : *CC) {
+ auto *VTE = ValueToExpression.lookup(M);
+ if (VTE && isa<DeadExpression>(VTE))
+ markInstructionForDeletion(cast<Instruction>(M));
+ assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
+ InstructionsToErase.count(cast<Instruction>(M))) &&
+ "Everything in TOP should be unreachable or dead at this "
+ "point");
+ }
+ continue;
+ }
+
+ assert(CC->getLeader() && "We should have had a leader");
+ // If this is a leader that is always available, and it's a
+ // constant or has no equivalences, just replace everything with
+ // it. We then update the congruence class with whatever members
+ // are left.
+ Value *Leader =
+ CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
+ if (alwaysAvailable(Leader)) {
+ CongruenceClass::MemberSet MembersLeft;
+ for (auto M : *CC) {
+ Value *Member = M;
+ // Void things have no uses we can replace.
+ if (Member == Leader || !isa<Instruction>(Member) ||
+ Member->getType()->isVoidTy()) {
+ MembersLeft.insert(Member);
+ continue;
+ }
+ LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
+ << *Member << "\n");
+ auto *I = cast<Instruction>(Member);
+ assert(Leader != I && "About to accidentally remove our leader");
+ replaceInstruction(I, Leader);
+ AnythingReplaced = true;
+ }
+ CC->swap(MembersLeft);
+ } else {
+ // If this is a singleton, we can skip it.
+ if (CC->size() != 1 || RealToTemp.count(Leader)) {
+ // This is a stack because equality replacement/etc may place
+ // constants in the middle of the member list, and we want to use
+ // those constant values in preference to the current leader, over
+ // the scope of those constants.
+ ValueDFSStack EliminationStack;
+
+ // Convert the members to DFS ordered sets and then merge them.
+ SmallVector<ValueDFS, 8> DFSOrderedSet;
+ convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
+
+ // Sort the whole thing.
+ llvm::sort(DFSOrderedSet);
+ for (auto &VD : DFSOrderedSet) {
+ int MemberDFSIn = VD.DFSIn;
+ int MemberDFSOut = VD.DFSOut;
+ Value *Def = VD.Def.getPointer();
+ bool FromStore = VD.Def.getInt();
+ Use *U = VD.U;
+ // We ignore void things because we can't get a value from them.
+ if (Def && Def->getType()->isVoidTy())
+ continue;
+ auto *DefInst = dyn_cast_or_null<Instruction>(Def);
+ if (DefInst && AllTempInstructions.count(DefInst)) {
+ auto *PN = cast<PHINode>(DefInst);
+
+ // If this is a value phi and that's the expression we used, insert
+ // it into the program
+ // remove from temp instruction list.
+ AllTempInstructions.erase(PN);
+ auto *DefBlock = getBlockForValue(Def);
+ LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
+ << " into block "
+ << getBlockName(getBlockForValue(Def)) << "\n");
+ PN->insertBefore(&DefBlock->front());
+ Def = PN;
+ NumGVNPHIOfOpsEliminations++;
+ }
+
+ if (EliminationStack.empty()) {
+ LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
+ } else {
+ LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
+ << EliminationStack.dfs_back().first << ","
+ << EliminationStack.dfs_back().second << ")\n");
+ }
+
+ LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
+ << MemberDFSOut << ")\n");
+ // First, we see if we are out of scope or empty. If so,
+ // and there equivalences, we try to replace the top of
+ // stack with equivalences (if it's on the stack, it must
+ // not have been eliminated yet).
+ // Then we synchronize to our current scope, by
+ // popping until we are back within a DFS scope that
+ // dominates the current member.
+ // Then, what happens depends on a few factors
+ // If the stack is now empty, we need to push
+ // If we have a constant or a local equivalence we want to
+ // start using, we also push.
+ // Otherwise, we walk along, processing members who are
+ // dominated by this scope, and eliminate them.
+ bool ShouldPush = Def && EliminationStack.empty();
+ bool OutOfScope =
+ !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
+
+ if (OutOfScope || ShouldPush) {
+ // Sync to our current scope.
+ EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
+ bool ShouldPush = Def && EliminationStack.empty();
+ if (ShouldPush) {
+ EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
+ }
+ }
+
+ // Skip the Def's, we only want to eliminate on their uses. But mark
+ // dominated defs as dead.
+ if (Def) {
+ // For anything in this case, what and how we value number
+ // guarantees that any side-effets that would have occurred (ie
+ // throwing, etc) can be proven to either still occur (because it's
+ // dominated by something that has the same side-effects), or never
+ // occur. Otherwise, we would not have been able to prove it value
+ // equivalent to something else. For these things, we can just mark
+ // it all dead. Note that this is different from the "ProbablyDead"
+ // set, which may not be dominated by anything, and thus, are only
+ // easy to prove dead if they are also side-effect free. Note that
+ // because stores are put in terms of the stored value, we skip
+ // stored values here. If the stored value is really dead, it will
+ // still be marked for deletion when we process it in its own class.
+ if (!EliminationStack.empty() && Def != EliminationStack.back() &&
+ isa<Instruction>(Def) && !FromStore)
+ markInstructionForDeletion(cast<Instruction>(Def));
+ continue;
+ }
+ // At this point, we know it is a Use we are trying to possibly
+ // replace.
+
+ assert(isa<Instruction>(U->get()) &&
+ "Current def should have been an instruction");
+ assert(isa<Instruction>(U->getUser()) &&
+ "Current user should have been an instruction");
+
+ // If the thing we are replacing into is already marked to be dead,
+ // this use is dead. Note that this is true regardless of whether
+ // we have anything dominating the use or not. We do this here
+ // because we are already walking all the uses anyway.
+ Instruction *InstUse = cast<Instruction>(U->getUser());
+ if (InstructionsToErase.count(InstUse)) {
+ auto &UseCount = UseCounts[U->get()];
+ if (--UseCount == 0) {
+ ProbablyDead.insert(cast<Instruction>(U->get()));
+ }
+ }
+
+ // If we get to this point, and the stack is empty we must have a use
+ // with nothing we can use to eliminate this use, so just skip it.
+ if (EliminationStack.empty())
+ continue;
+
+ Value *DominatingLeader = EliminationStack.back();
+
+ auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
+ bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
+ if (isSSACopy)
+ DominatingLeader = II->getOperand(0);
+
+ // Don't replace our existing users with ourselves.
+ if (U->get() == DominatingLeader)
+ continue;
+ LLVM_DEBUG(dbgs()
+ << "Found replacement " << *DominatingLeader << " for "
+ << *U->get() << " in " << *(U->getUser()) << "\n");
+
+ // If we replaced something in an instruction, handle the patching of
+ // metadata. Skip this if we are replacing predicateinfo with its
+ // original operand, as we already know we can just drop it.
+ auto *ReplacedInst = cast<Instruction>(U->get());
+ auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
+ if (!PI || DominatingLeader != PI->OriginalOp)
+ patchReplacementInstruction(ReplacedInst, DominatingLeader);
+ U->set(DominatingLeader);
+ // This is now a use of the dominating leader, which means if the
+ // dominating leader was dead, it's now live!
+ auto &LeaderUseCount = UseCounts[DominatingLeader];
+ // It's about to be alive again.
+ if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
+ ProbablyDead.erase(cast<Instruction>(DominatingLeader));
+ // For copy instructions, we use their operand as a leader,
+ // which means we remove a user of the copy and it may become dead.
+ if (isSSACopy) {
+ unsigned &IIUseCount = UseCounts[II];
+ if (--IIUseCount == 0)
+ ProbablyDead.insert(II);
+ }
+ ++LeaderUseCount;
+ AnythingReplaced = true;
+ }
+ }
+ }
+
+ // At this point, anything still in the ProbablyDead set is actually dead if
+ // would be trivially dead.
+ for (auto *I : ProbablyDead)
+ if (wouldInstructionBeTriviallyDead(I))
+ markInstructionForDeletion(I);
+
+ // Cleanup the congruence class.
+ CongruenceClass::MemberSet MembersLeft;
+ for (auto *Member : *CC)
+ if (!isa<Instruction>(Member) ||
+ !InstructionsToErase.count(cast<Instruction>(Member)))
+ MembersLeft.insert(Member);
+ CC->swap(MembersLeft);
+
+ // If we have possible dead stores to look at, try to eliminate them.
+ if (CC->getStoreCount() > 0) {
+ convertClassToLoadsAndStores(*CC, PossibleDeadStores);
+ llvm::sort(PossibleDeadStores);
+ ValueDFSStack EliminationStack;
+ for (auto &VD : PossibleDeadStores) {
+ int MemberDFSIn = VD.DFSIn;
+ int MemberDFSOut = VD.DFSOut;
+ Instruction *Member = cast<Instruction>(VD.Def.getPointer());
+ if (EliminationStack.empty() ||
+ !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
+ // Sync to our current scope.
+ EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
+ if (EliminationStack.empty()) {
+ EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
+ continue;
+ }
+ }
+ // We already did load elimination, so nothing to do here.
+ if (isa<LoadInst>(Member))
+ continue;
+ assert(!EliminationStack.empty());
+ Instruction *Leader = cast<Instruction>(EliminationStack.back());
+ (void)Leader;
+ assert(DT->dominates(Leader->getParent(), Member->getParent()));
+ // Member is dominater by Leader, and thus dead
+ LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
+ << " that is dominated by " << *Leader << "\n");
+ markInstructionForDeletion(Member);
+ CC->erase(Member);
+ ++NumGVNDeadStores;
+ }
+ }
+ }
+ return AnythingReplaced;
+}
+
+// This function provides global ranking of operations so that we can place them
+// in a canonical order. Note that rank alone is not necessarily enough for a
+// complete ordering, as constants all have the same rank. However, generally,
+// we will simplify an operation with all constants so that it doesn't matter
+// what order they appear in.
+unsigned int NewGVN::getRank(const Value *V) const {
+ // Prefer constants to undef to anything else
+ // Undef is a constant, have to check it first.
+ // Prefer smaller constants to constantexprs
+ if (isa<ConstantExpr>(V))
+ return 2;
+ if (isa<UndefValue>(V))
+ return 1;
+ if (isa<Constant>(V))
+ return 0;
+ else if (auto *A = dyn_cast<Argument>(V))
+ return 3 + A->getArgNo();
+
+ // Need to shift the instruction DFS by number of arguments + 3 to account for
+ // the constant and argument ranking above.
+ unsigned Result = InstrToDFSNum(V);
+ if (Result > 0)
+ return 4 + NumFuncArgs + Result;
+ // Unreachable or something else, just return a really large number.
+ return ~0;
+}
+
+// This is a function that says whether two commutative operations should
+// have their order swapped when canonicalizing.
+bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
+ // Because we only care about a total ordering, and don't rewrite expressions
+ // in this order, we order by rank, which will give a strict weak ordering to
+ // everything but constants, and then we order by pointer address.
+ return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
+}
+
+namespace {
+
+class NewGVNLegacyPass : public FunctionPass {
+public:
+ // Pass identification, replacement for typeid.
+ static char ID;
+
+ NewGVNLegacyPass() : FunctionPass(ID) {
+ initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+private:
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+};
+
+} // end anonymous namespace
+
+bool NewGVNLegacyPass::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+ return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
+ &getAnalysis<AAResultsWrapperPass>().getAAResults(),
+ &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
+ F.getParent()->getDataLayout())
+ .runGVN();
+}
+
+char NewGVNLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
+ false)
+
+// createGVNPass - The public interface to this file.
+FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
+
+PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
+ // Apparently the order in which we get these results matter for
+ // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
+ // the same order here, just in case.
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &AA = AM.getResult<AAManager>(F);
+ auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
+ bool Changed =
+ NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
+ .runGVN();
+ if (!Changed)
+ return PreservedAnalyses::all();
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<GlobalsAA>();
+ return PA;
+}