summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp2846
1 files changed, 2846 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp b/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
new file mode 100644
index 000000000000..48bbdd8d1b33
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
@@ -0,0 +1,2846 @@
+//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Rewrite call/invoke instructions so as to make potential relocations
+// performed by the garbage collector explicit in the IR.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <set>
+#include <string>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "rewrite-statepoints-for-gc"
+
+using namespace llvm;
+
+// Print the liveset found at the insert location
+static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
+ cl::init(false));
+static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
+ cl::init(false));
+
+// Print out the base pointers for debugging
+static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
+ cl::init(false));
+
+// Cost threshold measuring when it is profitable to rematerialize value instead
+// of relocating it
+static cl::opt<unsigned>
+RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
+ cl::init(6));
+
+#ifdef EXPENSIVE_CHECKS
+static bool ClobberNonLive = true;
+#else
+static bool ClobberNonLive = false;
+#endif
+
+static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
+ cl::location(ClobberNonLive),
+ cl::Hidden);
+
+static cl::opt<bool>
+ AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
+ cl::Hidden, cl::init(true));
+
+/// The IR fed into RewriteStatepointsForGC may have had attributes and
+/// metadata implying dereferenceability that are no longer valid/correct after
+/// RewriteStatepointsForGC has run. This is because semantically, after
+/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
+/// heap. stripNonValidData (conservatively) restores
+/// correctness by erasing all attributes in the module that externally imply
+/// dereferenceability. Similar reasoning also applies to the noalias
+/// attributes and metadata. gc.statepoint can touch the entire heap including
+/// noalias objects.
+/// Apart from attributes and metadata, we also remove instructions that imply
+/// constant physical memory: llvm.invariant.start.
+static void stripNonValidData(Module &M);
+
+static bool shouldRewriteStatepointsIn(Function &F);
+
+PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ bool Changed = false;
+ auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+ for (Function &F : M) {
+ // Nothing to do for declarations.
+ if (F.isDeclaration() || F.empty())
+ continue;
+
+ // Policy choice says not to rewrite - the most common reason is that we're
+ // compiling code without a GCStrategy.
+ if (!shouldRewriteStatepointsIn(F))
+ continue;
+
+ auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
+ auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
+ auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
+ Changed |= runOnFunction(F, DT, TTI, TLI);
+ }
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ // stripNonValidData asserts that shouldRewriteStatepointsIn
+ // returns true for at least one function in the module. Since at least
+ // one function changed, we know that the precondition is satisfied.
+ stripNonValidData(M);
+
+ PreservedAnalyses PA;
+ PA.preserve<TargetIRAnalysis>();
+ PA.preserve<TargetLibraryAnalysis>();
+ return PA;
+}
+
+namespace {
+
+class RewriteStatepointsForGCLegacyPass : public ModulePass {
+ RewriteStatepointsForGC Impl;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
+ initializeRewriteStatepointsForGCLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M) override {
+ bool Changed = false;
+ for (Function &F : M) {
+ // Nothing to do for declarations.
+ if (F.isDeclaration() || F.empty())
+ continue;
+
+ // Policy choice says not to rewrite - the most common reason is that
+ // we're compiling code without a GCStrategy.
+ if (!shouldRewriteStatepointsIn(F))
+ continue;
+
+ TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ const TargetLibraryInfo &TLI =
+ getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
+
+ Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
+ }
+
+ if (!Changed)
+ return false;
+
+ // stripNonValidData asserts that shouldRewriteStatepointsIn
+ // returns true for at least one function in the module. Since at least
+ // one function changed, we know that the precondition is satisfied.
+ stripNonValidData(M);
+ return true;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ // We add and rewrite a bunch of instructions, but don't really do much
+ // else. We could in theory preserve a lot more analyses here.
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ }
+};
+
+} // end anonymous namespace
+
+char RewriteStatepointsForGCLegacyPass::ID = 0;
+
+ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
+ return new RewriteStatepointsForGCLegacyPass();
+}
+
+INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
+ "rewrite-statepoints-for-gc",
+ "Make relocations explicit at statepoints", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
+ "rewrite-statepoints-for-gc",
+ "Make relocations explicit at statepoints", false, false)
+
+namespace {
+
+struct GCPtrLivenessData {
+ /// Values defined in this block.
+ MapVector<BasicBlock *, SetVector<Value *>> KillSet;
+
+ /// Values used in this block (and thus live); does not included values
+ /// killed within this block.
+ MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
+
+ /// Values live into this basic block (i.e. used by any
+ /// instruction in this basic block or ones reachable from here)
+ MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
+
+ /// Values live out of this basic block (i.e. live into
+ /// any successor block)
+ MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
+};
+
+// The type of the internal cache used inside the findBasePointers family
+// of functions. From the callers perspective, this is an opaque type and
+// should not be inspected.
+//
+// In the actual implementation this caches two relations:
+// - The base relation itself (i.e. this pointer is based on that one)
+// - The base defining value relation (i.e. before base_phi insertion)
+// Generally, after the execution of a full findBasePointer call, only the
+// base relation will remain. Internally, we add a mixture of the two
+// types, then update all the second type to the first type
+using DefiningValueMapTy = MapVector<Value *, Value *>;
+using StatepointLiveSetTy = SetVector<Value *>;
+using RematerializedValueMapTy =
+ MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
+
+struct PartiallyConstructedSafepointRecord {
+ /// The set of values known to be live across this safepoint
+ StatepointLiveSetTy LiveSet;
+
+ /// Mapping from live pointers to a base-defining-value
+ MapVector<Value *, Value *> PointerToBase;
+
+ /// The *new* gc.statepoint instruction itself. This produces the token
+ /// that normal path gc.relocates and the gc.result are tied to.
+ Instruction *StatepointToken;
+
+ /// Instruction to which exceptional gc relocates are attached
+ /// Makes it easier to iterate through them during relocationViaAlloca.
+ Instruction *UnwindToken;
+
+ /// Record live values we are rematerialized instead of relocating.
+ /// They are not included into 'LiveSet' field.
+ /// Maps rematerialized copy to it's original value.
+ RematerializedValueMapTy RematerializedValues;
+};
+
+} // end anonymous namespace
+
+static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
+ Optional<OperandBundleUse> DeoptBundle =
+ Call->getOperandBundle(LLVMContext::OB_deopt);
+
+ if (!DeoptBundle.hasValue()) {
+ assert(AllowStatepointWithNoDeoptInfo &&
+ "Found non-leaf call without deopt info!");
+ return None;
+ }
+
+ return DeoptBundle.getValue().Inputs;
+}
+
+/// Compute the live-in set for every basic block in the function
+static void computeLiveInValues(DominatorTree &DT, Function &F,
+ GCPtrLivenessData &Data);
+
+/// Given results from the dataflow liveness computation, find the set of live
+/// Values at a particular instruction.
+static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
+ StatepointLiveSetTy &out);
+
+// TODO: Once we can get to the GCStrategy, this becomes
+// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
+
+static bool isGCPointerType(Type *T) {
+ if (auto *PT = dyn_cast<PointerType>(T))
+ // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
+ // GC managed heap. We know that a pointer into this heap needs to be
+ // updated and that no other pointer does.
+ return PT->getAddressSpace() == 1;
+ return false;
+}
+
+// Return true if this type is one which a) is a gc pointer or contains a GC
+// pointer and b) is of a type this code expects to encounter as a live value.
+// (The insertion code will assert that a type which matches (a) and not (b)
+// is not encountered.)
+static bool isHandledGCPointerType(Type *T) {
+ // We fully support gc pointers
+ if (isGCPointerType(T))
+ return true;
+ // We partially support vectors of gc pointers. The code will assert if it
+ // can't handle something.
+ if (auto VT = dyn_cast<VectorType>(T))
+ if (isGCPointerType(VT->getElementType()))
+ return true;
+ return false;
+}
+
+#ifndef NDEBUG
+/// Returns true if this type contains a gc pointer whether we know how to
+/// handle that type or not.
+static bool containsGCPtrType(Type *Ty) {
+ if (isGCPointerType(Ty))
+ return true;
+ if (VectorType *VT = dyn_cast<VectorType>(Ty))
+ return isGCPointerType(VT->getScalarType());
+ if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
+ return containsGCPtrType(AT->getElementType());
+ if (StructType *ST = dyn_cast<StructType>(Ty))
+ return llvm::any_of(ST->elements(), containsGCPtrType);
+ return false;
+}
+
+// Returns true if this is a type which a) is a gc pointer or contains a GC
+// pointer and b) is of a type which the code doesn't expect (i.e. first class
+// aggregates). Used to trip assertions.
+static bool isUnhandledGCPointerType(Type *Ty) {
+ return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
+}
+#endif
+
+// Return the name of the value suffixed with the provided value, or if the
+// value didn't have a name, the default value specified.
+static std::string suffixed_name_or(Value *V, StringRef Suffix,
+ StringRef DefaultName) {
+ return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
+}
+
+// Conservatively identifies any definitions which might be live at the
+// given instruction. The analysis is performed immediately before the
+// given instruction. Values defined by that instruction are not considered
+// live. Values used by that instruction are considered live.
+static void analyzeParsePointLiveness(
+ DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
+ PartiallyConstructedSafepointRecord &Result) {
+ StatepointLiveSetTy LiveSet;
+ findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
+
+ if (PrintLiveSet) {
+ dbgs() << "Live Variables:\n";
+ for (Value *V : LiveSet)
+ dbgs() << " " << V->getName() << " " << *V << "\n";
+ }
+ if (PrintLiveSetSize) {
+ dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
+ dbgs() << "Number live values: " << LiveSet.size() << "\n";
+ }
+ Result.LiveSet = LiveSet;
+}
+
+static bool isKnownBaseResult(Value *V);
+
+namespace {
+
+/// A single base defining value - An immediate base defining value for an
+/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
+/// For instructions which have multiple pointer [vector] inputs or that
+/// transition between vector and scalar types, there is no immediate base
+/// defining value. The 'base defining value' for 'Def' is the transitive
+/// closure of this relation stopping at the first instruction which has no
+/// immediate base defining value. The b.d.v. might itself be a base pointer,
+/// but it can also be an arbitrary derived pointer.
+struct BaseDefiningValueResult {
+ /// Contains the value which is the base defining value.
+ Value * const BDV;
+
+ /// True if the base defining value is also known to be an actual base
+ /// pointer.
+ const bool IsKnownBase;
+
+ BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
+ : BDV(BDV), IsKnownBase(IsKnownBase) {
+#ifndef NDEBUG
+ // Check consistency between new and old means of checking whether a BDV is
+ // a base.
+ bool MustBeBase = isKnownBaseResult(BDV);
+ assert(!MustBeBase || MustBeBase == IsKnownBase);
+#endif
+ }
+};
+
+} // end anonymous namespace
+
+static BaseDefiningValueResult findBaseDefiningValue(Value *I);
+
+/// Return a base defining value for the 'Index' element of the given vector
+/// instruction 'I'. If Index is null, returns a BDV for the entire vector
+/// 'I'. As an optimization, this method will try to determine when the
+/// element is known to already be a base pointer. If this can be established,
+/// the second value in the returned pair will be true. Note that either a
+/// vector or a pointer typed value can be returned. For the former, the
+/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
+/// If the later, the return pointer is a BDV (or possibly a base) for the
+/// particular element in 'I'.
+static BaseDefiningValueResult
+findBaseDefiningValueOfVector(Value *I) {
+ // Each case parallels findBaseDefiningValue below, see that code for
+ // detailed motivation.
+
+ if (isa<Argument>(I))
+ // An incoming argument to the function is a base pointer
+ return BaseDefiningValueResult(I, true);
+
+ if (isa<Constant>(I))
+ // Base of constant vector consists only of constant null pointers.
+ // For reasoning see similar case inside 'findBaseDefiningValue' function.
+ return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
+ true);
+
+ if (isa<LoadInst>(I))
+ return BaseDefiningValueResult(I, true);
+
+ if (isa<InsertElementInst>(I))
+ // We don't know whether this vector contains entirely base pointers or
+ // not. To be conservatively correct, we treat it as a BDV and will
+ // duplicate code as needed to construct a parallel vector of bases.
+ return BaseDefiningValueResult(I, false);
+
+ if (isa<ShuffleVectorInst>(I))
+ // We don't know whether this vector contains entirely base pointers or
+ // not. To be conservatively correct, we treat it as a BDV and will
+ // duplicate code as needed to construct a parallel vector of bases.
+ // TODO: There a number of local optimizations which could be applied here
+ // for particular sufflevector patterns.
+ return BaseDefiningValueResult(I, false);
+
+ // The behavior of getelementptr instructions is the same for vector and
+ // non-vector data types.
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
+ return findBaseDefiningValue(GEP->getPointerOperand());
+
+ // If the pointer comes through a bitcast of a vector of pointers to
+ // a vector of another type of pointer, then look through the bitcast
+ if (auto *BC = dyn_cast<BitCastInst>(I))
+ return findBaseDefiningValue(BC->getOperand(0));
+
+ // We assume that functions in the source language only return base
+ // pointers. This should probably be generalized via attributes to support
+ // both source language and internal functions.
+ if (isa<CallInst>(I) || isa<InvokeInst>(I))
+ return BaseDefiningValueResult(I, true);
+
+ // A PHI or Select is a base defining value. The outer findBasePointer
+ // algorithm is responsible for constructing a base value for this BDV.
+ assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
+ "unknown vector instruction - no base found for vector element");
+ return BaseDefiningValueResult(I, false);
+}
+
+/// Helper function for findBasePointer - Will return a value which either a)
+/// defines the base pointer for the input, b) blocks the simple search
+/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
+/// from pointer to vector type or back.
+static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
+ assert(I->getType()->isPtrOrPtrVectorTy() &&
+ "Illegal to ask for the base pointer of a non-pointer type");
+
+ if (I->getType()->isVectorTy())
+ return findBaseDefiningValueOfVector(I);
+
+ if (isa<Argument>(I))
+ // An incoming argument to the function is a base pointer
+ // We should have never reached here if this argument isn't an gc value
+ return BaseDefiningValueResult(I, true);
+
+ if (isa<Constant>(I)) {
+ // We assume that objects with a constant base (e.g. a global) can't move
+ // and don't need to be reported to the collector because they are always
+ // live. Besides global references, all kinds of constants (e.g. undef,
+ // constant expressions, null pointers) can be introduced by the inliner or
+ // the optimizer, especially on dynamically dead paths.
+ // Here we treat all of them as having single null base. By doing this we
+ // trying to avoid problems reporting various conflicts in a form of
+ // "phi (const1, const2)" or "phi (const, regular gc ptr)".
+ // See constant.ll file for relevant test cases.
+
+ return BaseDefiningValueResult(
+ ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(I)) {
+ Value *Def = CI->stripPointerCasts();
+ // If stripping pointer casts changes the address space there is an
+ // addrspacecast in between.
+ assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
+ cast<PointerType>(CI->getType())->getAddressSpace() &&
+ "unsupported addrspacecast");
+ // If we find a cast instruction here, it means we've found a cast which is
+ // not simply a pointer cast (i.e. an inttoptr). We don't know how to
+ // handle int->ptr conversion.
+ assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
+ return findBaseDefiningValue(Def);
+ }
+
+ if (isa<LoadInst>(I))
+ // The value loaded is an gc base itself
+ return BaseDefiningValueResult(I, true);
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
+ // The base of this GEP is the base
+ return findBaseDefiningValue(GEP->getPointerOperand());
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ // fall through to general call handling
+ break;
+ case Intrinsic::experimental_gc_statepoint:
+ llvm_unreachable("statepoints don't produce pointers");
+ case Intrinsic::experimental_gc_relocate:
+ // Rerunning safepoint insertion after safepoints are already
+ // inserted is not supported. It could probably be made to work,
+ // but why are you doing this? There's no good reason.
+ llvm_unreachable("repeat safepoint insertion is not supported");
+ case Intrinsic::gcroot:
+ // Currently, this mechanism hasn't been extended to work with gcroot.
+ // There's no reason it couldn't be, but I haven't thought about the
+ // implications much.
+ llvm_unreachable(
+ "interaction with the gcroot mechanism is not supported");
+ }
+ }
+ // We assume that functions in the source language only return base
+ // pointers. This should probably be generalized via attributes to support
+ // both source language and internal functions.
+ if (isa<CallInst>(I) || isa<InvokeInst>(I))
+ return BaseDefiningValueResult(I, true);
+
+ // TODO: I have absolutely no idea how to implement this part yet. It's not
+ // necessarily hard, I just haven't really looked at it yet.
+ assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
+
+ if (isa<AtomicCmpXchgInst>(I))
+ // A CAS is effectively a atomic store and load combined under a
+ // predicate. From the perspective of base pointers, we just treat it
+ // like a load.
+ return BaseDefiningValueResult(I, true);
+
+ assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
+ "binary ops which don't apply to pointers");
+
+ // The aggregate ops. Aggregates can either be in the heap or on the
+ // stack, but in either case, this is simply a field load. As a result,
+ // this is a defining definition of the base just like a load is.
+ if (isa<ExtractValueInst>(I))
+ return BaseDefiningValueResult(I, true);
+
+ // We should never see an insert vector since that would require we be
+ // tracing back a struct value not a pointer value.
+ assert(!isa<InsertValueInst>(I) &&
+ "Base pointer for a struct is meaningless");
+
+ // An extractelement produces a base result exactly when it's input does.
+ // We may need to insert a parallel instruction to extract the appropriate
+ // element out of the base vector corresponding to the input. Given this,
+ // it's analogous to the phi and select case even though it's not a merge.
+ if (isa<ExtractElementInst>(I))
+ // Note: There a lot of obvious peephole cases here. This are deliberately
+ // handled after the main base pointer inference algorithm to make writing
+ // test cases to exercise that code easier.
+ return BaseDefiningValueResult(I, false);
+
+ // The last two cases here don't return a base pointer. Instead, they
+ // return a value which dynamically selects from among several base
+ // derived pointers (each with it's own base potentially). It's the job of
+ // the caller to resolve these.
+ assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
+ "missing instruction case in findBaseDefiningValing");
+ return BaseDefiningValueResult(I, false);
+}
+
+/// Returns the base defining value for this value.
+static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
+ Value *&Cached = Cache[I];
+ if (!Cached) {
+ Cached = findBaseDefiningValue(I).BDV;
+ LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
+ << Cached->getName() << "\n");
+ }
+ assert(Cache[I] != nullptr);
+ return Cached;
+}
+
+/// Return a base pointer for this value if known. Otherwise, return it's
+/// base defining value.
+static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
+ Value *Def = findBaseDefiningValueCached(I, Cache);
+ auto Found = Cache.find(Def);
+ if (Found != Cache.end()) {
+ // Either a base-of relation, or a self reference. Caller must check.
+ return Found->second;
+ }
+ // Only a BDV available
+ return Def;
+}
+
+/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
+/// is it known to be a base pointer? Or do we need to continue searching.
+static bool isKnownBaseResult(Value *V) {
+ if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
+ !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
+ !isa<ShuffleVectorInst>(V)) {
+ // no recursion possible
+ return true;
+ }
+ if (isa<Instruction>(V) &&
+ cast<Instruction>(V)->getMetadata("is_base_value")) {
+ // This is a previously inserted base phi or select. We know
+ // that this is a base value.
+ return true;
+ }
+
+ // We need to keep searching
+ return false;
+}
+
+namespace {
+
+/// Models the state of a single base defining value in the findBasePointer
+/// algorithm for determining where a new instruction is needed to propagate
+/// the base of this BDV.
+class BDVState {
+public:
+ enum Status { Unknown, Base, Conflict };
+
+ BDVState() : BaseValue(nullptr) {}
+
+ explicit BDVState(Status Status, Value *BaseValue = nullptr)
+ : Status(Status), BaseValue(BaseValue) {
+ assert(Status != Base || BaseValue);
+ }
+
+ explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
+
+ Status getStatus() const { return Status; }
+ Value *getBaseValue() const { return BaseValue; }
+
+ bool isBase() const { return getStatus() == Base; }
+ bool isUnknown() const { return getStatus() == Unknown; }
+ bool isConflict() const { return getStatus() == Conflict; }
+
+ bool operator==(const BDVState &Other) const {
+ return BaseValue == Other.BaseValue && Status == Other.Status;
+ }
+
+ bool operator!=(const BDVState &other) const { return !(*this == other); }
+
+ LLVM_DUMP_METHOD
+ void dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+ }
+
+ void print(raw_ostream &OS) const {
+ switch (getStatus()) {
+ case Unknown:
+ OS << "U";
+ break;
+ case Base:
+ OS << "B";
+ break;
+ case Conflict:
+ OS << "C";
+ break;
+ }
+ OS << " (" << getBaseValue() << " - "
+ << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
+ }
+
+private:
+ Status Status = Unknown;
+ AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
+};
+
+} // end anonymous namespace
+
+#ifndef NDEBUG
+static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
+ State.print(OS);
+ return OS;
+}
+#endif
+
+static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
+ switch (LHS.getStatus()) {
+ case BDVState::Unknown:
+ return RHS;
+
+ case BDVState::Base:
+ assert(LHS.getBaseValue() && "can't be null");
+ if (RHS.isUnknown())
+ return LHS;
+
+ if (RHS.isBase()) {
+ if (LHS.getBaseValue() == RHS.getBaseValue()) {
+ assert(LHS == RHS && "equality broken!");
+ return LHS;
+ }
+ return BDVState(BDVState::Conflict);
+ }
+ assert(RHS.isConflict() && "only three states!");
+ return BDVState(BDVState::Conflict);
+
+ case BDVState::Conflict:
+ return LHS;
+ }
+ llvm_unreachable("only three states!");
+}
+
+// Values of type BDVState form a lattice, and this function implements the meet
+// operation.
+static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
+ BDVState Result = meetBDVStateImpl(LHS, RHS);
+ assert(Result == meetBDVStateImpl(RHS, LHS) &&
+ "Math is wrong: meet does not commute!");
+ return Result;
+}
+
+/// For a given value or instruction, figure out what base ptr its derived from.
+/// For gc objects, this is simply itself. On success, returns a value which is
+/// the base pointer. (This is reliable and can be used for relocation.) On
+/// failure, returns nullptr.
+static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
+ Value *Def = findBaseOrBDV(I, Cache);
+
+ if (isKnownBaseResult(Def))
+ return Def;
+
+ // Here's the rough algorithm:
+ // - For every SSA value, construct a mapping to either an actual base
+ // pointer or a PHI which obscures the base pointer.
+ // - Construct a mapping from PHI to unknown TOP state. Use an
+ // optimistic algorithm to propagate base pointer information. Lattice
+ // looks like:
+ // UNKNOWN
+ // b1 b2 b3 b4
+ // CONFLICT
+ // When algorithm terminates, all PHIs will either have a single concrete
+ // base or be in a conflict state.
+ // - For every conflict, insert a dummy PHI node without arguments. Add
+ // these to the base[Instruction] = BasePtr mapping. For every
+ // non-conflict, add the actual base.
+ // - For every conflict, add arguments for the base[a] of each input
+ // arguments.
+ //
+ // Note: A simpler form of this would be to add the conflict form of all
+ // PHIs without running the optimistic algorithm. This would be
+ // analogous to pessimistic data flow and would likely lead to an
+ // overall worse solution.
+
+#ifndef NDEBUG
+ auto isExpectedBDVType = [](Value *BDV) {
+ return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
+ isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
+ isa<ShuffleVectorInst>(BDV);
+ };
+#endif
+
+ // Once populated, will contain a mapping from each potentially non-base BDV
+ // to a lattice value (described above) which corresponds to that BDV.
+ // We use the order of insertion (DFS over the def/use graph) to provide a
+ // stable deterministic ordering for visiting DenseMaps (which are unordered)
+ // below. This is important for deterministic compilation.
+ MapVector<Value *, BDVState> States;
+
+ // Recursively fill in all base defining values reachable from the initial
+ // one for which we don't already know a definite base value for
+ /* scope */ {
+ SmallVector<Value*, 16> Worklist;
+ Worklist.push_back(Def);
+ States.insert({Def, BDVState()});
+ while (!Worklist.empty()) {
+ Value *Current = Worklist.pop_back_val();
+ assert(!isKnownBaseResult(Current) && "why did it get added?");
+
+ auto visitIncomingValue = [&](Value *InVal) {
+ Value *Base = findBaseOrBDV(InVal, Cache);
+ if (isKnownBaseResult(Base))
+ // Known bases won't need new instructions introduced and can be
+ // ignored safely
+ return;
+ assert(isExpectedBDVType(Base) && "the only non-base values "
+ "we see should be base defining values");
+ if (States.insert(std::make_pair(Base, BDVState())).second)
+ Worklist.push_back(Base);
+ };
+ if (PHINode *PN = dyn_cast<PHINode>(Current)) {
+ for (Value *InVal : PN->incoming_values())
+ visitIncomingValue(InVal);
+ } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
+ visitIncomingValue(SI->getTrueValue());
+ visitIncomingValue(SI->getFalseValue());
+ } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
+ visitIncomingValue(EE->getVectorOperand());
+ } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
+ visitIncomingValue(IE->getOperand(0)); // vector operand
+ visitIncomingValue(IE->getOperand(1)); // scalar operand
+ } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
+ visitIncomingValue(SV->getOperand(0));
+ visitIncomingValue(SV->getOperand(1));
+ }
+ else {
+ llvm_unreachable("Unimplemented instruction case");
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ LLVM_DEBUG(dbgs() << "States after initialization:\n");
+ for (auto Pair : States) {
+ LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
+ }
+#endif
+
+ // Return a phi state for a base defining value. We'll generate a new
+ // base state for known bases and expect to find a cached state otherwise.
+ auto getStateForBDV = [&](Value *baseValue) {
+ if (isKnownBaseResult(baseValue))
+ return BDVState(baseValue);
+ auto I = States.find(baseValue);
+ assert(I != States.end() && "lookup failed!");
+ return I->second;
+ };
+
+ bool Progress = true;
+ while (Progress) {
+#ifndef NDEBUG
+ const size_t OldSize = States.size();
+#endif
+ Progress = false;
+ // We're only changing values in this loop, thus safe to keep iterators.
+ // Since this is computing a fixed point, the order of visit does not
+ // effect the result. TODO: We could use a worklist here and make this run
+ // much faster.
+ for (auto Pair : States) {
+ Value *BDV = Pair.first;
+ assert(!isKnownBaseResult(BDV) && "why did it get added?");
+
+ // Given an input value for the current instruction, return a BDVState
+ // instance which represents the BDV of that value.
+ auto getStateForInput = [&](Value *V) mutable {
+ Value *BDV = findBaseOrBDV(V, Cache);
+ return getStateForBDV(BDV);
+ };
+
+ BDVState NewState;
+ if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
+ NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
+ NewState =
+ meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
+ } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
+ for (Value *Val : PN->incoming_values())
+ NewState = meetBDVState(NewState, getStateForInput(Val));
+ } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
+ // The 'meet' for an extractelement is slightly trivial, but it's still
+ // useful in that it drives us to conflict if our input is.
+ NewState =
+ meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
+ } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
+ // Given there's a inherent type mismatch between the operands, will
+ // *always* produce Conflict.
+ NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
+ NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
+ } else {
+ // The only instance this does not return a Conflict is when both the
+ // vector operands are the same vector.
+ auto *SV = cast<ShuffleVectorInst>(BDV);
+ NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
+ NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
+ }
+
+ BDVState OldState = States[BDV];
+ if (OldState != NewState) {
+ Progress = true;
+ States[BDV] = NewState;
+ }
+ }
+
+ assert(OldSize == States.size() &&
+ "fixed point shouldn't be adding any new nodes to state");
+ }
+
+#ifndef NDEBUG
+ LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
+ for (auto Pair : States) {
+ LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
+ }
+#endif
+
+ // Insert Phis for all conflicts
+ // TODO: adjust naming patterns to avoid this order of iteration dependency
+ for (auto Pair : States) {
+ Instruction *I = cast<Instruction>(Pair.first);
+ BDVState State = Pair.second;
+ assert(!isKnownBaseResult(I) && "why did it get added?");
+ assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
+
+ // extractelement instructions are a bit special in that we may need to
+ // insert an extract even when we know an exact base for the instruction.
+ // The problem is that we need to convert from a vector base to a scalar
+ // base for the particular indice we're interested in.
+ if (State.isBase() && isa<ExtractElementInst>(I) &&
+ isa<VectorType>(State.getBaseValue()->getType())) {
+ auto *EE = cast<ExtractElementInst>(I);
+ // TODO: In many cases, the new instruction is just EE itself. We should
+ // exploit this, but can't do it here since it would break the invariant
+ // about the BDV not being known to be a base.
+ auto *BaseInst = ExtractElementInst::Create(
+ State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
+ BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
+ States[I] = BDVState(BDVState::Base, BaseInst);
+ }
+
+ // Since we're joining a vector and scalar base, they can never be the
+ // same. As a result, we should always see insert element having reached
+ // the conflict state.
+ assert(!isa<InsertElementInst>(I) || State.isConflict());
+
+ if (!State.isConflict())
+ continue;
+
+ /// Create and insert a new instruction which will represent the base of
+ /// the given instruction 'I'.
+ auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
+ if (isa<PHINode>(I)) {
+ BasicBlock *BB = I->getParent();
+ int NumPreds = pred_size(BB);
+ assert(NumPreds > 0 && "how did we reach here");
+ std::string Name = suffixed_name_or(I, ".base", "base_phi");
+ return PHINode::Create(I->getType(), NumPreds, Name, I);
+ } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+ // The undef will be replaced later
+ UndefValue *Undef = UndefValue::get(SI->getType());
+ std::string Name = suffixed_name_or(I, ".base", "base_select");
+ return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
+ } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
+ UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
+ std::string Name = suffixed_name_or(I, ".base", "base_ee");
+ return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
+ EE);
+ } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
+ UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
+ UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
+ std::string Name = suffixed_name_or(I, ".base", "base_ie");
+ return InsertElementInst::Create(VecUndef, ScalarUndef,
+ IE->getOperand(2), Name, IE);
+ } else {
+ auto *SV = cast<ShuffleVectorInst>(I);
+ UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
+ std::string Name = suffixed_name_or(I, ".base", "base_sv");
+ return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
+ Name, SV);
+ }
+ };
+ Instruction *BaseInst = MakeBaseInstPlaceholder(I);
+ // Add metadata marking this as a base value
+ BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
+ States[I] = BDVState(BDVState::Conflict, BaseInst);
+ }
+
+ // Returns a instruction which produces the base pointer for a given
+ // instruction. The instruction is assumed to be an input to one of the BDVs
+ // seen in the inference algorithm above. As such, we must either already
+ // know it's base defining value is a base, or have inserted a new
+ // instruction to propagate the base of it's BDV and have entered that newly
+ // introduced instruction into the state table. In either case, we are
+ // assured to be able to determine an instruction which produces it's base
+ // pointer.
+ auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
+ Value *BDV = findBaseOrBDV(Input, Cache);
+ Value *Base = nullptr;
+ if (isKnownBaseResult(BDV)) {
+ Base = BDV;
+ } else {
+ // Either conflict or base.
+ assert(States.count(BDV));
+ Base = States[BDV].getBaseValue();
+ }
+ assert(Base && "Can't be null");
+ // The cast is needed since base traversal may strip away bitcasts
+ if (Base->getType() != Input->getType() && InsertPt)
+ Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
+ return Base;
+ };
+
+ // Fixup all the inputs of the new PHIs. Visit order needs to be
+ // deterministic and predictable because we're naming newly created
+ // instructions.
+ for (auto Pair : States) {
+ Instruction *BDV = cast<Instruction>(Pair.first);
+ BDVState State = Pair.second;
+
+ assert(!isKnownBaseResult(BDV) && "why did it get added?");
+ assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
+ if (!State.isConflict())
+ continue;
+
+ if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
+ PHINode *PN = cast<PHINode>(BDV);
+ unsigned NumPHIValues = PN->getNumIncomingValues();
+ for (unsigned i = 0; i < NumPHIValues; i++) {
+ Value *InVal = PN->getIncomingValue(i);
+ BasicBlock *InBB = PN->getIncomingBlock(i);
+
+ // If we've already seen InBB, add the same incoming value
+ // we added for it earlier. The IR verifier requires phi
+ // nodes with multiple entries from the same basic block
+ // to have the same incoming value for each of those
+ // entries. If we don't do this check here and basephi
+ // has a different type than base, we'll end up adding two
+ // bitcasts (and hence two distinct values) as incoming
+ // values for the same basic block.
+
+ int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
+ if (BlockIndex != -1) {
+ Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
+ BasePHI->addIncoming(OldBase, InBB);
+
+#ifndef NDEBUG
+ Value *Base = getBaseForInput(InVal, nullptr);
+ // In essence this assert states: the only way two values
+ // incoming from the same basic block may be different is by
+ // being different bitcasts of the same value. A cleanup
+ // that remains TODO is changing findBaseOrBDV to return an
+ // llvm::Value of the correct type (and still remain pure).
+ // This will remove the need to add bitcasts.
+ assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
+ "Sanity -- findBaseOrBDV should be pure!");
+#endif
+ continue;
+ }
+
+ // Find the instruction which produces the base for each input. We may
+ // need to insert a bitcast in the incoming block.
+ // TODO: Need to split critical edges if insertion is needed
+ Value *Base = getBaseForInput(InVal, InBB->getTerminator());
+ BasePHI->addIncoming(Base, InBB);
+ }
+ assert(BasePHI->getNumIncomingValues() == NumPHIValues);
+ } else if (SelectInst *BaseSI =
+ dyn_cast<SelectInst>(State.getBaseValue())) {
+ SelectInst *SI = cast<SelectInst>(BDV);
+
+ // Find the instruction which produces the base for each input.
+ // We may need to insert a bitcast.
+ BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
+ BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
+ } else if (auto *BaseEE =
+ dyn_cast<ExtractElementInst>(State.getBaseValue())) {
+ Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
+ // Find the instruction which produces the base for each input. We may
+ // need to insert a bitcast.
+ BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
+ } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
+ auto *BdvIE = cast<InsertElementInst>(BDV);
+ auto UpdateOperand = [&](int OperandIdx) {
+ Value *InVal = BdvIE->getOperand(OperandIdx);
+ Value *Base = getBaseForInput(InVal, BaseIE);
+ BaseIE->setOperand(OperandIdx, Base);
+ };
+ UpdateOperand(0); // vector operand
+ UpdateOperand(1); // scalar operand
+ } else {
+ auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
+ auto *BdvSV = cast<ShuffleVectorInst>(BDV);
+ auto UpdateOperand = [&](int OperandIdx) {
+ Value *InVal = BdvSV->getOperand(OperandIdx);
+ Value *Base = getBaseForInput(InVal, BaseSV);
+ BaseSV->setOperand(OperandIdx, Base);
+ };
+ UpdateOperand(0); // vector operand
+ UpdateOperand(1); // vector operand
+ }
+ }
+
+ // Cache all of our results so we can cheaply reuse them
+ // NOTE: This is actually two caches: one of the base defining value
+ // relation and one of the base pointer relation! FIXME
+ for (auto Pair : States) {
+ auto *BDV = Pair.first;
+ Value *Base = Pair.second.getBaseValue();
+ assert(BDV && Base);
+ assert(!isKnownBaseResult(BDV) && "why did it get added?");
+
+ LLVM_DEBUG(
+ dbgs() << "Updating base value cache"
+ << " for: " << BDV->getName() << " from: "
+ << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
+ << " to: " << Base->getName() << "\n");
+
+ if (Cache.count(BDV)) {
+ assert(isKnownBaseResult(Base) &&
+ "must be something we 'know' is a base pointer");
+ // Once we transition from the BDV relation being store in the Cache to
+ // the base relation being stored, it must be stable
+ assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
+ "base relation should be stable");
+ }
+ Cache[BDV] = Base;
+ }
+ assert(Cache.count(Def));
+ return Cache[Def];
+}
+
+// For a set of live pointers (base and/or derived), identify the base
+// pointer of the object which they are derived from. This routine will
+// mutate the IR graph as needed to make the 'base' pointer live at the
+// definition site of 'derived'. This ensures that any use of 'derived' can
+// also use 'base'. This may involve the insertion of a number of
+// additional PHI nodes.
+//
+// preconditions: live is a set of pointer type Values
+//
+// side effects: may insert PHI nodes into the existing CFG, will preserve
+// CFG, will not remove or mutate any existing nodes
+//
+// post condition: PointerToBase contains one (derived, base) pair for every
+// pointer in live. Note that derived can be equal to base if the original
+// pointer was a base pointer.
+static void
+findBasePointers(const StatepointLiveSetTy &live,
+ MapVector<Value *, Value *> &PointerToBase,
+ DominatorTree *DT, DefiningValueMapTy &DVCache) {
+ for (Value *ptr : live) {
+ Value *base = findBasePointer(ptr, DVCache);
+ assert(base && "failed to find base pointer");
+ PointerToBase[ptr] = base;
+ assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
+ DT->dominates(cast<Instruction>(base)->getParent(),
+ cast<Instruction>(ptr)->getParent())) &&
+ "The base we found better dominate the derived pointer");
+ }
+}
+
+/// Find the required based pointers (and adjust the live set) for the given
+/// parse point.
+static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
+ CallBase *Call,
+ PartiallyConstructedSafepointRecord &result) {
+ MapVector<Value *, Value *> PointerToBase;
+ findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
+
+ if (PrintBasePointers) {
+ errs() << "Base Pairs (w/o Relocation):\n";
+ for (auto &Pair : PointerToBase) {
+ errs() << " derived ";
+ Pair.first->printAsOperand(errs(), false);
+ errs() << " base ";
+ Pair.second->printAsOperand(errs(), false);
+ errs() << "\n";;
+ }
+ }
+
+ result.PointerToBase = PointerToBase;
+}
+
+/// Given an updated version of the dataflow liveness results, update the
+/// liveset and base pointer maps for the call site CS.
+static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
+ CallBase *Call,
+ PartiallyConstructedSafepointRecord &result);
+
+static void recomputeLiveInValues(
+ Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
+ MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
+ // TODO-PERF: reuse the original liveness, then simply run the dataflow
+ // again. The old values are still live and will help it stabilize quickly.
+ GCPtrLivenessData RevisedLivenessData;
+ computeLiveInValues(DT, F, RevisedLivenessData);
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
+ }
+}
+
+// When inserting gc.relocate and gc.result calls, we need to ensure there are
+// no uses of the original value / return value between the gc.statepoint and
+// the gc.relocate / gc.result call. One case which can arise is a phi node
+// starting one of the successor blocks. We also need to be able to insert the
+// gc.relocates only on the path which goes through the statepoint. We might
+// need to split an edge to make this possible.
+static BasicBlock *
+normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
+ DominatorTree &DT) {
+ BasicBlock *Ret = BB;
+ if (!BB->getUniquePredecessor())
+ Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
+
+ // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
+ // from it
+ FoldSingleEntryPHINodes(Ret);
+ assert(!isa<PHINode>(Ret->begin()) &&
+ "All PHI nodes should have been removed!");
+
+ // At this point, we can safely insert a gc.relocate or gc.result as the first
+ // instruction in Ret if needed.
+ return Ret;
+}
+
+// Create new attribute set containing only attributes which can be transferred
+// from original call to the safepoint.
+static AttributeList legalizeCallAttributes(AttributeList AL) {
+ if (AL.isEmpty())
+ return AL;
+
+ // Remove the readonly, readnone, and statepoint function attributes.
+ AttrBuilder FnAttrs = AL.getFnAttributes();
+ FnAttrs.removeAttribute(Attribute::ReadNone);
+ FnAttrs.removeAttribute(Attribute::ReadOnly);
+ for (Attribute A : AL.getFnAttributes()) {
+ if (isStatepointDirectiveAttr(A))
+ FnAttrs.remove(A);
+ }
+
+ // Just skip parameter and return attributes for now
+ LLVMContext &Ctx = AL.getContext();
+ return AttributeList::get(Ctx, AttributeList::FunctionIndex,
+ AttributeSet::get(Ctx, FnAttrs));
+}
+
+/// Helper function to place all gc relocates necessary for the given
+/// statepoint.
+/// Inputs:
+/// liveVariables - list of variables to be relocated.
+/// liveStart - index of the first live variable.
+/// basePtrs - base pointers.
+/// statepointToken - statepoint instruction to which relocates should be
+/// bound.
+/// Builder - Llvm IR builder to be used to construct new calls.
+static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
+ const int LiveStart,
+ ArrayRef<Value *> BasePtrs,
+ Instruction *StatepointToken,
+ IRBuilder<> Builder) {
+ if (LiveVariables.empty())
+ return;
+
+ auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
+ auto ValIt = llvm::find(LiveVec, Val);
+ assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
+ size_t Index = std::distance(LiveVec.begin(), ValIt);
+ assert(Index < LiveVec.size() && "Bug in std::find?");
+ return Index;
+ };
+ Module *M = StatepointToken->getModule();
+
+ // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
+ // element type is i8 addrspace(1)*). We originally generated unique
+ // declarations for each pointer type, but this proved problematic because
+ // the intrinsic mangling code is incomplete and fragile. Since we're moving
+ // towards a single unified pointer type anyways, we can just cast everything
+ // to an i8* of the right address space. A bitcast is added later to convert
+ // gc_relocate to the actual value's type.
+ auto getGCRelocateDecl = [&] (Type *Ty) {
+ assert(isHandledGCPointerType(Ty));
+ auto AS = Ty->getScalarType()->getPointerAddressSpace();
+ Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
+ if (auto *VT = dyn_cast<VectorType>(Ty))
+ NewTy = VectorType::get(NewTy, VT->getNumElements());
+ return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
+ {NewTy});
+ };
+
+ // Lazily populated map from input types to the canonicalized form mentioned
+ // in the comment above. This should probably be cached somewhere more
+ // broadly.
+ DenseMap<Type *, Function *> TypeToDeclMap;
+
+ for (unsigned i = 0; i < LiveVariables.size(); i++) {
+ // Generate the gc.relocate call and save the result
+ Value *BaseIdx =
+ Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
+ Value *LiveIdx = Builder.getInt32(LiveStart + i);
+
+ Type *Ty = LiveVariables[i]->getType();
+ if (!TypeToDeclMap.count(Ty))
+ TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
+ Function *GCRelocateDecl = TypeToDeclMap[Ty];
+
+ // only specify a debug name if we can give a useful one
+ CallInst *Reloc = Builder.CreateCall(
+ GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
+ suffixed_name_or(LiveVariables[i], ".relocated", ""));
+ // Trick CodeGen into thinking there are lots of free registers at this
+ // fake call.
+ Reloc->setCallingConv(CallingConv::Cold);
+ }
+}
+
+namespace {
+
+/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
+/// avoids having to worry about keeping around dangling pointers to Values.
+class DeferredReplacement {
+ AssertingVH<Instruction> Old;
+ AssertingVH<Instruction> New;
+ bool IsDeoptimize = false;
+
+ DeferredReplacement() = default;
+
+public:
+ static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
+ assert(Old != New && Old && New &&
+ "Cannot RAUW equal values or to / from null!");
+
+ DeferredReplacement D;
+ D.Old = Old;
+ D.New = New;
+ return D;
+ }
+
+ static DeferredReplacement createDelete(Instruction *ToErase) {
+ DeferredReplacement D;
+ D.Old = ToErase;
+ return D;
+ }
+
+ static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
+#ifndef NDEBUG
+ auto *F = cast<CallInst>(Old)->getCalledFunction();
+ assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
+ "Only way to construct a deoptimize deferred replacement");
+#endif
+ DeferredReplacement D;
+ D.Old = Old;
+ D.IsDeoptimize = true;
+ return D;
+ }
+
+ /// Does the task represented by this instance.
+ void doReplacement() {
+ Instruction *OldI = Old;
+ Instruction *NewI = New;
+
+ assert(OldI != NewI && "Disallowed at construction?!");
+ assert((!IsDeoptimize || !New) &&
+ "Deoptimize intrinsics are not replaced!");
+
+ Old = nullptr;
+ New = nullptr;
+
+ if (NewI)
+ OldI->replaceAllUsesWith(NewI);
+
+ if (IsDeoptimize) {
+ // Note: we've inserted instructions, so the call to llvm.deoptimize may
+ // not necessarily be followed by the matching return.
+ auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
+ new UnreachableInst(RI->getContext(), RI);
+ RI->eraseFromParent();
+ }
+
+ OldI->eraseFromParent();
+ }
+};
+
+} // end anonymous namespace
+
+static StringRef getDeoptLowering(CallBase *Call) {
+ const char *DeoptLowering = "deopt-lowering";
+ if (Call->hasFnAttr(DeoptLowering)) {
+ // FIXME: Calls have a *really* confusing interface around attributes
+ // with values.
+ const AttributeList &CSAS = Call->getAttributes();
+ if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
+ return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
+ .getValueAsString();
+ Function *F = Call->getCalledFunction();
+ assert(F && F->hasFnAttribute(DeoptLowering));
+ return F->getFnAttribute(DeoptLowering).getValueAsString();
+ }
+ return "live-through";
+}
+
+static void
+makeStatepointExplicitImpl(CallBase *Call, /* to replace */
+ const SmallVectorImpl<Value *> &BasePtrs,
+ const SmallVectorImpl<Value *> &LiveVariables,
+ PartiallyConstructedSafepointRecord &Result,
+ std::vector<DeferredReplacement> &Replacements) {
+ assert(BasePtrs.size() == LiveVariables.size());
+
+ // Then go ahead and use the builder do actually do the inserts. We insert
+ // immediately before the previous instruction under the assumption that all
+ // arguments will be available here. We can't insert afterwards since we may
+ // be replacing a terminator.
+ IRBuilder<> Builder(Call);
+
+ ArrayRef<Value *> GCArgs(LiveVariables);
+ uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
+ uint32_t NumPatchBytes = 0;
+ uint32_t Flags = uint32_t(StatepointFlags::None);
+
+ ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
+ ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
+ ArrayRef<Use> TransitionArgs;
+ if (auto TransitionBundle =
+ Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
+ Flags |= uint32_t(StatepointFlags::GCTransition);
+ TransitionArgs = TransitionBundle->Inputs;
+ }
+
+ // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
+ // with a return value, we lower then as never returning calls to
+ // __llvm_deoptimize that are followed by unreachable to get better codegen.
+ bool IsDeoptimize = false;
+
+ StatepointDirectives SD =
+ parseStatepointDirectivesFromAttrs(Call->getAttributes());
+ if (SD.NumPatchBytes)
+ NumPatchBytes = *SD.NumPatchBytes;
+ if (SD.StatepointID)
+ StatepointID = *SD.StatepointID;
+
+ // Pass through the requested lowering if any. The default is live-through.
+ StringRef DeoptLowering = getDeoptLowering(Call);
+ if (DeoptLowering.equals("live-in"))
+ Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
+ else {
+ assert(DeoptLowering.equals("live-through") && "Unsupported value!");
+ }
+
+ Value *CallTarget = Call->getCalledValue();
+ if (Function *F = dyn_cast<Function>(CallTarget)) {
+ if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
+ // Calls to llvm.experimental.deoptimize are lowered to calls to the
+ // __llvm_deoptimize symbol. We want to resolve this now, since the
+ // verifier does not allow taking the address of an intrinsic function.
+
+ SmallVector<Type *, 8> DomainTy;
+ for (Value *Arg : CallArgs)
+ DomainTy.push_back(Arg->getType());
+ auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
+ /* isVarArg = */ false);
+
+ // Note: CallTarget can be a bitcast instruction of a symbol if there are
+ // calls to @llvm.experimental.deoptimize with different argument types in
+ // the same module. This is fine -- we assume the frontend knew what it
+ // was doing when generating this kind of IR.
+ CallTarget = F->getParent()
+ ->getOrInsertFunction("__llvm_deoptimize", FTy)
+ .getCallee();
+
+ IsDeoptimize = true;
+ }
+ }
+
+ // Create the statepoint given all the arguments
+ Instruction *Token = nullptr;
+ if (auto *CI = dyn_cast<CallInst>(Call)) {
+ CallInst *SPCall = Builder.CreateGCStatepointCall(
+ StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
+ TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
+
+ SPCall->setTailCallKind(CI->getTailCallKind());
+ SPCall->setCallingConv(CI->getCallingConv());
+
+ // Currently we will fail on parameter attributes and on certain
+ // function attributes. In case if we can handle this set of attributes -
+ // set up function attrs directly on statepoint and return attrs later for
+ // gc_result intrinsic.
+ SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
+
+ Token = SPCall;
+
+ // Put the following gc_result and gc_relocate calls immediately after the
+ // the old call (which we're about to delete)
+ assert(CI->getNextNode() && "Not a terminator, must have next!");
+ Builder.SetInsertPoint(CI->getNextNode());
+ Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
+ } else {
+ auto *II = cast<InvokeInst>(Call);
+
+ // Insert the new invoke into the old block. We'll remove the old one in a
+ // moment at which point this will become the new terminator for the
+ // original block.
+ InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
+ StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
+ II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
+ "statepoint_token");
+
+ SPInvoke->setCallingConv(II->getCallingConv());
+
+ // Currently we will fail on parameter attributes and on certain
+ // function attributes. In case if we can handle this set of attributes -
+ // set up function attrs directly on statepoint and return attrs later for
+ // gc_result intrinsic.
+ SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
+
+ Token = SPInvoke;
+
+ // Generate gc relocates in exceptional path
+ BasicBlock *UnwindBlock = II->getUnwindDest();
+ assert(!isa<PHINode>(UnwindBlock->begin()) &&
+ UnwindBlock->getUniquePredecessor() &&
+ "can't safely insert in this block!");
+
+ Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
+ Builder.SetCurrentDebugLocation(II->getDebugLoc());
+
+ // Attach exceptional gc relocates to the landingpad.
+ Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
+ Result.UnwindToken = ExceptionalToken;
+
+ const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
+ CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
+ Builder);
+
+ // Generate gc relocates and returns for normal block
+ BasicBlock *NormalDest = II->getNormalDest();
+ assert(!isa<PHINode>(NormalDest->begin()) &&
+ NormalDest->getUniquePredecessor() &&
+ "can't safely insert in this block!");
+
+ Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
+
+ // gc relocates will be generated later as if it were regular call
+ // statepoint
+ }
+ assert(Token && "Should be set in one of the above branches!");
+
+ if (IsDeoptimize) {
+ // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
+ // transform the tail-call like structure to a call to a void function
+ // followed by unreachable to get better codegen.
+ Replacements.push_back(
+ DeferredReplacement::createDeoptimizeReplacement(Call));
+ } else {
+ Token->setName("statepoint_token");
+ if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
+ StringRef Name = Call->hasName() ? Call->getName() : "";
+ CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
+ GCResult->setAttributes(
+ AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
+ Call->getAttributes().getRetAttributes()));
+
+ // We cannot RAUW or delete CS.getInstruction() because it could be in the
+ // live set of some other safepoint, in which case that safepoint's
+ // PartiallyConstructedSafepointRecord will hold a raw pointer to this
+ // llvm::Instruction. Instead, we defer the replacement and deletion to
+ // after the live sets have been made explicit in the IR, and we no longer
+ // have raw pointers to worry about.
+ Replacements.emplace_back(
+ DeferredReplacement::createRAUW(Call, GCResult));
+ } else {
+ Replacements.emplace_back(DeferredReplacement::createDelete(Call));
+ }
+ }
+
+ Result.StatepointToken = Token;
+
+ // Second, create a gc.relocate for every live variable
+ const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
+ CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
+}
+
+// Replace an existing gc.statepoint with a new one and a set of gc.relocates
+// which make the relocations happening at this safepoint explicit.
+//
+// WARNING: Does not do any fixup to adjust users of the original live
+// values. That's the callers responsibility.
+static void
+makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
+ PartiallyConstructedSafepointRecord &Result,
+ std::vector<DeferredReplacement> &Replacements) {
+ const auto &LiveSet = Result.LiveSet;
+ const auto &PointerToBase = Result.PointerToBase;
+
+ // Convert to vector for efficient cross referencing.
+ SmallVector<Value *, 64> BaseVec, LiveVec;
+ LiveVec.reserve(LiveSet.size());
+ BaseVec.reserve(LiveSet.size());
+ for (Value *L : LiveSet) {
+ LiveVec.push_back(L);
+ assert(PointerToBase.count(L));
+ Value *Base = PointerToBase.find(L)->second;
+ BaseVec.push_back(Base);
+ }
+ assert(LiveVec.size() == BaseVec.size());
+
+ // Do the actual rewriting and delete the old statepoint
+ makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
+}
+
+// Helper function for the relocationViaAlloca.
+//
+// It receives iterator to the statepoint gc relocates and emits a store to the
+// assigned location (via allocaMap) for the each one of them. It adds the
+// visited values into the visitedLiveValues set, which we will later use them
+// for sanity checking.
+static void
+insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
+ DenseMap<Value *, AllocaInst *> &AllocaMap,
+ DenseSet<Value *> &VisitedLiveValues) {
+ for (User *U : GCRelocs) {
+ GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
+ if (!Relocate)
+ continue;
+
+ Value *OriginalValue = Relocate->getDerivedPtr();
+ assert(AllocaMap.count(OriginalValue));
+ Value *Alloca = AllocaMap[OriginalValue];
+
+ // Emit store into the related alloca
+ // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
+ // the correct type according to alloca.
+ assert(Relocate->getNextNode() &&
+ "Should always have one since it's not a terminator");
+ IRBuilder<> Builder(Relocate->getNextNode());
+ Value *CastedRelocatedValue =
+ Builder.CreateBitCast(Relocate,
+ cast<AllocaInst>(Alloca)->getAllocatedType(),
+ suffixed_name_or(Relocate, ".casted", ""));
+
+ StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
+ Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
+
+#ifndef NDEBUG
+ VisitedLiveValues.insert(OriginalValue);
+#endif
+ }
+}
+
+// Helper function for the "relocationViaAlloca". Similar to the
+// "insertRelocationStores" but works for rematerialized values.
+static void insertRematerializationStores(
+ const RematerializedValueMapTy &RematerializedValues,
+ DenseMap<Value *, AllocaInst *> &AllocaMap,
+ DenseSet<Value *> &VisitedLiveValues) {
+ for (auto RematerializedValuePair: RematerializedValues) {
+ Instruction *RematerializedValue = RematerializedValuePair.first;
+ Value *OriginalValue = RematerializedValuePair.second;
+
+ assert(AllocaMap.count(OriginalValue) &&
+ "Can not find alloca for rematerialized value");
+ Value *Alloca = AllocaMap[OriginalValue];
+
+ StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
+ Store->insertAfter(RematerializedValue);
+
+#ifndef NDEBUG
+ VisitedLiveValues.insert(OriginalValue);
+#endif
+ }
+}
+
+/// Do all the relocation update via allocas and mem2reg
+static void relocationViaAlloca(
+ Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
+ ArrayRef<PartiallyConstructedSafepointRecord> Records) {
+#ifndef NDEBUG
+ // record initial number of (static) allocas; we'll check we have the same
+ // number when we get done.
+ int InitialAllocaNum = 0;
+ for (Instruction &I : F.getEntryBlock())
+ if (isa<AllocaInst>(I))
+ InitialAllocaNum++;
+#endif
+
+ // TODO-PERF: change data structures, reserve
+ DenseMap<Value *, AllocaInst *> AllocaMap;
+ SmallVector<AllocaInst *, 200> PromotableAllocas;
+ // Used later to chack that we have enough allocas to store all values
+ std::size_t NumRematerializedValues = 0;
+ PromotableAllocas.reserve(Live.size());
+
+ // Emit alloca for "LiveValue" and record it in "allocaMap" and
+ // "PromotableAllocas"
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ auto emitAllocaFor = [&](Value *LiveValue) {
+ AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
+ DL.getAllocaAddrSpace(), "",
+ F.getEntryBlock().getFirstNonPHI());
+ AllocaMap[LiveValue] = Alloca;
+ PromotableAllocas.push_back(Alloca);
+ };
+
+ // Emit alloca for each live gc pointer
+ for (Value *V : Live)
+ emitAllocaFor(V);
+
+ // Emit allocas for rematerialized values
+ for (const auto &Info : Records)
+ for (auto RematerializedValuePair : Info.RematerializedValues) {
+ Value *OriginalValue = RematerializedValuePair.second;
+ if (AllocaMap.count(OriginalValue) != 0)
+ continue;
+
+ emitAllocaFor(OriginalValue);
+ ++NumRematerializedValues;
+ }
+
+ // The next two loops are part of the same conceptual operation. We need to
+ // insert a store to the alloca after the original def and at each
+ // redefinition. We need to insert a load before each use. These are split
+ // into distinct loops for performance reasons.
+
+ // Update gc pointer after each statepoint: either store a relocated value or
+ // null (if no relocated value was found for this gc pointer and it is not a
+ // gc_result). This must happen before we update the statepoint with load of
+ // alloca otherwise we lose the link between statepoint and old def.
+ for (const auto &Info : Records) {
+ Value *Statepoint = Info.StatepointToken;
+
+ // This will be used for consistency check
+ DenseSet<Value *> VisitedLiveValues;
+
+ // Insert stores for normal statepoint gc relocates
+ insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
+
+ // In case if it was invoke statepoint
+ // we will insert stores for exceptional path gc relocates.
+ if (isa<InvokeInst>(Statepoint)) {
+ insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
+ VisitedLiveValues);
+ }
+
+ // Do similar thing with rematerialized values
+ insertRematerializationStores(Info.RematerializedValues, AllocaMap,
+ VisitedLiveValues);
+
+ if (ClobberNonLive) {
+ // As a debugging aid, pretend that an unrelocated pointer becomes null at
+ // the gc.statepoint. This will turn some subtle GC problems into
+ // slightly easier to debug SEGVs. Note that on large IR files with
+ // lots of gc.statepoints this is extremely costly both memory and time
+ // wise.
+ SmallVector<AllocaInst *, 64> ToClobber;
+ for (auto Pair : AllocaMap) {
+ Value *Def = Pair.first;
+ AllocaInst *Alloca = Pair.second;
+
+ // This value was relocated
+ if (VisitedLiveValues.count(Def)) {
+ continue;
+ }
+ ToClobber.push_back(Alloca);
+ }
+
+ auto InsertClobbersAt = [&](Instruction *IP) {
+ for (auto *AI : ToClobber) {
+ auto PT = cast<PointerType>(AI->getAllocatedType());
+ Constant *CPN = ConstantPointerNull::get(PT);
+ StoreInst *Store = new StoreInst(CPN, AI);
+ Store->insertBefore(IP);
+ }
+ };
+
+ // Insert the clobbering stores. These may get intermixed with the
+ // gc.results and gc.relocates, but that's fine.
+ if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
+ InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
+ InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
+ } else {
+ InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
+ }
+ }
+ }
+
+ // Update use with load allocas and add store for gc_relocated.
+ for (auto Pair : AllocaMap) {
+ Value *Def = Pair.first;
+ AllocaInst *Alloca = Pair.second;
+
+ // We pre-record the uses of allocas so that we dont have to worry about
+ // later update that changes the user information..
+
+ SmallVector<Instruction *, 20> Uses;
+ // PERF: trade a linear scan for repeated reallocation
+ Uses.reserve(Def->getNumUses());
+ for (User *U : Def->users()) {
+ if (!isa<ConstantExpr>(U)) {
+ // If the def has a ConstantExpr use, then the def is either a
+ // ConstantExpr use itself or null. In either case
+ // (recursively in the first, directly in the second), the oop
+ // it is ultimately dependent on is null and this particular
+ // use does not need to be fixed up.
+ Uses.push_back(cast<Instruction>(U));
+ }
+ }
+
+ llvm::sort(Uses);
+ auto Last = std::unique(Uses.begin(), Uses.end());
+ Uses.erase(Last, Uses.end());
+
+ for (Instruction *Use : Uses) {
+ if (isa<PHINode>(Use)) {
+ PHINode *Phi = cast<PHINode>(Use);
+ for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
+ if (Def == Phi->getIncomingValue(i)) {
+ LoadInst *Load =
+ new LoadInst(Alloca->getAllocatedType(), Alloca, "",
+ Phi->getIncomingBlock(i)->getTerminator());
+ Phi->setIncomingValue(i, Load);
+ }
+ }
+ } else {
+ LoadInst *Load =
+ new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
+ Use->replaceUsesOfWith(Def, Load);
+ }
+ }
+
+ // Emit store for the initial gc value. Store must be inserted after load,
+ // otherwise store will be in alloca's use list and an extra load will be
+ // inserted before it.
+ StoreInst *Store = new StoreInst(Def, Alloca);
+ if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
+ if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
+ // InvokeInst is a terminator so the store need to be inserted into its
+ // normal destination block.
+ BasicBlock *NormalDest = Invoke->getNormalDest();
+ Store->insertBefore(NormalDest->getFirstNonPHI());
+ } else {
+ assert(!Inst->isTerminator() &&
+ "The only terminator that can produce a value is "
+ "InvokeInst which is handled above.");
+ Store->insertAfter(Inst);
+ }
+ } else {
+ assert(isa<Argument>(Def));
+ Store->insertAfter(cast<Instruction>(Alloca));
+ }
+ }
+
+ assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
+ "we must have the same allocas with lives");
+ if (!PromotableAllocas.empty()) {
+ // Apply mem2reg to promote alloca to SSA
+ PromoteMemToReg(PromotableAllocas, DT);
+ }
+
+#ifndef NDEBUG
+ for (auto &I : F.getEntryBlock())
+ if (isa<AllocaInst>(I))
+ InitialAllocaNum--;
+ assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
+#endif
+}
+
+/// Implement a unique function which doesn't require we sort the input
+/// vector. Doing so has the effect of changing the output of a couple of
+/// tests in ways which make them less useful in testing fused safepoints.
+template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
+ SmallSet<T, 8> Seen;
+ Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
+ Vec.end());
+}
+
+/// Insert holders so that each Value is obviously live through the entire
+/// lifetime of the call.
+static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
+ SmallVectorImpl<CallInst *> &Holders) {
+ if (Values.empty())
+ // No values to hold live, might as well not insert the empty holder
+ return;
+
+ Module *M = Call->getModule();
+ // Use a dummy vararg function to actually hold the values live
+ FunctionCallee Func = M->getOrInsertFunction(
+ "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
+ if (isa<CallInst>(Call)) {
+ // For call safepoints insert dummy calls right after safepoint
+ Holders.push_back(
+ CallInst::Create(Func, Values, "", &*++Call->getIterator()));
+ return;
+ }
+ // For invoke safepooints insert dummy calls both in normal and
+ // exceptional destination blocks
+ auto *II = cast<InvokeInst>(Call);
+ Holders.push_back(CallInst::Create(
+ Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
+ Holders.push_back(CallInst::Create(
+ Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
+}
+
+static void findLiveReferences(
+ Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
+ MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
+ GCPtrLivenessData OriginalLivenessData;
+ computeLiveInValues(DT, F, OriginalLivenessData);
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
+ }
+}
+
+// Helper function for the "rematerializeLiveValues". It walks use chain
+// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
+// the base or a value it cannot process. Only "simple" values are processed
+// (currently it is GEP's and casts). The returned root is examined by the
+// callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
+// with all visited values.
+static Value* findRematerializableChainToBasePointer(
+ SmallVectorImpl<Instruction*> &ChainToBase,
+ Value *CurrentValue) {
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
+ ChainToBase.push_back(GEP);
+ return findRematerializableChainToBasePointer(ChainToBase,
+ GEP->getPointerOperand());
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
+ if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
+ return CI;
+
+ ChainToBase.push_back(CI);
+ return findRematerializableChainToBasePointer(ChainToBase,
+ CI->getOperand(0));
+ }
+
+ // We have reached the root of the chain, which is either equal to the base or
+ // is the first unsupported value along the use chain.
+ return CurrentValue;
+}
+
+// Helper function for the "rematerializeLiveValues". Compute cost of the use
+// chain we are going to rematerialize.
+static unsigned
+chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
+ TargetTransformInfo &TTI) {
+ unsigned Cost = 0;
+
+ for (Instruction *Instr : Chain) {
+ if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
+ assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
+ "non noop cast is found during rematerialization");
+
+ Type *SrcTy = CI->getOperand(0)->getType();
+ Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
+
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
+ // Cost of the address calculation
+ Type *ValTy = GEP->getSourceElementType();
+ Cost += TTI.getAddressComputationCost(ValTy);
+
+ // And cost of the GEP itself
+ // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
+ // allowed for the external usage)
+ if (!GEP->hasAllConstantIndices())
+ Cost += 2;
+
+ } else {
+ llvm_unreachable("unsupported instruction type during rematerialization");
+ }
+ }
+
+ return Cost;
+}
+
+static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
+ unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
+ if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
+ OrigRootPhi.getParent() != AlternateRootPhi.getParent())
+ return false;
+ // Map of incoming values and their corresponding basic blocks of
+ // OrigRootPhi.
+ SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
+ for (unsigned i = 0; i < PhiNum; i++)
+ CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
+ OrigRootPhi.getIncomingBlock(i);
+
+ // Both current and base PHIs should have same incoming values and
+ // the same basic blocks corresponding to the incoming values.
+ for (unsigned i = 0; i < PhiNum; i++) {
+ auto CIVI =
+ CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
+ if (CIVI == CurrentIncomingValues.end())
+ return false;
+ BasicBlock *CurrentIncomingBB = CIVI->second;
+ if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
+ return false;
+ }
+ return true;
+}
+
+// From the statepoint live set pick values that are cheaper to recompute then
+// to relocate. Remove this values from the live set, rematerialize them after
+// statepoint and record them in "Info" structure. Note that similar to
+// relocated values we don't do any user adjustments here.
+static void rematerializeLiveValues(CallBase *Call,
+ PartiallyConstructedSafepointRecord &Info,
+ TargetTransformInfo &TTI) {
+ const unsigned int ChainLengthThreshold = 10;
+
+ // Record values we are going to delete from this statepoint live set.
+ // We can not di this in following loop due to iterator invalidation.
+ SmallVector<Value *, 32> LiveValuesToBeDeleted;
+
+ for (Value *LiveValue: Info.LiveSet) {
+ // For each live pointer find its defining chain
+ SmallVector<Instruction *, 3> ChainToBase;
+ assert(Info.PointerToBase.count(LiveValue));
+ Value *RootOfChain =
+ findRematerializableChainToBasePointer(ChainToBase,
+ LiveValue);
+
+ // Nothing to do, or chain is too long
+ if ( ChainToBase.size() == 0 ||
+ ChainToBase.size() > ChainLengthThreshold)
+ continue;
+
+ // Handle the scenario where the RootOfChain is not equal to the
+ // Base Value, but they are essentially the same phi values.
+ if (RootOfChain != Info.PointerToBase[LiveValue]) {
+ PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
+ PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
+ if (!OrigRootPhi || !AlternateRootPhi)
+ continue;
+ // PHI nodes that have the same incoming values, and belonging to the same
+ // basic blocks are essentially the same SSA value. When the original phi
+ // has incoming values with different base pointers, the original phi is
+ // marked as conflict, and an additional `AlternateRootPhi` with the same
+ // incoming values get generated by the findBasePointer function. We need
+ // to identify the newly generated AlternateRootPhi (.base version of phi)
+ // and RootOfChain (the original phi node itself) are the same, so that we
+ // can rematerialize the gep and casts. This is a workaround for the
+ // deficiency in the findBasePointer algorithm.
+ if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
+ continue;
+ // Now that the phi nodes are proved to be the same, assert that
+ // findBasePointer's newly generated AlternateRootPhi is present in the
+ // liveset of the call.
+ assert(Info.LiveSet.count(AlternateRootPhi));
+ }
+ // Compute cost of this chain
+ unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
+ // TODO: We can also account for cases when we will be able to remove some
+ // of the rematerialized values by later optimization passes. I.e if
+ // we rematerialized several intersecting chains. Or if original values
+ // don't have any uses besides this statepoint.
+
+ // For invokes we need to rematerialize each chain twice - for normal and
+ // for unwind basic blocks. Model this by multiplying cost by two.
+ if (isa<InvokeInst>(Call)) {
+ Cost *= 2;
+ }
+ // If it's too expensive - skip it
+ if (Cost >= RematerializationThreshold)
+ continue;
+
+ // Remove value from the live set
+ LiveValuesToBeDeleted.push_back(LiveValue);
+
+ // Clone instructions and record them inside "Info" structure
+
+ // Walk backwards to visit top-most instructions first
+ std::reverse(ChainToBase.begin(), ChainToBase.end());
+
+ // Utility function which clones all instructions from "ChainToBase"
+ // and inserts them before "InsertBefore". Returns rematerialized value
+ // which should be used after statepoint.
+ auto rematerializeChain = [&ChainToBase](
+ Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
+ Instruction *LastClonedValue = nullptr;
+ Instruction *LastValue = nullptr;
+ for (Instruction *Instr: ChainToBase) {
+ // Only GEP's and casts are supported as we need to be careful to not
+ // introduce any new uses of pointers not in the liveset.
+ // Note that it's fine to introduce new uses of pointers which were
+ // otherwise not used after this statepoint.
+ assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
+
+ Instruction *ClonedValue = Instr->clone();
+ ClonedValue->insertBefore(InsertBefore);
+ ClonedValue->setName(Instr->getName() + ".remat");
+
+ // If it is not first instruction in the chain then it uses previously
+ // cloned value. We should update it to use cloned value.
+ if (LastClonedValue) {
+ assert(LastValue);
+ ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
+#ifndef NDEBUG
+ for (auto OpValue : ClonedValue->operand_values()) {
+ // Assert that cloned instruction does not use any instructions from
+ // this chain other than LastClonedValue
+ assert(!is_contained(ChainToBase, OpValue) &&
+ "incorrect use in rematerialization chain");
+ // Assert that the cloned instruction does not use the RootOfChain
+ // or the AlternateLiveBase.
+ assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
+ }
+#endif
+ } else {
+ // For the first instruction, replace the use of unrelocated base i.e.
+ // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
+ // live set. They have been proved to be the same PHI nodes. Note
+ // that the *only* use of the RootOfChain in the ChainToBase list is
+ // the first Value in the list.
+ if (RootOfChain != AlternateLiveBase)
+ ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
+ }
+
+ LastClonedValue = ClonedValue;
+ LastValue = Instr;
+ }
+ assert(LastClonedValue);
+ return LastClonedValue;
+ };
+
+ // Different cases for calls and invokes. For invokes we need to clone
+ // instructions both on normal and unwind path.
+ if (isa<CallInst>(Call)) {
+ Instruction *InsertBefore = Call->getNextNode();
+ assert(InsertBefore);
+ Instruction *RematerializedValue = rematerializeChain(
+ InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
+ Info.RematerializedValues[RematerializedValue] = LiveValue;
+ } else {
+ auto *Invoke = cast<InvokeInst>(Call);
+
+ Instruction *NormalInsertBefore =
+ &*Invoke->getNormalDest()->getFirstInsertionPt();
+ Instruction *UnwindInsertBefore =
+ &*Invoke->getUnwindDest()->getFirstInsertionPt();
+
+ Instruction *NormalRematerializedValue = rematerializeChain(
+ NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
+ Instruction *UnwindRematerializedValue = rematerializeChain(
+ UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
+
+ Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
+ Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
+ }
+ }
+
+ // Remove rematerializaed values from the live set
+ for (auto LiveValue: LiveValuesToBeDeleted) {
+ Info.LiveSet.remove(LiveValue);
+ }
+}
+
+static bool insertParsePoints(Function &F, DominatorTree &DT,
+ TargetTransformInfo &TTI,
+ SmallVectorImpl<CallBase *> &ToUpdate) {
+#ifndef NDEBUG
+ // sanity check the input
+ std::set<CallBase *> Uniqued;
+ Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
+ assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
+
+ for (CallBase *Call : ToUpdate)
+ assert(Call->getFunction() == &F);
+#endif
+
+ // When inserting gc.relocates for invokes, we need to be able to insert at
+ // the top of the successor blocks. See the comment on
+ // normalForInvokeSafepoint on exactly what is needed. Note that this step
+ // may restructure the CFG.
+ for (CallBase *Call : ToUpdate) {
+ auto *II = dyn_cast<InvokeInst>(Call);
+ if (!II)
+ continue;
+ normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
+ normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
+ }
+
+ // A list of dummy calls added to the IR to keep various values obviously
+ // live in the IR. We'll remove all of these when done.
+ SmallVector<CallInst *, 64> Holders;
+
+ // Insert a dummy call with all of the deopt operands we'll need for the
+ // actual safepoint insertion as arguments. This ensures reference operands
+ // in the deopt argument list are considered live through the safepoint (and
+ // thus makes sure they get relocated.)
+ for (CallBase *Call : ToUpdate) {
+ SmallVector<Value *, 64> DeoptValues;
+
+ for (Value *Arg : GetDeoptBundleOperands(Call)) {
+ assert(!isUnhandledGCPointerType(Arg->getType()) &&
+ "support for FCA unimplemented");
+ if (isHandledGCPointerType(Arg->getType()))
+ DeoptValues.push_back(Arg);
+ }
+
+ insertUseHolderAfter(Call, DeoptValues, Holders);
+ }
+
+ SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
+
+ // A) Identify all gc pointers which are statically live at the given call
+ // site.
+ findLiveReferences(F, DT, ToUpdate, Records);
+
+ // B) Find the base pointers for each live pointer
+ /* scope for caching */ {
+ // Cache the 'defining value' relation used in the computation and
+ // insertion of base phis and selects. This ensures that we don't insert
+ // large numbers of duplicate base_phis.
+ DefiningValueMapTy DVCache;
+
+ for (size_t i = 0; i < Records.size(); i++) {
+ PartiallyConstructedSafepointRecord &info = Records[i];
+ findBasePointers(DT, DVCache, ToUpdate[i], info);
+ }
+ } // end of cache scope
+
+ // The base phi insertion logic (for any safepoint) may have inserted new
+ // instructions which are now live at some safepoint. The simplest such
+ // example is:
+ // loop:
+ // phi a <-- will be a new base_phi here
+ // safepoint 1 <-- that needs to be live here
+ // gep a + 1
+ // safepoint 2
+ // br loop
+ // We insert some dummy calls after each safepoint to definitely hold live
+ // the base pointers which were identified for that safepoint. We'll then
+ // ask liveness for _every_ base inserted to see what is now live. Then we
+ // remove the dummy calls.
+ Holders.reserve(Holders.size() + Records.size());
+ for (size_t i = 0; i < Records.size(); i++) {
+ PartiallyConstructedSafepointRecord &Info = Records[i];
+
+ SmallVector<Value *, 128> Bases;
+ for (auto Pair : Info.PointerToBase)
+ Bases.push_back(Pair.second);
+
+ insertUseHolderAfter(ToUpdate[i], Bases, Holders);
+ }
+
+ // By selecting base pointers, we've effectively inserted new uses. Thus, we
+ // need to rerun liveness. We may *also* have inserted new defs, but that's
+ // not the key issue.
+ recomputeLiveInValues(F, DT, ToUpdate, Records);
+
+ if (PrintBasePointers) {
+ for (auto &Info : Records) {
+ errs() << "Base Pairs: (w/Relocation)\n";
+ for (auto Pair : Info.PointerToBase) {
+ errs() << " derived ";
+ Pair.first->printAsOperand(errs(), false);
+ errs() << " base ";
+ Pair.second->printAsOperand(errs(), false);
+ errs() << "\n";
+ }
+ }
+ }
+
+ // It is possible that non-constant live variables have a constant base. For
+ // example, a GEP with a variable offset from a global. In this case we can
+ // remove it from the liveset. We already don't add constants to the liveset
+ // because we assume they won't move at runtime and the GC doesn't need to be
+ // informed about them. The same reasoning applies if the base is constant.
+ // Note that the relocation placement code relies on this filtering for
+ // correctness as it expects the base to be in the liveset, which isn't true
+ // if the base is constant.
+ for (auto &Info : Records)
+ for (auto &BasePair : Info.PointerToBase)
+ if (isa<Constant>(BasePair.second))
+ Info.LiveSet.remove(BasePair.first);
+
+ for (CallInst *CI : Holders)
+ CI->eraseFromParent();
+
+ Holders.clear();
+
+ // In order to reduce live set of statepoint we might choose to rematerialize
+ // some values instead of relocating them. This is purely an optimization and
+ // does not influence correctness.
+ for (size_t i = 0; i < Records.size(); i++)
+ rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
+
+ // We need this to safely RAUW and delete call or invoke return values that
+ // may themselves be live over a statepoint. For details, please see usage in
+ // makeStatepointExplicitImpl.
+ std::vector<DeferredReplacement> Replacements;
+
+ // Now run through and replace the existing statepoints with new ones with
+ // the live variables listed. We do not yet update uses of the values being
+ // relocated. We have references to live variables that need to
+ // survive to the last iteration of this loop. (By construction, the
+ // previous statepoint can not be a live variable, thus we can and remove
+ // the old statepoint calls as we go.)
+ for (size_t i = 0; i < Records.size(); i++)
+ makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
+
+ ToUpdate.clear(); // prevent accident use of invalid calls.
+
+ for (auto &PR : Replacements)
+ PR.doReplacement();
+
+ Replacements.clear();
+
+ for (auto &Info : Records) {
+ // These live sets may contain state Value pointers, since we replaced calls
+ // with operand bundles with calls wrapped in gc.statepoint, and some of
+ // those calls may have been def'ing live gc pointers. Clear these out to
+ // avoid accidentally using them.
+ //
+ // TODO: We should create a separate data structure that does not contain
+ // these live sets, and migrate to using that data structure from this point
+ // onward.
+ Info.LiveSet.clear();
+ Info.PointerToBase.clear();
+ }
+
+ // Do all the fixups of the original live variables to their relocated selves
+ SmallVector<Value *, 128> Live;
+ for (size_t i = 0; i < Records.size(); i++) {
+ PartiallyConstructedSafepointRecord &Info = Records[i];
+
+ // We can't simply save the live set from the original insertion. One of
+ // the live values might be the result of a call which needs a safepoint.
+ // That Value* no longer exists and we need to use the new gc_result.
+ // Thankfully, the live set is embedded in the statepoint (and updated), so
+ // we just grab that.
+ Statepoint Statepoint(Info.StatepointToken);
+ Live.insert(Live.end(), Statepoint.gc_args_begin(),
+ Statepoint.gc_args_end());
+#ifndef NDEBUG
+ // Do some basic sanity checks on our liveness results before performing
+ // relocation. Relocation can and will turn mistakes in liveness results
+ // into non-sensical code which is must harder to debug.
+ // TODO: It would be nice to test consistency as well
+ assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
+ "statepoint must be reachable or liveness is meaningless");
+ for (Value *V : Statepoint.gc_args()) {
+ if (!isa<Instruction>(V))
+ // Non-instruction values trivial dominate all possible uses
+ continue;
+ auto *LiveInst = cast<Instruction>(V);
+ assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
+ "unreachable values should never be live");
+ assert(DT.dominates(LiveInst, Info.StatepointToken) &&
+ "basic SSA liveness expectation violated by liveness analysis");
+ }
+#endif
+ }
+ unique_unsorted(Live);
+
+#ifndef NDEBUG
+ // sanity check
+ for (auto *Ptr : Live)
+ assert(isHandledGCPointerType(Ptr->getType()) &&
+ "must be a gc pointer type");
+#endif
+
+ relocationViaAlloca(F, DT, Live, Records);
+ return !Records.empty();
+}
+
+// Handles both return values and arguments for Functions and calls.
+template <typename AttrHolder>
+static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
+ unsigned Index) {
+ AttrBuilder R;
+ if (AH.getDereferenceableBytes(Index))
+ R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
+ AH.getDereferenceableBytes(Index)));
+ if (AH.getDereferenceableOrNullBytes(Index))
+ R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
+ AH.getDereferenceableOrNullBytes(Index)));
+ if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
+ R.addAttribute(Attribute::NoAlias);
+
+ if (!R.empty())
+ AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
+}
+
+static void stripNonValidAttributesFromPrototype(Function &F) {
+ LLVMContext &Ctx = F.getContext();
+
+ for (Argument &A : F.args())
+ if (isa<PointerType>(A.getType()))
+ RemoveNonValidAttrAtIndex(Ctx, F,
+ A.getArgNo() + AttributeList::FirstArgIndex);
+
+ if (isa<PointerType>(F.getReturnType()))
+ RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
+}
+
+/// Certain metadata on instructions are invalid after running RS4GC.
+/// Optimizations that run after RS4GC can incorrectly use this metadata to
+/// optimize functions. We drop such metadata on the instruction.
+static void stripInvalidMetadataFromInstruction(Instruction &I) {
+ if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
+ return;
+ // These are the attributes that are still valid on loads and stores after
+ // RS4GC.
+ // The metadata implying dereferenceability and noalias are (conservatively)
+ // dropped. This is because semantically, after RewriteStatepointsForGC runs,
+ // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
+ // touch the entire heap including noalias objects. Note: The reasoning is
+ // same as stripping the dereferenceability and noalias attributes that are
+ // analogous to the metadata counterparts.
+ // We also drop the invariant.load metadata on the load because that metadata
+ // implies the address operand to the load points to memory that is never
+ // changed once it became dereferenceable. This is no longer true after RS4GC.
+ // Similar reasoning applies to invariant.group metadata, which applies to
+ // loads within a group.
+ unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
+ LLVMContext::MD_range,
+ LLVMContext::MD_alias_scope,
+ LLVMContext::MD_nontemporal,
+ LLVMContext::MD_nonnull,
+ LLVMContext::MD_align,
+ LLVMContext::MD_type};
+
+ // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
+ I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
+}
+
+static void stripNonValidDataFromBody(Function &F) {
+ if (F.empty())
+ return;
+
+ LLVMContext &Ctx = F.getContext();
+ MDBuilder Builder(Ctx);
+
+ // Set of invariantstart instructions that we need to remove.
+ // Use this to avoid invalidating the instruction iterator.
+ SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
+
+ for (Instruction &I : instructions(F)) {
+ // invariant.start on memory location implies that the referenced memory
+ // location is constant and unchanging. This is no longer true after
+ // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
+ // which frees the entire heap and the presence of invariant.start allows
+ // the optimizer to sink the load of a memory location past a statepoint,
+ // which is incorrect.
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::invariant_start) {
+ InvariantStartInstructions.push_back(II);
+ continue;
+ }
+
+ if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
+ MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
+ I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
+ }
+
+ stripInvalidMetadataFromInstruction(I);
+
+ if (auto *Call = dyn_cast<CallBase>(&I)) {
+ for (int i = 0, e = Call->arg_size(); i != e; i++)
+ if (isa<PointerType>(Call->getArgOperand(i)->getType()))
+ RemoveNonValidAttrAtIndex(Ctx, *Call,
+ i + AttributeList::FirstArgIndex);
+ if (isa<PointerType>(Call->getType()))
+ RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
+ }
+ }
+
+ // Delete the invariant.start instructions and RAUW undef.
+ for (auto *II : InvariantStartInstructions) {
+ II->replaceAllUsesWith(UndefValue::get(II->getType()));
+ II->eraseFromParent();
+ }
+}
+
+/// Returns true if this function should be rewritten by this pass. The main
+/// point of this function is as an extension point for custom logic.
+static bool shouldRewriteStatepointsIn(Function &F) {
+ // TODO: This should check the GCStrategy
+ if (F.hasGC()) {
+ const auto &FunctionGCName = F.getGC();
+ const StringRef StatepointExampleName("statepoint-example");
+ const StringRef CoreCLRName("coreclr");
+ return (StatepointExampleName == FunctionGCName) ||
+ (CoreCLRName == FunctionGCName);
+ } else
+ return false;
+}
+
+static void stripNonValidData(Module &M) {
+#ifndef NDEBUG
+ assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
+#endif
+
+ for (Function &F : M)
+ stripNonValidAttributesFromPrototype(F);
+
+ for (Function &F : M)
+ stripNonValidDataFromBody(F);
+}
+
+bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
+ TargetTransformInfo &TTI,
+ const TargetLibraryInfo &TLI) {
+ assert(!F.isDeclaration() && !F.empty() &&
+ "need function body to rewrite statepoints in");
+ assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
+
+ auto NeedsRewrite = [&TLI](Instruction &I) {
+ if (const auto *Call = dyn_cast<CallBase>(&I))
+ return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
+ return false;
+ };
+
+ // Delete any unreachable statepoints so that we don't have unrewritten
+ // statepoints surviving this pass. This makes testing easier and the
+ // resulting IR less confusing to human readers.
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ bool MadeChange = removeUnreachableBlocks(F, &DTU);
+ // Flush the Dominator Tree.
+ DTU.getDomTree();
+
+ // Gather all the statepoints which need rewritten. Be careful to only
+ // consider those in reachable code since we need to ask dominance queries
+ // when rewriting. We'll delete the unreachable ones in a moment.
+ SmallVector<CallBase *, 64> ParsePointNeeded;
+ for (Instruction &I : instructions(F)) {
+ // TODO: only the ones with the flag set!
+ if (NeedsRewrite(I)) {
+ // NOTE removeUnreachableBlocks() is stronger than
+ // DominatorTree::isReachableFromEntry(). In other words
+ // removeUnreachableBlocks can remove some blocks for which
+ // isReachableFromEntry() returns true.
+ assert(DT.isReachableFromEntry(I.getParent()) &&
+ "no unreachable blocks expected");
+ ParsePointNeeded.push_back(cast<CallBase>(&I));
+ }
+ }
+
+ // Return early if no work to do.
+ if (ParsePointNeeded.empty())
+ return MadeChange;
+
+ // As a prepass, go ahead and aggressively destroy single entry phi nodes.
+ // These are created by LCSSA. They have the effect of increasing the size
+ // of liveness sets for no good reason. It may be harder to do this post
+ // insertion since relocations and base phis can confuse things.
+ for (BasicBlock &BB : F)
+ if (BB.getUniquePredecessor()) {
+ MadeChange = true;
+ FoldSingleEntryPHINodes(&BB);
+ }
+
+ // Before we start introducing relocations, we want to tweak the IR a bit to
+ // avoid unfortunate code generation effects. The main example is that we
+ // want to try to make sure the comparison feeding a branch is after any
+ // safepoints. Otherwise, we end up with a comparison of pre-relocation
+ // values feeding a branch after relocation. This is semantically correct,
+ // but results in extra register pressure since both the pre-relocation and
+ // post-relocation copies must be available in registers. For code without
+ // relocations this is handled elsewhere, but teaching the scheduler to
+ // reverse the transform we're about to do would be slightly complex.
+ // Note: This may extend the live range of the inputs to the icmp and thus
+ // increase the liveset of any statepoint we move over. This is profitable
+ // as long as all statepoints are in rare blocks. If we had in-register
+ // lowering for live values this would be a much safer transform.
+ auto getConditionInst = [](Instruction *TI) -> Instruction * {
+ if (auto *BI = dyn_cast<BranchInst>(TI))
+ if (BI->isConditional())
+ return dyn_cast<Instruction>(BI->getCondition());
+ // TODO: Extend this to handle switches
+ return nullptr;
+ };
+ for (BasicBlock &BB : F) {
+ Instruction *TI = BB.getTerminator();
+ if (auto *Cond = getConditionInst(TI))
+ // TODO: Handle more than just ICmps here. We should be able to move
+ // most instructions without side effects or memory access.
+ if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
+ MadeChange = true;
+ Cond->moveBefore(TI);
+ }
+ }
+
+ // Nasty workaround - The base computation code in the main algorithm doesn't
+ // consider the fact that a GEP can be used to convert a scalar to a vector.
+ // The right fix for this is to integrate GEPs into the base rewriting
+ // algorithm properly, this is just a short term workaround to prevent
+ // crashes by canonicalizing such GEPs into fully vector GEPs.
+ for (Instruction &I : instructions(F)) {
+ if (!isa<GetElementPtrInst>(I))
+ continue;
+
+ unsigned VF = 0;
+ for (unsigned i = 0; i < I.getNumOperands(); i++)
+ if (I.getOperand(i)->getType()->isVectorTy()) {
+ assert(VF == 0 ||
+ VF == I.getOperand(i)->getType()->getVectorNumElements());
+ VF = I.getOperand(i)->getType()->getVectorNumElements();
+ }
+
+ // It's the vector to scalar traversal through the pointer operand which
+ // confuses base pointer rewriting, so limit ourselves to that case.
+ if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
+ IRBuilder<> B(&I);
+ auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
+ I.setOperand(0, Splat);
+ MadeChange = true;
+ }
+ }
+
+ MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
+ return MadeChange;
+}
+
+// liveness computation via standard dataflow
+// -------------------------------------------------------------------
+
+// TODO: Consider using bitvectors for liveness, the set of potentially
+// interesting values should be small and easy to pre-compute.
+
+/// Compute the live-in set for the location rbegin starting from
+/// the live-out set of the basic block
+static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
+ BasicBlock::reverse_iterator End,
+ SetVector<Value *> &LiveTmp) {
+ for (auto &I : make_range(Begin, End)) {
+ // KILL/Def - Remove this definition from LiveIn
+ LiveTmp.remove(&I);
+
+ // Don't consider *uses* in PHI nodes, we handle their contribution to
+ // predecessor blocks when we seed the LiveOut sets
+ if (isa<PHINode>(I))
+ continue;
+
+ // USE - Add to the LiveIn set for this instruction
+ for (Value *V : I.operands()) {
+ assert(!isUnhandledGCPointerType(V->getType()) &&
+ "support for FCA unimplemented");
+ if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
+ // The choice to exclude all things constant here is slightly subtle.
+ // There are two independent reasons:
+ // - We assume that things which are constant (from LLVM's definition)
+ // do not move at runtime. For example, the address of a global
+ // variable is fixed, even though it's contents may not be.
+ // - Second, we can't disallow arbitrary inttoptr constants even
+ // if the language frontend does. Optimization passes are free to
+ // locally exploit facts without respect to global reachability. This
+ // can create sections of code which are dynamically unreachable and
+ // contain just about anything. (see constants.ll in tests)
+ LiveTmp.insert(V);
+ }
+ }
+ }
+}
+
+static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
+ for (BasicBlock *Succ : successors(BB)) {
+ for (auto &I : *Succ) {
+ PHINode *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ break;
+
+ Value *V = PN->getIncomingValueForBlock(BB);
+ assert(!isUnhandledGCPointerType(V->getType()) &&
+ "support for FCA unimplemented");
+ if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
+ LiveTmp.insert(V);
+ }
+ }
+}
+
+static SetVector<Value *> computeKillSet(BasicBlock *BB) {
+ SetVector<Value *> KillSet;
+ for (Instruction &I : *BB)
+ if (isHandledGCPointerType(I.getType()))
+ KillSet.insert(&I);
+ return KillSet;
+}
+
+#ifndef NDEBUG
+/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
+/// sanity check for the liveness computation.
+static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
+ Instruction *TI, bool TermOkay = false) {
+ for (Value *V : Live) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ // The terminator can be a member of the LiveOut set. LLVM's definition
+ // of instruction dominance states that V does not dominate itself. As
+ // such, we need to special case this to allow it.
+ if (TermOkay && TI == I)
+ continue;
+ assert(DT.dominates(I, TI) &&
+ "basic SSA liveness expectation violated by liveness analysis");
+ }
+ }
+}
+
+/// Check that all the liveness sets used during the computation of liveness
+/// obey basic SSA properties. This is useful for finding cases where we miss
+/// a def.
+static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
+ BasicBlock &BB) {
+ checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
+ checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
+ checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
+}
+#endif
+
+static void computeLiveInValues(DominatorTree &DT, Function &F,
+ GCPtrLivenessData &Data) {
+ SmallSetVector<BasicBlock *, 32> Worklist;
+
+ // Seed the liveness for each individual block
+ for (BasicBlock &BB : F) {
+ Data.KillSet[&BB] = computeKillSet(&BB);
+ Data.LiveSet[&BB].clear();
+ computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
+
+#ifndef NDEBUG
+ for (Value *Kill : Data.KillSet[&BB])
+ assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
+#endif
+
+ Data.LiveOut[&BB] = SetVector<Value *>();
+ computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
+ Data.LiveIn[&BB] = Data.LiveSet[&BB];
+ Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
+ Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
+ if (!Data.LiveIn[&BB].empty())
+ Worklist.insert(pred_begin(&BB), pred_end(&BB));
+ }
+
+ // Propagate that liveness until stable
+ while (!Worklist.empty()) {
+ BasicBlock *BB = Worklist.pop_back_val();
+
+ // Compute our new liveout set, then exit early if it hasn't changed despite
+ // the contribution of our successor.
+ SetVector<Value *> LiveOut = Data.LiveOut[BB];
+ const auto OldLiveOutSize = LiveOut.size();
+ for (BasicBlock *Succ : successors(BB)) {
+ assert(Data.LiveIn.count(Succ));
+ LiveOut.set_union(Data.LiveIn[Succ]);
+ }
+ // assert OutLiveOut is a subset of LiveOut
+ if (OldLiveOutSize == LiveOut.size()) {
+ // If the sets are the same size, then we didn't actually add anything
+ // when unioning our successors LiveIn. Thus, the LiveIn of this block
+ // hasn't changed.
+ continue;
+ }
+ Data.LiveOut[BB] = LiveOut;
+
+ // Apply the effects of this basic block
+ SetVector<Value *> LiveTmp = LiveOut;
+ LiveTmp.set_union(Data.LiveSet[BB]);
+ LiveTmp.set_subtract(Data.KillSet[BB]);
+
+ assert(Data.LiveIn.count(BB));
+ const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
+ // assert: OldLiveIn is a subset of LiveTmp
+ if (OldLiveIn.size() != LiveTmp.size()) {
+ Data.LiveIn[BB] = LiveTmp;
+ Worklist.insert(pred_begin(BB), pred_end(BB));
+ }
+ } // while (!Worklist.empty())
+
+#ifndef NDEBUG
+ // Sanity check our output against SSA properties. This helps catch any
+ // missing kills during the above iteration.
+ for (BasicBlock &BB : F)
+ checkBasicSSA(DT, Data, BB);
+#endif
+}
+
+static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
+ StatepointLiveSetTy &Out) {
+ BasicBlock *BB = Inst->getParent();
+
+ // Note: The copy is intentional and required
+ assert(Data.LiveOut.count(BB));
+ SetVector<Value *> LiveOut = Data.LiveOut[BB];
+
+ // We want to handle the statepoint itself oddly. It's
+ // call result is not live (normal), nor are it's arguments
+ // (unless they're used again later). This adjustment is
+ // specifically what we need to relocate
+ computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
+ LiveOut);
+ LiveOut.remove(Inst);
+ Out.insert(LiveOut.begin(), LiveOut.end());
+}
+
+static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
+ CallBase *Call,
+ PartiallyConstructedSafepointRecord &Info) {
+ StatepointLiveSetTy Updated;
+ findLiveSetAtInst(Call, RevisedLivenessData, Updated);
+
+ // We may have base pointers which are now live that weren't before. We need
+ // to update the PointerToBase structure to reflect this.
+ for (auto V : Updated)
+ if (Info.PointerToBase.insert({V, V}).second) {
+ assert(isKnownBaseResult(V) &&
+ "Can't find base for unexpected live value!");
+ continue;
+ }
+
+#ifndef NDEBUG
+ for (auto V : Updated)
+ assert(Info.PointerToBase.count(V) &&
+ "Must be able to find base for live value!");
+#endif
+
+ // Remove any stale base mappings - this can happen since our liveness is
+ // more precise then the one inherent in the base pointer analysis.
+ DenseSet<Value *> ToErase;
+ for (auto KVPair : Info.PointerToBase)
+ if (!Updated.count(KVPair.first))
+ ToErase.insert(KVPair.first);
+
+ for (auto *V : ToErase)
+ Info.PointerToBase.erase(V);
+
+#ifndef NDEBUG
+ for (auto KVPair : Info.PointerToBase)
+ assert(Updated.count(KVPair.first) && "record for non-live value");
+#endif
+
+ Info.LiveSet = Updated;
+}