summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/StructurizeCFG.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/StructurizeCFG.cpp1063
1 files changed, 1063 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp b/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
new file mode 100644
index 000000000000..9791cf41f621
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
@@ -0,0 +1,1063 @@
+//===- StructurizeCFG.cpp -------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/RegionInfo.h"
+#include "llvm/Analysis/RegionIterator.h"
+#include "llvm/Analysis/RegionPass.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include <algorithm>
+#include <cassert>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "structurizecfg"
+
+// The name for newly created blocks.
+static const char *const FlowBlockName = "Flow";
+
+namespace {
+
+static cl::opt<bool> ForceSkipUniformRegions(
+ "structurizecfg-skip-uniform-regions",
+ cl::Hidden,
+ cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
+ cl::init(false));
+
+static cl::opt<bool>
+ RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
+ cl::desc("Allow relaxed uniform region checks"),
+ cl::init(true));
+
+// Definition of the complex types used in this pass.
+
+using BBValuePair = std::pair<BasicBlock *, Value *>;
+
+using RNVector = SmallVector<RegionNode *, 8>;
+using BBVector = SmallVector<BasicBlock *, 8>;
+using BranchVector = SmallVector<BranchInst *, 8>;
+using BBValueVector = SmallVector<BBValuePair, 2>;
+
+using BBSet = SmallPtrSet<BasicBlock *, 8>;
+
+using PhiMap = MapVector<PHINode *, BBValueVector>;
+using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
+
+using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
+using BBPredicates = DenseMap<BasicBlock *, Value *>;
+using PredMap = DenseMap<BasicBlock *, BBPredicates>;
+using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
+
+/// Finds the nearest common dominator of a set of BasicBlocks.
+///
+/// For every BB you add to the set, you can specify whether we "remember" the
+/// block. When you get the common dominator, you can also ask whether it's one
+/// of the blocks we remembered.
+class NearestCommonDominator {
+ DominatorTree *DT;
+ BasicBlock *Result = nullptr;
+ bool ResultIsRemembered = false;
+
+ /// Add BB to the resulting dominator.
+ void addBlock(BasicBlock *BB, bool Remember) {
+ if (!Result) {
+ Result = BB;
+ ResultIsRemembered = Remember;
+ return;
+ }
+
+ BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
+ if (NewResult != Result)
+ ResultIsRemembered = false;
+ if (NewResult == BB)
+ ResultIsRemembered |= Remember;
+ Result = NewResult;
+ }
+
+public:
+ explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
+
+ void addBlock(BasicBlock *BB) {
+ addBlock(BB, /* Remember = */ false);
+ }
+
+ void addAndRememberBlock(BasicBlock *BB) {
+ addBlock(BB, /* Remember = */ true);
+ }
+
+ /// Get the nearest common dominator of all the BBs added via addBlock() and
+ /// addAndRememberBlock().
+ BasicBlock *result() { return Result; }
+
+ /// Is the BB returned by getResult() one of the blocks we added to the set
+ /// with addAndRememberBlock()?
+ bool resultIsRememberedBlock() { return ResultIsRemembered; }
+};
+
+/// Transforms the control flow graph on one single entry/exit region
+/// at a time.
+///
+/// After the transform all "If"/"Then"/"Else" style control flow looks like
+/// this:
+///
+/// \verbatim
+/// 1
+/// ||
+/// | |
+/// 2 |
+/// | /
+/// |/
+/// 3
+/// || Where:
+/// | | 1 = "If" block, calculates the condition
+/// 4 | 2 = "Then" subregion, runs if the condition is true
+/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
+/// |/ 4 = "Else" optional subregion, runs if the condition is false
+/// 5 5 = "End" block, also rejoins the control flow
+/// \endverbatim
+///
+/// Control flow is expressed as a branch where the true exit goes into the
+/// "Then"/"Else" region, while the false exit skips the region
+/// The condition for the optional "Else" region is expressed as a PHI node.
+/// The incoming values of the PHI node are true for the "If" edge and false
+/// for the "Then" edge.
+///
+/// Additionally to that even complicated loops look like this:
+///
+/// \verbatim
+/// 1
+/// ||
+/// | |
+/// 2 ^ Where:
+/// | / 1 = "Entry" block
+/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
+/// 3 3 = "Flow" block, with back edge to entry block
+/// |
+/// \endverbatim
+///
+/// The back edge of the "Flow" block is always on the false side of the branch
+/// while the true side continues the general flow. So the loop condition
+/// consist of a network of PHI nodes where the true incoming values expresses
+/// breaks and the false values expresses continue states.
+class StructurizeCFG : public RegionPass {
+ bool SkipUniformRegions;
+
+ Type *Boolean;
+ ConstantInt *BoolTrue;
+ ConstantInt *BoolFalse;
+ UndefValue *BoolUndef;
+
+ Function *Func;
+ Region *ParentRegion;
+
+ LegacyDivergenceAnalysis *DA;
+ DominatorTree *DT;
+ LoopInfo *LI;
+
+ SmallVector<RegionNode *, 8> Order;
+ BBSet Visited;
+
+ BBPhiMap DeletedPhis;
+ BB2BBVecMap AddedPhis;
+
+ PredMap Predicates;
+ BranchVector Conditions;
+
+ BB2BBMap Loops;
+ PredMap LoopPreds;
+ BranchVector LoopConds;
+
+ RegionNode *PrevNode;
+
+ void orderNodes();
+
+ Loop *getAdjustedLoop(RegionNode *RN);
+ unsigned getAdjustedLoopDepth(RegionNode *RN);
+
+ void analyzeLoops(RegionNode *N);
+
+ Value *invert(Value *Condition);
+
+ Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
+
+ void gatherPredicates(RegionNode *N);
+
+ void collectInfos();
+
+ void insertConditions(bool Loops);
+
+ void delPhiValues(BasicBlock *From, BasicBlock *To);
+
+ void addPhiValues(BasicBlock *From, BasicBlock *To);
+
+ void setPhiValues();
+
+ void killTerminator(BasicBlock *BB);
+
+ void changeExit(RegionNode *Node, BasicBlock *NewExit,
+ bool IncludeDominator);
+
+ BasicBlock *getNextFlow(BasicBlock *Dominator);
+
+ BasicBlock *needPrefix(bool NeedEmpty);
+
+ BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
+
+ void setPrevNode(BasicBlock *BB);
+
+ bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
+
+ bool isPredictableTrue(RegionNode *Node);
+
+ void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
+
+ void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
+
+ void createFlow();
+
+ void rebuildSSA();
+
+public:
+ static char ID;
+
+ explicit StructurizeCFG(bool SkipUniformRegions_ = false)
+ : RegionPass(ID),
+ SkipUniformRegions(SkipUniformRegions_) {
+ if (ForceSkipUniformRegions.getNumOccurrences())
+ SkipUniformRegions = ForceSkipUniformRegions.getValue();
+ initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool doInitialization(Region *R, RGPassManager &RGM) override;
+
+ bool runOnRegion(Region *R, RGPassManager &RGM) override;
+
+ StringRef getPassName() const override { return "Structurize control flow"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ if (SkipUniformRegions)
+ AU.addRequired<LegacyDivergenceAnalysis>();
+ AU.addRequiredID(LowerSwitchID);
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ RegionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char StructurizeCFG::ID = 0;
+
+INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
+INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
+INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
+ false, false)
+
+/// Initialize the types and constants used in the pass
+bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
+ LLVMContext &Context = R->getEntry()->getContext();
+
+ Boolean = Type::getInt1Ty(Context);
+ BoolTrue = ConstantInt::getTrue(Context);
+ BoolFalse = ConstantInt::getFalse(Context);
+ BoolUndef = UndefValue::get(Boolean);
+
+ return false;
+}
+
+/// Use the exit block to determine the loop if RN is a SubRegion.
+Loop *StructurizeCFG::getAdjustedLoop(RegionNode *RN) {
+ if (RN->isSubRegion()) {
+ Region *SubRegion = RN->getNodeAs<Region>();
+ return LI->getLoopFor(SubRegion->getExit());
+ }
+
+ return LI->getLoopFor(RN->getEntry());
+}
+
+/// Use the exit block to determine the loop depth if RN is a SubRegion.
+unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode *RN) {
+ if (RN->isSubRegion()) {
+ Region *SubR = RN->getNodeAs<Region>();
+ return LI->getLoopDepth(SubR->getExit());
+ }
+
+ return LI->getLoopDepth(RN->getEntry());
+}
+
+/// Build up the general order of nodes
+void StructurizeCFG::orderNodes() {
+ ReversePostOrderTraversal<Region*> RPOT(ParentRegion);
+ SmallDenseMap<Loop*, unsigned, 8> LoopBlocks;
+
+ // The reverse post-order traversal of the list gives us an ordering close
+ // to what we want. The only problem with it is that sometimes backedges
+ // for outer loops will be visited before backedges for inner loops.
+ for (RegionNode *RN : RPOT) {
+ Loop *Loop = getAdjustedLoop(RN);
+ ++LoopBlocks[Loop];
+ }
+
+ unsigned CurrentLoopDepth = 0;
+ Loop *CurrentLoop = nullptr;
+ for (auto I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
+ RegionNode *RN = cast<RegionNode>(*I);
+ unsigned LoopDepth = getAdjustedLoopDepth(RN);
+
+ if (is_contained(Order, *I))
+ continue;
+
+ if (LoopDepth < CurrentLoopDepth) {
+ // Make sure we have visited all blocks in this loop before moving back to
+ // the outer loop.
+
+ auto LoopI = I;
+ while (unsigned &BlockCount = LoopBlocks[CurrentLoop]) {
+ LoopI++;
+ if (getAdjustedLoop(cast<RegionNode>(*LoopI)) == CurrentLoop) {
+ --BlockCount;
+ Order.push_back(*LoopI);
+ }
+ }
+ }
+
+ CurrentLoop = getAdjustedLoop(RN);
+ if (CurrentLoop)
+ LoopBlocks[CurrentLoop]--;
+
+ CurrentLoopDepth = LoopDepth;
+ Order.push_back(*I);
+ }
+
+ // This pass originally used a post-order traversal and then operated on
+ // the list in reverse. Now that we are using a reverse post-order traversal
+ // rather than re-working the whole pass to operate on the list in order,
+ // we just reverse the list and continue to operate on it in reverse.
+ std::reverse(Order.begin(), Order.end());
+}
+
+/// Determine the end of the loops
+void StructurizeCFG::analyzeLoops(RegionNode *N) {
+ if (N->isSubRegion()) {
+ // Test for exit as back edge
+ BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
+ if (Visited.count(Exit))
+ Loops[Exit] = N->getEntry();
+
+ } else {
+ // Test for successors as back edge
+ BasicBlock *BB = N->getNodeAs<BasicBlock>();
+ BranchInst *Term = cast<BranchInst>(BB->getTerminator());
+
+ for (BasicBlock *Succ : Term->successors())
+ if (Visited.count(Succ))
+ Loops[Succ] = BB;
+ }
+}
+
+/// Invert the given condition
+Value *StructurizeCFG::invert(Value *Condition) {
+ // First: Check if it's a constant
+ if (Constant *C = dyn_cast<Constant>(Condition))
+ return ConstantExpr::getNot(C);
+
+ // Second: If the condition is already inverted, return the original value
+ Value *NotCondition;
+ if (match(Condition, m_Not(m_Value(NotCondition))))
+ return NotCondition;
+
+ if (Instruction *Inst = dyn_cast<Instruction>(Condition)) {
+ // Third: Check all the users for an invert
+ BasicBlock *Parent = Inst->getParent();
+ for (User *U : Condition->users())
+ if (Instruction *I = dyn_cast<Instruction>(U))
+ if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
+ return I;
+
+ // Last option: Create a new instruction
+ return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator());
+ }
+
+ if (Argument *Arg = dyn_cast<Argument>(Condition)) {
+ BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock();
+ return BinaryOperator::CreateNot(Condition,
+ Arg->getName() + ".inv",
+ EntryBlock.getTerminator());
+ }
+
+ llvm_unreachable("Unhandled condition to invert");
+}
+
+/// Build the condition for one edge
+Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
+ bool Invert) {
+ Value *Cond = Invert ? BoolFalse : BoolTrue;
+ if (Term->isConditional()) {
+ Cond = Term->getCondition();
+
+ if (Idx != (unsigned)Invert)
+ Cond = invert(Cond);
+ }
+ return Cond;
+}
+
+/// Analyze the predecessors of each block and build up predicates
+void StructurizeCFG::gatherPredicates(RegionNode *N) {
+ RegionInfo *RI = ParentRegion->getRegionInfo();
+ BasicBlock *BB = N->getEntry();
+ BBPredicates &Pred = Predicates[BB];
+ BBPredicates &LPred = LoopPreds[BB];
+
+ for (BasicBlock *P : predecessors(BB)) {
+ // Ignore it if it's a branch from outside into our region entry
+ if (!ParentRegion->contains(P))
+ continue;
+
+ Region *R = RI->getRegionFor(P);
+ if (R == ParentRegion) {
+ // It's a top level block in our region
+ BranchInst *Term = cast<BranchInst>(P->getTerminator());
+ for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
+ BasicBlock *Succ = Term->getSuccessor(i);
+ if (Succ != BB)
+ continue;
+
+ if (Visited.count(P)) {
+ // Normal forward edge
+ if (Term->isConditional()) {
+ // Try to treat it like an ELSE block
+ BasicBlock *Other = Term->getSuccessor(!i);
+ if (Visited.count(Other) && !Loops.count(Other) &&
+ !Pred.count(Other) && !Pred.count(P)) {
+
+ Pred[Other] = BoolFalse;
+ Pred[P] = BoolTrue;
+ continue;
+ }
+ }
+ Pred[P] = buildCondition(Term, i, false);
+ } else {
+ // Back edge
+ LPred[P] = buildCondition(Term, i, true);
+ }
+ }
+ } else {
+ // It's an exit from a sub region
+ while (R->getParent() != ParentRegion)
+ R = R->getParent();
+
+ // Edge from inside a subregion to its entry, ignore it
+ if (*R == *N)
+ continue;
+
+ BasicBlock *Entry = R->getEntry();
+ if (Visited.count(Entry))
+ Pred[Entry] = BoolTrue;
+ else
+ LPred[Entry] = BoolFalse;
+ }
+ }
+}
+
+/// Collect various loop and predicate infos
+void StructurizeCFG::collectInfos() {
+ // Reset predicate
+ Predicates.clear();
+
+ // and loop infos
+ Loops.clear();
+ LoopPreds.clear();
+
+ // Reset the visited nodes
+ Visited.clear();
+
+ for (RegionNode *RN : reverse(Order)) {
+ LLVM_DEBUG(dbgs() << "Visiting: "
+ << (RN->isSubRegion() ? "SubRegion with entry: " : "")
+ << RN->getEntry()->getName() << " Loop Depth: "
+ << LI->getLoopDepth(RN->getEntry()) << "\n");
+
+ // Analyze all the conditions leading to a node
+ gatherPredicates(RN);
+
+ // Remember that we've seen this node
+ Visited.insert(RN->getEntry());
+
+ // Find the last back edges
+ analyzeLoops(RN);
+ }
+}
+
+/// Insert the missing branch conditions
+void StructurizeCFG::insertConditions(bool Loops) {
+ BranchVector &Conds = Loops ? LoopConds : Conditions;
+ Value *Default = Loops ? BoolTrue : BoolFalse;
+ SSAUpdater PhiInserter;
+
+ for (BranchInst *Term : Conds) {
+ assert(Term->isConditional());
+
+ BasicBlock *Parent = Term->getParent();
+ BasicBlock *SuccTrue = Term->getSuccessor(0);
+ BasicBlock *SuccFalse = Term->getSuccessor(1);
+
+ PhiInserter.Initialize(Boolean, "");
+ PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
+ PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
+
+ BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
+
+ NearestCommonDominator Dominator(DT);
+ Dominator.addBlock(Parent);
+
+ Value *ParentValue = nullptr;
+ for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
+ BasicBlock *BB = BBAndPred.first;
+ Value *Pred = BBAndPred.second;
+
+ if (BB == Parent) {
+ ParentValue = Pred;
+ break;
+ }
+ PhiInserter.AddAvailableValue(BB, Pred);
+ Dominator.addAndRememberBlock(BB);
+ }
+
+ if (ParentValue) {
+ Term->setCondition(ParentValue);
+ } else {
+ if (!Dominator.resultIsRememberedBlock())
+ PhiInserter.AddAvailableValue(Dominator.result(), Default);
+
+ Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
+ }
+ }
+}
+
+/// Remove all PHI values coming from "From" into "To" and remember
+/// them in DeletedPhis
+void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
+ PhiMap &Map = DeletedPhis[To];
+ for (PHINode &Phi : To->phis()) {
+ while (Phi.getBasicBlockIndex(From) != -1) {
+ Value *Deleted = Phi.removeIncomingValue(From, false);
+ Map[&Phi].push_back(std::make_pair(From, Deleted));
+ }
+ }
+}
+
+/// Add a dummy PHI value as soon as we knew the new predecessor
+void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
+ for (PHINode &Phi : To->phis()) {
+ Value *Undef = UndefValue::get(Phi.getType());
+ Phi.addIncoming(Undef, From);
+ }
+ AddedPhis[To].push_back(From);
+}
+
+/// Add the real PHI value as soon as everything is set up
+void StructurizeCFG::setPhiValues() {
+ SmallVector<PHINode *, 8> InsertedPhis;
+ SSAUpdater Updater(&InsertedPhis);
+ for (const auto &AddedPhi : AddedPhis) {
+ BasicBlock *To = AddedPhi.first;
+ const BBVector &From = AddedPhi.second;
+
+ if (!DeletedPhis.count(To))
+ continue;
+
+ PhiMap &Map = DeletedPhis[To];
+ for (const auto &PI : Map) {
+ PHINode *Phi = PI.first;
+ Value *Undef = UndefValue::get(Phi->getType());
+ Updater.Initialize(Phi->getType(), "");
+ Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
+ Updater.AddAvailableValue(To, Undef);
+
+ NearestCommonDominator Dominator(DT);
+ Dominator.addBlock(To);
+ for (const auto &VI : PI.second) {
+ Updater.AddAvailableValue(VI.first, VI.second);
+ Dominator.addAndRememberBlock(VI.first);
+ }
+
+ if (!Dominator.resultIsRememberedBlock())
+ Updater.AddAvailableValue(Dominator.result(), Undef);
+
+ for (BasicBlock *FI : From)
+ Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
+ }
+
+ DeletedPhis.erase(To);
+ }
+ assert(DeletedPhis.empty());
+
+ // Simplify any phis inserted by the SSAUpdater if possible
+ bool Changed;
+ do {
+ Changed = false;
+
+ SimplifyQuery Q(Func->getParent()->getDataLayout());
+ Q.DT = DT;
+ for (size_t i = 0; i < InsertedPhis.size(); ++i) {
+ PHINode *Phi = InsertedPhis[i];
+ if (Value *V = SimplifyInstruction(Phi, Q)) {
+ Phi->replaceAllUsesWith(V);
+ Phi->eraseFromParent();
+ InsertedPhis[i] = InsertedPhis.back();
+ InsertedPhis.pop_back();
+ i--;
+ Changed = true;
+ }
+ }
+ } while (Changed);
+}
+
+/// Remove phi values from all successors and then remove the terminator.
+void StructurizeCFG::killTerminator(BasicBlock *BB) {
+ Instruction *Term = BB->getTerminator();
+ if (!Term)
+ return;
+
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
+ SI != SE; ++SI)
+ delPhiValues(BB, *SI);
+
+ if (DA)
+ DA->removeValue(Term);
+ Term->eraseFromParent();
+}
+
+/// Let node exit(s) point to NewExit
+void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
+ bool IncludeDominator) {
+ if (Node->isSubRegion()) {
+ Region *SubRegion = Node->getNodeAs<Region>();
+ BasicBlock *OldExit = SubRegion->getExit();
+ BasicBlock *Dominator = nullptr;
+
+ // Find all the edges from the sub region to the exit
+ for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
+ // Incrememt BBI before mucking with BB's terminator.
+ BasicBlock *BB = *BBI++;
+
+ if (!SubRegion->contains(BB))
+ continue;
+
+ // Modify the edges to point to the new exit
+ delPhiValues(BB, OldExit);
+ BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
+ addPhiValues(BB, NewExit);
+
+ // Find the new dominator (if requested)
+ if (IncludeDominator) {
+ if (!Dominator)
+ Dominator = BB;
+ else
+ Dominator = DT->findNearestCommonDominator(Dominator, BB);
+ }
+ }
+
+ // Change the dominator (if requested)
+ if (Dominator)
+ DT->changeImmediateDominator(NewExit, Dominator);
+
+ // Update the region info
+ SubRegion->replaceExit(NewExit);
+ } else {
+ BasicBlock *BB = Node->getNodeAs<BasicBlock>();
+ killTerminator(BB);
+ BranchInst::Create(NewExit, BB);
+ addPhiValues(BB, NewExit);
+ if (IncludeDominator)
+ DT->changeImmediateDominator(NewExit, BB);
+ }
+}
+
+/// Create a new flow node and update dominator tree and region info
+BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
+ LLVMContext &Context = Func->getContext();
+ BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
+ Order.back()->getEntry();
+ BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
+ Func, Insert);
+ DT->addNewBlock(Flow, Dominator);
+ ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
+ return Flow;
+}
+
+/// Create a new or reuse the previous node as flow node
+BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
+ BasicBlock *Entry = PrevNode->getEntry();
+
+ if (!PrevNode->isSubRegion()) {
+ killTerminator(Entry);
+ if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
+ return Entry;
+ }
+
+ // create a new flow node
+ BasicBlock *Flow = getNextFlow(Entry);
+
+ // and wire it up
+ changeExit(PrevNode, Flow, true);
+ PrevNode = ParentRegion->getBBNode(Flow);
+ return Flow;
+}
+
+/// Returns the region exit if possible, otherwise just a new flow node
+BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
+ bool ExitUseAllowed) {
+ if (!Order.empty() || !ExitUseAllowed)
+ return getNextFlow(Flow);
+
+ BasicBlock *Exit = ParentRegion->getExit();
+ DT->changeImmediateDominator(Exit, Flow);
+ addPhiValues(Flow, Exit);
+ return Exit;
+}
+
+/// Set the previous node
+void StructurizeCFG::setPrevNode(BasicBlock *BB) {
+ PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
+ : nullptr;
+}
+
+/// Does BB dominate all the predicates of Node?
+bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
+ BBPredicates &Preds = Predicates[Node->getEntry()];
+ return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
+ return DT->dominates(BB, Pred.first);
+ });
+}
+
+/// Can we predict that this node will always be called?
+bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
+ BBPredicates &Preds = Predicates[Node->getEntry()];
+ bool Dominated = false;
+
+ // Regionentry is always true
+ if (!PrevNode)
+ return true;
+
+ for (std::pair<BasicBlock*, Value*> Pred : Preds) {
+ BasicBlock *BB = Pred.first;
+ Value *V = Pred.second;
+
+ if (V != BoolTrue)
+ return false;
+
+ if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
+ Dominated = true;
+ }
+
+ // TODO: The dominator check is too strict
+ return Dominated;
+}
+
+/// Take one node from the order vector and wire it up
+void StructurizeCFG::wireFlow(bool ExitUseAllowed,
+ BasicBlock *LoopEnd) {
+ RegionNode *Node = Order.pop_back_val();
+ Visited.insert(Node->getEntry());
+
+ if (isPredictableTrue(Node)) {
+ // Just a linear flow
+ if (PrevNode) {
+ changeExit(PrevNode, Node->getEntry(), true);
+ }
+ PrevNode = Node;
+ } else {
+ // Insert extra prefix node (or reuse last one)
+ BasicBlock *Flow = needPrefix(false);
+
+ // Insert extra postfix node (or use exit instead)
+ BasicBlock *Entry = Node->getEntry();
+ BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
+
+ // let it point to entry and next block
+ Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
+ addPhiValues(Flow, Entry);
+ DT->changeImmediateDominator(Entry, Flow);
+
+ PrevNode = Node;
+ while (!Order.empty() && !Visited.count(LoopEnd) &&
+ dominatesPredicates(Entry, Order.back())) {
+ handleLoops(false, LoopEnd);
+ }
+
+ changeExit(PrevNode, Next, false);
+ setPrevNode(Next);
+ }
+}
+
+void StructurizeCFG::handleLoops(bool ExitUseAllowed,
+ BasicBlock *LoopEnd) {
+ RegionNode *Node = Order.back();
+ BasicBlock *LoopStart = Node->getEntry();
+
+ if (!Loops.count(LoopStart)) {
+ wireFlow(ExitUseAllowed, LoopEnd);
+ return;
+ }
+
+ if (!isPredictableTrue(Node))
+ LoopStart = needPrefix(true);
+
+ LoopEnd = Loops[Node->getEntry()];
+ wireFlow(false, LoopEnd);
+ while (!Visited.count(LoopEnd)) {
+ handleLoops(false, LoopEnd);
+ }
+
+ // If the start of the loop is the entry block, we can't branch to it so
+ // insert a new dummy entry block.
+ Function *LoopFunc = LoopStart->getParent();
+ if (LoopStart == &LoopFunc->getEntryBlock()) {
+ LoopStart->setName("entry.orig");
+
+ BasicBlock *NewEntry =
+ BasicBlock::Create(LoopStart->getContext(),
+ "entry",
+ LoopFunc,
+ LoopStart);
+ BranchInst::Create(LoopStart, NewEntry);
+ DT->setNewRoot(NewEntry);
+ }
+
+ // Create an extra loop end node
+ LoopEnd = needPrefix(false);
+ BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
+ LoopConds.push_back(BranchInst::Create(Next, LoopStart,
+ BoolUndef, LoopEnd));
+ addPhiValues(LoopEnd, LoopStart);
+ setPrevNode(Next);
+}
+
+/// After this function control flow looks like it should be, but
+/// branches and PHI nodes only have undefined conditions.
+void StructurizeCFG::createFlow() {
+ BasicBlock *Exit = ParentRegion->getExit();
+ bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
+
+ DeletedPhis.clear();
+ AddedPhis.clear();
+ Conditions.clear();
+ LoopConds.clear();
+
+ PrevNode = nullptr;
+ Visited.clear();
+
+ while (!Order.empty()) {
+ handleLoops(EntryDominatesExit, nullptr);
+ }
+
+ if (PrevNode)
+ changeExit(PrevNode, Exit, EntryDominatesExit);
+ else
+ assert(EntryDominatesExit);
+}
+
+/// Handle a rare case where the disintegrated nodes instructions
+/// no longer dominate all their uses. Not sure if this is really necessary
+void StructurizeCFG::rebuildSSA() {
+ SSAUpdater Updater;
+ for (BasicBlock *BB : ParentRegion->blocks())
+ for (Instruction &I : *BB) {
+ bool Initialized = false;
+ // We may modify the use list as we iterate over it, so be careful to
+ // compute the next element in the use list at the top of the loop.
+ for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
+ Use &U = *UI++;
+ Instruction *User = cast<Instruction>(U.getUser());
+ if (User->getParent() == BB) {
+ continue;
+ } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (UserPN->getIncomingBlock(U) == BB)
+ continue;
+ }
+
+ if (DT->dominates(&I, User))
+ continue;
+
+ if (!Initialized) {
+ Value *Undef = UndefValue::get(I.getType());
+ Updater.Initialize(I.getType(), "");
+ Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
+ Updater.AddAvailableValue(BB, &I);
+ Initialized = true;
+ }
+ Updater.RewriteUseAfterInsertions(U);
+ }
+ }
+}
+
+static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
+ const LegacyDivergenceAnalysis &DA) {
+ // Bool for if all sub-regions are uniform.
+ bool SubRegionsAreUniform = true;
+ // Count of how many direct children are conditional.
+ unsigned ConditionalDirectChildren = 0;
+
+ for (auto E : R->elements()) {
+ if (!E->isSubRegion()) {
+ auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
+ if (!Br || !Br->isConditional())
+ continue;
+
+ if (!DA.isUniform(Br))
+ return false;
+
+ // One of our direct children is conditional.
+ ConditionalDirectChildren++;
+
+ LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
+ << " has uniform terminator\n");
+ } else {
+ // Explicitly refuse to treat regions as uniform if they have non-uniform
+ // subregions. We cannot rely on DivergenceAnalysis for branches in
+ // subregions because those branches may have been removed and re-created,
+ // so we look for our metadata instead.
+ //
+ // Warning: It would be nice to treat regions as uniform based only on
+ // their direct child basic blocks' terminators, regardless of whether
+ // subregions are uniform or not. However, this requires a very careful
+ // look at SIAnnotateControlFlow to make sure nothing breaks there.
+ for (auto BB : E->getNodeAs<Region>()->blocks()) {
+ auto Br = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!Br || !Br->isConditional())
+ continue;
+
+ if (!Br->getMetadata(UniformMDKindID)) {
+ // Early exit if we cannot have relaxed uniform regions.
+ if (!RelaxedUniformRegions)
+ return false;
+
+ SubRegionsAreUniform = false;
+ break;
+ }
+ }
+ }
+ }
+
+ // Our region is uniform if:
+ // 1. All conditional branches that are direct children are uniform (checked
+ // above).
+ // 2. And either:
+ // a. All sub-regions are uniform.
+ // b. There is one or less conditional branches among the direct children.
+ return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
+}
+
+/// Run the transformation for each region found
+bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
+ if (R->isTopLevelRegion())
+ return false;
+
+ DA = nullptr;
+
+ if (SkipUniformRegions) {
+ // TODO: We could probably be smarter here with how we handle sub-regions.
+ // We currently rely on the fact that metadata is set by earlier invocations
+ // of the pass on sub-regions, and that this metadata doesn't get lost --
+ // but we shouldn't rely on metadata for correctness!
+ unsigned UniformMDKindID =
+ R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
+ DA = &getAnalysis<LegacyDivergenceAnalysis>();
+
+ if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
+ LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
+ << '\n');
+
+ // Mark all direct child block terminators as having been treated as
+ // uniform. To account for a possible future in which non-uniform
+ // sub-regions are treated more cleverly, indirect children are not
+ // marked as uniform.
+ MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
+ for (RegionNode *E : R->elements()) {
+ if (E->isSubRegion())
+ continue;
+
+ if (Instruction *Term = E->getEntry()->getTerminator())
+ Term->setMetadata(UniformMDKindID, MD);
+ }
+
+ return false;
+ }
+ }
+
+ Func = R->getEntry()->getParent();
+ ParentRegion = R;
+
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+
+ orderNodes();
+ collectInfos();
+ createFlow();
+ insertConditions(false);
+ insertConditions(true);
+ setPhiValues();
+ rebuildSSA();
+
+ // Cleanup
+ Order.clear();
+ Visited.clear();
+ DeletedPhis.clear();
+ AddedPhis.clear();
+ Predicates.clear();
+ Conditions.clear();
+ Loops.clear();
+ LoopPreds.clear();
+ LoopConds.clear();
+
+ return true;
+}
+
+Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
+ return new StructurizeCFG(SkipUniformRegions);
+}