diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/InlineFunction.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Utils/InlineFunction.cpp | 2417 | 
1 files changed, 2417 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Utils/InlineFunction.cpp b/llvm/lib/Transforms/Utils/InlineFunction.cpp new file mode 100644 index 000000000000..a7f0f7ac5d61 --- /dev/null +++ b/llvm/lib/Transforms/Utils/InlineFunction.cpp @@ -0,0 +1,2417 @@ +//===- InlineFunction.cpp - Code to perform function inlining -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements inlining of a function into a call site, resolving +// parameters and the return value as appropriate. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <limits> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; +using ProfileCount = Function::ProfileCount; + +static cl::opt<bool> +EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), +  cl::Hidden, +  cl::desc("Convert noalias attributes to metadata during inlining.")); + +static cl::opt<bool> +PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", +  cl::init(true), cl::Hidden, +  cl::desc("Convert align attributes to assumptions during inlining.")); + +llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI, +                                        AAResults *CalleeAAR, +                                        bool InsertLifetime) { +  return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime); +} + +namespace { + +  /// A class for recording information about inlining a landing pad. +  class LandingPadInliningInfo { +    /// Destination of the invoke's unwind. +    BasicBlock *OuterResumeDest; + +    /// Destination for the callee's resume. +    BasicBlock *InnerResumeDest = nullptr; + +    /// LandingPadInst associated with the invoke. +    LandingPadInst *CallerLPad = nullptr; + +    /// PHI for EH values from landingpad insts. +    PHINode *InnerEHValuesPHI = nullptr; + +    SmallVector<Value*, 8> UnwindDestPHIValues; + +  public: +    LandingPadInliningInfo(InvokeInst *II) +        : OuterResumeDest(II->getUnwindDest()) { +      // If there are PHI nodes in the unwind destination block, we need to keep +      // track of which values came into them from the invoke before removing +      // the edge from this block. +      BasicBlock *InvokeBB = II->getParent(); +      BasicBlock::iterator I = OuterResumeDest->begin(); +      for (; isa<PHINode>(I); ++I) { +        // Save the value to use for this edge. +        PHINode *PHI = cast<PHINode>(I); +        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); +      } + +      CallerLPad = cast<LandingPadInst>(I); +    } + +    /// The outer unwind destination is the target of +    /// unwind edges introduced for calls within the inlined function. +    BasicBlock *getOuterResumeDest() const { +      return OuterResumeDest; +    } + +    BasicBlock *getInnerResumeDest(); + +    LandingPadInst *getLandingPadInst() const { return CallerLPad; } + +    /// Forward the 'resume' instruction to the caller's landing pad block. +    /// When the landing pad block has only one predecessor, this is +    /// a simple branch. When there is more than one predecessor, we need to +    /// split the landing pad block after the landingpad instruction and jump +    /// to there. +    void forwardResume(ResumeInst *RI, +                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); + +    /// Add incoming-PHI values to the unwind destination block for the given +    /// basic block, using the values for the original invoke's source block. +    void addIncomingPHIValuesFor(BasicBlock *BB) const { +      addIncomingPHIValuesForInto(BB, OuterResumeDest); +    } + +    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { +      BasicBlock::iterator I = dest->begin(); +      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { +        PHINode *phi = cast<PHINode>(I); +        phi->addIncoming(UnwindDestPHIValues[i], src); +      } +    } +  }; + +} // end anonymous namespace + +/// Get or create a target for the branch from ResumeInsts. +BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { +  if (InnerResumeDest) return InnerResumeDest; + +  // Split the landing pad. +  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); +  InnerResumeDest = +    OuterResumeDest->splitBasicBlock(SplitPoint, +                                     OuterResumeDest->getName() + ".body"); + +  // The number of incoming edges we expect to the inner landing pad. +  const unsigned PHICapacity = 2; + +  // Create corresponding new PHIs for all the PHIs in the outer landing pad. +  Instruction *InsertPoint = &InnerResumeDest->front(); +  BasicBlock::iterator I = OuterResumeDest->begin(); +  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { +    PHINode *OuterPHI = cast<PHINode>(I); +    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, +                                        OuterPHI->getName() + ".lpad-body", +                                        InsertPoint); +    OuterPHI->replaceAllUsesWith(InnerPHI); +    InnerPHI->addIncoming(OuterPHI, OuterResumeDest); +  } + +  // Create a PHI for the exception values. +  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, +                                     "eh.lpad-body", InsertPoint); +  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); +  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); + +  // All done. +  return InnerResumeDest; +} + +/// Forward the 'resume' instruction to the caller's landing pad block. +/// When the landing pad block has only one predecessor, this is a simple +/// branch. When there is more than one predecessor, we need to split the +/// landing pad block after the landingpad instruction and jump to there. +void LandingPadInliningInfo::forwardResume( +    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { +  BasicBlock *Dest = getInnerResumeDest(); +  BasicBlock *Src = RI->getParent(); + +  BranchInst::Create(Dest, Src); + +  // Update the PHIs in the destination. They were inserted in an order which +  // makes this work. +  addIncomingPHIValuesForInto(Src, Dest); + +  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); +  RI->eraseFromParent(); +} + +/// Helper for getUnwindDestToken/getUnwindDestTokenHelper. +static Value *getParentPad(Value *EHPad) { +  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) +    return FPI->getParentPad(); +  return cast<CatchSwitchInst>(EHPad)->getParentPad(); +} + +using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; + +/// Helper for getUnwindDestToken that does the descendant-ward part of +/// the search. +static Value *getUnwindDestTokenHelper(Instruction *EHPad, +                                       UnwindDestMemoTy &MemoMap) { +  SmallVector<Instruction *, 8> Worklist(1, EHPad); + +  while (!Worklist.empty()) { +    Instruction *CurrentPad = Worklist.pop_back_val(); +    // We only put pads on the worklist that aren't in the MemoMap.  When +    // we find an unwind dest for a pad we may update its ancestors, but +    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, +    // so they should never get updated while queued on the worklist. +    assert(!MemoMap.count(CurrentPad)); +    Value *UnwindDestToken = nullptr; +    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { +      if (CatchSwitch->hasUnwindDest()) { +        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); +      } else { +        // Catchswitch doesn't have a 'nounwind' variant, and one might be +        // annotated as "unwinds to caller" when really it's nounwind (see +        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the +        // parent's unwind dest from this.  We can check its catchpads' +        // descendants, since they might include a cleanuppad with an +        // "unwinds to caller" cleanupret, which can be trusted. +        for (auto HI = CatchSwitch->handler_begin(), +                  HE = CatchSwitch->handler_end(); +             HI != HE && !UnwindDestToken; ++HI) { +          BasicBlock *HandlerBlock = *HI; +          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); +          for (User *Child : CatchPad->users()) { +            // Intentionally ignore invokes here -- since the catchswitch is +            // marked "unwind to caller", it would be a verifier error if it +            // contained an invoke which unwinds out of it, so any invoke we'd +            // encounter must unwind to some child of the catch. +            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) +              continue; + +            Instruction *ChildPad = cast<Instruction>(Child); +            auto Memo = MemoMap.find(ChildPad); +            if (Memo == MemoMap.end()) { +              // Haven't figured out this child pad yet; queue it. +              Worklist.push_back(ChildPad); +              continue; +            } +            // We've already checked this child, but might have found that +            // it offers no proof either way. +            Value *ChildUnwindDestToken = Memo->second; +            if (!ChildUnwindDestToken) +              continue; +            // We already know the child's unwind dest, which can either +            // be ConstantTokenNone to indicate unwind to caller, or can +            // be another child of the catchpad.  Only the former indicates +            // the unwind dest of the catchswitch. +            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { +              UnwindDestToken = ChildUnwindDestToken; +              break; +            } +            assert(getParentPad(ChildUnwindDestToken) == CatchPad); +          } +        } +      } +    } else { +      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); +      for (User *U : CleanupPad->users()) { +        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { +          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) +            UnwindDestToken = RetUnwindDest->getFirstNonPHI(); +          else +            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); +          break; +        } +        Value *ChildUnwindDestToken; +        if (auto *Invoke = dyn_cast<InvokeInst>(U)) { +          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); +        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { +          Instruction *ChildPad = cast<Instruction>(U); +          auto Memo = MemoMap.find(ChildPad); +          if (Memo == MemoMap.end()) { +            // Haven't resolved this child yet; queue it and keep searching. +            Worklist.push_back(ChildPad); +            continue; +          } +          // We've checked this child, but still need to ignore it if it +          // had no proof either way. +          ChildUnwindDestToken = Memo->second; +          if (!ChildUnwindDestToken) +            continue; +        } else { +          // Not a relevant user of the cleanuppad +          continue; +        } +        // In a well-formed program, the child/invoke must either unwind to +        // an(other) child of the cleanup, or exit the cleanup.  In the +        // first case, continue searching. +        if (isa<Instruction>(ChildUnwindDestToken) && +            getParentPad(ChildUnwindDestToken) == CleanupPad) +          continue; +        UnwindDestToken = ChildUnwindDestToken; +        break; +      } +    } +    // If we haven't found an unwind dest for CurrentPad, we may have queued its +    // children, so move on to the next in the worklist. +    if (!UnwindDestToken) +      continue; + +    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits +    // any ancestors of CurrentPad up to but not including UnwindDestToken's +    // parent pad.  Record this in the memo map, and check to see if the +    // original EHPad being queried is one of the ones exited. +    Value *UnwindParent; +    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) +      UnwindParent = getParentPad(UnwindPad); +    else +      UnwindParent = nullptr; +    bool ExitedOriginalPad = false; +    for (Instruction *ExitedPad = CurrentPad; +         ExitedPad && ExitedPad != UnwindParent; +         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { +      // Skip over catchpads since they just follow their catchswitches. +      if (isa<CatchPadInst>(ExitedPad)) +        continue; +      MemoMap[ExitedPad] = UnwindDestToken; +      ExitedOriginalPad |= (ExitedPad == EHPad); +    } + +    if (ExitedOriginalPad) +      return UnwindDestToken; + +    // Continue the search. +  } + +  // No definitive information is contained within this funclet. +  return nullptr; +} + +/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad, +/// return that pad instruction.  If it unwinds to caller, return +/// ConstantTokenNone.  If it does not have a definitive unwind destination, +/// return nullptr. +/// +/// This routine gets invoked for calls in funclets in inlinees when inlining +/// an invoke.  Since many funclets don't have calls inside them, it's queried +/// on-demand rather than building a map of pads to unwind dests up front. +/// Determining a funclet's unwind dest may require recursively searching its +/// descendants, and also ancestors and cousins if the descendants don't provide +/// an answer.  Since most funclets will have their unwind dest immediately +/// available as the unwind dest of a catchswitch or cleanupret, this routine +/// searches top-down from the given pad and then up. To avoid worst-case +/// quadratic run-time given that approach, it uses a memo map to avoid +/// re-processing funclet trees.  The callers that rewrite the IR as they go +/// take advantage of this, for correctness, by checking/forcing rewritten +/// pads' entries to match the original callee view. +static Value *getUnwindDestToken(Instruction *EHPad, +                                 UnwindDestMemoTy &MemoMap) { +  // Catchpads unwind to the same place as their catchswitch; +  // redirct any queries on catchpads so the code below can +  // deal with just catchswitches and cleanuppads. +  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) +    EHPad = CPI->getCatchSwitch(); + +  // Check if we've already determined the unwind dest for this pad. +  auto Memo = MemoMap.find(EHPad); +  if (Memo != MemoMap.end()) +    return Memo->second; + +  // Search EHPad and, if necessary, its descendants. +  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); +  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); +  if (UnwindDestToken) +    return UnwindDestToken; + +  // No information is available for this EHPad from itself or any of its +  // descendants.  An unwind all the way out to a pad in the caller would +  // need also to agree with the unwind dest of the parent funclet, so +  // search up the chain to try to find a funclet with information.  Put +  // null entries in the memo map to avoid re-processing as we go up. +  MemoMap[EHPad] = nullptr; +#ifndef NDEBUG +  SmallPtrSet<Instruction *, 4> TempMemos; +  TempMemos.insert(EHPad); +#endif +  Instruction *LastUselessPad = EHPad; +  Value *AncestorToken; +  for (AncestorToken = getParentPad(EHPad); +       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); +       AncestorToken = getParentPad(AncestorToken)) { +    // Skip over catchpads since they just follow their catchswitches. +    if (isa<CatchPadInst>(AncestorPad)) +      continue; +    // If the MemoMap had an entry mapping AncestorPad to nullptr, since we +    // haven't yet called getUnwindDestTokenHelper for AncestorPad in this +    // call to getUnwindDestToken, that would mean that AncestorPad had no +    // information in itself, its descendants, or its ancestors.  If that +    // were the case, then we should also have recorded the lack of information +    // for the descendant that we're coming from.  So assert that we don't +    // find a null entry in the MemoMap for AncestorPad. +    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); +    auto AncestorMemo = MemoMap.find(AncestorPad); +    if (AncestorMemo == MemoMap.end()) { +      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); +    } else { +      UnwindDestToken = AncestorMemo->second; +    } +    if (UnwindDestToken) +      break; +    LastUselessPad = AncestorPad; +    MemoMap[LastUselessPad] = nullptr; +#ifndef NDEBUG +    TempMemos.insert(LastUselessPad); +#endif +  } + +  // We know that getUnwindDestTokenHelper was called on LastUselessPad and +  // returned nullptr (and likewise for EHPad and any of its ancestors up to +  // LastUselessPad), so LastUselessPad has no information from below.  Since +  // getUnwindDestTokenHelper must investigate all downward paths through +  // no-information nodes to prove that a node has no information like this, +  // and since any time it finds information it records it in the MemoMap for +  // not just the immediately-containing funclet but also any ancestors also +  // exited, it must be the case that, walking downward from LastUselessPad, +  // visiting just those nodes which have not been mapped to an unwind dest +  // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since +  // they are just used to keep getUnwindDestTokenHelper from repeating work), +  // any node visited must have been exhaustively searched with no information +  // for it found. +  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); +  while (!Worklist.empty()) { +    Instruction *UselessPad = Worklist.pop_back_val(); +    auto Memo = MemoMap.find(UselessPad); +    if (Memo != MemoMap.end() && Memo->second) { +      // Here the name 'UselessPad' is a bit of a misnomer, because we've found +      // that it is a funclet that does have information about unwinding to +      // a particular destination; its parent was a useless pad. +      // Since its parent has no information, the unwind edge must not escape +      // the parent, and must target a sibling of this pad.  This local unwind +      // gives us no information about EHPad.  Leave it and the subtree rooted +      // at it alone. +      assert(getParentPad(Memo->second) == getParentPad(UselessPad)); +      continue; +    } +    // We know we don't have information for UselesPad.  If it has an entry in +    // the MemoMap (mapping it to nullptr), it must be one of the TempMemos +    // added on this invocation of getUnwindDestToken; if a previous invocation +    // recorded nullptr, it would have had to prove that the ancestors of +    // UselessPad, which include LastUselessPad, had no information, and that +    // in turn would have required proving that the descendants of +    // LastUselesPad, which include EHPad, have no information about +    // LastUselessPad, which would imply that EHPad was mapped to nullptr in +    // the MemoMap on that invocation, which isn't the case if we got here. +    assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); +    // Assert as we enumerate users that 'UselessPad' doesn't have any unwind +    // information that we'd be contradicting by making a map entry for it +    // (which is something that getUnwindDestTokenHelper must have proved for +    // us to get here).  Just assert on is direct users here; the checks in +    // this downward walk at its descendants will verify that they don't have +    // any unwind edges that exit 'UselessPad' either (i.e. they either have no +    // unwind edges or unwind to a sibling). +    MemoMap[UselessPad] = UnwindDestToken; +    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { +      assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); +      for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { +        auto *CatchPad = HandlerBlock->getFirstNonPHI(); +        for (User *U : CatchPad->users()) { +          assert( +              (!isa<InvokeInst>(U) || +               (getParentPad( +                    cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == +                CatchPad)) && +              "Expected useless pad"); +          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) +            Worklist.push_back(cast<Instruction>(U)); +        } +      } +    } else { +      assert(isa<CleanupPadInst>(UselessPad)); +      for (User *U : UselessPad->users()) { +        assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); +        assert((!isa<InvokeInst>(U) || +                (getParentPad( +                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == +                 UselessPad)) && +               "Expected useless pad"); +        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) +          Worklist.push_back(cast<Instruction>(U)); +      } +    } +  } + +  return UnwindDestToken; +} + +/// When we inline a basic block into an invoke, +/// we have to turn all of the calls that can throw into invokes. +/// This function analyze BB to see if there are any calls, and if so, +/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI +/// nodes in that block with the values specified in InvokeDestPHIValues. +static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( +    BasicBlock *BB, BasicBlock *UnwindEdge, +    UnwindDestMemoTy *FuncletUnwindMap = nullptr) { +  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { +    Instruction *I = &*BBI++; + +    // We only need to check for function calls: inlined invoke +    // instructions require no special handling. +    CallInst *CI = dyn_cast<CallInst>(I); + +    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) +      continue; + +    // We do not need to (and in fact, cannot) convert possibly throwing calls +    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into +    // invokes.  The caller's "segment" of the deoptimization continuation +    // attached to the newly inlined @llvm.experimental_deoptimize +    // (resp. @llvm.experimental.guard) call should contain the exception +    // handling logic, if any. +    if (auto *F = CI->getCalledFunction()) +      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || +          F->getIntrinsicID() == Intrinsic::experimental_guard) +        continue; + +    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { +      // This call is nested inside a funclet.  If that funclet has an unwind +      // destination within the inlinee, then unwinding out of this call would +      // be UB.  Rewriting this call to an invoke which targets the inlined +      // invoke's unwind dest would give the call's parent funclet multiple +      // unwind destinations, which is something that subsequent EH table +      // generation can't handle and that the veirifer rejects.  So when we +      // see such a call, leave it as a call. +      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); +      Value *UnwindDestToken = +          getUnwindDestToken(FuncletPad, *FuncletUnwindMap); +      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) +        continue; +#ifndef NDEBUG +      Instruction *MemoKey; +      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) +        MemoKey = CatchPad->getCatchSwitch(); +      else +        MemoKey = FuncletPad; +      assert(FuncletUnwindMap->count(MemoKey) && +             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && +             "must get memoized to avoid confusing later searches"); +#endif // NDEBUG +    } + +    changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); +    return BB; +  } +  return nullptr; +} + +/// If we inlined an invoke site, we need to convert calls +/// in the body of the inlined function into invokes. +/// +/// II is the invoke instruction being inlined.  FirstNewBlock is the first +/// block of the inlined code (the last block is the end of the function), +/// and InlineCodeInfo is information about the code that got inlined. +static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, +                                    ClonedCodeInfo &InlinedCodeInfo) { +  BasicBlock *InvokeDest = II->getUnwindDest(); + +  Function *Caller = FirstNewBlock->getParent(); + +  // The inlined code is currently at the end of the function, scan from the +  // start of the inlined code to its end, checking for stuff we need to +  // rewrite. +  LandingPadInliningInfo Invoke(II); + +  // Get all of the inlined landing pad instructions. +  SmallPtrSet<LandingPadInst*, 16> InlinedLPads; +  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); +       I != E; ++I) +    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) +      InlinedLPads.insert(II->getLandingPadInst()); + +  // Append the clauses from the outer landing pad instruction into the inlined +  // landing pad instructions. +  LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); +  for (LandingPadInst *InlinedLPad : InlinedLPads) { +    unsigned OuterNum = OuterLPad->getNumClauses(); +    InlinedLPad->reserveClauses(OuterNum); +    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) +      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); +    if (OuterLPad->isCleanup()) +      InlinedLPad->setCleanup(true); +  } + +  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); +       BB != E; ++BB) { +    if (InlinedCodeInfo.ContainsCalls) +      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( +              &*BB, Invoke.getOuterResumeDest())) +        // Update any PHI nodes in the exceptional block to indicate that there +        // is now a new entry in them. +        Invoke.addIncomingPHIValuesFor(NewBB); + +    // Forward any resumes that are remaining here. +    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) +      Invoke.forwardResume(RI, InlinedLPads); +  } + +  // Now that everything is happy, we have one final detail.  The PHI nodes in +  // the exception destination block still have entries due to the original +  // invoke instruction. Eliminate these entries (which might even delete the +  // PHI node) now. +  InvokeDest->removePredecessor(II->getParent()); +} + +/// If we inlined an invoke site, we need to convert calls +/// in the body of the inlined function into invokes. +/// +/// II is the invoke instruction being inlined.  FirstNewBlock is the first +/// block of the inlined code (the last block is the end of the function), +/// and InlineCodeInfo is information about the code that got inlined. +static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, +                               ClonedCodeInfo &InlinedCodeInfo) { +  BasicBlock *UnwindDest = II->getUnwindDest(); +  Function *Caller = FirstNewBlock->getParent(); + +  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); + +  // If there are PHI nodes in the unwind destination block, we need to keep +  // track of which values came into them from the invoke before removing the +  // edge from this block. +  SmallVector<Value *, 8> UnwindDestPHIValues; +  BasicBlock *InvokeBB = II->getParent(); +  for (Instruction &I : *UnwindDest) { +    // Save the value to use for this edge. +    PHINode *PHI = dyn_cast<PHINode>(&I); +    if (!PHI) +      break; +    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); +  } + +  // Add incoming-PHI values to the unwind destination block for the given basic +  // block, using the values for the original invoke's source block. +  auto UpdatePHINodes = [&](BasicBlock *Src) { +    BasicBlock::iterator I = UnwindDest->begin(); +    for (Value *V : UnwindDestPHIValues) { +      PHINode *PHI = cast<PHINode>(I); +      PHI->addIncoming(V, Src); +      ++I; +    } +  }; + +  // This connects all the instructions which 'unwind to caller' to the invoke +  // destination. +  UnwindDestMemoTy FuncletUnwindMap; +  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); +       BB != E; ++BB) { +    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { +      if (CRI->unwindsToCaller()) { +        auto *CleanupPad = CRI->getCleanupPad(); +        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); +        CRI->eraseFromParent(); +        UpdatePHINodes(&*BB); +        // Finding a cleanupret with an unwind destination would confuse +        // subsequent calls to getUnwindDestToken, so map the cleanuppad +        // to short-circuit any such calls and recognize this as an "unwind +        // to caller" cleanup. +        assert(!FuncletUnwindMap.count(CleanupPad) || +               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); +        FuncletUnwindMap[CleanupPad] = +            ConstantTokenNone::get(Caller->getContext()); +      } +    } + +    Instruction *I = BB->getFirstNonPHI(); +    if (!I->isEHPad()) +      continue; + +    Instruction *Replacement = nullptr; +    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { +      if (CatchSwitch->unwindsToCaller()) { +        Value *UnwindDestToken; +        if (auto *ParentPad = +                dyn_cast<Instruction>(CatchSwitch->getParentPad())) { +          // This catchswitch is nested inside another funclet.  If that +          // funclet has an unwind destination within the inlinee, then +          // unwinding out of this catchswitch would be UB.  Rewriting this +          // catchswitch to unwind to the inlined invoke's unwind dest would +          // give the parent funclet multiple unwind destinations, which is +          // something that subsequent EH table generation can't handle and +          // that the veirifer rejects.  So when we see such a call, leave it +          // as "unwind to caller". +          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); +          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) +            continue; +        } else { +          // This catchswitch has no parent to inherit constraints from, and +          // none of its descendants can have an unwind edge that exits it and +          // targets another funclet in the inlinee.  It may or may not have a +          // descendant that definitively has an unwind to caller.  In either +          // case, we'll have to assume that any unwinds out of it may need to +          // be routed to the caller, so treat it as though it has a definitive +          // unwind to caller. +          UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); +        } +        auto *NewCatchSwitch = CatchSwitchInst::Create( +            CatchSwitch->getParentPad(), UnwindDest, +            CatchSwitch->getNumHandlers(), CatchSwitch->getName(), +            CatchSwitch); +        for (BasicBlock *PadBB : CatchSwitch->handlers()) +          NewCatchSwitch->addHandler(PadBB); +        // Propagate info for the old catchswitch over to the new one in +        // the unwind map.  This also serves to short-circuit any subsequent +        // checks for the unwind dest of this catchswitch, which would get +        // confused if they found the outer handler in the callee. +        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; +        Replacement = NewCatchSwitch; +      } +    } else if (!isa<FuncletPadInst>(I)) { +      llvm_unreachable("unexpected EHPad!"); +    } + +    if (Replacement) { +      Replacement->takeName(I); +      I->replaceAllUsesWith(Replacement); +      I->eraseFromParent(); +      UpdatePHINodes(&*BB); +    } +  } + +  if (InlinedCodeInfo.ContainsCalls) +    for (Function::iterator BB = FirstNewBlock->getIterator(), +                            E = Caller->end(); +         BB != E; ++BB) +      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( +              &*BB, UnwindDest, &FuncletUnwindMap)) +        // Update any PHI nodes in the exceptional block to indicate that there +        // is now a new entry in them. +        UpdatePHINodes(NewBB); + +  // Now that everything is happy, we have one final detail.  The PHI nodes in +  // the exception destination block still have entries due to the original +  // invoke instruction. Eliminate these entries (which might even delete the +  // PHI node) now. +  UnwindDest->removePredecessor(InvokeBB); +} + +/// When inlining a call site that has !llvm.mem.parallel_loop_access or +/// llvm.access.group metadata, that metadata should be propagated to all +/// memory-accessing cloned instructions. +static void PropagateParallelLoopAccessMetadata(CallSite CS, +                                                ValueToValueMapTy &VMap) { +  MDNode *M = +    CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); +  MDNode *CallAccessGroup = +      CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); +  if (!M && !CallAccessGroup) +    return; + +  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); +       VMI != VMIE; ++VMI) { +    if (!VMI->second) +      continue; + +    Instruction *NI = dyn_cast<Instruction>(VMI->second); +    if (!NI) +      continue; + +    if (M) { +      if (MDNode *PM = +              NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { +        M = MDNode::concatenate(PM, M); +      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); +      } else if (NI->mayReadOrWriteMemory()) { +        NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); +      } +    } + +    if (NI->mayReadOrWriteMemory()) { +      MDNode *UnitedAccGroups = uniteAccessGroups( +          NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); +      NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); +    } +  } +} + +/// When inlining a function that contains noalias scope metadata, +/// this metadata needs to be cloned so that the inlined blocks +/// have different "unique scopes" at every call site. Were this not done, then +/// aliasing scopes from a function inlined into a caller multiple times could +/// not be differentiated (and this would lead to miscompiles because the +/// non-aliasing property communicated by the metadata could have +/// call-site-specific control dependencies). +static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { +  const Function *CalledFunc = CS.getCalledFunction(); +  SetVector<const MDNode *> MD; + +  // Note: We could only clone the metadata if it is already used in the +  // caller. I'm omitting that check here because it might confuse +  // inter-procedural alias analysis passes. We can revisit this if it becomes +  // an efficiency or overhead problem. + +  for (const BasicBlock &I : *CalledFunc) +    for (const Instruction &J : I) { +      if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) +        MD.insert(M); +      if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) +        MD.insert(M); +    } + +  if (MD.empty()) +    return; + +  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to +  // the set. +  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); +  while (!Queue.empty()) { +    const MDNode *M = cast<MDNode>(Queue.pop_back_val()); +    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) +      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) +        if (MD.insert(M1)) +          Queue.push_back(M1); +  } + +  // Now we have a complete set of all metadata in the chains used to specify +  // the noalias scopes and the lists of those scopes. +  SmallVector<TempMDTuple, 16> DummyNodes; +  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; +  for (const MDNode *I : MD) { +    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); +    MDMap[I].reset(DummyNodes.back().get()); +  } + +  // Create new metadata nodes to replace the dummy nodes, replacing old +  // metadata references with either a dummy node or an already-created new +  // node. +  for (const MDNode *I : MD) { +    SmallVector<Metadata *, 4> NewOps; +    for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { +      const Metadata *V = I->getOperand(i); +      if (const MDNode *M = dyn_cast<MDNode>(V)) +        NewOps.push_back(MDMap[M]); +      else +        NewOps.push_back(const_cast<Metadata *>(V)); +    } + +    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); +    MDTuple *TempM = cast<MDTuple>(MDMap[I]); +    assert(TempM->isTemporary() && "Expected temporary node"); + +    TempM->replaceAllUsesWith(NewM); +  } + +  // Now replace the metadata in the new inlined instructions with the +  // repacements from the map. +  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); +       VMI != VMIE; ++VMI) { +    if (!VMI->second) +      continue; + +    Instruction *NI = dyn_cast<Instruction>(VMI->second); +    if (!NI) +      continue; + +    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { +      MDNode *NewMD = MDMap[M]; +      // If the call site also had alias scope metadata (a list of scopes to +      // which instructions inside it might belong), propagate those scopes to +      // the inlined instructions. +      if (MDNode *CSM = +              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) +        NewMD = MDNode::concatenate(NewMD, CSM); +      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); +    } else if (NI->mayReadOrWriteMemory()) { +      if (MDNode *M = +              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) +        NI->setMetadata(LLVMContext::MD_alias_scope, M); +    } + +    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { +      MDNode *NewMD = MDMap[M]; +      // If the call site also had noalias metadata (a list of scopes with +      // which instructions inside it don't alias), propagate those scopes to +      // the inlined instructions. +      if (MDNode *CSM = +              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) +        NewMD = MDNode::concatenate(NewMD, CSM); +      NI->setMetadata(LLVMContext::MD_noalias, NewMD); +    } else if (NI->mayReadOrWriteMemory()) { +      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) +        NI->setMetadata(LLVMContext::MD_noalias, M); +    } +  } +} + +/// If the inlined function has noalias arguments, +/// then add new alias scopes for each noalias argument, tag the mapped noalias +/// parameters with noalias metadata specifying the new scope, and tag all +/// non-derived loads, stores and memory intrinsics with the new alias scopes. +static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, +                                  const DataLayout &DL, AAResults *CalleeAAR) { +  if (!EnableNoAliasConversion) +    return; + +  const Function *CalledFunc = CS.getCalledFunction(); +  SmallVector<const Argument *, 4> NoAliasArgs; + +  for (const Argument &Arg : CalledFunc->args()) +    if (Arg.hasNoAliasAttr() && !Arg.use_empty()) +      NoAliasArgs.push_back(&Arg); + +  if (NoAliasArgs.empty()) +    return; + +  // To do a good job, if a noalias variable is captured, we need to know if +  // the capture point dominates the particular use we're considering. +  DominatorTree DT; +  DT.recalculate(const_cast<Function&>(*CalledFunc)); + +  // noalias indicates that pointer values based on the argument do not alias +  // pointer values which are not based on it. So we add a new "scope" for each +  // noalias function argument. Accesses using pointers based on that argument +  // become part of that alias scope, accesses using pointers not based on that +  // argument are tagged as noalias with that scope. + +  DenseMap<const Argument *, MDNode *> NewScopes; +  MDBuilder MDB(CalledFunc->getContext()); + +  // Create a new scope domain for this function. +  MDNode *NewDomain = +    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); +  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { +    const Argument *A = NoAliasArgs[i]; + +    std::string Name = CalledFunc->getName(); +    if (A->hasName()) { +      Name += ": %"; +      Name += A->getName(); +    } else { +      Name += ": argument "; +      Name += utostr(i); +    } + +    // Note: We always create a new anonymous root here. This is true regardless +    // of the linkage of the callee because the aliasing "scope" is not just a +    // property of the callee, but also all control dependencies in the caller. +    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); +    NewScopes.insert(std::make_pair(A, NewScope)); +  } + +  // Iterate over all new instructions in the map; for all memory-access +  // instructions, add the alias scope metadata. +  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); +       VMI != VMIE; ++VMI) { +    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { +      if (!VMI->second) +        continue; + +      Instruction *NI = dyn_cast<Instruction>(VMI->second); +      if (!NI) +        continue; + +      bool IsArgMemOnlyCall = false, IsFuncCall = false; +      SmallVector<const Value *, 2> PtrArgs; + +      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) +        PtrArgs.push_back(LI->getPointerOperand()); +      else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) +        PtrArgs.push_back(SI->getPointerOperand()); +      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) +        PtrArgs.push_back(VAAI->getPointerOperand()); +      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) +        PtrArgs.push_back(CXI->getPointerOperand()); +      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) +        PtrArgs.push_back(RMWI->getPointerOperand()); +      else if (const auto *Call = dyn_cast<CallBase>(I)) { +        // If we know that the call does not access memory, then we'll still +        // know that about the inlined clone of this call site, and we don't +        // need to add metadata. +        if (Call->doesNotAccessMemory()) +          continue; + +        IsFuncCall = true; +        if (CalleeAAR) { +          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); +          if (MRB == FMRB_OnlyAccessesArgumentPointees || +              MRB == FMRB_OnlyReadsArgumentPointees) +            IsArgMemOnlyCall = true; +        } + +        for (Value *Arg : Call->args()) { +          // We need to check the underlying objects of all arguments, not just +          // the pointer arguments, because we might be passing pointers as +          // integers, etc. +          // However, if we know that the call only accesses pointer arguments, +          // then we only need to check the pointer arguments. +          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) +            continue; + +          PtrArgs.push_back(Arg); +        } +      } + +      // If we found no pointers, then this instruction is not suitable for +      // pairing with an instruction to receive aliasing metadata. +      // However, if this is a call, this we might just alias with none of the +      // noalias arguments. +      if (PtrArgs.empty() && !IsFuncCall) +        continue; + +      // It is possible that there is only one underlying object, but you +      // need to go through several PHIs to see it, and thus could be +      // repeated in the Objects list. +      SmallPtrSet<const Value *, 4> ObjSet; +      SmallVector<Metadata *, 4> Scopes, NoAliases; + +      SmallSetVector<const Argument *, 4> NAPtrArgs; +      for (const Value *V : PtrArgs) { +        SmallVector<const Value *, 4> Objects; +        GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); + +        for (const Value *O : Objects) +          ObjSet.insert(O); +      } + +      // Figure out if we're derived from anything that is not a noalias +      // argument. +      bool CanDeriveViaCapture = false, UsesAliasingPtr = false; +      for (const Value *V : ObjSet) { +        // Is this value a constant that cannot be derived from any pointer +        // value (we need to exclude constant expressions, for example, that +        // are formed from arithmetic on global symbols). +        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || +                             isa<ConstantPointerNull>(V) || +                             isa<ConstantDataVector>(V) || isa<UndefValue>(V); +        if (IsNonPtrConst) +          continue; + +        // If this is anything other than a noalias argument, then we cannot +        // completely describe the aliasing properties using alias.scope +        // metadata (and, thus, won't add any). +        if (const Argument *A = dyn_cast<Argument>(V)) { +          if (!A->hasNoAliasAttr()) +            UsesAliasingPtr = true; +        } else { +          UsesAliasingPtr = true; +        } + +        // If this is not some identified function-local object (which cannot +        // directly alias a noalias argument), or some other argument (which, +        // by definition, also cannot alias a noalias argument), then we could +        // alias a noalias argument that has been captured). +        if (!isa<Argument>(V) && +            !isIdentifiedFunctionLocal(const_cast<Value*>(V))) +          CanDeriveViaCapture = true; +      } + +      // A function call can always get captured noalias pointers (via other +      // parameters, globals, etc.). +      if (IsFuncCall && !IsArgMemOnlyCall) +        CanDeriveViaCapture = true; + +      // First, we want to figure out all of the sets with which we definitely +      // don't alias. Iterate over all noalias set, and add those for which: +      //   1. The noalias argument is not in the set of objects from which we +      //      definitely derive. +      //   2. The noalias argument has not yet been captured. +      // An arbitrary function that might load pointers could see captured +      // noalias arguments via other noalias arguments or globals, and so we +      // must always check for prior capture. +      for (const Argument *A : NoAliasArgs) { +        if (!ObjSet.count(A) && (!CanDeriveViaCapture || +                                 // It might be tempting to skip the +                                 // PointerMayBeCapturedBefore check if +                                 // A->hasNoCaptureAttr() is true, but this is +                                 // incorrect because nocapture only guarantees +                                 // that no copies outlive the function, not +                                 // that the value cannot be locally captured. +                                 !PointerMayBeCapturedBefore(A, +                                   /* ReturnCaptures */ false, +                                   /* StoreCaptures */ false, I, &DT))) +          NoAliases.push_back(NewScopes[A]); +      } + +      if (!NoAliases.empty()) +        NI->setMetadata(LLVMContext::MD_noalias, +                        MDNode::concatenate( +                            NI->getMetadata(LLVMContext::MD_noalias), +                            MDNode::get(CalledFunc->getContext(), NoAliases))); + +      // Next, we want to figure out all of the sets to which we might belong. +      // We might belong to a set if the noalias argument is in the set of +      // underlying objects. If there is some non-noalias argument in our list +      // of underlying objects, then we cannot add a scope because the fact +      // that some access does not alias with any set of our noalias arguments +      // cannot itself guarantee that it does not alias with this access +      // (because there is some pointer of unknown origin involved and the +      // other access might also depend on this pointer). We also cannot add +      // scopes to arbitrary functions unless we know they don't access any +      // non-parameter pointer-values. +      bool CanAddScopes = !UsesAliasingPtr; +      if (CanAddScopes && IsFuncCall) +        CanAddScopes = IsArgMemOnlyCall; + +      if (CanAddScopes) +        for (const Argument *A : NoAliasArgs) { +          if (ObjSet.count(A)) +            Scopes.push_back(NewScopes[A]); +        } + +      if (!Scopes.empty()) +        NI->setMetadata( +            LLVMContext::MD_alias_scope, +            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), +                                MDNode::get(CalledFunc->getContext(), Scopes))); +    } +  } +} + +/// If the inlined function has non-byval align arguments, then +/// add @llvm.assume-based alignment assumptions to preserve this information. +static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { +  if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) +    return; + +  AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); +  auto &DL = CS.getCaller()->getParent()->getDataLayout(); + +  // To avoid inserting redundant assumptions, we should check for assumptions +  // already in the caller. To do this, we might need a DT of the caller. +  DominatorTree DT; +  bool DTCalculated = false; + +  Function *CalledFunc = CS.getCalledFunction(); +  for (Argument &Arg : CalledFunc->args()) { +    unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; +    if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { +      if (!DTCalculated) { +        DT.recalculate(*CS.getCaller()); +        DTCalculated = true; +      } + +      // If we can already prove the asserted alignment in the context of the +      // caller, then don't bother inserting the assumption. +      Value *ArgVal = CS.getArgument(Arg.getArgNo()); +      if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) +        continue; + +      CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) +                              .CreateAlignmentAssumption(DL, ArgVal, Align); +      AC->registerAssumption(NewAsmp); +    } +  } +} + +/// Once we have cloned code over from a callee into the caller, +/// update the specified callgraph to reflect the changes we made. +/// Note that it's possible that not all code was copied over, so only +/// some edges of the callgraph may remain. +static void UpdateCallGraphAfterInlining(CallSite CS, +                                         Function::iterator FirstNewBlock, +                                         ValueToValueMapTy &VMap, +                                         InlineFunctionInfo &IFI) { +  CallGraph &CG = *IFI.CG; +  const Function *Caller = CS.getCaller(); +  const Function *Callee = CS.getCalledFunction(); +  CallGraphNode *CalleeNode = CG[Callee]; +  CallGraphNode *CallerNode = CG[Caller]; + +  // Since we inlined some uninlined call sites in the callee into the caller, +  // add edges from the caller to all of the callees of the callee. +  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); + +  // Consider the case where CalleeNode == CallerNode. +  CallGraphNode::CalledFunctionsVector CallCache; +  if (CalleeNode == CallerNode) { +    CallCache.assign(I, E); +    I = CallCache.begin(); +    E = CallCache.end(); +  } + +  for (; I != E; ++I) { +    const Value *OrigCall = I->first; + +    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); +    // Only copy the edge if the call was inlined! +    if (VMI == VMap.end() || VMI->second == nullptr) +      continue; + +    // If the call was inlined, but then constant folded, there is no edge to +    // add.  Check for this case. +    auto *NewCall = dyn_cast<CallBase>(VMI->second); +    if (!NewCall) +      continue; + +    // We do not treat intrinsic calls like real function calls because we +    // expect them to become inline code; do not add an edge for an intrinsic. +    if (NewCall->getCalledFunction() && +        NewCall->getCalledFunction()->isIntrinsic()) +      continue; + +    // Remember that this call site got inlined for the client of +    // InlineFunction. +    IFI.InlinedCalls.push_back(NewCall); + +    // It's possible that inlining the callsite will cause it to go from an +    // indirect to a direct call by resolving a function pointer.  If this +    // happens, set the callee of the new call site to a more precise +    // destination.  This can also happen if the call graph node of the caller +    // was just unnecessarily imprecise. +    if (!I->second->getFunction()) +      if (Function *F = NewCall->getCalledFunction()) { +        // Indirect call site resolved to direct call. +        CallerNode->addCalledFunction(NewCall, CG[F]); + +        continue; +      } + +    CallerNode->addCalledFunction(NewCall, I->second); +  } + +  // Update the call graph by deleting the edge from Callee to Caller.  We must +  // do this after the loop above in case Caller and Callee are the same. +  CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); +} + +static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, +                                    BasicBlock *InsertBlock, +                                    InlineFunctionInfo &IFI) { +  Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); +  IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); + +  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); + +  // Always generate a memcpy of alignment 1 here because we don't know +  // the alignment of the src pointer.  Other optimizations can infer +  // better alignment. +  Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size); +} + +/// When inlining a call site that has a byval argument, +/// we have to make the implicit memcpy explicit by adding it. +static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, +                                  const Function *CalledFunc, +                                  InlineFunctionInfo &IFI, +                                  unsigned ByValAlignment) { +  PointerType *ArgTy = cast<PointerType>(Arg->getType()); +  Type *AggTy = ArgTy->getElementType(); + +  Function *Caller = TheCall->getFunction(); +  const DataLayout &DL = Caller->getParent()->getDataLayout(); + +  // If the called function is readonly, then it could not mutate the caller's +  // copy of the byval'd memory.  In this case, it is safe to elide the copy and +  // temporary. +  if (CalledFunc->onlyReadsMemory()) { +    // If the byval argument has a specified alignment that is greater than the +    // passed in pointer, then we either have to round up the input pointer or +    // give up on this transformation. +    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment. +      return Arg; + +    AssumptionCache *AC = +        IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; + +    // If the pointer is already known to be sufficiently aligned, or if we can +    // round it up to a larger alignment, then we don't need a temporary. +    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= +        ByValAlignment) +      return Arg; + +    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad +    // for code quality, but rarely happens and is required for correctness. +  } + +  // Create the alloca.  If we have DataLayout, use nice alignment. +  unsigned Align = DL.getPrefTypeAlignment(AggTy); + +  // If the byval had an alignment specified, we *must* use at least that +  // alignment, as it is required by the byval argument (and uses of the +  // pointer inside the callee). +  Align = std::max(Align, ByValAlignment); + +  Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), +                                    nullptr, Align, Arg->getName(), +                                    &*Caller->begin()->begin()); +  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); + +  // Uses of the argument in the function should use our new alloca +  // instead. +  return NewAlloca; +} + +// Check whether this Value is used by a lifetime intrinsic. +static bool isUsedByLifetimeMarker(Value *V) { +  for (User *U : V->users()) +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) +      if (II->isLifetimeStartOrEnd()) +        return true; +  return false; +} + +// Check whether the given alloca already has +// lifetime.start or lifetime.end intrinsics. +static bool hasLifetimeMarkers(AllocaInst *AI) { +  Type *Ty = AI->getType(); +  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), +                                       Ty->getPointerAddressSpace()); +  if (Ty == Int8PtrTy) +    return isUsedByLifetimeMarker(AI); + +  // Do a scan to find all the casts to i8*. +  for (User *U : AI->users()) { +    if (U->getType() != Int8PtrTy) continue; +    if (U->stripPointerCasts() != AI) continue; +    if (isUsedByLifetimeMarker(U)) +      return true; +  } +  return false; +} + +/// Return the result of AI->isStaticAlloca() if AI were moved to the entry +/// block. Allocas used in inalloca calls and allocas of dynamic array size +/// cannot be static. +static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { +  return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); +} + +/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL +/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. +static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, +                               LLVMContext &Ctx, +                               DenseMap<const MDNode *, MDNode *> &IANodes) { +  auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); +  return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), +                       IA); +} + +/// Returns the LoopID for a loop which has has been cloned from another +/// function for inlining with the new inlined-at start and end locs. +static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt, +                            LLVMContext &Ctx, +                            DenseMap<const MDNode *, MDNode *> &IANodes) { +  assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 && +         "Loop ID needs at least one operand"); +  assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId && +         "Loop ID should refer to itself"); + +  // Save space for the self-referential LoopID. +  SmallVector<Metadata *, 4> MDs = {nullptr}; + +  for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) { +    Metadata *MD = OrigLoopId->getOperand(i); +    // Update the DILocations to encode the inlined-at metadata. +    if (DILocation *DL = dyn_cast<DILocation>(MD)) +      MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes)); +    else +      MDs.push_back(MD); +  } + +  MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs); +  // Insert the self-referential LoopID. +  NewLoopID->replaceOperandWith(0, NewLoopID); +  return NewLoopID; +} + +/// Update inlined instructions' line numbers to +/// to encode location where these instructions are inlined. +static void fixupLineNumbers(Function *Fn, Function::iterator FI, +                             Instruction *TheCall, bool CalleeHasDebugInfo) { +  const DebugLoc &TheCallDL = TheCall->getDebugLoc(); +  if (!TheCallDL) +    return; + +  auto &Ctx = Fn->getContext(); +  DILocation *InlinedAtNode = TheCallDL; + +  // Create a unique call site, not to be confused with any other call from the +  // same location. +  InlinedAtNode = DILocation::getDistinct( +      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), +      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); + +  // Cache the inlined-at nodes as they're built so they are reused, without +  // this every instruction's inlined-at chain would become distinct from each +  // other. +  DenseMap<const MDNode *, MDNode *> IANodes; + +  for (; FI != Fn->end(); ++FI) { +    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); +         BI != BE; ++BI) { +      // Loop metadata needs to be updated so that the start and end locs +      // reference inlined-at locations. +      if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) { +        MDNode *NewLoopID = +            inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes); +        BI->setMetadata(LLVMContext::MD_loop, NewLoopID); +      } + +      if (DebugLoc DL = BI->getDebugLoc()) { +        DebugLoc IDL = +            inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); +        BI->setDebugLoc(IDL); +        continue; +      } + +      if (CalleeHasDebugInfo) +        continue; + +      // If the inlined instruction has no line number, make it look as if it +      // originates from the call location. This is important for +      // ((__always_inline__, __nodebug__)) functions which must use caller +      // location for all instructions in their function body. + +      // Don't update static allocas, as they may get moved later. +      if (auto *AI = dyn_cast<AllocaInst>(BI)) +        if (allocaWouldBeStaticInEntry(AI)) +          continue; + +      BI->setDebugLoc(TheCallDL); +    } +  } +} + +/// Update the block frequencies of the caller after a callee has been inlined. +/// +/// Each block cloned into the caller has its block frequency scaled by the +/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of +/// callee's entry block gets the same frequency as the callsite block and the +/// relative frequencies of all cloned blocks remain the same after cloning. +static void updateCallerBFI(BasicBlock *CallSiteBlock, +                            const ValueToValueMapTy &VMap, +                            BlockFrequencyInfo *CallerBFI, +                            BlockFrequencyInfo *CalleeBFI, +                            const BasicBlock &CalleeEntryBlock) { +  SmallPtrSet<BasicBlock *, 16> ClonedBBs; +  for (auto const &Entry : VMap) { +    if (!isa<BasicBlock>(Entry.first) || !Entry.second) +      continue; +    auto *OrigBB = cast<BasicBlock>(Entry.first); +    auto *ClonedBB = cast<BasicBlock>(Entry.second); +    uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); +    if (!ClonedBBs.insert(ClonedBB).second) { +      // Multiple blocks in the callee might get mapped to one cloned block in +      // the caller since we prune the callee as we clone it. When that happens, +      // we want to use the maximum among the original blocks' frequencies. +      uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); +      if (NewFreq > Freq) +        Freq = NewFreq; +    } +    CallerBFI->setBlockFreq(ClonedBB, Freq); +  } +  BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); +  CallerBFI->setBlockFreqAndScale( +      EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), +      ClonedBBs); +} + +/// Update the branch metadata for cloned call instructions. +static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, +                              const ProfileCount &CalleeEntryCount, +                              const Instruction *TheCall, +                              ProfileSummaryInfo *PSI, +                              BlockFrequencyInfo *CallerBFI) { +  if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || +      CalleeEntryCount.getCount() < 1) +    return; +  auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; +  int64_t CallCount = +      std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, +               CalleeEntryCount.getCount()); +  updateProfileCallee(Callee, -CallCount, &VMap); +} + +void llvm::updateProfileCallee( +    Function *Callee, int64_t entryDelta, +    const ValueMap<const Value *, WeakTrackingVH> *VMap) { +  auto CalleeCount = Callee->getEntryCount(); +  if (!CalleeCount.hasValue()) +    return; + +  uint64_t priorEntryCount = CalleeCount.getCount(); +  uint64_t newEntryCount; + +  // Since CallSiteCount is an estimate, it could exceed the original callee +  // count and has to be set to 0 so guard against underflow. +  if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) +    newEntryCount = 0; +  else +    newEntryCount = priorEntryCount + entryDelta; + +  Callee->setEntryCount(newEntryCount); + +  // During inlining ? +  if (VMap) { +    uint64_t cloneEntryCount = priorEntryCount - newEntryCount; +    for (auto const &Entry : *VMap) +      if (isa<CallInst>(Entry.first)) +        if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) +          CI->updateProfWeight(cloneEntryCount, priorEntryCount); +  } +  for (BasicBlock &BB : *Callee) +    // No need to update the callsite if it is pruned during inlining. +    if (!VMap || VMap->count(&BB)) +      for (Instruction &I : BB) +        if (CallInst *CI = dyn_cast<CallInst>(&I)) +          CI->updateProfWeight(newEntryCount, priorEntryCount); +} + +/// This function inlines the called function into the basic block of the +/// caller. This returns false if it is not possible to inline this call. +/// The program is still in a well defined state if this occurs though. +/// +/// Note that this only does one level of inlining.  For example, if the +/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now +/// exists in the instruction stream.  Similarly this will inline a recursive +/// function by one level. +llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, +                                        AAResults *CalleeAAR, +                                        bool InsertLifetime, +                                        Function *ForwardVarArgsTo) { +  Instruction *TheCall = CS.getInstruction(); +  assert(TheCall->getParent() && TheCall->getFunction() +         && "Instruction not in function!"); + +  // FIXME: we don't inline callbr yet. +  if (isa<CallBrInst>(TheCall)) +    return false; + +  // If IFI has any state in it, zap it before we fill it in. +  IFI.reset(); + +  Function *CalledFunc = CS.getCalledFunction(); +  if (!CalledFunc ||               // Can't inline external function or indirect +      CalledFunc->isDeclaration()) // call! +    return "external or indirect"; + +  // The inliner does not know how to inline through calls with operand bundles +  // in general ... +  if (CS.hasOperandBundles()) { +    for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { +      uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); +      // ... but it knows how to inline through "deopt" operand bundles ... +      if (Tag == LLVMContext::OB_deopt) +        continue; +      // ... and "funclet" operand bundles. +      if (Tag == LLVMContext::OB_funclet) +        continue; + +      return "unsupported operand bundle"; +    } +  } + +  // If the call to the callee cannot throw, set the 'nounwind' flag on any +  // calls that we inline. +  bool MarkNoUnwind = CS.doesNotThrow(); + +  BasicBlock *OrigBB = TheCall->getParent(); +  Function *Caller = OrigBB->getParent(); + +  // GC poses two hazards to inlining, which only occur when the callee has GC: +  //  1. If the caller has no GC, then the callee's GC must be propagated to the +  //     caller. +  //  2. If the caller has a differing GC, it is invalid to inline. +  if (CalledFunc->hasGC()) { +    if (!Caller->hasGC()) +      Caller->setGC(CalledFunc->getGC()); +    else if (CalledFunc->getGC() != Caller->getGC()) +      return "incompatible GC"; +  } + +  // Get the personality function from the callee if it contains a landing pad. +  Constant *CalledPersonality = +      CalledFunc->hasPersonalityFn() +          ? CalledFunc->getPersonalityFn()->stripPointerCasts() +          : nullptr; + +  // Find the personality function used by the landing pads of the caller. If it +  // exists, then check to see that it matches the personality function used in +  // the callee. +  Constant *CallerPersonality = +      Caller->hasPersonalityFn() +          ? Caller->getPersonalityFn()->stripPointerCasts() +          : nullptr; +  if (CalledPersonality) { +    if (!CallerPersonality) +      Caller->setPersonalityFn(CalledPersonality); +    // If the personality functions match, then we can perform the +    // inlining. Otherwise, we can't inline. +    // TODO: This isn't 100% true. Some personality functions are proper +    //       supersets of others and can be used in place of the other. +    else if (CalledPersonality != CallerPersonality) +      return "incompatible personality"; +  } + +  // We need to figure out which funclet the callsite was in so that we may +  // properly nest the callee. +  Instruction *CallSiteEHPad = nullptr; +  if (CallerPersonality) { +    EHPersonality Personality = classifyEHPersonality(CallerPersonality); +    if (isScopedEHPersonality(Personality)) { +      Optional<OperandBundleUse> ParentFunclet = +          CS.getOperandBundle(LLVMContext::OB_funclet); +      if (ParentFunclet) +        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); + +      // OK, the inlining site is legal.  What about the target function? + +      if (CallSiteEHPad) { +        if (Personality == EHPersonality::MSVC_CXX) { +          // The MSVC personality cannot tolerate catches getting inlined into +          // cleanup funclets. +          if (isa<CleanupPadInst>(CallSiteEHPad)) { +            // Ok, the call site is within a cleanuppad.  Let's check the callee +            // for catchpads. +            for (const BasicBlock &CalledBB : *CalledFunc) { +              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) +                return "catch in cleanup funclet"; +            } +          } +        } else if (isAsynchronousEHPersonality(Personality)) { +          // SEH is even less tolerant, there may not be any sort of exceptional +          // funclet in the callee. +          for (const BasicBlock &CalledBB : *CalledFunc) { +            if (CalledBB.isEHPad()) +              return "SEH in cleanup funclet"; +          } +        } +      } +    } +  } + +  // Determine if we are dealing with a call in an EHPad which does not unwind +  // to caller. +  bool EHPadForCallUnwindsLocally = false; +  if (CallSiteEHPad && CS.isCall()) { +    UnwindDestMemoTy FuncletUnwindMap; +    Value *CallSiteUnwindDestToken = +        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); + +    EHPadForCallUnwindsLocally = +        CallSiteUnwindDestToken && +        !isa<ConstantTokenNone>(CallSiteUnwindDestToken); +  } + +  // Get an iterator to the last basic block in the function, which will have +  // the new function inlined after it. +  Function::iterator LastBlock = --Caller->end(); + +  // Make sure to capture all of the return instructions from the cloned +  // function. +  SmallVector<ReturnInst*, 8> Returns; +  ClonedCodeInfo InlinedFunctionInfo; +  Function::iterator FirstNewBlock; + +  { // Scope to destroy VMap after cloning. +    ValueToValueMapTy VMap; +    // Keep a list of pair (dst, src) to emit byval initializations. +    SmallVector<std::pair<Value*, Value*>, 4> ByValInit; + +    auto &DL = Caller->getParent()->getDataLayout(); + +    // Calculate the vector of arguments to pass into the function cloner, which +    // matches up the formal to the actual argument values. +    CallSite::arg_iterator AI = CS.arg_begin(); +    unsigned ArgNo = 0; +    for (Function::arg_iterator I = CalledFunc->arg_begin(), +         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { +      Value *ActualArg = *AI; + +      // When byval arguments actually inlined, we need to make the copy implied +      // by them explicit.  However, we don't do this if the callee is readonly +      // or readnone, because the copy would be unneeded: the callee doesn't +      // modify the struct. +      if (CS.isByValArgument(ArgNo)) { +        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, +                                        CalledFunc->getParamAlignment(ArgNo)); +        if (ActualArg != *AI) +          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); +      } + +      VMap[&*I] = ActualArg; +    } + +    // Add alignment assumptions if necessary. We do this before the inlined +    // instructions are actually cloned into the caller so that we can easily +    // check what will be known at the start of the inlined code. +    AddAlignmentAssumptions(CS, IFI); + +    // We want the inliner to prune the code as it copies.  We would LOVE to +    // have no dead or constant instructions leftover after inlining occurs +    // (which can happen, e.g., because an argument was constant), but we'll be +    // happy with whatever the cloner can do. +    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, +                              /*ModuleLevelChanges=*/false, Returns, ".i", +                              &InlinedFunctionInfo, TheCall); +    // Remember the first block that is newly cloned over. +    FirstNewBlock = LastBlock; ++FirstNewBlock; + +    if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) +      // Update the BFI of blocks cloned into the caller. +      updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, +                      CalledFunc->front()); + +    updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, +                      IFI.PSI, IFI.CallerBFI); + +    // Inject byval arguments initialization. +    for (std::pair<Value*, Value*> &Init : ByValInit) +      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), +                              &*FirstNewBlock, IFI); + +    Optional<OperandBundleUse> ParentDeopt = +        CS.getOperandBundle(LLVMContext::OB_deopt); +    if (ParentDeopt) { +      SmallVector<OperandBundleDef, 2> OpDefs; + +      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { +        Instruction *I = dyn_cast_or_null<Instruction>(VH); +        if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef + +        OpDefs.clear(); + +        CallSite ICS(I); +        OpDefs.reserve(ICS.getNumOperandBundles()); + +        for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { +          auto ChildOB = ICS.getOperandBundleAt(i); +          if (ChildOB.getTagID() != LLVMContext::OB_deopt) { +            // If the inlined call has other operand bundles, let them be +            OpDefs.emplace_back(ChildOB); +            continue; +          } + +          // It may be useful to separate this logic (of handling operand +          // bundles) out to a separate "policy" component if this gets crowded. +          // Prepend the parent's deoptimization continuation to the newly +          // inlined call's deoptimization continuation. +          std::vector<Value *> MergedDeoptArgs; +          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + +                                  ChildOB.Inputs.size()); + +          MergedDeoptArgs.insert(MergedDeoptArgs.end(), +                                 ParentDeopt->Inputs.begin(), +                                 ParentDeopt->Inputs.end()); +          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), +                                 ChildOB.Inputs.end()); + +          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); +        } + +        Instruction *NewI = nullptr; +        if (isa<CallInst>(I)) +          NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); +        else if (isa<CallBrInst>(I)) +          NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); +        else +          NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); + +        // Note: the RAUW does the appropriate fixup in VMap, so we need to do +        // this even if the call returns void. +        I->replaceAllUsesWith(NewI); + +        VH = nullptr; +        I->eraseFromParent(); +      } +    } + +    // Update the callgraph if requested. +    if (IFI.CG) +      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); + +    // For 'nodebug' functions, the associated DISubprogram is always null. +    // Conservatively avoid propagating the callsite debug location to +    // instructions inlined from a function whose DISubprogram is not null. +    fixupLineNumbers(Caller, FirstNewBlock, TheCall, +                     CalledFunc->getSubprogram() != nullptr); + +    // Clone existing noalias metadata if necessary. +    CloneAliasScopeMetadata(CS, VMap); + +    // Add noalias metadata if necessary. +    AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); + +    // Propagate llvm.mem.parallel_loop_access if necessary. +    PropagateParallelLoopAccessMetadata(CS, VMap); + +    // Register any cloned assumptions. +    if (IFI.GetAssumptionCache) +      for (BasicBlock &NewBlock : +           make_range(FirstNewBlock->getIterator(), Caller->end())) +        for (Instruction &I : NewBlock) { +          if (auto *II = dyn_cast<IntrinsicInst>(&I)) +            if (II->getIntrinsicID() == Intrinsic::assume) +              (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); +        } +  } + +  // If there are any alloca instructions in the block that used to be the entry +  // block for the callee, move them to the entry block of the caller.  First +  // calculate which instruction they should be inserted before.  We insert the +  // instructions at the end of the current alloca list. +  { +    BasicBlock::iterator InsertPoint = Caller->begin()->begin(); +    for (BasicBlock::iterator I = FirstNewBlock->begin(), +         E = FirstNewBlock->end(); I != E; ) { +      AllocaInst *AI = dyn_cast<AllocaInst>(I++); +      if (!AI) continue; + +      // If the alloca is now dead, remove it.  This often occurs due to code +      // specialization. +      if (AI->use_empty()) { +        AI->eraseFromParent(); +        continue; +      } + +      if (!allocaWouldBeStaticInEntry(AI)) +        continue; + +      // Keep track of the static allocas that we inline into the caller. +      IFI.StaticAllocas.push_back(AI); + +      // Scan for the block of allocas that we can move over, and move them +      // all at once. +      while (isa<AllocaInst>(I) && +             allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { +        IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); +        ++I; +      } + +      // Transfer all of the allocas over in a block.  Using splice means +      // that the instructions aren't removed from the symbol table, then +      // reinserted. +      Caller->getEntryBlock().getInstList().splice( +          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); +    } +    // Move any dbg.declares describing the allocas into the entry basic block. +    DIBuilder DIB(*Caller->getParent()); +    for (auto &AI : IFI.StaticAllocas) +      replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0); +  } + +  SmallVector<Value*,4> VarArgsToForward; +  SmallVector<AttributeSet, 4> VarArgsAttrs; +  for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); +       i < CS.getNumArgOperands(); i++) { +    VarArgsToForward.push_back(CS.getArgOperand(i)); +    VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); +  } + +  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; +  if (InlinedFunctionInfo.ContainsCalls) { +    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; +    if (CallInst *CI = dyn_cast<CallInst>(TheCall)) +      CallSiteTailKind = CI->getTailCallKind(); + +    // For inlining purposes, the "notail" marker is the same as no marker. +    if (CallSiteTailKind == CallInst::TCK_NoTail) +      CallSiteTailKind = CallInst::TCK_None; + +    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; +         ++BB) { +      for (auto II = BB->begin(); II != BB->end();) { +        Instruction &I = *II++; +        CallInst *CI = dyn_cast<CallInst>(&I); +        if (!CI) +          continue; + +        // Forward varargs from inlined call site to calls to the +        // ForwardVarArgsTo function, if requested, and to musttail calls. +        if (!VarArgsToForward.empty() && +            ((ForwardVarArgsTo && +              CI->getCalledFunction() == ForwardVarArgsTo) || +             CI->isMustTailCall())) { +          // Collect attributes for non-vararg parameters. +          AttributeList Attrs = CI->getAttributes(); +          SmallVector<AttributeSet, 8> ArgAttrs; +          if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { +            for (unsigned ArgNo = 0; +                 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) +              ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); +          } + +          // Add VarArg attributes. +          ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); +          Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), +                                     Attrs.getRetAttributes(), ArgAttrs); +          // Add VarArgs to existing parameters. +          SmallVector<Value *, 6> Params(CI->arg_operands()); +          Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); +          CallInst *NewCI = CallInst::Create( +              CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); +          NewCI->setDebugLoc(CI->getDebugLoc()); +          NewCI->setAttributes(Attrs); +          NewCI->setCallingConv(CI->getCallingConv()); +          CI->replaceAllUsesWith(NewCI); +          CI->eraseFromParent(); +          CI = NewCI; +        } + +        if (Function *F = CI->getCalledFunction()) +          InlinedDeoptimizeCalls |= +              F->getIntrinsicID() == Intrinsic::experimental_deoptimize; + +        // We need to reduce the strength of any inlined tail calls.  For +        // musttail, we have to avoid introducing potential unbounded stack +        // growth.  For example, if functions 'f' and 'g' are mutually recursive +        // with musttail, we can inline 'g' into 'f' so long as we preserve +        // musttail on the cloned call to 'f'.  If either the inlined call site +        // or the cloned call site is *not* musttail, the program already has +        // one frame of stack growth, so it's safe to remove musttail.  Here is +        // a table of example transformations: +        // +        //    f -> musttail g -> musttail f  ==>  f -> musttail f +        //    f -> musttail g ->     tail f  ==>  f ->     tail f +        //    f ->          g -> musttail f  ==>  f ->          f +        //    f ->          g ->     tail f  ==>  f ->          f +        // +        // Inlined notail calls should remain notail calls. +        CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); +        if (ChildTCK != CallInst::TCK_NoTail) +          ChildTCK = std::min(CallSiteTailKind, ChildTCK); +        CI->setTailCallKind(ChildTCK); +        InlinedMustTailCalls |= CI->isMustTailCall(); + +        // Calls inlined through a 'nounwind' call site should be marked +        // 'nounwind'. +        if (MarkNoUnwind) +          CI->setDoesNotThrow(); +      } +    } +  } + +  // Leave lifetime markers for the static alloca's, scoping them to the +  // function we just inlined. +  if (InsertLifetime && !IFI.StaticAllocas.empty()) { +    IRBuilder<> builder(&FirstNewBlock->front()); +    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { +      AllocaInst *AI = IFI.StaticAllocas[ai]; +      // Don't mark swifterror allocas. They can't have bitcast uses. +      if (AI->isSwiftError()) +        continue; + +      // If the alloca is already scoped to something smaller than the whole +      // function then there's no need to add redundant, less accurate markers. +      if (hasLifetimeMarkers(AI)) +        continue; + +      // Try to determine the size of the allocation. +      ConstantInt *AllocaSize = nullptr; +      if (ConstantInt *AIArraySize = +          dyn_cast<ConstantInt>(AI->getArraySize())) { +        auto &DL = Caller->getParent()->getDataLayout(); +        Type *AllocaType = AI->getAllocatedType(); +        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); +        uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); + +        // Don't add markers for zero-sized allocas. +        if (AllocaArraySize == 0) +          continue; + +        // Check that array size doesn't saturate uint64_t and doesn't +        // overflow when it's multiplied by type size. +        if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && +            std::numeric_limits<uint64_t>::max() / AllocaArraySize >= +                AllocaTypeSize) { +          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), +                                        AllocaArraySize * AllocaTypeSize); +        } +      } + +      builder.CreateLifetimeStart(AI, AllocaSize); +      for (ReturnInst *RI : Returns) { +        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize +        // call and a return.  The return kills all local allocas. +        if (InlinedMustTailCalls && +            RI->getParent()->getTerminatingMustTailCall()) +          continue; +        if (InlinedDeoptimizeCalls && +            RI->getParent()->getTerminatingDeoptimizeCall()) +          continue; +        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); +      } +    } +  } + +  // If the inlined code contained dynamic alloca instructions, wrap the inlined +  // code with llvm.stacksave/llvm.stackrestore intrinsics. +  if (InlinedFunctionInfo.ContainsDynamicAllocas) { +    Module *M = Caller->getParent(); +    // Get the two intrinsics we care about. +    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); +    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); + +    // Insert the llvm.stacksave. +    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) +                             .CreateCall(StackSave, {}, "savedstack"); + +    // Insert a call to llvm.stackrestore before any return instructions in the +    // inlined function. +    for (ReturnInst *RI : Returns) { +      // Don't insert llvm.stackrestore calls between a musttail or deoptimize +      // call and a return.  The return will restore the stack pointer. +      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) +        continue; +      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) +        continue; +      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); +    } +  } + +  // If we are inlining for an invoke instruction, we must make sure to rewrite +  // any call instructions into invoke instructions.  This is sensitive to which +  // funclet pads were top-level in the inlinee, so must be done before +  // rewriting the "parent pad" links. +  if (auto *II = dyn_cast<InvokeInst>(TheCall)) { +    BasicBlock *UnwindDest = II->getUnwindDest(); +    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); +    if (isa<LandingPadInst>(FirstNonPHI)) { +      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); +    } else { +      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); +    } +  } + +  // Update the lexical scopes of the new funclets and callsites. +  // Anything that had 'none' as its parent is now nested inside the callsite's +  // EHPad. + +  if (CallSiteEHPad) { +    for (Function::iterator BB = FirstNewBlock->getIterator(), +                            E = Caller->end(); +         BB != E; ++BB) { +      // Add bundle operands to any top-level call sites. +      SmallVector<OperandBundleDef, 1> OpBundles; +      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { +        Instruction *I = &*BBI++; +        CallSite CS(I); +        if (!CS) +          continue; + +        // Skip call sites which are nounwind intrinsics. +        auto *CalledFn = +            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); +        if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) +          continue; + +        // Skip call sites which already have a "funclet" bundle. +        if (CS.getOperandBundle(LLVMContext::OB_funclet)) +          continue; + +        CS.getOperandBundlesAsDefs(OpBundles); +        OpBundles.emplace_back("funclet", CallSiteEHPad); + +        Instruction *NewInst; +        if (CS.isCall()) +          NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); +        else if (CS.isCallBr()) +          NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); +        else +          NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); +        NewInst->takeName(I); +        I->replaceAllUsesWith(NewInst); +        I->eraseFromParent(); + +        OpBundles.clear(); +      } + +      // It is problematic if the inlinee has a cleanupret which unwinds to +      // caller and we inline it into a call site which doesn't unwind but into +      // an EH pad that does.  Such an edge must be dynamically unreachable. +      // As such, we replace the cleanupret with unreachable. +      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) +        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) +          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); + +      Instruction *I = BB->getFirstNonPHI(); +      if (!I->isEHPad()) +        continue; + +      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { +        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) +          CatchSwitch->setParentPad(CallSiteEHPad); +      } else { +        auto *FPI = cast<FuncletPadInst>(I); +        if (isa<ConstantTokenNone>(FPI->getParentPad())) +          FPI->setParentPad(CallSiteEHPad); +      } +    } +  } + +  if (InlinedDeoptimizeCalls) { +    // We need to at least remove the deoptimizing returns from the Return set, +    // so that the control flow from those returns does not get merged into the +    // caller (but terminate it instead).  If the caller's return type does not +    // match the callee's return type, we also need to change the return type of +    // the intrinsic. +    if (Caller->getReturnType() == TheCall->getType()) { +      auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { +        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; +      }); +      Returns.erase(NewEnd, Returns.end()); +    } else { +      SmallVector<ReturnInst *, 8> NormalReturns; +      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( +          Caller->getParent(), Intrinsic::experimental_deoptimize, +          {Caller->getReturnType()}); + +      for (ReturnInst *RI : Returns) { +        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); +        if (!DeoptCall) { +          NormalReturns.push_back(RI); +          continue; +        } + +        // The calling convention on the deoptimize call itself may be bogus, +        // since the code we're inlining may have undefined behavior (and may +        // never actually execute at runtime); but all +        // @llvm.experimental.deoptimize declarations have to have the same +        // calling convention in a well-formed module. +        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); +        NewDeoptIntrinsic->setCallingConv(CallingConv); +        auto *CurBB = RI->getParent(); +        RI->eraseFromParent(); + +        SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), +                                         DeoptCall->arg_end()); + +        SmallVector<OperandBundleDef, 1> OpBundles; +        DeoptCall->getOperandBundlesAsDefs(OpBundles); +        DeoptCall->eraseFromParent(); +        assert(!OpBundles.empty() && +               "Expected at least the deopt operand bundle"); + +        IRBuilder<> Builder(CurBB); +        CallInst *NewDeoptCall = +            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); +        NewDeoptCall->setCallingConv(CallingConv); +        if (NewDeoptCall->getType()->isVoidTy()) +          Builder.CreateRetVoid(); +        else +          Builder.CreateRet(NewDeoptCall); +      } + +      // Leave behind the normal returns so we can merge control flow. +      std::swap(Returns, NormalReturns); +    } +  } + +  // Handle any inlined musttail call sites.  In order for a new call site to be +  // musttail, the source of the clone and the inlined call site must have been +  // musttail.  Therefore it's safe to return without merging control into the +  // phi below. +  if (InlinedMustTailCalls) { +    // Check if we need to bitcast the result of any musttail calls. +    Type *NewRetTy = Caller->getReturnType(); +    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; + +    // Handle the returns preceded by musttail calls separately. +    SmallVector<ReturnInst *, 8> NormalReturns; +    for (ReturnInst *RI : Returns) { +      CallInst *ReturnedMustTail = +          RI->getParent()->getTerminatingMustTailCall(); +      if (!ReturnedMustTail) { +        NormalReturns.push_back(RI); +        continue; +      } +      if (!NeedBitCast) +        continue; + +      // Delete the old return and any preceding bitcast. +      BasicBlock *CurBB = RI->getParent(); +      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); +      RI->eraseFromParent(); +      if (OldCast) +        OldCast->eraseFromParent(); + +      // Insert a new bitcast and return with the right type. +      IRBuilder<> Builder(CurBB); +      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); +    } + +    // Leave behind the normal returns so we can merge control flow. +    std::swap(Returns, NormalReturns); +  } + +  // Now that all of the transforms on the inlined code have taken place but +  // before we splice the inlined code into the CFG and lose track of which +  // blocks were actually inlined, collect the call sites. We only do this if +  // call graph updates weren't requested, as those provide value handle based +  // tracking of inlined call sites instead. +  if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { +    // Otherwise just collect the raw call sites that were inlined. +    for (BasicBlock &NewBB : +         make_range(FirstNewBlock->getIterator(), Caller->end())) +      for (Instruction &I : NewBB) +        if (auto CS = CallSite(&I)) +          IFI.InlinedCallSites.push_back(CS); +  } + +  // If we cloned in _exactly one_ basic block, and if that block ends in a +  // return instruction, we splice the body of the inlined callee directly into +  // the calling basic block. +  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { +    // Move all of the instructions right before the call. +    OrigBB->getInstList().splice(TheCall->getIterator(), +                                 FirstNewBlock->getInstList(), +                                 FirstNewBlock->begin(), FirstNewBlock->end()); +    // Remove the cloned basic block. +    Caller->getBasicBlockList().pop_back(); + +    // If the call site was an invoke instruction, add a branch to the normal +    // destination. +    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { +      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); +      NewBr->setDebugLoc(Returns[0]->getDebugLoc()); +    } + +    // If the return instruction returned a value, replace uses of the call with +    // uses of the returned value. +    if (!TheCall->use_empty()) { +      ReturnInst *R = Returns[0]; +      if (TheCall == R->getReturnValue()) +        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +      else +        TheCall->replaceAllUsesWith(R->getReturnValue()); +    } +    // Since we are now done with the Call/Invoke, we can delete it. +    TheCall->eraseFromParent(); + +    // Since we are now done with the return instruction, delete it also. +    Returns[0]->eraseFromParent(); + +    // We are now done with the inlining. +    return true; +  } + +  // Otherwise, we have the normal case, of more than one block to inline or +  // multiple return sites. + +  // We want to clone the entire callee function into the hole between the +  // "starter" and "ender" blocks.  How we accomplish this depends on whether +  // this is an invoke instruction or a call instruction. +  BasicBlock *AfterCallBB; +  BranchInst *CreatedBranchToNormalDest = nullptr; +  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { + +    // Add an unconditional branch to make this look like the CallInst case... +    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); + +    // Split the basic block.  This guarantees that no PHI nodes will have to be +    // updated due to new incoming edges, and make the invoke case more +    // symmetric to the call case. +    AfterCallBB = +        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), +                                CalledFunc->getName() + ".exit"); + +  } else {  // It's a call +    // If this is a call instruction, we need to split the basic block that +    // the call lives in. +    // +    AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), +                                          CalledFunc->getName() + ".exit"); +  } + +  if (IFI.CallerBFI) { +    // Copy original BB's block frequency to AfterCallBB +    IFI.CallerBFI->setBlockFreq( +        AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); +  } + +  // Change the branch that used to go to AfterCallBB to branch to the first +  // basic block of the inlined function. +  // +  Instruction *Br = OrigBB->getTerminator(); +  assert(Br && Br->getOpcode() == Instruction::Br && +         "splitBasicBlock broken!"); +  Br->setOperand(0, &*FirstNewBlock); + +  // Now that the function is correct, make it a little bit nicer.  In +  // particular, move the basic blocks inserted from the end of the function +  // into the space made by splitting the source basic block. +  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), +                                     Caller->getBasicBlockList(), FirstNewBlock, +                                     Caller->end()); + +  // Handle all of the return instructions that we just cloned in, and eliminate +  // any users of the original call/invoke instruction. +  Type *RTy = CalledFunc->getReturnType(); + +  PHINode *PHI = nullptr; +  if (Returns.size() > 1) { +    // The PHI node should go at the front of the new basic block to merge all +    // possible incoming values. +    if (!TheCall->use_empty()) { +      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), +                            &AfterCallBB->front()); +      // Anything that used the result of the function call should now use the +      // PHI node as their operand. +      TheCall->replaceAllUsesWith(PHI); +    } + +    // Loop over all of the return instructions adding entries to the PHI node +    // as appropriate. +    if (PHI) { +      for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +        ReturnInst *RI = Returns[i]; +        assert(RI->getReturnValue()->getType() == PHI->getType() && +               "Ret value not consistent in function!"); +        PHI->addIncoming(RI->getReturnValue(), RI->getParent()); +      } +    } + +    // Add a branch to the merge points and remove return instructions. +    DebugLoc Loc; +    for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +      ReturnInst *RI = Returns[i]; +      BranchInst* BI = BranchInst::Create(AfterCallBB, RI); +      Loc = RI->getDebugLoc(); +      BI->setDebugLoc(Loc); +      RI->eraseFromParent(); +    } +    // We need to set the debug location to *somewhere* inside the +    // inlined function. The line number may be nonsensical, but the +    // instruction will at least be associated with the right +    // function. +    if (CreatedBranchToNormalDest) +      CreatedBranchToNormalDest->setDebugLoc(Loc); +  } else if (!Returns.empty()) { +    // Otherwise, if there is exactly one return value, just replace anything +    // using the return value of the call with the computed value. +    if (!TheCall->use_empty()) { +      if (TheCall == Returns[0]->getReturnValue()) +        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +      else +        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); +    } + +    // Update PHI nodes that use the ReturnBB to use the AfterCallBB. +    BasicBlock *ReturnBB = Returns[0]->getParent(); +    ReturnBB->replaceAllUsesWith(AfterCallBB); + +    // Splice the code from the return block into the block that it will return +    // to, which contains the code that was after the call. +    AfterCallBB->getInstList().splice(AfterCallBB->begin(), +                                      ReturnBB->getInstList()); + +    if (CreatedBranchToNormalDest) +      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); + +    // Delete the return instruction now and empty ReturnBB now. +    Returns[0]->eraseFromParent(); +    ReturnBB->eraseFromParent(); +  } else if (!TheCall->use_empty()) { +    // No returns, but something is using the return value of the call.  Just +    // nuke the result. +    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +  } + +  // Since we are now done with the Call/Invoke, we can delete it. +  TheCall->eraseFromParent(); + +  // If we inlined any musttail calls and the original return is now +  // unreachable, delete it.  It can only contain a bitcast and ret. +  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) +    AfterCallBB->eraseFromParent(); + +  // We should always be able to fold the entry block of the function into the +  // single predecessor of the block... +  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); +  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); + +  // Splice the code entry block into calling block, right before the +  // unconditional branch. +  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes +  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); + +  // Remove the unconditional branch. +  OrigBB->getInstList().erase(Br); + +  // Now we can remove the CalleeEntry block, which is now empty. +  Caller->getBasicBlockList().erase(CalleeEntry); + +  // If we inserted a phi node, check to see if it has a single value (e.g. all +  // the entries are the same or undef).  If so, remove the PHI so it doesn't +  // block other optimizations. +  if (PHI) { +    AssumptionCache *AC = +        IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; +    auto &DL = Caller->getParent()->getDataLayout(); +    if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { +      PHI->replaceAllUsesWith(V); +      PHI->eraseFromParent(); +    } +  } + +  return true; +} | 
