diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopSimplify.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Utils/LoopSimplify.cpp | 929 | 
1 files changed, 929 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/llvm/lib/Transforms/Utils/LoopSimplify.cpp new file mode 100644 index 000000000000..d0f89dc54bfb --- /dev/null +++ b/llvm/lib/Transforms/Utils/LoopSimplify.cpp @@ -0,0 +1,929 @@ +//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass performs several transformations to transform natural loops into a +// simpler form, which makes subsequent analyses and transformations simpler and +// more effective. +// +// Loop pre-header insertion guarantees that there is a single, non-critical +// entry edge from outside of the loop to the loop header.  This simplifies a +// number of analyses and transformations, such as LICM. +// +// Loop exit-block insertion guarantees that all exit blocks from the loop +// (blocks which are outside of the loop that have predecessors inside of the +// loop) only have predecessors from inside of the loop (and are thus dominated +// by the loop header).  This simplifies transformations such as store-sinking +// that are built into LICM. +// +// This pass also guarantees that loops will have exactly one backedge. +// +// Indirectbr instructions introduce several complications. If the loop +// contains or is entered by an indirectbr instruction, it may not be possible +// to transform the loop and make these guarantees. Client code should check +// that these conditions are true before relying on them. +// +// Similar complications arise from callbr instructions, particularly in +// asm-goto where blockaddress expressions are used. +// +// Note that the simplifycfg pass will clean up blocks which are split out but +// end up being unnecessary, so usage of this pass should not pessimize +// generated code. +// +// This pass obviously modifies the CFG, but updates loop information and +// dominator information. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/LoopSimplify.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +using namespace llvm; + +#define DEBUG_TYPE "loop-simplify" + +STATISTIC(NumNested  , "Number of nested loops split out"); + +// If the block isn't already, move the new block to right after some 'outside +// block' block.  This prevents the preheader from being placed inside the loop +// body, e.g. when the loop hasn't been rotated. +static void placeSplitBlockCarefully(BasicBlock *NewBB, +                                     SmallVectorImpl<BasicBlock *> &SplitPreds, +                                     Loop *L) { +  // Check to see if NewBB is already well placed. +  Function::iterator BBI = --NewBB->getIterator(); +  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { +    if (&*BBI == SplitPreds[i]) +      return; +  } + +  // If it isn't already after an outside block, move it after one.  This is +  // always good as it makes the uncond branch from the outside block into a +  // fall-through. + +  // Figure out *which* outside block to put this after.  Prefer an outside +  // block that neighbors a BB actually in the loop. +  BasicBlock *FoundBB = nullptr; +  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { +    Function::iterator BBI = SplitPreds[i]->getIterator(); +    if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { +      FoundBB = SplitPreds[i]; +      break; +    } +  } + +  // If our heuristic for a *good* bb to place this after doesn't find +  // anything, just pick something.  It's likely better than leaving it within +  // the loop. +  if (!FoundBB) +    FoundBB = SplitPreds[0]; +  NewBB->moveAfter(FoundBB); +} + +/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a +/// preheader, this method is called to insert one.  This method has two phases: +/// preheader insertion and analysis updating. +/// +BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, +                                         LoopInfo *LI, MemorySSAUpdater *MSSAU, +                                         bool PreserveLCSSA) { +  BasicBlock *Header = L->getHeader(); + +  // Compute the set of predecessors of the loop that are not in the loop. +  SmallVector<BasicBlock*, 8> OutsideBlocks; +  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); +       PI != PE; ++PI) { +    BasicBlock *P = *PI; +    if (!L->contains(P)) {         // Coming in from outside the loop? +      // If the loop is branched to from an indirect terminator, we won't +      // be able to fully transform the loop, because it prohibits +      // edge splitting. +      if (P->getTerminator()->isIndirectTerminator()) +        return nullptr; + +      // Keep track of it. +      OutsideBlocks.push_back(P); +    } +  } + +  // Split out the loop pre-header. +  BasicBlock *PreheaderBB; +  PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, +                                       LI, MSSAU, PreserveLCSSA); +  if (!PreheaderBB) +    return nullptr; + +  LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " +                    << PreheaderBB->getName() << "\n"); + +  // Make sure that NewBB is put someplace intelligent, which doesn't mess up +  // code layout too horribly. +  placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); + +  return PreheaderBB; +} + +/// Add the specified block, and all of its predecessors, to the specified set, +/// if it's not already in there.  Stop predecessor traversal when we reach +/// StopBlock. +static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, +                                  std::set<BasicBlock*> &Blocks) { +  SmallVector<BasicBlock *, 8> Worklist; +  Worklist.push_back(InputBB); +  do { +    BasicBlock *BB = Worklist.pop_back_val(); +    if (Blocks.insert(BB).second && BB != StopBlock) +      // If BB is not already processed and it is not a stop block then +      // insert its predecessor in the work list +      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { +        BasicBlock *WBB = *I; +        Worklist.push_back(WBB); +      } +  } while (!Worklist.empty()); +} + +/// The first part of loop-nestification is to find a PHI node that tells +/// us how to partition the loops. +static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, +                                        AssumptionCache *AC) { +  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); +  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { +    PHINode *PN = cast<PHINode>(I); +    ++I; +    if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { +      // This is a degenerate PHI already, don't modify it! +      PN->replaceAllUsesWith(V); +      PN->eraseFromParent(); +      continue; +    } + +    // Scan this PHI node looking for a use of the PHI node by itself. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (PN->getIncomingValue(i) == PN && +          L->contains(PN->getIncomingBlock(i))) +        // We found something tasty to remove. +        return PN; +  } +  return nullptr; +} + +/// If this loop has multiple backedges, try to pull one of them out into +/// a nested loop. +/// +/// This is important for code that looks like +/// this: +/// +///  Loop: +///     ... +///     br cond, Loop, Next +///     ... +///     br cond2, Loop, Out +/// +/// To identify this common case, we look at the PHI nodes in the header of the +/// loop.  PHI nodes with unchanging values on one backedge correspond to values +/// that change in the "outer" loop, but not in the "inner" loop. +/// +/// If we are able to separate out a loop, return the new outer loop that was +/// created. +/// +static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, +                                DominatorTree *DT, LoopInfo *LI, +                                ScalarEvolution *SE, bool PreserveLCSSA, +                                AssumptionCache *AC, MemorySSAUpdater *MSSAU) { +  // Don't try to separate loops without a preheader. +  if (!Preheader) +    return nullptr; + +  // The header is not a landing pad; preheader insertion should ensure this. +  BasicBlock *Header = L->getHeader(); +  assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); + +  PHINode *PN = findPHIToPartitionLoops(L, DT, AC); +  if (!PN) return nullptr;  // No known way to partition. + +  // Pull out all predecessors that have varying values in the loop.  This +  // handles the case when a PHI node has multiple instances of itself as +  // arguments. +  SmallVector<BasicBlock*, 8> OuterLoopPreds; +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +    if (PN->getIncomingValue(i) != PN || +        !L->contains(PN->getIncomingBlock(i))) { +      // We can't split indirect control flow edges. +      if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) +        return nullptr; +      OuterLoopPreds.push_back(PN->getIncomingBlock(i)); +    } +  } +  LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); + +  // If ScalarEvolution is around and knows anything about values in +  // this loop, tell it to forget them, because we're about to +  // substantially change it. +  if (SE) +    SE->forgetLoop(L); + +  BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", +                                             DT, LI, MSSAU, PreserveLCSSA); + +  // Make sure that NewBB is put someplace intelligent, which doesn't mess up +  // code layout too horribly. +  placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); + +  // Create the new outer loop. +  Loop *NewOuter = LI->AllocateLoop(); + +  // Change the parent loop to use the outer loop as its child now. +  if (Loop *Parent = L->getParentLoop()) +    Parent->replaceChildLoopWith(L, NewOuter); +  else +    LI->changeTopLevelLoop(L, NewOuter); + +  // L is now a subloop of our outer loop. +  NewOuter->addChildLoop(L); + +  for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); +       I != E; ++I) +    NewOuter->addBlockEntry(*I); + +  // Now reset the header in L, which had been moved by +  // SplitBlockPredecessors for the outer loop. +  L->moveToHeader(Header); + +  // Determine which blocks should stay in L and which should be moved out to +  // the Outer loop now. +  std::set<BasicBlock*> BlocksInL; +  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { +    BasicBlock *P = *PI; +    if (DT->dominates(Header, P)) +      addBlockAndPredsToSet(P, Header, BlocksInL); +  } + +  // Scan all of the loop children of L, moving them to OuterLoop if they are +  // not part of the inner loop. +  const std::vector<Loop*> &SubLoops = L->getSubLoops(); +  for (size_t I = 0; I != SubLoops.size(); ) +    if (BlocksInL.count(SubLoops[I]->getHeader())) +      ++I;   // Loop remains in L +    else +      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); + +  SmallVector<BasicBlock *, 8> OuterLoopBlocks; +  OuterLoopBlocks.push_back(NewBB); +  // Now that we know which blocks are in L and which need to be moved to +  // OuterLoop, move any blocks that need it. +  for (unsigned i = 0; i != L->getBlocks().size(); ++i) { +    BasicBlock *BB = L->getBlocks()[i]; +    if (!BlocksInL.count(BB)) { +      // Move this block to the parent, updating the exit blocks sets +      L->removeBlockFromLoop(BB); +      if ((*LI)[BB] == L) { +        LI->changeLoopFor(BB, NewOuter); +        OuterLoopBlocks.push_back(BB); +      } +      --i; +    } +  } + +  // Split edges to exit blocks from the inner loop, if they emerged in the +  // process of separating the outer one. +  formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); + +  if (PreserveLCSSA) { +    // Fix LCSSA form for L. Some values, which previously were only used inside +    // L, can now be used in NewOuter loop. We need to insert phi-nodes for them +    // in corresponding exit blocks. +    // We don't need to form LCSSA recursively, because there cannot be uses +    // inside a newly created loop of defs from inner loops as those would +    // already be a use of an LCSSA phi node. +    formLCSSA(*L, *DT, LI, SE); + +    assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && +           "LCSSA is broken after separating nested loops!"); +  } + +  return NewOuter; +} + +/// This method is called when the specified loop has more than one +/// backedge in it. +/// +/// If this occurs, revector all of these backedges to target a new basic block +/// and have that block branch to the loop header.  This ensures that loops +/// have exactly one backedge. +static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, +                                             DominatorTree *DT, LoopInfo *LI, +                                             MemorySSAUpdater *MSSAU) { +  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); + +  // Get information about the loop +  BasicBlock *Header = L->getHeader(); +  Function *F = Header->getParent(); + +  // Unique backedge insertion currently depends on having a preheader. +  if (!Preheader) +    return nullptr; + +  // The header is not an EH pad; preheader insertion should ensure this. +  assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); + +  // Figure out which basic blocks contain back-edges to the loop header. +  std::vector<BasicBlock*> BackedgeBlocks; +  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ +    BasicBlock *P = *I; + +    // Indirect edges cannot be split, so we must fail if we find one. +    if (P->getTerminator()->isIndirectTerminator()) +      return nullptr; + +    if (P != Preheader) BackedgeBlocks.push_back(P); +  } + +  // Create and insert the new backedge block... +  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), +                                           Header->getName() + ".backedge", F); +  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); +  BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); + +  LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " +                    << BEBlock->getName() << "\n"); + +  // Move the new backedge block to right after the last backedge block. +  Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); +  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); + +  // Now that the block has been inserted into the function, create PHI nodes in +  // the backedge block which correspond to any PHI nodes in the header block. +  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); +    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), +                                     PN->getName()+".be", BETerminator); + +    // Loop over the PHI node, moving all entries except the one for the +    // preheader over to the new PHI node. +    unsigned PreheaderIdx = ~0U; +    bool HasUniqueIncomingValue = true; +    Value *UniqueValue = nullptr; +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +      BasicBlock *IBB = PN->getIncomingBlock(i); +      Value *IV = PN->getIncomingValue(i); +      if (IBB == Preheader) { +        PreheaderIdx = i; +      } else { +        NewPN->addIncoming(IV, IBB); +        if (HasUniqueIncomingValue) { +          if (!UniqueValue) +            UniqueValue = IV; +          else if (UniqueValue != IV) +            HasUniqueIncomingValue = false; +        } +      } +    } + +    // Delete all of the incoming values from the old PN except the preheader's +    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); +    if (PreheaderIdx != 0) { +      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); +      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); +    } +    // Nuke all entries except the zero'th. +    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) +      PN->removeIncomingValue(e-i, false); + +    // Finally, add the newly constructed PHI node as the entry for the BEBlock. +    PN->addIncoming(NewPN, BEBlock); + +    // As an optimization, if all incoming values in the new PhiNode (which is a +    // subset of the incoming values of the old PHI node) have the same value, +    // eliminate the PHI Node. +    if (HasUniqueIncomingValue) { +      NewPN->replaceAllUsesWith(UniqueValue); +      BEBlock->getInstList().erase(NewPN); +    } +  } + +  // Now that all of the PHI nodes have been inserted and adjusted, modify the +  // backedge blocks to jump to the BEBlock instead of the header. +  // If one of the backedges has llvm.loop metadata attached, we remove +  // it from the backedge and add it to BEBlock. +  unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); +  MDNode *LoopMD = nullptr; +  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { +    Instruction *TI = BackedgeBlocks[i]->getTerminator(); +    if (!LoopMD) +      LoopMD = TI->getMetadata(LoopMDKind); +    TI->setMetadata(LoopMDKind, nullptr); +    TI->replaceSuccessorWith(Header, BEBlock); +  } +  BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); + +  //===--- Update all analyses which we must preserve now -----------------===// + +  // Update Loop Information - we know that this block is now in the current +  // loop and all parent loops. +  L->addBasicBlockToLoop(BEBlock, *LI); + +  // Update dominator information +  DT->splitBlock(BEBlock); + +  if (MSSAU) +    MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, +                                                      BEBlock); + +  return BEBlock; +} + +/// Simplify one loop and queue further loops for simplification. +static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, +                            DominatorTree *DT, LoopInfo *LI, +                            ScalarEvolution *SE, AssumptionCache *AC, +                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { +  bool Changed = false; +  if (MSSAU && VerifyMemorySSA) +    MSSAU->getMemorySSA()->verifyMemorySSA(); + +ReprocessLoop: + +  // Check to see that no blocks (other than the header) in this loop have +  // predecessors that are not in the loop.  This is not valid for natural +  // loops, but can occur if the blocks are unreachable.  Since they are +  // unreachable we can just shamelessly delete those CFG edges! +  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); +       BB != E; ++BB) { +    if (*BB == L->getHeader()) continue; + +    SmallPtrSet<BasicBlock*, 4> BadPreds; +    for (pred_iterator PI = pred_begin(*BB), +         PE = pred_end(*BB); PI != PE; ++PI) { +      BasicBlock *P = *PI; +      if (!L->contains(P)) +        BadPreds.insert(P); +    } + +    // Delete each unique out-of-loop (and thus dead) predecessor. +    for (BasicBlock *P : BadPreds) { + +      LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " +                        << P->getName() << "\n"); + +      // Zap the dead pred's terminator and replace it with unreachable. +      Instruction *TI = P->getTerminator(); +      changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, +                          /*DTU=*/nullptr, MSSAU); +      Changed = true; +    } +  } + +  if (MSSAU && VerifyMemorySSA) +    MSSAU->getMemorySSA()->verifyMemorySSA(); + +  // If there are exiting blocks with branches on undef, resolve the undef in +  // the direction which will exit the loop. This will help simplify loop +  // trip count computations. +  SmallVector<BasicBlock*, 8> ExitingBlocks; +  L->getExitingBlocks(ExitingBlocks); +  for (BasicBlock *ExitingBlock : ExitingBlocks) +    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) +      if (BI->isConditional()) { +        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { + +          LLVM_DEBUG(dbgs() +                     << "LoopSimplify: Resolving \"br i1 undef\" to exit in " +                     << ExitingBlock->getName() << "\n"); + +          BI->setCondition(ConstantInt::get(Cond->getType(), +                                            !L->contains(BI->getSuccessor(0)))); + +          Changed = true; +        } +      } + +  // Does the loop already have a preheader?  If so, don't insert one. +  BasicBlock *Preheader = L->getLoopPreheader(); +  if (!Preheader) { +    Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); +    if (Preheader) +      Changed = true; +  } + +  // Next, check to make sure that all exit nodes of the loop only have +  // predecessors that are inside of the loop.  This check guarantees that the +  // loop preheader/header will dominate the exit blocks.  If the exit block has +  // predecessors from outside of the loop, split the edge now. +  if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) +    Changed = true; + +  if (MSSAU && VerifyMemorySSA) +    MSSAU->getMemorySSA()->verifyMemorySSA(); + +  // If the header has more than two predecessors at this point (from the +  // preheader and from multiple backedges), we must adjust the loop. +  BasicBlock *LoopLatch = L->getLoopLatch(); +  if (!LoopLatch) { +    // If this is really a nested loop, rip it out into a child loop.  Don't do +    // this for loops with a giant number of backedges, just factor them into a +    // common backedge instead. +    if (L->getNumBackEdges() < 8) { +      if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, +                                            PreserveLCSSA, AC, MSSAU)) { +        ++NumNested; +        // Enqueue the outer loop as it should be processed next in our +        // depth-first nest walk. +        Worklist.push_back(OuterL); + +        // This is a big restructuring change, reprocess the whole loop. +        Changed = true; +        // GCC doesn't tail recursion eliminate this. +        // FIXME: It isn't clear we can't rely on LLVM to TRE this. +        goto ReprocessLoop; +      } +    } + +    // If we either couldn't, or didn't want to, identify nesting of the loops, +    // insert a new block that all backedges target, then make it jump to the +    // loop header. +    LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); +    if (LoopLatch) +      Changed = true; +  } + +  if (MSSAU && VerifyMemorySSA) +    MSSAU->getMemorySSA()->verifyMemorySSA(); + +  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + +  // Scan over the PHI nodes in the loop header.  Since they now have only two +  // incoming values (the loop is canonicalized), we may have simplified the PHI +  // down to 'X = phi [X, Y]', which should be replaced with 'Y'. +  PHINode *PN; +  for (BasicBlock::iterator I = L->getHeader()->begin(); +       (PN = dyn_cast<PHINode>(I++)); ) +    if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { +      if (SE) SE->forgetValue(PN); +      if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { +        PN->replaceAllUsesWith(V); +        PN->eraseFromParent(); +      } +    } + +  // If this loop has multiple exits and the exits all go to the same +  // block, attempt to merge the exits. This helps several passes, such +  // as LoopRotation, which do not support loops with multiple exits. +  // SimplifyCFG also does this (and this code uses the same utility +  // function), however this code is loop-aware, where SimplifyCFG is +  // not. That gives it the advantage of being able to hoist +  // loop-invariant instructions out of the way to open up more +  // opportunities, and the disadvantage of having the responsibility +  // to preserve dominator information. +  auto HasUniqueExitBlock = [&]() { +    BasicBlock *UniqueExit = nullptr; +    for (auto *ExitingBB : ExitingBlocks) +      for (auto *SuccBB : successors(ExitingBB)) { +        if (L->contains(SuccBB)) +          continue; + +        if (!UniqueExit) +          UniqueExit = SuccBB; +        else if (UniqueExit != SuccBB) +          return false; +      } + +    return true; +  }; +  if (HasUniqueExitBlock()) { +    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { +      BasicBlock *ExitingBlock = ExitingBlocks[i]; +      if (!ExitingBlock->getSinglePredecessor()) continue; +      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); +      if (!BI || !BI->isConditional()) continue; +      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); +      if (!CI || CI->getParent() != ExitingBlock) continue; + +      // Attempt to hoist out all instructions except for the +      // comparison and the branch. +      bool AllInvariant = true; +      bool AnyInvariant = false; +      for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { +        Instruction *Inst = &*I++; +        if (Inst == CI) +          continue; +        if (!L->makeLoopInvariant( +                Inst, AnyInvariant, +                Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { +          AllInvariant = false; +          break; +        } +      } +      if (AnyInvariant) { +        Changed = true; +        // The loop disposition of all SCEV expressions that depend on any +        // hoisted values have also changed. +        if (SE) +          SE->forgetLoopDispositions(L); +      } +      if (!AllInvariant) continue; + +      // The block has now been cleared of all instructions except for +      // a comparison and a conditional branch. SimplifyCFG may be able +      // to fold it now. +      if (!FoldBranchToCommonDest(BI, MSSAU)) +        continue; + +      // Success. The block is now dead, so remove it from the loop, +      // update the dominator tree and delete it. +      LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " +                        << ExitingBlock->getName() << "\n"); + +      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); +      Changed = true; +      LI->removeBlock(ExitingBlock); + +      DomTreeNode *Node = DT->getNode(ExitingBlock); +      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = +        Node->getChildren(); +      while (!Children.empty()) { +        DomTreeNode *Child = Children.front(); +        DT->changeImmediateDominator(Child, Node->getIDom()); +      } +      DT->eraseNode(ExitingBlock); +      if (MSSAU) { +        SmallSetVector<BasicBlock *, 8> ExitBlockSet; +        ExitBlockSet.insert(ExitingBlock); +        MSSAU->removeBlocks(ExitBlockSet); +      } + +      BI->getSuccessor(0)->removePredecessor( +          ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); +      BI->getSuccessor(1)->removePredecessor( +          ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); +      ExitingBlock->eraseFromParent(); +    } +  } + +  // Changing exit conditions for blocks may affect exit counts of this loop and +  // any of its paretns, so we must invalidate the entire subtree if we've made +  // any changes. +  if (Changed && SE) +    SE->forgetTopmostLoop(L); + +  if (MSSAU && VerifyMemorySSA) +    MSSAU->getMemorySSA()->verifyMemorySSA(); + +  return Changed; +} + +bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, +                        ScalarEvolution *SE, AssumptionCache *AC, +                        MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { +  bool Changed = false; + +#ifndef NDEBUG +  // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA +  // form. +  if (PreserveLCSSA) { +    assert(DT && "DT not available."); +    assert(LI && "LI not available."); +    assert(L->isRecursivelyLCSSAForm(*DT, *LI) && +           "Requested to preserve LCSSA, but it's already broken."); +  } +#endif + +  // Worklist maintains our depth-first queue of loops in this nest to process. +  SmallVector<Loop *, 4> Worklist; +  Worklist.push_back(L); + +  // Walk the worklist from front to back, pushing newly found sub loops onto +  // the back. This will let us process loops from back to front in depth-first +  // order. We can use this simple process because loops form a tree. +  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { +    Loop *L2 = Worklist[Idx]; +    Worklist.append(L2->begin(), L2->end()); +  } + +  while (!Worklist.empty()) +    Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, +                               AC, MSSAU, PreserveLCSSA); + +  return Changed; +} + +namespace { +  struct LoopSimplify : public FunctionPass { +    static char ID; // Pass identification, replacement for typeid +    LoopSimplify() : FunctionPass(ID) { +      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); +    } + +    bool runOnFunction(Function &F) override; + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.addRequired<AssumptionCacheTracker>(); + +      // We need loop information to identify the loops... +      AU.addRequired<DominatorTreeWrapperPass>(); +      AU.addPreserved<DominatorTreeWrapperPass>(); + +      AU.addRequired<LoopInfoWrapperPass>(); +      AU.addPreserved<LoopInfoWrapperPass>(); + +      AU.addPreserved<BasicAAWrapperPass>(); +      AU.addPreserved<AAResultsWrapperPass>(); +      AU.addPreserved<GlobalsAAWrapperPass>(); +      AU.addPreserved<ScalarEvolutionWrapperPass>(); +      AU.addPreserved<SCEVAAWrapperPass>(); +      AU.addPreservedID(LCSSAID); +      AU.addPreserved<DependenceAnalysisWrapperPass>(); +      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added. +      AU.addPreserved<BranchProbabilityInfoWrapperPass>(); +      if (EnableMSSALoopDependency) +        AU.addPreserved<MemorySSAWrapperPass>(); +    } + +    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. +    void verifyAnalysis() const override; +  }; +} + +char LoopSimplify::ID = 0; +INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", +                "Canonicalize natural loops", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", +                "Canonicalize natural loops", false, false) + +// Publicly exposed interface to pass... +char &llvm::LoopSimplifyID = LoopSimplify::ID; +Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } + +/// runOnFunction - Run down all loops in the CFG (recursively, but we could do +/// it in any convenient order) inserting preheaders... +/// +bool LoopSimplify::runOnFunction(Function &F) { +  bool Changed = false; +  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); +  ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; +  AssumptionCache *AC = +      &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); +  MemorySSA *MSSA = nullptr; +  std::unique_ptr<MemorySSAUpdater> MSSAU; +  if (EnableMSSALoopDependency) { +    auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); +    if (MSSAAnalysis) { +      MSSA = &MSSAAnalysis->getMSSA(); +      MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); +    } +  } + +  bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); + +  // Simplify each loop nest in the function. +  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) +    Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); + +#ifndef NDEBUG +  if (PreserveLCSSA) { +    bool InLCSSA = all_of( +        *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); +    assert(InLCSSA && "LCSSA is broken after loop-simplify."); +  } +#endif +  return Changed; +} + +PreservedAnalyses LoopSimplifyPass::run(Function &F, +                                        FunctionAnalysisManager &AM) { +  bool Changed = false; +  LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); +  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); +  ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); +  AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); +  auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); +  std::unique_ptr<MemorySSAUpdater> MSSAU; +  if (MSSAAnalysis) { +    auto *MSSA = &MSSAAnalysis->getMSSA(); +    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); +  } + + +  // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA +  // after simplifying the loops. MemorySSA is preserved if it exists. +  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) +    Changed |= +        simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); + +  if (!Changed) +    return PreservedAnalyses::all(); + +  PreservedAnalyses PA; +  PA.preserve<DominatorTreeAnalysis>(); +  PA.preserve<LoopAnalysis>(); +  PA.preserve<BasicAA>(); +  PA.preserve<GlobalsAA>(); +  PA.preserve<SCEVAA>(); +  PA.preserve<ScalarEvolutionAnalysis>(); +  PA.preserve<DependenceAnalysis>(); +  if (MSSAAnalysis) +    PA.preserve<MemorySSAAnalysis>(); +  // BPI maps conditional terminators to probabilities, LoopSimplify can insert +  // blocks, but it does so only by splitting existing blocks and edges. This +  // results in the interesting property that all new terminators inserted are +  // unconditional branches which do not appear in BPI. All deletions are +  // handled via ValueHandle callbacks w/in BPI. +  PA.preserve<BranchProbabilityAnalysis>(); +  return PA; +} + +// FIXME: Restore this code when we re-enable verification in verifyAnalysis +// below. +#if 0 +static void verifyLoop(Loop *L) { +  // Verify subloops. +  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) +    verifyLoop(*I); + +  // It used to be possible to just assert L->isLoopSimplifyForm(), however +  // with the introduction of indirectbr, there are now cases where it's +  // not possible to transform a loop as necessary. We can at least check +  // that there is an indirectbr near any time there's trouble. + +  // Indirectbr can interfere with preheader and unique backedge insertion. +  if (!L->getLoopPreheader() || !L->getLoopLatch()) { +    bool HasIndBrPred = false; +    for (pred_iterator PI = pred_begin(L->getHeader()), +         PE = pred_end(L->getHeader()); PI != PE; ++PI) +      if (isa<IndirectBrInst>((*PI)->getTerminator())) { +        HasIndBrPred = true; +        break; +      } +    assert(HasIndBrPred && +           "LoopSimplify has no excuse for missing loop header info!"); +    (void)HasIndBrPred; +  } + +  // Indirectbr can interfere with exit block canonicalization. +  if (!L->hasDedicatedExits()) { +    bool HasIndBrExiting = false; +    SmallVector<BasicBlock*, 8> ExitingBlocks; +    L->getExitingBlocks(ExitingBlocks); +    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { +      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { +        HasIndBrExiting = true; +        break; +      } +    } + +    assert(HasIndBrExiting && +           "LoopSimplify has no excuse for missing exit block info!"); +    (void)HasIndBrExiting; +  } +} +#endif + +void LoopSimplify::verifyAnalysis() const { +  // FIXME: This routine is being called mid-way through the loop pass manager +  // as loop passes destroy this analysis. That's actually fine, but we have no +  // way of expressing that here. Once all of the passes that destroy this are +  // hoisted out of the loop pass manager we can add back verification here. +#if 0 +  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) +    verifyLoop(*I); +#endif +} | 
