diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUtils.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Utils/LoopUtils.cpp | 1032 | 
1 files changed, 1032 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Utils/LoopUtils.cpp b/llvm/lib/Transforms/Utils/LoopUtils.cpp new file mode 100644 index 000000000000..b4d7f35d2d9a --- /dev/null +++ b/llvm/lib/Transforms/Utils/LoopUtils.cpp @@ -0,0 +1,1032 @@ +//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines common loop utility functions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/MustExecute.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "loop-utils" + +static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; +static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; + +bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, +                                   MemorySSAUpdater *MSSAU, +                                   bool PreserveLCSSA) { +  bool Changed = false; + +  // We re-use a vector for the in-loop predecesosrs. +  SmallVector<BasicBlock *, 4> InLoopPredecessors; + +  auto RewriteExit = [&](BasicBlock *BB) { +    assert(InLoopPredecessors.empty() && +           "Must start with an empty predecessors list!"); +    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); + +    // See if there are any non-loop predecessors of this exit block and +    // keep track of the in-loop predecessors. +    bool IsDedicatedExit = true; +    for (auto *PredBB : predecessors(BB)) +      if (L->contains(PredBB)) { +        if (isa<IndirectBrInst>(PredBB->getTerminator())) +          // We cannot rewrite exiting edges from an indirectbr. +          return false; +        if (isa<CallBrInst>(PredBB->getTerminator())) +          // We cannot rewrite exiting edges from a callbr. +          return false; + +        InLoopPredecessors.push_back(PredBB); +      } else { +        IsDedicatedExit = false; +      } + +    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); + +    // Nothing to do if this is already a dedicated exit. +    if (IsDedicatedExit) +      return false; + +    auto *NewExitBB = SplitBlockPredecessors( +        BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); + +    if (!NewExitBB) +      LLVM_DEBUG( +          dbgs() << "WARNING: Can't create a dedicated exit block for loop: " +                 << *L << "\n"); +    else +      LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " +                        << NewExitBB->getName() << "\n"); +    return true; +  }; + +  // Walk the exit blocks directly rather than building up a data structure for +  // them, but only visit each one once. +  SmallPtrSet<BasicBlock *, 4> Visited; +  for (auto *BB : L->blocks()) +    for (auto *SuccBB : successors(BB)) { +      // We're looking for exit blocks so skip in-loop successors. +      if (L->contains(SuccBB)) +        continue; + +      // Visit each exit block exactly once. +      if (!Visited.insert(SuccBB).second) +        continue; + +      Changed |= RewriteExit(SuccBB); +    } + +  return Changed; +} + +/// Returns the instructions that use values defined in the loop. +SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { +  SmallVector<Instruction *, 8> UsedOutside; + +  for (auto *Block : L->getBlocks()) +    // FIXME: I believe that this could use copy_if if the Inst reference could +    // be adapted into a pointer. +    for (auto &Inst : *Block) { +      auto Users = Inst.users(); +      if (any_of(Users, [&](User *U) { +            auto *Use = cast<Instruction>(U); +            return !L->contains(Use->getParent()); +          })) +        UsedOutside.push_back(&Inst); +    } + +  return UsedOutside; +} + +void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { +  // By definition, all loop passes need the LoopInfo analysis and the +  // Dominator tree it depends on. Because they all participate in the loop +  // pass manager, they must also preserve these. +  AU.addRequired<DominatorTreeWrapperPass>(); +  AU.addPreserved<DominatorTreeWrapperPass>(); +  AU.addRequired<LoopInfoWrapperPass>(); +  AU.addPreserved<LoopInfoWrapperPass>(); + +  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs +  // here because users shouldn't directly get them from this header. +  extern char &LoopSimplifyID; +  extern char &LCSSAID; +  AU.addRequiredID(LoopSimplifyID); +  AU.addPreservedID(LoopSimplifyID); +  AU.addRequiredID(LCSSAID); +  AU.addPreservedID(LCSSAID); +  // This is used in the LPPassManager to perform LCSSA verification on passes +  // which preserve lcssa form +  AU.addRequired<LCSSAVerificationPass>(); +  AU.addPreserved<LCSSAVerificationPass>(); + +  // Loop passes are designed to run inside of a loop pass manager which means +  // that any function analyses they require must be required by the first loop +  // pass in the manager (so that it is computed before the loop pass manager +  // runs) and preserved by all loop pasess in the manager. To make this +  // reasonably robust, the set needed for most loop passes is maintained here. +  // If your loop pass requires an analysis not listed here, you will need to +  // carefully audit the loop pass manager nesting structure that results. +  AU.addRequired<AAResultsWrapperPass>(); +  AU.addPreserved<AAResultsWrapperPass>(); +  AU.addPreserved<BasicAAWrapperPass>(); +  AU.addPreserved<GlobalsAAWrapperPass>(); +  AU.addPreserved<SCEVAAWrapperPass>(); +  AU.addRequired<ScalarEvolutionWrapperPass>(); +  AU.addPreserved<ScalarEvolutionWrapperPass>(); +  // FIXME: When all loop passes preserve MemorySSA, it can be required and +  // preserved here instead of the individual handling in each pass. +} + +/// Manually defined generic "LoopPass" dependency initialization. This is used +/// to initialize the exact set of passes from above in \c +/// getLoopAnalysisUsage. It can be used within a loop pass's initialization +/// with: +/// +///   INITIALIZE_PASS_DEPENDENCY(LoopPass) +/// +/// As-if "LoopPass" were a pass. +void llvm::initializeLoopPassPass(PassRegistry &Registry) { +  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +} + +/// Create MDNode for input string. +static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { +  LLVMContext &Context = TheLoop->getHeader()->getContext(); +  Metadata *MDs[] = { +      MDString::get(Context, Name), +      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; +  return MDNode::get(Context, MDs); +} + +/// Set input string into loop metadata by keeping other values intact. +/// If the string is already in loop metadata update value if it is +/// different. +void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, +                                   unsigned V) { +  SmallVector<Metadata *, 4> MDs(1); +  // If the loop already has metadata, retain it. +  MDNode *LoopID = TheLoop->getLoopID(); +  if (LoopID) { +    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { +      MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); +      // If it is of form key = value, try to parse it. +      if (Node->getNumOperands() == 2) { +        MDString *S = dyn_cast<MDString>(Node->getOperand(0)); +        if (S && S->getString().equals(StringMD)) { +          ConstantInt *IntMD = +              mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); +          if (IntMD && IntMD->getSExtValue() == V) +            // It is already in place. Do nothing. +            return; +          // We need to update the value, so just skip it here and it will +          // be added after copying other existed nodes. +          continue; +        } +      } +      MDs.push_back(Node); +    } +  } +  // Add new metadata. +  MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); +  // Replace current metadata node with new one. +  LLVMContext &Context = TheLoop->getHeader()->getContext(); +  MDNode *NewLoopID = MDNode::get(Context, MDs); +  // Set operand 0 to refer to the loop id itself. +  NewLoopID->replaceOperandWith(0, NewLoopID); +  TheLoop->setLoopID(NewLoopID); +} + +/// Find string metadata for loop +/// +/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an +/// operand or null otherwise.  If the string metadata is not found return +/// Optional's not-a-value. +Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, +                                                            StringRef Name) { +  MDNode *MD = findOptionMDForLoop(TheLoop, Name); +  if (!MD) +    return None; +  switch (MD->getNumOperands()) { +  case 1: +    return nullptr; +  case 2: +    return &MD->getOperand(1); +  default: +    llvm_unreachable("loop metadata has 0 or 1 operand"); +  } +} + +static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, +                                                   StringRef Name) { +  MDNode *MD = findOptionMDForLoop(TheLoop, Name); +  if (!MD) +    return None; +  switch (MD->getNumOperands()) { +  case 1: +    // When the value is absent it is interpreted as 'attribute set'. +    return true; +  case 2: +    if (ConstantInt *IntMD = +            mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) +      return IntMD->getZExtValue(); +    return true; +  } +  llvm_unreachable("unexpected number of options"); +} + +static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { +  return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); +} + +llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, +                                                      StringRef Name) { +  const MDOperand *AttrMD = +      findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); +  if (!AttrMD) +    return None; + +  ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); +  if (!IntMD) +    return None; + +  return IntMD->getSExtValue(); +} + +Optional<MDNode *> llvm::makeFollowupLoopID( +    MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, +    const char *InheritOptionsExceptPrefix, bool AlwaysNew) { +  if (!OrigLoopID) { +    if (AlwaysNew) +      return nullptr; +    return None; +  } + +  assert(OrigLoopID->getOperand(0) == OrigLoopID); + +  bool InheritAllAttrs = !InheritOptionsExceptPrefix; +  bool InheritSomeAttrs = +      InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; +  SmallVector<Metadata *, 8> MDs; +  MDs.push_back(nullptr); + +  bool Changed = false; +  if (InheritAllAttrs || InheritSomeAttrs) { +    for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { +      MDNode *Op = cast<MDNode>(Existing.get()); + +      auto InheritThisAttribute = [InheritSomeAttrs, +                                   InheritOptionsExceptPrefix](MDNode *Op) { +        if (!InheritSomeAttrs) +          return false; + +        // Skip malformatted attribute metadata nodes. +        if (Op->getNumOperands() == 0) +          return true; +        Metadata *NameMD = Op->getOperand(0).get(); +        if (!isa<MDString>(NameMD)) +          return true; +        StringRef AttrName = cast<MDString>(NameMD)->getString(); + +        // Do not inherit excluded attributes. +        return !AttrName.startswith(InheritOptionsExceptPrefix); +      }; + +      if (InheritThisAttribute(Op)) +        MDs.push_back(Op); +      else +        Changed = true; +    } +  } else { +    // Modified if we dropped at least one attribute. +    Changed = OrigLoopID->getNumOperands() > 1; +  } + +  bool HasAnyFollowup = false; +  for (StringRef OptionName : FollowupOptions) { +    MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); +    if (!FollowupNode) +      continue; + +    HasAnyFollowup = true; +    for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { +      MDs.push_back(Option.get()); +      Changed = true; +    } +  } + +  // Attributes of the followup loop not specified explicity, so signal to the +  // transformation pass to add suitable attributes. +  if (!AlwaysNew && !HasAnyFollowup) +    return None; + +  // If no attributes were added or remove, the previous loop Id can be reused. +  if (!AlwaysNew && !Changed) +    return OrigLoopID; + +  // No attributes is equivalent to having no !llvm.loop metadata at all. +  if (MDs.size() == 1) +    return nullptr; + +  // Build the new loop ID. +  MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); +  FollowupLoopID->replaceOperandWith(0, FollowupLoopID); +  return FollowupLoopID; +} + +bool llvm::hasDisableAllTransformsHint(const Loop *L) { +  return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); +} + +bool llvm::hasDisableLICMTransformsHint(const Loop *L) { +  return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); +} + +TransformationMode llvm::hasUnrollTransformation(Loop *L) { +  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) +    return TM_SuppressedByUser; + +  Optional<int> Count = +      getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); +  if (Count.hasValue()) +    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; + +  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) +    return TM_ForcedByUser; + +  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) +    return TM_ForcedByUser; + +  if (hasDisableAllTransformsHint(L)) +    return TM_Disable; + +  return TM_Unspecified; +} + +TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { +  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) +    return TM_SuppressedByUser; + +  Optional<int> Count = +      getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); +  if (Count.hasValue()) +    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; + +  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) +    return TM_ForcedByUser; + +  if (hasDisableAllTransformsHint(L)) +    return TM_Disable; + +  return TM_Unspecified; +} + +TransformationMode llvm::hasVectorizeTransformation(Loop *L) { +  Optional<bool> Enable = +      getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); + +  if (Enable == false) +    return TM_SuppressedByUser; + +  Optional<int> VectorizeWidth = +      getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); +  Optional<int> InterleaveCount = +      getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); + +  // 'Forcing' vector width and interleave count to one effectively disables +  // this tranformation. +  if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) +    return TM_SuppressedByUser; + +  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) +    return TM_Disable; + +  if (Enable == true) +    return TM_ForcedByUser; + +  if (VectorizeWidth == 1 && InterleaveCount == 1) +    return TM_Disable; + +  if (VectorizeWidth > 1 || InterleaveCount > 1) +    return TM_Enable; + +  if (hasDisableAllTransformsHint(L)) +    return TM_Disable; + +  return TM_Unspecified; +} + +TransformationMode llvm::hasDistributeTransformation(Loop *L) { +  if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) +    return TM_ForcedByUser; + +  if (hasDisableAllTransformsHint(L)) +    return TM_Disable; + +  return TM_Unspecified; +} + +TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { +  if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) +    return TM_SuppressedByUser; + +  if (hasDisableAllTransformsHint(L)) +    return TM_Disable; + +  return TM_Unspecified; +} + +/// Does a BFS from a given node to all of its children inside a given loop. +/// The returned vector of nodes includes the starting point. +SmallVector<DomTreeNode *, 16> +llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { +  SmallVector<DomTreeNode *, 16> Worklist; +  auto AddRegionToWorklist = [&](DomTreeNode *DTN) { +    // Only include subregions in the top level loop. +    BasicBlock *BB = DTN->getBlock(); +    if (CurLoop->contains(BB)) +      Worklist.push_back(DTN); +  }; + +  AddRegionToWorklist(N); + +  for (size_t I = 0; I < Worklist.size(); I++) +    for (DomTreeNode *Child : Worklist[I]->getChildren()) +      AddRegionToWorklist(Child); + +  return Worklist; +} + +void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, +                          ScalarEvolution *SE = nullptr, +                          LoopInfo *LI = nullptr) { +  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); +  auto *Preheader = L->getLoopPreheader(); +  assert(Preheader && "Preheader should exist!"); + +  // Now that we know the removal is safe, remove the loop by changing the +  // branch from the preheader to go to the single exit block. +  // +  // Because we're deleting a large chunk of code at once, the sequence in which +  // we remove things is very important to avoid invalidation issues. + +  // Tell ScalarEvolution that the loop is deleted. Do this before +  // deleting the loop so that ScalarEvolution can look at the loop +  // to determine what it needs to clean up. +  if (SE) +    SE->forgetLoop(L); + +  auto *ExitBlock = L->getUniqueExitBlock(); +  assert(ExitBlock && "Should have a unique exit block!"); +  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); + +  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); +  assert(OldBr && "Preheader must end with a branch"); +  assert(OldBr->isUnconditional() && "Preheader must have a single successor"); +  // Connect the preheader to the exit block. Keep the old edge to the header +  // around to perform the dominator tree update in two separate steps +  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge +  // preheader -> header. +  // +  // +  // 0.  Preheader          1.  Preheader           2.  Preheader +  //        |                    |   |                   | +  //        V                    |   V                   | +  //      Header <--\            | Header <--\           | Header <--\ +  //       |  |     |            |  |  |     |           |  |  |     | +  //       |  V     |            |  |  V     |           |  |  V     | +  //       | Body --/            |  | Body --/           |  | Body --/ +  //       V                     V  V                    V  V +  //      Exit                   Exit                    Exit +  // +  // By doing this is two separate steps we can perform the dominator tree +  // update without using the batch update API. +  // +  // Even when the loop is never executed, we cannot remove the edge from the +  // source block to the exit block. Consider the case where the unexecuted loop +  // branches back to an outer loop. If we deleted the loop and removed the edge +  // coming to this inner loop, this will break the outer loop structure (by +  // deleting the backedge of the outer loop). If the outer loop is indeed a +  // non-loop, it will be deleted in a future iteration of loop deletion pass. +  IRBuilder<> Builder(OldBr); +  Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); +  // Remove the old branch. The conditional branch becomes a new terminator. +  OldBr->eraseFromParent(); + +  // Rewrite phis in the exit block to get their inputs from the Preheader +  // instead of the exiting block. +  for (PHINode &P : ExitBlock->phis()) { +    // Set the zero'th element of Phi to be from the preheader and remove all +    // other incoming values. Given the loop has dedicated exits, all other +    // incoming values must be from the exiting blocks. +    int PredIndex = 0; +    P.setIncomingBlock(PredIndex, Preheader); +    // Removes all incoming values from all other exiting blocks (including +    // duplicate values from an exiting block). +    // Nuke all entries except the zero'th entry which is the preheader entry. +    // NOTE! We need to remove Incoming Values in the reverse order as done +    // below, to keep the indices valid for deletion (removeIncomingValues +    // updates getNumIncomingValues and shifts all values down into the operand +    // being deleted). +    for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) +      P.removeIncomingValue(e - i, false); + +    assert((P.getNumIncomingValues() == 1 && +            P.getIncomingBlock(PredIndex) == Preheader) && +           "Should have exactly one value and that's from the preheader!"); +  } + +  // Disconnect the loop body by branching directly to its exit. +  Builder.SetInsertPoint(Preheader->getTerminator()); +  Builder.CreateBr(ExitBlock); +  // Remove the old branch. +  Preheader->getTerminator()->eraseFromParent(); + +  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); +  if (DT) { +    // Update the dominator tree by informing it about the new edge from the +    // preheader to the exit and the removed edge. +    DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, +                      {DominatorTree::Delete, Preheader, L->getHeader()}}); +  } + +  // Use a map to unique and a vector to guarantee deterministic ordering. +  llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; +  llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; + +  // Given LCSSA form is satisfied, we should not have users of instructions +  // within the dead loop outside of the loop. However, LCSSA doesn't take +  // unreachable uses into account. We handle them here. +  // We could do it after drop all references (in this case all users in the +  // loop will be already eliminated and we have less work to do but according +  // to API doc of User::dropAllReferences only valid operation after dropping +  // references, is deletion. So let's substitute all usages of +  // instruction from the loop with undef value of corresponding type first. +  for (auto *Block : L->blocks()) +    for (Instruction &I : *Block) { +      auto *Undef = UndefValue::get(I.getType()); +      for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { +        Use &U = *UI; +        ++UI; +        if (auto *Usr = dyn_cast<Instruction>(U.getUser())) +          if (L->contains(Usr->getParent())) +            continue; +        // If we have a DT then we can check that uses outside a loop only in +        // unreachable block. +        if (DT) +          assert(!DT->isReachableFromEntry(U) && +                 "Unexpected user in reachable block"); +        U.set(Undef); +      } +      auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); +      if (!DVI) +        continue; +      auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); +      if (Key != DeadDebugSet.end()) +        continue; +      DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); +      DeadDebugInst.push_back(DVI); +    } + +  // After the loop has been deleted all the values defined and modified +  // inside the loop are going to be unavailable. +  // Since debug values in the loop have been deleted, inserting an undef +  // dbg.value truncates the range of any dbg.value before the loop where the +  // loop used to be. This is particularly important for constant values. +  DIBuilder DIB(*ExitBlock->getModule()); +  Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); +  assert(InsertDbgValueBefore && +         "There should be a non-PHI instruction in exit block, else these " +         "instructions will have no parent."); +  for (auto *DVI : DeadDebugInst) +    DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), +                                DVI->getVariable(), DVI->getExpression(), +                                DVI->getDebugLoc(), InsertDbgValueBefore); + +  // Remove the block from the reference counting scheme, so that we can +  // delete it freely later. +  for (auto *Block : L->blocks()) +    Block->dropAllReferences(); + +  if (LI) { +    // Erase the instructions and the blocks without having to worry +    // about ordering because we already dropped the references. +    // NOTE: This iteration is safe because erasing the block does not remove +    // its entry from the loop's block list.  We do that in the next section. +    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); +         LpI != LpE; ++LpI) +      (*LpI)->eraseFromParent(); + +    // Finally, the blocks from loopinfo.  This has to happen late because +    // otherwise our loop iterators won't work. + +    SmallPtrSet<BasicBlock *, 8> blocks; +    blocks.insert(L->block_begin(), L->block_end()); +    for (BasicBlock *BB : blocks) +      LI->removeBlock(BB); + +    // The last step is to update LoopInfo now that we've eliminated this loop. +    LI->erase(L); +  } +} + +Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { +  // Support loops with an exiting latch and other existing exists only +  // deoptimize. + +  // Get the branch weights for the loop's backedge. +  BasicBlock *Latch = L->getLoopLatch(); +  if (!Latch) +    return None; +  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); +  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) +    return None; + +  assert((LatchBR->getSuccessor(0) == L->getHeader() || +          LatchBR->getSuccessor(1) == L->getHeader()) && +         "At least one edge out of the latch must go to the header"); + +  SmallVector<BasicBlock *, 4> ExitBlocks; +  L->getUniqueNonLatchExitBlocks(ExitBlocks); +  if (any_of(ExitBlocks, [](const BasicBlock *EB) { +        return !EB->getTerminatingDeoptimizeCall(); +      })) +    return None; + +  // To estimate the number of times the loop body was executed, we want to +  // know the number of times the backedge was taken, vs. the number of times +  // we exited the loop. +  uint64_t TrueVal, FalseVal; +  if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) +    return None; + +  if (!TrueVal || !FalseVal) +    return 0; + +  // Divide the count of the backedge by the count of the edge exiting the loop, +  // rounding to nearest. +  if (LatchBR->getSuccessor(0) == L->getHeader()) +    return (TrueVal + (FalseVal / 2)) / FalseVal; +  else +    return (FalseVal + (TrueVal / 2)) / TrueVal; +} + +bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, +                                              ScalarEvolution &SE) { +  Loop *OuterL = InnerLoop->getParentLoop(); +  if (!OuterL) +    return true; + +  // Get the backedge taken count for the inner loop +  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); +  const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); +  if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || +      !InnerLoopBECountSC->getType()->isIntegerTy()) +    return false; + +  // Get whether count is invariant to the outer loop +  ScalarEvolution::LoopDisposition LD = +      SE.getLoopDisposition(InnerLoopBECountSC, OuterL); +  if (LD != ScalarEvolution::LoopInvariant) +    return false; + +  return true; +} + +Value *llvm::createMinMaxOp(IRBuilder<> &Builder, +                            RecurrenceDescriptor::MinMaxRecurrenceKind RK, +                            Value *Left, Value *Right) { +  CmpInst::Predicate P = CmpInst::ICMP_NE; +  switch (RK) { +  default: +    llvm_unreachable("Unknown min/max recurrence kind"); +  case RecurrenceDescriptor::MRK_UIntMin: +    P = CmpInst::ICMP_ULT; +    break; +  case RecurrenceDescriptor::MRK_UIntMax: +    P = CmpInst::ICMP_UGT; +    break; +  case RecurrenceDescriptor::MRK_SIntMin: +    P = CmpInst::ICMP_SLT; +    break; +  case RecurrenceDescriptor::MRK_SIntMax: +    P = CmpInst::ICMP_SGT; +    break; +  case RecurrenceDescriptor::MRK_FloatMin: +    P = CmpInst::FCMP_OLT; +    break; +  case RecurrenceDescriptor::MRK_FloatMax: +    P = CmpInst::FCMP_OGT; +    break; +  } + +  // We only match FP sequences that are 'fast', so we can unconditionally +  // set it on any generated instructions. +  IRBuilder<>::FastMathFlagGuard FMFG(Builder); +  FastMathFlags FMF; +  FMF.setFast(); +  Builder.setFastMathFlags(FMF); + +  Value *Cmp; +  if (RK == RecurrenceDescriptor::MRK_FloatMin || +      RK == RecurrenceDescriptor::MRK_FloatMax) +    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); +  else +    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); + +  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); +  return Select; +} + +// Helper to generate an ordered reduction. +Value * +llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, +                          unsigned Op, +                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, +                          ArrayRef<Value *> RedOps) { +  unsigned VF = Src->getType()->getVectorNumElements(); + +  // Extract and apply reduction ops in ascending order: +  // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] +  Value *Result = Acc; +  for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { +    Value *Ext = +        Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); + +    if (Op != Instruction::ICmp && Op != Instruction::FCmp) { +      Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, +                                   "bin.rdx"); +    } else { +      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && +             "Invalid min/max"); +      Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); +    } + +    if (!RedOps.empty()) +      propagateIRFlags(Result, RedOps); +  } + +  return Result; +} + +// Helper to generate a log2 shuffle reduction. +Value * +llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, +                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, +                          ArrayRef<Value *> RedOps) { +  unsigned VF = Src->getType()->getVectorNumElements(); +  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles +  // and vector ops, reducing the set of values being computed by half each +  // round. +  assert(isPowerOf2_32(VF) && +         "Reduction emission only supported for pow2 vectors!"); +  Value *TmpVec = Src; +  SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); +  for (unsigned i = VF; i != 1; i >>= 1) { +    // Move the upper half of the vector to the lower half. +    for (unsigned j = 0; j != i / 2; ++j) +      ShuffleMask[j] = Builder.getInt32(i / 2 + j); + +    // Fill the rest of the mask with undef. +    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), +              UndefValue::get(Builder.getInt32Ty())); + +    Value *Shuf = Builder.CreateShuffleVector( +        TmpVec, UndefValue::get(TmpVec->getType()), +        ConstantVector::get(ShuffleMask), "rdx.shuf"); + +    if (Op != Instruction::ICmp && Op != Instruction::FCmp) { +      // The builder propagates its fast-math-flags setting. +      TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, +                                   "bin.rdx"); +    } else { +      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && +             "Invalid min/max"); +      TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); +    } +    if (!RedOps.empty()) +      propagateIRFlags(TmpVec, RedOps); +  } +  // The result is in the first element of the vector. +  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); +} + +/// Create a simple vector reduction specified by an opcode and some +/// flags (if generating min/max reductions). +Value *llvm::createSimpleTargetReduction( +    IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, +    Value *Src, TargetTransformInfo::ReductionFlags Flags, +    ArrayRef<Value *> RedOps) { +  assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); + +  std::function<Value *()> BuildFunc; +  using RD = RecurrenceDescriptor; +  RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; + +  switch (Opcode) { +  case Instruction::Add: +    BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; +    break; +  case Instruction::Mul: +    BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; +    break; +  case Instruction::And: +    BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; +    break; +  case Instruction::Or: +    BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; +    break; +  case Instruction::Xor: +    BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; +    break; +  case Instruction::FAdd: +    BuildFunc = [&]() { +      auto Rdx = Builder.CreateFAddReduce( +          Constant::getNullValue(Src->getType()->getVectorElementType()), Src); +      return Rdx; +    }; +    break; +  case Instruction::FMul: +    BuildFunc = [&]() { +      Type *Ty = Src->getType()->getVectorElementType(); +      auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); +      return Rdx; +    }; +    break; +  case Instruction::ICmp: +    if (Flags.IsMaxOp) { +      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; +      BuildFunc = [&]() { +        return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); +      }; +    } else { +      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; +      BuildFunc = [&]() { +        return Builder.CreateIntMinReduce(Src, Flags.IsSigned); +      }; +    } +    break; +  case Instruction::FCmp: +    if (Flags.IsMaxOp) { +      MinMaxKind = RD::MRK_FloatMax; +      BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; +    } else { +      MinMaxKind = RD::MRK_FloatMin; +      BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; +    } +    break; +  default: +    llvm_unreachable("Unhandled opcode"); +    break; +  } +  if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) +    return BuildFunc(); +  return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); +} + +/// Create a vector reduction using a given recurrence descriptor. +Value *llvm::createTargetReduction(IRBuilder<> &B, +                                   const TargetTransformInfo *TTI, +                                   RecurrenceDescriptor &Desc, Value *Src, +                                   bool NoNaN) { +  // TODO: Support in-order reductions based on the recurrence descriptor. +  using RD = RecurrenceDescriptor; +  RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); +  TargetTransformInfo::ReductionFlags Flags; +  Flags.NoNaN = NoNaN; + +  // All ops in the reduction inherit fast-math-flags from the recurrence +  // descriptor. +  IRBuilder<>::FastMathFlagGuard FMFGuard(B); +  B.setFastMathFlags(Desc.getFastMathFlags()); + +  switch (RecKind) { +  case RD::RK_FloatAdd: +    return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); +  case RD::RK_FloatMult: +    return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); +  case RD::RK_IntegerAdd: +    return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); +  case RD::RK_IntegerMult: +    return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); +  case RD::RK_IntegerAnd: +    return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); +  case RD::RK_IntegerOr: +    return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); +  case RD::RK_IntegerXor: +    return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); +  case RD::RK_IntegerMinMax: { +    RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); +    Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); +    Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); +    return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); +  } +  case RD::RK_FloatMinMax: { +    Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; +    return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); +  } +  default: +    llvm_unreachable("Unhandled RecKind"); +  } +} + +void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { +  auto *VecOp = dyn_cast<Instruction>(I); +  if (!VecOp) +    return; +  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) +                                            : dyn_cast<Instruction>(OpValue); +  if (!Intersection) +    return; +  const unsigned Opcode = Intersection->getOpcode(); +  VecOp->copyIRFlags(Intersection); +  for (auto *V : VL) { +    auto *Instr = dyn_cast<Instruction>(V); +    if (!Instr) +      continue; +    if (OpValue == nullptr || Opcode == Instr->getOpcode()) +      VecOp->andIRFlags(V); +  } +} + +bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, +                                 ScalarEvolution &SE) { +  const SCEV *Zero = SE.getZero(S->getType()); +  return SE.isAvailableAtLoopEntry(S, L) && +         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); +} + +bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, +                                    ScalarEvolution &SE) { +  const SCEV *Zero = SE.getZero(S->getType()); +  return SE.isAvailableAtLoopEntry(S, L) && +         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); +} + +bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, +                             bool Signed) { +  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); +  APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : +    APInt::getMinValue(BitWidth); +  auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; +  return SE.isAvailableAtLoopEntry(S, L) && +         SE.isLoopEntryGuardedByCond(L, Predicate, S, +                                     SE.getConstant(Min)); +} + +bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, +                             bool Signed) { +  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); +  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : +    APInt::getMaxValue(BitWidth); +  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; +  return SE.isAvailableAtLoopEntry(S, L) && +         SE.isLoopEntryGuardedByCond(L, Predicate, S, +                                     SE.getConstant(Max)); +} | 
