summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Utils/SimplifyCFG.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/SimplifyCFG.cpp6136
1 files changed, 6136 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
new file mode 100644
index 000000000000..3a5e3293ed4f
--- /dev/null
+++ b/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -0,0 +1,6136 @@
+//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Peephole optimize the CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <set>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "simplifycfg"
+
+// Chosen as 2 so as to be cheap, but still to have enough power to fold
+// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
+// To catch this, we need to fold a compare and a select, hence '2' being the
+// minimum reasonable default.
+static cl::opt<unsigned> PHINodeFoldingThreshold(
+ "phi-node-folding-threshold", cl::Hidden, cl::init(2),
+ cl::desc(
+ "Control the amount of phi node folding to perform (default = 2)"));
+
+static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
+ "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
+ cl::desc("Control the maximal total instruction cost that we are willing "
+ "to speculatively execute to fold a 2-entry PHI node into a "
+ "select (default = 4)"));
+
+static cl::opt<bool> DupRet(
+ "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
+ cl::desc("Duplicate return instructions into unconditional branches"));
+
+static cl::opt<bool>
+ SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
+ cl::desc("Sink common instructions down to the end block"));
+
+static cl::opt<bool> HoistCondStores(
+ "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
+ cl::desc("Hoist conditional stores if an unconditional store precedes"));
+
+static cl::opt<bool> MergeCondStores(
+ "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
+ cl::desc("Hoist conditional stores even if an unconditional store does not "
+ "precede - hoist multiple conditional stores into a single "
+ "predicated store"));
+
+static cl::opt<bool> MergeCondStoresAggressively(
+ "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
+ cl::desc("When merging conditional stores, do so even if the resultant "
+ "basic blocks are unlikely to be if-converted as a result"));
+
+static cl::opt<bool> SpeculateOneExpensiveInst(
+ "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
+ cl::desc("Allow exactly one expensive instruction to be speculatively "
+ "executed"));
+
+static cl::opt<unsigned> MaxSpeculationDepth(
+ "max-speculation-depth", cl::Hidden, cl::init(10),
+ cl::desc("Limit maximum recursion depth when calculating costs of "
+ "speculatively executed instructions"));
+
+STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
+STATISTIC(NumLinearMaps,
+ "Number of switch instructions turned into linear mapping");
+STATISTIC(NumLookupTables,
+ "Number of switch instructions turned into lookup tables");
+STATISTIC(
+ NumLookupTablesHoles,
+ "Number of switch instructions turned into lookup tables (holes checked)");
+STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
+STATISTIC(NumSinkCommons,
+ "Number of common instructions sunk down to the end block");
+STATISTIC(NumSpeculations, "Number of speculative executed instructions");
+
+namespace {
+
+// The first field contains the value that the switch produces when a certain
+// case group is selected, and the second field is a vector containing the
+// cases composing the case group.
+using SwitchCaseResultVectorTy =
+ SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
+
+// The first field contains the phi node that generates a result of the switch
+// and the second field contains the value generated for a certain case in the
+// switch for that PHI.
+using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
+
+/// ValueEqualityComparisonCase - Represents a case of a switch.
+struct ValueEqualityComparisonCase {
+ ConstantInt *Value;
+ BasicBlock *Dest;
+
+ ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
+ : Value(Value), Dest(Dest) {}
+
+ bool operator<(ValueEqualityComparisonCase RHS) const {
+ // Comparing pointers is ok as we only rely on the order for uniquing.
+ return Value < RHS.Value;
+ }
+
+ bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
+};
+
+class SimplifyCFGOpt {
+ const TargetTransformInfo &TTI;
+ const DataLayout &DL;
+ SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
+ const SimplifyCFGOptions &Options;
+ bool Resimplify;
+
+ Value *isValueEqualityComparison(Instruction *TI);
+ BasicBlock *GetValueEqualityComparisonCases(
+ Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
+ bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
+ BasicBlock *Pred,
+ IRBuilder<> &Builder);
+ bool FoldValueComparisonIntoPredecessors(Instruction *TI,
+ IRBuilder<> &Builder);
+
+ bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
+ bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
+ bool SimplifySingleResume(ResumeInst *RI);
+ bool SimplifyCommonResume(ResumeInst *RI);
+ bool SimplifyCleanupReturn(CleanupReturnInst *RI);
+ bool SimplifyUnreachable(UnreachableInst *UI);
+ bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
+ bool SimplifyIndirectBr(IndirectBrInst *IBI);
+ bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
+ bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
+
+ bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
+ IRBuilder<> &Builder);
+
+public:
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
+ SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
+ const SimplifyCFGOptions &Opts)
+ : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
+
+ bool run(BasicBlock *BB);
+ bool simplifyOnce(BasicBlock *BB);
+
+ // Helper to set Resimplify and return change indication.
+ bool requestResimplify() {
+ Resimplify = true;
+ return true;
+ }
+};
+
+} // end anonymous namespace
+
+/// Return true if it is safe to merge these two
+/// terminator instructions together.
+static bool
+SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
+ SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
+ if (SI1 == SI2)
+ return false; // Can't merge with self!
+
+ // It is not safe to merge these two switch instructions if they have a common
+ // successor, and if that successor has a PHI node, and if *that* PHI node has
+ // conflicting incoming values from the two switch blocks.
+ BasicBlock *SI1BB = SI1->getParent();
+ BasicBlock *SI2BB = SI2->getParent();
+
+ SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+ bool Fail = false;
+ for (BasicBlock *Succ : successors(SI2BB))
+ if (SI1Succs.count(Succ))
+ for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ if (PN->getIncomingValueForBlock(SI1BB) !=
+ PN->getIncomingValueForBlock(SI2BB)) {
+ if (FailBlocks)
+ FailBlocks->insert(Succ);
+ Fail = true;
+ }
+ }
+
+ return !Fail;
+}
+
+/// Return true if it is safe and profitable to merge these two terminator
+/// instructions together, where SI1 is an unconditional branch. PhiNodes will
+/// store all PHI nodes in common successors.
+static bool
+isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
+ Instruction *Cond,
+ SmallVectorImpl<PHINode *> &PhiNodes) {
+ if (SI1 == SI2)
+ return false; // Can't merge with self!
+ assert(SI1->isUnconditional() && SI2->isConditional());
+
+ // We fold the unconditional branch if we can easily update all PHI nodes in
+ // common successors:
+ // 1> We have a constant incoming value for the conditional branch;
+ // 2> We have "Cond" as the incoming value for the unconditional branch;
+ // 3> SI2->getCondition() and Cond have same operands.
+ CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
+ if (!Ci2)
+ return false;
+ if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
+ Cond->getOperand(1) == Ci2->getOperand(1)) &&
+ !(Cond->getOperand(0) == Ci2->getOperand(1) &&
+ Cond->getOperand(1) == Ci2->getOperand(0)))
+ return false;
+
+ BasicBlock *SI1BB = SI1->getParent();
+ BasicBlock *SI2BB = SI2->getParent();
+ SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+ for (BasicBlock *Succ : successors(SI2BB))
+ if (SI1Succs.count(Succ))
+ for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
+ !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
+ return false;
+ PhiNodes.push_back(PN);
+ }
+ return true;
+}
+
+/// Update PHI nodes in Succ to indicate that there will now be entries in it
+/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
+/// will be the same as those coming in from ExistPred, an existing predecessor
+/// of Succ.
+static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
+ BasicBlock *ExistPred,
+ MemorySSAUpdater *MSSAU = nullptr) {
+ for (PHINode &PN : Succ->phis())
+ PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
+ if (MSSAU)
+ if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
+ MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
+}
+
+/// Compute an abstract "cost" of speculating the given instruction,
+/// which is assumed to be safe to speculate. TCC_Free means cheap,
+/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
+/// expensive.
+static unsigned ComputeSpeculationCost(const User *I,
+ const TargetTransformInfo &TTI) {
+ assert(isSafeToSpeculativelyExecute(I) &&
+ "Instruction is not safe to speculatively execute!");
+ return TTI.getUserCost(I);
+}
+
+/// If we have a merge point of an "if condition" as accepted above,
+/// return true if the specified value dominates the block. We
+/// don't handle the true generality of domination here, just a special case
+/// which works well enough for us.
+///
+/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
+/// see if V (which must be an instruction) and its recursive operands
+/// that do not dominate BB have a combined cost lower than CostRemaining and
+/// are non-trapping. If both are true, the instruction is inserted into the
+/// set and true is returned.
+///
+/// The cost for most non-trapping instructions is defined as 1 except for
+/// Select whose cost is 2.
+///
+/// After this function returns, CostRemaining is decreased by the cost of
+/// V plus its non-dominating operands. If that cost is greater than
+/// CostRemaining, false is returned and CostRemaining is undefined.
+static bool DominatesMergePoint(Value *V, BasicBlock *BB,
+ SmallPtrSetImpl<Instruction *> &AggressiveInsts,
+ int &BudgetRemaining,
+ const TargetTransformInfo &TTI,
+ unsigned Depth = 0) {
+ // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
+ // so limit the recursion depth.
+ // TODO: While this recursion limit does prevent pathological behavior, it
+ // would be better to track visited instructions to avoid cycles.
+ if (Depth == MaxSpeculationDepth)
+ return false;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ // Non-instructions all dominate instructions, but not all constantexprs
+ // can be executed unconditionally.
+ if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
+ if (C->canTrap())
+ return false;
+ return true;
+ }
+ BasicBlock *PBB = I->getParent();
+
+ // We don't want to allow weird loops that might have the "if condition" in
+ // the bottom of this block.
+ if (PBB == BB)
+ return false;
+
+ // If this instruction is defined in a block that contains an unconditional
+ // branch to BB, then it must be in the 'conditional' part of the "if
+ // statement". If not, it definitely dominates the region.
+ BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
+ if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
+ return true;
+
+ // If we have seen this instruction before, don't count it again.
+ if (AggressiveInsts.count(I))
+ return true;
+
+ // Okay, it looks like the instruction IS in the "condition". Check to
+ // see if it's a cheap instruction to unconditionally compute, and if it
+ // only uses stuff defined outside of the condition. If so, hoist it out.
+ if (!isSafeToSpeculativelyExecute(I))
+ return false;
+
+ BudgetRemaining -= ComputeSpeculationCost(I, TTI);
+
+ // Allow exactly one instruction to be speculated regardless of its cost
+ // (as long as it is safe to do so).
+ // This is intended to flatten the CFG even if the instruction is a division
+ // or other expensive operation. The speculation of an expensive instruction
+ // is expected to be undone in CodeGenPrepare if the speculation has not
+ // enabled further IR optimizations.
+ if (BudgetRemaining < 0 &&
+ (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
+ return false;
+
+ // Okay, we can only really hoist these out if their operands do
+ // not take us over the cost threshold.
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
+ if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
+ Depth + 1))
+ return false;
+ // Okay, it's safe to do this! Remember this instruction.
+ AggressiveInsts.insert(I);
+ return true;
+}
+
+/// Extract ConstantInt from value, looking through IntToPtr
+/// and PointerNullValue. Return NULL if value is not a constant int.
+static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
+ // Normal constant int.
+ ConstantInt *CI = dyn_cast<ConstantInt>(V);
+ if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
+ return CI;
+
+ // This is some kind of pointer constant. Turn it into a pointer-sized
+ // ConstantInt if possible.
+ IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
+
+ // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
+ if (isa<ConstantPointerNull>(V))
+ return ConstantInt::get(PtrTy, 0);
+
+ // IntToPtr const int.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::IntToPtr)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
+ // The constant is very likely to have the right type already.
+ if (CI->getType() == PtrTy)
+ return CI;
+ else
+ return cast<ConstantInt>(
+ ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
+ }
+ return nullptr;
+}
+
+namespace {
+
+/// Given a chain of or (||) or and (&&) comparison of a value against a
+/// constant, this will try to recover the information required for a switch
+/// structure.
+/// It will depth-first traverse the chain of comparison, seeking for patterns
+/// like %a == 12 or %a < 4 and combine them to produce a set of integer
+/// representing the different cases for the switch.
+/// Note that if the chain is composed of '||' it will build the set of elements
+/// that matches the comparisons (i.e. any of this value validate the chain)
+/// while for a chain of '&&' it will build the set elements that make the test
+/// fail.
+struct ConstantComparesGatherer {
+ const DataLayout &DL;
+
+ /// Value found for the switch comparison
+ Value *CompValue = nullptr;
+
+ /// Extra clause to be checked before the switch
+ Value *Extra = nullptr;
+
+ /// Set of integers to match in switch
+ SmallVector<ConstantInt *, 8> Vals;
+
+ /// Number of comparisons matched in the and/or chain
+ unsigned UsedICmps = 0;
+
+ /// Construct and compute the result for the comparison instruction Cond
+ ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
+ gather(Cond);
+ }
+
+ ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
+ ConstantComparesGatherer &
+ operator=(const ConstantComparesGatherer &) = delete;
+
+private:
+ /// Try to set the current value used for the comparison, it succeeds only if
+ /// it wasn't set before or if the new value is the same as the old one
+ bool setValueOnce(Value *NewVal) {
+ if (CompValue && CompValue != NewVal)
+ return false;
+ CompValue = NewVal;
+ return (CompValue != nullptr);
+ }
+
+ /// Try to match Instruction "I" as a comparison against a constant and
+ /// populates the array Vals with the set of values that match (or do not
+ /// match depending on isEQ).
+ /// Return false on failure. On success, the Value the comparison matched
+ /// against is placed in CompValue.
+ /// If CompValue is already set, the function is expected to fail if a match
+ /// is found but the value compared to is different.
+ bool matchInstruction(Instruction *I, bool isEQ) {
+ // If this is an icmp against a constant, handle this as one of the cases.
+ ICmpInst *ICI;
+ ConstantInt *C;
+ if (!((ICI = dyn_cast<ICmpInst>(I)) &&
+ (C = GetConstantInt(I->getOperand(1), DL)))) {
+ return false;
+ }
+
+ Value *RHSVal;
+ const APInt *RHSC;
+
+ // Pattern match a special case
+ // (x & ~2^z) == y --> x == y || x == y|2^z
+ // This undoes a transformation done by instcombine to fuse 2 compares.
+ if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
+ // It's a little bit hard to see why the following transformations are
+ // correct. Here is a CVC3 program to verify them for 64-bit values:
+
+ /*
+ ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
+ x : BITVECTOR(64);
+ y : BITVECTOR(64);
+ z : BITVECTOR(64);
+ mask : BITVECTOR(64) = BVSHL(ONE, z);
+ QUERY( (y & ~mask = y) =>
+ ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
+ );
+ QUERY( (y | mask = y) =>
+ ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
+ );
+ */
+
+ // Please note that each pattern must be a dual implication (<--> or
+ // iff). One directional implication can create spurious matches. If the
+ // implication is only one-way, an unsatisfiable condition on the left
+ // side can imply a satisfiable condition on the right side. Dual
+ // implication ensures that satisfiable conditions are transformed to
+ // other satisfiable conditions and unsatisfiable conditions are
+ // transformed to other unsatisfiable conditions.
+
+ // Here is a concrete example of a unsatisfiable condition on the left
+ // implying a satisfiable condition on the right:
+ //
+ // mask = (1 << z)
+ // (x & ~mask) == y --> (x == y || x == (y | mask))
+ //
+ // Substituting y = 3, z = 0 yields:
+ // (x & -2) == 3 --> (x == 3 || x == 2)
+
+ // Pattern match a special case:
+ /*
+ QUERY( (y & ~mask = y) =>
+ ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
+ );
+ */
+ if (match(ICI->getOperand(0),
+ m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
+ APInt Mask = ~*RHSC;
+ if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
+ // If we already have a value for the switch, it has to match!
+ if (!setValueOnce(RHSVal))
+ return false;
+
+ Vals.push_back(C);
+ Vals.push_back(
+ ConstantInt::get(C->getContext(),
+ C->getValue() | Mask));
+ UsedICmps++;
+ return true;
+ }
+ }
+
+ // Pattern match a special case:
+ /*
+ QUERY( (y | mask = y) =>
+ ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
+ );
+ */
+ if (match(ICI->getOperand(0),
+ m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
+ APInt Mask = *RHSC;
+ if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
+ // If we already have a value for the switch, it has to match!
+ if (!setValueOnce(RHSVal))
+ return false;
+
+ Vals.push_back(C);
+ Vals.push_back(ConstantInt::get(C->getContext(),
+ C->getValue() & ~Mask));
+ UsedICmps++;
+ return true;
+ }
+ }
+
+ // If we already have a value for the switch, it has to match!
+ if (!setValueOnce(ICI->getOperand(0)))
+ return false;
+
+ UsedICmps++;
+ Vals.push_back(C);
+ return ICI->getOperand(0);
+ }
+
+ // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
+ ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
+ ICI->getPredicate(), C->getValue());
+
+ // Shift the range if the compare is fed by an add. This is the range
+ // compare idiom as emitted by instcombine.
+ Value *CandidateVal = I->getOperand(0);
+ if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
+ Span = Span.subtract(*RHSC);
+ CandidateVal = RHSVal;
+ }
+
+ // If this is an and/!= check, then we are looking to build the set of
+ // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
+ // x != 0 && x != 1.
+ if (!isEQ)
+ Span = Span.inverse();
+
+ // If there are a ton of values, we don't want to make a ginormous switch.
+ if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
+ return false;
+ }
+
+ // If we already have a value for the switch, it has to match!
+ if (!setValueOnce(CandidateVal))
+ return false;
+
+ // Add all values from the range to the set
+ for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
+ Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
+
+ UsedICmps++;
+ return true;
+ }
+
+ /// Given a potentially 'or'd or 'and'd together collection of icmp
+ /// eq/ne/lt/gt instructions that compare a value against a constant, extract
+ /// the value being compared, and stick the list constants into the Vals
+ /// vector.
+ /// One "Extra" case is allowed to differ from the other.
+ void gather(Value *V) {
+ bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
+
+ // Keep a stack (SmallVector for efficiency) for depth-first traversal
+ SmallVector<Value *, 8> DFT;
+ SmallPtrSet<Value *, 8> Visited;
+
+ // Initialize
+ Visited.insert(V);
+ DFT.push_back(V);
+
+ while (!DFT.empty()) {
+ V = DFT.pop_back_val();
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If it is a || (or && depending on isEQ), process the operands.
+ if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
+ if (Visited.insert(I->getOperand(1)).second)
+ DFT.push_back(I->getOperand(1));
+ if (Visited.insert(I->getOperand(0)).second)
+ DFT.push_back(I->getOperand(0));
+ continue;
+ }
+
+ // Try to match the current instruction
+ if (matchInstruction(I, isEQ))
+ // Match succeed, continue the loop
+ continue;
+ }
+
+ // One element of the sequence of || (or &&) could not be match as a
+ // comparison against the same value as the others.
+ // We allow only one "Extra" case to be checked before the switch
+ if (!Extra) {
+ Extra = V;
+ continue;
+ }
+ // Failed to parse a proper sequence, abort now
+ CompValue = nullptr;
+ break;
+ }
+ }
+};
+
+} // end anonymous namespace
+
+static void EraseTerminatorAndDCECond(Instruction *TI,
+ MemorySSAUpdater *MSSAU = nullptr) {
+ Instruction *Cond = nullptr;
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cond = dyn_cast<Instruction>(SI->getCondition());
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional())
+ Cond = dyn_cast<Instruction>(BI->getCondition());
+ } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
+ Cond = dyn_cast<Instruction>(IBI->getAddress());
+ }
+
+ TI->eraseFromParent();
+ if (Cond)
+ RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
+}
+
+/// Return true if the specified terminator checks
+/// to see if a value is equal to constant integer value.
+Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
+ Value *CV = nullptr;
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ // Do not permit merging of large switch instructions into their
+ // predecessors unless there is only one predecessor.
+ if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
+ CV = SI->getCondition();
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
+ if (BI->isConditional() && BI->getCondition()->hasOneUse())
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
+ CV = ICI->getOperand(0);
+ }
+
+ // Unwrap any lossless ptrtoint cast.
+ if (CV) {
+ if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
+ Value *Ptr = PTII->getPointerOperand();
+ if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
+ CV = Ptr;
+ }
+ }
+ return CV;
+}
+
+/// Given a value comparison instruction,
+/// decode all of the 'cases' that it represents and return the 'default' block.
+BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
+ Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cases.reserve(SI->getNumCases());
+ for (auto Case : SI->cases())
+ Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
+ Case.getCaseSuccessor()));
+ return SI->getDefaultDest();
+ }
+
+ BranchInst *BI = cast<BranchInst>(TI);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
+ Cases.push_back(ValueEqualityComparisonCase(
+ GetConstantInt(ICI->getOperand(1), DL), Succ));
+ return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
+}
+
+/// Given a vector of bb/value pairs, remove any entries
+/// in the list that match the specified block.
+static void
+EliminateBlockCases(BasicBlock *BB,
+ std::vector<ValueEqualityComparisonCase> &Cases) {
+ Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
+}
+
+/// Return true if there are any keys in C1 that exist in C2 as well.
+static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
+ std::vector<ValueEqualityComparisonCase> &C2) {
+ std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
+
+ // Make V1 be smaller than V2.
+ if (V1->size() > V2->size())
+ std::swap(V1, V2);
+
+ if (V1->empty())
+ return false;
+ if (V1->size() == 1) {
+ // Just scan V2.
+ ConstantInt *TheVal = (*V1)[0].Value;
+ for (unsigned i = 0, e = V2->size(); i != e; ++i)
+ if (TheVal == (*V2)[i].Value)
+ return true;
+ }
+
+ // Otherwise, just sort both lists and compare element by element.
+ array_pod_sort(V1->begin(), V1->end());
+ array_pod_sort(V2->begin(), V2->end());
+ unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
+ while (i1 != e1 && i2 != e2) {
+ if ((*V1)[i1].Value == (*V2)[i2].Value)
+ return true;
+ if ((*V1)[i1].Value < (*V2)[i2].Value)
+ ++i1;
+ else
+ ++i2;
+ }
+ return false;
+}
+
+// Set branch weights on SwitchInst. This sets the metadata if there is at
+// least one non-zero weight.
+static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
+ // Check that there is at least one non-zero weight. Otherwise, pass
+ // nullptr to setMetadata which will erase the existing metadata.
+ MDNode *N = nullptr;
+ if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
+ N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
+ SI->setMetadata(LLVMContext::MD_prof, N);
+}
+
+// Similar to the above, but for branch and select instructions that take
+// exactly 2 weights.
+static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
+ uint32_t FalseWeight) {
+ assert(isa<BranchInst>(I) || isa<SelectInst>(I));
+ // Check that there is at least one non-zero weight. Otherwise, pass
+ // nullptr to setMetadata which will erase the existing metadata.
+ MDNode *N = nullptr;
+ if (TrueWeight || FalseWeight)
+ N = MDBuilder(I->getParent()->getContext())
+ .createBranchWeights(TrueWeight, FalseWeight);
+ I->setMetadata(LLVMContext::MD_prof, N);
+}
+
+/// If TI is known to be a terminator instruction and its block is known to
+/// only have a single predecessor block, check to see if that predecessor is
+/// also a value comparison with the same value, and if that comparison
+/// determines the outcome of this comparison. If so, simplify TI. This does a
+/// very limited form of jump threading.
+bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
+ Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
+ Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
+ if (!PredVal)
+ return false; // Not a value comparison in predecessor.
+
+ Value *ThisVal = isValueEqualityComparison(TI);
+ assert(ThisVal && "This isn't a value comparison!!");
+ if (ThisVal != PredVal)
+ return false; // Different predicates.
+
+ // TODO: Preserve branch weight metadata, similarly to how
+ // FoldValueComparisonIntoPredecessors preserves it.
+
+ // Find out information about when control will move from Pred to TI's block.
+ std::vector<ValueEqualityComparisonCase> PredCases;
+ BasicBlock *PredDef =
+ GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
+ EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
+
+ // Find information about how control leaves this block.
+ std::vector<ValueEqualityComparisonCase> ThisCases;
+ BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
+ EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
+
+ // If TI's block is the default block from Pred's comparison, potentially
+ // simplify TI based on this knowledge.
+ if (PredDef == TI->getParent()) {
+ // If we are here, we know that the value is none of those cases listed in
+ // PredCases. If there are any cases in ThisCases that are in PredCases, we
+ // can simplify TI.
+ if (!ValuesOverlap(PredCases, ThisCases))
+ return false;
+
+ if (isa<BranchInst>(TI)) {
+ // Okay, one of the successors of this condbr is dead. Convert it to a
+ // uncond br.
+ assert(ThisCases.size() == 1 && "Branch can only have one case!");
+ // Insert the new branch.
+ Instruction *NI = Builder.CreateBr(ThisDef);
+ (void)NI;
+
+ // Remove PHI node entries for the dead edge.
+ ThisCases[0].Dest->removePredecessor(TI->getParent());
+
+ LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI
+ << "\n");
+
+ EraseTerminatorAndDCECond(TI);
+ return true;
+ }
+
+ SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
+ // Okay, TI has cases that are statically dead, prune them away.
+ SmallPtrSet<Constant *, 16> DeadCases;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ DeadCases.insert(PredCases[i].Value);
+
+ LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI);
+
+ for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
+ --i;
+ if (DeadCases.count(i->getCaseValue())) {
+ i->getCaseSuccessor()->removePredecessor(TI->getParent());
+ SI.removeCase(i);
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
+ return true;
+ }
+
+ // Otherwise, TI's block must correspond to some matched value. Find out
+ // which value (or set of values) this is.
+ ConstantInt *TIV = nullptr;
+ BasicBlock *TIBB = TI->getParent();
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].Dest == TIBB) {
+ if (TIV)
+ return false; // Cannot handle multiple values coming to this block.
+ TIV = PredCases[i].Value;
+ }
+ assert(TIV && "No edge from pred to succ?");
+
+ // Okay, we found the one constant that our value can be if we get into TI's
+ // BB. Find out which successor will unconditionally be branched to.
+ BasicBlock *TheRealDest = nullptr;
+ for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
+ if (ThisCases[i].Value == TIV) {
+ TheRealDest = ThisCases[i].Dest;
+ break;
+ }
+
+ // If not handled by any explicit cases, it is handled by the default case.
+ if (!TheRealDest)
+ TheRealDest = ThisDef;
+
+ // Remove PHI node entries for dead edges.
+ BasicBlock *CheckEdge = TheRealDest;
+ for (BasicBlock *Succ : successors(TIBB))
+ if (Succ != CheckEdge)
+ Succ->removePredecessor(TIBB);
+ else
+ CheckEdge = nullptr;
+
+ // Insert the new branch.
+ Instruction *NI = Builder.CreateBr(TheRealDest);
+ (void)NI;
+
+ LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI
+ << "\n");
+
+ EraseTerminatorAndDCECond(TI);
+ return true;
+}
+
+namespace {
+
+/// This class implements a stable ordering of constant
+/// integers that does not depend on their address. This is important for
+/// applications that sort ConstantInt's to ensure uniqueness.
+struct ConstantIntOrdering {
+ bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
+ return LHS->getValue().ult(RHS->getValue());
+ }
+};
+
+} // end anonymous namespace
+
+static int ConstantIntSortPredicate(ConstantInt *const *P1,
+ ConstantInt *const *P2) {
+ const ConstantInt *LHS = *P1;
+ const ConstantInt *RHS = *P2;
+ if (LHS == RHS)
+ return 0;
+ return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
+}
+
+static inline bool HasBranchWeights(const Instruction *I) {
+ MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
+ if (ProfMD && ProfMD->getOperand(0))
+ if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
+ return MDS->getString().equals("branch_weights");
+
+ return false;
+}
+
+/// Get Weights of a given terminator, the default weight is at the front
+/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
+/// metadata.
+static void GetBranchWeights(Instruction *TI,
+ SmallVectorImpl<uint64_t> &Weights) {
+ MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
+ assert(MD);
+ for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
+ Weights.push_back(CI->getValue().getZExtValue());
+ }
+
+ // If TI is a conditional eq, the default case is the false case,
+ // and the corresponding branch-weight data is at index 2. We swap the
+ // default weight to be the first entry.
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ assert(Weights.size() == 2);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(Weights.front(), Weights.back());
+ }
+}
+
+/// Keep halving the weights until all can fit in uint32_t.
+static void FitWeights(MutableArrayRef<uint64_t> Weights) {
+ uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
+ if (Max > UINT_MAX) {
+ unsigned Offset = 32 - countLeadingZeros(Max);
+ for (uint64_t &I : Weights)
+ I >>= Offset;
+ }
+}
+
+/// The specified terminator is a value equality comparison instruction
+/// (either a switch or a branch on "X == c").
+/// See if any of the predecessors of the terminator block are value comparisons
+/// on the same value. If so, and if safe to do so, fold them together.
+bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
+ IRBuilder<> &Builder) {
+ BasicBlock *BB = TI->getParent();
+ Value *CV = isValueEqualityComparison(TI); // CondVal
+ assert(CV && "Not a comparison?");
+ bool Changed = false;
+
+ SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.pop_back_val();
+
+ // See if the predecessor is a comparison with the same value.
+ Instruction *PTI = Pred->getTerminator();
+ Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
+
+ if (PCV == CV && TI != PTI) {
+ SmallSetVector<BasicBlock*, 4> FailBlocks;
+ if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
+ for (auto *Succ : FailBlocks) {
+ if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
+ return false;
+ }
+ }
+
+ // Figure out which 'cases' to copy from SI to PSI.
+ std::vector<ValueEqualityComparisonCase> BBCases;
+ BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
+
+ std::vector<ValueEqualityComparisonCase> PredCases;
+ BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
+
+ // Based on whether the default edge from PTI goes to BB or not, fill in
+ // PredCases and PredDefault with the new switch cases we would like to
+ // build.
+ SmallVector<BasicBlock *, 8> NewSuccessors;
+
+ // Update the branch weight metadata along the way
+ SmallVector<uint64_t, 8> Weights;
+ bool PredHasWeights = HasBranchWeights(PTI);
+ bool SuccHasWeights = HasBranchWeights(TI);
+
+ if (PredHasWeights) {
+ GetBranchWeights(PTI, Weights);
+ // branch-weight metadata is inconsistent here.
+ if (Weights.size() != 1 + PredCases.size())
+ PredHasWeights = SuccHasWeights = false;
+ } else if (SuccHasWeights)
+ // If there are no predecessor weights but there are successor weights,
+ // populate Weights with 1, which will later be scaled to the sum of
+ // successor's weights
+ Weights.assign(1 + PredCases.size(), 1);
+
+ SmallVector<uint64_t, 8> SuccWeights;
+ if (SuccHasWeights) {
+ GetBranchWeights(TI, SuccWeights);
+ // branch-weight metadata is inconsistent here.
+ if (SuccWeights.size() != 1 + BBCases.size())
+ PredHasWeights = SuccHasWeights = false;
+ } else if (PredHasWeights)
+ SuccWeights.assign(1 + BBCases.size(), 1);
+
+ if (PredDefault == BB) {
+ // If this is the default destination from PTI, only the edges in TI
+ // that don't occur in PTI, or that branch to BB will be activated.
+ std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].Dest != BB)
+ PTIHandled.insert(PredCases[i].Value);
+ else {
+ // The default destination is BB, we don't need explicit targets.
+ std::swap(PredCases[i], PredCases.back());
+
+ if (PredHasWeights || SuccHasWeights) {
+ // Increase weight for the default case.
+ Weights[0] += Weights[i + 1];
+ std::swap(Weights[i + 1], Weights.back());
+ Weights.pop_back();
+ }
+
+ PredCases.pop_back();
+ --i;
+ --e;
+ }
+
+ // Reconstruct the new switch statement we will be building.
+ if (PredDefault != BBDefault) {
+ PredDefault->removePredecessor(Pred);
+ PredDefault = BBDefault;
+ NewSuccessors.push_back(BBDefault);
+ }
+
+ unsigned CasesFromPred = Weights.size();
+ uint64_t ValidTotalSuccWeight = 0;
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (!PTIHandled.count(BBCases[i].Value) &&
+ BBCases[i].Dest != BBDefault) {
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].Dest);
+ if (SuccHasWeights || PredHasWeights) {
+ // The default weight is at index 0, so weight for the ith case
+ // should be at index i+1. Scale the cases from successor by
+ // PredDefaultWeight (Weights[0]).
+ Weights.push_back(Weights[0] * SuccWeights[i + 1]);
+ ValidTotalSuccWeight += SuccWeights[i + 1];
+ }
+ }
+
+ if (SuccHasWeights || PredHasWeights) {
+ ValidTotalSuccWeight += SuccWeights[0];
+ // Scale the cases from predecessor by ValidTotalSuccWeight.
+ for (unsigned i = 1; i < CasesFromPred; ++i)
+ Weights[i] *= ValidTotalSuccWeight;
+ // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
+ Weights[0] *= SuccWeights[0];
+ }
+ } else {
+ // If this is not the default destination from PSI, only the edges
+ // in SI that occur in PSI with a destination of BB will be
+ // activated.
+ std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
+ std::map<ConstantInt *, uint64_t> WeightsForHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].Dest == BB) {
+ PTIHandled.insert(PredCases[i].Value);
+
+ if (PredHasWeights || SuccHasWeights) {
+ WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
+ std::swap(Weights[i + 1], Weights.back());
+ Weights.pop_back();
+ }
+
+ std::swap(PredCases[i], PredCases.back());
+ PredCases.pop_back();
+ --i;
+ --e;
+ }
+
+ // Okay, now we know which constants were sent to BB from the
+ // predecessor. Figure out where they will all go now.
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (PTIHandled.count(BBCases[i].Value)) {
+ // If this is one we are capable of getting...
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[BBCases[i].Value]);
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].Dest);
+ PTIHandled.erase(
+ BBCases[i].Value); // This constant is taken care of
+ }
+
+ // If there are any constants vectored to BB that TI doesn't handle,
+ // they must go to the default destination of TI.
+ for (ConstantInt *I : PTIHandled) {
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[I]);
+ PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
+ NewSuccessors.push_back(BBDefault);
+ }
+ }
+
+ // Okay, at this point, we know which new successor Pred will get. Make
+ // sure we update the number of entries in the PHI nodes for these
+ // successors.
+ for (BasicBlock *NewSuccessor : NewSuccessors)
+ AddPredecessorToBlock(NewSuccessor, Pred, BB);
+
+ Builder.SetInsertPoint(PTI);
+ // Convert pointer to int before we switch.
+ if (CV->getType()->isPointerTy()) {
+ CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
+ "magicptr");
+ }
+
+ // Now that the successors are updated, create the new Switch instruction.
+ SwitchInst *NewSI =
+ Builder.CreateSwitch(CV, PredDefault, PredCases.size());
+ NewSI->setDebugLoc(PTI->getDebugLoc());
+ for (ValueEqualityComparisonCase &V : PredCases)
+ NewSI->addCase(V.Value, V.Dest);
+
+ if (PredHasWeights || SuccHasWeights) {
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(Weights);
+
+ SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
+
+ setBranchWeights(NewSI, MDWeights);
+ }
+
+ EraseTerminatorAndDCECond(PTI);
+
+ // Okay, last check. If BB is still a successor of PSI, then we must
+ // have an infinite loop case. If so, add an infinitely looping block
+ // to handle the case to preserve the behavior of the code.
+ BasicBlock *InfLoopBlock = nullptr;
+ for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
+ if (NewSI->getSuccessor(i) == BB) {
+ if (!InfLoopBlock) {
+ // Insert it at the end of the function, because it's either code,
+ // or it won't matter if it's hot. :)
+ InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
+ BB->getParent());
+ BranchInst::Create(InfLoopBlock, InfLoopBlock);
+ }
+ NewSI->setSuccessor(i, InfLoopBlock);
+ }
+
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+// If we would need to insert a select that uses the value of this invoke
+// (comments in HoistThenElseCodeToIf explain why we would need to do this), we
+// can't hoist the invoke, as there is nowhere to put the select in this case.
+static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
+ Instruction *I1, Instruction *I2) {
+ for (BasicBlock *Succ : successors(BB1)) {
+ for (const PHINode &PN : Succ->phis()) {
+ Value *BB1V = PN.getIncomingValueForBlock(BB1);
+ Value *BB2V = PN.getIncomingValueForBlock(BB2);
+ if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
+
+/// Given a conditional branch that goes to BB1 and BB2, hoist any common code
+/// in the two blocks up into the branch block. The caller of this function
+/// guarantees that BI's block dominates BB1 and BB2.
+static bool HoistThenElseCodeToIf(BranchInst *BI,
+ const TargetTransformInfo &TTI) {
+ // This does very trivial matching, with limited scanning, to find identical
+ // instructions in the two blocks. In particular, we don't want to get into
+ // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
+ // such, we currently just scan for obviously identical instructions in an
+ // identical order.
+ BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
+ BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
+
+ BasicBlock::iterator BB1_Itr = BB1->begin();
+ BasicBlock::iterator BB2_Itr = BB2->begin();
+
+ Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
+ // Skip debug info if it is not identical.
+ DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
+ DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
+ if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
+ while (isa<DbgInfoIntrinsic>(I1))
+ I1 = &*BB1_Itr++;
+ while (isa<DbgInfoIntrinsic>(I2))
+ I2 = &*BB2_Itr++;
+ }
+ // FIXME: Can we define a safety predicate for CallBr?
+ if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
+ (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
+ isa<CallBrInst>(I1))
+ return false;
+
+ BasicBlock *BIParent = BI->getParent();
+
+ bool Changed = false;
+ do {
+ // If we are hoisting the terminator instruction, don't move one (making a
+ // broken BB), instead clone it, and remove BI.
+ if (I1->isTerminator())
+ goto HoistTerminator;
+
+ // If we're going to hoist a call, make sure that the two instructions we're
+ // commoning/hoisting are both marked with musttail, or neither of them is
+ // marked as such. Otherwise, we might end up in a situation where we hoist
+ // from a block where the terminator is a `ret` to a block where the terminator
+ // is a `br`, and `musttail` calls expect to be followed by a return.
+ auto *C1 = dyn_cast<CallInst>(I1);
+ auto *C2 = dyn_cast<CallInst>(I2);
+ if (C1 && C2)
+ if (C1->isMustTailCall() != C2->isMustTailCall())
+ return Changed;
+
+ if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
+ return Changed;
+
+ if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
+ assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
+ // The debug location is an integral part of a debug info intrinsic
+ // and can't be separated from it or replaced. Instead of attempting
+ // to merge locations, simply hoist both copies of the intrinsic.
+ BIParent->getInstList().splice(BI->getIterator(),
+ BB1->getInstList(), I1);
+ BIParent->getInstList().splice(BI->getIterator(),
+ BB2->getInstList(), I2);
+ Changed = true;
+ } else {
+ // For a normal instruction, we just move one to right before the branch,
+ // then replace all uses of the other with the first. Finally, we remove
+ // the now redundant second instruction.
+ BIParent->getInstList().splice(BI->getIterator(),
+ BB1->getInstList(), I1);
+ if (!I2->use_empty())
+ I2->replaceAllUsesWith(I1);
+ I1->andIRFlags(I2);
+ unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
+ LLVMContext::MD_range,
+ LLVMContext::MD_fpmath,
+ LLVMContext::MD_invariant_load,
+ LLVMContext::MD_nonnull,
+ LLVMContext::MD_invariant_group,
+ LLVMContext::MD_align,
+ LLVMContext::MD_dereferenceable,
+ LLVMContext::MD_dereferenceable_or_null,
+ LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group,
+ LLVMContext::MD_preserve_access_index};
+ combineMetadata(I1, I2, KnownIDs, true);
+
+ // I1 and I2 are being combined into a single instruction. Its debug
+ // location is the merged locations of the original instructions.
+ I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
+
+ I2->eraseFromParent();
+ Changed = true;
+ }
+
+ I1 = &*BB1_Itr++;
+ I2 = &*BB2_Itr++;
+ // Skip debug info if it is not identical.
+ DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
+ DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
+ if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
+ while (isa<DbgInfoIntrinsic>(I1))
+ I1 = &*BB1_Itr++;
+ while (isa<DbgInfoIntrinsic>(I2))
+ I2 = &*BB2_Itr++;
+ }
+ } while (I1->isIdenticalToWhenDefined(I2));
+
+ return true;
+
+HoistTerminator:
+ // It may not be possible to hoist an invoke.
+ // FIXME: Can we define a safety predicate for CallBr?
+ if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
+ return Changed;
+
+ // TODO: callbr hoisting currently disabled pending further study.
+ if (isa<CallBrInst>(I1))
+ return Changed;
+
+ for (BasicBlock *Succ : successors(BB1)) {
+ for (PHINode &PN : Succ->phis()) {
+ Value *BB1V = PN.getIncomingValueForBlock(BB1);
+ Value *BB2V = PN.getIncomingValueForBlock(BB2);
+ if (BB1V == BB2V)
+ continue;
+
+ // Check for passingValueIsAlwaysUndefined here because we would rather
+ // eliminate undefined control flow then converting it to a select.
+ if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
+ passingValueIsAlwaysUndefined(BB2V, &PN))
+ return Changed;
+
+ if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
+ return Changed;
+ if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
+ return Changed;
+ }
+ }
+
+ // Okay, it is safe to hoist the terminator.
+ Instruction *NT = I1->clone();
+ BIParent->getInstList().insert(BI->getIterator(), NT);
+ if (!NT->getType()->isVoidTy()) {
+ I1->replaceAllUsesWith(NT);
+ I2->replaceAllUsesWith(NT);
+ NT->takeName(I1);
+ }
+
+ // Ensure terminator gets a debug location, even an unknown one, in case
+ // it involves inlinable calls.
+ NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
+
+ // PHIs created below will adopt NT's merged DebugLoc.
+ IRBuilder<NoFolder> Builder(NT);
+
+ // Hoisting one of the terminators from our successor is a great thing.
+ // Unfortunately, the successors of the if/else blocks may have PHI nodes in
+ // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
+ // nodes, so we insert select instruction to compute the final result.
+ std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
+ for (BasicBlock *Succ : successors(BB1)) {
+ for (PHINode &PN : Succ->phis()) {
+ Value *BB1V = PN.getIncomingValueForBlock(BB1);
+ Value *BB2V = PN.getIncomingValueForBlock(BB2);
+ if (BB1V == BB2V)
+ continue;
+
+ // These values do not agree. Insert a select instruction before NT
+ // that determines the right value.
+ SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
+ if (!SI)
+ SI = cast<SelectInst>(
+ Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
+ BB1V->getName() + "." + BB2V->getName(), BI));
+
+ // Make the PHI node use the select for all incoming values for BB1/BB2
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
+ PN.setIncomingValue(i, SI);
+ }
+ }
+
+ // Update any PHI nodes in our new successors.
+ for (BasicBlock *Succ : successors(BB1))
+ AddPredecessorToBlock(Succ, BIParent, BB1);
+
+ EraseTerminatorAndDCECond(BI);
+ return true;
+}
+
+// Check lifetime markers.
+static bool isLifeTimeMarker(const Instruction *I) {
+ if (auto II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ return true;
+ }
+ }
+ return false;
+}
+
+// All instructions in Insts belong to different blocks that all unconditionally
+// branch to a common successor. Analyze each instruction and return true if it
+// would be possible to sink them into their successor, creating one common
+// instruction instead. For every value that would be required to be provided by
+// PHI node (because an operand varies in each input block), add to PHIOperands.
+static bool canSinkInstructions(
+ ArrayRef<Instruction *> Insts,
+ DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
+ // Prune out obviously bad instructions to move. Each instruction must have
+ // exactly zero or one use, and we check later that use is by a single, common
+ // PHI instruction in the successor.
+ bool HasUse = !Insts.front()->user_empty();
+ for (auto *I : Insts) {
+ // These instructions may change or break semantics if moved.
+ if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
+ I->getType()->isTokenTy())
+ return false;
+
+ // Conservatively return false if I is an inline-asm instruction. Sinking
+ // and merging inline-asm instructions can potentially create arguments
+ // that cannot satisfy the inline-asm constraints.
+ if (const auto *C = dyn_cast<CallBase>(I))
+ if (C->isInlineAsm())
+ return false;
+
+ // Each instruction must have zero or one use.
+ if (HasUse && !I->hasOneUse())
+ return false;
+ if (!HasUse && !I->user_empty())
+ return false;
+ }
+
+ const Instruction *I0 = Insts.front();
+ for (auto *I : Insts)
+ if (!I->isSameOperationAs(I0))
+ return false;
+
+ // All instructions in Insts are known to be the same opcode. If they have a
+ // use, check that the only user is a PHI or in the same block as the
+ // instruction, because if a user is in the same block as an instruction we're
+ // contemplating sinking, it must already be determined to be sinkable.
+ if (HasUse) {
+ auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
+ auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
+ if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
+ auto *U = cast<Instruction>(*I->user_begin());
+ return (PNUse &&
+ PNUse->getParent() == Succ &&
+ PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
+ U->getParent() == I->getParent();
+ }))
+ return false;
+ }
+
+ // Because SROA can't handle speculating stores of selects, try not to sink
+ // loads, stores or lifetime markers of allocas when we'd have to create a
+ // PHI for the address operand. Also, because it is likely that loads or
+ // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
+ // them.
+ // This can cause code churn which can have unintended consequences down
+ // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
+ // FIXME: This is a workaround for a deficiency in SROA - see
+ // https://llvm.org/bugs/show_bug.cgi?id=30188
+ if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
+ return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
+ }))
+ return false;
+ if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
+ return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
+ }))
+ return false;
+ if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
+ return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
+ }))
+ return false;
+
+ for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
+ if (I0->getOperand(OI)->getType()->isTokenTy())
+ // Don't touch any operand of token type.
+ return false;
+
+ auto SameAsI0 = [&I0, OI](const Instruction *I) {
+ assert(I->getNumOperands() == I0->getNumOperands());
+ return I->getOperand(OI) == I0->getOperand(OI);
+ };
+ if (!all_of(Insts, SameAsI0)) {
+ if (!canReplaceOperandWithVariable(I0, OI))
+ // We can't create a PHI from this GEP.
+ return false;
+ // Don't create indirect calls! The called value is the final operand.
+ if (isa<CallBase>(I0) && OI == OE - 1) {
+ // FIXME: if the call was *already* indirect, we should do this.
+ return false;
+ }
+ for (auto *I : Insts)
+ PHIOperands[I].push_back(I->getOperand(OI));
+ }
+ }
+ return true;
+}
+
+// Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
+// instruction of every block in Blocks to their common successor, commoning
+// into one instruction.
+static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
+ auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
+
+ // canSinkLastInstruction returning true guarantees that every block has at
+ // least one non-terminator instruction.
+ SmallVector<Instruction*,4> Insts;
+ for (auto *BB : Blocks) {
+ Instruction *I = BB->getTerminator();
+ do {
+ I = I->getPrevNode();
+ } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
+ if (!isa<DbgInfoIntrinsic>(I))
+ Insts.push_back(I);
+ }
+
+ // The only checking we need to do now is that all users of all instructions
+ // are the same PHI node. canSinkLastInstruction should have checked this but
+ // it is slightly over-aggressive - it gets confused by commutative instructions
+ // so double-check it here.
+ Instruction *I0 = Insts.front();
+ if (!I0->user_empty()) {
+ auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
+ if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
+ auto *U = cast<Instruction>(*I->user_begin());
+ return U == PNUse;
+ }))
+ return false;
+ }
+
+ // We don't need to do any more checking here; canSinkLastInstruction should
+ // have done it all for us.
+ SmallVector<Value*, 4> NewOperands;
+ for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
+ // This check is different to that in canSinkLastInstruction. There, we
+ // cared about the global view once simplifycfg (and instcombine) have
+ // completed - it takes into account PHIs that become trivially
+ // simplifiable. However here we need a more local view; if an operand
+ // differs we create a PHI and rely on instcombine to clean up the very
+ // small mess we may make.
+ bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
+ return I->getOperand(O) != I0->getOperand(O);
+ });
+ if (!NeedPHI) {
+ NewOperands.push_back(I0->getOperand(O));
+ continue;
+ }
+
+ // Create a new PHI in the successor block and populate it.
+ auto *Op = I0->getOperand(O);
+ assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
+ auto *PN = PHINode::Create(Op->getType(), Insts.size(),
+ Op->getName() + ".sink", &BBEnd->front());
+ for (auto *I : Insts)
+ PN->addIncoming(I->getOperand(O), I->getParent());
+ NewOperands.push_back(PN);
+ }
+
+ // Arbitrarily use I0 as the new "common" instruction; remap its operands
+ // and move it to the start of the successor block.
+ for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
+ I0->getOperandUse(O).set(NewOperands[O]);
+ I0->moveBefore(&*BBEnd->getFirstInsertionPt());
+
+ // Update metadata and IR flags, and merge debug locations.
+ for (auto *I : Insts)
+ if (I != I0) {
+ // The debug location for the "common" instruction is the merged locations
+ // of all the commoned instructions. We start with the original location
+ // of the "common" instruction and iteratively merge each location in the
+ // loop below.
+ // This is an N-way merge, which will be inefficient if I0 is a CallInst.
+ // However, as N-way merge for CallInst is rare, so we use simplified API
+ // instead of using complex API for N-way merge.
+ I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
+ combineMetadataForCSE(I0, I, true);
+ I0->andIRFlags(I);
+ }
+
+ if (!I0->user_empty()) {
+ // canSinkLastInstruction checked that all instructions were used by
+ // one and only one PHI node. Find that now, RAUW it to our common
+ // instruction and nuke it.
+ auto *PN = cast<PHINode>(*I0->user_begin());
+ PN->replaceAllUsesWith(I0);
+ PN->eraseFromParent();
+ }
+
+ // Finally nuke all instructions apart from the common instruction.
+ for (auto *I : Insts)
+ if (I != I0)
+ I->eraseFromParent();
+
+ return true;
+}
+
+namespace {
+
+ // LockstepReverseIterator - Iterates through instructions
+ // in a set of blocks in reverse order from the first non-terminator.
+ // For example (assume all blocks have size n):
+ // LockstepReverseIterator I([B1, B2, B3]);
+ // *I-- = [B1[n], B2[n], B3[n]];
+ // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
+ // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
+ // ...
+ class LockstepReverseIterator {
+ ArrayRef<BasicBlock*> Blocks;
+ SmallVector<Instruction*,4> Insts;
+ bool Fail;
+
+ public:
+ LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
+ reset();
+ }
+
+ void reset() {
+ Fail = false;
+ Insts.clear();
+ for (auto *BB : Blocks) {
+ Instruction *Inst = BB->getTerminator();
+ for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
+ Inst = Inst->getPrevNode();
+ if (!Inst) {
+ // Block wasn't big enough.
+ Fail = true;
+ return;
+ }
+ Insts.push_back(Inst);
+ }
+ }
+
+ bool isValid() const {
+ return !Fail;
+ }
+
+ void operator--() {
+ if (Fail)
+ return;
+ for (auto *&Inst : Insts) {
+ for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
+ Inst = Inst->getPrevNode();
+ // Already at beginning of block.
+ if (!Inst) {
+ Fail = true;
+ return;
+ }
+ }
+ }
+
+ ArrayRef<Instruction*> operator * () const {
+ return Insts;
+ }
+ };
+
+} // end anonymous namespace
+
+/// Check whether BB's predecessors end with unconditional branches. If it is
+/// true, sink any common code from the predecessors to BB.
+/// We also allow one predecessor to end with conditional branch (but no more
+/// than one).
+static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
+ // We support two situations:
+ // (1) all incoming arcs are unconditional
+ // (2) one incoming arc is conditional
+ //
+ // (2) is very common in switch defaults and
+ // else-if patterns;
+ //
+ // if (a) f(1);
+ // else if (b) f(2);
+ //
+ // produces:
+ //
+ // [if]
+ // / \
+ // [f(1)] [if]
+ // | | \
+ // | | |
+ // | [f(2)]|
+ // \ | /
+ // [ end ]
+ //
+ // [end] has two unconditional predecessor arcs and one conditional. The
+ // conditional refers to the implicit empty 'else' arc. This conditional
+ // arc can also be caused by an empty default block in a switch.
+ //
+ // In this case, we attempt to sink code from all *unconditional* arcs.
+ // If we can sink instructions from these arcs (determined during the scan
+ // phase below) we insert a common successor for all unconditional arcs and
+ // connect that to [end], to enable sinking:
+ //
+ // [if]
+ // / \
+ // [x(1)] [if]
+ // | | \
+ // | | \
+ // | [x(2)] |
+ // \ / |
+ // [sink.split] |
+ // \ /
+ // [ end ]
+ //
+ SmallVector<BasicBlock*,4> UnconditionalPreds;
+ Instruction *Cond = nullptr;
+ for (auto *B : predecessors(BB)) {
+ auto *T = B->getTerminator();
+ if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
+ UnconditionalPreds.push_back(B);
+ else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
+ Cond = T;
+ else
+ return false;
+ }
+ if (UnconditionalPreds.size() < 2)
+ return false;
+
+ bool Changed = false;
+ // We take a two-step approach to tail sinking. First we scan from the end of
+ // each block upwards in lockstep. If the n'th instruction from the end of each
+ // block can be sunk, those instructions are added to ValuesToSink and we
+ // carry on. If we can sink an instruction but need to PHI-merge some operands
+ // (because they're not identical in each instruction) we add these to
+ // PHIOperands.
+ unsigned ScanIdx = 0;
+ SmallPtrSet<Value*,4> InstructionsToSink;
+ DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
+ LockstepReverseIterator LRI(UnconditionalPreds);
+ while (LRI.isValid() &&
+ canSinkInstructions(*LRI, PHIOperands)) {
+ LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
+ << "\n");
+ InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
+ ++ScanIdx;
+ --LRI;
+ }
+
+ auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
+ unsigned NumPHIdValues = 0;
+ for (auto *I : *LRI)
+ for (auto *V : PHIOperands[I])
+ if (InstructionsToSink.count(V) == 0)
+ ++NumPHIdValues;
+ LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
+ unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
+ if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
+ NumPHIInsts++;
+
+ return NumPHIInsts <= 1;
+ };
+
+ if (ScanIdx > 0 && Cond) {
+ // Check if we would actually sink anything first! This mutates the CFG and
+ // adds an extra block. The goal in doing this is to allow instructions that
+ // couldn't be sunk before to be sunk - obviously, speculatable instructions
+ // (such as trunc, add) can be sunk and predicated already. So we check that
+ // we're going to sink at least one non-speculatable instruction.
+ LRI.reset();
+ unsigned Idx = 0;
+ bool Profitable = false;
+ while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
+ if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
+ Profitable = true;
+ break;
+ }
+ --LRI;
+ ++Idx;
+ }
+ if (!Profitable)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
+ // We have a conditional edge and we're going to sink some instructions.
+ // Insert a new block postdominating all blocks we're going to sink from.
+ if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
+ // Edges couldn't be split.
+ return false;
+ Changed = true;
+ }
+
+ // Now that we've analyzed all potential sinking candidates, perform the
+ // actual sink. We iteratively sink the last non-terminator of the source
+ // blocks into their common successor unless doing so would require too
+ // many PHI instructions to be generated (currently only one PHI is allowed
+ // per sunk instruction).
+ //
+ // We can use InstructionsToSink to discount values needing PHI-merging that will
+ // actually be sunk in a later iteration. This allows us to be more
+ // aggressive in what we sink. This does allow a false positive where we
+ // sink presuming a later value will also be sunk, but stop half way through
+ // and never actually sink it which means we produce more PHIs than intended.
+ // This is unlikely in practice though.
+ for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
+ LLVM_DEBUG(dbgs() << "SINK: Sink: "
+ << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
+ << "\n");
+
+ // Because we've sunk every instruction in turn, the current instruction to
+ // sink is always at index 0.
+ LRI.reset();
+ if (!ProfitableToSinkInstruction(LRI)) {
+ // Too many PHIs would be created.
+ LLVM_DEBUG(
+ dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
+ break;
+ }
+
+ if (!sinkLastInstruction(UnconditionalPreds))
+ return Changed;
+ NumSinkCommons++;
+ Changed = true;
+ }
+ return Changed;
+}
+
+/// Determine if we can hoist sink a sole store instruction out of a
+/// conditional block.
+///
+/// We are looking for code like the following:
+/// BrBB:
+/// store i32 %add, i32* %arrayidx2
+/// ... // No other stores or function calls (we could be calling a memory
+/// ... // function).
+/// %cmp = icmp ult %x, %y
+/// br i1 %cmp, label %EndBB, label %ThenBB
+/// ThenBB:
+/// store i32 %add5, i32* %arrayidx2
+/// br label EndBB
+/// EndBB:
+/// ...
+/// We are going to transform this into:
+/// BrBB:
+/// store i32 %add, i32* %arrayidx2
+/// ... //
+/// %cmp = icmp ult %x, %y
+/// %add.add5 = select i1 %cmp, i32 %add, %add5
+/// store i32 %add.add5, i32* %arrayidx2
+/// ...
+///
+/// \return The pointer to the value of the previous store if the store can be
+/// hoisted into the predecessor block. 0 otherwise.
+static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
+ BasicBlock *StoreBB, BasicBlock *EndBB) {
+ StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
+ if (!StoreToHoist)
+ return nullptr;
+
+ // Volatile or atomic.
+ if (!StoreToHoist->isSimple())
+ return nullptr;
+
+ Value *StorePtr = StoreToHoist->getPointerOperand();
+
+ // Look for a store to the same pointer in BrBB.
+ unsigned MaxNumInstToLookAt = 9;
+ for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
+ if (!MaxNumInstToLookAt)
+ break;
+ --MaxNumInstToLookAt;
+
+ // Could be calling an instruction that affects memory like free().
+ if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
+ return nullptr;
+
+ if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
+ // Found the previous store make sure it stores to the same location.
+ if (SI->getPointerOperand() == StorePtr)
+ // Found the previous store, return its value operand.
+ return SI->getValueOperand();
+ return nullptr; // Unknown store.
+ }
+ }
+
+ return nullptr;
+}
+
+/// Speculate a conditional basic block flattening the CFG.
+///
+/// Note that this is a very risky transform currently. Speculating
+/// instructions like this is most often not desirable. Instead, there is an MI
+/// pass which can do it with full awareness of the resource constraints.
+/// However, some cases are "obvious" and we should do directly. An example of
+/// this is speculating a single, reasonably cheap instruction.
+///
+/// There is only one distinct advantage to flattening the CFG at the IR level:
+/// it makes very common but simplistic optimizations such as are common in
+/// instcombine and the DAG combiner more powerful by removing CFG edges and
+/// modeling their effects with easier to reason about SSA value graphs.
+///
+///
+/// An illustration of this transform is turning this IR:
+/// \code
+/// BB:
+/// %cmp = icmp ult %x, %y
+/// br i1 %cmp, label %EndBB, label %ThenBB
+/// ThenBB:
+/// %sub = sub %x, %y
+/// br label BB2
+/// EndBB:
+/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
+/// ...
+/// \endcode
+///
+/// Into this IR:
+/// \code
+/// BB:
+/// %cmp = icmp ult %x, %y
+/// %sub = sub %x, %y
+/// %cond = select i1 %cmp, 0, %sub
+/// ...
+/// \endcode
+///
+/// \returns true if the conditional block is removed.
+static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
+ const TargetTransformInfo &TTI) {
+ // Be conservative for now. FP select instruction can often be expensive.
+ Value *BrCond = BI->getCondition();
+ if (isa<FCmpInst>(BrCond))
+ return false;
+
+ BasicBlock *BB = BI->getParent();
+ BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
+
+ // If ThenBB is actually on the false edge of the conditional branch, remember
+ // to swap the select operands later.
+ bool Invert = false;
+ if (ThenBB != BI->getSuccessor(0)) {
+ assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
+ Invert = true;
+ }
+ assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
+
+ // Keep a count of how many times instructions are used within ThenBB when
+ // they are candidates for sinking into ThenBB. Specifically:
+ // - They are defined in BB, and
+ // - They have no side effects, and
+ // - All of their uses are in ThenBB.
+ SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
+
+ SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
+
+ unsigned SpeculatedInstructions = 0;
+ Value *SpeculatedStoreValue = nullptr;
+ StoreInst *SpeculatedStore = nullptr;
+ for (BasicBlock::iterator BBI = ThenBB->begin(),
+ BBE = std::prev(ThenBB->end());
+ BBI != BBE; ++BBI) {
+ Instruction *I = &*BBI;
+ // Skip debug info.
+ if (isa<DbgInfoIntrinsic>(I)) {
+ SpeculatedDbgIntrinsics.push_back(I);
+ continue;
+ }
+
+ // Only speculatively execute a single instruction (not counting the
+ // terminator) for now.
+ ++SpeculatedInstructions;
+ if (SpeculatedInstructions > 1)
+ return false;
+
+ // Don't hoist the instruction if it's unsafe or expensive.
+ if (!isSafeToSpeculativelyExecute(I) &&
+ !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
+ I, BB, ThenBB, EndBB))))
+ return false;
+ if (!SpeculatedStoreValue &&
+ ComputeSpeculationCost(I, TTI) >
+ PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
+ return false;
+
+ // Store the store speculation candidate.
+ if (SpeculatedStoreValue)
+ SpeculatedStore = cast<StoreInst>(I);
+
+ // Do not hoist the instruction if any of its operands are defined but not
+ // used in BB. The transformation will prevent the operand from
+ // being sunk into the use block.
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
+ Instruction *OpI = dyn_cast<Instruction>(*i);
+ if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
+ continue; // Not a candidate for sinking.
+
+ ++SinkCandidateUseCounts[OpI];
+ }
+ }
+
+ // Consider any sink candidates which are only used in ThenBB as costs for
+ // speculation. Note, while we iterate over a DenseMap here, we are summing
+ // and so iteration order isn't significant.
+ for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
+ I = SinkCandidateUseCounts.begin(),
+ E = SinkCandidateUseCounts.end();
+ I != E; ++I)
+ if (I->first->hasNUses(I->second)) {
+ ++SpeculatedInstructions;
+ if (SpeculatedInstructions > 1)
+ return false;
+ }
+
+ // Check that the PHI nodes can be converted to selects.
+ bool HaveRewritablePHIs = false;
+ for (PHINode &PN : EndBB->phis()) {
+ Value *OrigV = PN.getIncomingValueForBlock(BB);
+ Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
+
+ // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
+ // Skip PHIs which are trivial.
+ if (ThenV == OrigV)
+ continue;
+
+ // Don't convert to selects if we could remove undefined behavior instead.
+ if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
+ passingValueIsAlwaysUndefined(ThenV, &PN))
+ return false;
+
+ HaveRewritablePHIs = true;
+ ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
+ ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
+ if (!OrigCE && !ThenCE)
+ continue; // Known safe and cheap.
+
+ if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
+ (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
+ return false;
+ unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
+ unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
+ unsigned MaxCost =
+ 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
+ if (OrigCost + ThenCost > MaxCost)
+ return false;
+
+ // Account for the cost of an unfolded ConstantExpr which could end up
+ // getting expanded into Instructions.
+ // FIXME: This doesn't account for how many operations are combined in the
+ // constant expression.
+ ++SpeculatedInstructions;
+ if (SpeculatedInstructions > 1)
+ return false;
+ }
+
+ // If there are no PHIs to process, bail early. This helps ensure idempotence
+ // as well.
+ if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
+ return false;
+
+ // If we get here, we can hoist the instruction and if-convert.
+ LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
+
+ // Insert a select of the value of the speculated store.
+ if (SpeculatedStoreValue) {
+ IRBuilder<NoFolder> Builder(BI);
+ Value *TrueV = SpeculatedStore->getValueOperand();
+ Value *FalseV = SpeculatedStoreValue;
+ if (Invert)
+ std::swap(TrueV, FalseV);
+ Value *S = Builder.CreateSelect(
+ BrCond, TrueV, FalseV, "spec.store.select", BI);
+ SpeculatedStore->setOperand(0, S);
+ SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
+ SpeculatedStore->getDebugLoc());
+ }
+
+ // Metadata can be dependent on the condition we are hoisting above.
+ // Conservatively strip all metadata on the instruction.
+ for (auto &I : *ThenBB)
+ I.dropUnknownNonDebugMetadata();
+
+ // Hoist the instructions.
+ BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
+ ThenBB->begin(), std::prev(ThenBB->end()));
+
+ // Insert selects and rewrite the PHI operands.
+ IRBuilder<NoFolder> Builder(BI);
+ for (PHINode &PN : EndBB->phis()) {
+ unsigned OrigI = PN.getBasicBlockIndex(BB);
+ unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
+ Value *OrigV = PN.getIncomingValue(OrigI);
+ Value *ThenV = PN.getIncomingValue(ThenI);
+
+ // Skip PHIs which are trivial.
+ if (OrigV == ThenV)
+ continue;
+
+ // Create a select whose true value is the speculatively executed value and
+ // false value is the preexisting value. Swap them if the branch
+ // destinations were inverted.
+ Value *TrueV = ThenV, *FalseV = OrigV;
+ if (Invert)
+ std::swap(TrueV, FalseV);
+ Value *V = Builder.CreateSelect(
+ BrCond, TrueV, FalseV, "spec.select", BI);
+ PN.setIncomingValue(OrigI, V);
+ PN.setIncomingValue(ThenI, V);
+ }
+
+ // Remove speculated dbg intrinsics.
+ // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
+ // dbg value for the different flows and inserting it after the select.
+ for (Instruction *I : SpeculatedDbgIntrinsics)
+ I->eraseFromParent();
+
+ ++NumSpeculations;
+ return true;
+}
+
+/// Return true if we can thread a branch across this block.
+static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
+ unsigned Size = 0;
+
+ for (Instruction &I : BB->instructionsWithoutDebug()) {
+ if (Size > 10)
+ return false; // Don't clone large BB's.
+ ++Size;
+
+ // We can only support instructions that do not define values that are
+ // live outside of the current basic block.
+ for (User *U : I.users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (UI->getParent() != BB || isa<PHINode>(UI))
+ return false;
+ }
+
+ // Looks ok, continue checking.
+ }
+
+ return true;
+}
+
+/// If we have a conditional branch on a PHI node value that is defined in the
+/// same block as the branch and if any PHI entries are constants, thread edges
+/// corresponding to that entry to be branches to their ultimate destination.
+static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
+ AssumptionCache *AC) {
+ BasicBlock *BB = BI->getParent();
+ PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
+ // NOTE: we currently cannot transform this case if the PHI node is used
+ // outside of the block.
+ if (!PN || PN->getParent() != BB || !PN->hasOneUse())
+ return false;
+
+ // Degenerate case of a single entry PHI.
+ if (PN->getNumIncomingValues() == 1) {
+ FoldSingleEntryPHINodes(PN->getParent());
+ return true;
+ }
+
+ // Now we know that this block has multiple preds and two succs.
+ if (!BlockIsSimpleEnoughToThreadThrough(BB))
+ return false;
+
+ // Can't fold blocks that contain noduplicate or convergent calls.
+ if (any_of(*BB, [](const Instruction &I) {
+ const CallInst *CI = dyn_cast<CallInst>(&I);
+ return CI && (CI->cannotDuplicate() || CI->isConvergent());
+ }))
+ return false;
+
+ // Okay, this is a simple enough basic block. See if any phi values are
+ // constants.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
+ if (!CB || !CB->getType()->isIntegerTy(1))
+ continue;
+
+ // Okay, we now know that all edges from PredBB should be revectored to
+ // branch to RealDest.
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
+
+ if (RealDest == BB)
+ continue; // Skip self loops.
+ // Skip if the predecessor's terminator is an indirect branch.
+ if (isa<IndirectBrInst>(PredBB->getTerminator()))
+ continue;
+
+ // The dest block might have PHI nodes, other predecessors and other
+ // difficult cases. Instead of being smart about this, just insert a new
+ // block that jumps to the destination block, effectively splitting
+ // the edge we are about to create.
+ BasicBlock *EdgeBB =
+ BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
+ RealDest->getParent(), RealDest);
+ BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
+ CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
+
+ // Update PHI nodes.
+ AddPredecessorToBlock(RealDest, EdgeBB, BB);
+
+ // BB may have instructions that are being threaded over. Clone these
+ // instructions into EdgeBB. We know that there will be no uses of the
+ // cloned instructions outside of EdgeBB.
+ BasicBlock::iterator InsertPt = EdgeBB->begin();
+ DenseMap<Value *, Value *> TranslateMap; // Track translated values.
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
+ TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
+ continue;
+ }
+ // Clone the instruction.
+ Instruction *N = BBI->clone();
+ if (BBI->hasName())
+ N->setName(BBI->getName() + ".c");
+
+ // Update operands due to translation.
+ for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
+ DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
+ if (PI != TranslateMap.end())
+ *i = PI->second;
+ }
+
+ // Check for trivial simplification.
+ if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
+ if (!BBI->use_empty())
+ TranslateMap[&*BBI] = V;
+ if (!N->mayHaveSideEffects()) {
+ N->deleteValue(); // Instruction folded away, don't need actual inst
+ N = nullptr;
+ }
+ } else {
+ if (!BBI->use_empty())
+ TranslateMap[&*BBI] = N;
+ }
+ // Insert the new instruction into its new home.
+ if (N)
+ EdgeBB->getInstList().insert(InsertPt, N);
+
+ // Register the new instruction with the assumption cache if necessary.
+ if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC->registerAssumption(II);
+ }
+
+ // Loop over all of the edges from PredBB to BB, changing them to branch
+ // to EdgeBB instead.
+ Instruction *PredBBTI = PredBB->getTerminator();
+ for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
+ if (PredBBTI->getSuccessor(i) == BB) {
+ BB->removePredecessor(PredBB);
+ PredBBTI->setSuccessor(i, EdgeBB);
+ }
+
+ // Recurse, simplifying any other constants.
+ return FoldCondBranchOnPHI(BI, DL, AC) || true;
+ }
+
+ return false;
+}
+
+/// Given a BB that starts with the specified two-entry PHI node,
+/// see if we can eliminate it.
+static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
+ const DataLayout &DL) {
+ // Ok, this is a two entry PHI node. Check to see if this is a simple "if
+ // statement", which has a very simple dominance structure. Basically, we
+ // are trying to find the condition that is being branched on, which
+ // subsequently causes this merge to happen. We really want control
+ // dependence information for this check, but simplifycfg can't keep it up
+ // to date, and this catches most of the cases we care about anyway.
+ BasicBlock *BB = PN->getParent();
+ const Function *Fn = BB->getParent();
+ if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
+ return false;
+
+ BasicBlock *IfTrue, *IfFalse;
+ Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
+ if (!IfCond ||
+ // Don't bother if the branch will be constant folded trivially.
+ isa<ConstantInt>(IfCond))
+ return false;
+
+ // Okay, we found that we can merge this two-entry phi node into a select.
+ // Doing so would require us to fold *all* two entry phi nodes in this block.
+ // At some point this becomes non-profitable (particularly if the target
+ // doesn't support cmov's). Only do this transformation if there are two or
+ // fewer PHI nodes in this block.
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
+ if (NumPhis > 2)
+ return false;
+
+ // Loop over the PHI's seeing if we can promote them all to select
+ // instructions. While we are at it, keep track of the instructions
+ // that need to be moved to the dominating block.
+ SmallPtrSet<Instruction *, 4> AggressiveInsts;
+ int BudgetRemaining =
+ TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
+
+ for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
+ PHINode *PN = cast<PHINode>(II++);
+ if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ continue;
+ }
+
+ if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
+ BudgetRemaining, TTI) ||
+ !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
+ BudgetRemaining, TTI))
+ return false;
+ }
+
+ // If we folded the first phi, PN dangles at this point. Refresh it. If
+ // we ran out of PHIs then we simplified them all.
+ PN = dyn_cast<PHINode>(BB->begin());
+ if (!PN)
+ return true;
+
+ // Return true if at least one of these is a 'not', and another is either
+ // a 'not' too, or a constant.
+ auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
+ if (!match(V0, m_Not(m_Value())))
+ std::swap(V0, V1);
+ auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
+ return match(V0, m_Not(m_Value())) && match(V1, Invertible);
+ };
+
+ // Don't fold i1 branches on PHIs which contain binary operators, unless one
+ // of the incoming values is an 'not' and another one is freely invertible.
+ // These can often be turned into switches and other things.
+ if (PN->getType()->isIntegerTy(1) &&
+ (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
+ isa<BinaryOperator>(PN->getIncomingValue(1)) ||
+ isa<BinaryOperator>(IfCond)) &&
+ !CanHoistNotFromBothValues(PN->getIncomingValue(0),
+ PN->getIncomingValue(1)))
+ return false;
+
+ // If all PHI nodes are promotable, check to make sure that all instructions
+ // in the predecessor blocks can be promoted as well. If not, we won't be able
+ // to get rid of the control flow, so it's not worth promoting to select
+ // instructions.
+ BasicBlock *DomBlock = nullptr;
+ BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
+ BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
+ if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
+ IfBlock1 = nullptr;
+ } else {
+ DomBlock = *pred_begin(IfBlock1);
+ for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
+ if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control flow, so
+ // the xform is not worth it.
+ return false;
+ }
+ }
+
+ if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
+ IfBlock2 = nullptr;
+ } else {
+ DomBlock = *pred_begin(IfBlock2);
+ for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
+ if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control flow, so
+ // the xform is not worth it.
+ return false;
+ }
+ }
+ assert(DomBlock && "Failed to find root DomBlock");
+
+ LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
+ << " T: " << IfTrue->getName()
+ << " F: " << IfFalse->getName() << "\n");
+
+ // If we can still promote the PHI nodes after this gauntlet of tests,
+ // do all of the PHI's now.
+ Instruction *InsertPt = DomBlock->getTerminator();
+ IRBuilder<NoFolder> Builder(InsertPt);
+
+ // Move all 'aggressive' instructions, which are defined in the
+ // conditional parts of the if's up to the dominating block.
+ if (IfBlock1)
+ hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
+ if (IfBlock2)
+ hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
+
+ while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+ // Change the PHI node into a select instruction.
+ Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
+ Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
+
+ Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
+ PN->replaceAllUsesWith(Sel);
+ Sel->takeName(PN);
+ PN->eraseFromParent();
+ }
+
+ // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
+ // has been flattened. Change DomBlock to jump directly to our new block to
+ // avoid other simplifycfg's kicking in on the diamond.
+ Instruction *OldTI = DomBlock->getTerminator();
+ Builder.SetInsertPoint(OldTI);
+ Builder.CreateBr(BB);
+ OldTI->eraseFromParent();
+ return true;
+}
+
+/// If we found a conditional branch that goes to two returning blocks,
+/// try to merge them together into one return,
+/// introducing a select if the return values disagree.
+static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
+ IRBuilder<> &Builder) {
+ assert(BI->isConditional() && "Must be a conditional branch");
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+ ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
+ ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
+
+ // Check to ensure both blocks are empty (just a return) or optionally empty
+ // with PHI nodes. If there are other instructions, merging would cause extra
+ // computation on one path or the other.
+ if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
+ return false;
+ if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
+ return false;
+
+ Builder.SetInsertPoint(BI);
+ // Okay, we found a branch that is going to two return nodes. If
+ // there is no return value for this function, just change the
+ // branch into a return.
+ if (FalseRet->getNumOperands() == 0) {
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+ Builder.CreateRetVoid();
+ EraseTerminatorAndDCECond(BI);
+ return true;
+ }
+
+ // Otherwise, figure out what the true and false return values are
+ // so we can insert a new select instruction.
+ Value *TrueValue = TrueRet->getReturnValue();
+ Value *FalseValue = FalseRet->getReturnValue();
+
+ // Unwrap any PHI nodes in the return blocks.
+ if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
+ if (TVPN->getParent() == TrueSucc)
+ TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
+ if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
+ if (FVPN->getParent() == FalseSucc)
+ FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
+
+ // In order for this transformation to be safe, we must be able to
+ // unconditionally execute both operands to the return. This is
+ // normally the case, but we could have a potentially-trapping
+ // constant expression that prevents this transformation from being
+ // safe.
+ if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
+ if (TCV->canTrap())
+ return false;
+ if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
+ if (FCV->canTrap())
+ return false;
+
+ // Okay, we collected all the mapped values and checked them for sanity, and
+ // defined to really do this transformation. First, update the CFG.
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+
+ // Insert select instructions where needed.
+ Value *BrCond = BI->getCondition();
+ if (TrueValue) {
+ // Insert a select if the results differ.
+ if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
+ } else if (isa<UndefValue>(TrueValue)) {
+ TrueValue = FalseValue;
+ } else {
+ TrueValue =
+ Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
+ }
+ }
+
+ Value *RI =
+ !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
+
+ (void)RI;
+
+ LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
+ << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
+ << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
+
+ EraseTerminatorAndDCECond(BI);
+
+ return true;
+}
+
+/// Return true if the given instruction is available
+/// in its predecessor block. If yes, the instruction will be removed.
+static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
+ if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
+ return false;
+ for (Instruction &I : *PB) {
+ Instruction *PBI = &I;
+ // Check whether Inst and PBI generate the same value.
+ if (Inst->isIdenticalTo(PBI)) {
+ Inst->replaceAllUsesWith(PBI);
+ Inst->eraseFromParent();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Return true if either PBI or BI has branch weight available, and store
+/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
+/// not have branch weight, use 1:1 as its weight.
+static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
+ uint64_t &PredTrueWeight,
+ uint64_t &PredFalseWeight,
+ uint64_t &SuccTrueWeight,
+ uint64_t &SuccFalseWeight) {
+ bool PredHasWeights =
+ PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
+ bool SuccHasWeights =
+ BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
+ if (PredHasWeights || SuccHasWeights) {
+ if (!PredHasWeights)
+ PredTrueWeight = PredFalseWeight = 1;
+ if (!SuccHasWeights)
+ SuccTrueWeight = SuccFalseWeight = 1;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+/// If this basic block is simple enough, and if a predecessor branches to us
+/// and one of our successors, fold the block into the predecessor and use
+/// logical operations to pick the right destination.
+bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
+ unsigned BonusInstThreshold) {
+ BasicBlock *BB = BI->getParent();
+
+ const unsigned PredCount = pred_size(BB);
+
+ Instruction *Cond = nullptr;
+ if (BI->isConditional())
+ Cond = dyn_cast<Instruction>(BI->getCondition());
+ else {
+ // For unconditional branch, check for a simple CFG pattern, where
+ // BB has a single predecessor and BB's successor is also its predecessor's
+ // successor. If such pattern exists, check for CSE between BB and its
+ // predecessor.
+ if (BasicBlock *PB = BB->getSinglePredecessor())
+ if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
+ if (PBI->isConditional() &&
+ (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
+ BI->getSuccessor(0) == PBI->getSuccessor(1))) {
+ for (auto I = BB->instructionsWithoutDebug().begin(),
+ E = BB->instructionsWithoutDebug().end();
+ I != E;) {
+ Instruction *Curr = &*I++;
+ if (isa<CmpInst>(Curr)) {
+ Cond = Curr;
+ break;
+ }
+ // Quit if we can't remove this instruction.
+ if (!tryCSEWithPredecessor(Curr, PB))
+ return false;
+ }
+ }
+
+ if (!Cond)
+ return false;
+ }
+
+ if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
+ Cond->getParent() != BB || !Cond->hasOneUse())
+ return false;
+
+ // Make sure the instruction after the condition is the cond branch.
+ BasicBlock::iterator CondIt = ++Cond->getIterator();
+
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(CondIt))
+ ++CondIt;
+
+ if (&*CondIt != BI)
+ return false;
+
+ // Only allow this transformation if computing the condition doesn't involve
+ // too many instructions and these involved instructions can be executed
+ // unconditionally. We denote all involved instructions except the condition
+ // as "bonus instructions", and only allow this transformation when the
+ // number of the bonus instructions we'll need to create when cloning into
+ // each predecessor does not exceed a certain threshold.
+ unsigned NumBonusInsts = 0;
+ for (auto I = BB->begin(); Cond != &*I; ++I) {
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+ if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
+ return false;
+ // I has only one use and can be executed unconditionally.
+ Instruction *User = dyn_cast<Instruction>(I->user_back());
+ if (User == nullptr || User->getParent() != BB)
+ return false;
+ // I is used in the same BB. Since BI uses Cond and doesn't have more slots
+ // to use any other instruction, User must be an instruction between next(I)
+ // and Cond.
+
+ // Account for the cost of duplicating this instruction into each
+ // predecessor.
+ NumBonusInsts += PredCount;
+ // Early exits once we reach the limit.
+ if (NumBonusInsts > BonusInstThreshold)
+ return false;
+ }
+
+ // Cond is known to be a compare or binary operator. Check to make sure that
+ // neither operand is a potentially-trapping constant expression.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
+ if (CE->canTrap())
+ return false;
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
+ if (CE->canTrap())
+ return false;
+
+ // Finally, don't infinitely unroll conditional loops.
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
+ if (TrueDest == BB || FalseDest == BB)
+ return false;
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBlock = *PI;
+ BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
+
+ // Check that we have two conditional branches. If there is a PHI node in
+ // the common successor, verify that the same value flows in from both
+ // blocks.
+ SmallVector<PHINode *, 4> PHIs;
+ if (!PBI || PBI->isUnconditional() ||
+ (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
+ (!BI->isConditional() &&
+ !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
+ continue;
+
+ // Determine if the two branches share a common destination.
+ Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
+ bool InvertPredCond = false;
+
+ if (BI->isConditional()) {
+ if (PBI->getSuccessor(0) == TrueDest) {
+ Opc = Instruction::Or;
+ } else if (PBI->getSuccessor(1) == FalseDest) {
+ Opc = Instruction::And;
+ } else if (PBI->getSuccessor(0) == FalseDest) {
+ Opc = Instruction::And;
+ InvertPredCond = true;
+ } else if (PBI->getSuccessor(1) == TrueDest) {
+ Opc = Instruction::Or;
+ InvertPredCond = true;
+ } else {
+ continue;
+ }
+ } else {
+ if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
+ IRBuilder<> Builder(PBI);
+
+ // If we need to invert the condition in the pred block to match, do so now.
+ if (InvertPredCond) {
+ Value *NewCond = PBI->getCondition();
+
+ if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
+ CmpInst *CI = cast<CmpInst>(NewCond);
+ CI->setPredicate(CI->getInversePredicate());
+ } else {
+ NewCond =
+ Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
+ }
+
+ PBI->setCondition(NewCond);
+ PBI->swapSuccessors();
+ }
+
+ // If we have bonus instructions, clone them into the predecessor block.
+ // Note that there may be multiple predecessor blocks, so we cannot move
+ // bonus instructions to a predecessor block.
+ ValueToValueMapTy VMap; // maps original values to cloned values
+ // We already make sure Cond is the last instruction before BI. Therefore,
+ // all instructions before Cond other than DbgInfoIntrinsic are bonus
+ // instructions.
+ for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
+ if (isa<DbgInfoIntrinsic>(BonusInst))
+ continue;
+ Instruction *NewBonusInst = BonusInst->clone();
+ RemapInstruction(NewBonusInst, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+ VMap[&*BonusInst] = NewBonusInst;
+
+ // If we moved a load, we cannot any longer claim any knowledge about
+ // its potential value. The previous information might have been valid
+ // only given the branch precondition.
+ // For an analogous reason, we must also drop all the metadata whose
+ // semantics we don't understand.
+ NewBonusInst->dropUnknownNonDebugMetadata();
+
+ PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
+ NewBonusInst->takeName(&*BonusInst);
+ BonusInst->setName(BonusInst->getName() + ".old");
+ }
+
+ // Clone Cond into the predecessor basic block, and or/and the
+ // two conditions together.
+ Instruction *CondInPred = Cond->clone();
+ RemapInstruction(CondInPred, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+ PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
+ CondInPred->takeName(Cond);
+ Cond->setName(CondInPred->getName() + ".old");
+
+ if (BI->isConditional()) {
+ Instruction *NewCond = cast<Instruction>(
+ Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
+ PBI->setCondition(NewCond);
+
+ uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
+ bool HasWeights =
+ extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
+ SuccTrueWeight, SuccFalseWeight);
+ SmallVector<uint64_t, 8> NewWeights;
+
+ if (PBI->getSuccessor(0) == BB) {
+ if (HasWeights) {
+ // PBI: br i1 %x, BB, FalseDest
+ // BI: br i1 %y, TrueDest, FalseDest
+ // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
+ NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
+ // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
+ // TrueWeight for PBI * FalseWeight for BI.
+ // We assume that total weights of a BranchInst can fit into 32 bits.
+ // Therefore, we will not have overflow using 64-bit arithmetic.
+ NewWeights.push_back(PredFalseWeight *
+ (SuccFalseWeight + SuccTrueWeight) +
+ PredTrueWeight * SuccFalseWeight);
+ }
+ AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
+ PBI->setSuccessor(0, TrueDest);
+ }
+ if (PBI->getSuccessor(1) == BB) {
+ if (HasWeights) {
+ // PBI: br i1 %x, TrueDest, BB
+ // BI: br i1 %y, TrueDest, FalseDest
+ // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
+ // FalseWeight for PBI * TrueWeight for BI.
+ NewWeights.push_back(PredTrueWeight *
+ (SuccFalseWeight + SuccTrueWeight) +
+ PredFalseWeight * SuccTrueWeight);
+ // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
+ NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
+ }
+ AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
+ PBI->setSuccessor(1, FalseDest);
+ }
+ if (NewWeights.size() == 2) {
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(NewWeights);
+
+ SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
+ NewWeights.end());
+ setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
+ } else
+ PBI->setMetadata(LLVMContext::MD_prof, nullptr);
+ } else {
+ // Update PHI nodes in the common successors.
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
+ ConstantInt *PBI_C = cast<ConstantInt>(
+ PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
+ assert(PBI_C->getType()->isIntegerTy(1));
+ Instruction *MergedCond = nullptr;
+ if (PBI->getSuccessor(0) == TrueDest) {
+ // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
+ // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
+ // is false: !PBI_Cond and BI_Value
+ Instruction *NotCond = cast<Instruction>(
+ Builder.CreateNot(PBI->getCondition(), "not.cond"));
+ MergedCond = cast<Instruction>(
+ Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
+ "and.cond"));
+ if (PBI_C->isOne())
+ MergedCond = cast<Instruction>(Builder.CreateBinOp(
+ Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
+ } else {
+ // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
+ // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
+ // is false: PBI_Cond and BI_Value
+ MergedCond = cast<Instruction>(Builder.CreateBinOp(
+ Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
+ if (PBI_C->isOne()) {
+ Instruction *NotCond = cast<Instruction>(
+ Builder.CreateNot(PBI->getCondition(), "not.cond"));
+ MergedCond = cast<Instruction>(Builder.CreateBinOp(
+ Instruction::Or, NotCond, MergedCond, "or.cond"));
+ }
+ }
+ // Update PHI Node.
+ PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
+ }
+
+ // PBI is changed to branch to TrueDest below. Remove itself from
+ // potential phis from all other successors.
+ if (MSSAU)
+ MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
+
+ // Change PBI from Conditional to Unconditional.
+ BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
+ EraseTerminatorAndDCECond(PBI, MSSAU);
+ PBI = New_PBI;
+ }
+
+ // If BI was a loop latch, it may have had associated loop metadata.
+ // We need to copy it to the new latch, that is, PBI.
+ if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
+ PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
+
+ // TODO: If BB is reachable from all paths through PredBlock, then we
+ // could replace PBI's branch probabilities with BI's.
+
+ // Copy any debug value intrinsics into the end of PredBlock.
+ for (Instruction &I : *BB)
+ if (isa<DbgInfoIntrinsic>(I))
+ I.clone()->insertBefore(PBI);
+
+ return true;
+ }
+ return false;
+}
+
+// If there is only one store in BB1 and BB2, return it, otherwise return
+// nullptr.
+static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
+ StoreInst *S = nullptr;
+ for (auto *BB : {BB1, BB2}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ if (S)
+ // Multiple stores seen.
+ return nullptr;
+ else
+ S = SI;
+ }
+ }
+ return S;
+}
+
+static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
+ Value *AlternativeV = nullptr) {
+ // PHI is going to be a PHI node that allows the value V that is defined in
+ // BB to be referenced in BB's only successor.
+ //
+ // If AlternativeV is nullptr, the only value we care about in PHI is V. It
+ // doesn't matter to us what the other operand is (it'll never get used). We
+ // could just create a new PHI with an undef incoming value, but that could
+ // increase register pressure if EarlyCSE/InstCombine can't fold it with some
+ // other PHI. So here we directly look for some PHI in BB's successor with V
+ // as an incoming operand. If we find one, we use it, else we create a new
+ // one.
+ //
+ // If AlternativeV is not nullptr, we care about both incoming values in PHI.
+ // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
+ // where OtherBB is the single other predecessor of BB's only successor.
+ PHINode *PHI = nullptr;
+ BasicBlock *Succ = BB->getSingleSuccessor();
+
+ for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
+ if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
+ PHI = cast<PHINode>(I);
+ if (!AlternativeV)
+ break;
+
+ assert(Succ->hasNPredecessors(2));
+ auto PredI = pred_begin(Succ);
+ BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
+ if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
+ break;
+ PHI = nullptr;
+ }
+ if (PHI)
+ return PHI;
+
+ // If V is not an instruction defined in BB, just return it.
+ if (!AlternativeV &&
+ (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
+ return V;
+
+ PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
+ PHI->addIncoming(V, BB);
+ for (BasicBlock *PredBB : predecessors(Succ))
+ if (PredBB != BB)
+ PHI->addIncoming(
+ AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
+ return PHI;
+}
+
+static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
+ BasicBlock *QTB, BasicBlock *QFB,
+ BasicBlock *PostBB, Value *Address,
+ bool InvertPCond, bool InvertQCond,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ // For every pointer, there must be exactly two stores, one coming from
+ // PTB or PFB, and the other from QTB or QFB. We don't support more than one
+ // store (to any address) in PTB,PFB or QTB,QFB.
+ // FIXME: We could relax this restriction with a bit more work and performance
+ // testing.
+ StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
+ StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
+ if (!PStore || !QStore)
+ return false;
+
+ // Now check the stores are compatible.
+ if (!QStore->isUnordered() || !PStore->isUnordered())
+ return false;
+
+ // Check that sinking the store won't cause program behavior changes. Sinking
+ // the store out of the Q blocks won't change any behavior as we're sinking
+ // from a block to its unconditional successor. But we're moving a store from
+ // the P blocks down through the middle block (QBI) and past both QFB and QTB.
+ // So we need to check that there are no aliasing loads or stores in
+ // QBI, QTB and QFB. We also need to check there are no conflicting memory
+ // operations between PStore and the end of its parent block.
+ //
+ // The ideal way to do this is to query AliasAnalysis, but we don't
+ // preserve AA currently so that is dangerous. Be super safe and just
+ // check there are no other memory operations at all.
+ for (auto &I : *QFB->getSinglePredecessor())
+ if (I.mayReadOrWriteMemory())
+ return false;
+ for (auto &I : *QFB)
+ if (&I != QStore && I.mayReadOrWriteMemory())
+ return false;
+ if (QTB)
+ for (auto &I : *QTB)
+ if (&I != QStore && I.mayReadOrWriteMemory())
+ return false;
+ for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
+ I != E; ++I)
+ if (&*I != PStore && I->mayReadOrWriteMemory())
+ return false;
+
+ // If we're not in aggressive mode, we only optimize if we have some
+ // confidence that by optimizing we'll allow P and/or Q to be if-converted.
+ auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
+ if (!BB)
+ return true;
+ // Heuristic: if the block can be if-converted/phi-folded and the
+ // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
+ // thread this store.
+ int BudgetRemaining =
+ PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
+ for (auto &I : BB->instructionsWithoutDebug()) {
+ // Consider terminator instruction to be free.
+ if (I.isTerminator())
+ continue;
+ // If this is one the stores that we want to speculate out of this BB,
+ // then don't count it's cost, consider it to be free.
+ if (auto *S = dyn_cast<StoreInst>(&I))
+ if (llvm::find(FreeStores, S))
+ continue;
+ // Else, we have a white-list of instructions that we are ak speculating.
+ if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
+ return false; // Not in white-list - not worthwhile folding.
+ // And finally, if this is a non-free instruction that we are okay
+ // speculating, ensure that we consider the speculation budget.
+ BudgetRemaining -= TTI.getUserCost(&I);
+ if (BudgetRemaining < 0)
+ return false; // Eagerly refuse to fold as soon as we're out of budget.
+ }
+ assert(BudgetRemaining >= 0 &&
+ "When we run out of budget we will eagerly return from within the "
+ "per-instruction loop.");
+ return true;
+ };
+
+ const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
+ if (!MergeCondStoresAggressively &&
+ (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
+ !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
+ return false;
+
+ // If PostBB has more than two predecessors, we need to split it so we can
+ // sink the store.
+ if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
+ // We know that QFB's only successor is PostBB. And QFB has a single
+ // predecessor. If QTB exists, then its only successor is also PostBB.
+ // If QTB does not exist, then QFB's only predecessor has a conditional
+ // branch to QFB and PostBB.
+ BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
+ BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
+ "condstore.split");
+ if (!NewBB)
+ return false;
+ PostBB = NewBB;
+ }
+
+ // OK, we're going to sink the stores to PostBB. The store has to be
+ // conditional though, so first create the predicate.
+ Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
+ ->getCondition();
+ Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
+ ->getCondition();
+
+ Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
+ PStore->getParent());
+ Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
+ QStore->getParent(), PPHI);
+
+ IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
+
+ Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
+ Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
+
+ if (InvertPCond)
+ PPred = QB.CreateNot(PPred);
+ if (InvertQCond)
+ QPred = QB.CreateNot(QPred);
+ Value *CombinedPred = QB.CreateOr(PPred, QPred);
+
+ auto *T =
+ SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
+ QB.SetInsertPoint(T);
+ StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
+ AAMDNodes AAMD;
+ PStore->getAAMetadata(AAMD, /*Merge=*/false);
+ PStore->getAAMetadata(AAMD, /*Merge=*/true);
+ SI->setAAMetadata(AAMD);
+ unsigned PAlignment = PStore->getAlignment();
+ unsigned QAlignment = QStore->getAlignment();
+ unsigned TypeAlignment =
+ DL.getABITypeAlignment(SI->getValueOperand()->getType());
+ unsigned MinAlignment;
+ unsigned MaxAlignment;
+ std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
+ // Choose the minimum alignment. If we could prove both stores execute, we
+ // could use biggest one. In this case, though, we only know that one of the
+ // stores executes. And we don't know it's safe to take the alignment from a
+ // store that doesn't execute.
+ if (MinAlignment != 0) {
+ // Choose the minimum of all non-zero alignments.
+ SI->setAlignment(Align(MinAlignment));
+ } else if (MaxAlignment != 0) {
+ // Choose the minimal alignment between the non-zero alignment and the ABI
+ // default alignment for the type of the stored value.
+ SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
+ } else {
+ // If both alignments are zero, use ABI default alignment for the type of
+ // the stored value.
+ SI->setAlignment(Align(TypeAlignment));
+ }
+
+ QStore->eraseFromParent();
+ PStore->eraseFromParent();
+
+ return true;
+}
+
+static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ // The intention here is to find diamonds or triangles (see below) where each
+ // conditional block contains a store to the same address. Both of these
+ // stores are conditional, so they can't be unconditionally sunk. But it may
+ // be profitable to speculatively sink the stores into one merged store at the
+ // end, and predicate the merged store on the union of the two conditions of
+ // PBI and QBI.
+ //
+ // This can reduce the number of stores executed if both of the conditions are
+ // true, and can allow the blocks to become small enough to be if-converted.
+ // This optimization will also chain, so that ladders of test-and-set
+ // sequences can be if-converted away.
+ //
+ // We only deal with simple diamonds or triangles:
+ //
+ // PBI or PBI or a combination of the two
+ // / \ | \
+ // PTB PFB | PFB
+ // \ / | /
+ // QBI QBI
+ // / \ | \
+ // QTB QFB | QFB
+ // \ / | /
+ // PostBB PostBB
+ //
+ // We model triangles as a type of diamond with a nullptr "true" block.
+ // Triangles are canonicalized so that the fallthrough edge is represented by
+ // a true condition, as in the diagram above.
+ BasicBlock *PTB = PBI->getSuccessor(0);
+ BasicBlock *PFB = PBI->getSuccessor(1);
+ BasicBlock *QTB = QBI->getSuccessor(0);
+ BasicBlock *QFB = QBI->getSuccessor(1);
+ BasicBlock *PostBB = QFB->getSingleSuccessor();
+
+ // Make sure we have a good guess for PostBB. If QTB's only successor is
+ // QFB, then QFB is a better PostBB.
+ if (QTB->getSingleSuccessor() == QFB)
+ PostBB = QFB;
+
+ // If we couldn't find a good PostBB, stop.
+ if (!PostBB)
+ return false;
+
+ bool InvertPCond = false, InvertQCond = false;
+ // Canonicalize fallthroughs to the true branches.
+ if (PFB == QBI->getParent()) {
+ std::swap(PFB, PTB);
+ InvertPCond = true;
+ }
+ if (QFB == PostBB) {
+ std::swap(QFB, QTB);
+ InvertQCond = true;
+ }
+
+ // From this point on we can assume PTB or QTB may be fallthroughs but PFB
+ // and QFB may not. Model fallthroughs as a nullptr block.
+ if (PTB == QBI->getParent())
+ PTB = nullptr;
+ if (QTB == PostBB)
+ QTB = nullptr;
+
+ // Legality bailouts. We must have at least the non-fallthrough blocks and
+ // the post-dominating block, and the non-fallthroughs must only have one
+ // predecessor.
+ auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
+ return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
+ };
+ if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
+ !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
+ return false;
+ if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
+ (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
+ return false;
+ if (!QBI->getParent()->hasNUses(2))
+ return false;
+
+ // OK, this is a sequence of two diamonds or triangles.
+ // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
+ SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
+ for (auto *BB : {PTB, PFB}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ PStoreAddresses.insert(SI->getPointerOperand());
+ }
+ for (auto *BB : {QTB, QFB}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ QStoreAddresses.insert(SI->getPointerOperand());
+ }
+
+ set_intersect(PStoreAddresses, QStoreAddresses);
+ // set_intersect mutates PStoreAddresses in place. Rename it here to make it
+ // clear what it contains.
+ auto &CommonAddresses = PStoreAddresses;
+
+ bool Changed = false;
+ for (auto *Address : CommonAddresses)
+ Changed |= mergeConditionalStoreToAddress(
+ PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
+ return Changed;
+}
+
+/// If we have a conditional branch as a predecessor of another block,
+/// this function tries to simplify it. We know
+/// that PBI and BI are both conditional branches, and BI is in one of the
+/// successor blocks of PBI - PBI branches to BI.
+static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ assert(PBI->isConditional() && BI->isConditional());
+ BasicBlock *BB = BI->getParent();
+
+ // If this block ends with a branch instruction, and if there is a
+ // predecessor that ends on a branch of the same condition, make
+ // this conditional branch redundant.
+ if (PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ // Okay, the outcome of this conditional branch is statically
+ // knowable. If this block had a single pred, handle specially.
+ if (BB->getSinglePredecessor()) {
+ // Turn this into a branch on constant.
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ BI->setCondition(
+ ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
+ return true; // Nuke the branch on constant.
+ }
+
+ // Otherwise, if there are multiple predecessors, insert a PHI that merges
+ // in the constant and simplify the block result. Subsequent passes of
+ // simplifycfg will thread the block.
+ if (BlockIsSimpleEnoughToThreadThrough(BB)) {
+ pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
+ PHINode *NewPN = PHINode::Create(
+ Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
+ BI->getCondition()->getName() + ".pr", &BB->front());
+ // Okay, we're going to insert the PHI node. Since PBI is not the only
+ // predecessor, compute the PHI'd conditional value for all of the preds.
+ // Any predecessor where the condition is not computable we keep symbolic.
+ for (pred_iterator PI = PB; PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
+ PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ NewPN->addIncoming(
+ ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
+ P);
+ } else {
+ NewPN->addIncoming(BI->getCondition(), P);
+ }
+ }
+
+ BI->setCondition(NewPN);
+ return true;
+ }
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
+ if (CE->canTrap())
+ return false;
+
+ // If both branches are conditional and both contain stores to the same
+ // address, remove the stores from the conditionals and create a conditional
+ // merged store at the end.
+ if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
+ return true;
+
+ // If this is a conditional branch in an empty block, and if any
+ // predecessors are a conditional branch to one of our destinations,
+ // fold the conditions into logical ops and one cond br.
+
+ // Ignore dbg intrinsics.
+ if (&*BB->instructionsWithoutDebug().begin() != BI)
+ return false;
+
+ int PBIOp, BIOp;
+ if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
+ PBIOp = 0;
+ BIOp = 0;
+ } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
+ PBIOp = 0;
+ BIOp = 1;
+ } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
+ PBIOp = 1;
+ BIOp = 0;
+ } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
+ PBIOp = 1;
+ BIOp = 1;
+ } else {
+ return false;
+ }
+
+ // Check to make sure that the other destination of this branch
+ // isn't BB itself. If so, this is an infinite loop that will
+ // keep getting unwound.
+ if (PBI->getSuccessor(PBIOp) == BB)
+ return false;
+
+ // Do not perform this transformation if it would require
+ // insertion of a large number of select instructions. For targets
+ // without predication/cmovs, this is a big pessimization.
+
+ // Also do not perform this transformation if any phi node in the common
+ // destination block can trap when reached by BB or PBB (PR17073). In that
+ // case, it would be unsafe to hoist the operation into a select instruction.
+
+ BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
+ ++II, ++NumPhis) {
+ if (NumPhis > 2) // Disable this xform.
+ return false;
+
+ PHINode *PN = cast<PHINode>(II);
+ Value *BIV = PN->getIncomingValueForBlock(BB);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
+ if (CE->canTrap())
+ return false;
+
+ unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
+ Value *PBIV = PN->getIncomingValue(PBBIdx);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
+ if (CE->canTrap())
+ return false;
+ }
+
+ // Finally, if everything is ok, fold the branches to logical ops.
+ BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
+
+ LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
+ << "AND: " << *BI->getParent());
+
+ // If OtherDest *is* BB, then BB is a basic block with a single conditional
+ // branch in it, where one edge (OtherDest) goes back to itself but the other
+ // exits. We don't *know* that the program avoids the infinite loop
+ // (even though that seems likely). If we do this xform naively, we'll end up
+ // recursively unpeeling the loop. Since we know that (after the xform is
+ // done) that the block *is* infinite if reached, we just make it an obviously
+ // infinite loop with no cond branch.
+ if (OtherDest == BB) {
+ // Insert it at the end of the function, because it's either code,
+ // or it won't matter if it's hot. :)
+ BasicBlock *InfLoopBlock =
+ BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
+ BranchInst::Create(InfLoopBlock, InfLoopBlock);
+ OtherDest = InfLoopBlock;
+ }
+
+ LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
+
+ // BI may have other predecessors. Because of this, we leave
+ // it alone, but modify PBI.
+
+ // Make sure we get to CommonDest on True&True directions.
+ Value *PBICond = PBI->getCondition();
+ IRBuilder<NoFolder> Builder(PBI);
+ if (PBIOp)
+ PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
+
+ Value *BICond = BI->getCondition();
+ if (BIOp)
+ BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
+
+ // Merge the conditions.
+ Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
+
+ // Modify PBI to branch on the new condition to the new dests.
+ PBI->setCondition(Cond);
+ PBI->setSuccessor(0, CommonDest);
+ PBI->setSuccessor(1, OtherDest);
+
+ // Update branch weight for PBI.
+ uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
+ uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
+ bool HasWeights =
+ extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
+ SuccTrueWeight, SuccFalseWeight);
+ if (HasWeights) {
+ PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
+ PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
+ SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
+ SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
+ // The weight to CommonDest should be PredCommon * SuccTotal +
+ // PredOther * SuccCommon.
+ // The weight to OtherDest should be PredOther * SuccOther.
+ uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
+ PredOther * SuccCommon,
+ PredOther * SuccOther};
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(NewWeights);
+
+ setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
+ }
+
+ // OtherDest may have phi nodes. If so, add an entry from PBI's
+ // block that are identical to the entries for BI's block.
+ AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
+
+ // We know that the CommonDest already had an edge from PBI to
+ // it. If it has PHIs though, the PHIs may have different
+ // entries for BB and PBI's BB. If so, insert a select to make
+ // them agree.
+ for (PHINode &PN : CommonDest->phis()) {
+ Value *BIV = PN.getIncomingValueForBlock(BB);
+ unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
+ Value *PBIV = PN.getIncomingValue(PBBIdx);
+ if (BIV != PBIV) {
+ // Insert a select in PBI to pick the right value.
+ SelectInst *NV = cast<SelectInst>(
+ Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
+ PN.setIncomingValue(PBBIdx, NV);
+ // Although the select has the same condition as PBI, the original branch
+ // weights for PBI do not apply to the new select because the select's
+ // 'logical' edges are incoming edges of the phi that is eliminated, not
+ // the outgoing edges of PBI.
+ if (HasWeights) {
+ uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
+ uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
+ uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
+ uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
+ // The weight to PredCommonDest should be PredCommon * SuccTotal.
+ // The weight to PredOtherDest should be PredOther * SuccCommon.
+ uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
+ PredOther * SuccCommon};
+
+ FitWeights(NewWeights);
+
+ setBranchWeights(NV, NewWeights[0], NewWeights[1]);
+ }
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
+ LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
+
+ // This basic block is probably dead. We know it has at least
+ // one fewer predecessor.
+ return true;
+}
+
+// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
+// true or to FalseBB if Cond is false.
+// Takes care of updating the successors and removing the old terminator.
+// Also makes sure not to introduce new successors by assuming that edges to
+// non-successor TrueBBs and FalseBBs aren't reachable.
+static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
+ BasicBlock *TrueBB, BasicBlock *FalseBB,
+ uint32_t TrueWeight,
+ uint32_t FalseWeight) {
+ // Remove any superfluous successor edges from the CFG.
+ // First, figure out which successors to preserve.
+ // If TrueBB and FalseBB are equal, only try to preserve one copy of that
+ // successor.
+ BasicBlock *KeepEdge1 = TrueBB;
+ BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
+
+ // Then remove the rest.
+ for (BasicBlock *Succ : successors(OldTerm)) {
+ // Make sure only to keep exactly one copy of each edge.
+ if (Succ == KeepEdge1)
+ KeepEdge1 = nullptr;
+ else if (Succ == KeepEdge2)
+ KeepEdge2 = nullptr;
+ else
+ Succ->removePredecessor(OldTerm->getParent(),
+ /*KeepOneInputPHIs=*/true);
+ }
+
+ IRBuilder<> Builder(OldTerm);
+ Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
+
+ // Insert an appropriate new terminator.
+ if (!KeepEdge1 && !KeepEdge2) {
+ if (TrueBB == FalseBB)
+ // We were only looking for one successor, and it was present.
+ // Create an unconditional branch to it.
+ Builder.CreateBr(TrueBB);
+ else {
+ // We found both of the successors we were looking for.
+ // Create a conditional branch sharing the condition of the select.
+ BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
+ if (TrueWeight != FalseWeight)
+ setBranchWeights(NewBI, TrueWeight, FalseWeight);
+ }
+ } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
+ // Neither of the selected blocks were successors, so this
+ // terminator must be unreachable.
+ new UnreachableInst(OldTerm->getContext(), OldTerm);
+ } else {
+ // One of the selected values was a successor, but the other wasn't.
+ // Insert an unconditional branch to the one that was found;
+ // the edge to the one that wasn't must be unreachable.
+ if (!KeepEdge1)
+ // Only TrueBB was found.
+ Builder.CreateBr(TrueBB);
+ else
+ // Only FalseBB was found.
+ Builder.CreateBr(FalseBB);
+ }
+
+ EraseTerminatorAndDCECond(OldTerm);
+ return true;
+}
+
+// Replaces
+// (switch (select cond, X, Y)) on constant X, Y
+// with a branch - conditional if X and Y lead to distinct BBs,
+// unconditional otherwise.
+static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
+ // Check for constant integer values in the select.
+ ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
+ ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
+ if (!TrueVal || !FalseVal)
+ return false;
+
+ // Find the relevant condition and destinations.
+ Value *Condition = Select->getCondition();
+ BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
+ BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
+
+ // Get weight for TrueBB and FalseBB.
+ uint32_t TrueWeight = 0, FalseWeight = 0;
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeights = HasBranchWeights(SI);
+ if (HasWeights) {
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ TrueWeight =
+ (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
+ FalseWeight =
+ (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
+ }
+ }
+
+ // Perform the actual simplification.
+ return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
+ FalseWeight);
+}
+
+// Replaces
+// (indirectbr (select cond, blockaddress(@fn, BlockA),
+// blockaddress(@fn, BlockB)))
+// with
+// (br cond, BlockA, BlockB).
+static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
+ // Check that both operands of the select are block addresses.
+ BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
+ BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
+ if (!TBA || !FBA)
+ return false;
+
+ // Extract the actual blocks.
+ BasicBlock *TrueBB = TBA->getBasicBlock();
+ BasicBlock *FalseBB = FBA->getBasicBlock();
+
+ // Perform the actual simplification.
+ return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
+ 0);
+}
+
+/// This is called when we find an icmp instruction
+/// (a seteq/setne with a constant) as the only instruction in a
+/// block that ends with an uncond branch. We are looking for a very specific
+/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
+/// this case, we merge the first two "or's of icmp" into a switch, but then the
+/// default value goes to an uncond block with a seteq in it, we get something
+/// like:
+///
+/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
+/// DEFAULT:
+/// %tmp = icmp eq i8 %A, 92
+/// br label %end
+/// end:
+/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
+///
+/// We prefer to split the edge to 'end' so that there is a true/false entry to
+/// the PHI, merging the third icmp into the switch.
+bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
+ ICmpInst *ICI, IRBuilder<> &Builder) {
+ BasicBlock *BB = ICI->getParent();
+
+ // If the block has any PHIs in it or the icmp has multiple uses, it is too
+ // complex.
+ if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
+ return false;
+
+ Value *V = ICI->getOperand(0);
+ ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
+
+ // The pattern we're looking for is where our only predecessor is a switch on
+ // 'V' and this block is the default case for the switch. In this case we can
+ // fold the compared value into the switch to simplify things.
+ BasicBlock *Pred = BB->getSinglePredecessor();
+ if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
+ return false;
+
+ SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
+ if (SI->getCondition() != V)
+ return false;
+
+ // If BB is reachable on a non-default case, then we simply know the value of
+ // V in this block. Substitute it and constant fold the icmp instruction
+ // away.
+ if (SI->getDefaultDest() != BB) {
+ ConstantInt *VVal = SI->findCaseDest(BB);
+ assert(VVal && "Should have a unique destination value");
+ ICI->setOperand(0, VVal);
+
+ if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
+ ICI->replaceAllUsesWith(V);
+ ICI->eraseFromParent();
+ }
+ // BB is now empty, so it is likely to simplify away.
+ return requestResimplify();
+ }
+
+ // Ok, the block is reachable from the default dest. If the constant we're
+ // comparing exists in one of the other edges, then we can constant fold ICI
+ // and zap it.
+ if (SI->findCaseValue(Cst) != SI->case_default()) {
+ Value *V;
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ V = ConstantInt::getFalse(BB->getContext());
+ else
+ V = ConstantInt::getTrue(BB->getContext());
+
+ ICI->replaceAllUsesWith(V);
+ ICI->eraseFromParent();
+ // BB is now empty, so it is likely to simplify away.
+ return requestResimplify();
+ }
+
+ // The use of the icmp has to be in the 'end' block, by the only PHI node in
+ // the block.
+ BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
+ PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
+ if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
+ isa<PHINode>(++BasicBlock::iterator(PHIUse)))
+ return false;
+
+ // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
+ // true in the PHI.
+ Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
+ Constant *NewCst = ConstantInt::getFalse(BB->getContext());
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(DefaultCst, NewCst);
+
+ // Replace ICI (which is used by the PHI for the default value) with true or
+ // false depending on if it is EQ or NE.
+ ICI->replaceAllUsesWith(DefaultCst);
+ ICI->eraseFromParent();
+
+ // Okay, the switch goes to this block on a default value. Add an edge from
+ // the switch to the merge point on the compared value.
+ BasicBlock *NewBB =
+ BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
+ {
+ SwitchInstProfUpdateWrapper SIW(*SI);
+ auto W0 = SIW.getSuccessorWeight(0);
+ SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
+ if (W0) {
+ NewW = ((uint64_t(*W0) + 1) >> 1);
+ SIW.setSuccessorWeight(0, *NewW);
+ }
+ SIW.addCase(Cst, NewBB, NewW);
+ }
+
+ // NewBB branches to the phi block, add the uncond branch and the phi entry.
+ Builder.SetInsertPoint(NewBB);
+ Builder.SetCurrentDebugLocation(SI->getDebugLoc());
+ Builder.CreateBr(SuccBlock);
+ PHIUse->addIncoming(NewCst, NewBB);
+ return true;
+}
+
+/// The specified branch is a conditional branch.
+/// Check to see if it is branching on an or/and chain of icmp instructions, and
+/// fold it into a switch instruction if so.
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
+ const DataLayout &DL) {
+ Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
+ if (!Cond)
+ return false;
+
+ // Change br (X == 0 | X == 1), T, F into a switch instruction.
+ // If this is a bunch of seteq's or'd together, or if it's a bunch of
+ // 'setne's and'ed together, collect them.
+
+ // Try to gather values from a chain of and/or to be turned into a switch
+ ConstantComparesGatherer ConstantCompare(Cond, DL);
+ // Unpack the result
+ SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
+ Value *CompVal = ConstantCompare.CompValue;
+ unsigned UsedICmps = ConstantCompare.UsedICmps;
+ Value *ExtraCase = ConstantCompare.Extra;
+
+ // If we didn't have a multiply compared value, fail.
+ if (!CompVal)
+ return false;
+
+ // Avoid turning single icmps into a switch.
+ if (UsedICmps <= 1)
+ return false;
+
+ bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
+
+ // There might be duplicate constants in the list, which the switch
+ // instruction can't handle, remove them now.
+ array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
+ Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
+
+ // If Extra was used, we require at least two switch values to do the
+ // transformation. A switch with one value is just a conditional branch.
+ if (ExtraCase && Values.size() < 2)
+ return false;
+
+ // TODO: Preserve branch weight metadata, similarly to how
+ // FoldValueComparisonIntoPredecessors preserves it.
+
+ // Figure out which block is which destination.
+ BasicBlock *DefaultBB = BI->getSuccessor(1);
+ BasicBlock *EdgeBB = BI->getSuccessor(0);
+ if (!TrueWhenEqual)
+ std::swap(DefaultBB, EdgeBB);
+
+ BasicBlock *BB = BI->getParent();
+
+ // MSAN does not like undefs as branch condition which can be introduced
+ // with "explicit branch".
+ if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
+ << " cases into SWITCH. BB is:\n"
+ << *BB);
+
+ // If there are any extra values that couldn't be folded into the switch
+ // then we evaluate them with an explicit branch first. Split the block
+ // right before the condbr to handle it.
+ if (ExtraCase) {
+ BasicBlock *NewBB =
+ BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
+ // Remove the uncond branch added to the old block.
+ Instruction *OldTI = BB->getTerminator();
+ Builder.SetInsertPoint(OldTI);
+
+ if (TrueWhenEqual)
+ Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
+ else
+ Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
+
+ OldTI->eraseFromParent();
+
+ // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
+ // for the edge we just added.
+ AddPredecessorToBlock(EdgeBB, BB, NewBB);
+
+ LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
+ << "\nEXTRABB = " << *BB);
+ BB = NewBB;
+ }
+
+ Builder.SetInsertPoint(BI);
+ // Convert pointer to int before we switch.
+ if (CompVal->getType()->isPointerTy()) {
+ CompVal = Builder.CreatePtrToInt(
+ CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
+ }
+
+ // Create the new switch instruction now.
+ SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
+
+ // Add all of the 'cases' to the switch instruction.
+ for (unsigned i = 0, e = Values.size(); i != e; ++i)
+ New->addCase(Values[i], EdgeBB);
+
+ // We added edges from PI to the EdgeBB. As such, if there were any
+ // PHI nodes in EdgeBB, they need entries to be added corresponding to
+ // the number of edges added.
+ for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ Value *InVal = PN->getIncomingValueForBlock(BB);
+ for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
+ PN->addIncoming(InVal, BB);
+ }
+
+ // Erase the old branch instruction.
+ EraseTerminatorAndDCECond(BI);
+
+ LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
+ if (isa<PHINode>(RI->getValue()))
+ return SimplifyCommonResume(RI);
+ else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
+ RI->getValue() == RI->getParent()->getFirstNonPHI())
+ // The resume must unwind the exception that caused control to branch here.
+ return SimplifySingleResume(RI);
+
+ return false;
+}
+
+// Simplify resume that is shared by several landing pads (phi of landing pad).
+bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
+ BasicBlock *BB = RI->getParent();
+
+ // Check that there are no other instructions except for debug intrinsics
+ // between the phi of landing pads (RI->getValue()) and resume instruction.
+ BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
+ E = RI->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
+ auto *PhiLPInst = cast<PHINode>(RI->getValue());
+
+ // Check incoming blocks to see if any of them are trivial.
+ for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
+ Idx++) {
+ auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
+ auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
+
+ // If the block has other successors, we can not delete it because
+ // it has other dependents.
+ if (IncomingBB->getUniqueSuccessor() != BB)
+ continue;
+
+ auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
+ // Not the landing pad that caused the control to branch here.
+ if (IncomingValue != LandingPad)
+ continue;
+
+ bool isTrivial = true;
+
+ I = IncomingBB->getFirstNonPHI()->getIterator();
+ E = IncomingBB->getTerminator()->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I)) {
+ isTrivial = false;
+ break;
+ }
+
+ if (isTrivial)
+ TrivialUnwindBlocks.insert(IncomingBB);
+ }
+
+ // If no trivial unwind blocks, don't do any simplifications.
+ if (TrivialUnwindBlocks.empty())
+ return false;
+
+ // Turn all invokes that unwind here into calls.
+ for (auto *TrivialBB : TrivialUnwindBlocks) {
+ // Blocks that will be simplified should be removed from the phi node.
+ // Note there could be multiple edges to the resume block, and we need
+ // to remove them all.
+ while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
+ BB->removePredecessor(TrivialBB, true);
+
+ for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
+ PI != PE;) {
+ BasicBlock *Pred = *PI++;
+ removeUnwindEdge(Pred);
+ }
+
+ // In each SimplifyCFG run, only the current processed block can be erased.
+ // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
+ // of erasing TrivialBB, we only remove the branch to the common resume
+ // block so that we can later erase the resume block since it has no
+ // predecessors.
+ TrivialBB->getTerminator()->eraseFromParent();
+ new UnreachableInst(RI->getContext(), TrivialBB);
+ }
+
+ // Delete the resume block if all its predecessors have been removed.
+ if (pred_empty(BB))
+ BB->eraseFromParent();
+
+ return !TrivialUnwindBlocks.empty();
+}
+
+// Simplify resume that is only used by a single (non-phi) landing pad.
+bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
+ BasicBlock *BB = RI->getParent();
+ auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
+ assert(RI->getValue() == LPInst &&
+ "Resume must unwind the exception that caused control to here");
+
+ // Check that there are no other instructions except for debug intrinsics.
+ BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // Turn all invokes that unwind here into calls and delete the basic block.
+ for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
+ BasicBlock *Pred = *PI++;
+ removeUnwindEdge(Pred);
+ }
+
+ // The landingpad is now unreachable. Zap it.
+ if (LoopHeaders)
+ LoopHeaders->erase(BB);
+ BB->eraseFromParent();
+ return true;
+}
+
+static bool removeEmptyCleanup(CleanupReturnInst *RI) {
+ // If this is a trivial cleanup pad that executes no instructions, it can be
+ // eliminated. If the cleanup pad continues to the caller, any predecessor
+ // that is an EH pad will be updated to continue to the caller and any
+ // predecessor that terminates with an invoke instruction will have its invoke
+ // instruction converted to a call instruction. If the cleanup pad being
+ // simplified does not continue to the caller, each predecessor will be
+ // updated to continue to the unwind destination of the cleanup pad being
+ // simplified.
+ BasicBlock *BB = RI->getParent();
+ CleanupPadInst *CPInst = RI->getCleanupPad();
+ if (CPInst->getParent() != BB)
+ // This isn't an empty cleanup.
+ return false;
+
+ // We cannot kill the pad if it has multiple uses. This typically arises
+ // from unreachable basic blocks.
+ if (!CPInst->hasOneUse())
+ return false;
+
+ // Check that there are no other instructions except for benign intrinsics.
+ BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
+ while (++I != E) {
+ auto *II = dyn_cast<IntrinsicInst>(I);
+ if (!II)
+ return false;
+
+ Intrinsic::ID IntrinsicID = II->getIntrinsicID();
+ switch (IntrinsicID) {
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::dbg_label:
+ case Intrinsic::lifetime_end:
+ break;
+ default:
+ return false;
+ }
+ }
+
+ // If the cleanup return we are simplifying unwinds to the caller, this will
+ // set UnwindDest to nullptr.
+ BasicBlock *UnwindDest = RI->getUnwindDest();
+ Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
+
+ // We're about to remove BB from the control flow. Before we do, sink any
+ // PHINodes into the unwind destination. Doing this before changing the
+ // control flow avoids some potentially slow checks, since we can currently
+ // be certain that UnwindDest and BB have no common predecessors (since they
+ // are both EH pads).
+ if (UnwindDest) {
+ // First, go through the PHI nodes in UnwindDest and update any nodes that
+ // reference the block we are removing
+ for (BasicBlock::iterator I = UnwindDest->begin(),
+ IE = DestEHPad->getIterator();
+ I != IE; ++I) {
+ PHINode *DestPN = cast<PHINode>(I);
+
+ int Idx = DestPN->getBasicBlockIndex(BB);
+ // Since BB unwinds to UnwindDest, it has to be in the PHI node.
+ assert(Idx != -1);
+ // This PHI node has an incoming value that corresponds to a control
+ // path through the cleanup pad we are removing. If the incoming
+ // value is in the cleanup pad, it must be a PHINode (because we
+ // verified above that the block is otherwise empty). Otherwise, the
+ // value is either a constant or a value that dominates the cleanup
+ // pad being removed.
+ //
+ // Because BB and UnwindDest are both EH pads, all of their
+ // predecessors must unwind to these blocks, and since no instruction
+ // can have multiple unwind destinations, there will be no overlap in
+ // incoming blocks between SrcPN and DestPN.
+ Value *SrcVal = DestPN->getIncomingValue(Idx);
+ PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
+
+ // Remove the entry for the block we are deleting.
+ DestPN->removeIncomingValue(Idx, false);
+
+ if (SrcPN && SrcPN->getParent() == BB) {
+ // If the incoming value was a PHI node in the cleanup pad we are
+ // removing, we need to merge that PHI node's incoming values into
+ // DestPN.
+ for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
+ SrcIdx != SrcE; ++SrcIdx) {
+ DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
+ SrcPN->getIncomingBlock(SrcIdx));
+ }
+ } else {
+ // Otherwise, the incoming value came from above BB and
+ // so we can just reuse it. We must associate all of BB's
+ // predecessors with this value.
+ for (auto *pred : predecessors(BB)) {
+ DestPN->addIncoming(SrcVal, pred);
+ }
+ }
+ }
+
+ // Sink any remaining PHI nodes directly into UnwindDest.
+ Instruction *InsertPt = DestEHPad;
+ for (BasicBlock::iterator I = BB->begin(),
+ IE = BB->getFirstNonPHI()->getIterator();
+ I != IE;) {
+ // The iterator must be incremented here because the instructions are
+ // being moved to another block.
+ PHINode *PN = cast<PHINode>(I++);
+ if (PN->use_empty())
+ // If the PHI node has no uses, just leave it. It will be erased
+ // when we erase BB below.
+ continue;
+
+ // Otherwise, sink this PHI node into UnwindDest.
+ // Any predecessors to UnwindDest which are not already represented
+ // must be back edges which inherit the value from the path through
+ // BB. In this case, the PHI value must reference itself.
+ for (auto *pred : predecessors(UnwindDest))
+ if (pred != BB)
+ PN->addIncoming(PN, pred);
+ PN->moveBefore(InsertPt);
+ }
+ }
+
+ for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
+ // The iterator must be updated here because we are removing this pred.
+ BasicBlock *PredBB = *PI++;
+ if (UnwindDest == nullptr) {
+ removeUnwindEdge(PredBB);
+ } else {
+ Instruction *TI = PredBB->getTerminator();
+ TI->replaceUsesOfWith(BB, UnwindDest);
+ }
+ }
+
+ // The cleanup pad is now unreachable. Zap it.
+ BB->eraseFromParent();
+ return true;
+}
+
+// Try to merge two cleanuppads together.
+static bool mergeCleanupPad(CleanupReturnInst *RI) {
+ // Skip any cleanuprets which unwind to caller, there is nothing to merge
+ // with.
+ BasicBlock *UnwindDest = RI->getUnwindDest();
+ if (!UnwindDest)
+ return false;
+
+ // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
+ // be safe to merge without code duplication.
+ if (UnwindDest->getSinglePredecessor() != RI->getParent())
+ return false;
+
+ // Verify that our cleanuppad's unwind destination is another cleanuppad.
+ auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
+ if (!SuccessorCleanupPad)
+ return false;
+
+ CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
+ // Replace any uses of the successor cleanupad with the predecessor pad
+ // The only cleanuppad uses should be this cleanupret, it's cleanupret and
+ // funclet bundle operands.
+ SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
+ // Remove the old cleanuppad.
+ SuccessorCleanupPad->eraseFromParent();
+ // Now, we simply replace the cleanupret with a branch to the unwind
+ // destination.
+ BranchInst::Create(UnwindDest, RI->getParent());
+ RI->eraseFromParent();
+
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
+ // It is possible to transiantly have an undef cleanuppad operand because we
+ // have deleted some, but not all, dead blocks.
+ // Eventually, this block will be deleted.
+ if (isa<UndefValue>(RI->getOperand(0)))
+ return false;
+
+ if (mergeCleanupPad(RI))
+ return true;
+
+ if (removeEmptyCleanup(RI))
+ return true;
+
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
+ BasicBlock *BB = RI->getParent();
+ if (!BB->getFirstNonPHIOrDbg()->isTerminator())
+ return false;
+
+ // Find predecessors that end with branches.
+ SmallVector<BasicBlock *, 8> UncondBranchPreds;
+ SmallVector<BranchInst *, 8> CondBranchPreds;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *P = *PI;
+ Instruction *PTI = P->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
+ if (BI->isUnconditional())
+ UncondBranchPreds.push_back(P);
+ else
+ CondBranchPreds.push_back(BI);
+ }
+ }
+
+ // If we found some, do the transformation!
+ if (!UncondBranchPreds.empty() && DupRet) {
+ while (!UncondBranchPreds.empty()) {
+ BasicBlock *Pred = UncondBranchPreds.pop_back_val();
+ LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
+ << "INTO UNCOND BRANCH PRED: " << *Pred);
+ (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
+ }
+
+ // If we eliminated all predecessors of the block, delete the block now.
+ if (pred_empty(BB)) {
+ // We know there are no successors, so just nuke the block.
+ if (LoopHeaders)
+ LoopHeaders->erase(BB);
+ BB->eraseFromParent();
+ }
+
+ return true;
+ }
+
+ // Check out all of the conditional branches going to this return
+ // instruction. If any of them just select between returns, change the
+ // branch itself into a select/return pair.
+ while (!CondBranchPreds.empty()) {
+ BranchInst *BI = CondBranchPreds.pop_back_val();
+
+ // Check to see if the non-BB successor is also a return block.
+ if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
+ isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
+ SimplifyCondBranchToTwoReturns(BI, Builder))
+ return true;
+ }
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
+ BasicBlock *BB = UI->getParent();
+
+ bool Changed = false;
+
+ // If there are any instructions immediately before the unreachable that can
+ // be removed, do so.
+ while (UI->getIterator() != BB->begin()) {
+ BasicBlock::iterator BBI = UI->getIterator();
+ --BBI;
+ // Do not delete instructions that can have side effects which might cause
+ // the unreachable to not be reachable; specifically, calls and volatile
+ // operations may have this effect.
+ if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
+ break;
+
+ if (BBI->mayHaveSideEffects()) {
+ if (auto *SI = dyn_cast<StoreInst>(BBI)) {
+ if (SI->isVolatile())
+ break;
+ } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
+ if (LI->isVolatile())
+ break;
+ } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
+ if (RMWI->isVolatile())
+ break;
+ } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
+ if (CXI->isVolatile())
+ break;
+ } else if (isa<CatchPadInst>(BBI)) {
+ // A catchpad may invoke exception object constructors and such, which
+ // in some languages can be arbitrary code, so be conservative by
+ // default.
+ // For CoreCLR, it just involves a type test, so can be removed.
+ if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
+ EHPersonality::CoreCLR)
+ break;
+ } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
+ !isa<LandingPadInst>(BBI)) {
+ break;
+ }
+ // Note that deleting LandingPad's here is in fact okay, although it
+ // involves a bit of subtle reasoning. If this inst is a LandingPad,
+ // all the predecessors of this block will be the unwind edges of Invokes,
+ // and we can therefore guarantee this block will be erased.
+ }
+
+ // Delete this instruction (any uses are guaranteed to be dead)
+ if (!BBI->use_empty())
+ BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
+ BBI->eraseFromParent();
+ Changed = true;
+ }
+
+ // If the unreachable instruction is the first in the block, take a gander
+ // at all of the predecessors of this instruction, and simplify them.
+ if (&BB->front() != UI)
+ return Changed;
+
+ SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ Instruction *TI = Preds[i]->getTerminator();
+ IRBuilder<> Builder(TI);
+ if (auto *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional()) {
+ assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
+ new UnreachableInst(TI->getContext(), TI);
+ TI->eraseFromParent();
+ Changed = true;
+ } else {
+ Value* Cond = BI->getCondition();
+ if (BI->getSuccessor(0) == BB) {
+ Builder.CreateAssumption(Builder.CreateNot(Cond));
+ Builder.CreateBr(BI->getSuccessor(1));
+ } else {
+ assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
+ Builder.CreateAssumption(Cond);
+ Builder.CreateBr(BI->getSuccessor(0));
+ }
+ EraseTerminatorAndDCECond(BI);
+ Changed = true;
+ }
+ } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
+ SwitchInstProfUpdateWrapper SU(*SI);
+ for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
+ if (i->getCaseSuccessor() != BB) {
+ ++i;
+ continue;
+ }
+ BB->removePredecessor(SU->getParent());
+ i = SU.removeCase(i);
+ e = SU->case_end();
+ Changed = true;
+ }
+ } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
+ if (II->getUnwindDest() == BB) {
+ removeUnwindEdge(TI->getParent());
+ Changed = true;
+ }
+ } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
+ if (CSI->getUnwindDest() == BB) {
+ removeUnwindEdge(TI->getParent());
+ Changed = true;
+ continue;
+ }
+
+ for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
+ E = CSI->handler_end();
+ I != E; ++I) {
+ if (*I == BB) {
+ CSI->removeHandler(I);
+ --I;
+ --E;
+ Changed = true;
+ }
+ }
+ if (CSI->getNumHandlers() == 0) {
+ BasicBlock *CatchSwitchBB = CSI->getParent();
+ if (CSI->hasUnwindDest()) {
+ // Redirect preds to the unwind dest
+ CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
+ } else {
+ // Rewrite all preds to unwind to caller (or from invoke to call).
+ SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
+ for (BasicBlock *EHPred : EHPreds)
+ removeUnwindEdge(EHPred);
+ }
+ // The catchswitch is no longer reachable.
+ new UnreachableInst(CSI->getContext(), CSI);
+ CSI->eraseFromParent();
+ Changed = true;
+ }
+ } else if (isa<CleanupReturnInst>(TI)) {
+ new UnreachableInst(TI->getContext(), TI);
+ TI->eraseFromParent();
+ Changed = true;
+ }
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
+ // We know there are no successors, so just nuke the block.
+ if (LoopHeaders)
+ LoopHeaders->erase(BB);
+ BB->eraseFromParent();
+ return true;
+ }
+
+ return Changed;
+}
+
+static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
+ assert(Cases.size() >= 1);
+
+ array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
+ for (size_t I = 1, E = Cases.size(); I != E; ++I) {
+ if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
+ return false;
+ }
+ return true;
+}
+
+static void createUnreachableSwitchDefault(SwitchInst *Switch) {
+ LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
+ BasicBlock *NewDefaultBlock =
+ SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
+ Switch->setDefaultDest(&*NewDefaultBlock);
+ SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
+ auto *NewTerminator = NewDefaultBlock->getTerminator();
+ new UnreachableInst(Switch->getContext(), NewTerminator);
+ EraseTerminatorAndDCECond(NewTerminator);
+}
+
+/// Turn a switch with two reachable destinations into an integer range
+/// comparison and branch.
+static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
+ assert(SI->getNumCases() > 1 && "Degenerate switch?");
+
+ bool HasDefault =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+
+ // Partition the cases into two sets with different destinations.
+ BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
+ BasicBlock *DestB = nullptr;
+ SmallVector<ConstantInt *, 16> CasesA;
+ SmallVector<ConstantInt *, 16> CasesB;
+
+ for (auto Case : SI->cases()) {
+ BasicBlock *Dest = Case.getCaseSuccessor();
+ if (!DestA)
+ DestA = Dest;
+ if (Dest == DestA) {
+ CasesA.push_back(Case.getCaseValue());
+ continue;
+ }
+ if (!DestB)
+ DestB = Dest;
+ if (Dest == DestB) {
+ CasesB.push_back(Case.getCaseValue());
+ continue;
+ }
+ return false; // More than two destinations.
+ }
+
+ assert(DestA && DestB &&
+ "Single-destination switch should have been folded.");
+ assert(DestA != DestB);
+ assert(DestB != SI->getDefaultDest());
+ assert(!CasesB.empty() && "There must be non-default cases.");
+ assert(!CasesA.empty() || HasDefault);
+
+ // Figure out if one of the sets of cases form a contiguous range.
+ SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
+ BasicBlock *ContiguousDest = nullptr;
+ BasicBlock *OtherDest = nullptr;
+ if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
+ ContiguousCases = &CasesA;
+ ContiguousDest = DestA;
+ OtherDest = DestB;
+ } else if (CasesAreContiguous(CasesB)) {
+ ContiguousCases = &CasesB;
+ ContiguousDest = DestB;
+ OtherDest = DestA;
+ } else
+ return false;
+
+ // Start building the compare and branch.
+
+ Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
+ Constant *NumCases =
+ ConstantInt::get(Offset->getType(), ContiguousCases->size());
+
+ Value *Sub = SI->getCondition();
+ if (!Offset->isNullValue())
+ Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
+
+ Value *Cmp;
+ // If NumCases overflowed, then all possible values jump to the successor.
+ if (NumCases->isNullValue() && !ContiguousCases->empty())
+ Cmp = ConstantInt::getTrue(SI->getContext());
+ else
+ Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
+ BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
+
+ // Update weight for the newly-created conditional branch.
+ if (HasBranchWeights(SI)) {
+ SmallVector<uint64_t, 8> Weights;
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ uint64_t TrueWeight = 0;
+ uint64_t FalseWeight = 0;
+ for (size_t I = 0, E = Weights.size(); I != E; ++I) {
+ if (SI->getSuccessor(I) == ContiguousDest)
+ TrueWeight += Weights[I];
+ else
+ FalseWeight += Weights[I];
+ }
+ while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
+ TrueWeight /= 2;
+ FalseWeight /= 2;
+ }
+ setBranchWeights(NewBI, TrueWeight, FalseWeight);
+ }
+ }
+
+ // Prune obsolete incoming values off the successors' PHI nodes.
+ for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
+ unsigned PreviousEdges = ContiguousCases->size();
+ if (ContiguousDest == SI->getDefaultDest())
+ ++PreviousEdges;
+ for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
+ cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
+ }
+ for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
+ unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
+ if (OtherDest == SI->getDefaultDest())
+ ++PreviousEdges;
+ for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
+ cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
+ }
+
+ // Clean up the default block - it may have phis or other instructions before
+ // the unreachable terminator.
+ if (!HasDefault)
+ createUnreachableSwitchDefault(SI);
+
+ // Drop the switch.
+ SI->eraseFromParent();
+
+ return true;
+}
+
+/// Compute masked bits for the condition of a switch
+/// and use it to remove dead cases.
+static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
+ const DataLayout &DL) {
+ Value *Cond = SI->getCondition();
+ unsigned Bits = Cond->getType()->getIntegerBitWidth();
+ KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
+
+ // We can also eliminate cases by determining that their values are outside of
+ // the limited range of the condition based on how many significant (non-sign)
+ // bits are in the condition value.
+ unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
+ unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
+
+ // Gather dead cases.
+ SmallVector<ConstantInt *, 8> DeadCases;
+ for (auto &Case : SI->cases()) {
+ const APInt &CaseVal = Case.getCaseValue()->getValue();
+ if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
+ (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
+ DeadCases.push_back(Case.getCaseValue());
+ LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
+ << " is dead.\n");
+ }
+ }
+
+ // If we can prove that the cases must cover all possible values, the
+ // default destination becomes dead and we can remove it. If we know some
+ // of the bits in the value, we can use that to more precisely compute the
+ // number of possible unique case values.
+ bool HasDefault =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+ const unsigned NumUnknownBits =
+ Bits - (Known.Zero | Known.One).countPopulation();
+ assert(NumUnknownBits <= Bits);
+ if (HasDefault && DeadCases.empty() &&
+ NumUnknownBits < 64 /* avoid overflow */ &&
+ SI->getNumCases() == (1ULL << NumUnknownBits)) {
+ createUnreachableSwitchDefault(SI);
+ return true;
+ }
+
+ if (DeadCases.empty())
+ return false;
+
+ SwitchInstProfUpdateWrapper SIW(*SI);
+ for (ConstantInt *DeadCase : DeadCases) {
+ SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
+ assert(CaseI != SI->case_default() &&
+ "Case was not found. Probably mistake in DeadCases forming.");
+ // Prune unused values from PHI nodes.
+ CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
+ SIW.removeCase(CaseI);
+ }
+
+ return true;
+}
+
+/// If BB would be eligible for simplification by
+/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
+/// by an unconditional branch), look at the phi node for BB in the successor
+/// block and see if the incoming value is equal to CaseValue. If so, return
+/// the phi node, and set PhiIndex to BB's index in the phi node.
+static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
+ BasicBlock *BB, int *PhiIndex) {
+ if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
+ return nullptr; // BB must be empty to be a candidate for simplification.
+ if (!BB->getSinglePredecessor())
+ return nullptr; // BB must be dominated by the switch.
+
+ BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!Branch || !Branch->isUnconditional())
+ return nullptr; // Terminator must be unconditional branch.
+
+ BasicBlock *Succ = Branch->getSuccessor(0);
+
+ for (PHINode &PHI : Succ->phis()) {
+ int Idx = PHI.getBasicBlockIndex(BB);
+ assert(Idx >= 0 && "PHI has no entry for predecessor?");
+
+ Value *InValue = PHI.getIncomingValue(Idx);
+ if (InValue != CaseValue)
+ continue;
+
+ *PhiIndex = Idx;
+ return &PHI;
+ }
+
+ return nullptr;
+}
+
+/// Try to forward the condition of a switch instruction to a phi node
+/// dominated by the switch, if that would mean that some of the destination
+/// blocks of the switch can be folded away. Return true if a change is made.
+static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
+ using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
+
+ ForwardingNodesMap ForwardingNodes;
+ BasicBlock *SwitchBlock = SI->getParent();
+ bool Changed = false;
+ for (auto &Case : SI->cases()) {
+ ConstantInt *CaseValue = Case.getCaseValue();
+ BasicBlock *CaseDest = Case.getCaseSuccessor();
+
+ // Replace phi operands in successor blocks that are using the constant case
+ // value rather than the switch condition variable:
+ // switchbb:
+ // switch i32 %x, label %default [
+ // i32 17, label %succ
+ // ...
+ // succ:
+ // %r = phi i32 ... [ 17, %switchbb ] ...
+ // -->
+ // %r = phi i32 ... [ %x, %switchbb ] ...
+
+ for (PHINode &Phi : CaseDest->phis()) {
+ // This only works if there is exactly 1 incoming edge from the switch to
+ // a phi. If there is >1, that means multiple cases of the switch map to 1
+ // value in the phi, and that phi value is not the switch condition. Thus,
+ // this transform would not make sense (the phi would be invalid because
+ // a phi can't have different incoming values from the same block).
+ int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
+ if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
+ count(Phi.blocks(), SwitchBlock) == 1) {
+ Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
+ Changed = true;
+ }
+ }
+
+ // Collect phi nodes that are indirectly using this switch's case constants.
+ int PhiIdx;
+ if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
+ ForwardingNodes[Phi].push_back(PhiIdx);
+ }
+
+ for (auto &ForwardingNode : ForwardingNodes) {
+ PHINode *Phi = ForwardingNode.first;
+ SmallVectorImpl<int> &Indexes = ForwardingNode.second;
+ if (Indexes.size() < 2)
+ continue;
+
+ for (int Index : Indexes)
+ Phi->setIncomingValue(Index, SI->getCondition());
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+/// Return true if the backend will be able to handle
+/// initializing an array of constants like C.
+static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
+ if (C->isThreadDependent())
+ return false;
+ if (C->isDLLImportDependent())
+ return false;
+
+ if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
+ !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
+ !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
+ return false;
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ if (!CE->isGEPWithNoNotionalOverIndexing())
+ return false;
+ if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
+ return false;
+ }
+
+ if (!TTI.shouldBuildLookupTablesForConstant(C))
+ return false;
+
+ return true;
+}
+
+/// If V is a Constant, return it. Otherwise, try to look up
+/// its constant value in ConstantPool, returning 0 if it's not there.
+static Constant *
+LookupConstant(Value *V,
+ const SmallDenseMap<Value *, Constant *> &ConstantPool) {
+ if (Constant *C = dyn_cast<Constant>(V))
+ return C;
+ return ConstantPool.lookup(V);
+}
+
+/// Try to fold instruction I into a constant. This works for
+/// simple instructions such as binary operations where both operands are
+/// constant or can be replaced by constants from the ConstantPool. Returns the
+/// resulting constant on success, 0 otherwise.
+static Constant *
+ConstantFold(Instruction *I, const DataLayout &DL,
+ const SmallDenseMap<Value *, Constant *> &ConstantPool) {
+ if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
+ Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
+ if (!A)
+ return nullptr;
+ if (A->isAllOnesValue())
+ return LookupConstant(Select->getTrueValue(), ConstantPool);
+ if (A->isNullValue())
+ return LookupConstant(Select->getFalseValue(), ConstantPool);
+ return nullptr;
+ }
+
+ SmallVector<Constant *, 4> COps;
+ for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
+ if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
+ COps.push_back(A);
+ else
+ return nullptr;
+ }
+
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
+ return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
+ COps[1], DL);
+ }
+
+ return ConstantFoldInstOperands(I, COps, DL);
+}
+
+/// Try to determine the resulting constant values in phi nodes
+/// at the common destination basic block, *CommonDest, for one of the case
+/// destionations CaseDest corresponding to value CaseVal (0 for the default
+/// case), of a switch instruction SI.
+static bool
+GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
+ BasicBlock **CommonDest,
+ SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
+ const DataLayout &DL, const TargetTransformInfo &TTI) {
+ // The block from which we enter the common destination.
+ BasicBlock *Pred = SI->getParent();
+
+ // If CaseDest is empty except for some side-effect free instructions through
+ // which we can constant-propagate the CaseVal, continue to its successor.
+ SmallDenseMap<Value *, Constant *> ConstantPool;
+ ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
+ for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
+ if (I.isTerminator()) {
+ // If the terminator is a simple branch, continue to the next block.
+ if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
+ return false;
+ Pred = CaseDest;
+ CaseDest = I.getSuccessor(0);
+ } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
+ // Instruction is side-effect free and constant.
+
+ // If the instruction has uses outside this block or a phi node slot for
+ // the block, it is not safe to bypass the instruction since it would then
+ // no longer dominate all its uses.
+ for (auto &Use : I.uses()) {
+ User *User = Use.getUser();
+ if (Instruction *I = dyn_cast<Instruction>(User))
+ if (I->getParent() == CaseDest)
+ continue;
+ if (PHINode *Phi = dyn_cast<PHINode>(User))
+ if (Phi->getIncomingBlock(Use) == CaseDest)
+ continue;
+ return false;
+ }
+
+ ConstantPool.insert(std::make_pair(&I, C));
+ } else {
+ break;
+ }
+ }
+
+ // If we did not have a CommonDest before, use the current one.
+ if (!*CommonDest)
+ *CommonDest = CaseDest;
+ // If the destination isn't the common one, abort.
+ if (CaseDest != *CommonDest)
+ return false;
+
+ // Get the values for this case from phi nodes in the destination block.
+ for (PHINode &PHI : (*CommonDest)->phis()) {
+ int Idx = PHI.getBasicBlockIndex(Pred);
+ if (Idx == -1)
+ continue;
+
+ Constant *ConstVal =
+ LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
+ if (!ConstVal)
+ return false;
+
+ // Be conservative about which kinds of constants we support.
+ if (!ValidLookupTableConstant(ConstVal, TTI))
+ return false;
+
+ Res.push_back(std::make_pair(&PHI, ConstVal));
+ }
+
+ return Res.size() > 0;
+}
+
+// Helper function used to add CaseVal to the list of cases that generate
+// Result. Returns the updated number of cases that generate this result.
+static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *Result) {
+ for (auto &I : UniqueResults) {
+ if (I.first == Result) {
+ I.second.push_back(CaseVal);
+ return I.second.size();
+ }
+ }
+ UniqueResults.push_back(
+ std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
+ return 1;
+}
+
+// Helper function that initializes a map containing
+// results for the PHI node of the common destination block for a switch
+// instruction. Returns false if multiple PHI nodes have been found or if
+// there is not a common destination block for the switch.
+static bool
+InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *&DefaultResult, const DataLayout &DL,
+ const TargetTransformInfo &TTI,
+ uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
+ for (auto &I : SI->cases()) {
+ ConstantInt *CaseVal = I.getCaseValue();
+
+ // Resulting value at phi nodes for this case value.
+ SwitchCaseResultsTy Results;
+ if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
+ DL, TTI))
+ return false;
+
+ // Only one value per case is permitted.
+ if (Results.size() > 1)
+ return false;
+
+ // Add the case->result mapping to UniqueResults.
+ const uintptr_t NumCasesForResult =
+ MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
+
+ // Early out if there are too many cases for this result.
+ if (NumCasesForResult > MaxCasesPerResult)
+ return false;
+
+ // Early out if there are too many unique results.
+ if (UniqueResults.size() > MaxUniqueResults)
+ return false;
+
+ // Check the PHI consistency.
+ if (!PHI)
+ PHI = Results[0].first;
+ else if (PHI != Results[0].first)
+ return false;
+ }
+ // Find the default result value.
+ SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
+ BasicBlock *DefaultDest = SI->getDefaultDest();
+ GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
+ DL, TTI);
+ // If the default value is not found abort unless the default destination
+ // is unreachable.
+ DefaultResult =
+ DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
+ if ((!DefaultResult &&
+ !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
+ return false;
+
+ return true;
+}
+
+// Helper function that checks if it is possible to transform a switch with only
+// two cases (or two cases + default) that produces a result into a select.
+// Example:
+// switch (a) {
+// case 10: %0 = icmp eq i32 %a, 10
+// return 10; %1 = select i1 %0, i32 10, i32 4
+// case 20: ----> %2 = icmp eq i32 %a, 20
+// return 2; %3 = select i1 %2, i32 2, i32 %1
+// default:
+// return 4;
+// }
+static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
+ Constant *DefaultResult, Value *Condition,
+ IRBuilder<> &Builder) {
+ assert(ResultVector.size() == 2 &&
+ "We should have exactly two unique results at this point");
+ // If we are selecting between only two cases transform into a simple
+ // select or a two-way select if default is possible.
+ if (ResultVector[0].second.size() == 1 &&
+ ResultVector[1].second.size() == 1) {
+ ConstantInt *const FirstCase = ResultVector[0].second[0];
+ ConstantInt *const SecondCase = ResultVector[1].second[0];
+
+ bool DefaultCanTrigger = DefaultResult;
+ Value *SelectValue = ResultVector[1].first;
+ if (DefaultCanTrigger) {
+ Value *const ValueCompare =
+ Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
+ SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
+ DefaultResult, "switch.select");
+ }
+ Value *const ValueCompare =
+ Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
+ return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
+ SelectValue, "switch.select");
+ }
+
+ return nullptr;
+}
+
+// Helper function to cleanup a switch instruction that has been converted into
+// a select, fixing up PHI nodes and basic blocks.
+static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
+ Value *SelectValue,
+ IRBuilder<> &Builder) {
+ BasicBlock *SelectBB = SI->getParent();
+ while (PHI->getBasicBlockIndex(SelectBB) >= 0)
+ PHI->removeIncomingValue(SelectBB);
+ PHI->addIncoming(SelectValue, SelectBB);
+
+ Builder.CreateBr(PHI->getParent());
+
+ // Remove the switch.
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
+ BasicBlock *Succ = SI->getSuccessor(i);
+
+ if (Succ == PHI->getParent())
+ continue;
+ Succ->removePredecessor(SelectBB);
+ }
+ SI->eraseFromParent();
+}
+
+/// If the switch is only used to initialize one or more
+/// phi nodes in a common successor block with only two different
+/// constant values, replace the switch with select.
+static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ Value *const Cond = SI->getCondition();
+ PHINode *PHI = nullptr;
+ BasicBlock *CommonDest = nullptr;
+ Constant *DefaultResult;
+ SwitchCaseResultVectorTy UniqueResults;
+ // Collect all the cases that will deliver the same value from the switch.
+ if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
+ DL, TTI, 2, 1))
+ return false;
+ // Selects choose between maximum two values.
+ if (UniqueResults.size() != 2)
+ return false;
+ assert(PHI != nullptr && "PHI for value select not found");
+
+ Builder.SetInsertPoint(SI);
+ Value *SelectValue =
+ ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
+ if (SelectValue) {
+ RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
+ return true;
+ }
+ // The switch couldn't be converted into a select.
+ return false;
+}
+
+namespace {
+
+/// This class represents a lookup table that can be used to replace a switch.
+class SwitchLookupTable {
+public:
+ /// Create a lookup table to use as a switch replacement with the contents
+ /// of Values, using DefaultValue to fill any holes in the table.
+ SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
+
+ /// Build instructions with Builder to retrieve the value at
+ /// the position given by Index in the lookup table.
+ Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
+
+ /// Return true if a table with TableSize elements of
+ /// type ElementType would fit in a target-legal register.
+ static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
+ Type *ElementType);
+
+private:
+ // Depending on the contents of the table, it can be represented in
+ // different ways.
+ enum {
+ // For tables where each element contains the same value, we just have to
+ // store that single value and return it for each lookup.
+ SingleValueKind,
+
+ // For tables where there is a linear relationship between table index
+ // and values. We calculate the result with a simple multiplication
+ // and addition instead of a table lookup.
+ LinearMapKind,
+
+ // For small tables with integer elements, we can pack them into a bitmap
+ // that fits into a target-legal register. Values are retrieved by
+ // shift and mask operations.
+ BitMapKind,
+
+ // The table is stored as an array of values. Values are retrieved by load
+ // instructions from the table.
+ ArrayKind
+ } Kind;
+
+ // For SingleValueKind, this is the single value.
+ Constant *SingleValue = nullptr;
+
+ // For BitMapKind, this is the bitmap.
+ ConstantInt *BitMap = nullptr;
+ IntegerType *BitMapElementTy = nullptr;
+
+ // For LinearMapKind, these are the constants used to derive the value.
+ ConstantInt *LinearOffset = nullptr;
+ ConstantInt *LinearMultiplier = nullptr;
+
+ // For ArrayKind, this is the array.
+ GlobalVariable *Array = nullptr;
+};
+
+} // end anonymous namespace
+
+SwitchLookupTable::SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
+ assert(Values.size() && "Can't build lookup table without values!");
+ assert(TableSize >= Values.size() && "Can't fit values in table!");
+
+ // If all values in the table are equal, this is that value.
+ SingleValue = Values.begin()->second;
+
+ Type *ValueType = Values.begin()->second->getType();
+
+ // Build up the table contents.
+ SmallVector<Constant *, 64> TableContents(TableSize);
+ for (size_t I = 0, E = Values.size(); I != E; ++I) {
+ ConstantInt *CaseVal = Values[I].first;
+ Constant *CaseRes = Values[I].second;
+ assert(CaseRes->getType() == ValueType);
+
+ uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
+ TableContents[Idx] = CaseRes;
+
+ if (CaseRes != SingleValue)
+ SingleValue = nullptr;
+ }
+
+ // Fill in any holes in the table with the default result.
+ if (Values.size() < TableSize) {
+ assert(DefaultValue &&
+ "Need a default value to fill the lookup table holes.");
+ assert(DefaultValue->getType() == ValueType);
+ for (uint64_t I = 0; I < TableSize; ++I) {
+ if (!TableContents[I])
+ TableContents[I] = DefaultValue;
+ }
+
+ if (DefaultValue != SingleValue)
+ SingleValue = nullptr;
+ }
+
+ // If each element in the table contains the same value, we only need to store
+ // that single value.
+ if (SingleValue) {
+ Kind = SingleValueKind;
+ return;
+ }
+
+ // Check if we can derive the value with a linear transformation from the
+ // table index.
+ if (isa<IntegerType>(ValueType)) {
+ bool LinearMappingPossible = true;
+ APInt PrevVal;
+ APInt DistToPrev;
+ assert(TableSize >= 2 && "Should be a SingleValue table.");
+ // Check if there is the same distance between two consecutive values.
+ for (uint64_t I = 0; I < TableSize; ++I) {
+ ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
+ if (!ConstVal) {
+ // This is an undef. We could deal with it, but undefs in lookup tables
+ // are very seldom. It's probably not worth the additional complexity.
+ LinearMappingPossible = false;
+ break;
+ }
+ const APInt &Val = ConstVal->getValue();
+ if (I != 0) {
+ APInt Dist = Val - PrevVal;
+ if (I == 1) {
+ DistToPrev = Dist;
+ } else if (Dist != DistToPrev) {
+ LinearMappingPossible = false;
+ break;
+ }
+ }
+ PrevVal = Val;
+ }
+ if (LinearMappingPossible) {
+ LinearOffset = cast<ConstantInt>(TableContents[0]);
+ LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
+ Kind = LinearMapKind;
+ ++NumLinearMaps;
+ return;
+ }
+ }
+
+ // If the type is integer and the table fits in a register, build a bitmap.
+ if (WouldFitInRegister(DL, TableSize, ValueType)) {
+ IntegerType *IT = cast<IntegerType>(ValueType);
+ APInt TableInt(TableSize * IT->getBitWidth(), 0);
+ for (uint64_t I = TableSize; I > 0; --I) {
+ TableInt <<= IT->getBitWidth();
+ // Insert values into the bitmap. Undef values are set to zero.
+ if (!isa<UndefValue>(TableContents[I - 1])) {
+ ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
+ TableInt |= Val->getValue().zext(TableInt.getBitWidth());
+ }
+ }
+ BitMap = ConstantInt::get(M.getContext(), TableInt);
+ BitMapElementTy = IT;
+ Kind = BitMapKind;
+ ++NumBitMaps;
+ return;
+ }
+
+ // Store the table in an array.
+ ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
+ Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
+
+ Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
+ GlobalVariable::PrivateLinkage, Initializer,
+ "switch.table." + FuncName);
+ Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
+ // Set the alignment to that of an array items. We will be only loading one
+ // value out of it.
+ Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
+ Kind = ArrayKind;
+}
+
+Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
+ switch (Kind) {
+ case SingleValueKind:
+ return SingleValue;
+ case LinearMapKind: {
+ // Derive the result value from the input value.
+ Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
+ false, "switch.idx.cast");
+ if (!LinearMultiplier->isOne())
+ Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
+ if (!LinearOffset->isZero())
+ Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
+ return Result;
+ }
+ case BitMapKind: {
+ // Type of the bitmap (e.g. i59).
+ IntegerType *MapTy = BitMap->getType();
+
+ // Cast Index to the same type as the bitmap.
+ // Note: The Index is <= the number of elements in the table, so
+ // truncating it to the width of the bitmask is safe.
+ Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
+
+ // Multiply the shift amount by the element width.
+ ShiftAmt = Builder.CreateMul(
+ ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
+ "switch.shiftamt");
+
+ // Shift down.
+ Value *DownShifted =
+ Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
+ // Mask off.
+ return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
+ }
+ case ArrayKind: {
+ // Make sure the table index will not overflow when treated as signed.
+ IntegerType *IT = cast<IntegerType>(Index->getType());
+ uint64_t TableSize =
+ Array->getInitializer()->getType()->getArrayNumElements();
+ if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
+ Index = Builder.CreateZExt(
+ Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
+ "switch.tableidx.zext");
+
+ Value *GEPIndices[] = {Builder.getInt32(0), Index};
+ Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
+ GEPIndices, "switch.gep");
+ return Builder.CreateLoad(
+ cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
+ "switch.load");
+ }
+ }
+ llvm_unreachable("Unknown lookup table kind!");
+}
+
+bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
+ uint64_t TableSize,
+ Type *ElementType) {
+ auto *IT = dyn_cast<IntegerType>(ElementType);
+ if (!IT)
+ return false;
+ // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
+ // are <= 15, we could try to narrow the type.
+
+ // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
+ if (TableSize >= UINT_MAX / IT->getBitWidth())
+ return false;
+ return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
+}
+
+/// Determine whether a lookup table should be built for this switch, based on
+/// the number of cases, size of the table, and the types of the results.
+static bool
+ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
+ const TargetTransformInfo &TTI, const DataLayout &DL,
+ const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
+ if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
+ return false; // TableSize overflowed, or mul below might overflow.
+
+ bool AllTablesFitInRegister = true;
+ bool HasIllegalType = false;
+ for (const auto &I : ResultTypes) {
+ Type *Ty = I.second;
+
+ // Saturate this flag to true.
+ HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
+
+ // Saturate this flag to false.
+ AllTablesFitInRegister =
+ AllTablesFitInRegister &&
+ SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
+
+ // If both flags saturate, we're done. NOTE: This *only* works with
+ // saturating flags, and all flags have to saturate first due to the
+ // non-deterministic behavior of iterating over a dense map.
+ if (HasIllegalType && !AllTablesFitInRegister)
+ break;
+ }
+
+ // If each table would fit in a register, we should build it anyway.
+ if (AllTablesFitInRegister)
+ return true;
+
+ // Don't build a table that doesn't fit in-register if it has illegal types.
+ if (HasIllegalType)
+ return false;
+
+ // The table density should be at least 40%. This is the same criterion as for
+ // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
+ // FIXME: Find the best cut-off.
+ return SI->getNumCases() * 10 >= TableSize * 4;
+}
+
+/// Try to reuse the switch table index compare. Following pattern:
+/// \code
+/// if (idx < tablesize)
+/// r = table[idx]; // table does not contain default_value
+/// else
+/// r = default_value;
+/// if (r != default_value)
+/// ...
+/// \endcode
+/// Is optimized to:
+/// \code
+/// cond = idx < tablesize;
+/// if (cond)
+/// r = table[idx];
+/// else
+/// r = default_value;
+/// if (cond)
+/// ...
+/// \endcode
+/// Jump threading will then eliminate the second if(cond).
+static void reuseTableCompare(
+ User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
+ Constant *DefaultValue,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
+ ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
+ if (!CmpInst)
+ return;
+
+ // We require that the compare is in the same block as the phi so that jump
+ // threading can do its work afterwards.
+ if (CmpInst->getParent() != PhiBlock)
+ return;
+
+ Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
+ if (!CmpOp1)
+ return;
+
+ Value *RangeCmp = RangeCheckBranch->getCondition();
+ Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
+ Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
+
+ // Check if the compare with the default value is constant true or false.
+ Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
+ DefaultValue, CmpOp1, true);
+ if (DefaultConst != TrueConst && DefaultConst != FalseConst)
+ return;
+
+ // Check if the compare with the case values is distinct from the default
+ // compare result.
+ for (auto ValuePair : Values) {
+ Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
+ ValuePair.second, CmpOp1, true);
+ if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
+ return;
+ assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
+ "Expect true or false as compare result.");
+ }
+
+ // Check if the branch instruction dominates the phi node. It's a simple
+ // dominance check, but sufficient for our needs.
+ // Although this check is invariant in the calling loops, it's better to do it
+ // at this late stage. Practically we do it at most once for a switch.
+ BasicBlock *BranchBlock = RangeCheckBranch->getParent();
+ for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
+ return;
+ }
+
+ if (DefaultConst == FalseConst) {
+ // The compare yields the same result. We can replace it.
+ CmpInst->replaceAllUsesWith(RangeCmp);
+ ++NumTableCmpReuses;
+ } else {
+ // The compare yields the same result, just inverted. We can replace it.
+ Value *InvertedTableCmp = BinaryOperator::CreateXor(
+ RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
+ RangeCheckBranch);
+ CmpInst->replaceAllUsesWith(InvertedTableCmp);
+ ++NumTableCmpReuses;
+ }
+}
+
+/// If the switch is only used to initialize one or more phi nodes in a common
+/// successor block with different constant values, replace the switch with
+/// lookup tables.
+static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ assert(SI->getNumCases() > 1 && "Degenerate switch?");
+
+ Function *Fn = SI->getParent()->getParent();
+ // Only build lookup table when we have a target that supports it or the
+ // attribute is not set.
+ if (!TTI.shouldBuildLookupTables() ||
+ (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
+ return false;
+
+ // FIXME: If the switch is too sparse for a lookup table, perhaps we could
+ // split off a dense part and build a lookup table for that.
+
+ // FIXME: This creates arrays of GEPs to constant strings, which means each
+ // GEP needs a runtime relocation in PIC code. We should just build one big
+ // string and lookup indices into that.
+
+ // Ignore switches with less than three cases. Lookup tables will not make
+ // them faster, so we don't analyze them.
+ if (SI->getNumCases() < 3)
+ return false;
+
+ // Figure out the corresponding result for each case value and phi node in the
+ // common destination, as well as the min and max case values.
+ assert(!SI->cases().empty());
+ SwitchInst::CaseIt CI = SI->case_begin();
+ ConstantInt *MinCaseVal = CI->getCaseValue();
+ ConstantInt *MaxCaseVal = CI->getCaseValue();
+
+ BasicBlock *CommonDest = nullptr;
+
+ using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
+ SmallDenseMap<PHINode *, ResultListTy> ResultLists;
+
+ SmallDenseMap<PHINode *, Constant *> DefaultResults;
+ SmallDenseMap<PHINode *, Type *> ResultTypes;
+ SmallVector<PHINode *, 4> PHIs;
+
+ for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
+ ConstantInt *CaseVal = CI->getCaseValue();
+ if (CaseVal->getValue().slt(MinCaseVal->getValue()))
+ MinCaseVal = CaseVal;
+ if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
+ MaxCaseVal = CaseVal;
+
+ // Resulting value at phi nodes for this case value.
+ using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
+ ResultsTy Results;
+ if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
+ Results, DL, TTI))
+ return false;
+
+ // Append the result from this case to the list for each phi.
+ for (const auto &I : Results) {
+ PHINode *PHI = I.first;
+ Constant *Value = I.second;
+ if (!ResultLists.count(PHI))
+ PHIs.push_back(PHI);
+ ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
+ }
+ }
+
+ // Keep track of the result types.
+ for (PHINode *PHI : PHIs) {
+ ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
+ }
+
+ uint64_t NumResults = ResultLists[PHIs[0]].size();
+ APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
+ uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
+ bool TableHasHoles = (NumResults < TableSize);
+
+ // If the table has holes, we need a constant result for the default case
+ // or a bitmask that fits in a register.
+ SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
+ bool HasDefaultResults =
+ GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
+ DefaultResultsList, DL, TTI);
+
+ bool NeedMask = (TableHasHoles && !HasDefaultResults);
+ if (NeedMask) {
+ // As an extra penalty for the validity test we require more cases.
+ if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
+ return false;
+ if (!DL.fitsInLegalInteger(TableSize))
+ return false;
+ }
+
+ for (const auto &I : DefaultResultsList) {
+ PHINode *PHI = I.first;
+ Constant *Result = I.second;
+ DefaultResults[PHI] = Result;
+ }
+
+ if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
+ return false;
+
+ // Create the BB that does the lookups.
+ Module &Mod = *CommonDest->getParent()->getParent();
+ BasicBlock *LookupBB = BasicBlock::Create(
+ Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
+
+ // Compute the table index value.
+ Builder.SetInsertPoint(SI);
+ Value *TableIndex;
+ if (MinCaseVal->isNullValue())
+ TableIndex = SI->getCondition();
+ else
+ TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
+ "switch.tableidx");
+
+ // Compute the maximum table size representable by the integer type we are
+ // switching upon.
+ unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
+ uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
+ assert(MaxTableSize >= TableSize &&
+ "It is impossible for a switch to have more entries than the max "
+ "representable value of its input integer type's size.");
+
+ // If the default destination is unreachable, or if the lookup table covers
+ // all values of the conditional variable, branch directly to the lookup table
+ // BB. Otherwise, check that the condition is within the case range.
+ const bool DefaultIsReachable =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+ const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
+ BranchInst *RangeCheckBranch = nullptr;
+
+ if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
+ Builder.CreateBr(LookupBB);
+ // Note: We call removeProdecessor later since we need to be able to get the
+ // PHI value for the default case in case we're using a bit mask.
+ } else {
+ Value *Cmp = Builder.CreateICmpULT(
+ TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
+ RangeCheckBranch =
+ Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
+ }
+
+ // Populate the BB that does the lookups.
+ Builder.SetInsertPoint(LookupBB);
+
+ if (NeedMask) {
+ // Before doing the lookup, we do the hole check. The LookupBB is therefore
+ // re-purposed to do the hole check, and we create a new LookupBB.
+ BasicBlock *MaskBB = LookupBB;
+ MaskBB->setName("switch.hole_check");
+ LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
+ CommonDest->getParent(), CommonDest);
+
+ // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
+ // unnecessary illegal types.
+ uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
+ APInt MaskInt(TableSizePowOf2, 0);
+ APInt One(TableSizePowOf2, 1);
+ // Build bitmask; fill in a 1 bit for every case.
+ const ResultListTy &ResultList = ResultLists[PHIs[0]];
+ for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
+ uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
+ .getLimitedValue();
+ MaskInt |= One << Idx;
+ }
+ ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
+
+ // Get the TableIndex'th bit of the bitmask.
+ // If this bit is 0 (meaning hole) jump to the default destination,
+ // else continue with table lookup.
+ IntegerType *MapTy = TableMask->getType();
+ Value *MaskIndex =
+ Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
+ Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
+ Value *LoBit = Builder.CreateTrunc(
+ Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
+ Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
+
+ Builder.SetInsertPoint(LookupBB);
+ AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
+ }
+
+ if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
+ // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
+ // do not delete PHINodes here.
+ SI->getDefaultDest()->removePredecessor(SI->getParent(),
+ /*KeepOneInputPHIs=*/true);
+ }
+
+ bool ReturnedEarly = false;
+ for (PHINode *PHI : PHIs) {
+ const ResultListTy &ResultList = ResultLists[PHI];
+
+ // If using a bitmask, use any value to fill the lookup table holes.
+ Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
+ StringRef FuncName = Fn->getName();
+ SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
+ FuncName);
+
+ Value *Result = Table.BuildLookup(TableIndex, Builder);
+
+ // If the result is used to return immediately from the function, we want to
+ // do that right here.
+ if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
+ PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
+ Builder.CreateRet(Result);
+ ReturnedEarly = true;
+ break;
+ }
+
+ // Do a small peephole optimization: re-use the switch table compare if
+ // possible.
+ if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
+ BasicBlock *PhiBlock = PHI->getParent();
+ // Search for compare instructions which use the phi.
+ for (auto *User : PHI->users()) {
+ reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
+ }
+ }
+
+ PHI->addIncoming(Result, LookupBB);
+ }
+
+ if (!ReturnedEarly)
+ Builder.CreateBr(CommonDest);
+
+ // Remove the switch.
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
+ BasicBlock *Succ = SI->getSuccessor(i);
+
+ if (Succ == SI->getDefaultDest())
+ continue;
+ Succ->removePredecessor(SI->getParent());
+ }
+ SI->eraseFromParent();
+
+ ++NumLookupTables;
+ if (NeedMask)
+ ++NumLookupTablesHoles;
+ return true;
+}
+
+static bool isSwitchDense(ArrayRef<int64_t> Values) {
+ // See also SelectionDAGBuilder::isDense(), which this function was based on.
+ uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
+ uint64_t Range = Diff + 1;
+ uint64_t NumCases = Values.size();
+ // 40% is the default density for building a jump table in optsize/minsize mode.
+ uint64_t MinDensity = 40;
+
+ return NumCases * 100 >= Range * MinDensity;
+}
+
+/// Try to transform a switch that has "holes" in it to a contiguous sequence
+/// of cases.
+///
+/// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
+/// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
+///
+/// This converts a sparse switch into a dense switch which allows better
+/// lowering and could also allow transforming into a lookup table.
+static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
+ if (CondTy->getIntegerBitWidth() > 64 ||
+ !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
+ return false;
+ // Only bother with this optimization if there are more than 3 switch cases;
+ // SDAG will only bother creating jump tables for 4 or more cases.
+ if (SI->getNumCases() < 4)
+ return false;
+
+ // This transform is agnostic to the signedness of the input or case values. We
+ // can treat the case values as signed or unsigned. We can optimize more common
+ // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
+ // as signed.
+ SmallVector<int64_t,4> Values;
+ for (auto &C : SI->cases())
+ Values.push_back(C.getCaseValue()->getValue().getSExtValue());
+ llvm::sort(Values);
+
+ // If the switch is already dense, there's nothing useful to do here.
+ if (isSwitchDense(Values))
+ return false;
+
+ // First, transform the values such that they start at zero and ascend.
+ int64_t Base = Values[0];
+ for (auto &V : Values)
+ V -= (uint64_t)(Base);
+
+ // Now we have signed numbers that have been shifted so that, given enough
+ // precision, there are no negative values. Since the rest of the transform
+ // is bitwise only, we switch now to an unsigned representation.
+
+ // This transform can be done speculatively because it is so cheap - it
+ // results in a single rotate operation being inserted.
+ // FIXME: It's possible that optimizing a switch on powers of two might also
+ // be beneficial - flag values are often powers of two and we could use a CLZ
+ // as the key function.
+
+ // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
+ // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
+ // less than 64.
+ unsigned Shift = 64;
+ for (auto &V : Values)
+ Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
+ assert(Shift < 64);
+ if (Shift > 0)
+ for (auto &V : Values)
+ V = (int64_t)((uint64_t)V >> Shift);
+
+ if (!isSwitchDense(Values))
+ // Transform didn't create a dense switch.
+ return false;
+
+ // The obvious transform is to shift the switch condition right and emit a
+ // check that the condition actually cleanly divided by GCD, i.e.
+ // C & (1 << Shift - 1) == 0
+ // inserting a new CFG edge to handle the case where it didn't divide cleanly.
+ //
+ // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
+ // shift and puts the shifted-off bits in the uppermost bits. If any of these
+ // are nonzero then the switch condition will be very large and will hit the
+ // default case.
+
+ auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
+ Builder.SetInsertPoint(SI);
+ auto *ShiftC = ConstantInt::get(Ty, Shift);
+ auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
+ auto *LShr = Builder.CreateLShr(Sub, ShiftC);
+ auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
+ auto *Rot = Builder.CreateOr(LShr, Shl);
+ SI->replaceUsesOfWith(SI->getCondition(), Rot);
+
+ for (auto Case : SI->cases()) {
+ auto *Orig = Case.getCaseValue();
+ auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
+ Case.setValue(
+ cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
+ }
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
+ BasicBlock *BB = SI->getParent();
+
+ if (isValueEqualityComparison(SI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
+ return requestResimplify();
+
+ Value *Cond = SI->getCondition();
+ if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
+ if (SimplifySwitchOnSelect(SI, Select))
+ return requestResimplify();
+
+ // If the block only contains the switch, see if we can fold the block
+ // away into any preds.
+ if (SI == &*BB->instructionsWithoutDebug().begin())
+ if (FoldValueComparisonIntoPredecessors(SI, Builder))
+ return requestResimplify();
+ }
+
+ // Try to transform the switch into an icmp and a branch.
+ if (TurnSwitchRangeIntoICmp(SI, Builder))
+ return requestResimplify();
+
+ // Remove unreachable cases.
+ if (eliminateDeadSwitchCases(SI, Options.AC, DL))
+ return requestResimplify();
+
+ if (switchToSelect(SI, Builder, DL, TTI))
+ return requestResimplify();
+
+ if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
+ return requestResimplify();
+
+ // The conversion from switch to lookup tables results in difficult-to-analyze
+ // code and makes pruning branches much harder. This is a problem if the
+ // switch expression itself can still be restricted as a result of inlining or
+ // CVP. Therefore, only apply this transformation during late stages of the
+ // optimisation pipeline.
+ if (Options.ConvertSwitchToLookupTable &&
+ SwitchToLookupTable(SI, Builder, DL, TTI))
+ return requestResimplify();
+
+ if (ReduceSwitchRange(SI, Builder, DL, TTI))
+ return requestResimplify();
+
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
+ BasicBlock *BB = IBI->getParent();
+ bool Changed = false;
+
+ // Eliminate redundant destinations.
+ SmallPtrSet<Value *, 8> Succs;
+ for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
+ BasicBlock *Dest = IBI->getDestination(i);
+ if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
+ Dest->removePredecessor(BB);
+ IBI->removeDestination(i);
+ --i;
+ --e;
+ Changed = true;
+ }
+ }
+
+ if (IBI->getNumDestinations() == 0) {
+ // If the indirectbr has no successors, change it to unreachable.
+ new UnreachableInst(IBI->getContext(), IBI);
+ EraseTerminatorAndDCECond(IBI);
+ return true;
+ }
+
+ if (IBI->getNumDestinations() == 1) {
+ // If the indirectbr has one successor, change it to a direct branch.
+ BranchInst::Create(IBI->getDestination(0), IBI);
+ EraseTerminatorAndDCECond(IBI);
+ return true;
+ }
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
+ if (SimplifyIndirectBrOnSelect(IBI, SI))
+ return requestResimplify();
+ }
+ return Changed;
+}
+
+/// Given an block with only a single landing pad and a unconditional branch
+/// try to find another basic block which this one can be merged with. This
+/// handles cases where we have multiple invokes with unique landing pads, but
+/// a shared handler.
+///
+/// We specifically choose to not worry about merging non-empty blocks
+/// here. That is a PRE/scheduling problem and is best solved elsewhere. In
+/// practice, the optimizer produces empty landing pad blocks quite frequently
+/// when dealing with exception dense code. (see: instcombine, gvn, if-else
+/// sinking in this file)
+///
+/// This is primarily a code size optimization. We need to avoid performing
+/// any transform which might inhibit optimization (such as our ability to
+/// specialize a particular handler via tail commoning). We do this by not
+/// merging any blocks which require us to introduce a phi. Since the same
+/// values are flowing through both blocks, we don't lose any ability to
+/// specialize. If anything, we make such specialization more likely.
+///
+/// TODO - This transformation could remove entries from a phi in the target
+/// block when the inputs in the phi are the same for the two blocks being
+/// merged. In some cases, this could result in removal of the PHI entirely.
+static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
+ BasicBlock *BB) {
+ auto Succ = BB->getUniqueSuccessor();
+ assert(Succ);
+ // If there's a phi in the successor block, we'd likely have to introduce
+ // a phi into the merged landing pad block.
+ if (isa<PHINode>(*Succ->begin()))
+ return false;
+
+ for (BasicBlock *OtherPred : predecessors(Succ)) {
+ if (BB == OtherPred)
+ continue;
+ BasicBlock::iterator I = OtherPred->begin();
+ LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
+ if (!LPad2 || !LPad2->isIdenticalTo(LPad))
+ continue;
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I)
+ ;
+ BranchInst *BI2 = dyn_cast<BranchInst>(I);
+ if (!BI2 || !BI2->isIdenticalTo(BI))
+ continue;
+
+ // We've found an identical block. Update our predecessors to take that
+ // path instead and make ourselves dead.
+ SmallPtrSet<BasicBlock *, 16> Preds;
+ Preds.insert(pred_begin(BB), pred_end(BB));
+ for (BasicBlock *Pred : Preds) {
+ InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
+ assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
+ "unexpected successor");
+ II->setUnwindDest(OtherPred);
+ }
+
+ // The debug info in OtherPred doesn't cover the merged control flow that
+ // used to go through BB. We need to delete it or update it.
+ for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
+ Instruction &Inst = *I;
+ I++;
+ if (isa<DbgInfoIntrinsic>(Inst))
+ Inst.eraseFromParent();
+ }
+
+ SmallPtrSet<BasicBlock *, 16> Succs;
+ Succs.insert(succ_begin(BB), succ_end(BB));
+ for (BasicBlock *Succ : Succs) {
+ Succ->removePredecessor(BB);
+ }
+
+ IRBuilder<> Builder(BI);
+ Builder.CreateUnreachable();
+ BI->eraseFromParent();
+ return true;
+ }
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
+ IRBuilder<> &Builder) {
+ BasicBlock *BB = BI->getParent();
+ BasicBlock *Succ = BI->getSuccessor(0);
+
+ // If the Terminator is the only non-phi instruction, simplify the block.
+ // If LoopHeader is provided, check if the block or its successor is a loop
+ // header. (This is for early invocations before loop simplify and
+ // vectorization to keep canonical loop forms for nested loops. These blocks
+ // can be eliminated when the pass is invoked later in the back-end.)
+ // Note that if BB has only one predecessor then we do not introduce new
+ // backedge, so we can eliminate BB.
+ bool NeedCanonicalLoop =
+ Options.NeedCanonicalLoop &&
+ (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
+ (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
+ BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
+ if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
+ !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
+ return true;
+
+ // If the only instruction in the block is a seteq/setne comparison against a
+ // constant, try to simplify the block.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
+ if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I)
+ ;
+ if (I->isTerminator() &&
+ tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
+ return true;
+ }
+
+ // See if we can merge an empty landing pad block with another which is
+ // equivalent.
+ if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I)
+ ;
+ if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
+ return true;
+ }
+
+ // If this basic block is ONLY a compare and a branch, and if a predecessor
+ // branches to us and our successor, fold the comparison into the
+ // predecessor and use logical operations to update the incoming value
+ // for PHI nodes in common successor.
+ if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
+ return requestResimplify();
+ return false;
+}
+
+static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
+ BasicBlock *PredPred = nullptr;
+ for (auto *P : predecessors(BB)) {
+ BasicBlock *PPred = P->getSinglePredecessor();
+ if (!PPred || (PredPred && PredPred != PPred))
+ return nullptr;
+ PredPred = PPred;
+ }
+ return PredPred;
+}
+
+bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
+ BasicBlock *BB = BI->getParent();
+ const Function *Fn = BB->getParent();
+ if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
+ return false;
+
+ // Conditional branch
+ if (isValueEqualityComparison(BI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this
+ // switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
+ return requestResimplify();
+
+ // This block must be empty, except for the setcond inst, if it exists.
+ // Ignore dbg intrinsics.
+ auto I = BB->instructionsWithoutDebug().begin();
+ if (&*I == BI) {
+ if (FoldValueComparisonIntoPredecessors(BI, Builder))
+ return requestResimplify();
+ } else if (&*I == cast<Instruction>(BI->getCondition())) {
+ ++I;
+ if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
+ return requestResimplify();
+ }
+ }
+
+ // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
+ if (SimplifyBranchOnICmpChain(BI, Builder, DL))
+ return true;
+
+ // If this basic block has dominating predecessor blocks and the dominating
+ // blocks' conditions imply BI's condition, we know the direction of BI.
+ Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
+ if (Imp) {
+ // Turn this into a branch on constant.
+ auto *OldCond = BI->getCondition();
+ ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
+ : ConstantInt::getFalse(BB->getContext());
+ BI->setCondition(TorF);
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+ return requestResimplify();
+ }
+
+ // If this basic block is ONLY a compare and a branch, and if a predecessor
+ // branches to us and one of our successors, fold the comparison into the
+ // predecessor and use logical operations to pick the right destination.
+ if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
+ return requestResimplify();
+
+ // We have a conditional branch to two blocks that are only reachable
+ // from BI. We know that the condbr dominates the two blocks, so see if
+ // there is any identical code in the "then" and "else" blocks. If so, we
+ // can hoist it up to the branching block.
+ if (BI->getSuccessor(0)->getSinglePredecessor()) {
+ if (BI->getSuccessor(1)->getSinglePredecessor()) {
+ if (HoistThenElseCodeToIf(BI, TTI))
+ return requestResimplify();
+ } else {
+ // If Successor #1 has multiple preds, we may be able to conditionally
+ // execute Successor #0 if it branches to Successor #1.
+ Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
+ if (Succ0TI->getNumSuccessors() == 1 &&
+ Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
+ return requestResimplify();
+ }
+ } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
+ // If Successor #0 has multiple preds, we may be able to conditionally
+ // execute Successor #1 if it branches to Successor #0.
+ Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
+ if (Succ1TI->getNumSuccessors() == 1 &&
+ Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
+ return requestResimplify();
+ }
+
+ // If this is a branch on a phi node in the current block, thread control
+ // through this block if any PHI node entries are constants.
+ if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
+ if (PN->getParent() == BI->getParent())
+ if (FoldCondBranchOnPHI(BI, DL, Options.AC))
+ return requestResimplify();
+
+ // Scan predecessor blocks for conditional branches.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
+ return requestResimplify();
+
+ // Look for diamond patterns.
+ if (MergeCondStores)
+ if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
+ if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (mergeConditionalStores(PBI, BI, DL, TTI))
+ return requestResimplify();
+
+ return false;
+}
+
+/// Check if passing a value to an instruction will cause undefined behavior.
+static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C)
+ return false;
+
+ if (I->use_empty())
+ return false;
+
+ if (C->isNullValue() || isa<UndefValue>(C)) {
+ // Only look at the first use, avoid hurting compile time with long uselists
+ User *Use = *I->user_begin();
+
+ // Now make sure that there are no instructions in between that can alter
+ // control flow (eg. calls)
+ for (BasicBlock::iterator
+ i = ++BasicBlock::iterator(I),
+ UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
+ i != UI; ++i)
+ if (i == I->getParent()->end() || i->mayHaveSideEffects())
+ return false;
+
+ // Look through GEPs. A load from a GEP derived from NULL is still undefined
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
+ if (GEP->getPointerOperand() == I)
+ return passingValueIsAlwaysUndefined(V, GEP);
+
+ // Look through bitcasts.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
+ return passingValueIsAlwaysUndefined(V, BC);
+
+ // Load from null is undefined.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Use))
+ if (!LI->isVolatile())
+ return !NullPointerIsDefined(LI->getFunction(),
+ LI->getPointerAddressSpace());
+
+ // Store to null is undefined.
+ if (StoreInst *SI = dyn_cast<StoreInst>(Use))
+ if (!SI->isVolatile())
+ return (!NullPointerIsDefined(SI->getFunction(),
+ SI->getPointerAddressSpace())) &&
+ SI->getPointerOperand() == I;
+
+ // A call to null is undefined.
+ if (auto CS = CallSite(Use))
+ return !NullPointerIsDefined(CS->getFunction()) &&
+ CS.getCalledValue() == I;
+ }
+ return false;
+}
+
+/// If BB has an incoming value that will always trigger undefined behavior
+/// (eg. null pointer dereference), remove the branch leading here.
+static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
+ for (PHINode &PHI : BB->phis())
+ for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
+ if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
+ Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
+ IRBuilder<> Builder(T);
+ if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
+ BB->removePredecessor(PHI.getIncomingBlock(i));
+ // Turn uncoditional branches into unreachables and remove the dead
+ // destination from conditional branches.
+ if (BI->isUnconditional())
+ Builder.CreateUnreachable();
+ else
+ Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
+ : BI->getSuccessor(0));
+ BI->eraseFromParent();
+ return true;
+ }
+ // TODO: SwitchInst.
+ }
+
+ return false;
+}
+
+bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
+ bool Changed = false;
+
+ assert(BB && BB->getParent() && "Block not embedded in function!");
+ assert(BB->getTerminator() && "Degenerate basic block encountered!");
+
+ // Remove basic blocks that have no predecessors (except the entry block)...
+ // or that just have themself as a predecessor. These are unreachable.
+ if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
+ BB->getSinglePredecessor() == BB) {
+ LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
+ DeleteDeadBlock(BB);
+ return true;
+ }
+
+ // Check to see if we can constant propagate this terminator instruction
+ // away...
+ Changed |= ConstantFoldTerminator(BB, true);
+
+ // Check for and eliminate duplicate PHI nodes in this block.
+ Changed |= EliminateDuplicatePHINodes(BB);
+
+ // Check for and remove branches that will always cause undefined behavior.
+ Changed |= removeUndefIntroducingPredecessor(BB);
+
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ if (MergeBlockIntoPredecessor(BB))
+ return true;
+
+ if (SinkCommon && Options.SinkCommonInsts)
+ Changed |= SinkCommonCodeFromPredecessors(BB);
+
+ IRBuilder<> Builder(BB);
+
+ // If there is a trivial two-entry PHI node in this basic block, and we can
+ // eliminate it, do so now.
+ if (auto *PN = dyn_cast<PHINode>(BB->begin()))
+ if (PN->getNumIncomingValues() == 2)
+ Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
+
+ Builder.SetInsertPoint(BB->getTerminator());
+ if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+ if (BI->isUnconditional()) {
+ if (SimplifyUncondBranch(BI, Builder))
+ return true;
+ } else {
+ if (SimplifyCondBranch(BI, Builder))
+ return true;
+ }
+ } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ if (SimplifyReturn(RI, Builder))
+ return true;
+ } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
+ if (SimplifyResume(RI, Builder))
+ return true;
+ } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
+ if (SimplifyCleanupReturn(RI))
+ return true;
+ } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ if (SimplifySwitch(SI, Builder))
+ return true;
+ } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
+ if (SimplifyUnreachable(UI))
+ return true;
+ } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
+ if (SimplifyIndirectBr(IBI))
+ return true;
+ }
+
+ return Changed;
+}
+
+bool SimplifyCFGOpt::run(BasicBlock *BB) {
+ bool Changed = false;
+
+ // Repeated simplify BB as long as resimplification is requested.
+ do {
+ Resimplify = false;
+
+ // Perform one round of simplifcation. Resimplify flag will be set if
+ // another iteration is requested.
+ Changed |= simplifyOnce(BB);
+ } while (Resimplify);
+
+ return Changed;
+}
+
+bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
+ const SimplifyCFGOptions &Options,
+ SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
+ return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
+ Options)
+ .run(BB);
+}