summaryrefslogtreecommitdiff
path: root/llvm/tools/bugpoint/Miscompilation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/tools/bugpoint/Miscompilation.cpp')
-rw-r--r--llvm/tools/bugpoint/Miscompilation.cpp1096
1 files changed, 1096 insertions, 0 deletions
diff --git a/llvm/tools/bugpoint/Miscompilation.cpp b/llvm/tools/bugpoint/Miscompilation.cpp
new file mode 100644
index 000000000000..1621a51c91d6
--- /dev/null
+++ b/llvm/tools/bugpoint/Miscompilation.cpp
@@ -0,0 +1,1096 @@
+//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements optimizer and code generation miscompilation debugging
+// support.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ListReducer.h"
+#include "ToolRunner.h"
+#include "llvm/Config/config.h" // for HAVE_LINK_R
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Linker/Linker.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+
+using namespace llvm;
+
+namespace llvm {
+extern cl::opt<std::string> OutputPrefix;
+extern cl::list<std::string> InputArgv;
+} // end namespace llvm
+
+namespace {
+static llvm::cl::opt<bool> DisableLoopExtraction(
+ "disable-loop-extraction",
+ cl::desc("Don't extract loops when searching for miscompilations"),
+ cl::init(false));
+static llvm::cl::opt<bool> DisableBlockExtraction(
+ "disable-block-extraction",
+ cl::desc("Don't extract blocks when searching for miscompilations"),
+ cl::init(false));
+
+class ReduceMiscompilingPasses : public ListReducer<std::string> {
+ BugDriver &BD;
+
+public:
+ ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
+
+ Expected<TestResult> doTest(std::vector<std::string> &Prefix,
+ std::vector<std::string> &Suffix) override;
+};
+} // end anonymous namespace
+
+/// TestResult - After passes have been split into a test group and a control
+/// group, see if they still break the program.
+///
+Expected<ReduceMiscompilingPasses::TestResult>
+ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix,
+ std::vector<std::string> &Suffix) {
+ // First, run the program with just the Suffix passes. If it is still broken
+ // with JUST the kept passes, discard the prefix passes.
+ outs() << "Checking to see if '" << getPassesString(Suffix)
+ << "' compiles correctly: ";
+
+ std::string BitcodeResult;
+ if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
+ true /*quiet*/)) {
+ errs() << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.setPassesToRun(Suffix);
+ BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
+ // TODO: This should propagate the error instead of exiting.
+ if (Error E = BD.debugOptimizerCrash())
+ exit(1);
+ exit(0);
+ }
+
+ // Check to see if the finished program matches the reference output...
+ Expected<bool> Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
+ true /*delete bitcode*/);
+ if (Error E = Diff.takeError())
+ return std::move(E);
+ if (*Diff) {
+ outs() << " nope.\n";
+ if (Suffix.empty()) {
+ errs() << BD.getToolName() << ": I'm confused: the test fails when "
+ << "no passes are run, nondeterministic program?\n";
+ exit(1);
+ }
+ return KeepSuffix; // Miscompilation detected!
+ }
+ outs() << " yup.\n"; // No miscompilation!
+
+ if (Prefix.empty())
+ return NoFailure;
+
+ // Next, see if the program is broken if we run the "prefix" passes first,
+ // then separately run the "kept" passes.
+ outs() << "Checking to see if '" << getPassesString(Prefix)
+ << "' compiles correctly: ";
+
+ // If it is not broken with the kept passes, it's possible that the prefix
+ // passes must be run before the kept passes to break it. If the program
+ // WORKS after the prefix passes, but then fails if running the prefix AND
+ // kept passes, we can update our bitcode file to include the result of the
+ // prefix passes, then discard the prefix passes.
+ //
+ if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false /*delete*/,
+ true /*quiet*/)) {
+ errs() << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.setPassesToRun(Prefix);
+ BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
+ // TODO: This should propagate the error instead of exiting.
+ if (Error E = BD.debugOptimizerCrash())
+ exit(1);
+ exit(0);
+ }
+
+ // If the prefix maintains the predicate by itself, only keep the prefix!
+ Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false);
+ if (Error E = Diff.takeError())
+ return std::move(E);
+ if (*Diff) {
+ outs() << " nope.\n";
+ sys::fs::remove(BitcodeResult);
+ return KeepPrefix;
+ }
+ outs() << " yup.\n"; // No miscompilation!
+
+ // Ok, so now we know that the prefix passes work, try running the suffix
+ // passes on the result of the prefix passes.
+ //
+ std::unique_ptr<Module> PrefixOutput =
+ parseInputFile(BitcodeResult, BD.getContext());
+ if (!PrefixOutput) {
+ errs() << BD.getToolName() << ": Error reading bitcode file '"
+ << BitcodeResult << "'!\n";
+ exit(1);
+ }
+ sys::fs::remove(BitcodeResult);
+
+ // Don't check if there are no passes in the suffix.
+ if (Suffix.empty())
+ return NoFailure;
+
+ outs() << "Checking to see if '" << getPassesString(Suffix)
+ << "' passes compile correctly after the '" << getPassesString(Prefix)
+ << "' passes: ";
+
+ std::unique_ptr<Module> OriginalInput =
+ BD.swapProgramIn(std::move(PrefixOutput));
+ if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
+ true /*quiet*/)) {
+ errs() << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.setPassesToRun(Suffix);
+ BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
+ // TODO: This should propagate the error instead of exiting.
+ if (Error E = BD.debugOptimizerCrash())
+ exit(1);
+ exit(0);
+ }
+
+ // Run the result...
+ Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
+ true /*delete bitcode*/);
+ if (Error E = Diff.takeError())
+ return std::move(E);
+ if (*Diff) {
+ outs() << " nope.\n";
+ return KeepSuffix;
+ }
+
+ // Otherwise, we must not be running the bad pass anymore.
+ outs() << " yup.\n"; // No miscompilation!
+ // Restore orig program & free test.
+ BD.setNewProgram(std::move(OriginalInput));
+ return NoFailure;
+}
+
+namespace {
+class ReduceMiscompilingFunctions : public ListReducer<Function *> {
+ BugDriver &BD;
+ Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
+ std::unique_ptr<Module>);
+
+public:
+ ReduceMiscompilingFunctions(BugDriver &bd,
+ Expected<bool> (*F)(BugDriver &,
+ std::unique_ptr<Module>,
+ std::unique_ptr<Module>))
+ : BD(bd), TestFn(F) {}
+
+ Expected<TestResult> doTest(std::vector<Function *> &Prefix,
+ std::vector<Function *> &Suffix) override {
+ if (!Suffix.empty()) {
+ Expected<bool> Ret = TestFuncs(Suffix);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret)
+ return KeepSuffix;
+ }
+ if (!Prefix.empty()) {
+ Expected<bool> Ret = TestFuncs(Prefix);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret)
+ return KeepPrefix;
+ }
+ return NoFailure;
+ }
+
+ Expected<bool> TestFuncs(const std::vector<Function *> &Prefix);
+};
+} // end anonymous namespace
+
+/// Given two modules, link them together and run the program, checking to see
+/// if the program matches the diff. If there is an error, return NULL. If not,
+/// return the merged module. The Broken argument will be set to true if the
+/// output is different. If the DeleteInputs argument is set to true then this
+/// function deletes both input modules before it returns.
+///
+static Expected<std::unique_ptr<Module>> testMergedProgram(const BugDriver &BD,
+ const Module &M1,
+ const Module &M2,
+ bool &Broken) {
+ // Resulting merge of M1 and M2.
+ auto Merged = CloneModule(M1);
+ if (Linker::linkModules(*Merged, CloneModule(M2)))
+ // TODO: Shouldn't we thread the error up instead of exiting?
+ exit(1);
+
+ // Execute the program.
+ Expected<bool> Diff = BD.diffProgram(*Merged, "", "", false);
+ if (Error E = Diff.takeError())
+ return std::move(E);
+ Broken = *Diff;
+ return std::move(Merged);
+}
+
+/// split functions in a Module into two groups: those that are under
+/// consideration for miscompilation vs. those that are not, and test
+/// accordingly. Each group of functions becomes a separate Module.
+Expected<bool>
+ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function *> &Funcs) {
+ // Test to see if the function is misoptimized if we ONLY run it on the
+ // functions listed in Funcs.
+ outs() << "Checking to see if the program is misoptimized when "
+ << (Funcs.size() == 1 ? "this function is" : "these functions are")
+ << " run through the pass"
+ << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
+ PrintFunctionList(Funcs);
+ outs() << '\n';
+
+ // Create a clone for two reasons:
+ // * If the optimization passes delete any function, the deleted function
+ // will be in the clone and Funcs will still point to valid memory
+ // * If the optimization passes use interprocedural information to break
+ // a function, we want to continue with the original function. Otherwise
+ // we can conclude that a function triggers the bug when in fact one
+ // needs a larger set of original functions to do so.
+ ValueToValueMapTy VMap;
+ std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
+ std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));
+
+ std::vector<Function *> FuncsOnClone;
+ for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
+ Function *F = cast<Function>(VMap[Funcs[i]]);
+ FuncsOnClone.push_back(F);
+ }
+
+ // Split the module into the two halves of the program we want.
+ VMap.clear();
+ std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
+ std::unique_ptr<Module> ToOptimize =
+ SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);
+
+ Expected<bool> Broken =
+ TestFn(BD, std::move(ToOptimize), std::move(ToNotOptimize));
+
+ BD.setNewProgram(std::move(Orig));
+
+ return Broken;
+}
+
+/// Give anonymous global values names.
+static void DisambiguateGlobalSymbols(Module &M) {
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;
+ ++I)
+ if (!I->hasName())
+ I->setName("anon_global");
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (!I->hasName())
+ I->setName("anon_fn");
+}
+
+/// Given a reduced list of functions that still exposed the bug, check to see
+/// if we can extract the loops in the region without obscuring the bug. If so,
+/// it reduces the amount of code identified.
+///
+static Expected<bool>
+ExtractLoops(BugDriver &BD,
+ Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
+ std::unique_ptr<Module>),
+ std::vector<Function *> &MiscompiledFunctions) {
+ bool MadeChange = false;
+ while (1) {
+ if (BugpointIsInterrupted)
+ return MadeChange;
+
+ ValueToValueMapTy VMap;
+ std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
+ std::unique_ptr<Module> ToOptimize = SplitFunctionsOutOfModule(
+ ToNotOptimize.get(), MiscompiledFunctions, VMap);
+ std::unique_ptr<Module> ToOptimizeLoopExtracted =
+ BD.extractLoop(ToOptimize.get());
+ if (!ToOptimizeLoopExtracted)
+ // If the loop extractor crashed or if there were no extractible loops,
+ // then this chapter of our odyssey is over with.
+ return MadeChange;
+
+ errs() << "Extracted a loop from the breaking portion of the program.\n";
+
+ // Bugpoint is intentionally not very trusting of LLVM transformations. In
+ // particular, we're not going to assume that the loop extractor works, so
+ // we're going to test the newly loop extracted program to make sure nothing
+ // has broken. If something broke, then we'll inform the user and stop
+ // extraction.
+ AbstractInterpreter *AI = BD.switchToSafeInterpreter();
+ bool Failure;
+ Expected<std::unique_ptr<Module>> New = testMergedProgram(
+ BD, *ToOptimizeLoopExtracted, *ToNotOptimize, Failure);
+ if (Error E = New.takeError())
+ return std::move(E);
+ if (!*New)
+ return false;
+
+ // Delete the original and set the new program.
+ std::unique_ptr<Module> Old = BD.swapProgramIn(std::move(*New));
+ for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
+ MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);
+
+ if (Failure) {
+ BD.switchToInterpreter(AI);
+
+ // Merged program doesn't work anymore!
+ errs() << " *** ERROR: Loop extraction broke the program. :("
+ << " Please report a bug!\n";
+ errs() << " Continuing on with un-loop-extracted version.\n";
+
+ BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
+ *ToNotOptimize);
+ BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
+ *ToOptimize);
+ BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
+ *ToOptimizeLoopExtracted);
+
+ errs() << "Please submit the " << OutputPrefix
+ << "-loop-extract-fail-*.bc files.\n";
+ return MadeChange;
+ }
+ BD.switchToInterpreter(AI);
+
+ outs() << " Testing after loop extraction:\n";
+ // Clone modules, the tester function will free them.
+ std::unique_ptr<Module> TOLEBackup =
+ CloneModule(*ToOptimizeLoopExtracted, VMap);
+ std::unique_ptr<Module> TNOBackup = CloneModule(*ToNotOptimize, VMap);
+
+ for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
+ MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);
+
+ Expected<bool> Result = TestFn(BD, std::move(ToOptimizeLoopExtracted),
+ std::move(ToNotOptimize));
+ if (Error E = Result.takeError())
+ return std::move(E);
+
+ ToOptimizeLoopExtracted = std::move(TOLEBackup);
+ ToNotOptimize = std::move(TNOBackup);
+
+ if (!*Result) {
+ outs() << "*** Loop extraction masked the problem. Undoing.\n";
+ // If the program is not still broken, then loop extraction did something
+ // that masked the error. Stop loop extraction now.
+
+ std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
+ for (Function *F : MiscompiledFunctions) {
+ MisCompFunctions.emplace_back(F->getName(), F->getFunctionType());
+ }
+
+ if (Linker::linkModules(*ToNotOptimize,
+ std::move(ToOptimizeLoopExtracted)))
+ exit(1);
+
+ MiscompiledFunctions.clear();
+ for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
+ Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
+
+ assert(NewF && "Function not found??");
+ MiscompiledFunctions.push_back(NewF);
+ }
+
+ BD.setNewProgram(std::move(ToNotOptimize));
+ return MadeChange;
+ }
+
+ outs() << "*** Loop extraction successful!\n";
+
+ std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
+ for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
+ E = ToOptimizeLoopExtracted->end();
+ I != E; ++I)
+ if (!I->isDeclaration())
+ MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());
+
+ // Okay, great! Now we know that we extracted a loop and that loop
+ // extraction both didn't break the program, and didn't mask the problem.
+ // Replace the current program with the loop extracted version, and try to
+ // extract another loop.
+ if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted)))
+ exit(1);
+
+ // All of the Function*'s in the MiscompiledFunctions list are in the old
+ // module. Update this list to include all of the functions in the
+ // optimized and loop extracted module.
+ MiscompiledFunctions.clear();
+ for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
+ Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
+
+ assert(NewF && "Function not found??");
+ MiscompiledFunctions.push_back(NewF);
+ }
+
+ BD.setNewProgram(std::move(ToNotOptimize));
+ MadeChange = true;
+ }
+}
+
+namespace {
+class ReduceMiscompiledBlocks : public ListReducer<BasicBlock *> {
+ BugDriver &BD;
+ Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
+ std::unique_ptr<Module>);
+ std::vector<Function *> FunctionsBeingTested;
+
+public:
+ ReduceMiscompiledBlocks(BugDriver &bd,
+ Expected<bool> (*F)(BugDriver &,
+ std::unique_ptr<Module>,
+ std::unique_ptr<Module>),
+ const std::vector<Function *> &Fns)
+ : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
+
+ Expected<TestResult> doTest(std::vector<BasicBlock *> &Prefix,
+ std::vector<BasicBlock *> &Suffix) override {
+ if (!Suffix.empty()) {
+ Expected<bool> Ret = TestFuncs(Suffix);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret)
+ return KeepSuffix;
+ }
+ if (!Prefix.empty()) {
+ Expected<bool> Ret = TestFuncs(Prefix);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret)
+ return KeepPrefix;
+ }
+ return NoFailure;
+ }
+
+ Expected<bool> TestFuncs(const std::vector<BasicBlock *> &BBs);
+};
+} // end anonymous namespace
+
+/// TestFuncs - Extract all blocks for the miscompiled functions except for the
+/// specified blocks. If the problem still exists, return true.
+///
+Expected<bool>
+ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock *> &BBs) {
+ // Test to see if the function is misoptimized if we ONLY run it on the
+ // functions listed in Funcs.
+ outs() << "Checking to see if the program is misoptimized when all ";
+ if (!BBs.empty()) {
+ outs() << "but these " << BBs.size() << " blocks are extracted: ";
+ for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
+ outs() << BBs[i]->getName() << " ";
+ if (BBs.size() > 10)
+ outs() << "...";
+ } else {
+ outs() << "blocks are extracted.";
+ }
+ outs() << '\n';
+
+ // Split the module into the two halves of the program we want.
+ ValueToValueMapTy VMap;
+ std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
+ std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));
+ std::vector<Function *> FuncsOnClone;
+ std::vector<BasicBlock *> BBsOnClone;
+ for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) {
+ Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]);
+ FuncsOnClone.push_back(F);
+ }
+ for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
+ BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]);
+ BBsOnClone.push_back(BB);
+ }
+ VMap.clear();
+
+ std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
+ std::unique_ptr<Module> ToOptimize =
+ SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);
+
+ // Try the extraction. If it doesn't work, then the block extractor crashed
+ // or something, in which case bugpoint can't chase down this possibility.
+ if (std::unique_ptr<Module> New =
+ BD.extractMappedBlocksFromModule(BBsOnClone, ToOptimize.get())) {
+ Expected<bool> Ret = TestFn(BD, std::move(New), std::move(ToNotOptimize));
+ BD.setNewProgram(std::move(Orig));
+ return Ret;
+ }
+ BD.setNewProgram(std::move(Orig));
+ return false;
+}
+
+/// Given a reduced list of functions that still expose the bug, extract as many
+/// basic blocks from the region as possible without obscuring the bug.
+///
+static Expected<bool>
+ExtractBlocks(BugDriver &BD,
+ Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
+ std::unique_ptr<Module>),
+ std::vector<Function *> &MiscompiledFunctions) {
+ if (BugpointIsInterrupted)
+ return false;
+
+ std::vector<BasicBlock *> Blocks;
+ for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
+ for (BasicBlock &BB : *MiscompiledFunctions[i])
+ Blocks.push_back(&BB);
+
+ // Use the list reducer to identify blocks that can be extracted without
+ // obscuring the bug. The Blocks list will end up containing blocks that must
+ // be retained from the original program.
+ unsigned OldSize = Blocks.size();
+
+ // Check to see if all blocks are extractible first.
+ Expected<bool> Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
+ .TestFuncs(std::vector<BasicBlock *>());
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret) {
+ Blocks.clear();
+ } else {
+ Expected<bool> Ret =
+ ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
+ .reduceList(Blocks);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (Blocks.size() == OldSize)
+ return false;
+ }
+
+ ValueToValueMapTy VMap;
+ std::unique_ptr<Module> ProgClone = CloneModule(BD.getProgram(), VMap);
+ std::unique_ptr<Module> ToExtract =
+ SplitFunctionsOutOfModule(ProgClone.get(), MiscompiledFunctions, VMap);
+ std::unique_ptr<Module> Extracted =
+ BD.extractMappedBlocksFromModule(Blocks, ToExtract.get());
+ if (!Extracted) {
+ // Weird, extraction should have worked.
+ errs() << "Nondeterministic problem extracting blocks??\n";
+ return false;
+ }
+
+ // Otherwise, block extraction succeeded. Link the two program fragments back
+ // together.
+
+ std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
+ for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E;
+ ++I)
+ if (!I->isDeclaration())
+ MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());
+
+ if (Linker::linkModules(*ProgClone, std::move(Extracted)))
+ exit(1);
+
+ // Update the list of miscompiled functions.
+ MiscompiledFunctions.clear();
+
+ for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
+ Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
+ assert(NewF && "Function not found??");
+ MiscompiledFunctions.push_back(NewF);
+ }
+
+ // Set the new program and delete the old one.
+ BD.setNewProgram(std::move(ProgClone));
+
+ return true;
+}
+
+/// This is a generic driver to narrow down miscompilations, either in an
+/// optimization or a code generator.
+///
+static Expected<std::vector<Function *>> DebugAMiscompilation(
+ BugDriver &BD,
+ Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
+ std::unique_ptr<Module>)) {
+ // Okay, now that we have reduced the list of passes which are causing the
+ // failure, see if we can pin down which functions are being
+ // miscompiled... first build a list of all of the non-external functions in
+ // the program.
+ std::vector<Function *> MiscompiledFunctions;
+ Module &Prog = BD.getProgram();
+ for (Function &F : Prog)
+ if (!F.isDeclaration())
+ MiscompiledFunctions.push_back(&F);
+
+ // Do the reduction...
+ if (!BugpointIsInterrupted) {
+ Expected<bool> Ret = ReduceMiscompilingFunctions(BD, TestFn)
+ .reduceList(MiscompiledFunctions);
+ if (Error E = Ret.takeError()) {
+ errs() << "\n***Cannot reduce functions: ";
+ return std::move(E);
+ }
+ }
+ outs() << "\n*** The following function"
+ << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
+ << " being miscompiled: ";
+ PrintFunctionList(MiscompiledFunctions);
+ outs() << '\n';
+
+ // See if we can rip any loops out of the miscompiled functions and still
+ // trigger the problem.
+
+ if (!BugpointIsInterrupted && !DisableLoopExtraction) {
+ Expected<bool> Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret) {
+ // Okay, we extracted some loops and the problem still appears. See if
+ // we can eliminate some of the created functions from being candidates.
+ DisambiguateGlobalSymbols(BD.getProgram());
+
+ // Do the reduction...
+ if (!BugpointIsInterrupted)
+ Ret = ReduceMiscompilingFunctions(BD, TestFn)
+ .reduceList(MiscompiledFunctions);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+
+ outs() << "\n*** The following function"
+ << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
+ << " being miscompiled: ";
+ PrintFunctionList(MiscompiledFunctions);
+ outs() << '\n';
+ }
+ }
+
+ if (!BugpointIsInterrupted && !DisableBlockExtraction) {
+ Expected<bool> Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+ if (*Ret) {
+ // Okay, we extracted some blocks and the problem still appears. See if
+ // we can eliminate some of the created functions from being candidates.
+ DisambiguateGlobalSymbols(BD.getProgram());
+
+ // Do the reduction...
+ Ret = ReduceMiscompilingFunctions(BD, TestFn)
+ .reduceList(MiscompiledFunctions);
+ if (Error E = Ret.takeError())
+ return std::move(E);
+
+ outs() << "\n*** The following function"
+ << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
+ << " being miscompiled: ";
+ PrintFunctionList(MiscompiledFunctions);
+ outs() << '\n';
+ }
+ }
+
+ return MiscompiledFunctions;
+}
+
+/// This is the predicate function used to check to see if the "Test" portion of
+/// the program is misoptimized. If so, return true. In any case, both module
+/// arguments are deleted.
+///
+static Expected<bool> TestOptimizer(BugDriver &BD, std::unique_ptr<Module> Test,
+ std::unique_ptr<Module> Safe) {
+ // Run the optimization passes on ToOptimize, producing a transformed version
+ // of the functions being tested.
+ outs() << " Optimizing functions being tested: ";
+ std::unique_ptr<Module> Optimized =
+ BD.runPassesOn(Test.get(), BD.getPassesToRun());
+ if (!Optimized) {
+ errs() << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.EmitProgressBitcode(*Test, "pass-error", false);
+ BD.setNewProgram(std::move(Test));
+ if (Error E = BD.debugOptimizerCrash())
+ return std::move(E);
+ return false;
+ }
+ outs() << "done.\n";
+
+ outs() << " Checking to see if the merged program executes correctly: ";
+ bool Broken;
+ auto Result = testMergedProgram(BD, *Optimized, *Safe, Broken);
+ if (Error E = Result.takeError())
+ return std::move(E);
+ if (auto New = std::move(*Result)) {
+ outs() << (Broken ? " nope.\n" : " yup.\n");
+ // Delete the original and set the new program.
+ BD.setNewProgram(std::move(New));
+ }
+ return Broken;
+}
+
+/// debugMiscompilation - This method is used when the passes selected are not
+/// crashing, but the generated output is semantically different from the
+/// input.
+///
+Error BugDriver::debugMiscompilation() {
+ // Make sure something was miscompiled...
+ if (!BugpointIsInterrupted) {
+ Expected<bool> Result =
+ ReduceMiscompilingPasses(*this).reduceList(PassesToRun);
+ if (Error E = Result.takeError())
+ return E;
+ if (!*Result)
+ return make_error<StringError>(
+ "*** Optimized program matches reference output! No problem"
+ " detected...\nbugpoint can't help you with your problem!\n",
+ inconvertibleErrorCode());
+ }
+
+ outs() << "\n*** Found miscompiling pass"
+ << (getPassesToRun().size() == 1 ? "" : "es") << ": "
+ << getPassesString(getPassesToRun()) << '\n';
+ EmitProgressBitcode(*Program, "passinput");
+
+ Expected<std::vector<Function *>> MiscompiledFunctions =
+ DebugAMiscompilation(*this, TestOptimizer);
+ if (Error E = MiscompiledFunctions.takeError())
+ return E;
+
+ // Output a bunch of bitcode files for the user...
+ outs() << "Outputting reduced bitcode files which expose the problem:\n";
+ ValueToValueMapTy VMap;
+ Module *ToNotOptimize = CloneModule(getProgram(), VMap).release();
+ Module *ToOptimize =
+ SplitFunctionsOutOfModule(ToNotOptimize, *MiscompiledFunctions, VMap)
+ .release();
+
+ outs() << " Non-optimized portion: ";
+ EmitProgressBitcode(*ToNotOptimize, "tonotoptimize", true);
+ delete ToNotOptimize; // Delete hacked module.
+
+ outs() << " Portion that is input to optimizer: ";
+ EmitProgressBitcode(*ToOptimize, "tooptimize");
+ delete ToOptimize; // Delete hacked module.
+
+ return Error::success();
+}
+
+/// Get the specified modules ready for code generator testing.
+///
+static std::unique_ptr<Module>
+CleanupAndPrepareModules(BugDriver &BD, std::unique_ptr<Module> Test,
+ Module *Safe) {
+ // Clean up the modules, removing extra cruft that we don't need anymore...
+ Test = BD.performFinalCleanups(std::move(Test));
+
+ // If we are executing the JIT, we have several nasty issues to take care of.
+ if (!BD.isExecutingJIT())
+ return Test;
+
+ // First, if the main function is in the Safe module, we must add a stub to
+ // the Test module to call into it. Thus, we create a new function `main'
+ // which just calls the old one.
+ if (Function *oldMain = Safe->getFunction("main"))
+ if (!oldMain->isDeclaration()) {
+ // Rename it
+ oldMain->setName("llvm_bugpoint_old_main");
+ // Create a NEW `main' function with same type in the test module.
+ Function *newMain =
+ Function::Create(oldMain->getFunctionType(),
+ GlobalValue::ExternalLinkage, "main", Test.get());
+ // Create an `oldmain' prototype in the test module, which will
+ // corresponds to the real main function in the same module.
+ Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
+ GlobalValue::ExternalLinkage,
+ oldMain->getName(), Test.get());
+ // Set up and remember the argument list for the main function.
+ std::vector<Value *> args;
+ for (Function::arg_iterator I = newMain->arg_begin(),
+ E = newMain->arg_end(),
+ OI = oldMain->arg_begin();
+ I != E; ++I, ++OI) {
+ I->setName(OI->getName()); // Copy argument names from oldMain
+ args.push_back(&*I);
+ }
+
+ // Call the old main function and return its result
+ BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
+ CallInst *call = CallInst::Create(oldMainProto, args, "", BB);
+
+ // If the type of old function wasn't void, return value of call
+ ReturnInst::Create(Safe->getContext(), call, BB);
+ }
+
+ // The second nasty issue we must deal with in the JIT is that the Safe
+ // module cannot directly reference any functions defined in the test
+ // module. Instead, we use a JIT API call to dynamically resolve the
+ // symbol.
+
+ // Add the resolver to the Safe module.
+ // Prototype: void *getPointerToNamedFunction(const char* Name)
+ FunctionCallee resolverFunc = Safe->getOrInsertFunction(
+ "getPointerToNamedFunction", Type::getInt8PtrTy(Safe->getContext()),
+ Type::getInt8PtrTy(Safe->getContext()));
+
+ // Use the function we just added to get addresses of functions we need.
+ for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
+ if (F->isDeclaration() && !F->use_empty() &&
+ &*F != resolverFunc.getCallee() &&
+ !F->isIntrinsic() /* ignore intrinsics */) {
+ Function *TestFn = Test->getFunction(F->getName());
+
+ // Don't forward functions which are external in the test module too.
+ if (TestFn && !TestFn->isDeclaration()) {
+ // 1. Add a string constant with its name to the global file
+ Constant *InitArray =
+ ConstantDataArray::getString(F->getContext(), F->getName());
+ GlobalVariable *funcName = new GlobalVariable(
+ *Safe, InitArray->getType(), true /*isConstant*/,
+ GlobalValue::InternalLinkage, InitArray, F->getName() + "_name");
+
+ // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
+ // sbyte* so it matches the signature of the resolver function.
+
+ // GetElementPtr *funcName, ulong 0, ulong 0
+ std::vector<Constant *> GEPargs(
+ 2, Constant::getNullValue(Type::getInt32Ty(F->getContext())));
+ Value *GEP = ConstantExpr::getGetElementPtr(InitArray->getType(),
+ funcName, GEPargs);
+ std::vector<Value *> ResolverArgs;
+ ResolverArgs.push_back(GEP);
+
+ // Rewrite uses of F in global initializers, etc. to uses of a wrapper
+ // function that dynamically resolves the calls to F via our JIT API
+ if (!F->use_empty()) {
+ // Create a new global to hold the cached function pointer.
+ Constant *NullPtr = ConstantPointerNull::get(F->getType());
+ GlobalVariable *Cache = new GlobalVariable(
+ *F->getParent(), F->getType(), false,
+ GlobalValue::InternalLinkage, NullPtr, F->getName() + ".fpcache");
+
+ // Construct a new stub function that will re-route calls to F
+ FunctionType *FuncTy = F->getFunctionType();
+ Function *FuncWrapper =
+ Function::Create(FuncTy, GlobalValue::InternalLinkage,
+ F->getName() + "_wrapper", F->getParent());
+ BasicBlock *EntryBB =
+ BasicBlock::Create(F->getContext(), "entry", FuncWrapper);
+ BasicBlock *DoCallBB =
+ BasicBlock::Create(F->getContext(), "usecache", FuncWrapper);
+ BasicBlock *LookupBB =
+ BasicBlock::Create(F->getContext(), "lookupfp", FuncWrapper);
+
+ // Check to see if we already looked up the value.
+ Value *CachedVal =
+ new LoadInst(F->getType(), Cache, "fpcache", EntryBB);
+ Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
+ NullPtr, "isNull");
+ BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
+
+ // Resolve the call to function F via the JIT API:
+ //
+ // call resolver(GetElementPtr...)
+ CallInst *Resolver = CallInst::Create(resolverFunc, ResolverArgs,
+ "resolver", LookupBB);
+
+ // Cast the result from the resolver to correctly-typed function.
+ CastInst *CastedResolver = new BitCastInst(
+ Resolver, PointerType::getUnqual(F->getFunctionType()),
+ "resolverCast", LookupBB);
+
+ // Save the value in our cache.
+ new StoreInst(CastedResolver, Cache, LookupBB);
+ BranchInst::Create(DoCallBB, LookupBB);
+
+ PHINode *FuncPtr =
+ PHINode::Create(NullPtr->getType(), 2, "fp", DoCallBB);
+ FuncPtr->addIncoming(CastedResolver, LookupBB);
+ FuncPtr->addIncoming(CachedVal, EntryBB);
+
+ // Save the argument list.
+ std::vector<Value *> Args;
+ for (Argument &A : FuncWrapper->args())
+ Args.push_back(&A);
+
+ // Pass on the arguments to the real function, return its result
+ if (F->getReturnType()->isVoidTy()) {
+ CallInst::Create(FuncTy, FuncPtr, Args, "", DoCallBB);
+ ReturnInst::Create(F->getContext(), DoCallBB);
+ } else {
+ CallInst *Call =
+ CallInst::Create(FuncTy, FuncPtr, Args, "retval", DoCallBB);
+ ReturnInst::Create(F->getContext(), Call, DoCallBB);
+ }
+
+ // Use the wrapper function instead of the old function
+ F->replaceAllUsesWith(FuncWrapper);
+ }
+ }
+ }
+ }
+
+ if (verifyModule(*Test) || verifyModule(*Safe)) {
+ errs() << "Bugpoint has a bug, which corrupted a module!!\n";
+ abort();
+ }
+
+ return Test;
+}
+
+/// This is the predicate function used to check to see if the "Test" portion of
+/// the program is miscompiled by the code generator under test. If so, return
+/// true. In any case, both module arguments are deleted.
+///
+static Expected<bool> TestCodeGenerator(BugDriver &BD,
+ std::unique_ptr<Module> Test,
+ std::unique_ptr<Module> Safe) {
+ Test = CleanupAndPrepareModules(BD, std::move(Test), Safe.get());
+
+ SmallString<128> TestModuleBC;
+ int TestModuleFD;
+ std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
+ TestModuleFD, TestModuleBC);
+ if (EC) {
+ errs() << BD.getToolName()
+ << "Error making unique filename: " << EC.message() << "\n";
+ exit(1);
+ }
+ if (BD.writeProgramToFile(TestModuleBC.str(), TestModuleFD, *Test)) {
+ errs() << "Error writing bitcode to `" << TestModuleBC.str()
+ << "'\nExiting.";
+ exit(1);
+ }
+
+ FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps);
+
+ // Make the shared library
+ SmallString<128> SafeModuleBC;
+ int SafeModuleFD;
+ EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
+ SafeModuleBC);
+ if (EC) {
+ errs() << BD.getToolName()
+ << "Error making unique filename: " << EC.message() << "\n";
+ exit(1);
+ }
+
+ if (BD.writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, *Safe)) {
+ errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
+ exit(1);
+ }
+
+ FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps);
+
+ Expected<std::string> SharedObject =
+ BD.compileSharedObject(SafeModuleBC.str());
+ if (Error E = SharedObject.takeError())
+ return std::move(E);
+
+ FileRemover SharedObjectRemover(*SharedObject, !SaveTemps);
+
+ // Run the code generator on the `Test' code, loading the shared library.
+ // The function returns whether or not the new output differs from reference.
+ Expected<bool> Result =
+ BD.diffProgram(BD.getProgram(), TestModuleBC.str(), *SharedObject, false);
+ if (Error E = Result.takeError())
+ return std::move(E);
+
+ if (*Result)
+ errs() << ": still failing!\n";
+ else
+ errs() << ": didn't fail.\n";
+
+ return Result;
+}
+
+/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
+///
+Error BugDriver::debugCodeGenerator() {
+ if ((void *)SafeInterpreter == (void *)Interpreter) {
+ Expected<std::string> Result =
+ executeProgramSafely(*Program, "bugpoint.safe.out");
+ if (Result) {
+ outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
+ << "the reference diff. This may be due to a\n front-end "
+ << "bug or a bug in the original program, but this can also "
+ << "happen if bugpoint isn't running the program with the "
+ << "right flags or input.\n I left the result of executing "
+ << "the program with the \"safe\" backend in this file for "
+ << "you: '" << *Result << "'.\n";
+ }
+ return Error::success();
+ }
+
+ DisambiguateGlobalSymbols(*Program);
+
+ Expected<std::vector<Function *>> Funcs =
+ DebugAMiscompilation(*this, TestCodeGenerator);
+ if (Error E = Funcs.takeError())
+ return E;
+
+ // Split the module into the two halves of the program we want.
+ ValueToValueMapTy VMap;
+ std::unique_ptr<Module> ToNotCodeGen = CloneModule(getProgram(), VMap);
+ std::unique_ptr<Module> ToCodeGen =
+ SplitFunctionsOutOfModule(ToNotCodeGen.get(), *Funcs, VMap);
+
+ // Condition the modules
+ ToCodeGen =
+ CleanupAndPrepareModules(*this, std::move(ToCodeGen), ToNotCodeGen.get());
+
+ SmallString<128> TestModuleBC;
+ int TestModuleFD;
+ std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
+ TestModuleFD, TestModuleBC);
+ if (EC) {
+ errs() << getToolName() << "Error making unique filename: " << EC.message()
+ << "\n";
+ exit(1);
+ }
+
+ if (writeProgramToFile(TestModuleBC.str(), TestModuleFD, *ToCodeGen)) {
+ errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
+ exit(1);
+ }
+
+ // Make the shared library
+ SmallString<128> SafeModuleBC;
+ int SafeModuleFD;
+ EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
+ SafeModuleBC);
+ if (EC) {
+ errs() << getToolName() << "Error making unique filename: " << EC.message()
+ << "\n";
+ exit(1);
+ }
+
+ if (writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, *ToNotCodeGen)) {
+ errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
+ exit(1);
+ }
+ Expected<std::string> SharedObject = compileSharedObject(SafeModuleBC.str());
+ if (Error E = SharedObject.takeError())
+ return E;
+
+ outs() << "You can reproduce the problem with the command line: \n";
+ if (isExecutingJIT()) {
+ outs() << " lli -load " << *SharedObject << " " << TestModuleBC;
+ } else {
+ outs() << " llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
+ outs() << " cc " << *SharedObject << " " << TestModuleBC.str() << ".s -o "
+ << TestModuleBC << ".exe\n";
+ outs() << " ./" << TestModuleBC << ".exe";
+ }
+ for (unsigned i = 0, e = InputArgv.size(); i != e; ++i)
+ outs() << " " << InputArgv[i];
+ outs() << '\n';
+ outs() << "The shared object was created with:\n llc -march=c "
+ << SafeModuleBC.str() << " -o temporary.c\n"
+ << " cc -xc temporary.c -O2 -o " << *SharedObject;
+ if (TargetTriple.getArch() == Triple::sparc)
+ outs() << " -G"; // Compile a shared library, `-G' for Sparc
+ else
+ outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others
+
+ outs() << " -fno-strict-aliasing\n";
+
+ return Error::success();
+}