diff options
Diffstat (limited to 'llvm/tools/llvm-dwarfdump/Statistics.cpp')
-rw-r--r-- | llvm/tools/llvm-dwarfdump/Statistics.cpp | 614 |
1 files changed, 614 insertions, 0 deletions
diff --git a/llvm/tools/llvm-dwarfdump/Statistics.cpp b/llvm/tools/llvm-dwarfdump/Statistics.cpp new file mode 100644 index 000000000000..c29ad783a9e6 --- /dev/null +++ b/llvm/tools/llvm-dwarfdump/Statistics.cpp @@ -0,0 +1,614 @@ +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/DebugInfo/DIContext.h" +#include "llvm/DebugInfo/DWARF/DWARFContext.h" +#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/JSON.h" + +#define DEBUG_TYPE "dwarfdump" +using namespace llvm; +using namespace object; + +/// This represents the number of categories of debug location coverage being +/// calculated. The first category is the number of variables with 0% location +/// coverage, but the last category is the number of variables with 100% +/// location coverage. +constexpr int NumOfCoverageCategories = 12; + +/// Holds statistics for one function (or other entity that has a PC range and +/// contains variables, such as a compile unit). +struct PerFunctionStats { + /// Number of inlined instances of this function. + unsigned NumFnInlined = 0; + /// Number of inlined instances that have abstract origins. + unsigned NumAbstractOrigins = 0; + /// Number of variables and parameters with location across all inlined + /// instances. + unsigned TotalVarWithLoc = 0; + /// Number of constants with location across all inlined instances. + unsigned ConstantMembers = 0; + /// List of all Variables and parameters in this function. + StringSet<> VarsInFunction; + /// Compile units also cover a PC range, but have this flag set to false. + bool IsFunction = false; + /// Verify function definition has PC addresses (for detecting when + /// a function has been inlined everywhere). + bool HasPCAddresses = false; + /// Function has source location information. + bool HasSourceLocation = false; + /// Number of function parameters. + unsigned NumParams = 0; + /// Number of function parameters with source location. + unsigned NumParamSourceLocations = 0; + /// Number of function parameters with type. + unsigned NumParamTypes = 0; + /// Number of function parameters with a DW_AT_location. + unsigned NumParamLocations = 0; + /// Number of variables. + unsigned NumVars = 0; + /// Number of variables with source location. + unsigned NumVarSourceLocations = 0; + /// Number of variables with type. + unsigned NumVarTypes = 0; + /// Number of variables with DW_AT_location. + unsigned NumVarLocations = 0; +}; + +/// Holds accumulated global statistics about DIEs. +struct GlobalStats { + /// Total number of PC range bytes covered by DW_AT_locations. + unsigned ScopeBytesCovered = 0; + /// Total number of PC range bytes in each variable's enclosing scope, + /// starting from the first definition of the variable. + unsigned ScopeBytesFromFirstDefinition = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value). + unsigned ScopeEntryValueBytesCovered = 0; + /// Total number of PC range bytes covered by DW_AT_locations of + /// formal parameters. + unsigned ParamScopeBytesCovered = 0; + /// Total number of PC range bytes in each variable's enclosing scope, + /// starting from the first definition of the variable (only for parameters). + unsigned ParamScopeBytesFromFirstDefinition = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value) (only for parameters). + unsigned ParamScopeEntryValueBytesCovered = 0; + /// Total number of PC range bytes covered by DW_AT_locations (only for local + /// variables). + unsigned VarScopeBytesCovered = 0; + /// Total number of PC range bytes in each variable's enclosing scope, + /// starting from the first definition of the variable (only for local + /// variables). + unsigned VarScopeBytesFromFirstDefinition = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value) (only for local variables). + unsigned VarScopeEntryValueBytesCovered = 0; + /// Total number of call site entries (DW_AT_call_file & DW_AT_call_line). + unsigned CallSiteEntries = 0; + /// Total number of call site DIEs (DW_TAG_call_site). + unsigned CallSiteDIEs = 0; + /// Total number of call site parameter DIEs (DW_TAG_call_site_parameter). + unsigned CallSiteParamDIEs = 0; + /// Total byte size of concrete functions. This byte size includes + /// inline functions contained in the concrete functions. + unsigned FunctionSize = 0; + /// Total byte size of inlined functions. This is the total number of bytes + /// for the top inline functions within concrete functions. This can help + /// tune the inline settings when compiling to match user expectations. + unsigned InlineFunctionSize = 0; +}; + +/// Holds accumulated debug location statistics about local variables and +/// formal parameters. +struct LocationStats { + /// Map the scope coverage decile to the number of variables in the decile. + /// The first element of the array (at the index zero) represents the number + /// of variables with the no debug location at all, but the last element + /// in the vector represents the number of fully covered variables within + /// its scope. + std::vector<unsigned> VarParamLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage. + std::vector<unsigned> VarParamNonEntryValLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// The debug location statistics for formal parameters. + std::vector<unsigned> ParamLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage for formal parameters. + std::vector<unsigned> ParamNonEntryValLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// The debug location statistics for local variables. + std::vector<unsigned> VarLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage for local variables. + std::vector<unsigned> VarNonEntryValLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Total number of local variables and function parameters processed. + unsigned NumVarParam = 0; + /// Total number of formal parameters processed. + unsigned NumParam = 0; + /// Total number of local variables processed. + unsigned NumVar = 0; +}; + +/// Extract the low pc from a Die. +static uint64_t getLowPC(DWARFDie Die) { + auto RangesOrError = Die.getAddressRanges(); + DWARFAddressRangesVector Ranges; + if (RangesOrError) + Ranges = RangesOrError.get(); + else + llvm::consumeError(RangesOrError.takeError()); + if (Ranges.size()) + return Ranges[0].LowPC; + return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0); +} + +/// Collect debug location statistics for one DIE. +static void collectLocStats(uint64_t BytesCovered, uint64_t BytesInScope, + std::vector<unsigned> &VarParamLocStats, + std::vector<unsigned> &ParamLocStats, + std::vector<unsigned> &VarLocStats, bool IsParam, + bool IsLocalVar) { + auto getCoverageBucket = [BytesCovered, BytesInScope]() -> unsigned { + unsigned LocBucket = 100 * (double)BytesCovered / BytesInScope; + if (LocBucket == 0) { + // No debug location at all for the variable. + return 0; + } else if (LocBucket == 100 || BytesCovered > BytesInScope) { + // Fully covered variable within its scope. + return NumOfCoverageCategories - 1; + } else { + // Get covered range (e.g. 20%-29%). + LocBucket /= 10; + return LocBucket + 1; + } + }; + + unsigned CoverageBucket = getCoverageBucket(); + VarParamLocStats[CoverageBucket]++; + if (IsParam) + ParamLocStats[CoverageBucket]++; + else if (IsLocalVar) + VarLocStats[CoverageBucket]++; +} + +/// Collect debug info quality metrics for one DIE. +static void collectStatsForDie(DWARFDie Die, uint64_t UnitLowPC, std::string FnPrefix, + std::string VarPrefix, uint64_t ScopeLowPC, + uint64_t BytesInScope, uint32_t InlineDepth, + StringMap<PerFunctionStats> &FnStatMap, + GlobalStats &GlobalStats, + LocationStats &LocStats) { + bool HasLoc = false; + bool HasSrcLoc = false; + bool HasType = false; + bool IsArtificial = false; + uint64_t BytesCovered = 0; + uint64_t BytesEntryValuesCovered = 0; + uint64_t OffsetToFirstDefinition = 0; + auto &FnStats = FnStatMap[FnPrefix]; + bool IsParam = Die.getTag() == dwarf::DW_TAG_formal_parameter; + bool IsLocalVar = Die.getTag() == dwarf::DW_TAG_variable; + + if (Die.getTag() == dwarf::DW_TAG_call_site || + Die.getTag() == dwarf::DW_TAG_GNU_call_site) { + GlobalStats.CallSiteDIEs++; + return; + } + + if (Die.getTag() == dwarf::DW_TAG_call_site_parameter || + Die.getTag() == dwarf::DW_TAG_GNU_call_site_parameter) { + GlobalStats.CallSiteParamDIEs++; + return; + } + + if (!IsParam && !IsLocalVar && Die.getTag() != dwarf::DW_TAG_member) { + // Not a variable or constant member. + return; + } + + if (Die.findRecursively(dwarf::DW_AT_decl_file) && + Die.findRecursively(dwarf::DW_AT_decl_line)) + HasSrcLoc = true; + + if (Die.findRecursively(dwarf::DW_AT_type)) + HasType = true; + + if (Die.find(dwarf::DW_AT_artificial)) + IsArtificial = true; + + auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool { + DWARFUnit *U = Die.getDwarfUnit(); + DataExtractor Data(toStringRef(D), + Die.getDwarfUnit()->getContext().isLittleEndian(), 0); + DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize()); + // Consider the expression containing the DW_OP_entry_value as + // an entry value. + return llvm::any_of(Expression, [](DWARFExpression::Operation &Op) { + return Op.getCode() == dwarf::DW_OP_entry_value || + Op.getCode() == dwarf::DW_OP_GNU_entry_value; + }); + }; + + if (Die.find(dwarf::DW_AT_const_value)) { + // This catches constant members *and* variables. + HasLoc = true; + BytesCovered = BytesInScope; + } else { + if (Die.getTag() == dwarf::DW_TAG_member) { + // Non-const member. + return; + } + // Handle variables and function arguments. + auto FormValue = Die.find(dwarf::DW_AT_location); + HasLoc = FormValue.hasValue(); + if (HasLoc) { + // Get PC coverage. + if (auto DebugLocOffset = FormValue->getAsSectionOffset()) { + auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc(); + if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) { + for (auto Entry : List->Entries) { + uint64_t BytesEntryCovered = Entry.End - Entry.Begin; + BytesCovered += BytesEntryCovered; + if (IsEntryValue(Entry.Loc)) + BytesEntryValuesCovered += BytesEntryCovered; + } + if (List->Entries.size()) { + uint64_t FirstDef = List->Entries[0].Begin; + uint64_t UnitOfs = UnitLowPC; + // Ranges sometimes start before the lexical scope. + if (UnitOfs + FirstDef >= ScopeLowPC) + OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC; + // Or even after it. Count that as a failure. + if (OffsetToFirstDefinition > BytesInScope) + OffsetToFirstDefinition = 0; + } + } + assert(BytesInScope); + } else { + // Assume the entire range is covered by a single location. + BytesCovered = BytesInScope; + } + } + } + + // Calculate the debug location statistics. + if (BytesInScope) { + LocStats.NumVarParam++; + if (IsParam) + LocStats.NumParam++; + else if (IsLocalVar) + LocStats.NumVar++; + + collectLocStats(BytesCovered, BytesInScope, LocStats.VarParamLocStats, + LocStats.ParamLocStats, LocStats.VarLocStats, IsParam, + IsLocalVar); + // Non debug entry values coverage statistics. + collectLocStats(BytesCovered - BytesEntryValuesCovered, BytesInScope, + LocStats.VarParamNonEntryValLocStats, + LocStats.ParamNonEntryValLocStats, + LocStats.VarNonEntryValLocStats, IsParam, IsLocalVar); + } + + // Collect PC range coverage data. + if (DWARFDie D = + Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin)) + Die = D; + // By using the variable name + the path through the lexical block tree, the + // keys are consistent across duplicate abstract origins in different CUs. + std::string VarName = StringRef(Die.getName(DINameKind::ShortName)); + FnStats.VarsInFunction.insert(VarPrefix + VarName); + if (BytesInScope) { + FnStats.TotalVarWithLoc += (unsigned)HasLoc; + // Adjust for the fact the variables often start their lifetime in the + // middle of the scope. + BytesInScope -= OffsetToFirstDefinition; + // Turns out we have a lot of ranges that extend past the lexical scope. + GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered); + GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope; + GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered; + if (IsParam) { + GlobalStats.ParamScopeBytesCovered += + std::min(BytesInScope, BytesCovered); + GlobalStats.ParamScopeBytesFromFirstDefinition += BytesInScope; + GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered; + } else if (IsLocalVar) { + GlobalStats.VarScopeBytesCovered += std::min(BytesInScope, BytesCovered); + GlobalStats.VarScopeBytesFromFirstDefinition += BytesInScope; + GlobalStats.VarScopeEntryValueBytesCovered += BytesEntryValuesCovered; + } + assert(GlobalStats.ScopeBytesCovered <= + GlobalStats.ScopeBytesFromFirstDefinition); + } else if (Die.getTag() == dwarf::DW_TAG_member) { + FnStats.ConstantMembers++; + } else { + FnStats.TotalVarWithLoc += (unsigned)HasLoc; + } + if (!IsArtificial) { + if (IsParam) { + FnStats.NumParams++; + if (HasType) + FnStats.NumParamTypes++; + if (HasSrcLoc) + FnStats.NumParamSourceLocations++; + if (HasLoc) + FnStats.NumParamLocations++; + } else if (IsLocalVar) { + FnStats.NumVars++; + if (HasType) + FnStats.NumVarTypes++; + if (HasSrcLoc) + FnStats.NumVarSourceLocations++; + if (HasLoc) + FnStats.NumVarLocations++; + } + } +} + +/// Recursively collect debug info quality metrics. +static void collectStatsRecursive(DWARFDie Die, uint64_t UnitLowPC, std::string FnPrefix, + std::string VarPrefix, uint64_t ScopeLowPC, + uint64_t BytesInScope, uint32_t InlineDepth, + StringMap<PerFunctionStats> &FnStatMap, + GlobalStats &GlobalStats, + LocationStats &LocStats) { + // Handle any kind of lexical scope. + const dwarf::Tag Tag = Die.getTag(); + const bool IsFunction = Tag == dwarf::DW_TAG_subprogram; + const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block; + const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine; + if (IsFunction || IsInlinedFunction || IsBlock) { + + // Reset VarPrefix when entering a new function. + if (Die.getTag() == dwarf::DW_TAG_subprogram || + Die.getTag() == dwarf::DW_TAG_inlined_subroutine) + VarPrefix = "v"; + + // Ignore forward declarations. + if (Die.find(dwarf::DW_AT_declaration)) + return; + + // Check for call sites. + if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line)) + GlobalStats.CallSiteEntries++; + + // PC Ranges. + auto RangesOrError = Die.getAddressRanges(); + if (!RangesOrError) { + llvm::consumeError(RangesOrError.takeError()); + return; + } + + auto Ranges = RangesOrError.get(); + uint64_t BytesInThisScope = 0; + for (auto Range : Ranges) + BytesInThisScope += Range.HighPC - Range.LowPC; + ScopeLowPC = getLowPC(Die); + + // Count the function. + if (!IsBlock) { + StringRef Name = Die.getName(DINameKind::LinkageName); + if (Name.empty()) + Name = Die.getName(DINameKind::ShortName); + FnPrefix = Name; + // Skip over abstract origins. + if (Die.find(dwarf::DW_AT_inline)) + return; + // We've seen an (inlined) instance of this function. + auto &FnStats = FnStatMap[Name]; + if (IsInlinedFunction) { + FnStats.NumFnInlined++; + if (Die.findRecursively(dwarf::DW_AT_abstract_origin)) + FnStats.NumAbstractOrigins++; + } + FnStats.IsFunction = true; + if (BytesInThisScope && !IsInlinedFunction) + FnStats.HasPCAddresses = true; + std::string FnName = StringRef(Die.getName(DINameKind::ShortName)); + if (Die.findRecursively(dwarf::DW_AT_decl_file) && + Die.findRecursively(dwarf::DW_AT_decl_line)) + FnStats.HasSourceLocation = true; + } + + if (BytesInThisScope) { + BytesInScope = BytesInThisScope; + if (IsFunction) + GlobalStats.FunctionSize += BytesInThisScope; + else if (IsInlinedFunction && InlineDepth == 0) + GlobalStats.InlineFunctionSize += BytesInThisScope; + } + } else { + // Not a scope, visit the Die itself. It could be a variable. + collectStatsForDie(Die, UnitLowPC, FnPrefix, VarPrefix, ScopeLowPC, BytesInScope, + InlineDepth, FnStatMap, GlobalStats, LocStats); + } + + // Set InlineDepth correctly for child recursion + if (IsFunction) + InlineDepth = 0; + else if (IsInlinedFunction) + ++InlineDepth; + + // Traverse children. + unsigned LexicalBlockIndex = 0; + DWARFDie Child = Die.getFirstChild(); + while (Child) { + std::string ChildVarPrefix = VarPrefix; + if (Child.getTag() == dwarf::DW_TAG_lexical_block) + ChildVarPrefix += toHex(LexicalBlockIndex++) + '.'; + + collectStatsRecursive(Child, UnitLowPC, FnPrefix, ChildVarPrefix, ScopeLowPC, + BytesInScope, InlineDepth, FnStatMap, GlobalStats, + LocStats); + Child = Child.getSibling(); + } +} + +/// Print machine-readable output. +/// The machine-readable format is single-line JSON output. +/// \{ +static void printDatum(raw_ostream &OS, const char *Key, json::Value Value) { + OS << ",\"" << Key << "\":" << Value; + LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n'); +} +static void printLocationStats(raw_ostream &OS, + const char *Key, + std::vector<unsigned> &LocationStats) { + OS << ",\"" << Key << " with 0% of its scope covered\":" + << LocationStats[0]; + LLVM_DEBUG(llvm::dbgs() << Key << " with 0% of its scope covered: " + << LocationStats[0] << '\n'); + OS << ",\"" << Key << " with 1-9% of its scope covered\":" + << LocationStats[1]; + LLVM_DEBUG(llvm::dbgs() << Key << " with 1-9% of its scope covered: " + << LocationStats[1] << '\n'); + for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) { + OS << ",\"" << Key << " with " << (i - 1) * 10 << "-" << i * 10 - 1 + << "% of its scope covered\":" << LocationStats[i]; + LLVM_DEBUG(llvm::dbgs() + << Key << " with " << (i - 1) * 10 << "-" << i * 10 - 1 + << "% of its scope covered: " << LocationStats[i]); + } + OS << ",\"" << Key << " with 100% of its scope covered\":" + << LocationStats[NumOfCoverageCategories - 1]; + LLVM_DEBUG(llvm::dbgs() << Key << " with 100% of its scope covered: " + << LocationStats[NumOfCoverageCategories - 1]); +} +/// \} + +/// Collect debug info quality metrics for an entire DIContext. +/// +/// Do the impossible and reduce the quality of the debug info down to a few +/// numbers. The idea is to condense the data into numbers that can be tracked +/// over time to identify trends in newer compiler versions and gauge the effect +/// of particular optimizations. The raw numbers themselves are not particularly +/// useful, only the delta between compiling the same program with different +/// compilers is. +bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx, + Twine Filename, raw_ostream &OS) { + StringRef FormatName = Obj.getFileFormatName(); + GlobalStats GlobalStats; + LocationStats LocStats; + StringMap<PerFunctionStats> Statistics; + for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units()) + if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) + collectStatsRecursive(CUDie, getLowPC(CUDie), "/", "g", 0, 0, 0, + Statistics, GlobalStats, LocStats); + + /// The version number should be increased every time the algorithm is changed + /// (including bug fixes). New metrics may be added without increasing the + /// version. + unsigned Version = 3; + unsigned VarParamTotal = 0; + unsigned VarParamUnique = 0; + unsigned VarParamWithLoc = 0; + unsigned NumFunctions = 0; + unsigned NumInlinedFunctions = 0; + unsigned NumFuncsWithSrcLoc = 0; + unsigned NumAbstractOrigins = 0; + unsigned ParamTotal = 0; + unsigned ParamWithType = 0; + unsigned ParamWithLoc = 0; + unsigned ParamWithSrcLoc = 0; + unsigned VarTotal = 0; + unsigned VarWithType = 0; + unsigned VarWithSrcLoc = 0; + unsigned VarWithLoc = 0; + for (auto &Entry : Statistics) { + PerFunctionStats &Stats = Entry.getValue(); + unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined; + // Count variables in concrete out-of-line functions and in global scope. + if (Stats.HasPCAddresses || !Stats.IsFunction) + TotalVars += Stats.VarsInFunction.size(); + unsigned Constants = Stats.ConstantMembers; + VarParamWithLoc += Stats.TotalVarWithLoc + Constants; + VarParamTotal += TotalVars; + VarParamUnique += Stats.VarsInFunction.size(); + LLVM_DEBUG(for (auto &V + : Stats.VarsInFunction) llvm::dbgs() + << Entry.getKey() << ": " << V.getKey() << "\n"); + NumFunctions += Stats.IsFunction; + NumFuncsWithSrcLoc += Stats.HasSourceLocation; + NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined; + NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins; + ParamTotal += Stats.NumParams; + ParamWithType += Stats.NumParamTypes; + ParamWithLoc += Stats.NumParamLocations; + ParamWithSrcLoc += Stats.NumParamSourceLocations; + VarTotal += Stats.NumVars; + VarWithType += Stats.NumVarTypes; + VarWithLoc += Stats.NumVarLocations; + VarWithSrcLoc += Stats.NumVarSourceLocations; + } + + // Print summary. + OS.SetBufferSize(1024); + OS << "{\"version\":" << Version; + LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n"; + llvm::dbgs() << "---------------------------------\n"); + printDatum(OS, "file", Filename.str()); + printDatum(OS, "format", FormatName); + printDatum(OS, "source functions", NumFunctions); + printDatum(OS, "source functions with location", NumFuncsWithSrcLoc); + printDatum(OS, "inlined functions", NumInlinedFunctions); + printDatum(OS, "inlined funcs with abstract origins", NumAbstractOrigins); + printDatum(OS, "unique source variables", VarParamUnique); + printDatum(OS, "source variables", VarParamTotal); + printDatum(OS, "variables with location", VarParamWithLoc); + printDatum(OS, "call site entries", GlobalStats.CallSiteEntries); + printDatum(OS, "call site DIEs", GlobalStats.CallSiteDIEs); + printDatum(OS, "call site parameter DIEs", GlobalStats.CallSiteParamDIEs); + printDatum(OS, "scope bytes total", + GlobalStats.ScopeBytesFromFirstDefinition); + printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered); + printDatum(OS, "entry value scope bytes covered", + GlobalStats.ScopeEntryValueBytesCovered); + printDatum(OS, "formal params scope bytes total", + GlobalStats.ParamScopeBytesFromFirstDefinition); + printDatum(OS, "formal params scope bytes covered", + GlobalStats.ParamScopeBytesCovered); + printDatum(OS, "formal params entry value scope bytes covered", + GlobalStats.ParamScopeEntryValueBytesCovered); + printDatum(OS, "vars scope bytes total", + GlobalStats.VarScopeBytesFromFirstDefinition); + printDatum(OS, "vars scope bytes covered", GlobalStats.VarScopeBytesCovered); + printDatum(OS, "vars entry value scope bytes covered", + GlobalStats.VarScopeEntryValueBytesCovered); + printDatum(OS, "total function size", GlobalStats.FunctionSize); + printDatum(OS, "total inlined function size", GlobalStats.InlineFunctionSize); + printDatum(OS, "total formal params", ParamTotal); + printDatum(OS, "formal params with source location", ParamWithSrcLoc); + printDatum(OS, "formal params with type", ParamWithType); + printDatum(OS, "formal params with binary location", ParamWithLoc); + printDatum(OS, "total vars", VarTotal); + printDatum(OS, "vars with source location", VarWithSrcLoc); + printDatum(OS, "vars with type", VarWithType); + printDatum(OS, "vars with binary location", VarWithLoc); + printDatum(OS, "total variables procesed by location statistics", + LocStats.NumVarParam); + printLocationStats(OS, "variables", LocStats.VarParamLocStats); + printLocationStats(OS, "variables (excluding the debug entry values)", + LocStats.VarParamNonEntryValLocStats); + printDatum(OS, "total params procesed by location statistics", + LocStats.NumParam); + printLocationStats(OS, "params", LocStats.ParamLocStats); + printLocationStats(OS, "params (excluding the debug entry values)", + LocStats.ParamNonEntryValLocStats); + printDatum(OS, "total vars procesed by location statistics", LocStats.NumVar); + printLocationStats(OS, "vars", LocStats.VarLocStats); + printLocationStats(OS, "vars (excluding the debug entry values)", + LocStats.VarNonEntryValLocStats); + OS << "}\n"; + LLVM_DEBUG( + llvm::dbgs() << "Total Availability: " + << (int)std::round((VarParamWithLoc * 100.0) / VarParamTotal) + << "%\n"; + llvm::dbgs() << "PC Ranges covered: " + << (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) / + GlobalStats.ScopeBytesFromFirstDefinition) + << "%\n"); + return true; +} |