summaryrefslogtreecommitdiff
path: root/llvm/tools/llvm-mca/Views/TimelineView.h
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/tools/llvm-mca/Views/TimelineView.h')
-rw-r--r--llvm/tools/llvm-mca/Views/TimelineView.h189
1 files changed, 189 insertions, 0 deletions
diff --git a/llvm/tools/llvm-mca/Views/TimelineView.h b/llvm/tools/llvm-mca/Views/TimelineView.h
new file mode 100644
index 000000000000..9bec3b87db45
--- /dev/null
+++ b/llvm/tools/llvm-mca/Views/TimelineView.h
@@ -0,0 +1,189 @@
+//===--------------------- TimelineView.h -----------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \brief
+///
+/// This file implements a timeline view for the llvm-mca tool.
+///
+/// Class TimelineView observes events generated by the pipeline. For every
+/// instruction executed by the pipeline, it stores information related to
+/// state transition. It then plots that information in the form of a table
+/// as reported by the example below:
+///
+/// Timeline view:
+/// 0123456
+/// Index 0123456789
+///
+/// [0,0] DeER . . .. vmovshdup %xmm0, %xmm1
+/// [0,1] DeER . . .. vpermilpd $1, %xmm0, %xmm2
+/// [0,2] .DeER. . .. vpermilps $231, %xmm0, %xmm5
+/// [0,3] .DeeeER . .. vaddss %xmm1, %xmm0, %xmm3
+/// [0,4] . D==eeeER. .. vaddss %xmm3, %xmm2, %xmm4
+/// [0,5] . D=====eeeER .. vaddss %xmm4, %xmm5, %xmm6
+///
+/// [1,0] . DeE------R .. vmovshdup %xmm0, %xmm1
+/// [1,1] . DeE------R .. vpermilpd $1, %xmm0, %xmm2
+/// [1,2] . DeE-----R .. vpermilps $231, %xmm0, %xmm5
+/// [1,3] . D=eeeE--R .. vaddss %xmm1, %xmm0, %xmm3
+/// [1,4] . D===eeeER .. vaddss %xmm3, %xmm2, %xmm4
+/// [1,5] . D======eeeER vaddss %xmm4, %xmm5, %xmm6
+///
+/// There is an entry for every instruction in the input assembly sequence.
+/// The first field is a pair of numbers obtained from the instruction index.
+/// The first element of the pair is the iteration index, while the second
+/// element of the pair is a sequence number (i.e. a position in the assembly
+/// sequence).
+/// The second field of the table is the actual timeline information; each
+/// column is the information related to a specific cycle of execution.
+/// The timeline of an instruction is described by a sequence of character
+/// where each character represents the instruction state at a specific cycle.
+///
+/// Possible instruction states are:
+/// D: Instruction Dispatched
+/// e: Instruction Executing
+/// E: Instruction Executed (write-back stage)
+/// R: Instruction retired
+/// =: Instruction waiting in the Scheduler's queue
+/// -: Instruction executed, waiting to retire in order.
+///
+/// dots ('.') and empty spaces are cycles where the instruction is not
+/// in-flight.
+///
+/// The last column is the assembly instruction associated to the entry.
+///
+/// Based on the timeline view information from the example, instruction 0
+/// at iteration 0 was dispatched at cycle 0, and was retired at cycle 3.
+/// Instruction [0,1] was also dispatched at cycle 0, and it retired at
+/// the same cycle than instruction [0,0].
+/// Instruction [0,4] has been dispatched at cycle 2. However, it had to
+/// wait for two cycles before being issued. That is because operands
+/// became ready only at cycle 5.
+///
+/// This view helps further understanding bottlenecks and the impact of
+/// resource pressure on the code.
+///
+/// To better understand why instructions had to wait for multiple cycles in
+/// the scheduler's queue, class TimelineView also reports extra timing info
+/// in another table named "Average Wait times" (see example below).
+///
+///
+/// Average Wait times (based on the timeline view):
+/// [0]: Executions
+/// [1]: Average time spent waiting in a scheduler's queue
+/// [2]: Average time spent waiting in a scheduler's queue while ready
+/// [3]: Average time elapsed from WB until retire stage
+///
+/// [0] [1] [2] [3]
+/// 0. 2 1.0 1.0 3.0 vmovshdup %xmm0, %xmm1
+/// 1. 2 1.0 1.0 3.0 vpermilpd $1, %xmm0, %xmm2
+/// 2. 2 1.0 1.0 2.5 vpermilps $231, %xmm0, %xmm5
+/// 3. 2 1.5 0.5 1.0 vaddss %xmm1, %xmm0, %xmm3
+/// 4. 2 3.5 0.0 0.0 vaddss %xmm3, %xmm2, %xmm4
+/// 5. 2 6.5 0.0 0.0 vaddss %xmm4, %xmm5, %xmm6
+/// 2 2.4 0.6 1.6 <total>
+///
+/// By comparing column [2] with column [1], we get an idea about how many
+/// cycles were spent in the scheduler's queue due to data dependencies.
+///
+/// In this example, instruction 5 spent an average of ~6 cycles in the
+/// scheduler's queue. As soon as operands became ready, the instruction
+/// was immediately issued to the pipeline(s).
+/// That is expected because instruction 5 cannot transition to the "ready"
+/// state until %xmm4 is written by instruction 4.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TOOLS_LLVM_MCA_TIMELINEVIEW_H
+#define LLVM_TOOLS_LLVM_MCA_TIMELINEVIEW_H
+
+#include "Views/View.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+namespace mca {
+
+/// This class listens to instruction state transition events
+/// in order to construct a timeline information.
+///
+/// For every instruction executed by the Pipeline, this class constructs
+/// a TimelineViewEntry object. TimelineViewEntry objects are then used
+/// to print the timeline information, as well as the "average wait times"
+/// for every instruction in the input assembly sequence.
+class TimelineView : public View {
+ const llvm::MCSubtargetInfo &STI;
+ llvm::MCInstPrinter &MCIP;
+ llvm::ArrayRef<llvm::MCInst> Source;
+
+ unsigned CurrentCycle;
+ unsigned MaxCycle;
+ unsigned LastCycle;
+
+ struct TimelineViewEntry {
+ int CycleDispatched; // A negative value is an "invalid cycle".
+ unsigned CycleReady;
+ unsigned CycleIssued;
+ unsigned CycleExecuted;
+ unsigned CycleRetired;
+ };
+ std::vector<TimelineViewEntry> Timeline;
+
+ struct WaitTimeEntry {
+ unsigned CyclesSpentInSchedulerQueue;
+ unsigned CyclesSpentInSQWhileReady;
+ unsigned CyclesSpentAfterWBAndBeforeRetire;
+ };
+ std::vector<WaitTimeEntry> WaitTime;
+
+ // This field is used to map instructions to buffered resources.
+ // Elements of this vector are <resourceID, BufferSizer> pairs.
+ std::vector<std::pair<unsigned, int>> UsedBuffer;
+
+ void printTimelineViewEntry(llvm::formatted_raw_ostream &OS,
+ const TimelineViewEntry &E, unsigned Iteration,
+ unsigned SourceIndex) const;
+ void printWaitTimeEntry(llvm::formatted_raw_ostream &OS,
+ const WaitTimeEntry &E, unsigned Index,
+ unsigned Executions) const;
+
+ // Display characters for the TimelineView report output.
+ struct DisplayChar {
+ static const char Dispatched = 'D';
+ static const char Executed = 'E';
+ static const char Retired = 'R';
+ static const char Waiting = '='; // Instruction is waiting in the scheduler.
+ static const char Executing = 'e';
+ static const char RetireLag = '-'; // The instruction is waiting to retire.
+ };
+
+public:
+ TimelineView(const llvm::MCSubtargetInfo &sti, llvm::MCInstPrinter &Printer,
+ llvm::ArrayRef<llvm::MCInst> S, unsigned Iterations,
+ unsigned Cycles);
+
+ // Event handlers.
+ void onCycleEnd() override { ++CurrentCycle; }
+ void onEvent(const HWInstructionEvent &Event) override;
+ void onReservedBuffers(const InstRef &IR,
+ llvm::ArrayRef<unsigned> Buffers) override;
+
+ // print functionalities.
+ void printTimeline(llvm::raw_ostream &OS) const;
+ void printAverageWaitTimes(llvm::raw_ostream &OS) const;
+ void printView(llvm::raw_ostream &OS) const override {
+ printTimeline(OS);
+ printAverageWaitTimes(OS);
+ }
+};
+} // namespace mca
+} // namespace llvm
+
+#endif