summaryrefslogtreecommitdiff
path: root/llvm/tools/llvm-objcopy/ELF/Object.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/tools/llvm-objcopy/ELF/Object.cpp')
-rw-r--r--llvm/tools/llvm-objcopy/ELF/Object.cpp2313
1 files changed, 2313 insertions, 0 deletions
diff --git a/llvm/tools/llvm-objcopy/ELF/Object.cpp b/llvm/tools/llvm-objcopy/ELF/Object.cpp
new file mode 100644
index 000000000000..74145dad6e6b
--- /dev/null
+++ b/llvm/tools/llvm-objcopy/ELF/Object.cpp
@@ -0,0 +1,2313 @@
+//===- Object.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "Object.h"
+#include "llvm-objcopy.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileOutputBuffer.h"
+#include "llvm/Support/Path.h"
+#include <algorithm>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+namespace objcopy {
+namespace elf {
+
+using namespace object;
+using namespace ELF;
+
+template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
+ uint8_t *B = Buf.getBufferStart() + Obj.ProgramHdrSegment.Offset +
+ Seg.Index * sizeof(Elf_Phdr);
+ Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
+ Phdr.p_type = Seg.Type;
+ Phdr.p_flags = Seg.Flags;
+ Phdr.p_offset = Seg.Offset;
+ Phdr.p_vaddr = Seg.VAddr;
+ Phdr.p_paddr = Seg.PAddr;
+ Phdr.p_filesz = Seg.FileSize;
+ Phdr.p_memsz = Seg.MemSize;
+ Phdr.p_align = Seg.Align;
+}
+
+Error SectionBase::removeSectionReferences(
+ bool AllowBrokenLinks,
+ function_ref<bool(const SectionBase *)> ToRemove) {
+ return Error::success();
+}
+
+Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
+ return Error::success();
+}
+
+void SectionBase::initialize(SectionTableRef SecTable) {}
+void SectionBase::finalize() {}
+void SectionBase::markSymbols() {}
+void SectionBase::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &) {}
+
+template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
+ uint8_t *B = Buf.getBufferStart() + Sec.HeaderOffset;
+ Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
+ Shdr.sh_name = Sec.NameIndex;
+ Shdr.sh_type = Sec.Type;
+ Shdr.sh_flags = Sec.Flags;
+ Shdr.sh_addr = Sec.Addr;
+ Shdr.sh_offset = Sec.Offset;
+ Shdr.sh_size = Sec.Size;
+ Shdr.sh_link = Sec.Link;
+ Shdr.sh_info = Sec.Info;
+ Shdr.sh_addralign = Sec.Align;
+ Shdr.sh_entsize = Sec.EntrySize;
+}
+
+template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
+ Sec.EntrySize = sizeof(Elf_Sym);
+ Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
+ // Align to the largest field in Elf_Sym.
+ Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
+}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
+ Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
+ Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
+ // Align to the largest field in Elf_Rel(a).
+ Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
+}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {}
+
+template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {}
+
+template <class ELFT>
+void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {}
+
+void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
+ error("cannot write symbol section index table '" + Sec.Name + "' ");
+}
+
+void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
+ error("cannot write symbol table '" + Sec.Name + "' out to binary");
+}
+
+void BinarySectionWriter::visit(const RelocationSection &Sec) {
+ error("cannot write relocation section '" + Sec.Name + "' out to binary");
+}
+
+void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
+ error("cannot write '" + Sec.Name + "' out to binary");
+}
+
+void BinarySectionWriter::visit(const GroupSection &Sec) {
+ error("cannot write '" + Sec.Name + "' out to binary");
+}
+
+void SectionWriter::visit(const Section &Sec) {
+ if (Sec.Type != SHT_NOBITS)
+ llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
+}
+
+static bool addressOverflows32bit(uint64_t Addr) {
+ // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
+ return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
+}
+
+template <class T> static T checkedGetHex(StringRef S) {
+ T Value;
+ bool Fail = S.getAsInteger(16, Value);
+ assert(!Fail);
+ (void)Fail;
+ return Value;
+}
+
+// Fills exactly Len bytes of buffer with hexadecimal characters
+// representing value 'X'
+template <class T, class Iterator>
+static Iterator utohexstr(T X, Iterator It, size_t Len) {
+ // Fill range with '0'
+ std::fill(It, It + Len, '0');
+
+ for (long I = Len - 1; I >= 0; --I) {
+ unsigned char Mod = static_cast<unsigned char>(X) & 15;
+ *(It + I) = hexdigit(Mod, false);
+ X >>= 4;
+ }
+ assert(X == 0);
+ return It + Len;
+}
+
+uint8_t IHexRecord::getChecksum(StringRef S) {
+ assert((S.size() & 1) == 0);
+ uint8_t Checksum = 0;
+ while (!S.empty()) {
+ Checksum += checkedGetHex<uint8_t>(S.take_front(2));
+ S = S.drop_front(2);
+ }
+ return -Checksum;
+}
+
+IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
+ ArrayRef<uint8_t> Data) {
+ IHexLineData Line(getLineLength(Data.size()));
+ assert(Line.size());
+ auto Iter = Line.begin();
+ *Iter++ = ':';
+ Iter = utohexstr(Data.size(), Iter, 2);
+ Iter = utohexstr(Addr, Iter, 4);
+ Iter = utohexstr(Type, Iter, 2);
+ for (uint8_t X : Data)
+ Iter = utohexstr(X, Iter, 2);
+ StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
+ Iter = utohexstr(getChecksum(S), Iter, 2);
+ *Iter++ = '\r';
+ *Iter++ = '\n';
+ assert(Iter == Line.end());
+ return Line;
+}
+
+static Error checkRecord(const IHexRecord &R) {
+ switch (R.Type) {
+ case IHexRecord::Data:
+ if (R.HexData.size() == 0)
+ return createStringError(
+ errc::invalid_argument,
+ "zero data length is not allowed for data records");
+ break;
+ case IHexRecord::EndOfFile:
+ break;
+ case IHexRecord::SegmentAddr:
+ // 20-bit segment address. Data length must be 2 bytes
+ // (4 bytes in hex)
+ if (R.HexData.size() != 4)
+ return createStringError(
+ errc::invalid_argument,
+ "segment address data should be 2 bytes in size");
+ break;
+ case IHexRecord::StartAddr80x86:
+ case IHexRecord::StartAddr:
+ if (R.HexData.size() != 8)
+ return createStringError(errc::invalid_argument,
+ "start address data should be 4 bytes in size");
+ // According to Intel HEX specification '03' record
+ // only specifies the code address within the 20-bit
+ // segmented address space of the 8086/80186. This
+ // means 12 high order bits should be zeroes.
+ if (R.Type == IHexRecord::StartAddr80x86 &&
+ R.HexData.take_front(3) != "000")
+ return createStringError(errc::invalid_argument,
+ "start address exceeds 20 bit for 80x86");
+ break;
+ case IHexRecord::ExtendedAddr:
+ // 16-31 bits of linear base address
+ if (R.HexData.size() != 4)
+ return createStringError(
+ errc::invalid_argument,
+ "extended address data should be 2 bytes in size");
+ break;
+ default:
+ // Unknown record type
+ return createStringError(errc::invalid_argument, "unknown record type: %u",
+ static_cast<unsigned>(R.Type));
+ }
+ return Error::success();
+}
+
+// Checks that IHEX line contains valid characters.
+// This allows converting hexadecimal data to integers
+// without extra verification.
+static Error checkChars(StringRef Line) {
+ assert(!Line.empty());
+ if (Line[0] != ':')
+ return createStringError(errc::invalid_argument,
+ "missing ':' in the beginning of line.");
+
+ for (size_t Pos = 1; Pos < Line.size(); ++Pos)
+ if (hexDigitValue(Line[Pos]) == -1U)
+ return createStringError(errc::invalid_argument,
+ "invalid character at position %zu.", Pos + 1);
+ return Error::success();
+}
+
+Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
+ assert(!Line.empty());
+
+ // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
+ if (Line.size() < 11)
+ return createStringError(errc::invalid_argument,
+ "line is too short: %zu chars.", Line.size());
+
+ if (Error E = checkChars(Line))
+ return std::move(E);
+
+ IHexRecord Rec;
+ size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
+ if (Line.size() != getLength(DataLen))
+ return createStringError(errc::invalid_argument,
+ "invalid line length %zu (should be %zu)",
+ Line.size(), getLength(DataLen));
+
+ Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
+ Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
+ Rec.HexData = Line.substr(9, DataLen * 2);
+
+ if (getChecksum(Line.drop_front(1)) != 0)
+ return createStringError(errc::invalid_argument, "incorrect checksum.");
+ if (Error E = checkRecord(Rec))
+ return std::move(E);
+ return Rec;
+}
+
+static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
+ Segment *Seg = Sec->ParentSegment;
+ if (Seg && Seg->Type != ELF::PT_LOAD)
+ Seg = nullptr;
+ return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
+ : Sec->Addr;
+}
+
+void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
+ ArrayRef<uint8_t> Data) {
+ assert(Data.size() == Sec->Size);
+ const uint32_t ChunkSize = 16;
+ uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
+ while (!Data.empty()) {
+ uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
+ if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
+ if (Addr > 0xFFFFFU) {
+ // Write extended address record, zeroing segment address
+ // if needed.
+ if (SegmentAddr != 0)
+ SegmentAddr = writeSegmentAddr(0U);
+ BaseAddr = writeBaseAddr(Addr);
+ } else {
+ // We can still remain 16-bit
+ SegmentAddr = writeSegmentAddr(Addr);
+ }
+ }
+ uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
+ assert(SegOffset <= 0xFFFFU);
+ DataSize = std::min(DataSize, 0x10000U - SegOffset);
+ writeData(0, SegOffset, Data.take_front(DataSize));
+ Addr += DataSize;
+ Data = Data.drop_front(DataSize);
+ }
+}
+
+uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
+ assert(Addr <= 0xFFFFFU);
+ uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
+ writeData(2, 0, Data);
+ return Addr & 0xF0000U;
+}
+
+uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
+ assert(Addr <= 0xFFFFFFFFU);
+ uint64_t Base = Addr & 0xFFFF0000U;
+ uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
+ static_cast<uint8_t>((Base >> 16) & 0xFF)};
+ writeData(4, 0, Data);
+ return Base;
+}
+
+void IHexSectionWriterBase::writeData(uint8_t Type, uint16_t Addr,
+ ArrayRef<uint8_t> Data) {
+ Offset += IHexRecord::getLineLength(Data.size());
+}
+
+void IHexSectionWriterBase::visit(const Section &Sec) {
+ writeSection(&Sec, Sec.Contents);
+}
+
+void IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
+ writeSection(&Sec, Sec.Data);
+}
+
+void IHexSectionWriterBase::visit(const StringTableSection &Sec) {
+ // Check that sizer has already done its work
+ assert(Sec.Size == Sec.StrTabBuilder.getSize());
+ // We are free to pass an invalid pointer to writeSection as long
+ // as we don't actually write any data. The real writer class has
+ // to override this method .
+ writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
+}
+
+void IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
+ writeSection(&Sec, Sec.Contents);
+}
+
+void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
+ ArrayRef<uint8_t> Data) {
+ IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
+ memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
+ Offset += HexData.size();
+}
+
+void IHexSectionWriter::visit(const StringTableSection &Sec) {
+ assert(Sec.Size == Sec.StrTabBuilder.getSize());
+ std::vector<uint8_t> Data(Sec.Size);
+ Sec.StrTabBuilder.write(Data.data());
+ writeSection(&Sec, Data);
+}
+
+void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
+
+void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); }
+
+void SectionWriter::visit(const OwnedDataSection &Sec) {
+ llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
+}
+
+static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
+
+static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
+ return Data.size() > ZlibGnuMagic.size() &&
+ std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
+}
+
+template <class ELFT>
+static std::tuple<uint64_t, uint64_t>
+getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
+ const bool IsGnuDebug = isDataGnuCompressed(Data);
+ const uint64_t DecompressedSize =
+ IsGnuDebug
+ ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
+ : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
+ const uint64_t DecompressedAlign =
+ IsGnuDebug ? 1
+ : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
+ ->ch_addralign;
+
+ return std::make_tuple(DecompressedSize, DecompressedAlign);
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
+ const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
+ ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
+ : sizeof(Elf_Chdr_Impl<ELFT>);
+
+ StringRef CompressedContent(
+ reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
+ Sec.OriginalData.size() - DataOffset);
+
+ SmallVector<char, 128> DecompressedContent;
+ if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
+ static_cast<size_t>(Sec.Size)))
+ reportError(Sec.Name, std::move(E));
+
+ uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
+ std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
+}
+
+void BinarySectionWriter::visit(const DecompressedSection &Sec) {
+ error("cannot write compressed section '" + Sec.Name + "' ");
+}
+
+void DecompressedSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void DecompressedSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+void OwnedDataSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+void OwnedDataSection::appendHexData(StringRef HexData) {
+ assert((HexData.size() & 1) == 0);
+ while (!HexData.empty()) {
+ Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
+ HexData = HexData.drop_front(2);
+ }
+ Size = Data.size();
+}
+
+void BinarySectionWriter::visit(const CompressedSection &Sec) {
+ error("cannot write compressed section '" + Sec.Name + "' ");
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
+ uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
+ if (Sec.CompressionType == DebugCompressionType::None) {
+ std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
+ return;
+ }
+
+ if (Sec.CompressionType == DebugCompressionType::GNU) {
+ const char *Magic = "ZLIB";
+ memcpy(Buf, Magic, strlen(Magic));
+ Buf += strlen(Magic);
+ const uint64_t DecompressedSize =
+ support::endian::read64be(&Sec.DecompressedSize);
+ memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
+ Buf += sizeof(DecompressedSize);
+ } else {
+ Elf_Chdr_Impl<ELFT> Chdr;
+ Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
+ Chdr.ch_size = Sec.DecompressedSize;
+ Chdr.ch_addralign = Sec.DecompressedAlign;
+ memcpy(Buf, &Chdr, sizeof(Chdr));
+ Buf += sizeof(Chdr);
+ }
+
+ std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
+}
+
+CompressedSection::CompressedSection(const SectionBase &Sec,
+ DebugCompressionType CompressionType)
+ : SectionBase(Sec), CompressionType(CompressionType),
+ DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
+ if (Error E = zlib::compress(
+ StringRef(reinterpret_cast<const char *>(OriginalData.data()),
+ OriginalData.size()),
+ CompressedData))
+ reportError(Name, std::move(E));
+
+ size_t ChdrSize;
+ if (CompressionType == DebugCompressionType::GNU) {
+ Name = ".z" + Sec.Name.substr(1);
+ ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
+ } else {
+ Flags |= ELF::SHF_COMPRESSED;
+ ChdrSize =
+ std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
+ sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
+ std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
+ sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
+ }
+ Size = ChdrSize + CompressedData.size();
+ Align = 8;
+}
+
+CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
+ uint64_t DecompressedSize,
+ uint64_t DecompressedAlign)
+ : CompressionType(DebugCompressionType::None),
+ DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
+ OriginalData = CompressedData;
+}
+
+void CompressedSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void CompressedSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
+
+uint32_t StringTableSection::findIndex(StringRef Name) const {
+ return StrTabBuilder.getOffset(Name);
+}
+
+void StringTableSection::prepareForLayout() {
+ StrTabBuilder.finalize();
+ Size = StrTabBuilder.getSize();
+}
+
+void SectionWriter::visit(const StringTableSection &Sec) {
+ Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
+}
+
+void StringTableSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void StringTableSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
+ uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
+ llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
+}
+
+void SectionIndexSection::initialize(SectionTableRef SecTable) {
+ Size = 0;
+ setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
+ Link,
+ "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is not a symbol table"));
+ Symbols->setShndxTable(this);
+}
+
+void SectionIndexSection::finalize() { Link = Symbols->Index; }
+
+void SectionIndexSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
+ switch (Index) {
+ case SHN_ABS:
+ case SHN_COMMON:
+ return true;
+ }
+
+ if (Machine == EM_AMDGPU) {
+ return Index == SHN_AMDGPU_LDS;
+ }
+
+ if (Machine == EM_HEXAGON) {
+ switch (Index) {
+ case SHN_HEXAGON_SCOMMON:
+ case SHN_HEXAGON_SCOMMON_2:
+ case SHN_HEXAGON_SCOMMON_4:
+ case SHN_HEXAGON_SCOMMON_8:
+ return true;
+ }
+ }
+ return false;
+}
+
+// Large indexes force us to clarify exactly what this function should do. This
+// function should return the value that will appear in st_shndx when written
+// out.
+uint16_t Symbol::getShndx() const {
+ if (DefinedIn != nullptr) {
+ if (DefinedIn->Index >= SHN_LORESERVE)
+ return SHN_XINDEX;
+ return DefinedIn->Index;
+ }
+
+ if (ShndxType == SYMBOL_SIMPLE_INDEX) {
+ // This means that we don't have a defined section but we do need to
+ // output a legitimate section index.
+ return SHN_UNDEF;
+ }
+
+ assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
+ (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
+ (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
+ return static_cast<uint16_t>(ShndxType);
+}
+
+bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
+
+void SymbolTableSection::assignIndices() {
+ uint32_t Index = 0;
+ for (auto &Sym : Symbols)
+ Sym->Index = Index++;
+}
+
+void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
+ SectionBase *DefinedIn, uint64_t Value,
+ uint8_t Visibility, uint16_t Shndx,
+ uint64_t SymbolSize) {
+ Symbol Sym;
+ Sym.Name = Name.str();
+ Sym.Binding = Bind;
+ Sym.Type = Type;
+ Sym.DefinedIn = DefinedIn;
+ if (DefinedIn != nullptr)
+ DefinedIn->HasSymbol = true;
+ if (DefinedIn == nullptr) {
+ if (Shndx >= SHN_LORESERVE)
+ Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
+ else
+ Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
+ }
+ Sym.Value = Value;
+ Sym.Visibility = Visibility;
+ Sym.Size = SymbolSize;
+ Sym.Index = Symbols.size();
+ Symbols.emplace_back(std::make_unique<Symbol>(Sym));
+ Size += this->EntrySize;
+}
+
+Error SymbolTableSection::removeSectionReferences(
+ bool AllowBrokenLinks,
+ function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(SectionIndexTable))
+ SectionIndexTable = nullptr;
+ if (ToRemove(SymbolNames)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "string table '%s' cannot be removed because it is "
+ "referenced by the symbol table '%s'",
+ SymbolNames->Name.data(), this->Name.data());
+ SymbolNames = nullptr;
+ }
+ return removeSymbols(
+ [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
+}
+
+void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
+ std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
+ [Callable](SymPtr &Sym) { Callable(*Sym); });
+ std::stable_partition(
+ std::begin(Symbols), std::end(Symbols),
+ [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
+ assignIndices();
+}
+
+Error SymbolTableSection::removeSymbols(
+ function_ref<bool(const Symbol &)> ToRemove) {
+ Symbols.erase(
+ std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
+ [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
+ std::end(Symbols));
+ Size = Symbols.size() * EntrySize;
+ assignIndices();
+ return Error::success();
+}
+
+void SymbolTableSection::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ for (std::unique_ptr<Symbol> &Sym : Symbols)
+ if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
+ Sym->DefinedIn = To;
+}
+
+void SymbolTableSection::initialize(SectionTableRef SecTable) {
+ Size = 0;
+ setStrTab(SecTable.getSectionOfType<StringTableSection>(
+ Link,
+ "Symbol table has link index of " + Twine(Link) +
+ " which is not a valid index",
+ "Symbol table has link index of " + Twine(Link) +
+ " which is not a string table"));
+}
+
+void SymbolTableSection::finalize() {
+ uint32_t MaxLocalIndex = 0;
+ for (std::unique_ptr<Symbol> &Sym : Symbols) {
+ Sym->NameIndex =
+ SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
+ if (Sym->Binding == STB_LOCAL)
+ MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
+ }
+ // Now we need to set the Link and Info fields.
+ Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
+ Info = MaxLocalIndex + 1;
+}
+
+void SymbolTableSection::prepareForLayout() {
+ // Reserve proper amount of space in section index table, so we can
+ // layout sections correctly. We will fill the table with correct
+ // indexes later in fillShdnxTable.
+ if (SectionIndexTable)
+ SectionIndexTable->reserve(Symbols.size());
+
+ // Add all of our strings to SymbolNames so that SymbolNames has the right
+ // size before layout is decided.
+ // If the symbol names section has been removed, don't try to add strings to
+ // the table.
+ if (SymbolNames != nullptr)
+ for (std::unique_ptr<Symbol> &Sym : Symbols)
+ SymbolNames->addString(Sym->Name);
+}
+
+void SymbolTableSection::fillShndxTable() {
+ if (SectionIndexTable == nullptr)
+ return;
+ // Fill section index table with real section indexes. This function must
+ // be called after assignOffsets.
+ for (const std::unique_ptr<Symbol> &Sym : Symbols) {
+ if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
+ SectionIndexTable->addIndex(Sym->DefinedIn->Index);
+ else
+ SectionIndexTable->addIndex(SHN_UNDEF);
+ }
+}
+
+const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
+ if (Symbols.size() <= Index)
+ error("invalid symbol index: " + Twine(Index));
+ return Symbols[Index].get();
+}
+
+Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
+ return const_cast<Symbol *>(
+ static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
+ Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
+ // Loop though symbols setting each entry of the symbol table.
+ for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
+ Sym->st_name = Symbol->NameIndex;
+ Sym->st_value = Symbol->Value;
+ Sym->st_size = Symbol->Size;
+ Sym->st_other = Symbol->Visibility;
+ Sym->setBinding(Symbol->Binding);
+ Sym->setType(Symbol->Type);
+ Sym->st_shndx = Symbol->getShndx();
+ ++Sym;
+ }
+}
+
+void SymbolTableSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+Error RelocationSection::removeSectionReferences(
+ bool AllowBrokenLinks,
+ function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(Symbols)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "symbol table '%s' cannot be removed because it is "
+ "referenced by the relocation section '%s'",
+ Symbols->Name.data(), this->Name.data());
+ Symbols = nullptr;
+ }
+
+ for (const Relocation &R : Relocations) {
+ if (!R.RelocSymbol->DefinedIn || !ToRemove(R.RelocSymbol->DefinedIn))
+ continue;
+ return createStringError(llvm::errc::invalid_argument,
+ "section '%s' cannot be removed: (%s+0x%" PRIx64
+ ") has relocation against symbol '%s'",
+ R.RelocSymbol->DefinedIn->Name.data(),
+ SecToApplyRel->Name.data(), R.Offset,
+ R.RelocSymbol->Name.c_str());
+ }
+
+ return Error::success();
+}
+
+template <class SymTabType>
+void RelocSectionWithSymtabBase<SymTabType>::initialize(
+ SectionTableRef SecTable) {
+ if (Link != SHN_UNDEF)
+ setSymTab(SecTable.getSectionOfType<SymTabType>(
+ Link,
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is invalid",
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is not a symbol table"));
+
+ if (Info != SHN_UNDEF)
+ setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
+ " in section " + Name +
+ " is invalid"));
+ else
+ setSection(nullptr);
+}
+
+template <class SymTabType>
+void RelocSectionWithSymtabBase<SymTabType>::finalize() {
+ this->Link = Symbols ? Symbols->Index : 0;
+
+ if (SecToApplyRel != nullptr)
+ this->Info = SecToApplyRel->Index;
+}
+
+template <class ELFT>
+static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
+
+template <class ELFT>
+static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
+ Rela.r_addend = Addend;
+}
+
+template <class RelRange, class T>
+static void writeRel(const RelRange &Relocations, T *Buf) {
+ for (const auto &Reloc : Relocations) {
+ Buf->r_offset = Reloc.Offset;
+ setAddend(*Buf, Reloc.Addend);
+ Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
+ ++Buf;
+ }
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
+ uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
+ if (Sec.Type == SHT_REL)
+ writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
+ else
+ writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
+}
+
+void RelocationSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void RelocationSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+Error RelocationSection::removeSymbols(
+ function_ref<bool(const Symbol &)> ToRemove) {
+ for (const Relocation &Reloc : Relocations)
+ if (ToRemove(*Reloc.RelocSymbol))
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "not stripping symbol '%s' because it is named in a relocation",
+ Reloc.RelocSymbol->Name.data());
+ return Error::success();
+}
+
+void RelocationSection::markSymbols() {
+ for (const Relocation &Reloc : Relocations)
+ Reloc.RelocSymbol->Referenced = true;
+}
+
+void RelocationSection::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ // Update the target section if it was replaced.
+ if (SectionBase *To = FromTo.lookup(SecToApplyRel))
+ SecToApplyRel = To;
+}
+
+void SectionWriter::visit(const DynamicRelocationSection &Sec) {
+ llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
+}
+
+void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+Error DynamicRelocationSection::removeSectionReferences(
+ bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(Symbols)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "symbol table '%s' cannot be removed because it is "
+ "referenced by the relocation section '%s'",
+ Symbols->Name.data(), this->Name.data());
+ Symbols = nullptr;
+ }
+
+ // SecToApplyRel contains a section referenced by sh_info field. It keeps
+ // a section to which the relocation section applies. When we remove any
+ // sections we also remove their relocation sections. Since we do that much
+ // earlier, this assert should never be triggered.
+ assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
+ return Error::success();
+}
+
+Error Section::removeSectionReferences(
+ bool AllowBrokenDependency,
+ function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(LinkSection)) {
+ if (!AllowBrokenDependency)
+ return createStringError(llvm::errc::invalid_argument,
+ "section '%s' cannot be removed because it is "
+ "referenced by the section '%s'",
+ LinkSection->Name.data(), this->Name.data());
+ LinkSection = nullptr;
+ }
+ return Error::success();
+}
+
+void GroupSection::finalize() {
+ this->Info = Sym->Index;
+ this->Link = SymTab->Index;
+}
+
+Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
+ if (ToRemove(*Sym))
+ return createStringError(llvm::errc::invalid_argument,
+ "symbol '%s' cannot be removed because it is "
+ "referenced by the section '%s[%d]'",
+ Sym->Name.data(), this->Name.data(), this->Index);
+ return Error::success();
+}
+
+void GroupSection::markSymbols() {
+ if (Sym)
+ Sym->Referenced = true;
+}
+
+void GroupSection::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ for (SectionBase *&Sec : GroupMembers)
+ if (SectionBase *To = FromTo.lookup(Sec))
+ Sec = To;
+}
+
+void Section::initialize(SectionTableRef SecTable) {
+ if (Link == ELF::SHN_UNDEF)
+ return;
+ LinkSection =
+ SecTable.getSection(Link, "Link field value " + Twine(Link) +
+ " in section " + Name + " is invalid");
+ if (LinkSection->Type == ELF::SHT_SYMTAB)
+ LinkSection = nullptr;
+}
+
+void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
+
+void GnuDebugLinkSection::init(StringRef File) {
+ FileName = sys::path::filename(File);
+ // The format for the .gnu_debuglink starts with the file name and is
+ // followed by a null terminator and then the CRC32 of the file. The CRC32
+ // should be 4 byte aligned. So we add the FileName size, a 1 for the null
+ // byte, and then finally push the size to alignment and add 4.
+ Size = alignTo(FileName.size() + 1, 4) + 4;
+ // The CRC32 will only be aligned if we align the whole section.
+ Align = 4;
+ Type = ELF::SHT_PROGBITS;
+ Name = ".gnu_debuglink";
+ // For sections not found in segments, OriginalOffset is only used to
+ // establish the order that sections should go in. By using the maximum
+ // possible offset we cause this section to wind up at the end.
+ OriginalOffset = std::numeric_limits<uint64_t>::max();
+}
+
+GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
+ uint32_t PrecomputedCRC)
+ : FileName(File), CRC32(PrecomputedCRC) {
+ init(File);
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
+ unsigned char *Buf = Out.getBufferStart() + Sec.Offset;
+ Elf_Word *CRC =
+ reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
+ *CRC = Sec.CRC32;
+ llvm::copy(Sec.FileName, Buf);
+}
+
+void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+template <class ELFT>
+void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
+ ELF::Elf32_Word *Buf =
+ reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
+ *Buf++ = Sec.FlagWord;
+ for (SectionBase *S : Sec.GroupMembers)
+ support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
+}
+
+void GroupSection::accept(SectionVisitor &Visitor) const {
+ Visitor.visit(*this);
+}
+
+void GroupSection::accept(MutableSectionVisitor &Visitor) {
+ Visitor.visit(*this);
+}
+
+// Returns true IFF a section is wholly inside the range of a segment
+static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
+ // If a section is empty it should be treated like it has a size of 1. This is
+ // to clarify the case when an empty section lies on a boundary between two
+ // segments and ensures that the section "belongs" to the second segment and
+ // not the first.
+ uint64_t SecSize = Sec.Size ? Sec.Size : 1;
+
+ if (Sec.Type == SHT_NOBITS) {
+ if (!(Sec.Flags & SHF_ALLOC))
+ return false;
+
+ bool SectionIsTLS = Sec.Flags & SHF_TLS;
+ bool SegmentIsTLS = Seg.Type == PT_TLS;
+ if (SectionIsTLS != SegmentIsTLS)
+ return false;
+
+ return Seg.VAddr <= Sec.Addr &&
+ Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
+ }
+
+ return Seg.Offset <= Sec.OriginalOffset &&
+ Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
+}
+
+// Returns true IFF a segment's original offset is inside of another segment's
+// range.
+static bool segmentOverlapsSegment(const Segment &Child,
+ const Segment &Parent) {
+
+ return Parent.OriginalOffset <= Child.OriginalOffset &&
+ Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
+}
+
+static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
+ // Any segment without a parent segment should come before a segment
+ // that has a parent segment.
+ if (A->OriginalOffset < B->OriginalOffset)
+ return true;
+ if (A->OriginalOffset > B->OriginalOffset)
+ return false;
+ return A->Index < B->Index;
+}
+
+static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
+ if (A->PAddr < B->PAddr)
+ return true;
+ if (A->PAddr > B->PAddr)
+ return false;
+ return A->Index < B->Index;
+}
+
+void BasicELFBuilder::initFileHeader() {
+ Obj->Flags = 0x0;
+ Obj->Type = ET_REL;
+ Obj->OSABI = ELFOSABI_NONE;
+ Obj->ABIVersion = 0;
+ Obj->Entry = 0x0;
+ Obj->Machine = EM_NONE;
+ Obj->Version = 1;
+}
+
+void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
+
+StringTableSection *BasicELFBuilder::addStrTab() {
+ auto &StrTab = Obj->addSection<StringTableSection>();
+ StrTab.Name = ".strtab";
+
+ Obj->SectionNames = &StrTab;
+ return &StrTab;
+}
+
+SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
+ auto &SymTab = Obj->addSection<SymbolTableSection>();
+
+ SymTab.Name = ".symtab";
+ SymTab.Link = StrTab->Index;
+
+ // The symbol table always needs a null symbol
+ SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
+
+ Obj->SymbolTable = &SymTab;
+ return &SymTab;
+}
+
+void BasicELFBuilder::initSections() {
+ for (SectionBase &Sec : Obj->sections())
+ Sec.initialize(Obj->sections());
+}
+
+void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
+ auto Data = ArrayRef<uint8_t>(
+ reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
+ MemBuf->getBufferSize());
+ auto &DataSection = Obj->addSection<Section>(Data);
+ DataSection.Name = ".data";
+ DataSection.Type = ELF::SHT_PROGBITS;
+ DataSection.Size = Data.size();
+ DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
+
+ std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
+ std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
+ [](char C) { return !isalnum(C); }, '_');
+ Twine Prefix = Twine("_binary_") + SanitizedFilename;
+
+ SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
+ /*Value=*/0, NewSymbolVisibility, 0, 0);
+ SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
+ /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
+ SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
+ /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
+ 0);
+}
+
+std::unique_ptr<Object> BinaryELFBuilder::build() {
+ initFileHeader();
+ initHeaderSegment();
+
+ SymbolTableSection *SymTab = addSymTab(addStrTab());
+ initSections();
+ addData(SymTab);
+
+ return std::move(Obj);
+}
+
+// Adds sections from IHEX data file. Data should have been
+// fully validated by this time.
+void IHexELFBuilder::addDataSections() {
+ OwnedDataSection *Section = nullptr;
+ uint64_t SegmentAddr = 0, BaseAddr = 0;
+ uint32_t SecNo = 1;
+
+ for (const IHexRecord &R : Records) {
+ uint64_t RecAddr;
+ switch (R.Type) {
+ case IHexRecord::Data:
+ // Ignore empty data records
+ if (R.HexData.empty())
+ continue;
+ RecAddr = R.Addr + SegmentAddr + BaseAddr;
+ if (!Section || Section->Addr + Section->Size != RecAddr)
+ // OriginalOffset field is only used to sort section properly, so
+ // instead of keeping track of real offset in IHEX file, we use
+ // section number.
+ Section = &Obj->addSection<OwnedDataSection>(
+ ".sec" + std::to_string(SecNo++), RecAddr,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
+ Section->appendHexData(R.HexData);
+ break;
+ case IHexRecord::EndOfFile:
+ break;
+ case IHexRecord::SegmentAddr:
+ // 20-bit segment address.
+ SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
+ break;
+ case IHexRecord::StartAddr80x86:
+ case IHexRecord::StartAddr:
+ Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
+ assert(Obj->Entry <= 0xFFFFFU);
+ break;
+ case IHexRecord::ExtendedAddr:
+ // 16-31 bits of linear base address
+ BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
+ break;
+ default:
+ llvm_unreachable("unknown record type");
+ }
+ }
+}
+
+std::unique_ptr<Object> IHexELFBuilder::build() {
+ initFileHeader();
+ initHeaderSegment();
+ StringTableSection *StrTab = addStrTab();
+ addSymTab(StrTab);
+ initSections();
+ addDataSections();
+
+ return std::move(Obj);
+}
+
+template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
+ for (Segment &Parent : Obj.segments()) {
+ // Every segment will overlap with itself but we don't want a segment to
+ // be it's own parent so we avoid that situation.
+ if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
+ // We want a canonical "most parental" segment but this requires
+ // inspecting the ParentSegment.
+ if (compareSegmentsByOffset(&Parent, &Child))
+ if (Child.ParentSegment == nullptr ||
+ compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
+ Child.ParentSegment = &Parent;
+ }
+ }
+ }
+}
+
+template <class ELFT> void ELFBuilder<ELFT>::findEhdrOffset() {
+ if (!ExtractPartition)
+ return;
+
+ for (const SectionBase &Sec : Obj.sections()) {
+ if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
+ EhdrOffset = Sec.Offset;
+ return;
+ }
+ }
+ error("could not find partition named '" + *ExtractPartition + "'");
+}
+
+template <class ELFT>
+void ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
+ uint32_t Index = 0;
+ for (const auto &Phdr : unwrapOrError(HeadersFile.program_headers())) {
+ if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
+ error("program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
+ " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
+ " goes past the end of the file");
+
+ ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
+ (size_t)Phdr.p_filesz};
+ Segment &Seg = Obj.addSegment(Data);
+ Seg.Type = Phdr.p_type;
+ Seg.Flags = Phdr.p_flags;
+ Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
+ Seg.Offset = Phdr.p_offset + EhdrOffset;
+ Seg.VAddr = Phdr.p_vaddr;
+ Seg.PAddr = Phdr.p_paddr;
+ Seg.FileSize = Phdr.p_filesz;
+ Seg.MemSize = Phdr.p_memsz;
+ Seg.Align = Phdr.p_align;
+ Seg.Index = Index++;
+ for (SectionBase &Sec : Obj.sections())
+ if (sectionWithinSegment(Sec, Seg)) {
+ Seg.addSection(&Sec);
+ if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
+ Sec.ParentSegment = &Seg;
+ }
+ }
+
+ auto &ElfHdr = Obj.ElfHdrSegment;
+ ElfHdr.Index = Index++;
+ ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
+
+ const auto &Ehdr = *HeadersFile.getHeader();
+ auto &PrHdr = Obj.ProgramHdrSegment;
+ PrHdr.Type = PT_PHDR;
+ PrHdr.Flags = 0;
+ // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
+ // Whereas this works automatically for ElfHdr, here OriginalOffset is
+ // always non-zero and to ensure the equation we assign the same value to
+ // VAddr as well.
+ PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
+ PrHdr.PAddr = 0;
+ PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
+ // The spec requires us to naturally align all the fields.
+ PrHdr.Align = sizeof(Elf_Addr);
+ PrHdr.Index = Index++;
+
+ // Now we do an O(n^2) loop through the segments in order to match up
+ // segments.
+ for (Segment &Child : Obj.segments())
+ setParentSegment(Child);
+ setParentSegment(ElfHdr);
+ setParentSegment(PrHdr);
+}
+
+template <class ELFT>
+void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
+ if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
+ error("invalid alignment " + Twine(GroupSec->Align) + " of group section '" +
+ GroupSec->Name + "'");
+ SectionTableRef SecTable = Obj.sections();
+ auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
+ GroupSec->Link,
+ "link field value '" + Twine(GroupSec->Link) + "' in section '" +
+ GroupSec->Name + "' is invalid",
+ "link field value '" + Twine(GroupSec->Link) + "' in section '" +
+ GroupSec->Name + "' is not a symbol table");
+ Symbol *Sym = SymTab->getSymbolByIndex(GroupSec->Info);
+ if (!Sym)
+ error("info field value '" + Twine(GroupSec->Info) + "' in section '" +
+ GroupSec->Name + "' is not a valid symbol index");
+ GroupSec->setSymTab(SymTab);
+ GroupSec->setSymbol(Sym);
+ if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
+ GroupSec->Contents.empty())
+ error("the content of the section " + GroupSec->Name + " is malformed");
+ const ELF::Elf32_Word *Word =
+ reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
+ const ELF::Elf32_Word *End =
+ Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
+ GroupSec->setFlagWord(*Word++);
+ for (; Word != End; ++Word) {
+ uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
+ GroupSec->addMember(SecTable.getSection(
+ Index, "group member index " + Twine(Index) + " in section '" +
+ GroupSec->Name + "' is invalid"));
+ }
+}
+
+template <class ELFT>
+void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
+ const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
+ StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
+ ArrayRef<Elf_Word> ShndxData;
+
+ auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
+ for (const auto &Sym : Symbols) {
+ SectionBase *DefSection = nullptr;
+ StringRef Name = unwrapOrError(Sym.getName(StrTabData));
+
+ if (Sym.st_shndx == SHN_XINDEX) {
+ if (SymTab->getShndxTable() == nullptr)
+ error("symbol '" + Name +
+ "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists");
+ if (ShndxData.data() == nullptr) {
+ const Elf_Shdr &ShndxSec =
+ *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
+ ShndxData = unwrapOrError(
+ ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
+ if (ShndxData.size() != Symbols.size())
+ error("symbol section index table does not have the same number of "
+ "entries as the symbol table");
+ }
+ Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
+ DefSection = Obj.sections().getSection(
+ Index,
+ "symbol '" + Name + "' has invalid section index " + Twine(Index));
+ } else if (Sym.st_shndx >= SHN_LORESERVE) {
+ if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
+ error(
+ "symbol '" + Name +
+ "' has unsupported value greater than or equal to SHN_LORESERVE: " +
+ Twine(Sym.st_shndx));
+ }
+ } else if (Sym.st_shndx != SHN_UNDEF) {
+ DefSection = Obj.sections().getSection(
+ Sym.st_shndx, "symbol '" + Name +
+ "' is defined has invalid section index " +
+ Twine(Sym.st_shndx));
+ }
+
+ SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
+ Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
+ }
+}
+
+template <class ELFT>
+static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
+
+template <class ELFT>
+static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
+ ToSet = Rela.r_addend;
+}
+
+template <class T>
+static void initRelocations(RelocationSection *Relocs,
+ SymbolTableSection *SymbolTable, T RelRange) {
+ for (const auto &Rel : RelRange) {
+ Relocation ToAdd;
+ ToAdd.Offset = Rel.r_offset;
+ getAddend(ToAdd.Addend, Rel);
+ ToAdd.Type = Rel.getType(false);
+ ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
+ Relocs->addRelocation(ToAdd);
+ }
+}
+
+SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
+ if (Index == SHN_UNDEF || Index > Sections.size())
+ error(ErrMsg);
+ return Sections[Index - 1].get();
+}
+
+template <class T>
+T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
+ Twine TypeErrMsg) {
+ if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
+ return Sec;
+ error(TypeErrMsg);
+}
+
+template <class ELFT>
+SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
+ ArrayRef<uint8_t> Data;
+ switch (Shdr.sh_type) {
+ case SHT_REL:
+ case SHT_RELA:
+ if (Shdr.sh_flags & SHF_ALLOC) {
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return Obj.addSection<DynamicRelocationSection>(Data);
+ }
+ return Obj.addSection<RelocationSection>();
+ case SHT_STRTAB:
+ // If a string table is allocated we don't want to mess with it. That would
+ // mean altering the memory image. There are no special link types or
+ // anything so we can just use a Section.
+ if (Shdr.sh_flags & SHF_ALLOC) {
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return Obj.addSection<Section>(Data);
+ }
+ return Obj.addSection<StringTableSection>();
+ case SHT_HASH:
+ case SHT_GNU_HASH:
+ // Hash tables should refer to SHT_DYNSYM which we're not going to change.
+ // Because of this we don't need to mess with the hash tables either.
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return Obj.addSection<Section>(Data);
+ case SHT_GROUP:
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return Obj.addSection<GroupSection>(Data);
+ case SHT_DYNSYM:
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return Obj.addSection<DynamicSymbolTableSection>(Data);
+ case SHT_DYNAMIC:
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return Obj.addSection<DynamicSection>(Data);
+ case SHT_SYMTAB: {
+ auto &SymTab = Obj.addSection<SymbolTableSection>();
+ Obj.SymbolTable = &SymTab;
+ return SymTab;
+ }
+ case SHT_SYMTAB_SHNDX: {
+ auto &ShndxSection = Obj.addSection<SectionIndexSection>();
+ Obj.SectionIndexTable = &ShndxSection;
+ return ShndxSection;
+ }
+ case SHT_NOBITS:
+ return Obj.addSection<Section>(Data);
+ default: {
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+
+ StringRef Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
+ if (Name.startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
+ uint64_t DecompressedSize, DecompressedAlign;
+ std::tie(DecompressedSize, DecompressedAlign) =
+ getDecompressedSizeAndAlignment<ELFT>(Data);
+ return Obj.addSection<CompressedSection>(Data, DecompressedSize,
+ DecompressedAlign);
+ }
+
+ return Obj.addSection<Section>(Data);
+ }
+ }
+}
+
+template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
+ uint32_t Index = 0;
+ for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
+ if (Index == 0) {
+ ++Index;
+ continue;
+ }
+ auto &Sec = makeSection(Shdr);
+ Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
+ Sec.Type = Shdr.sh_type;
+ Sec.Flags = Shdr.sh_flags;
+ Sec.Addr = Shdr.sh_addr;
+ Sec.Offset = Shdr.sh_offset;
+ Sec.OriginalOffset = Shdr.sh_offset;
+ Sec.Size = Shdr.sh_size;
+ Sec.Link = Shdr.sh_link;
+ Sec.Info = Shdr.sh_info;
+ Sec.Align = Shdr.sh_addralign;
+ Sec.EntrySize = Shdr.sh_entsize;
+ Sec.Index = Index++;
+ Sec.OriginalData =
+ ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
+ (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
+ }
+}
+
+template <class ELFT> void ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
+ // If a section index table exists we'll need to initialize it before we
+ // initialize the symbol table because the symbol table might need to
+ // reference it.
+ if (Obj.SectionIndexTable)
+ Obj.SectionIndexTable->initialize(Obj.sections());
+
+ // Now that all of the sections have been added we can fill out some extra
+ // details about symbol tables. We need the symbol table filled out before
+ // any relocations.
+ if (Obj.SymbolTable) {
+ Obj.SymbolTable->initialize(Obj.sections());
+ initSymbolTable(Obj.SymbolTable);
+ } else if (EnsureSymtab) {
+ // Reuse the existing SHT_STRTAB section if exists.
+ StringTableSection *StrTab = nullptr;
+ for (auto &Sec : Obj.sections()) {
+ if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
+ StrTab = static_cast<StringTableSection *>(&Sec);
+
+ // Prefer .strtab to .shstrtab.
+ if (Obj.SectionNames != &Sec)
+ break;
+ }
+ }
+ if (!StrTab)
+ StrTab = &Obj.addSection<StringTableSection>();
+
+ SymbolTableSection &SymTab = Obj.addSection<SymbolTableSection>();
+ SymTab.Name = ".symtab";
+ SymTab.Link = StrTab->Index;
+ SymTab.initialize(Obj.sections());
+ SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
+ Obj.SymbolTable = &SymTab;
+ }
+
+ // Now that all sections and symbols have been added we can add
+ // relocations that reference symbols and set the link and info fields for
+ // relocation sections.
+ for (auto &Sec : Obj.sections()) {
+ if (&Sec == Obj.SymbolTable)
+ continue;
+ Sec.initialize(Obj.sections());
+ if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
+ auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
+ if (RelSec->Type == SHT_REL)
+ initRelocations(RelSec, Obj.SymbolTable,
+ unwrapOrError(ElfFile.rels(Shdr)));
+ else
+ initRelocations(RelSec, Obj.SymbolTable,
+ unwrapOrError(ElfFile.relas(Shdr)));
+ } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
+ initGroupSection(GroupSec);
+ }
+ }
+
+ uint32_t ShstrIndex = ElfFile.getHeader()->e_shstrndx;
+ if (ShstrIndex == SHN_XINDEX)
+ ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
+
+ if (ShstrIndex == SHN_UNDEF)
+ Obj.HadShdrs = false;
+ else
+ Obj.SectionNames =
+ Obj.sections().template getSectionOfType<StringTableSection>(
+ ShstrIndex,
+ "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
+ " is invalid",
+ "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
+ " is not a string table");
+}
+
+template <class ELFT> void ELFBuilder<ELFT>::build(bool EnsureSymtab) {
+ readSectionHeaders();
+ findEhdrOffset();
+
+ // The ELFFile whose ELF headers and program headers are copied into the
+ // output file. Normally the same as ElfFile, but if we're extracting a
+ // loadable partition it will point to the partition's headers.
+ ELFFile<ELFT> HeadersFile = unwrapOrError(ELFFile<ELFT>::create(toStringRef(
+ {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})));
+
+ auto &Ehdr = *HeadersFile.getHeader();
+ Obj.OSABI = Ehdr.e_ident[EI_OSABI];
+ Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
+ Obj.Type = Ehdr.e_type;
+ Obj.Machine = Ehdr.e_machine;
+ Obj.Version = Ehdr.e_version;
+ Obj.Entry = Ehdr.e_entry;
+ Obj.Flags = Ehdr.e_flags;
+
+ readSections(EnsureSymtab);
+ readProgramHeaders(HeadersFile);
+}
+
+Writer::~Writer() {}
+
+Reader::~Reader() {}
+
+std::unique_ptr<Object> BinaryReader::create(bool /*EnsureSymtab*/) const {
+ return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
+}
+
+Expected<std::vector<IHexRecord>> IHexReader::parse() const {
+ SmallVector<StringRef, 16> Lines;
+ std::vector<IHexRecord> Records;
+ bool HasSections = false;
+
+ MemBuf->getBuffer().split(Lines, '\n');
+ Records.reserve(Lines.size());
+ for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
+ StringRef Line = Lines[LineNo - 1].trim();
+ if (Line.empty())
+ continue;
+
+ Expected<IHexRecord> R = IHexRecord::parse(Line);
+ if (!R)
+ return parseError(LineNo, R.takeError());
+ if (R->Type == IHexRecord::EndOfFile)
+ break;
+ HasSections |= (R->Type == IHexRecord::Data);
+ Records.push_back(*R);
+ }
+ if (!HasSections)
+ return parseError(-1U, "no sections");
+
+ return std::move(Records);
+}
+
+std::unique_ptr<Object> IHexReader::create(bool /*EnsureSymtab*/) const {
+ std::vector<IHexRecord> Records = unwrapOrError(parse());
+ return IHexELFBuilder(Records).build();
+}
+
+std::unique_ptr<Object> ELFReader::create(bool EnsureSymtab) const {
+ auto Obj = std::make_unique<Object>();
+ if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
+ ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
+ Builder.build(EnsureSymtab);
+ return Obj;
+ } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
+ ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
+ Builder.build(EnsureSymtab);
+ return Obj;
+ } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
+ ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
+ Builder.build(EnsureSymtab);
+ return Obj;
+ } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
+ ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
+ Builder.build(EnsureSymtab);
+ return Obj;
+ }
+ error("invalid file type");
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
+ Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf.getBufferStart());
+ std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
+ Ehdr.e_ident[EI_MAG0] = 0x7f;
+ Ehdr.e_ident[EI_MAG1] = 'E';
+ Ehdr.e_ident[EI_MAG2] = 'L';
+ Ehdr.e_ident[EI_MAG3] = 'F';
+ Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
+ Ehdr.e_ident[EI_DATA] =
+ ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
+ Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
+ Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
+ Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
+
+ Ehdr.e_type = Obj.Type;
+ Ehdr.e_machine = Obj.Machine;
+ Ehdr.e_version = Obj.Version;
+ Ehdr.e_entry = Obj.Entry;
+ // We have to use the fully-qualified name llvm::size
+ // since some compilers complain on ambiguous resolution.
+ Ehdr.e_phnum = llvm::size(Obj.segments());
+ Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
+ Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
+ Ehdr.e_flags = Obj.Flags;
+ Ehdr.e_ehsize = sizeof(Elf_Ehdr);
+ if (WriteSectionHeaders && Obj.sections().size() != 0) {
+ Ehdr.e_shentsize = sizeof(Elf_Shdr);
+ Ehdr.e_shoff = Obj.SHOff;
+ // """
+ // If the number of sections is greater than or equal to
+ // SHN_LORESERVE (0xff00), this member has the value zero and the actual
+ // number of section header table entries is contained in the sh_size field
+ // of the section header at index 0.
+ // """
+ auto Shnum = Obj.sections().size() + 1;
+ if (Shnum >= SHN_LORESERVE)
+ Ehdr.e_shnum = 0;
+ else
+ Ehdr.e_shnum = Shnum;
+ // """
+ // If the section name string table section index is greater than or equal
+ // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
+ // and the actual index of the section name string table section is
+ // contained in the sh_link field of the section header at index 0.
+ // """
+ if (Obj.SectionNames->Index >= SHN_LORESERVE)
+ Ehdr.e_shstrndx = SHN_XINDEX;
+ else
+ Ehdr.e_shstrndx = Obj.SectionNames->Index;
+ } else {
+ Ehdr.e_shentsize = 0;
+ Ehdr.e_shoff = 0;
+ Ehdr.e_shnum = 0;
+ Ehdr.e_shstrndx = 0;
+ }
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
+ for (auto &Seg : Obj.segments())
+ writePhdr(Seg);
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
+ // This reference serves to write the dummy section header at the begining
+ // of the file. It is not used for anything else
+ Elf_Shdr &Shdr =
+ *reinterpret_cast<Elf_Shdr *>(Buf.getBufferStart() + Obj.SHOff);
+ Shdr.sh_name = 0;
+ Shdr.sh_type = SHT_NULL;
+ Shdr.sh_flags = 0;
+ Shdr.sh_addr = 0;
+ Shdr.sh_offset = 0;
+ // See writeEhdr for why we do this.
+ uint64_t Shnum = Obj.sections().size() + 1;
+ if (Shnum >= SHN_LORESERVE)
+ Shdr.sh_size = Shnum;
+ else
+ Shdr.sh_size = 0;
+ // See writeEhdr for why we do this.
+ if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
+ Shdr.sh_link = Obj.SectionNames->Index;
+ else
+ Shdr.sh_link = 0;
+ Shdr.sh_info = 0;
+ Shdr.sh_addralign = 0;
+ Shdr.sh_entsize = 0;
+
+ for (SectionBase &Sec : Obj.sections())
+ writeShdr(Sec);
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
+ for (SectionBase &Sec : Obj.sections())
+ // Segments are responsible for writing their contents, so only write the
+ // section data if the section is not in a segment. Note that this renders
+ // sections in segments effectively immutable.
+ if (Sec.ParentSegment == nullptr)
+ Sec.accept(*SecWriter);
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
+ for (Segment &Seg : Obj.segments()) {
+ uint8_t *B = Buf.getBufferStart() + Seg.Offset;
+ assert(Seg.FileSize == Seg.getContents().size() &&
+ "Segment size must match contents size");
+ std::memcpy(B, Seg.getContents().data(), Seg.FileSize);
+ }
+
+ // Iterate over removed sections and overwrite their old data with zeroes.
+ for (auto &Sec : Obj.removedSections()) {
+ Segment *Parent = Sec.ParentSegment;
+ if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
+ continue;
+ uint64_t Offset =
+ Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
+ std::memset(Buf.getBufferStart() + Offset, 0, Sec.Size);
+ }
+}
+
+template <class ELFT>
+ELFWriter<ELFT>::ELFWriter(Object &Obj, Buffer &Buf, bool WSH)
+ : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs) {}
+
+Error Object::removeSections(bool AllowBrokenLinks,
+ std::function<bool(const SectionBase &)> ToRemove) {
+
+ auto Iter = std::stable_partition(
+ std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
+ if (ToRemove(*Sec))
+ return false;
+ if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
+ if (auto ToRelSec = RelSec->getSection())
+ return !ToRemove(*ToRelSec);
+ }
+ return true;
+ });
+ if (SymbolTable != nullptr && ToRemove(*SymbolTable))
+ SymbolTable = nullptr;
+ if (SectionNames != nullptr && ToRemove(*SectionNames))
+ SectionNames = nullptr;
+ if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
+ SectionIndexTable = nullptr;
+ // Now make sure there are no remaining references to the sections that will
+ // be removed. Sometimes it is impossible to remove a reference so we emit
+ // an error here instead.
+ std::unordered_set<const SectionBase *> RemoveSections;
+ RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
+ for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
+ for (auto &Segment : Segments)
+ Segment->removeSection(RemoveSec.get());
+ RemoveSections.insert(RemoveSec.get());
+ }
+
+ // For each section that remains alive, we want to remove the dead references.
+ // This either might update the content of the section (e.g. remove symbols
+ // from symbol table that belongs to removed section) or trigger an error if
+ // a live section critically depends on a section being removed somehow
+ // (e.g. the removed section is referenced by a relocation).
+ for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
+ if (Error E = KeepSec->removeSectionReferences(AllowBrokenLinks,
+ [&RemoveSections](const SectionBase *Sec) {
+ return RemoveSections.find(Sec) != RemoveSections.end();
+ }))
+ return E;
+ }
+
+ // Transfer removed sections into the Object RemovedSections container for use
+ // later.
+ std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
+ // Now finally get rid of them all together.
+ Sections.erase(Iter, std::end(Sections));
+ return Error::success();
+}
+
+Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
+ if (SymbolTable)
+ for (const SecPtr &Sec : Sections)
+ if (Error E = Sec->removeSymbols(ToRemove))
+ return E;
+ return Error::success();
+}
+
+void Object::sortSections() {
+ // Use stable_sort to maintain the original ordering as closely as possible.
+ llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
+ // Put SHT_GROUP sections first, since group section headers must come
+ // before the sections they contain. This also matches what GNU objcopy
+ // does.
+ if (A->Type != B->Type &&
+ (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
+ return A->Type == ELF::SHT_GROUP;
+ // For all other sections, sort by offset order.
+ return A->OriginalOffset < B->OriginalOffset;
+ });
+}
+
+// Orders segments such that if x = y->ParentSegment then y comes before x.
+static void orderSegments(std::vector<Segment *> &Segments) {
+ llvm::stable_sort(Segments, compareSegmentsByOffset);
+}
+
+// This function finds a consistent layout for a list of segments starting from
+// an Offset. It assumes that Segments have been sorted by orderSegments and
+// returns an Offset one past the end of the last segment.
+static uint64_t layoutSegments(std::vector<Segment *> &Segments,
+ uint64_t Offset) {
+ assert(std::is_sorted(std::begin(Segments), std::end(Segments),
+ compareSegmentsByOffset));
+ // The only way a segment should move is if a section was between two
+ // segments and that section was removed. If that section isn't in a segment
+ // then it's acceptable, but not ideal, to simply move it to after the
+ // segments. So we can simply layout segments one after the other accounting
+ // for alignment.
+ for (Segment *Seg : Segments) {
+ // We assume that segments have been ordered by OriginalOffset and Index
+ // such that a parent segment will always come before a child segment in
+ // OrderedSegments. This means that the Offset of the ParentSegment should
+ // already be set and we can set our offset relative to it.
+ if (Seg->ParentSegment != nullptr) {
+ Segment *Parent = Seg->ParentSegment;
+ Seg->Offset =
+ Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
+ } else {
+ Seg->Offset =
+ alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
+ }
+ Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
+ }
+ return Offset;
+}
+
+// This function finds a consistent layout for a list of sections. It assumes
+// that the ->ParentSegment of each section has already been laid out. The
+// supplied starting Offset is used for the starting offset of any section that
+// does not have a ParentSegment. It returns either the offset given if all
+// sections had a ParentSegment or an offset one past the last section if there
+// was a section that didn't have a ParentSegment.
+template <class Range>
+static uint64_t layoutSections(Range Sections, uint64_t Offset) {
+ // Now the offset of every segment has been set we can assign the offsets
+ // of each section. For sections that are covered by a segment we should use
+ // the segment's original offset and the section's original offset to compute
+ // the offset from the start of the segment. Using the offset from the start
+ // of the segment we can assign a new offset to the section. For sections not
+ // covered by segments we can just bump Offset to the next valid location.
+ uint32_t Index = 1;
+ for (auto &Sec : Sections) {
+ Sec.Index = Index++;
+ if (Sec.ParentSegment != nullptr) {
+ auto Segment = *Sec.ParentSegment;
+ Sec.Offset =
+ Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
+ } else {
+ Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
+ Sec.Offset = Offset;
+ if (Sec.Type != SHT_NOBITS)
+ Offset += Sec.Size;
+ }
+ }
+ return Offset;
+}
+
+template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
+ Segment &ElfHdr = Obj.ElfHdrSegment;
+ ElfHdr.Type = PT_PHDR;
+ ElfHdr.Flags = 0;
+ ElfHdr.VAddr = 0;
+ ElfHdr.PAddr = 0;
+ ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
+ ElfHdr.Align = 0;
+}
+
+template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
+ // We need a temporary list of segments that has a special order to it
+ // so that we know that anytime ->ParentSegment is set that segment has
+ // already had its offset properly set.
+ std::vector<Segment *> OrderedSegments;
+ for (Segment &Segment : Obj.segments())
+ OrderedSegments.push_back(&Segment);
+ OrderedSegments.push_back(&Obj.ElfHdrSegment);
+ OrderedSegments.push_back(&Obj.ProgramHdrSegment);
+ orderSegments(OrderedSegments);
+ // Offset is used as the start offset of the first segment to be laid out.
+ // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
+ // we start at offset 0.
+ uint64_t Offset = 0;
+ Offset = layoutSegments(OrderedSegments, Offset);
+ Offset = layoutSections(Obj.sections(), Offset);
+ // If we need to write the section header table out then we need to align the
+ // Offset so that SHOffset is valid.
+ if (WriteSectionHeaders)
+ Offset = alignTo(Offset, sizeof(Elf_Addr));
+ Obj.SHOff = Offset;
+}
+
+template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
+ // We already have the section header offset so we can calculate the total
+ // size by just adding up the size of each section header.
+ if (!WriteSectionHeaders)
+ return Obj.SHOff;
+ size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
+ return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
+}
+
+template <class ELFT> Error ELFWriter<ELFT>::write() {
+ // Segment data must be written first, so that the ELF header and program
+ // header tables can overwrite it, if covered by a segment.
+ writeSegmentData();
+ writeEhdr();
+ writePhdrs();
+ writeSectionData();
+ if (WriteSectionHeaders)
+ writeShdrs();
+ return Buf.commit();
+}
+
+static Error removeUnneededSections(Object &Obj) {
+ // We can remove an empty symbol table from non-relocatable objects.
+ // Relocatable objects typically have relocation sections whose
+ // sh_link field points to .symtab, so we can't remove .symtab
+ // even if it is empty.
+ if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
+ !Obj.SymbolTable->empty())
+ return Error::success();
+
+ // .strtab can be used for section names. In such a case we shouldn't
+ // remove it.
+ auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
+ ? nullptr
+ : Obj.SymbolTable->getStrTab();
+ return Obj.removeSections(false, [&](const SectionBase &Sec) {
+ return &Sec == Obj.SymbolTable || &Sec == StrTab;
+ });
+}
+
+template <class ELFT> Error ELFWriter<ELFT>::finalize() {
+ // It could happen that SectionNames has been removed and yet the user wants
+ // a section header table output. We need to throw an error if a user tries
+ // to do that.
+ if (Obj.SectionNames == nullptr && WriteSectionHeaders)
+ return createStringError(llvm::errc::invalid_argument,
+ "cannot write section header table because "
+ "section header string table was removed");
+
+ if (Error E = removeUnneededSections(Obj))
+ return E;
+ Obj.sortSections();
+
+ // We need to assign indexes before we perform layout because we need to know
+ // if we need large indexes or not. We can assign indexes first and check as
+ // we go to see if we will actully need large indexes.
+ bool NeedsLargeIndexes = false;
+ if (Obj.sections().size() >= SHN_LORESERVE) {
+ SectionTableRef Sections = Obj.sections();
+ NeedsLargeIndexes =
+ std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
+ [](const SectionBase &Sec) { return Sec.HasSymbol; });
+ // TODO: handle case where only one section needs the large index table but
+ // only needs it because the large index table hasn't been removed yet.
+ }
+
+ if (NeedsLargeIndexes) {
+ // This means we definitely need to have a section index table but if we
+ // already have one then we should use it instead of making a new one.
+ if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
+ // Addition of a section to the end does not invalidate the indexes of
+ // other sections and assigns the correct index to the new section.
+ auto &Shndx = Obj.addSection<SectionIndexSection>();
+ Obj.SymbolTable->setShndxTable(&Shndx);
+ Shndx.setSymTab(Obj.SymbolTable);
+ }
+ } else {
+ // Since we don't need SectionIndexTable we should remove it and all
+ // references to it.
+ if (Obj.SectionIndexTable != nullptr) {
+ // We do not support sections referring to the section index table.
+ if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
+ [this](const SectionBase &Sec) {
+ return &Sec == Obj.SectionIndexTable;
+ }))
+ return E;
+ }
+ }
+
+ // Make sure we add the names of all the sections. Importantly this must be
+ // done after we decide to add or remove SectionIndexes.
+ if (Obj.SectionNames != nullptr)
+ for (const SectionBase &Sec : Obj.sections())
+ Obj.SectionNames->addString(Sec.Name);
+
+ initEhdrSegment();
+
+ // Before we can prepare for layout the indexes need to be finalized.
+ // Also, the output arch may not be the same as the input arch, so fix up
+ // size-related fields before doing layout calculations.
+ uint64_t Index = 0;
+ auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
+ for (SectionBase &Sec : Obj.sections()) {
+ Sec.Index = Index++;
+ Sec.accept(*SecSizer);
+ }
+
+ // The symbol table does not update all other sections on update. For
+ // instance, symbol names are not added as new symbols are added. This means
+ // that some sections, like .strtab, don't yet have their final size.
+ if (Obj.SymbolTable != nullptr)
+ Obj.SymbolTable->prepareForLayout();
+
+ // Now that all strings are added we want to finalize string table builders,
+ // because that affects section sizes which in turn affects section offsets.
+ for (SectionBase &Sec : Obj.sections())
+ if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
+ StrTab->prepareForLayout();
+
+ assignOffsets();
+
+ // layoutSections could have modified section indexes, so we need
+ // to fill the index table after assignOffsets.
+ if (Obj.SymbolTable != nullptr)
+ Obj.SymbolTable->fillShndxTable();
+
+ // Finally now that all offsets and indexes have been set we can finalize any
+ // remaining issues.
+ uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
+ for (SectionBase &Sec : Obj.sections()) {
+ Sec.HeaderOffset = Offset;
+ Offset += sizeof(Elf_Shdr);
+ if (WriteSectionHeaders)
+ Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
+ Sec.finalize();
+ }
+
+ if (Error E = Buf.allocate(totalSize()))
+ return E;
+ SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(Buf);
+ return Error::success();
+}
+
+Error BinaryWriter::write() {
+ for (const SectionBase &Sec : Obj.allocSections())
+ Sec.accept(*SecWriter);
+ return Buf.commit();
+}
+
+Error BinaryWriter::finalize() {
+ // We need a temporary list of segments that has a special order to it
+ // so that we know that anytime ->ParentSegment is set that segment has
+ // already had it's offset properly set. We only want to consider the segments
+ // that will affect layout of allocated sections so we only add those.
+ std::vector<Segment *> OrderedSegments;
+ for (const SectionBase &Sec : Obj.allocSections())
+ if (Sec.ParentSegment != nullptr)
+ OrderedSegments.push_back(Sec.ParentSegment);
+
+ // For binary output, we're going to use physical addresses instead of
+ // virtual addresses, since a binary output is used for cases like ROM
+ // loading and physical addresses are intended for ROM loading.
+ // However, if no segment has a physical address, we'll fallback to using
+ // virtual addresses for all.
+ if (all_of(OrderedSegments,
+ [](const Segment *Seg) { return Seg->PAddr == 0; }))
+ for (Segment *Seg : OrderedSegments)
+ Seg->PAddr = Seg->VAddr;
+
+ llvm::stable_sort(OrderedSegments, compareSegmentsByPAddr);
+
+ // Because we add a ParentSegment for each section we might have duplicate
+ // segments in OrderedSegments. If there were duplicates then layoutSegments
+ // would do very strange things.
+ auto End =
+ std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
+ OrderedSegments.erase(End, std::end(OrderedSegments));
+
+ uint64_t Offset = 0;
+
+ // Modify the first segment so that there is no gap at the start. This allows
+ // our layout algorithm to proceed as expected while not writing out the gap
+ // at the start.
+ if (!OrderedSegments.empty()) {
+ Segment *Seg = OrderedSegments[0];
+ const SectionBase *Sec = Seg->firstSection();
+ auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
+ Seg->OriginalOffset += Diff;
+ // The size needs to be shrunk as well.
+ Seg->FileSize -= Diff;
+ // The PAddr needs to be increased to remove the gap before the first
+ // section.
+ Seg->PAddr += Diff;
+ uint64_t LowestPAddr = Seg->PAddr;
+ for (Segment *Segment : OrderedSegments) {
+ Segment->Offset = Segment->PAddr - LowestPAddr;
+ Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
+ }
+ }
+
+ layoutSections(Obj.allocSections(), Offset);
+
+ // Now that every section has been laid out we just need to compute the total
+ // file size. This might not be the same as the offset returned by
+ // layoutSections, because we want to truncate the last segment to the end of
+ // its last section, to match GNU objcopy's behaviour.
+ TotalSize = 0;
+ for (const SectionBase &Sec : Obj.allocSections())
+ if (Sec.Type != SHT_NOBITS)
+ TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
+
+ if (Error E = Buf.allocate(TotalSize))
+ return E;
+ SecWriter = std::make_unique<BinarySectionWriter>(Buf);
+ return Error::success();
+}
+
+bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
+ const SectionBase *Rhs) const {
+ return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
+ (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
+}
+
+uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
+ IHexLineData HexData;
+ uint8_t Data[4] = {};
+ // We don't write entry point record if entry is zero.
+ if (Obj.Entry == 0)
+ return 0;
+
+ if (Obj.Entry <= 0xFFFFFU) {
+ Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
+ support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
+ support::big);
+ HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
+ } else {
+ support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
+ support::big);
+ HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
+ }
+ memcpy(Buf, HexData.data(), HexData.size());
+ return HexData.size();
+}
+
+uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
+ IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
+ memcpy(Buf, HexData.data(), HexData.size());
+ return HexData.size();
+}
+
+Error IHexWriter::write() {
+ IHexSectionWriter Writer(Buf);
+ // Write sections.
+ for (const SectionBase *Sec : Sections)
+ Sec->accept(Writer);
+
+ uint64_t Offset = Writer.getBufferOffset();
+ // Write entry point address.
+ Offset += writeEntryPointRecord(Buf.getBufferStart() + Offset);
+ // Write EOF.
+ Offset += writeEndOfFileRecord(Buf.getBufferStart() + Offset);
+ assert(Offset == TotalSize);
+ return Buf.commit();
+}
+
+Error IHexWriter::checkSection(const SectionBase &Sec) {
+ uint64_t Addr = sectionPhysicalAddr(&Sec);
+ if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
+ return createStringError(
+ errc::invalid_argument,
+ "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(),
+ Addr, Addr + Sec.Size - 1);
+ return Error::success();
+}
+
+Error IHexWriter::finalize() {
+ bool UseSegments = false;
+ auto ShouldWrite = [](const SectionBase &Sec) {
+ return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
+ };
+ auto IsInPtLoad = [](const SectionBase &Sec) {
+ return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
+ };
+
+ // We can't write 64-bit addresses.
+ if (addressOverflows32bit(Obj.Entry))
+ return createStringError(errc::invalid_argument,
+ "Entry point address 0x%llx overflows 32 bits.",
+ Obj.Entry);
+
+ // If any section we're to write has segment then we
+ // switch to using physical addresses. Otherwise we
+ // use section virtual address.
+ for (const SectionBase &Sec : Obj.sections())
+ if (ShouldWrite(Sec) && IsInPtLoad(Sec)) {
+ UseSegments = true;
+ break;
+ }
+
+ for (const SectionBase &Sec : Obj.sections())
+ if (ShouldWrite(Sec) && (!UseSegments || IsInPtLoad(Sec))) {
+ if (Error E = checkSection(Sec))
+ return E;
+ Sections.insert(&Sec);
+ }
+
+ IHexSectionWriterBase LengthCalc(Buf);
+ for (const SectionBase *Sec : Sections)
+ Sec->accept(LengthCalc);
+
+ // We need space to write section records + StartAddress record
+ // (if start adress is not zero) + EndOfFile record.
+ TotalSize = LengthCalc.getBufferOffset() +
+ (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
+ IHexRecord::getLineLength(0);
+ if (Error E = Buf.allocate(TotalSize))
+ return E;
+ return Error::success();
+}
+
+template class ELFBuilder<ELF64LE>;
+template class ELFBuilder<ELF64BE>;
+template class ELFBuilder<ELF32LE>;
+template class ELFBuilder<ELF32BE>;
+
+template class ELFWriter<ELF64LE>;
+template class ELFWriter<ELF64BE>;
+template class ELFWriter<ELF32LE>;
+template class ELFWriter<ELF32BE>;
+
+} // end namespace elf
+} // end namespace objcopy
+} // end namespace llvm