summaryrefslogtreecommitdiff
path: root/llvm/tools/llvm-readobj/ELFDumper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/tools/llvm-readobj/ELFDumper.cpp')
-rw-r--r--llvm/tools/llvm-readobj/ELFDumper.cpp6120
1 files changed, 6120 insertions, 0 deletions
diff --git a/llvm/tools/llvm-readobj/ELFDumper.cpp b/llvm/tools/llvm-readobj/ELFDumper.cpp
new file mode 100644
index 000000000000..57144882c4b4
--- /dev/null
+++ b/llvm/tools/llvm-readobj/ELFDumper.cpp
@@ -0,0 +1,6120 @@
+//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements the ELF-specific dumper for llvm-readobj.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ARMEHABIPrinter.h"
+#include "DwarfCFIEHPrinter.h"
+#include "Error.h"
+#include "ObjDumper.h"
+#include "StackMapPrinter.h"
+#include "llvm-readobj.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/Demangle/Demangle.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Object/ELFTypes.h"
+#include "llvm/Object/Error.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/RelocationResolver.h"
+#include "llvm/Object/StackMapParser.h"
+#include "llvm/Support/AMDGPUMetadata.h"
+#include "llvm/Support/ARMAttributeParser.h"
+#include "llvm/Support/ARMBuildAttributes.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MipsABIFlags.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cinttypes>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <iterator>
+#include <memory>
+#include <string>
+#include <system_error>
+#include <unordered_set>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::object;
+using namespace ELF;
+
+#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
+ case ns::enum: \
+ return #enum;
+
+#define ENUM_ENT(enum, altName) \
+ { #enum, altName, ELF::enum }
+
+#define ENUM_ENT_1(enum) \
+ { #enum, #enum, ELF::enum }
+
+#define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
+ case ns::enum: \
+ return std::string(#enum).substr(3);
+
+#define TYPEDEF_ELF_TYPES(ELFT) \
+ using ELFO = ELFFile<ELFT>; \
+ using Elf_Addr = typename ELFT::Addr; \
+ using Elf_Shdr = typename ELFT::Shdr; \
+ using Elf_Sym = typename ELFT::Sym; \
+ using Elf_Dyn = typename ELFT::Dyn; \
+ using Elf_Dyn_Range = typename ELFT::DynRange; \
+ using Elf_Rel = typename ELFT::Rel; \
+ using Elf_Rela = typename ELFT::Rela; \
+ using Elf_Relr = typename ELFT::Relr; \
+ using Elf_Rel_Range = typename ELFT::RelRange; \
+ using Elf_Rela_Range = typename ELFT::RelaRange; \
+ using Elf_Relr_Range = typename ELFT::RelrRange; \
+ using Elf_Phdr = typename ELFT::Phdr; \
+ using Elf_Half = typename ELFT::Half; \
+ using Elf_Ehdr = typename ELFT::Ehdr; \
+ using Elf_Word = typename ELFT::Word; \
+ using Elf_Hash = typename ELFT::Hash; \
+ using Elf_GnuHash = typename ELFT::GnuHash; \
+ using Elf_Note = typename ELFT::Note; \
+ using Elf_Sym_Range = typename ELFT::SymRange; \
+ using Elf_Versym = typename ELFT::Versym; \
+ using Elf_Verneed = typename ELFT::Verneed; \
+ using Elf_Vernaux = typename ELFT::Vernaux; \
+ using Elf_Verdef = typename ELFT::Verdef; \
+ using Elf_Verdaux = typename ELFT::Verdaux; \
+ using Elf_CGProfile = typename ELFT::CGProfile; \
+ using uintX_t = typename ELFT::uint;
+
+namespace {
+
+template <class ELFT> class DumpStyle;
+
+/// Represents a contiguous uniform range in the file. We cannot just create a
+/// range directly because when creating one of these from the .dynamic table
+/// the size, entity size and virtual address are different entries in arbitrary
+/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
+struct DynRegionInfo {
+ DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
+ DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName)
+ : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}
+
+ /// Address in current address space.
+ const void *Addr = nullptr;
+ /// Size in bytes of the region.
+ uint64_t Size = 0;
+ /// Size of each entity in the region.
+ uint64_t EntSize = 0;
+
+ /// Name of the file. Used for error reporting.
+ StringRef FileName;
+
+ template <typename Type> ArrayRef<Type> getAsArrayRef() const {
+ const Type *Start = reinterpret_cast<const Type *>(Addr);
+ if (!Start)
+ return {Start, Start};
+ if (EntSize != sizeof(Type) || Size % EntSize) {
+ // TODO: Add a section index to this warning.
+ reportWarning(createError("invalid section size (" + Twine(Size) +
+ ") or entity size (" + Twine(EntSize) + ")"),
+ FileName);
+ return {Start, Start};
+ }
+ return {Start, Start + (Size / EntSize)};
+ }
+};
+
+template <typename ELFT> class ELFDumper : public ObjDumper {
+public:
+ ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
+
+ void printFileHeaders() override;
+ void printSectionHeaders() override;
+ void printRelocations() override;
+ void printDynamicRelocations() override;
+ void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
+ void printHashSymbols() override;
+ void printUnwindInfo() override;
+
+ void printDynamicTable() override;
+ void printNeededLibraries() override;
+ void printProgramHeaders(bool PrintProgramHeaders,
+ cl::boolOrDefault PrintSectionMapping) override;
+ void printHashTable() override;
+ void printGnuHashTable() override;
+ void printLoadName() override;
+ void printVersionInfo() override;
+ void printGroupSections() override;
+
+ void printArchSpecificInfo() override;
+
+ void printStackMap() const override;
+
+ void printHashHistogram() override;
+
+ void printCGProfile() override;
+ void printAddrsig() override;
+
+ void printNotes() override;
+
+ void printELFLinkerOptions() override;
+ void printStackSizes() override;
+
+ const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
+
+private:
+ std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
+
+ TYPEDEF_ELF_TYPES(ELFT)
+
+ DynRegionInfo checkDRI(DynRegionInfo DRI) {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ if (DRI.Addr < Obj->base() ||
+ reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
+ Obj->base() + Obj->getBufSize())
+ reportError(errorCodeToError(llvm::object::object_error::parse_failed),
+ ObjF->getFileName());
+ return DRI;
+ }
+
+ DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
+ return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz,
+ EntSize, ObjF->getFileName()});
+ }
+
+ DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
+ return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size,
+ S->sh_entsize, ObjF->getFileName()});
+ }
+
+ void printAttributes();
+ void printMipsReginfo();
+ void printMipsOptions();
+
+ std::pair<const Elf_Phdr *, const Elf_Shdr *>
+ findDynamic(const ELFFile<ELFT> *Obj);
+ void loadDynamicTable(const ELFFile<ELFT> *Obj);
+ void parseDynamicTable();
+
+ StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
+ bool &IsDefault) const;
+ void LoadVersionMap() const;
+ void LoadVersionNeeds(const Elf_Shdr *ec) const;
+ void LoadVersionDefs(const Elf_Shdr *sec) const;
+
+ const object::ELFObjectFile<ELFT> *ObjF;
+ DynRegionInfo DynRelRegion;
+ DynRegionInfo DynRelaRegion;
+ DynRegionInfo DynRelrRegion;
+ DynRegionInfo DynPLTRelRegion;
+ DynRegionInfo DynSymRegion;
+ DynRegionInfo DynamicTable;
+ StringRef DynamicStringTable;
+ std::string SOName = "<Not found>";
+ const Elf_Hash *HashTable = nullptr;
+ const Elf_GnuHash *GnuHashTable = nullptr;
+ const Elf_Shdr *DotSymtabSec = nullptr;
+ const Elf_Shdr *DotCGProfileSec = nullptr;
+ const Elf_Shdr *DotAddrsigSec = nullptr;
+ StringRef DynSymtabName;
+ ArrayRef<Elf_Word> ShndxTable;
+
+ const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
+ const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
+ const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
+
+ // Records for each version index the corresponding Verdef or Vernaux entry.
+ // This is filled the first time LoadVersionMap() is called.
+ class VersionMapEntry : public PointerIntPair<const void *, 1> {
+ public:
+ // If the integer is 0, this is an Elf_Verdef*.
+ // If the integer is 1, this is an Elf_Vernaux*.
+ VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
+ VersionMapEntry(const Elf_Verdef *verdef)
+ : PointerIntPair<const void *, 1>(verdef, 0) {}
+ VersionMapEntry(const Elf_Vernaux *vernaux)
+ : PointerIntPair<const void *, 1>(vernaux, 1) {}
+
+ bool isNull() const { return getPointer() == nullptr; }
+ bool isVerdef() const { return !isNull() && getInt() == 0; }
+ bool isVernaux() const { return !isNull() && getInt() == 1; }
+ const Elf_Verdef *getVerdef() const {
+ return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
+ }
+ const Elf_Vernaux *getVernaux() const {
+ return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
+ }
+ };
+ mutable SmallVector<VersionMapEntry, 16> VersionMap;
+
+public:
+ Elf_Dyn_Range dynamic_table() const {
+ // A valid .dynamic section contains an array of entries terminated
+ // with a DT_NULL entry. However, sometimes the section content may
+ // continue past the DT_NULL entry, so to dump the section correctly,
+ // we first find the end of the entries by iterating over them.
+ Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
+
+ size_t Size = 0;
+ while (Size < Table.size())
+ if (Table[Size++].getTag() == DT_NULL)
+ break;
+
+ return Table.slice(0, Size);
+ }
+
+ Elf_Sym_Range dynamic_symbols() const {
+ return DynSymRegion.getAsArrayRef<Elf_Sym>();
+ }
+
+ Elf_Rel_Range dyn_rels() const;
+ Elf_Rela_Range dyn_relas() const;
+ Elf_Relr_Range dyn_relrs() const;
+ std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
+ bool IsDynamic) const;
+ void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym,
+ StringRef &SectionName,
+ unsigned &SectionIndex) const;
+ Expected<std::string> getStaticSymbolName(uint32_t Index) const;
+ std::string getDynamicString(uint64_t Value) const;
+ StringRef getSymbolVersionByIndex(StringRef StrTab,
+ uint32_t VersionSymbolIndex,
+ bool &IsDefault) const;
+
+ void printSymbolsHelper(bool IsDynamic) const;
+ void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const;
+
+ const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
+ const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
+ const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
+ ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
+ StringRef getDynamicStringTable() const { return DynamicStringTable; }
+ const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
+ const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
+ const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
+ const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
+ const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
+ const Elf_Hash *getHashTable() const { return HashTable; }
+ const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
+};
+
+template <class ELFT>
+void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
+ StringRef StrTable, SymtabName;
+ size_t Entries = 0;
+ Elf_Sym_Range Syms(nullptr, nullptr);
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ if (IsDynamic) {
+ StrTable = DynamicStringTable;
+ Syms = dynamic_symbols();
+ SymtabName = DynSymtabName;
+ if (DynSymRegion.Addr)
+ Entries = DynSymRegion.Size / DynSymRegion.EntSize;
+ } else {
+ if (!DotSymtabSec)
+ return;
+ StrTable = unwrapOrError(ObjF->getFileName(),
+ Obj->getStringTableForSymtab(*DotSymtabSec));
+ Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec));
+ SymtabName =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec));
+ Entries = DotSymtabSec->getEntityCount();
+ }
+ if (Syms.begin() == Syms.end())
+ return;
+
+ // The st_other field has 2 logical parts. The first two bits hold the symbol
+ // visibility (STV_*) and the remainder hold other platform-specific values.
+ bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
+ return S.st_other & ~0x3;
+ }) != Syms.end();
+
+ ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries,
+ NonVisibilityBitsUsed);
+ for (const auto &Sym : Syms)
+ ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic,
+ NonVisibilityBitsUsed);
+}
+
+template <class ELFT> class MipsGOTParser;
+
+template <typename ELFT> class DumpStyle {
+public:
+ using Elf_Shdr = typename ELFT::Shdr;
+ using Elf_Sym = typename ELFT::Sym;
+ using Elf_Addr = typename ELFT::Addr;
+
+ DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {
+ FileName = this->Dumper->getElfObject()->getFileName();
+
+ // Dumper reports all non-critical errors as warnings.
+ // It does not print the same warning more than once.
+ WarningHandler = [this](const Twine &Msg) {
+ if (Warnings.insert(Msg.str()).second)
+ reportWarning(createError(Msg), FileName);
+ return Error::success();
+ };
+ }
+
+ virtual ~DumpStyle() = default;
+
+ virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
+ bool PrintDynamicSymbols) = 0;
+ virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
+ virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
+ virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
+ size_t Offset, bool NonVisibilityBitsUsed) {}
+ virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
+ const Elf_Sym *FirstSym, StringRef StrTable,
+ bool IsDynamic, bool NonVisibilityBitsUsed) = 0;
+ virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
+ bool PrintProgramHeaders,
+ cl::boolOrDefault PrintSectionMapping) = 0;
+ virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) = 0;
+ virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) = 0;
+ virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) = 0;
+ virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
+ virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0;
+ void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
+ std::function<void()> PrintHeader);
+ void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
+ std::function<void()> PrintHeader);
+ void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue,
+ SectionRef FunctionSec,
+ const StringRef SectionName, DataExtractor Data,
+ uint64_t *Offset);
+ void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel,
+ SectionRef FunctionSec,
+ const StringRef &StackSizeSectionName,
+ const RelocationResolver &Resolver, DataExtractor Data);
+ virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
+ virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
+ virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
+ virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0;
+ const ELFDumper<ELFT> *dumper() const { return Dumper; }
+
+protected:
+ std::function<Error(const Twine &Msg)> WarningHandler;
+ StringRef FileName;
+
+private:
+ std::unordered_set<std::string> Warnings;
+ const ELFDumper<ELFT> *Dumper;
+};
+
+template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
+ formatted_raw_ostream &OS;
+
+public:
+ TYPEDEF_ELF_TYPES(ELFT)
+
+ GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
+ : DumpStyle<ELFT>(Dumper),
+ OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
+ assert (&W.getOStream() == &llvm::fouts());
+ }
+
+ void printFileHeaders(const ELFO *Obj) override;
+ void printGroupSections(const ELFFile<ELFT> *Obj) override;
+ void printRelocations(const ELFO *Obj) override;
+ void printSectionHeaders(const ELFO *Obj) override;
+ void printSymbols(const ELFO *Obj, bool PrintSymbols,
+ bool PrintDynamicSymbols) override;
+ void printHashSymbols(const ELFO *Obj) override;
+ void printDynamic(const ELFFile<ELFT> *Obj) override;
+ void printDynamicRelocations(const ELFO *Obj) override;
+ void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset,
+ bool NonVisibilityBitsUsed) override;
+ void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
+ cl::boolOrDefault PrintSectionMapping) override;
+ void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) override;
+ void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) override;
+ void printVersionDependencySection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) override;
+ void printHashHistogram(const ELFFile<ELFT> *Obj) override;
+ void printCGProfile(const ELFFile<ELFT> *Obj) override;
+ void printAddrsig(const ELFFile<ELFT> *Obj) override;
+ void printNotes(const ELFFile<ELFT> *Obj) override;
+ void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
+ void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
+ void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
+ void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
+ void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
+ void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
+
+private:
+ struct Field {
+ std::string Str;
+ unsigned Column;
+
+ Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
+ Field(unsigned Col) : Column(Col) {}
+ };
+
+ template <typename T, typename TEnum>
+ std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
+ for (const auto &EnumItem : EnumValues)
+ if (EnumItem.Value == Value)
+ return EnumItem.AltName;
+ return to_hexString(Value, false);
+ }
+
+ template <typename T, typename TEnum>
+ std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
+ TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
+ TEnum EnumMask3 = {}) {
+ std::string Str;
+ for (const auto &Flag : EnumValues) {
+ if (Flag.Value == 0)
+ continue;
+
+ TEnum EnumMask{};
+ if (Flag.Value & EnumMask1)
+ EnumMask = EnumMask1;
+ else if (Flag.Value & EnumMask2)
+ EnumMask = EnumMask2;
+ else if (Flag.Value & EnumMask3)
+ EnumMask = EnumMask3;
+ bool IsEnum = (Flag.Value & EnumMask) != 0;
+ if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
+ (IsEnum && (Value & EnumMask) == Flag.Value)) {
+ if (!Str.empty())
+ Str += ", ";
+ Str += Flag.AltName;
+ }
+ }
+ return Str;
+ }
+
+ formatted_raw_ostream &printField(struct Field F) {
+ if (F.Column != 0)
+ OS.PadToColumn(F.Column);
+ OS << F.Str;
+ OS.flush();
+ return OS;
+ }
+ void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
+ StringRef StrTable, uint32_t Bucket);
+ void printRelocHeader(unsigned SType);
+ void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
+ const Elf_Rela &R, bool IsRela);
+ void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
+ StringRef SymbolName, const Elf_Rela &R, bool IsRela);
+ void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
+ StringRef StrTable, bool IsDynamic,
+ bool NonVisibilityBitsUsed) override;
+ std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
+ const Elf_Sym *FirstSym);
+ void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
+ bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
+ bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
+ bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
+ bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
+ void printProgramHeaders(const ELFO *Obj);
+ void printSectionMapping(const ELFO *Obj);
+};
+
+template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
+public:
+ TYPEDEF_ELF_TYPES(ELFT)
+
+ LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
+ : DumpStyle<ELFT>(Dumper), W(W) {}
+
+ void printFileHeaders(const ELFO *Obj) override;
+ void printGroupSections(const ELFFile<ELFT> *Obj) override;
+ void printRelocations(const ELFO *Obj) override;
+ void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
+ void printSectionHeaders(const ELFO *Obj) override;
+ void printSymbols(const ELFO *Obj, bool PrintSymbols,
+ bool PrintDynamicSymbols) override;
+ void printDynamic(const ELFFile<ELFT> *Obj) override;
+ void printDynamicRelocations(const ELFO *Obj) override;
+ void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
+ cl::boolOrDefault PrintSectionMapping) override;
+ void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) override;
+ void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) override;
+ void printVersionDependencySection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) override;
+ void printHashHistogram(const ELFFile<ELFT> *Obj) override;
+ void printCGProfile(const ELFFile<ELFT> *Obj) override;
+ void printAddrsig(const ELFFile<ELFT> *Obj) override;
+ void printNotes(const ELFFile<ELFT> *Obj) override;
+ void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
+ void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
+ void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
+ void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
+ void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
+ void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
+
+private:
+ void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
+ void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
+ void printSymbols(const ELFO *Obj);
+ void printDynamicSymbols(const ELFO *Obj);
+ void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
+ StringRef StrTable, bool IsDynamic,
+ bool /*NonVisibilityBitsUsed*/) override;
+ void printProgramHeaders(const ELFO *Obj);
+ void printSectionMapping(const ELFO *Obj) {}
+
+ ScopedPrinter &W;
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <class ELFT>
+static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
+ ScopedPrinter &Writer,
+ std::unique_ptr<ObjDumper> &Result) {
+ Result.reset(new ELFDumper<ELFT>(Obj, Writer));
+ return readobj_error::success;
+}
+
+std::error_code createELFDumper(const object::ObjectFile *Obj,
+ ScopedPrinter &Writer,
+ std::unique_ptr<ObjDumper> &Result) {
+ // Little-endian 32-bit
+ if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
+ return createELFDumper(ELFObj, Writer, Result);
+
+ // Big-endian 32-bit
+ if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
+ return createELFDumper(ELFObj, Writer, Result);
+
+ // Little-endian 64-bit
+ if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
+ return createELFDumper(ELFObj, Writer, Result);
+
+ // Big-endian 64-bit
+ if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
+ return createELFDumper(ELFObj, Writer, Result);
+
+ return readobj_error::unsupported_obj_file_format;
+}
+
+} // end namespace llvm
+
+// Iterate through the versions needed section, and place each Elf_Vernaux
+// in the VersionMap according to its index.
+template <class ELFT>
+void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *Sec) const {
+ unsigned VerneedSize = Sec->sh_size; // Size of section in bytes
+ unsigned VerneedEntries = Sec->sh_info; // Number of Verneed entries
+ const uint8_t *VerneedStart = reinterpret_cast<const uint8_t *>(
+ ObjF->getELFFile()->base() + Sec->sh_offset);
+ const uint8_t *VerneedEnd = VerneedStart + VerneedSize;
+ // The first Verneed entry is at the start of the section.
+ const uint8_t *VerneedBuf = VerneedStart;
+ for (unsigned VerneedIndex = 0; VerneedIndex < VerneedEntries;
+ ++VerneedIndex) {
+ if (VerneedBuf + sizeof(Elf_Verneed) > VerneedEnd)
+ report_fatal_error("Section ended unexpectedly while scanning "
+ "version needed records.");
+ const Elf_Verneed *Verneed =
+ reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
+ if (Verneed->vn_version != ELF::VER_NEED_CURRENT)
+ report_fatal_error("Unexpected verneed version");
+ // Iterate through the Vernaux entries
+ const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
+ for (unsigned VernauxIndex = 0; VernauxIndex < Verneed->vn_cnt;
+ ++VernauxIndex) {
+ if (VernauxBuf + sizeof(Elf_Vernaux) > VerneedEnd)
+ report_fatal_error("Section ended unexpected while scanning auxiliary "
+ "version needed records.");
+ const Elf_Vernaux *Vernaux =
+ reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
+ size_t Index = Vernaux->vna_other & ELF::VERSYM_VERSION;
+ if (Index >= VersionMap.size())
+ VersionMap.resize(Index + 1);
+ VersionMap[Index] = VersionMapEntry(Vernaux);
+ VernauxBuf += Vernaux->vna_next;
+ }
+ VerneedBuf += Verneed->vn_next;
+ }
+}
+
+// Iterate through the version definitions, and place each Elf_Verdef
+// in the VersionMap according to its index.
+template <class ELFT>
+void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *Sec) const {
+ unsigned VerdefSize = Sec->sh_size; // Size of section in bytes
+ unsigned VerdefEntries = Sec->sh_info; // Number of Verdef entries
+ const uint8_t *VerdefStart = reinterpret_cast<const uint8_t *>(
+ ObjF->getELFFile()->base() + Sec->sh_offset);
+ const uint8_t *VerdefEnd = VerdefStart + VerdefSize;
+ // The first Verdef entry is at the start of the section.
+ const uint8_t *VerdefBuf = VerdefStart;
+ for (unsigned VerdefIndex = 0; VerdefIndex < VerdefEntries; ++VerdefIndex) {
+ if (VerdefBuf + sizeof(Elf_Verdef) > VerdefEnd)
+ report_fatal_error("Section ended unexpectedly while scanning "
+ "version definitions.");
+ const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
+ if (Verdef->vd_version != ELF::VER_DEF_CURRENT)
+ report_fatal_error("Unexpected verdef version");
+ size_t Index = Verdef->vd_ndx & ELF::VERSYM_VERSION;
+ if (Index >= VersionMap.size())
+ VersionMap.resize(Index + 1);
+ VersionMap[Index] = VersionMapEntry(Verdef);
+ VerdefBuf += Verdef->vd_next;
+ }
+}
+
+template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
+ // If there is no dynamic symtab or version table, there is nothing to do.
+ if (!DynSymRegion.Addr || !SymbolVersionSection)
+ return;
+
+ // Has the VersionMap already been loaded?
+ if (!VersionMap.empty())
+ return;
+
+ // The first two version indexes are reserved.
+ // Index 0 is LOCAL, index 1 is GLOBAL.
+ VersionMap.push_back(VersionMapEntry());
+ VersionMap.push_back(VersionMapEntry());
+
+ if (SymbolVersionDefSection)
+ LoadVersionDefs(SymbolVersionDefSection);
+
+ if (SymbolVersionNeedSection)
+ LoadVersionNeeds(SymbolVersionNeedSection);
+}
+
+template <typename ELFT>
+StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
+ const Elf_Sym *Sym,
+ bool &IsDefault) const {
+ // This is a dynamic symbol. Look in the GNU symbol version table.
+ if (!SymbolVersionSection) {
+ // No version table.
+ IsDefault = false;
+ return "";
+ }
+
+ // Determine the position in the symbol table of this entry.
+ size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
+ reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
+ sizeof(Elf_Sym);
+
+ // Get the corresponding version index entry.
+ const Elf_Versym *Versym = unwrapOrError(
+ ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>(
+ SymbolVersionSection, EntryIndex));
+ return this->getSymbolVersionByIndex(StrTab, Versym->vs_index, IsDefault);
+}
+
+static std::string maybeDemangle(StringRef Name) {
+ return opts::Demangle ? demangle(Name) : Name.str();
+}
+
+template <typename ELFT>
+Expected<std::string>
+ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ Expected<const typename ELFT::Sym *> SymOrErr =
+ Obj->getSymbol(DotSymtabSec, Index);
+ if (!SymOrErr)
+ return SymOrErr.takeError();
+
+ Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec);
+ if (!StrTabOrErr)
+ return StrTabOrErr.takeError();
+
+ Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
+ if (!NameOrErr)
+ return NameOrErr.takeError();
+ return maybeDemangle(*NameOrErr);
+}
+
+template <typename ELFT>
+StringRef ELFDumper<ELFT>::getSymbolVersionByIndex(StringRef StrTab,
+ uint32_t SymbolVersionIndex,
+ bool &IsDefault) const {
+ size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
+
+ // Special markers for unversioned symbols.
+ if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
+ IsDefault = false;
+ return "";
+ }
+
+ // Lookup this symbol in the version table.
+ LoadVersionMap();
+ if (VersionIndex >= VersionMap.size() || VersionMap[VersionIndex].isNull())
+ reportError(createError("Invalid version entry"), ObjF->getFileName());
+ const VersionMapEntry &Entry = VersionMap[VersionIndex];
+
+ // Get the version name string.
+ size_t NameOffset;
+ if (Entry.isVerdef()) {
+ // The first Verdaux entry holds the name.
+ NameOffset = Entry.getVerdef()->getAux()->vda_name;
+ IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
+ } else {
+ NameOffset = Entry.getVernaux()->vna_name;
+ IsDefault = false;
+ }
+ if (NameOffset >= StrTab.size())
+ reportError(createError("Invalid string offset"), ObjF->getFileName());
+ return StrTab.data() + NameOffset;
+}
+
+template <typename ELFT>
+std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
+ StringRef StrTable,
+ bool IsDynamic) const {
+ std::string SymbolName = maybeDemangle(
+ unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable)));
+
+ if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
+ unsigned SectionIndex;
+ StringRef SectionName;
+ Elf_Sym_Range Syms = unwrapOrError(
+ ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec));
+ getSectionNameIndex(Symbol, Syms.begin(), SectionName, SectionIndex);
+ return SectionName;
+ }
+
+ if (!IsDynamic)
+ return SymbolName;
+
+ bool IsDefault;
+ StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
+ if (!Version.empty()) {
+ SymbolName += (IsDefault ? "@@" : "@");
+ SymbolName += Version;
+ }
+ return SymbolName;
+}
+
+template <typename ELFT>
+void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol,
+ const Elf_Sym *FirstSym,
+ StringRef &SectionName,
+ unsigned &SectionIndex) const {
+ SectionIndex = Symbol->st_shndx;
+ if (Symbol->isUndefined())
+ SectionName = "Undefined";
+ else if (Symbol->isProcessorSpecific())
+ SectionName = "Processor Specific";
+ else if (Symbol->isOSSpecific())
+ SectionName = "Operating System Specific";
+ else if (Symbol->isAbsolute())
+ SectionName = "Absolute";
+ else if (Symbol->isCommon())
+ SectionName = "Common";
+ else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
+ SectionName = "Reserved";
+ else {
+ if (SectionIndex == SHN_XINDEX)
+ SectionIndex = unwrapOrError(ObjF->getFileName(),
+ object::getExtendedSymbolTableIndex<ELFT>(
+ Symbol, FirstSym, ShndxTable));
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ const typename ELFT::Shdr *Sec =
+ unwrapOrError(ObjF->getFileName(), Obj->getSection(SectionIndex));
+ SectionName = unwrapOrError(ObjF->getFileName(), Obj->getSectionName(Sec));
+ }
+}
+
+template <class ELFO>
+static const typename ELFO::Elf_Shdr *
+findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName,
+ uint64_t Addr) {
+ for (const auto &Shdr : unwrapOrError(FileName, Obj->sections()))
+ if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
+ return &Shdr;
+ return nullptr;
+}
+
+template <class ELFO>
+static const typename ELFO::Elf_Shdr *
+findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) {
+ for (const auto &Shdr : unwrapOrError(FileName, Obj.sections()))
+ if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr)))
+ return &Shdr;
+ return nullptr;
+}
+
+static const EnumEntry<unsigned> ElfClass[] = {
+ {"None", "none", ELF::ELFCLASSNONE},
+ {"32-bit", "ELF32", ELF::ELFCLASS32},
+ {"64-bit", "ELF64", ELF::ELFCLASS64},
+};
+
+static const EnumEntry<unsigned> ElfDataEncoding[] = {
+ {"None", "none", ELF::ELFDATANONE},
+ {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
+ {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
+};
+
+static const EnumEntry<unsigned> ElfObjectFileType[] = {
+ {"None", "NONE (none)", ELF::ET_NONE},
+ {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
+ {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
+ {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
+ {"Core", "CORE (Core file)", ELF::ET_CORE},
+};
+
+static const EnumEntry<unsigned> ElfOSABI[] = {
+ {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
+ {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
+ {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
+ {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
+ {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
+ {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
+ {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
+ {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
+ {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
+ {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
+ {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
+ {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
+ {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
+ {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
+ {"AROS", "AROS", ELF::ELFOSABI_AROS},
+ {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
+ {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
+ {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
+};
+
+static const EnumEntry<unsigned> SymVersionFlags[] = {
+ {"Base", "BASE", VER_FLG_BASE},
+ {"Weak", "WEAK", VER_FLG_WEAK},
+ {"Info", "INFO", VER_FLG_INFO}};
+
+static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
+ {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
+ {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
+ {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
+};
+
+static const EnumEntry<unsigned> ARMElfOSABI[] = {
+ {"ARM", "ARM", ELF::ELFOSABI_ARM}
+};
+
+static const EnumEntry<unsigned> C6000ElfOSABI[] = {
+ {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
+ {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
+};
+
+static const EnumEntry<unsigned> ElfMachineType[] = {
+ ENUM_ENT(EM_NONE, "None"),
+ ENUM_ENT(EM_M32, "WE32100"),
+ ENUM_ENT(EM_SPARC, "Sparc"),
+ ENUM_ENT(EM_386, "Intel 80386"),
+ ENUM_ENT(EM_68K, "MC68000"),
+ ENUM_ENT(EM_88K, "MC88000"),
+ ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
+ ENUM_ENT(EM_860, "Intel 80860"),
+ ENUM_ENT(EM_MIPS, "MIPS R3000"),
+ ENUM_ENT(EM_S370, "IBM System/370"),
+ ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
+ ENUM_ENT(EM_PARISC, "HPPA"),
+ ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
+ ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
+ ENUM_ENT(EM_960, "Intel 80960"),
+ ENUM_ENT(EM_PPC, "PowerPC"),
+ ENUM_ENT(EM_PPC64, "PowerPC64"),
+ ENUM_ENT(EM_S390, "IBM S/390"),
+ ENUM_ENT(EM_SPU, "SPU"),
+ ENUM_ENT(EM_V800, "NEC V800 series"),
+ ENUM_ENT(EM_FR20, "Fujistsu FR20"),
+ ENUM_ENT(EM_RH32, "TRW RH-32"),
+ ENUM_ENT(EM_RCE, "Motorola RCE"),
+ ENUM_ENT(EM_ARM, "ARM"),
+ ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
+ ENUM_ENT(EM_SH, "Hitachi SH"),
+ ENUM_ENT(EM_SPARCV9, "Sparc v9"),
+ ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
+ ENUM_ENT(EM_ARC, "ARC"),
+ ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
+ ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
+ ENUM_ENT(EM_H8S, "Hitachi H8S"),
+ ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
+ ENUM_ENT(EM_IA_64, "Intel IA-64"),
+ ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
+ ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
+ ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
+ ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
+ ENUM_ENT(EM_PCP, "Siemens PCP"),
+ ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
+ ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
+ ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
+ ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
+ ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
+ ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
+ ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
+ ENUM_ENT(EM_PDSP, "Sony DSP processor"),
+ ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
+ ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
+ ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
+ ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
+ ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
+ ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
+ ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
+ ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
+ ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
+ ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
+ ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
+ ENUM_ENT(EM_VAX, "Digital VAX"),
+ ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
+ ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
+ ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
+ ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
+ ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
+ ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
+ ENUM_ENT(EM_PRISM, "Vitesse Prism"),
+ ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
+ ENUM_ENT(EM_FR30, "Fujitsu FR30"),
+ ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
+ ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
+ ENUM_ENT(EM_V850, "NEC v850"),
+ ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
+ ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
+ ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
+ ENUM_ENT(EM_PJ, "picoJava"),
+ ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
+ ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
+ ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
+ ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
+ ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
+ ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
+ ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
+ ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
+ ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
+ ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
+ ENUM_ENT(EM_MAX, "MAX Processor"),
+ ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
+ ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
+ ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
+ ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
+ ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
+ ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
+ ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
+ ENUM_ENT(EM_UNICORE, "Unicore"),
+ ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
+ ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
+ ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
+ ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
+ ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
+ ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
+ ENUM_ENT(EM_M16C, "Renesas M16C"),
+ ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
+ ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
+ ENUM_ENT(EM_M32C, "Renesas M32C"),
+ ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
+ ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
+ ENUM_ENT(EM_SHARC, "EM_SHARC"),
+ ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
+ ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
+ ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
+ ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
+ ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
+ ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
+ ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
+ ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
+ ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
+ ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
+ ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
+ ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
+ ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
+ ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
+ ENUM_ENT(EM_8051, "Intel 8051 and variants"),
+ ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
+ ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
+ ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
+ ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
+ ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
+ ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
+ ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
+ ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
+ ENUM_ENT(EM_RX, "Renesas RX"),
+ ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
+ ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
+ ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
+ ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
+ ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
+ ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
+ ENUM_ENT(EM_L10M, "EM_L10M"),
+ ENUM_ENT(EM_K10M, "EM_K10M"),
+ ENUM_ENT(EM_AARCH64, "AArch64"),
+ ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
+ ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
+ ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
+ ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
+ ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
+ ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
+ ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
+ ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
+ ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
+ ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
+ ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
+ ENUM_ENT(EM_RL78, "Renesas RL78"),
+ ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
+ ENUM_ENT(EM_78KOR, "EM_78KOR"),
+ ENUM_ENT(EM_56800EX, "EM_56800EX"),
+ ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
+ ENUM_ENT(EM_RISCV, "RISC-V"),
+ ENUM_ENT(EM_LANAI, "EM_LANAI"),
+ ENUM_ENT(EM_BPF, "EM_BPF"),
+};
+
+static const EnumEntry<unsigned> ElfSymbolBindings[] = {
+ {"Local", "LOCAL", ELF::STB_LOCAL},
+ {"Global", "GLOBAL", ELF::STB_GLOBAL},
+ {"Weak", "WEAK", ELF::STB_WEAK},
+ {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
+
+static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
+ {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
+ {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
+ {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
+ {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
+
+static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
+ { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
+};
+
+static const char *getGroupType(uint32_t Flag) {
+ if (Flag & ELF::GRP_COMDAT)
+ return "COMDAT";
+ else
+ return "(unknown)";
+}
+
+static const EnumEntry<unsigned> ElfSectionFlags[] = {
+ ENUM_ENT(SHF_WRITE, "W"),
+ ENUM_ENT(SHF_ALLOC, "A"),
+ ENUM_ENT(SHF_EXCLUDE, "E"),
+ ENUM_ENT(SHF_EXECINSTR, "X"),
+ ENUM_ENT(SHF_MERGE, "M"),
+ ENUM_ENT(SHF_STRINGS, "S"),
+ ENUM_ENT(SHF_INFO_LINK, "I"),
+ ENUM_ENT(SHF_LINK_ORDER, "L"),
+ ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
+ ENUM_ENT(SHF_GROUP, "G"),
+ ENUM_ENT(SHF_TLS, "T"),
+ ENUM_ENT(SHF_MASKOS, "o"),
+ ENUM_ENT(SHF_MASKPROC, "p"),
+ ENUM_ENT_1(SHF_COMPRESSED),
+};
+
+static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
+ LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
+};
+
+static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE)
+};
+
+static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
+};
+
+static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ),
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
+};
+
+static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
+};
+
+static std::string getGNUFlags(uint64_t Flags) {
+ std::string Str;
+ for (auto Entry : ElfSectionFlags) {
+ uint64_t Flag = Entry.Value & Flags;
+ Flags &= ~Entry.Value;
+ switch (Flag) {
+ case ELF::SHF_WRITE:
+ case ELF::SHF_ALLOC:
+ case ELF::SHF_EXECINSTR:
+ case ELF::SHF_MERGE:
+ case ELF::SHF_STRINGS:
+ case ELF::SHF_INFO_LINK:
+ case ELF::SHF_LINK_ORDER:
+ case ELF::SHF_OS_NONCONFORMING:
+ case ELF::SHF_GROUP:
+ case ELF::SHF_TLS:
+ case ELF::SHF_EXCLUDE:
+ Str += Entry.AltName;
+ break;
+ default:
+ if (Flag & ELF::SHF_MASKOS)
+ Str += "o";
+ else if (Flag & ELF::SHF_MASKPROC)
+ Str += "p";
+ else if (Flag)
+ Str += "x";
+ }
+ }
+ return Str;
+}
+
+static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
+ // Check potentially overlapped processor-specific
+ // program header type.
+ switch (Arch) {
+ case ELF::EM_ARM:
+ switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
+ break;
+ case ELF::EM_MIPS:
+ case ELF::EM_MIPS_RS3_LE:
+ switch (Type) {
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
+ }
+ break;
+ }
+
+ switch (Type) {
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
+
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
+
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
+
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
+ LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
+
+ default:
+ return "";
+ }
+}
+
+static std::string getElfPtType(unsigned Arch, unsigned Type) {
+ switch (Type) {
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
+ LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
+ default:
+ // All machine specific PT_* types
+ switch (Arch) {
+ case ELF::EM_ARM:
+ if (Type == ELF::PT_ARM_EXIDX)
+ return "EXIDX";
+ break;
+ case ELF::EM_MIPS:
+ case ELF::EM_MIPS_RS3_LE:
+ switch (Type) {
+ case PT_MIPS_REGINFO:
+ return "REGINFO";
+ case PT_MIPS_RTPROC:
+ return "RTPROC";
+ case PT_MIPS_OPTIONS:
+ return "OPTIONS";
+ case PT_MIPS_ABIFLAGS:
+ return "ABIFLAGS";
+ }
+ break;
+ }
+ }
+ return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
+}
+
+static const EnumEntry<unsigned> ElfSegmentFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
+ LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
+ LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
+};
+
+static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
+ ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
+ ENUM_ENT(EF_MIPS_PIC, "pic"),
+ ENUM_ENT(EF_MIPS_CPIC, "cpic"),
+ ENUM_ENT(EF_MIPS_ABI2, "abi2"),
+ ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
+ ENUM_ENT(EF_MIPS_FP64, "fp64"),
+ ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
+ ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
+ ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
+ ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
+ ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
+ ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
+ ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
+ ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
+ ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
+ ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
+ ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
+ ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
+ ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
+ ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
+ ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
+ ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
+ ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
+ ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
+ ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
+ ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
+ ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
+ ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
+ ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
+ ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
+ ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
+ ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
+ ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
+ ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
+ ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
+ ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
+ ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
+ ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
+ ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
+ ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
+ ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
+ ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
+ ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
+};
+
+static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
+ LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
+};
+
+static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
+ ENUM_ENT(EF_RISCV_RVC, "RVC"),
+ ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
+ ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
+ ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
+ ENUM_ENT(EF_RISCV_RVE, "RVE")
+};
+
+static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
+ LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
+ LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
+};
+
+static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
+};
+
+static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
+ LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
+};
+
+static const char *getElfMipsOptionsOdkType(unsigned Odk) {
+ switch (Odk) {
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
+ LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
+ default:
+ return "Unknown";
+ }
+}
+
+template <typename ELFT>
+std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
+ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) {
+ // Try to locate the PT_DYNAMIC header.
+ const Elf_Phdr *DynamicPhdr = nullptr;
+ for (const Elf_Phdr &Phdr :
+ unwrapOrError(ObjF->getFileName(), Obj->program_headers())) {
+ if (Phdr.p_type != ELF::PT_DYNAMIC)
+ continue;
+ DynamicPhdr = &Phdr;
+ break;
+ }
+
+ // Try to locate the .dynamic section in the sections header table.
+ const Elf_Shdr *DynamicSec = nullptr;
+ for (const Elf_Shdr &Sec :
+ unwrapOrError(ObjF->getFileName(), Obj->sections())) {
+ if (Sec.sh_type != ELF::SHT_DYNAMIC)
+ continue;
+ DynamicSec = &Sec;
+ break;
+ }
+
+ if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
+ ObjF->getMemoryBufferRef().getBufferSize()) {
+ reportWarning(
+ createError(
+ "PT_DYNAMIC segment offset + size exceeds the size of the file"),
+ ObjF->getFileName());
+ // Don't use the broken dynamic header.
+ DynamicPhdr = nullptr;
+ }
+
+ if (DynamicPhdr && DynamicSec) {
+ StringRef Name =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec));
+ if (DynamicSec->sh_addr + DynamicSec->sh_size >
+ DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
+ DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
+ reportWarning(createError("The SHT_DYNAMIC section '" + Name +
+ "' is not contained within the "
+ "PT_DYNAMIC segment"),
+ ObjF->getFileName());
+
+ if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
+ reportWarning(createError("The SHT_DYNAMIC section '" + Name +
+ "' is not at the start of "
+ "PT_DYNAMIC segment"),
+ ObjF->getFileName());
+ }
+
+ return std::make_pair(DynamicPhdr, DynamicSec);
+}
+
+template <typename ELFT>
+void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
+ const Elf_Phdr *DynamicPhdr;
+ const Elf_Shdr *DynamicSec;
+ std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj);
+ if (!DynamicPhdr && !DynamicSec)
+ return;
+
+ DynRegionInfo FromPhdr(ObjF->getFileName());
+ bool IsPhdrTableValid = false;
+ if (DynamicPhdr) {
+ FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
+ IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
+ }
+
+ // Locate the dynamic table described in a section header.
+ // Ignore sh_entsize and use the expected value for entry size explicitly.
+ // This allows us to dump dynamic sections with a broken sh_entsize
+ // field.
+ DynRegionInfo FromSec(ObjF->getFileName());
+ bool IsSecTableValid = false;
+ if (DynamicSec) {
+ FromSec =
+ checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
+ DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()});
+ IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
+ }
+
+ // When we only have information from one of the SHT_DYNAMIC section header or
+ // PT_DYNAMIC program header, just use that.
+ if (!DynamicPhdr || !DynamicSec) {
+ if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
+ DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
+ parseDynamicTable();
+ } else {
+ reportWarning(createError("no valid dynamic table was found"),
+ ObjF->getFileName());
+ }
+ return;
+ }
+
+ // At this point we have tables found from the section header and from the
+ // dynamic segment. Usually they match, but we have to do sanity checks to
+ // verify that.
+
+ if (FromPhdr.Addr != FromSec.Addr)
+ reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
+ "program header disagree about "
+ "the location of the dynamic table"),
+ ObjF->getFileName());
+
+ if (!IsPhdrTableValid && !IsSecTableValid) {
+ reportWarning(createError("no valid dynamic table was found"),
+ ObjF->getFileName());
+ return;
+ }
+
+ // Information in the PT_DYNAMIC program header has priority over the information
+ // in a section header.
+ if (IsPhdrTableValid) {
+ if (!IsSecTableValid)
+ reportWarning(
+ createError(
+ "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
+ ObjF->getFileName());
+ DynamicTable = FromPhdr;
+ } else {
+ reportWarning(
+ createError(
+ "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
+ ObjF->getFileName());
+ DynamicTable = FromSec;
+ }
+
+ parseDynamicTable();
+}
+
+template <typename ELFT>
+ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
+ ScopedPrinter &Writer)
+ : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()),
+ DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()),
+ DynPLTRelRegion(ObjF->getFileName()), DynSymRegion(ObjF->getFileName()),
+ DynamicTable(ObjF->getFileName()) {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ for (const Elf_Shdr &Sec :
+ unwrapOrError(ObjF->getFileName(), Obj->sections())) {
+ switch (Sec.sh_type) {
+ case ELF::SHT_SYMTAB:
+ if (!DotSymtabSec)
+ DotSymtabSec = &Sec;
+ break;
+ case ELF::SHT_DYNSYM:
+ if (!DynSymRegion.Size) {
+ DynSymRegion = createDRIFrom(&Sec);
+ // This is only used (if Elf_Shdr present)for naming section in GNU
+ // style
+ DynSymtabName =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
+
+ if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
+ DynamicStringTable = *E;
+ else
+ reportWarning(E.takeError(), ObjF->getFileName());
+ }
+ break;
+ case ELF::SHT_SYMTAB_SHNDX:
+ ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec));
+ break;
+ case ELF::SHT_GNU_versym:
+ if (!SymbolVersionSection)
+ SymbolVersionSection = &Sec;
+ break;
+ case ELF::SHT_GNU_verdef:
+ if (!SymbolVersionDefSection)
+ SymbolVersionDefSection = &Sec;
+ break;
+ case ELF::SHT_GNU_verneed:
+ if (!SymbolVersionNeedSection)
+ SymbolVersionNeedSection = &Sec;
+ break;
+ case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
+ if (!DotCGProfileSec)
+ DotCGProfileSec = &Sec;
+ break;
+ case ELF::SHT_LLVM_ADDRSIG:
+ if (!DotAddrsigSec)
+ DotAddrsigSec = &Sec;
+ break;
+ }
+ }
+
+ loadDynamicTable(Obj);
+
+ if (opts::Output == opts::GNU)
+ ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
+ else
+ ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
+}
+
+static const char *getTypeString(unsigned Arch, uint64_t Type) {
+#define DYNAMIC_TAG(n, v)
+ switch (Arch) {
+
+ case EM_AARCH64:
+ switch (Type) {
+#define AARCH64_DYNAMIC_TAG(name, value) \
+ case DT_##name: \
+ return #name;
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef AARCH64_DYNAMIC_TAG
+ }
+ break;
+
+ case EM_HEXAGON:
+ switch (Type) {
+#define HEXAGON_DYNAMIC_TAG(name, value) \
+ case DT_##name: \
+ return #name;
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef HEXAGON_DYNAMIC_TAG
+ }
+ break;
+
+ case EM_MIPS:
+ switch (Type) {
+#define MIPS_DYNAMIC_TAG(name, value) \
+ case DT_##name: \
+ return #name;
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef MIPS_DYNAMIC_TAG
+ }
+ break;
+
+ case EM_PPC64:
+ switch (Type) {
+#define PPC64_DYNAMIC_TAG(name, value) \
+ case DT_##name: \
+ return #name;
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef PPC64_DYNAMIC_TAG
+ }
+ break;
+ }
+#undef DYNAMIC_TAG
+ switch (Type) {
+// Now handle all dynamic tags except the architecture specific ones
+#define AARCH64_DYNAMIC_TAG(name, value)
+#define MIPS_DYNAMIC_TAG(name, value)
+#define HEXAGON_DYNAMIC_TAG(name, value)
+#define PPC64_DYNAMIC_TAG(name, value)
+// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
+#define DYNAMIC_TAG_MARKER(name, value)
+#define DYNAMIC_TAG(name, value) \
+ case DT_##name: \
+ return #name;
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef DYNAMIC_TAG
+#undef AARCH64_DYNAMIC_TAG
+#undef MIPS_DYNAMIC_TAG
+#undef HEXAGON_DYNAMIC_TAG
+#undef PPC64_DYNAMIC_TAG
+#undef DYNAMIC_TAG_MARKER
+ default:
+ return "unknown";
+ }
+}
+
+template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
+ auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
+ auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
+ if (!MappedAddrOrError) {
+ Error Err =
+ createError("Unable to parse DT_" +
+ Twine(getTypeString(
+ ObjF->getELFFile()->getHeader()->e_machine, Tag)) +
+ ": " + llvm::toString(MappedAddrOrError.takeError()));
+
+ reportWarning(std::move(Err), ObjF->getFileName());
+ return nullptr;
+ }
+ return MappedAddrOrError.get();
+ };
+
+ uint64_t SONameOffset = 0;
+ const char *StringTableBegin = nullptr;
+ uint64_t StringTableSize = 0;
+ for (const Elf_Dyn &Dyn : dynamic_table()) {
+ switch (Dyn.d_tag) {
+ case ELF::DT_HASH:
+ HashTable = reinterpret_cast<const Elf_Hash *>(
+ toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
+ break;
+ case ELF::DT_GNU_HASH:
+ GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
+ toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
+ break;
+ case ELF::DT_STRTAB:
+ StringTableBegin = reinterpret_cast<const char *>(
+ toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
+ break;
+ case ELF::DT_STRSZ:
+ StringTableSize = Dyn.getVal();
+ break;
+ case ELF::DT_SYMTAB: {
+ // Often we find the information about the dynamic symbol table
+ // location in the SHT_DYNSYM section header. However, the value in
+ // DT_SYMTAB has priority, because it is used by dynamic loaders to
+ // locate .dynsym at runtime. The location we find in the section header
+ // and the location we find here should match. If we can't map the
+ // DT_SYMTAB value to an address (e.g. when there are no program headers), we
+ // ignore its value.
+ if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
+ // EntSize is non-zero if the dynamic symbol table has been found via a
+ // section header.
+ if (DynSymRegion.EntSize && VA != DynSymRegion.Addr)
+ reportWarning(
+ createError(
+ "SHT_DYNSYM section header and DT_SYMTAB disagree about "
+ "the location of the dynamic symbol table"),
+ ObjF->getFileName());
+
+ DynSymRegion.Addr = VA;
+ DynSymRegion.EntSize = sizeof(Elf_Sym);
+ }
+ break;
+ }
+ case ELF::DT_RELA:
+ DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
+ break;
+ case ELF::DT_RELASZ:
+ DynRelaRegion.Size = Dyn.getVal();
+ break;
+ case ELF::DT_RELAENT:
+ DynRelaRegion.EntSize = Dyn.getVal();
+ break;
+ case ELF::DT_SONAME:
+ SONameOffset = Dyn.getVal();
+ break;
+ case ELF::DT_REL:
+ DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
+ break;
+ case ELF::DT_RELSZ:
+ DynRelRegion.Size = Dyn.getVal();
+ break;
+ case ELF::DT_RELENT:
+ DynRelRegion.EntSize = Dyn.getVal();
+ break;
+ case ELF::DT_RELR:
+ case ELF::DT_ANDROID_RELR:
+ DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
+ break;
+ case ELF::DT_RELRSZ:
+ case ELF::DT_ANDROID_RELRSZ:
+ DynRelrRegion.Size = Dyn.getVal();
+ break;
+ case ELF::DT_RELRENT:
+ case ELF::DT_ANDROID_RELRENT:
+ DynRelrRegion.EntSize = Dyn.getVal();
+ break;
+ case ELF::DT_PLTREL:
+ if (Dyn.getVal() == DT_REL)
+ DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
+ else if (Dyn.getVal() == DT_RELA)
+ DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
+ else
+ reportError(createError(Twine("unknown DT_PLTREL value of ") +
+ Twine((uint64_t)Dyn.getVal())),
+ ObjF->getFileName());
+ break;
+ case ELF::DT_JMPREL:
+ DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
+ break;
+ case ELF::DT_PLTRELSZ:
+ DynPLTRelRegion.Size = Dyn.getVal();
+ break;
+ }
+ }
+ if (StringTableBegin)
+ DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
+ SOName = getDynamicString(SONameOffset);
+}
+
+template <typename ELFT>
+typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
+ return DynRelRegion.getAsArrayRef<Elf_Rel>();
+}
+
+template <typename ELFT>
+typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
+ return DynRelaRegion.getAsArrayRef<Elf_Rela>();
+}
+
+template <typename ELFT>
+typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
+ return DynRelrRegion.getAsArrayRef<Elf_Relr>();
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
+ ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
+ ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
+ ELFDumperStyle->printRelocations(ObjF->getELFFile());
+}
+
+template <class ELFT>
+void ELFDumper<ELFT>::printProgramHeaders(
+ bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
+ ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
+ PrintSectionMapping);
+}
+
+template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
+ // Dump version symbol section.
+ ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
+ SymbolVersionSection);
+
+ // Dump version definition section.
+ ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
+ SymbolVersionDefSection);
+
+ // Dump version dependency section.
+ ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
+ SymbolVersionNeedSection);
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
+ ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
+}
+
+template <class ELFT>
+void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
+ bool PrintDynamicSymbols) {
+ ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
+ PrintDynamicSymbols);
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
+ ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
+ ELFDumperStyle->printHashHistogram(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
+ ELFDumperStyle->printCGProfile(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printNotes() {
+ ELFDumperStyle->printNotes(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
+ ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
+ ELFDumperStyle->printStackSizes(ObjF);
+}
+
+#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
+ { #enum, prefix##_##enum }
+
+static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
+ LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
+ LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
+ LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
+ LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
+ LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
+};
+
+static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
+ LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
+};
+
+static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
+ LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
+ LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
+};
+
+#undef LLVM_READOBJ_DT_FLAG_ENT
+
+template <typename T, typename TFlag>
+void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
+ using FlagEntry = EnumEntry<TFlag>;
+ using FlagVector = SmallVector<FlagEntry, 10>;
+ FlagVector SetFlags;
+
+ for (const auto &Flag : Flags) {
+ if (Flag.Value == 0)
+ continue;
+
+ if ((Value & Flag.Value) == Flag.Value)
+ SetFlags.push_back(Flag);
+ }
+
+ for (const auto &Flag : SetFlags) {
+ OS << Flag.Name << " ";
+ }
+}
+
+template <class ELFT>
+void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type,
+ uint64_t Value) const {
+ const char *ConvChar =
+ (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
+
+ // Handle custom printing of architecture specific tags
+ switch (ObjF->getELFFile()->getHeader()->e_machine) {
+ case EM_AARCH64:
+ switch (Type) {
+ case DT_AARCH64_BTI_PLT:
+ case DT_AARCH64_PAC_PLT:
+ OS << Value;
+ return;
+ default:
+ break;
+ }
+ break;
+ case EM_HEXAGON:
+ switch (Type) {
+ case DT_HEXAGON_VER:
+ OS << Value;
+ return;
+ case DT_HEXAGON_SYMSZ:
+ case DT_HEXAGON_PLT:
+ OS << format(ConvChar, Value);
+ return;
+ default:
+ break;
+ }
+ break;
+ case EM_MIPS:
+ switch (Type) {
+ case DT_MIPS_RLD_VERSION:
+ case DT_MIPS_LOCAL_GOTNO:
+ case DT_MIPS_SYMTABNO:
+ case DT_MIPS_UNREFEXTNO:
+ OS << Value;
+ return;
+ case DT_MIPS_TIME_STAMP:
+ case DT_MIPS_ICHECKSUM:
+ case DT_MIPS_IVERSION:
+ case DT_MIPS_BASE_ADDRESS:
+ case DT_MIPS_MSYM:
+ case DT_MIPS_CONFLICT:
+ case DT_MIPS_LIBLIST:
+ case DT_MIPS_CONFLICTNO:
+ case DT_MIPS_LIBLISTNO:
+ case DT_MIPS_GOTSYM:
+ case DT_MIPS_HIPAGENO:
+ case DT_MIPS_RLD_MAP:
+ case DT_MIPS_DELTA_CLASS:
+ case DT_MIPS_DELTA_CLASS_NO:
+ case DT_MIPS_DELTA_INSTANCE:
+ case DT_MIPS_DELTA_RELOC:
+ case DT_MIPS_DELTA_RELOC_NO:
+ case DT_MIPS_DELTA_SYM:
+ case DT_MIPS_DELTA_SYM_NO:
+ case DT_MIPS_DELTA_CLASSSYM:
+ case DT_MIPS_DELTA_CLASSSYM_NO:
+ case DT_MIPS_CXX_FLAGS:
+ case DT_MIPS_PIXIE_INIT:
+ case DT_MIPS_SYMBOL_LIB:
+ case DT_MIPS_LOCALPAGE_GOTIDX:
+ case DT_MIPS_LOCAL_GOTIDX:
+ case DT_MIPS_HIDDEN_GOTIDX:
+ case DT_MIPS_PROTECTED_GOTIDX:
+ case DT_MIPS_OPTIONS:
+ case DT_MIPS_INTERFACE:
+ case DT_MIPS_DYNSTR_ALIGN:
+ case DT_MIPS_INTERFACE_SIZE:
+ case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
+ case DT_MIPS_PERF_SUFFIX:
+ case DT_MIPS_COMPACT_SIZE:
+ case DT_MIPS_GP_VALUE:
+ case DT_MIPS_AUX_DYNAMIC:
+ case DT_MIPS_PLTGOT:
+ case DT_MIPS_RWPLT:
+ case DT_MIPS_RLD_MAP_REL:
+ OS << format(ConvChar, Value);
+ return;
+ case DT_MIPS_FLAGS:
+ printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
+ return;
+ default:
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+
+ switch (Type) {
+ case DT_PLTREL:
+ if (Value == DT_REL) {
+ OS << "REL";
+ break;
+ } else if (Value == DT_RELA) {
+ OS << "RELA";
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case DT_PLTGOT:
+ case DT_HASH:
+ case DT_STRTAB:
+ case DT_SYMTAB:
+ case DT_RELA:
+ case DT_INIT:
+ case DT_FINI:
+ case DT_REL:
+ case DT_JMPREL:
+ case DT_INIT_ARRAY:
+ case DT_FINI_ARRAY:
+ case DT_PREINIT_ARRAY:
+ case DT_DEBUG:
+ case DT_VERDEF:
+ case DT_VERNEED:
+ case DT_VERSYM:
+ case DT_GNU_HASH:
+ case DT_NULL:
+ OS << format(ConvChar, Value);
+ break;
+ case DT_RELACOUNT:
+ case DT_RELCOUNT:
+ case DT_VERDEFNUM:
+ case DT_VERNEEDNUM:
+ OS << Value;
+ break;
+ case DT_PLTRELSZ:
+ case DT_RELASZ:
+ case DT_RELAENT:
+ case DT_STRSZ:
+ case DT_SYMENT:
+ case DT_RELSZ:
+ case DT_RELENT:
+ case DT_INIT_ARRAYSZ:
+ case DT_FINI_ARRAYSZ:
+ case DT_PREINIT_ARRAYSZ:
+ case DT_ANDROID_RELSZ:
+ case DT_ANDROID_RELASZ:
+ OS << Value << " (bytes)";
+ break;
+ case DT_NEEDED:
+ case DT_SONAME:
+ case DT_AUXILIARY:
+ case DT_USED:
+ case DT_FILTER:
+ case DT_RPATH:
+ case DT_RUNPATH: {
+ const std::map<uint64_t, const char*> TagNames = {
+ {DT_NEEDED, "Shared library"},
+ {DT_SONAME, "Library soname"},
+ {DT_AUXILIARY, "Auxiliary library"},
+ {DT_USED, "Not needed object"},
+ {DT_FILTER, "Filter library"},
+ {DT_RPATH, "Library rpath"},
+ {DT_RUNPATH, "Library runpath"},
+ };
+ OS << TagNames.at(Type) << ": [" << getDynamicString(Value) << "]";
+ break;
+ }
+ case DT_FLAGS:
+ printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
+ break;
+ case DT_FLAGS_1:
+ printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
+ break;
+ default:
+ OS << format(ConvChar, Value);
+ break;
+ }
+}
+
+template <class ELFT>
+std::string ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
+ if (DynamicStringTable.empty())
+ return "<String table is empty or was not found>";
+ if (Value < DynamicStringTable.size())
+ return DynamicStringTable.data() + Value;
+ return Twine("<Invalid offset 0x" + utohexstr(Value) + ">").str();
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
+ DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
+ Ctx.printUnwindInformation();
+}
+
+namespace {
+
+template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
+ const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
+ const unsigned Machine = Obj->getHeader()->e_machine;
+ if (Machine == EM_ARM) {
+ ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(),
+ DotSymtabSec);
+ Ctx.PrintUnwindInformation();
+ }
+ DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
+ Ctx.printUnwindInformation();
+}
+
+} // end anonymous namespace
+
+template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
+ ELFDumperStyle->printDynamic(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
+ ListScope D(W, "NeededLibraries");
+
+ std::vector<std::string> Libs;
+ for (const auto &Entry : dynamic_table())
+ if (Entry.d_tag == ELF::DT_NEEDED)
+ Libs.push_back(getDynamicString(Entry.d_un.d_val));
+
+ llvm::stable_sort(Libs);
+
+ for (const auto &L : Libs)
+ W.startLine() << L << "\n";
+}
+
+template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
+ DictScope D(W, "HashTable");
+ if (!HashTable)
+ return;
+ W.printNumber("Num Buckets", HashTable->nbucket);
+ W.printNumber("Num Chains", HashTable->nchain);
+ W.printList("Buckets", HashTable->buckets());
+ W.printList("Chains", HashTable->chains());
+}
+
+template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() {
+ DictScope D(W, "GnuHashTable");
+ if (!GnuHashTable)
+ return;
+ W.printNumber("Num Buckets", GnuHashTable->nbuckets);
+ W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
+ W.printNumber("Num Mask Words", GnuHashTable->maskwords);
+ W.printNumber("Shift Count", GnuHashTable->shift2);
+ W.printHexList("Bloom Filter", GnuHashTable->filter());
+ W.printList("Buckets", GnuHashTable->buckets());
+ Elf_Sym_Range Syms = dynamic_symbols();
+ unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
+ if (!NumSyms)
+ reportError(createError("No dynamic symbol section"), ObjF->getFileName());
+ W.printHexList("Values", GnuHashTable->values(NumSyms));
+}
+
+template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
+ W.printString("LoadName", SOName);
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ switch (Obj->getHeader()->e_machine) {
+ case EM_ARM:
+ printAttributes();
+ break;
+ case EM_MIPS: {
+ ELFDumperStyle->printMipsABIFlags(ObjF);
+ printMipsOptions();
+ printMipsReginfo();
+
+ MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(),
+ dynamic_symbols());
+ if (Parser.hasGot())
+ ELFDumperStyle->printMipsGOT(Parser);
+ if (Parser.hasPlt())
+ ELFDumperStyle->printMipsPLT(Parser);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
+ W.startLine() << "Attributes not implemented.\n";
+}
+
+namespace {
+
+template <> void ELFDumper<ELF32LE>::printAttributes() {
+ const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
+ if (Obj->getHeader()->e_machine != EM_ARM) {
+ W.startLine() << "Attributes not implemented.\n";
+ return;
+ }
+
+ DictScope BA(W, "BuildAttributes");
+ for (const ELFO::Elf_Shdr &Sec :
+ unwrapOrError(ObjF->getFileName(), Obj->sections())) {
+ if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
+ continue;
+
+ ArrayRef<uint8_t> Contents =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec));
+ if (Contents[0] != ARMBuildAttrs::Format_Version) {
+ errs() << "unrecognised FormatVersion: 0x"
+ << Twine::utohexstr(Contents[0]) << '\n';
+ continue;
+ }
+
+ W.printHex("FormatVersion", Contents[0]);
+ if (Contents.size() == 1)
+ continue;
+
+ ARMAttributeParser(&W).Parse(Contents, true);
+ }
+}
+
+template <class ELFT> class MipsGOTParser {
+public:
+ TYPEDEF_ELF_TYPES(ELFT)
+ using Entry = typename ELFO::Elf_Addr;
+ using Entries = ArrayRef<Entry>;
+
+ const bool IsStatic;
+ const ELFO * const Obj;
+
+ MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable,
+ Elf_Sym_Range DynSyms);
+
+ bool hasGot() const { return !GotEntries.empty(); }
+ bool hasPlt() const { return !PltEntries.empty(); }
+
+ uint64_t getGp() const;
+
+ const Entry *getGotLazyResolver() const;
+ const Entry *getGotModulePointer() const;
+ const Entry *getPltLazyResolver() const;
+ const Entry *getPltModulePointer() const;
+
+ Entries getLocalEntries() const;
+ Entries getGlobalEntries() const;
+ Entries getOtherEntries() const;
+ Entries getPltEntries() const;
+
+ uint64_t getGotAddress(const Entry * E) const;
+ int64_t getGotOffset(const Entry * E) const;
+ const Elf_Sym *getGotSym(const Entry *E) const;
+
+ uint64_t getPltAddress(const Entry * E) const;
+ const Elf_Sym *getPltSym(const Entry *E) const;
+
+ StringRef getPltStrTable() const { return PltStrTable; }
+
+private:
+ const Elf_Shdr *GotSec;
+ size_t LocalNum;
+ size_t GlobalNum;
+
+ const Elf_Shdr *PltSec;
+ const Elf_Shdr *PltRelSec;
+ const Elf_Shdr *PltSymTable;
+ StringRef FileName;
+
+ Elf_Sym_Range GotDynSyms;
+ StringRef PltStrTable;
+
+ Entries GotEntries;
+ Entries PltEntries;
+};
+
+} // end anonymous namespace
+
+template <class ELFT>
+MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName,
+ Elf_Dyn_Range DynTable,
+ Elf_Sym_Range DynSyms)
+ : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
+ GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
+ FileName(FileName) {
+ // See "Global Offset Table" in Chapter 5 in the following document
+ // for detailed GOT description.
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+
+ // Find static GOT secton.
+ if (IsStatic) {
+ GotSec = findSectionByName(*Obj, FileName, ".got");
+ if (!GotSec)
+ return;
+
+ ArrayRef<uint8_t> Content =
+ unwrapOrError(FileName, Obj->getSectionContents(GotSec));
+ GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
+ Content.size() / sizeof(Entry));
+ LocalNum = GotEntries.size();
+ return;
+ }
+
+ // Lookup dynamic table tags which define GOT/PLT layouts.
+ Optional<uint64_t> DtPltGot;
+ Optional<uint64_t> DtLocalGotNum;
+ Optional<uint64_t> DtGotSym;
+ Optional<uint64_t> DtMipsPltGot;
+ Optional<uint64_t> DtJmpRel;
+ for (const auto &Entry : DynTable) {
+ switch (Entry.getTag()) {
+ case ELF::DT_PLTGOT:
+ DtPltGot = Entry.getVal();
+ break;
+ case ELF::DT_MIPS_LOCAL_GOTNO:
+ DtLocalGotNum = Entry.getVal();
+ break;
+ case ELF::DT_MIPS_GOTSYM:
+ DtGotSym = Entry.getVal();
+ break;
+ case ELF::DT_MIPS_PLTGOT:
+ DtMipsPltGot = Entry.getVal();
+ break;
+ case ELF::DT_JMPREL:
+ DtJmpRel = Entry.getVal();
+ break;
+ }
+ }
+
+ // Find dynamic GOT section.
+ if (DtPltGot || DtLocalGotNum || DtGotSym) {
+ if (!DtPltGot)
+ report_fatal_error("Cannot find PLTGOT dynamic table tag.");
+ if (!DtLocalGotNum)
+ report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
+ if (!DtGotSym)
+ report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
+
+ size_t DynSymTotal = DynSyms.size();
+ if (*DtGotSym > DynSymTotal)
+ reportError(
+ createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
+ FileName);
+
+ GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
+ if (!GotSec)
+ reportError(createError("There is no not empty GOT section at 0x" +
+ Twine::utohexstr(*DtPltGot)),
+ FileName);
+
+ LocalNum = *DtLocalGotNum;
+ GlobalNum = DynSymTotal - *DtGotSym;
+
+ ArrayRef<uint8_t> Content =
+ unwrapOrError(FileName, Obj->getSectionContents(GotSec));
+ GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
+ Content.size() / sizeof(Entry));
+ GotDynSyms = DynSyms.drop_front(*DtGotSym);
+ }
+
+ // Find PLT section.
+ if (DtMipsPltGot || DtJmpRel) {
+ if (!DtMipsPltGot)
+ report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
+ if (!DtJmpRel)
+ report_fatal_error("Cannot find JMPREL dynamic table tag.");
+
+ PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot);
+ if (!PltSec)
+ report_fatal_error("There is no not empty PLTGOT section at 0x " +
+ Twine::utohexstr(*DtMipsPltGot));
+
+ PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel);
+ if (!PltRelSec)
+ report_fatal_error("There is no not empty RELPLT section at 0x" +
+ Twine::utohexstr(*DtJmpRel));
+
+ ArrayRef<uint8_t> PltContent =
+ unwrapOrError(FileName, Obj->getSectionContents(PltSec));
+ PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
+ PltContent.size() / sizeof(Entry));
+
+ PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link));
+ PltStrTable =
+ unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable));
+ }
+}
+
+template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
+ return GotSec->sh_addr + 0x7ff0;
+}
+
+template <class ELFT>
+const typename MipsGOTParser<ELFT>::Entry *
+MipsGOTParser<ELFT>::getGotLazyResolver() const {
+ return LocalNum > 0 ? &GotEntries[0] : nullptr;
+}
+
+template <class ELFT>
+const typename MipsGOTParser<ELFT>::Entry *
+MipsGOTParser<ELFT>::getGotModulePointer() const {
+ if (LocalNum < 2)
+ return nullptr;
+ const Entry &E = GotEntries[1];
+ if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
+ return nullptr;
+ return &E;
+}
+
+template <class ELFT>
+typename MipsGOTParser<ELFT>::Entries
+MipsGOTParser<ELFT>::getLocalEntries() const {
+ size_t Skip = getGotModulePointer() ? 2 : 1;
+ if (LocalNum - Skip <= 0)
+ return Entries();
+ return GotEntries.slice(Skip, LocalNum - Skip);
+}
+
+template <class ELFT>
+typename MipsGOTParser<ELFT>::Entries
+MipsGOTParser<ELFT>::getGlobalEntries() const {
+ if (GlobalNum == 0)
+ return Entries();
+ return GotEntries.slice(LocalNum, GlobalNum);
+}
+
+template <class ELFT>
+typename MipsGOTParser<ELFT>::Entries
+MipsGOTParser<ELFT>::getOtherEntries() const {
+ size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
+ if (OtherNum == 0)
+ return Entries();
+ return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
+}
+
+template <class ELFT>
+uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
+ int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
+ return GotSec->sh_addr + Offset;
+}
+
+template <class ELFT>
+int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
+ int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
+ return Offset - 0x7ff0;
+}
+
+template <class ELFT>
+const typename MipsGOTParser<ELFT>::Elf_Sym *
+MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
+ int64_t Offset = std::distance(GotEntries.data(), E);
+ return &GotDynSyms[Offset - LocalNum];
+}
+
+template <class ELFT>
+const typename MipsGOTParser<ELFT>::Entry *
+MipsGOTParser<ELFT>::getPltLazyResolver() const {
+ return PltEntries.empty() ? nullptr : &PltEntries[0];
+}
+
+template <class ELFT>
+const typename MipsGOTParser<ELFT>::Entry *
+MipsGOTParser<ELFT>::getPltModulePointer() const {
+ return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
+}
+
+template <class ELFT>
+typename MipsGOTParser<ELFT>::Entries
+MipsGOTParser<ELFT>::getPltEntries() const {
+ if (PltEntries.size() <= 2)
+ return Entries();
+ return PltEntries.slice(2, PltEntries.size() - 2);
+}
+
+template <class ELFT>
+uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
+ int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
+ return PltSec->sh_addr + Offset;
+}
+
+template <class ELFT>
+const typename MipsGOTParser<ELFT>::Elf_Sym *
+MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
+ int64_t Offset = std::distance(getPltEntries().data(), E);
+ if (PltRelSec->sh_type == ELF::SHT_REL) {
+ Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec));
+ return unwrapOrError(FileName,
+ Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
+ } else {
+ Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec));
+ return unwrapOrError(FileName,
+ Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
+ }
+}
+
+static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
+ {"None", Mips::AFL_EXT_NONE},
+ {"Broadcom SB-1", Mips::AFL_EXT_SB1},
+ {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
+ {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
+ {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
+ {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
+ {"LSI R4010", Mips::AFL_EXT_4010},
+ {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
+ {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
+ {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
+ {"MIPS R4650", Mips::AFL_EXT_4650},
+ {"MIPS R5900", Mips::AFL_EXT_5900},
+ {"MIPS R10000", Mips::AFL_EXT_10000},
+ {"NEC VR4100", Mips::AFL_EXT_4100},
+ {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
+ {"NEC VR4120", Mips::AFL_EXT_4120},
+ {"NEC VR5400", Mips::AFL_EXT_5400},
+ {"NEC VR5500", Mips::AFL_EXT_5500},
+ {"RMI Xlr", Mips::AFL_EXT_XLR},
+ {"Toshiba R3900", Mips::AFL_EXT_3900}
+};
+
+static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
+ {"DSP", Mips::AFL_ASE_DSP},
+ {"DSPR2", Mips::AFL_ASE_DSPR2},
+ {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
+ {"MCU", Mips::AFL_ASE_MCU},
+ {"MDMX", Mips::AFL_ASE_MDMX},
+ {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
+ {"MT", Mips::AFL_ASE_MT},
+ {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
+ {"VZ", Mips::AFL_ASE_VIRT},
+ {"MSA", Mips::AFL_ASE_MSA},
+ {"MIPS16", Mips::AFL_ASE_MIPS16},
+ {"microMIPS", Mips::AFL_ASE_MICROMIPS},
+ {"XPA", Mips::AFL_ASE_XPA},
+ {"CRC", Mips::AFL_ASE_CRC},
+ {"GINV", Mips::AFL_ASE_GINV},
+};
+
+static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
+ {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
+ {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
+ {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
+ {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
+ {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
+ Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
+ {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
+ {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
+ {"Hard float compat (32-bit CPU, 64-bit FPU)",
+ Mips::Val_GNU_MIPS_ABI_FP_64A}
+};
+
+static const EnumEntry<unsigned> ElfMipsFlags1[] {
+ {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
+};
+
+static int getMipsRegisterSize(uint8_t Flag) {
+ switch (Flag) {
+ case Mips::AFL_REG_NONE:
+ return 0;
+ case Mips::AFL_REG_32:
+ return 32;
+ case Mips::AFL_REG_64:
+ return 64;
+ case Mips::AFL_REG_128:
+ return 128;
+ default:
+ return -1;
+ }
+}
+
+template <class ELFT>
+static void printMipsReginfoData(ScopedPrinter &W,
+ const Elf_Mips_RegInfo<ELFT> &Reginfo) {
+ W.printHex("GP", Reginfo.ri_gp_value);
+ W.printHex("General Mask", Reginfo.ri_gprmask);
+ W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
+ W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
+ W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
+ W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo");
+ if (!Shdr) {
+ W.startLine() << "There is no .reginfo section in the file.\n";
+ return;
+ }
+ ArrayRef<uint8_t> Sec =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
+ if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
+ W.startLine() << "The .reginfo section has a wrong size.\n";
+ return;
+ }
+
+ DictScope GS(W, "MIPS RegInfo");
+ auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
+ printMipsReginfoData(W, *Reginfo);
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ const Elf_Shdr *Shdr =
+ findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options");
+ if (!Shdr) {
+ W.startLine() << "There is no .MIPS.options section in the file.\n";
+ return;
+ }
+
+ DictScope GS(W, "MIPS Options");
+
+ ArrayRef<uint8_t> Sec =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
+ while (!Sec.empty()) {
+ if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
+ W.startLine() << "The .MIPS.options section has a wrong size.\n";
+ return;
+ }
+ auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
+ DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
+ switch (O->kind) {
+ case ODK_REGINFO:
+ printMipsReginfoData(W, O->getRegInfo());
+ break;
+ default:
+ W.startLine() << "Unsupported MIPS options tag.\n";
+ break;
+ }
+ Sec = Sec.slice(O->size);
+ }
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ const Elf_Shdr *StackMapSection = nullptr;
+ for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) {
+ StringRef Name =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
+ if (Name == ".llvm_stackmaps") {
+ StackMapSection = &Sec;
+ break;
+ }
+ }
+
+ if (!StackMapSection)
+ return;
+
+ ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError(
+ ObjF->getFileName(), Obj->getSectionContents(StackMapSection));
+
+ prettyPrintStackMap(
+ W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
+ ELFDumperStyle->printGroupSections(ObjF->getELFFile());
+}
+
+template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
+ ELFDumperStyle->printAddrsig(ObjF->getELFFile());
+}
+
+static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
+ StringRef Str2) {
+ OS.PadToColumn(2u);
+ OS << Str1;
+ OS.PadToColumn(37u);
+ OS << Str2 << "\n";
+ OS.flush();
+}
+
+template <class ELFT>
+static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj,
+ StringRef FileName) {
+ const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
+ if (ElfHeader->e_shnum != 0)
+ return to_string(ElfHeader->e_shnum);
+
+ ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
+ if (Arr.empty())
+ return "0";
+ return "0 (" + to_string(Arr[0].sh_size) + ")";
+}
+
+template <class ELFT>
+static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj,
+ StringRef FileName) {
+ const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
+ if (ElfHeader->e_shstrndx != SHN_XINDEX)
+ return to_string(ElfHeader->e_shstrndx);
+
+ ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
+ if (Arr.empty())
+ return "65535 (corrupt: out of range)";
+ return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
+ ")";
+}
+
+template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
+ const Elf_Ehdr *e = Obj->getHeader();
+ OS << "ELF Header:\n";
+ OS << " Magic: ";
+ std::string Str;
+ for (int i = 0; i < ELF::EI_NIDENT; i++)
+ OS << format(" %02x", static_cast<int>(e->e_ident[i]));
+ OS << "\n";
+ Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
+ printFields(OS, "Class:", Str);
+ Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
+ printFields(OS, "Data:", Str);
+ OS.PadToColumn(2u);
+ OS << "Version:";
+ OS.PadToColumn(37u);
+ OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
+ if (e->e_version == ELF::EV_CURRENT)
+ OS << " (current)";
+ OS << "\n";
+ Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
+ printFields(OS, "OS/ABI:", Str);
+ Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
+ printFields(OS, "ABI Version:", Str);
+ Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
+ printFields(OS, "Type:", Str);
+ Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
+ printFields(OS, "Machine:", Str);
+ Str = "0x" + to_hexString(e->e_version);
+ printFields(OS, "Version:", Str);
+ Str = "0x" + to_hexString(e->e_entry);
+ printFields(OS, "Entry point address:", Str);
+ Str = to_string(e->e_phoff) + " (bytes into file)";
+ printFields(OS, "Start of program headers:", Str);
+ Str = to_string(e->e_shoff) + " (bytes into file)";
+ printFields(OS, "Start of section headers:", Str);
+ std::string ElfFlags;
+ if (e->e_machine == EM_MIPS)
+ ElfFlags =
+ printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
+ unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
+ unsigned(ELF::EF_MIPS_MACH));
+ else if (e->e_machine == EM_RISCV)
+ ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
+ Str = "0x" + to_hexString(e->e_flags);
+ if (!ElfFlags.empty())
+ Str = Str + ", " + ElfFlags;
+ printFields(OS, "Flags:", Str);
+ Str = to_string(e->e_ehsize) + " (bytes)";
+ printFields(OS, "Size of this header:", Str);
+ Str = to_string(e->e_phentsize) + " (bytes)";
+ printFields(OS, "Size of program headers:", Str);
+ Str = to_string(e->e_phnum);
+ printFields(OS, "Number of program headers:", Str);
+ Str = to_string(e->e_shentsize) + " (bytes)";
+ printFields(OS, "Size of section headers:", Str);
+ Str = getSectionHeadersNumString(Obj, this->FileName);
+ printFields(OS, "Number of section headers:", Str);
+ Str = getSectionHeaderTableIndexString(Obj, this->FileName);
+ printFields(OS, "Section header string table index:", Str);
+}
+
+namespace {
+struct GroupMember {
+ StringRef Name;
+ uint64_t Index;
+};
+
+struct GroupSection {
+ StringRef Name;
+ std::string Signature;
+ uint64_t ShName;
+ uint64_t Index;
+ uint32_t Link;
+ uint32_t Info;
+ uint32_t Type;
+ std::vector<GroupMember> Members;
+};
+
+template <class ELFT>
+std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj,
+ StringRef FileName) {
+ using Elf_Shdr = typename ELFT::Shdr;
+ using Elf_Sym = typename ELFT::Sym;
+ using Elf_Word = typename ELFT::Word;
+
+ std::vector<GroupSection> Ret;
+ uint64_t I = 0;
+ for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) {
+ ++I;
+ if (Sec.sh_type != ELF::SHT_GROUP)
+ continue;
+
+ const Elf_Shdr *Symtab =
+ unwrapOrError(FileName, Obj->getSection(Sec.sh_link));
+ StringRef StrTable =
+ unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab));
+ const Elf_Sym *Sym = unwrapOrError(
+ FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
+ auto Data = unwrapOrError(
+ FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
+
+ StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec));
+ StringRef Signature = StrTable.data() + Sym->st_name;
+ Ret.push_back({Name,
+ maybeDemangle(Signature),
+ Sec.sh_name,
+ I - 1,
+ Sec.sh_link,
+ Sec.sh_info,
+ Data[0],
+ {}});
+
+ std::vector<GroupMember> &GM = Ret.back().Members;
+ for (uint32_t Ndx : Data.slice(1)) {
+ auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx));
+ const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec));
+ GM.push_back({Name, Ndx});
+ }
+ }
+ return Ret;
+}
+
+DenseMap<uint64_t, const GroupSection *>
+mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
+ DenseMap<uint64_t, const GroupSection *> Ret;
+ for (const GroupSection &G : Groups)
+ for (const GroupMember &GM : G.Members)
+ Ret.insert({GM.Index, &G});
+ return Ret;
+}
+
+} // namespace
+
+template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
+ std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
+ DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
+ for (const GroupSection &G : V) {
+ OS << "\n"
+ << getGroupType(G.Type) << " group section ["
+ << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
+ << "] contains " << G.Members.size() << " sections:\n"
+ << " [Index] Name\n";
+ for (const GroupMember &GM : G.Members) {
+ const GroupSection *MainGroup = Map[GM.Index];
+ if (MainGroup != &G) {
+ OS.flush();
+ errs() << "Error: section [" << format_decimal(GM.Index, 5)
+ << "] in group section [" << format_decimal(G.Index, 5)
+ << "] already in group section ["
+ << format_decimal(MainGroup->Index, 5) << "]";
+ errs().flush();
+ continue;
+ }
+ OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
+ }
+ }
+
+ if (V.empty())
+ OS << "There are no section groups in this file.\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
+ const Elf_Rela &R, bool IsRela) {
+ const Elf_Sym *Sym =
+ unwrapOrError(this->FileName, Obj->getRelocationSymbol(&R, SymTab));
+ std::string TargetName;
+ if (Sym && Sym->getType() == ELF::STT_SECTION) {
+ const Elf_Shdr *Sec = unwrapOrError(
+ this->FileName,
+ Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
+ TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
+ } else if (Sym) {
+ StringRef StrTable =
+ unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
+ TargetName = this->dumper()->getFullSymbolName(
+ Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
+ }
+ printRelocation(Obj, Sym, TargetName, R, IsRela);
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
+ StringRef SymbolName, const Elf_Rela &R,
+ bool IsRela) {
+ // First two fields are bit width dependent. The rest of them are fixed width.
+ unsigned Bias = ELFT::Is64Bits ? 8 : 0;
+ Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
+ unsigned Width = ELFT::Is64Bits ? 16 : 8;
+
+ Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
+ Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
+
+ SmallString<32> RelocName;
+ Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
+ Fields[2].Str = RelocName.c_str();
+
+ if (Sym && (!SymbolName.empty() || Sym->getValue() != 0))
+ Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
+
+ Fields[4].Str = SymbolName;
+ for (const Field &F : Fields)
+ printField(F);
+
+ std::string Addend;
+ if (IsRela) {
+ int64_t RelAddend = R.r_addend;
+ if (!SymbolName.empty()) {
+ if (R.r_addend < 0) {
+ Addend = " - ";
+ RelAddend = std::abs(RelAddend);
+ } else
+ Addend = " + ";
+ }
+
+ Addend += to_hexString(RelAddend, false);
+ }
+ OS << Addend << "\n";
+}
+
+template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
+ bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
+ bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
+ if (ELFT::Is64Bits)
+ OS << " ";
+ else
+ OS << " ";
+ if (IsRelr && opts::RawRelr)
+ OS << "Data ";
+ else
+ OS << "Offset";
+ if (ELFT::Is64Bits)
+ OS << " Info Type"
+ << " Symbol's Value Symbol's Name";
+ else
+ OS << " Info Type Sym. Value Symbol's Name";
+ if (IsRela)
+ OS << " + Addend";
+ OS << "\n";
+}
+
+template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
+ bool HasRelocSections = false;
+ for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
+ if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
+ Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
+ Sec.sh_type != ELF::SHT_ANDROID_RELA &&
+ Sec.sh_type != ELF::SHT_ANDROID_RELR)
+ continue;
+ HasRelocSections = true;
+ StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
+ unsigned Entries = Sec.getEntityCount();
+ std::vector<Elf_Rela> AndroidRelas;
+ if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
+ Sec.sh_type == ELF::SHT_ANDROID_RELA) {
+ // Android's packed relocation section needs to be unpacked first
+ // to get the actual number of entries.
+ AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec));
+ Entries = AndroidRelas.size();
+ }
+ std::vector<Elf_Rela> RelrRelas;
+ if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
+ Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
+ // .relr.dyn relative relocation section needs to be unpacked first
+ // to get the actual number of entries.
+ Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec));
+ RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
+ Entries = RelrRelas.size();
+ }
+ uintX_t Offset = Sec.sh_offset;
+ OS << "\nRelocation section '" << Name << "' at offset 0x"
+ << to_hexString(Offset, false) << " contains " << Entries
+ << " entries:\n";
+ printRelocHeader(Sec.sh_type);
+ const Elf_Shdr *SymTab =
+ unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link));
+ switch (Sec.sh_type) {
+ case ELF::SHT_REL:
+ for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) {
+ Elf_Rela Rela;
+ Rela.r_offset = R.r_offset;
+ Rela.r_info = R.r_info;
+ Rela.r_addend = 0;
+ printRelocation(Obj, SymTab, Rela, false);
+ }
+ break;
+ case ELF::SHT_RELA:
+ for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec)))
+ printRelocation(Obj, SymTab, R, true);
+ break;
+ case ELF::SHT_RELR:
+ case ELF::SHT_ANDROID_RELR:
+ if (opts::RawRelr)
+ for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec)))
+ OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
+ << "\n";
+ else
+ for (const auto &R : RelrRelas)
+ printRelocation(Obj, SymTab, R, false);
+ break;
+ case ELF::SHT_ANDROID_REL:
+ case ELF::SHT_ANDROID_RELA:
+ for (const auto &R : AndroidRelas)
+ printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
+ break;
+ }
+ }
+ if (!HasRelocSections)
+ OS << "\nThere are no relocations in this file.\n";
+}
+
+// Print the offset of a particular section from anyone of the ranges:
+// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
+// If 'Type' does not fall within any of those ranges, then a string is
+// returned as '<unknown>' followed by the type value.
+static std::string getSectionTypeOffsetString(unsigned Type) {
+ if (Type >= SHT_LOOS && Type <= SHT_HIOS)
+ return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
+ else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
+ return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
+ else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
+ return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
+ return "0x" + to_hexString(Type) + ": <unknown>";
+}
+
+static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
+ using namespace ELF;
+
+ switch (Arch) {
+ case EM_ARM:
+ switch (Type) {
+ case SHT_ARM_EXIDX:
+ return "ARM_EXIDX";
+ case SHT_ARM_PREEMPTMAP:
+ return "ARM_PREEMPTMAP";
+ case SHT_ARM_ATTRIBUTES:
+ return "ARM_ATTRIBUTES";
+ case SHT_ARM_DEBUGOVERLAY:
+ return "ARM_DEBUGOVERLAY";
+ case SHT_ARM_OVERLAYSECTION:
+ return "ARM_OVERLAYSECTION";
+ }
+ break;
+ case EM_X86_64:
+ switch (Type) {
+ case SHT_X86_64_UNWIND:
+ return "X86_64_UNWIND";
+ }
+ break;
+ case EM_MIPS:
+ case EM_MIPS_RS3_LE:
+ switch (Type) {
+ case SHT_MIPS_REGINFO:
+ return "MIPS_REGINFO";
+ case SHT_MIPS_OPTIONS:
+ return "MIPS_OPTIONS";
+ case SHT_MIPS_DWARF:
+ return "MIPS_DWARF";
+ case SHT_MIPS_ABIFLAGS:
+ return "MIPS_ABIFLAGS";
+ }
+ break;
+ }
+ switch (Type) {
+ case SHT_NULL:
+ return "NULL";
+ case SHT_PROGBITS:
+ return "PROGBITS";
+ case SHT_SYMTAB:
+ return "SYMTAB";
+ case SHT_STRTAB:
+ return "STRTAB";
+ case SHT_RELA:
+ return "RELA";
+ case SHT_HASH:
+ return "HASH";
+ case SHT_DYNAMIC:
+ return "DYNAMIC";
+ case SHT_NOTE:
+ return "NOTE";
+ case SHT_NOBITS:
+ return "NOBITS";
+ case SHT_REL:
+ return "REL";
+ case SHT_SHLIB:
+ return "SHLIB";
+ case SHT_DYNSYM:
+ return "DYNSYM";
+ case SHT_INIT_ARRAY:
+ return "INIT_ARRAY";
+ case SHT_FINI_ARRAY:
+ return "FINI_ARRAY";
+ case SHT_PREINIT_ARRAY:
+ return "PREINIT_ARRAY";
+ case SHT_GROUP:
+ return "GROUP";
+ case SHT_SYMTAB_SHNDX:
+ return "SYMTAB SECTION INDICES";
+ case SHT_ANDROID_REL:
+ return "ANDROID_REL";
+ case SHT_ANDROID_RELA:
+ return "ANDROID_RELA";
+ case SHT_RELR:
+ case SHT_ANDROID_RELR:
+ return "RELR";
+ case SHT_LLVM_ODRTAB:
+ return "LLVM_ODRTAB";
+ case SHT_LLVM_LINKER_OPTIONS:
+ return "LLVM_LINKER_OPTIONS";
+ case SHT_LLVM_CALL_GRAPH_PROFILE:
+ return "LLVM_CALL_GRAPH_PROFILE";
+ case SHT_LLVM_ADDRSIG:
+ return "LLVM_ADDRSIG";
+ case SHT_LLVM_DEPENDENT_LIBRARIES:
+ return "LLVM_DEPENDENT_LIBRARIES";
+ case SHT_LLVM_SYMPART:
+ return "LLVM_SYMPART";
+ case SHT_LLVM_PART_EHDR:
+ return "LLVM_PART_EHDR";
+ case SHT_LLVM_PART_PHDR:
+ return "LLVM_PART_PHDR";
+ // FIXME: Parse processor specific GNU attributes
+ case SHT_GNU_ATTRIBUTES:
+ return "ATTRIBUTES";
+ case SHT_GNU_HASH:
+ return "GNU_HASH";
+ case SHT_GNU_verdef:
+ return "VERDEF";
+ case SHT_GNU_verneed:
+ return "VERNEED";
+ case SHT_GNU_versym:
+ return "VERSYM";
+ default:
+ return getSectionTypeOffsetString(Type);
+ }
+ return "";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
+ unsigned Bias = ELFT::Is64Bits ? 0 : 8;
+ ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
+ OS << "There are " << to_string(Sections.size())
+ << " section headers, starting at offset "
+ << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
+ OS << "Section Headers:\n";
+ Field Fields[11] = {
+ {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
+ {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
+ {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
+ {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
+ for (auto &F : Fields)
+ printField(F);
+ OS << "\n";
+
+ const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
+ size_t SectionIndex = 0;
+ for (const Elf_Shdr &Sec : Sections) {
+ Fields[0].Str = to_string(SectionIndex);
+ Fields[1].Str = unwrapOrError<StringRef>(
+ ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
+ Fields[2].Str =
+ getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
+ Fields[3].Str =
+ to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
+ Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
+ Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
+ Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
+ Fields[7].Str = getGNUFlags(Sec.sh_flags);
+ Fields[8].Str = to_string(Sec.sh_link);
+ Fields[9].Str = to_string(Sec.sh_info);
+ Fields[10].Str = to_string(Sec.sh_addralign);
+
+ OS.PadToColumn(Fields[0].Column);
+ OS << "[" << right_justify(Fields[0].Str, 2) << "]";
+ for (int i = 1; i < 7; i++)
+ printField(Fields[i]);
+ OS.PadToColumn(Fields[7].Column);
+ OS << right_justify(Fields[7].Str, 3);
+ OS.PadToColumn(Fields[8].Column);
+ OS << right_justify(Fields[8].Str, 2);
+ OS.PadToColumn(Fields[9].Column);
+ OS << right_justify(Fields[9].Str, 3);
+ OS.PadToColumn(Fields[10].Column);
+ OS << right_justify(Fields[10].Str, 2);
+ OS << "\n";
+ ++SectionIndex;
+ }
+ OS << "Key to Flags:\n"
+ << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
+ "(large)\n"
+ << " I (info), L (link order), G (group), T (TLS), E (exclude),\
+ x (unknown)\n"
+ << " O (extra OS processing required) o (OS specific),\
+ p (processor specific)\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
+ size_t Entries,
+ bool NonVisibilityBitsUsed) {
+ if (!Name.empty())
+ OS << "\nSymbol table '" << Name << "' contains " << Entries
+ << " entries:\n";
+ else
+ OS << "\n Symbol table for image:\n";
+
+ if (ELFT::Is64Bits)
+ OS << " Num: Value Size Type Bind Vis";
+ else
+ OS << " Num: Value Size Type Bind Vis";
+
+ if (NonVisibilityBitsUsed)
+ OS << " ";
+ OS << " Ndx Name\n";
+}
+
+template <class ELFT>
+std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
+ const Elf_Sym *Symbol,
+ const Elf_Sym *FirstSym) {
+ unsigned SectionIndex = Symbol->st_shndx;
+ switch (SectionIndex) {
+ case ELF::SHN_UNDEF:
+ return "UND";
+ case ELF::SHN_ABS:
+ return "ABS";
+ case ELF::SHN_COMMON:
+ return "COM";
+ case ELF::SHN_XINDEX:
+ return to_string(format_decimal(
+ unwrapOrError(this->FileName,
+ object::getExtendedSymbolTableIndex<ELFT>(
+ Symbol, FirstSym, this->dumper()->getShndxTable())),
+ 3));
+ default:
+ // Find if:
+ // Processor specific
+ if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
+ return std::string("PRC[0x") +
+ to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
+ // OS specific
+ if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
+ return std::string("OS[0x") +
+ to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
+ // Architecture reserved:
+ if (SectionIndex >= ELF::SHN_LORESERVE &&
+ SectionIndex <= ELF::SHN_HIRESERVE)
+ return std::string("RSV[0x") +
+ to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
+ // A normal section with an index
+ return to_string(format_decimal(SectionIndex, 3));
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
+ const Elf_Sym *FirstSym, StringRef StrTable,
+ bool IsDynamic, bool NonVisibilityBitsUsed) {
+ static int Idx = 0;
+ static bool Dynamic = true;
+
+ // If this function was called with a different value from IsDynamic
+ // from last call, happens when we move from dynamic to static symbol
+ // table, "Num" field should be reset.
+ if (!Dynamic != !IsDynamic) {
+ Idx = 0;
+ Dynamic = false;
+ }
+
+ unsigned Bias = ELFT::Is64Bits ? 8 : 0;
+ Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
+ 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
+ Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
+ Fields[1].Str = to_string(
+ format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
+ Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
+
+ unsigned char SymbolType = Symbol->getType();
+ if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
+ SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
+ Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
+ else
+ Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
+
+ Fields[4].Str =
+ printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
+ Fields[5].Str =
+ printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
+ if (Symbol->st_other & ~0x3)
+ Fields[5].Str +=
+ " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]";
+
+ Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
+ Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
+
+ Fields[7].Str =
+ this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
+ for (auto &Entry : Fields)
+ printField(Entry);
+ OS << "\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
+ uint32_t Sym, StringRef StrTable,
+ uint32_t Bucket) {
+ unsigned Bias = ELFT::Is64Bits ? 8 : 0;
+ Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
+ 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
+ Fields[0].Str = to_string(format_decimal(Sym, 5));
+ Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
+
+ const auto Symbol = FirstSym + Sym;
+ Fields[2].Str = to_string(
+ format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
+ Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
+
+ unsigned char SymbolType = Symbol->getType();
+ if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
+ SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
+ Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
+ else
+ Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
+
+ Fields[5].Str =
+ printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
+ Fields[6].Str =
+ printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
+ Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
+ Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
+
+ for (auto &Entry : Fields)
+ printField(Entry);
+ OS << "\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
+ bool PrintDynamicSymbols) {
+ if (!PrintSymbols && !PrintDynamicSymbols)
+ return;
+ // GNU readelf prints both the .dynsym and .symtab with --symbols.
+ this->dumper()->printSymbolsHelper(true);
+ if (PrintSymbols)
+ this->dumper()->printSymbolsHelper(false);
+}
+
+template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
+ if (this->dumper()->getDynamicStringTable().empty())
+ return;
+ auto StringTable = this->dumper()->getDynamicStringTable();
+ auto DynSyms = this->dumper()->dynamic_symbols();
+
+ // Try printing .hash
+ if (auto SysVHash = this->dumper()->getHashTable()) {
+ OS << "\n Symbol table of .hash for image:\n";
+ if (ELFT::Is64Bits)
+ OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
+ else
+ OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
+ OS << "\n";
+
+ auto Buckets = SysVHash->buckets();
+ auto Chains = SysVHash->chains();
+ for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) {
+ if (Buckets[Buc] == ELF::STN_UNDEF)
+ continue;
+ std::vector<bool> Visited(SysVHash->nchain);
+ for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) {
+ if (Ch == ELF::STN_UNDEF)
+ break;
+
+ if (Visited[Ch]) {
+ reportWarning(
+ createError(".hash section is invalid: bucket " + Twine(Ch) +
+ ": a cycle was detected in the linked chain"),
+ this->FileName);
+ break;
+ }
+
+ printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
+ Visited[Ch] = true;
+ }
+ }
+ }
+
+ // Try printing .gnu.hash
+ if (auto GnuHash = this->dumper()->getGnuHashTable()) {
+ OS << "\n Symbol table of .gnu.hash for image:\n";
+ if (ELFT::Is64Bits)
+ OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
+ else
+ OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
+ OS << "\n";
+ auto Buckets = GnuHash->buckets();
+ for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) {
+ if (Buckets[Buc] == ELF::STN_UNDEF)
+ continue;
+ uint32_t Index = Buckets[Buc];
+ uint32_t GnuHashable = Index - GnuHash->symndx;
+ // Print whole chain
+ while (true) {
+ printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
+ // Chain ends at symbol with stopper bit
+ if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
+ break;
+ }
+ }
+ }
+}
+
+static inline std::string printPhdrFlags(unsigned Flag) {
+ std::string Str;
+ Str = (Flag & PF_R) ? "R" : " ";
+ Str += (Flag & PF_W) ? "W" : " ";
+ Str += (Flag & PF_X) ? "E" : " ";
+ return Str;
+}
+
+// SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
+// PT_TLS must only have SHF_TLS sections
+template <class ELFT>
+bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
+ const Elf_Shdr &Sec) {
+ return (((Sec.sh_flags & ELF::SHF_TLS) &&
+ ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
+ (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
+ (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
+}
+
+// Non-SHT_NOBITS must have its offset inside the segment
+// Only non-zero section can be at end of segment
+template <class ELFT>
+bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
+ if (Sec.sh_type == ELF::SHT_NOBITS)
+ return true;
+ bool IsSpecial =
+ (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
+ // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
+ auto SectionSize =
+ (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
+ if (Sec.sh_offset >= Phdr.p_offset)
+ return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
+ /*only non-zero sized sections at end*/
+ && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
+ return false;
+}
+
+// SHF_ALLOC must have VMA inside segment
+// Only non-zero section can be at end of segment
+template <class ELFT>
+bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
+ if (!(Sec.sh_flags & ELF::SHF_ALLOC))
+ return true;
+ bool IsSpecial =
+ (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
+ // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
+ auto SectionSize =
+ (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
+ if (Sec.sh_addr >= Phdr.p_vaddr)
+ return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
+ (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
+ return false;
+}
+
+// No section with zero size must be at start or end of PT_DYNAMIC
+template <class ELFT>
+bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
+ if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
+ return true;
+ // Is section within the phdr both based on offset and VMA ?
+ return ((Sec.sh_type == ELF::SHT_NOBITS) ||
+ (Sec.sh_offset > Phdr.p_offset &&
+ Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
+ (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
+ (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printProgramHeaders(
+ const ELFO *Obj, bool PrintProgramHeaders,
+ cl::boolOrDefault PrintSectionMapping) {
+ if (PrintProgramHeaders)
+ printProgramHeaders(Obj);
+
+ // Display the section mapping along with the program headers, unless
+ // -section-mapping is explicitly set to false.
+ if (PrintSectionMapping != cl::BOU_FALSE)
+ printSectionMapping(Obj);
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
+ unsigned Bias = ELFT::Is64Bits ? 8 : 0;
+ const Elf_Ehdr *Header = Obj->getHeader();
+ Field Fields[8] = {2, 17, 26, 37 + Bias,
+ 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
+ OS << "\nElf file type is "
+ << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
+ << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
+ << "There are " << Header->e_phnum << " program headers,"
+ << " starting at offset " << Header->e_phoff << "\n\n"
+ << "Program Headers:\n";
+ if (ELFT::Is64Bits)
+ OS << " Type Offset VirtAddr PhysAddr "
+ << " FileSiz MemSiz Flg Align\n";
+ else
+ OS << " Type Offset VirtAddr PhysAddr FileSiz "
+ << "MemSiz Flg Align\n";
+
+ unsigned Width = ELFT::Is64Bits ? 18 : 10;
+ unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
+ for (const auto &Phdr :
+ unwrapOrError(this->FileName, Obj->program_headers())) {
+ Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
+ Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
+ Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
+ Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
+ Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
+ Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
+ Fields[6].Str = printPhdrFlags(Phdr.p_flags);
+ Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
+ for (auto Field : Fields)
+ printField(Field);
+ if (Phdr.p_type == ELF::PT_INTERP) {
+ OS << "\n [Requesting program interpreter: ";
+ OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
+ }
+ OS << "\n";
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
+ OS << "\n Section to Segment mapping:\n Segment Sections...\n";
+ DenseSet<const Elf_Shdr *> BelongsToSegment;
+ int Phnum = 0;
+ for (const Elf_Phdr &Phdr :
+ unwrapOrError(this->FileName, Obj->program_headers())) {
+ std::string Sections;
+ OS << format(" %2.2d ", Phnum++);
+ for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
+ // Check if each section is in a segment and then print mapping.
+ // readelf additionally makes sure it does not print zero sized sections
+ // at end of segments and for PT_DYNAMIC both start and end of section
+ // .tbss must only be shown in PT_TLS section.
+ bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
+ ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
+ Phdr.p_type != ELF::PT_TLS;
+ if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
+ checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
+ checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) {
+ Sections +=
+ unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() +
+ " ";
+ BelongsToSegment.insert(&Sec);
+ }
+ }
+ OS << Sections << "\n";
+ OS.flush();
+ }
+
+ // Display sections that do not belong to a segment.
+ std::string Sections;
+ for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
+ if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
+ Sections +=
+ unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' ';
+ }
+ if (!Sections.empty()) {
+ OS << " None " << Sections << '\n';
+ OS.flush();
+ }
+}
+
+namespace {
+template <class ELFT> struct RelSymbol {
+ const typename ELFT::Sym *Sym;
+ std::string Name;
+};
+
+template <class ELFT>
+RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName,
+ const ELFDumper<ELFT> *Dumper,
+ const typename ELFT::Rela &Reloc) {
+ uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL());
+ const typename ELFT::Sym *Sym = Dumper->dynamic_symbols().begin() + SymIndex;
+ Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable());
+
+ std::string Name;
+ if (ErrOrName) {
+ Name = maybeDemangle(*ErrOrName);
+ } else {
+ reportWarning(
+ createError("unable to get name of the dynamic symbol with index " +
+ Twine(SymIndex) + ": " + toString(ErrOrName.takeError())),
+ FileName);
+ Name = "<corrupt>";
+ }
+
+ return {Sym, std::move(Name)};
+}
+} // namespace
+
+template <class ELFT>
+void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
+ bool IsRela) {
+ RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R);
+ printRelocation(Obj, S.Sym, S.Name, R, IsRela);
+}
+
+template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
+ Elf_Dyn_Range Table = this->dumper()->dynamic_table();
+ if (Table.empty())
+ return;
+
+ const DynRegionInfo &DynamicTableRegion =
+ this->dumper()->getDynamicTableRegion();
+
+ OS << "Dynamic section at offset "
+ << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
+ Obj->base(),
+ 1)
+ << " contains " << Table.size() << " entries:\n";
+
+ bool Is64 = ELFT::Is64Bits;
+ if (Is64)
+ OS << " Tag Type Name/Value\n";
+ else
+ OS << " Tag Type Name/Value\n";
+ for (auto Entry : Table) {
+ uintX_t Tag = Entry.getTag();
+ std::string TypeString = std::string("(") +
+ getTypeString(Obj->getHeader()->e_machine, Tag) +
+ ")";
+ OS << " " << format_hex(Tag, Is64 ? 18 : 10)
+ << format(" %-20s ", TypeString.c_str());
+ this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
+ OS << "\n";
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
+ const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
+ const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
+ const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
+ const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
+ if (DynRelaRegion.Size > 0) {
+ OS << "\n'RELA' relocation section at offset "
+ << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
+ Obj->base(),
+ 1)
+ << " contains " << DynRelaRegion.Size << " bytes:\n";
+ printRelocHeader(ELF::SHT_RELA);
+ for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
+ printDynamicRelocation(Obj, Rela, true);
+ }
+ if (DynRelRegion.Size > 0) {
+ OS << "\n'REL' relocation section at offset "
+ << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
+ Obj->base(),
+ 1)
+ << " contains " << DynRelRegion.Size << " bytes:\n";
+ printRelocHeader(ELF::SHT_REL);
+ for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
+ Elf_Rela Rela;
+ Rela.r_offset = Rel.r_offset;
+ Rela.r_info = Rel.r_info;
+ Rela.r_addend = 0;
+ printDynamicRelocation(Obj, Rela, false);
+ }
+ }
+ if (DynRelrRegion.Size > 0) {
+ OS << "\n'RELR' relocation section at offset "
+ << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
+ Obj->base(),
+ 1)
+ << " contains " << DynRelrRegion.Size << " bytes:\n";
+ printRelocHeader(ELF::SHT_REL);
+ Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
+ std::vector<Elf_Rela> RelrRelas =
+ unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
+ for (const Elf_Rela &Rela : RelrRelas) {
+ printDynamicRelocation(Obj, Rela, false);
+ }
+ }
+ if (DynPLTRelRegion.Size) {
+ OS << "\n'PLT' relocation section at offset "
+ << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
+ Obj->base(),
+ 1)
+ << " contains " << DynPLTRelRegion.Size << " bytes:\n";
+ }
+ if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
+ printRelocHeader(ELF::SHT_RELA);
+ for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
+ printDynamicRelocation(Obj, Rela, true);
+ } else {
+ printRelocHeader(ELF::SHT_REL);
+ for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
+ Elf_Rela Rela;
+ Rela.r_offset = Rel.r_offset;
+ Rela.r_info = Rel.r_info;
+ Rela.r_addend = 0;
+ printDynamicRelocation(Obj, Rela, false);
+ }
+ }
+}
+
+template <class ELFT>
+static void printGNUVersionSectionProlog(formatted_raw_ostream &OS,
+ const Twine &Name, unsigned EntriesNum,
+ const ELFFile<ELFT> *Obj,
+ const typename ELFT::Shdr *Sec,
+ StringRef FileName) {
+ StringRef SecName = unwrapOrError(FileName, Obj->getSectionName(Sec));
+ OS << Name << " section '" << SecName << "' "
+ << "contains " << EntriesNum << " entries:\n";
+
+ const typename ELFT::Shdr *SymTab =
+ unwrapOrError(FileName, Obj->getSection(Sec->sh_link));
+ StringRef SymTabName = unwrapOrError(FileName, Obj->getSectionName(SymTab));
+ OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
+ << " Offset: " << format_hex(Sec->sh_offset, 8)
+ << " Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) {
+ if (!Sec)
+ return;
+
+ unsigned Entries = Sec->sh_size / sizeof(Elf_Versym);
+ printGNUVersionSectionProlog(OS, "Version symbols", Entries, Obj, Sec,
+ this->FileName);
+
+ const uint8_t *VersymBuf =
+ reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
+ const ELFDumper<ELFT> *Dumper = this->dumper();
+ StringRef StrTable = Dumper->getDynamicStringTable();
+
+ // readelf prints 4 entries per line.
+ for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
+ OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
+
+ for (uint64_t VersymIndex = 0;
+ (VersymIndex < 4) && (VersymIndex + VersymRow) < Entries;
+ ++VersymIndex) {
+ const Elf_Versym *Versym =
+ reinterpret_cast<const Elf_Versym *>(VersymBuf);
+ switch (Versym->vs_index) {
+ case 0:
+ OS << " 0 (*local*) ";
+ break;
+ case 1:
+ OS << " 1 (*global*) ";
+ break;
+ default:
+ OS << format("%4x%c", Versym->vs_index & VERSYM_VERSION,
+ Versym->vs_index & VERSYM_HIDDEN ? 'h' : ' ');
+
+ bool IsDefault = true;
+ std::string VersionName = Dumper->getSymbolVersionByIndex(
+ StrTable, Versym->vs_index, IsDefault);
+
+ if (!VersionName.empty())
+ VersionName = "(" + VersionName + ")";
+ else
+ VersionName = "(*invalid*)";
+ OS << left_justify(VersionName, 13);
+ }
+ VersymBuf += sizeof(Elf_Versym);
+ }
+ OS << '\n';
+ }
+ OS << '\n';
+}
+
+static std::string versionFlagToString(unsigned Flags) {
+ if (Flags == 0)
+ return "none";
+
+ std::string Ret;
+ auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
+ if (!(Flags & Flag))
+ return;
+ if (!Ret.empty())
+ Ret += " | ";
+ Ret += Name;
+ Flags &= ~Flag;
+ };
+
+ AddFlag(VER_FLG_BASE, "BASE");
+ AddFlag(VER_FLG_WEAK, "WEAK");
+ AddFlag(VER_FLG_INFO, "INFO");
+ AddFlag(~0, "<unknown>");
+ return Ret;
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) {
+ if (!Sec)
+ return;
+
+ unsigned VerDefsNum = Sec->sh_info;
+ printGNUVersionSectionProlog(OS, "Version definition", VerDefsNum, Obj, Sec,
+ this->FileName);
+
+ const Elf_Shdr *StrTabSec =
+ unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
+ StringRef StringTable(
+ reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
+ (size_t)StrTabSec->sh_size);
+
+ const uint8_t *VerdefBuf =
+ unwrapOrError(this->FileName, Obj->getSectionContents(Sec)).data();
+ const uint8_t *Begin = VerdefBuf;
+
+ while (VerDefsNum--) {
+ const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
+ OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u",
+ VerdefBuf - Begin, (unsigned)Verdef->vd_version,
+ versionFlagToString(Verdef->vd_flags).c_str(),
+ (unsigned)Verdef->vd_ndx, (unsigned)Verdef->vd_cnt);
+
+ const uint8_t *VerdauxBuf = VerdefBuf + Verdef->vd_aux;
+ const Elf_Verdaux *Verdaux =
+ reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
+ OS << format(" Name: %s\n",
+ StringTable.drop_front(Verdaux->vda_name).data());
+
+ for (unsigned I = 1; I < Verdef->vd_cnt; ++I) {
+ VerdauxBuf += Verdaux->vda_next;
+ Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
+ OS << format(" 0x%04x: Parent %u: %s\n", VerdauxBuf - Begin, I,
+ StringTable.drop_front(Verdaux->vda_name).data());
+ }
+
+ VerdefBuf += Verdef->vd_next;
+ }
+ OS << '\n';
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) {
+ if (!Sec)
+ return;
+
+ unsigned VerneedNum = Sec->sh_info;
+ printGNUVersionSectionProlog(OS, "Version needs", VerneedNum, Obj, Sec,
+ this->FileName);
+
+ ArrayRef<uint8_t> SecData =
+ unwrapOrError(this->FileName, Obj->getSectionContents(Sec));
+
+ const Elf_Shdr *StrTabSec =
+ unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
+ StringRef StringTable = {
+ reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
+ (size_t)StrTabSec->sh_size};
+
+ const uint8_t *VerneedBuf = SecData.data();
+ for (unsigned I = 0; I < VerneedNum; ++I) {
+ const Elf_Verneed *Verneed =
+ reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
+
+ OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n",
+ reinterpret_cast<const uint8_t *>(Verneed) - SecData.begin(),
+ (unsigned)Verneed->vn_version,
+ StringTable.drop_front(Verneed->vn_file).data(),
+ (unsigned)Verneed->vn_cnt);
+
+ const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
+ for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
+ const Elf_Vernaux *Vernaux =
+ reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
+
+ OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n",
+ reinterpret_cast<const uint8_t *>(Vernaux) - SecData.begin(),
+ StringTable.drop_front(Vernaux->vna_name).data(),
+ versionFlagToString(Vernaux->vna_flags).c_str(),
+ (unsigned)Vernaux->vna_other);
+ VernauxBuf += Vernaux->vna_next;
+ }
+ VerneedBuf += Verneed->vn_next;
+ }
+ OS << '\n';
+}
+
+// Hash histogram shows statistics of how efficient the hash was for the
+// dynamic symbol table. The table shows number of hash buckets for different
+// lengths of chains as absolute number and percentage of the total buckets.
+// Additionally cumulative coverage of symbols for each set of buckets.
+template <class ELFT>
+void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
+ // Print histogram for .hash section
+ if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
+ size_t NBucket = HashTable->nbucket;
+ size_t NChain = HashTable->nchain;
+ ArrayRef<Elf_Word> Buckets = HashTable->buckets();
+ ArrayRef<Elf_Word> Chains = HashTable->chains();
+ size_t TotalSyms = 0;
+ // If hash table is correct, we have at least chains with 0 length
+ size_t MaxChain = 1;
+ size_t CumulativeNonZero = 0;
+
+ if (NChain == 0 || NBucket == 0)
+ return;
+
+ std::vector<size_t> ChainLen(NBucket, 0);
+ // Go over all buckets and and note chain lengths of each bucket (total
+ // unique chain lengths).
+ for (size_t B = 0; B < NBucket; B++) {
+ std::vector<bool> Visited(NChain);
+ for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
+ if (C == ELF::STN_UNDEF)
+ break;
+ if (Visited[C]) {
+ reportWarning(
+ createError(".hash section is invalid: bucket " + Twine(C) +
+ ": a cycle was detected in the linked chain"),
+ this->FileName);
+ break;
+ }
+ Visited[C] = true;
+ if (MaxChain <= ++ChainLen[B])
+ MaxChain++;
+ }
+ TotalSyms += ChainLen[B];
+ }
+
+ if (!TotalSyms)
+ return;
+
+ std::vector<size_t> Count(MaxChain, 0) ;
+ // Count how long is the chain for each bucket
+ for (size_t B = 0; B < NBucket; B++)
+ ++Count[ChainLen[B]];
+ // Print Number of buckets with each chain lengths and their cumulative
+ // coverage of the symbols
+ OS << "Histogram for bucket list length (total of " << NBucket
+ << " buckets)\n"
+ << " Length Number % of total Coverage\n";
+ for (size_t I = 0; I < MaxChain; I++) {
+ CumulativeNonZero += Count[I] * I;
+ OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
+ (Count[I] * 100.0) / NBucket,
+ (CumulativeNonZero * 100.0) / TotalSyms);
+ }
+ }
+
+ // Print histogram for .gnu.hash section
+ if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
+ size_t NBucket = GnuHashTable->nbuckets;
+ ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
+ unsigned NumSyms = this->dumper()->dynamic_symbols().size();
+ if (!NumSyms)
+ return;
+ ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
+ size_t Symndx = GnuHashTable->symndx;
+ size_t TotalSyms = 0;
+ size_t MaxChain = 1;
+ size_t CumulativeNonZero = 0;
+
+ if (Chains.empty() || NBucket == 0)
+ return;
+
+ std::vector<size_t> ChainLen(NBucket, 0);
+
+ for (size_t B = 0; B < NBucket; B++) {
+ if (!Buckets[B])
+ continue;
+ size_t Len = 1;
+ for (size_t C = Buckets[B] - Symndx;
+ C < Chains.size() && (Chains[C] & 1) == 0; C++)
+ if (MaxChain < ++Len)
+ MaxChain++;
+ ChainLen[B] = Len;
+ TotalSyms += Len;
+ }
+ MaxChain++;
+
+ if (!TotalSyms)
+ return;
+
+ std::vector<size_t> Count(MaxChain, 0) ;
+ for (size_t B = 0; B < NBucket; B++)
+ ++Count[ChainLen[B]];
+ // Print Number of buckets with each chain lengths and their cumulative
+ // coverage of the symbols
+ OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
+ << " buckets)\n"
+ << " Length Number % of total Coverage\n";
+ for (size_t I = 0; I <MaxChain; I++) {
+ CumulativeNonZero += Count[I] * I;
+ OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
+ (Count[I] * 100.0) / NBucket,
+ (CumulativeNonZero * 100.0) / TotalSyms);
+ }
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
+ OS << "GNUStyle::printCGProfile not implemented\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
+ reportError(createError("--addrsig: not implemented"), this->FileName);
+}
+
+static StringRef getGenericNoteTypeName(const uint32_t NT) {
+ static const struct {
+ uint32_t ID;
+ const char *Name;
+ } Notes[] = {
+ {ELF::NT_VERSION, "NT_VERSION (version)"},
+ {ELF::NT_ARCH, "NT_ARCH (architecture)"},
+ {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
+ {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
+ };
+
+ for (const auto &Note : Notes)
+ if (Note.ID == NT)
+ return Note.Name;
+
+ return "";
+}
+
+static StringRef getCoreNoteTypeName(const uint32_t NT) {
+ static const struct {
+ uint32_t ID;
+ const char *Name;
+ } Notes[] = {
+ {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
+ {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
+ {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
+ {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
+ {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
+ {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
+ {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
+ {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
+ {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
+ {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
+ {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
+
+ {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
+ {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
+ {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
+ {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
+ {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
+ {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
+ {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
+ {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
+ {ELF::NT_PPC_TM_CFPR,
+ "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
+ {ELF::NT_PPC_TM_CVMX,
+ "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
+ {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
+ {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
+ {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
+ {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
+ {ELF::NT_PPC_TM_CDSCR,
+ "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
+
+ {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
+ {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
+ {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
+
+ {ELF::NT_S390_HIGH_GPRS,
+ "NT_S390_HIGH_GPRS (s390 upper register halves)"},
+ {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
+ {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
+ {ELF::NT_S390_TODPREG,
+ "NT_S390_TODPREG (s390 TOD programmable register)"},
+ {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
+ {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
+ {ELF::NT_S390_LAST_BREAK,
+ "NT_S390_LAST_BREAK (s390 last breaking event address)"},
+ {ELF::NT_S390_SYSTEM_CALL,
+ "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
+ {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
+ {ELF::NT_S390_VXRS_LOW,
+ "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
+ {ELF::NT_S390_VXRS_HIGH,
+ "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
+ {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
+ {ELF::NT_S390_GS_BC,
+ "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
+
+ {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
+ {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
+ {ELF::NT_ARM_HW_BREAK,
+ "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
+ {ELF::NT_ARM_HW_WATCH,
+ "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
+
+ {ELF::NT_FILE, "NT_FILE (mapped files)"},
+ {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
+ {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
+ };
+
+ for (const auto &Note : Notes)
+ if (Note.ID == NT)
+ return Note.Name;
+
+ return "";
+}
+
+static std::string getGNUNoteTypeName(const uint32_t NT) {
+ static const struct {
+ uint32_t ID;
+ const char *Name;
+ } Notes[] = {
+ {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
+ {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
+ {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
+ {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
+ {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
+ };
+
+ for (const auto &Note : Notes)
+ if (Note.ID == NT)
+ return std::string(Note.Name);
+
+ std::string string;
+ raw_string_ostream OS(string);
+ OS << format("Unknown note type (0x%08x)", NT);
+ return OS.str();
+}
+
+static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
+ static const struct {
+ uint32_t ID;
+ const char *Name;
+ } Notes[] = {
+ {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
+ {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
+ "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
+ {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
+ };
+
+ for (const auto &Note : Notes)
+ if (Note.ID == NT)
+ return std::string(Note.Name);
+
+ std::string string;
+ raw_string_ostream OS(string);
+ OS << format("Unknown note type (0x%08x)", NT);
+ return OS.str();
+}
+
+static std::string getAMDNoteTypeName(const uint32_t NT) {
+ static const struct {
+ uint32_t ID;
+ const char *Name;
+ } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
+ "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
+ {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
+ {ELF::NT_AMD_AMDGPU_PAL_METADATA,
+ "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
+
+ for (const auto &Note : Notes)
+ if (Note.ID == NT)
+ return std::string(Note.Name);
+
+ std::string string;
+ raw_string_ostream OS(string);
+ OS << format("Unknown note type (0x%08x)", NT);
+ return OS.str();
+}
+
+static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
+ if (NT == ELF::NT_AMDGPU_METADATA)
+ return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
+
+ std::string string;
+ raw_string_ostream OS(string);
+ OS << format("Unknown note type (0x%08x)", NT);
+ return OS.str();
+}
+
+template <typename ELFT>
+static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
+ ArrayRef<uint8_t> Data) {
+ std::string str;
+ raw_string_ostream OS(str);
+ uint32_t PrData;
+ auto DumpBit = [&](uint32_t Flag, StringRef Name) {
+ if (PrData & Flag) {
+ PrData &= ~Flag;
+ OS << Name;
+ if (PrData)
+ OS << ", ";
+ }
+ };
+
+ switch (Type) {
+ default:
+ OS << format("<application-specific type 0x%x>", Type);
+ return OS.str();
+ case GNU_PROPERTY_STACK_SIZE: {
+ OS << "stack size: ";
+ if (DataSize == sizeof(typename ELFT::uint))
+ OS << formatv("{0:x}",
+ (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
+ else
+ OS << format("<corrupt length: 0x%x>", DataSize);
+ return OS.str();
+ }
+ case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
+ OS << "no copy on protected";
+ if (DataSize)
+ OS << format(" <corrupt length: 0x%x>", DataSize);
+ return OS.str();
+ case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
+ case GNU_PROPERTY_X86_FEATURE_1_AND:
+ OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
+ : "x86 feature: ");
+ if (DataSize != 4) {
+ OS << format("<corrupt length: 0x%x>", DataSize);
+ return OS.str();
+ }
+ PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
+ if (PrData == 0) {
+ OS << "<None>";
+ return OS.str();
+ }
+ if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
+ DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
+ DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
+ } else {
+ DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
+ }
+ if (PrData)
+ OS << format("<unknown flags: 0x%x>", PrData);
+ return OS.str();
+ case GNU_PROPERTY_X86_ISA_1_NEEDED:
+ case GNU_PROPERTY_X86_ISA_1_USED:
+ OS << "x86 ISA "
+ << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
+ if (DataSize != 4) {
+ OS << format("<corrupt length: 0x%x>", DataSize);
+ return OS.str();
+ }
+ PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
+ if (PrData == 0) {
+ OS << "<None>";
+ return OS.str();
+ }
+ DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
+ DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
+ if (PrData)
+ OS << format("<unknown flags: 0x%x>", PrData);
+ return OS.str();
+ break;
+ case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
+ case GNU_PROPERTY_X86_FEATURE_2_USED:
+ OS << "x86 feature "
+ << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
+ if (DataSize != 4) {
+ OS << format("<corrupt length: 0x%x>", DataSize);
+ return OS.str();
+ }
+ PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
+ if (PrData == 0) {
+ OS << "<None>";
+ return OS.str();
+ }
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
+ DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
+ if (PrData)
+ OS << format("<unknown flags: 0x%x>", PrData);
+ return OS.str();
+ }
+}
+
+template <typename ELFT>
+static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
+ using Elf_Word = typename ELFT::Word;
+
+ SmallVector<std::string, 4> Properties;
+ while (Arr.size() >= 8) {
+ uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
+ uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
+ Arr = Arr.drop_front(8);
+
+ // Take padding size into account if present.
+ uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
+ std::string str;
+ raw_string_ostream OS(str);
+ if (Arr.size() < PaddedSize) {
+ OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
+ Properties.push_back(OS.str());
+ break;
+ }
+ Properties.push_back(
+ getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
+ Arr = Arr.drop_front(PaddedSize);
+ }
+
+ if (!Arr.empty())
+ Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
+
+ return Properties;
+}
+
+struct GNUAbiTag {
+ std::string OSName;
+ std::string ABI;
+ bool IsValid;
+};
+
+template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
+ typedef typename ELFT::Word Elf_Word;
+
+ ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
+ reinterpret_cast<const Elf_Word *>(Desc.end()));
+
+ if (Words.size() < 4)
+ return {"", "", /*IsValid=*/false};
+
+ static const char *OSNames[] = {
+ "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
+ };
+ StringRef OSName = "Unknown";
+ if (Words[0] < array_lengthof(OSNames))
+ OSName = OSNames[Words[0]];
+ uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
+ std::string str;
+ raw_string_ostream ABI(str);
+ ABI << Major << "." << Minor << "." << Patch;
+ return {OSName, ABI.str(), /*IsValid=*/true};
+}
+
+static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
+ std::string str;
+ raw_string_ostream OS(str);
+ for (const auto &B : Desc)
+ OS << format_hex_no_prefix(B, 2);
+ return OS.str();
+}
+
+static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
+ return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
+}
+
+template <typename ELFT>
+static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
+ ArrayRef<uint8_t> Desc) {
+ switch (NoteType) {
+ default:
+ return;
+ case ELF::NT_GNU_ABI_TAG: {
+ const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
+ if (!AbiTag.IsValid)
+ OS << " <corrupt GNU_ABI_TAG>";
+ else
+ OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
+ break;
+ }
+ case ELF::NT_GNU_BUILD_ID: {
+ OS << " Build ID: " << getGNUBuildId(Desc);
+ break;
+ }
+ case ELF::NT_GNU_GOLD_VERSION:
+ OS << " Version: " << getGNUGoldVersion(Desc);
+ break;
+ case ELF::NT_GNU_PROPERTY_TYPE_0:
+ OS << " Properties:";
+ for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
+ OS << " " << Property << "\n";
+ break;
+ }
+ OS << '\n';
+}
+
+struct AMDNote {
+ std::string Type;
+ std::string Value;
+};
+
+template <typename ELFT>
+static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
+ switch (NoteType) {
+ default:
+ return {"", ""};
+ case ELF::NT_AMD_AMDGPU_HSA_METADATA:
+ return {
+ "HSA Metadata",
+ std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
+ case ELF::NT_AMD_AMDGPU_ISA:
+ return {
+ "ISA Version",
+ std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
+ }
+}
+
+struct AMDGPUNote {
+ std::string Type;
+ std::string Value;
+};
+
+template <typename ELFT>
+static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
+ switch (NoteType) {
+ default:
+ return {"", ""};
+ case ELF::NT_AMDGPU_METADATA: {
+ auto MsgPackString =
+ StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
+ msgpack::Document MsgPackDoc;
+ if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
+ return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
+
+ AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
+ if (!Verifier.verify(MsgPackDoc.getRoot()))
+ return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
+
+ std::string HSAMetadataString;
+ raw_string_ostream StrOS(HSAMetadataString);
+ MsgPackDoc.toYAML(StrOS);
+
+ return {"AMDGPU Metadata", StrOS.str()};
+ }
+ }
+}
+
+struct CoreFileMapping {
+ uint64_t Start, End, Offset;
+ StringRef Filename;
+};
+
+struct CoreNote {
+ uint64_t PageSize;
+ std::vector<CoreFileMapping> Mappings;
+};
+
+static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
+ // Expected format of the NT_FILE note description:
+ // 1. # of file mappings (call it N)
+ // 2. Page size
+ // 3. N (start, end, offset) triples
+ // 4. N packed filenames (null delimited)
+ // Each field is an Elf_Addr, except for filenames which are char* strings.
+
+ CoreNote Ret;
+ const int Bytes = Desc.getAddressSize();
+
+ if (!Desc.isValidOffsetForAddress(2))
+ return createStringError(object_error::parse_failed,
+ "malformed note: header too short");
+ if (Desc.getData().back() != 0)
+ return createStringError(object_error::parse_failed,
+ "malformed note: not NUL terminated");
+
+ uint64_t DescOffset = 0;
+ uint64_t FileCount = Desc.getAddress(&DescOffset);
+ Ret.PageSize = Desc.getAddress(&DescOffset);
+
+ if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
+ return createStringError(object_error::parse_failed,
+ "malformed note: too short for number of files");
+
+ uint64_t FilenamesOffset = 0;
+ DataExtractor Filenames(
+ Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
+ Desc.isLittleEndian(), Desc.getAddressSize());
+
+ Ret.Mappings.resize(FileCount);
+ for (CoreFileMapping &Mapping : Ret.Mappings) {
+ if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
+ return createStringError(object_error::parse_failed,
+ "malformed note: too few filenames");
+ Mapping.Start = Desc.getAddress(&DescOffset);
+ Mapping.End = Desc.getAddress(&DescOffset);
+ Mapping.Offset = Desc.getAddress(&DescOffset);
+ Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
+ }
+
+ return Ret;
+}
+
+template <typename ELFT>
+static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
+ // Length of "0x<address>" string.
+ const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
+
+ OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
+ OS << " " << right_justify("Start", FieldWidth) << " "
+ << right_justify("End", FieldWidth) << " "
+ << right_justify("Page Offset", FieldWidth) << '\n';
+ for (const CoreFileMapping &Mapping : Note.Mappings) {
+ OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
+ << format_hex(Mapping.End, FieldWidth) << " "
+ << format_hex(Mapping.Offset, FieldWidth) << "\n "
+ << Mapping.Filename << '\n';
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
+ auto PrintHeader = [&](const typename ELFT::Off Offset,
+ const typename ELFT::Addr Size) {
+ OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
+ << " with length " << format_hex(Size, 10) << ":\n"
+ << " Owner Data size \tDescription\n";
+ };
+
+ auto ProcessNote = [&](const Elf_Note &Note) {
+ StringRef Name = Note.getName();
+ ArrayRef<uint8_t> Descriptor = Note.getDesc();
+ Elf_Word Type = Note.getType();
+
+ // Print the note owner/type.
+ OS << " " << left_justify(Name, 20) << ' '
+ << format_hex(Descriptor.size(), 10) << '\t';
+ if (Name == "GNU") {
+ OS << getGNUNoteTypeName(Type) << '\n';
+ } else if (Name == "FreeBSD") {
+ OS << getFreeBSDNoteTypeName(Type) << '\n';
+ } else if (Name == "AMD") {
+ OS << getAMDNoteTypeName(Type) << '\n';
+ } else if (Name == "AMDGPU") {
+ OS << getAMDGPUNoteTypeName(Type) << '\n';
+ } else {
+ StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
+ ? getCoreNoteTypeName(Type)
+ : getGenericNoteTypeName(Type);
+ if (!NoteType.empty())
+ OS << NoteType << '\n';
+ else
+ OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
+ }
+
+ // Print the description, or fallback to printing raw bytes for unknown
+ // owners.
+ if (Name == "GNU") {
+ printGNUNote<ELFT>(OS, Type, Descriptor);
+ } else if (Name == "AMD") {
+ const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
+ if (!N.Type.empty())
+ OS << " " << N.Type << ":\n " << N.Value << '\n';
+ } else if (Name == "AMDGPU") {
+ const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
+ if (!N.Type.empty())
+ OS << " " << N.Type << ":\n " << N.Value << '\n';
+ } else if (Name == "CORE") {
+ if (Type == ELF::NT_FILE) {
+ DataExtractor DescExtractor(Descriptor,
+ ELFT::TargetEndianness == support::little,
+ sizeof(Elf_Addr));
+ Expected<CoreNote> Note = readCoreNote(DescExtractor);
+ if (Note)
+ printCoreNote<ELFT>(OS, *Note);
+ else
+ reportWarning(Note.takeError(), this->FileName);
+ }
+ } else if (!Descriptor.empty()) {
+ OS << " description data:";
+ for (uint8_t B : Descriptor)
+ OS << " " << format("%02x", B);
+ OS << '\n';
+ }
+ };
+
+ ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
+ if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
+ for (const auto &S : Sections) {
+ if (S.sh_type != SHT_NOTE)
+ continue;
+ PrintHeader(S.sh_offset, S.sh_size);
+ Error Err = Error::success();
+ for (const auto &Note : Obj->notes(S, Err))
+ ProcessNote(Note);
+ if (Err)
+ reportError(std::move(Err), this->FileName);
+ }
+ } else {
+ for (const auto &P :
+ unwrapOrError(this->FileName, Obj->program_headers())) {
+ if (P.p_type != PT_NOTE)
+ continue;
+ PrintHeader(P.p_offset, P.p_filesz);
+ Error Err = Error::success();
+ for (const auto &Note : Obj->notes(P, Err))
+ ProcessNote(Note);
+ if (Err)
+ reportError(std::move(Err), this->FileName);
+ }
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
+ OS << "printELFLinkerOptions not implemented!\n";
+}
+
+// Used for printing section names in places where possible errors can be
+// ignored.
+static StringRef getSectionName(const SectionRef &Sec) {
+ Expected<StringRef> NameOrErr = Sec.getName();
+ if (NameOrErr)
+ return *NameOrErr;
+ consumeError(NameOrErr.takeError());
+ return "<?>";
+}
+
+// Used for printing symbol names in places where possible errors can be
+// ignored.
+static std::string getSymbolName(const ELFSymbolRef &Sym) {
+ Expected<StringRef> NameOrErr = Sym.getName();
+ if (NameOrErr)
+ return maybeDemangle(*NameOrErr);
+ consumeError(NameOrErr.takeError());
+ return "<?>";
+}
+
+template <class ELFT>
+void DumpStyle<ELFT>::printFunctionStackSize(
+ const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, SectionRef FunctionSec,
+ const StringRef SectionName, DataExtractor Data, uint64_t *Offset) {
+ // This function ignores potentially erroneous input, unless it is directly
+ // related to stack size reporting.
+ SymbolRef FuncSym;
+ for (const ELFSymbolRef &Symbol : Obj->symbols()) {
+ Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
+ if (!SymAddrOrErr) {
+ consumeError(SymAddrOrErr.takeError());
+ continue;
+ }
+ if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
+ // Check if the symbol is in the right section.
+ if (FunctionSec.containsSymbol(Symbol)) {
+ FuncSym = Symbol;
+ break;
+ }
+ }
+ }
+
+ std::string FuncName = "?";
+ // A valid SymbolRef has a non-null object file pointer.
+ if (FuncSym.BasicSymbolRef::getObject())
+ FuncName = getSymbolName(FuncSym);
+ else
+ reportWarning(
+ createError("could not identify function symbol for stack size entry"),
+ Obj->getFileName());
+
+ // Extract the size. The expectation is that Offset is pointing to the right
+ // place, i.e. past the function address.
+ uint64_t PrevOffset = *Offset;
+ uint64_t StackSize = Data.getULEB128(Offset);
+ // getULEB128() does not advance Offset if it is not able to extract a valid
+ // integer.
+ if (*Offset == PrevOffset)
+ reportError(
+ createStringError(object_error::parse_failed,
+ "could not extract a valid stack size in section %s",
+ SectionName.data()),
+ Obj->getFileName());
+
+ printStackSizeEntry(StackSize, FuncName);
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
+ OS.PadToColumn(2);
+ OS << format_decimal(Size, 11);
+ OS.PadToColumn(18);
+ OS << FuncName << "\n";
+}
+
+template <class ELFT>
+void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj,
+ RelocationRef Reloc,
+ SectionRef FunctionSec,
+ const StringRef &StackSizeSectionName,
+ const RelocationResolver &Resolver,
+ DataExtractor Data) {
+ // This function ignores potentially erroneous input, unless it is directly
+ // related to stack size reporting.
+ object::symbol_iterator RelocSym = Reloc.getSymbol();
+ uint64_t RelocSymValue = 0;
+ StringRef FileStr = Obj->getFileName();
+ if (RelocSym != Obj->symbol_end()) {
+ // Ensure that the relocation symbol is in the function section, i.e. the
+ // section where the functions whose stack sizes we are reporting are
+ // located.
+ auto SectionOrErr = RelocSym->getSection();
+ if (!SectionOrErr) {
+ reportWarning(
+ createError("cannot identify the section for relocation symbol '" +
+ getSymbolName(*RelocSym) + "'"),
+ FileStr);
+ consumeError(SectionOrErr.takeError());
+ } else if (*SectionOrErr != FunctionSec) {
+ reportWarning(createError("relocation symbol '" +
+ getSymbolName(*RelocSym) +
+ "' is not in the expected section"),
+ FileStr);
+ // Pretend that the symbol is in the correct section and report its
+ // stack size anyway.
+ FunctionSec = **SectionOrErr;
+ }
+
+ Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
+ if (RelocSymValueOrErr)
+ RelocSymValue = *RelocSymValueOrErr;
+ else
+ consumeError(RelocSymValueOrErr.takeError());
+ }
+
+ uint64_t Offset = Reloc.getOffset();
+ if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1))
+ reportError(
+ createStringError(object_error::parse_failed,
+ "found invalid relocation offset into section %s "
+ "while trying to extract a stack size entry",
+ StackSizeSectionName.data()),
+ FileStr);
+
+ uint64_t Addend = Data.getAddress(&Offset);
+ uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
+ this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName,
+ Data, &Offset);
+}
+
+template <class ELFT>
+void DumpStyle<ELFT>::printNonRelocatableStackSizes(
+ const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
+ // This function ignores potentially erroneous input, unless it is directly
+ // related to stack size reporting.
+ const ELFFile<ELFT> *EF = Obj->getELFFile();
+ StringRef FileStr = Obj->getFileName();
+ for (const SectionRef &Sec : Obj->sections()) {
+ StringRef SectionName = getSectionName(Sec);
+ if (SectionName != ".stack_sizes")
+ continue;
+ PrintHeader();
+ const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
+ ArrayRef<uint8_t> Contents =
+ unwrapOrError(this->FileName, EF->getSectionContents(ElfSec));
+ DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
+ // A .stack_sizes section header's sh_link field is supposed to point
+ // to the section that contains the functions whose stack sizes are
+ // described in it.
+ const Elf_Shdr *FunctionELFSec =
+ unwrapOrError(this->FileName, EF->getSection(ElfSec->sh_link));
+ uint64_t Offset = 0;
+ while (Offset < Contents.size()) {
+ // The function address is followed by a ULEB representing the stack
+ // size. Check for an extra byte before we try to process the entry.
+ if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
+ reportError(
+ createStringError(
+ object_error::parse_failed,
+ "section %s ended while trying to extract a stack size entry",
+ SectionName.data()),
+ FileStr);
+ }
+ uint64_t SymValue = Data.getAddress(&Offset);
+ printFunctionStackSize(Obj, SymValue, Obj->toSectionRef(FunctionELFSec),
+ SectionName, Data, &Offset);
+ }
+ }
+}
+
+template <class ELFT>
+void DumpStyle<ELFT>::printRelocatableStackSizes(
+ const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
+ const ELFFile<ELFT> *EF = Obj->getELFFile();
+
+ // Build a map between stack size sections and their corresponding relocation
+ // sections.
+ llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap;
+ const SectionRef NullSection{};
+
+ for (const SectionRef &Sec : Obj->sections()) {
+ StringRef SectionName;
+ if (Expected<StringRef> NameOrErr = Sec.getName())
+ SectionName = *NameOrErr;
+ else
+ consumeError(NameOrErr.takeError());
+
+ // A stack size section that we haven't encountered yet is mapped to the
+ // null section until we find its corresponding relocation section.
+ if (SectionName == ".stack_sizes")
+ if (StackSizeRelocMap.count(Sec) == 0) {
+ StackSizeRelocMap[Sec] = NullSection;
+ continue;
+ }
+
+ // Check relocation sections if they are relocating contents of a
+ // stack sizes section.
+ const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
+ uint32_t SectionType = ElfSec->sh_type;
+ if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL)
+ continue;
+
+ Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
+ if (!RelSecOrErr)
+ reportError(createStringError(object_error::parse_failed,
+ "%s: failed to get a relocated section: %s",
+ SectionName.data(),
+ toString(RelSecOrErr.takeError()).c_str()),
+ Obj->getFileName());
+
+ const Elf_Shdr *ContentsSec =
+ Obj->getSection((*RelSecOrErr)->getRawDataRefImpl());
+ Expected<StringRef> ContentsSectionNameOrErr =
+ EF->getSectionName(ContentsSec);
+ if (!ContentsSectionNameOrErr) {
+ consumeError(ContentsSectionNameOrErr.takeError());
+ continue;
+ }
+ if (*ContentsSectionNameOrErr != ".stack_sizes")
+ continue;
+ // Insert a mapping from the stack sizes section to its relocation section.
+ StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec;
+ }
+
+ for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
+ PrintHeader();
+ const SectionRef &StackSizesSec = StackSizeMapEntry.first;
+ const SectionRef &RelocSec = StackSizeMapEntry.second;
+
+ // Warn about stack size sections without a relocation section.
+ StringRef StackSizeSectionName = getSectionName(StackSizesSec);
+ if (RelocSec == NullSection) {
+ reportWarning(createError("section " + StackSizeSectionName +
+ " does not have a corresponding "
+ "relocation section"),
+ Obj->getFileName());
+ continue;
+ }
+
+ // A .stack_sizes section header's sh_link field is supposed to point
+ // to the section that contains the functions whose stack sizes are
+ // described in it.
+ const Elf_Shdr *StackSizesELFSec =
+ Obj->getSection(StackSizesSec.getRawDataRefImpl());
+ const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError(
+ this->FileName, EF->getSection(StackSizesELFSec->sh_link)));
+
+ bool (*IsSupportedFn)(uint64_t);
+ RelocationResolver Resolver;
+ std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj);
+ auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents());
+ DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
+ for (const RelocationRef &Reloc : RelocSec.relocations()) {
+ if (!IsSupportedFn || !IsSupportedFn(Reloc.getType()))
+ reportError(createStringError(
+ object_error::parse_failed,
+ "unsupported relocation type in section %s: %s",
+ getSectionName(RelocSec).data(),
+ EF->getRelocationTypeName(Reloc.getType()).data()),
+ Obj->getFileName());
+ this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName,
+ Resolver, Data);
+ }
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
+ bool HeaderHasBeenPrinted = false;
+ auto PrintHeader = [&]() {
+ if (HeaderHasBeenPrinted)
+ return;
+ OS << "\nStack Sizes:\n";
+ OS.PadToColumn(9);
+ OS << "Size";
+ OS.PadToColumn(18);
+ OS << "Function\n";
+ HeaderHasBeenPrinted = true;
+ };
+
+ // For non-relocatable objects, look directly for sections whose name starts
+ // with .stack_sizes and process the contents.
+ if (Obj->isRelocatableObject())
+ this->printRelocatableStackSizes(Obj, PrintHeader);
+ else
+ this->printNonRelocatableStackSizes(Obj, PrintHeader);
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
+ size_t Bias = ELFT::Is64Bits ? 8 : 0;
+ auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
+ OS.PadToColumn(2);
+ OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
+ OS.PadToColumn(11 + Bias);
+ OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
+ OS.PadToColumn(22 + Bias);
+ OS << format_hex_no_prefix(*E, 8 + Bias);
+ OS.PadToColumn(31 + 2 * Bias);
+ OS << Purpose << "\n";
+ };
+
+ OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
+ OS << " Canonical gp value: "
+ << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
+
+ OS << " Reserved entries:\n";
+ if (ELFT::Is64Bits)
+ OS << " Address Access Initial Purpose\n";
+ else
+ OS << " Address Access Initial Purpose\n";
+ PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
+ if (Parser.getGotModulePointer())
+ PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
+
+ if (!Parser.getLocalEntries().empty()) {
+ OS << "\n";
+ OS << " Local entries:\n";
+ if (ELFT::Is64Bits)
+ OS << " Address Access Initial\n";
+ else
+ OS << " Address Access Initial\n";
+ for (auto &E : Parser.getLocalEntries())
+ PrintEntry(&E, "");
+ }
+
+ if (Parser.IsStatic)
+ return;
+
+ if (!Parser.getGlobalEntries().empty()) {
+ OS << "\n";
+ OS << " Global entries:\n";
+ if (ELFT::Is64Bits)
+ OS << " Address Access Initial Sym.Val."
+ << " Type Ndx Name\n";
+ else
+ OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
+ for (auto &E : Parser.getGlobalEntries()) {
+ const Elf_Sym *Sym = Parser.getGotSym(&E);
+ std::string SymName = this->dumper()->getFullSymbolName(
+ Sym, this->dumper()->getDynamicStringTable(), false);
+
+ OS.PadToColumn(2);
+ OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
+ OS.PadToColumn(11 + Bias);
+ OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
+ OS.PadToColumn(22 + Bias);
+ OS << to_string(format_hex_no_prefix(E, 8 + Bias));
+ OS.PadToColumn(31 + 2 * Bias);
+ OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
+ OS.PadToColumn(40 + 3 * Bias);
+ OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
+ OS.PadToColumn(48 + 3 * Bias);
+ OS << getSymbolSectionNdx(Parser.Obj, Sym,
+ this->dumper()->dynamic_symbols().begin());
+ OS.PadToColumn(52 + 3 * Bias);
+ OS << SymName << "\n";
+ }
+ }
+
+ if (!Parser.getOtherEntries().empty())
+ OS << "\n Number of TLS and multi-GOT entries "
+ << Parser.getOtherEntries().size() << "\n";
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
+ size_t Bias = ELFT::Is64Bits ? 8 : 0;
+ auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
+ OS.PadToColumn(2);
+ OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
+ OS.PadToColumn(11 + Bias);
+ OS << format_hex_no_prefix(*E, 8 + Bias);
+ OS.PadToColumn(20 + 2 * Bias);
+ OS << Purpose << "\n";
+ };
+
+ OS << "PLT GOT:\n\n";
+
+ OS << " Reserved entries:\n";
+ OS << " Address Initial Purpose\n";
+ PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
+ if (Parser.getPltModulePointer())
+ PrintEntry(Parser.getPltModulePointer(), "Module pointer");
+
+ if (!Parser.getPltEntries().empty()) {
+ OS << "\n";
+ OS << " Entries:\n";
+ OS << " Address Initial Sym.Val. Type Ndx Name\n";
+ for (auto &E : Parser.getPltEntries()) {
+ const Elf_Sym *Sym = Parser.getPltSym(&E);
+ std::string SymName = this->dumper()->getFullSymbolName(
+ Sym, this->dumper()->getDynamicStringTable(), false);
+
+ OS.PadToColumn(2);
+ OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
+ OS.PadToColumn(11 + Bias);
+ OS << to_string(format_hex_no_prefix(E, 8 + Bias));
+ OS.PadToColumn(20 + 2 * Bias);
+ OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
+ OS.PadToColumn(29 + 3 * Bias);
+ OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
+ OS.PadToColumn(37 + 3 * Bias);
+ OS << getSymbolSectionNdx(Parser.Obj, Sym,
+ this->dumper()->dynamic_symbols().begin());
+ OS.PadToColumn(41 + 3 * Bias);
+ OS << SymName << "\n";
+ }
+ }
+}
+
+template <class ELFT>
+void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ const Elf_Shdr *Shdr =
+ findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
+ if (!Shdr)
+ return;
+
+ ArrayRef<uint8_t> Sec =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
+ if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
+ reportError(createError(".MIPS.abiflags section has a wrong size"),
+ ObjF->getFileName());
+
+ auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
+
+ OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
+ OS << "ISA: MIPS" << int(Flags->isa_level);
+ if (Flags->isa_rev > 1)
+ OS << "r" << int(Flags->isa_rev);
+ OS << "\n";
+ OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
+ OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
+ OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
+ OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
+ << "\n";
+ OS << "ISA Extension: "
+ << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
+ if (Flags->ases == 0)
+ OS << "ASEs: None\n";
+ else
+ // FIXME: Print each flag on a separate line.
+ OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
+ << "\n";
+ OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
+ OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
+ OS << "\n";
+}
+
+template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
+ const Elf_Ehdr *E = Obj->getHeader();
+ {
+ DictScope D(W, "ElfHeader");
+ {
+ DictScope D(W, "Ident");
+ W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
+ W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
+ W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
+ makeArrayRef(ElfDataEncoding));
+ W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
+
+ auto OSABI = makeArrayRef(ElfOSABI);
+ if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
+ E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
+ switch (E->e_machine) {
+ case ELF::EM_AMDGPU:
+ OSABI = makeArrayRef(AMDGPUElfOSABI);
+ break;
+ case ELF::EM_ARM:
+ OSABI = makeArrayRef(ARMElfOSABI);
+ break;
+ case ELF::EM_TI_C6000:
+ OSABI = makeArrayRef(C6000ElfOSABI);
+ break;
+ }
+ }
+ W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
+ W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
+ W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
+ }
+
+ W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
+ W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
+ W.printNumber("Version", E->e_version);
+ W.printHex("Entry", E->e_entry);
+ W.printHex("ProgramHeaderOffset", E->e_phoff);
+ W.printHex("SectionHeaderOffset", E->e_shoff);
+ if (E->e_machine == EM_MIPS)
+ W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
+ unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
+ unsigned(ELF::EF_MIPS_MACH));
+ else if (E->e_machine == EM_AMDGPU)
+ W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
+ unsigned(ELF::EF_AMDGPU_MACH));
+ else if (E->e_machine == EM_RISCV)
+ W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
+ else
+ W.printFlags("Flags", E->e_flags);
+ W.printNumber("HeaderSize", E->e_ehsize);
+ W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
+ W.printNumber("ProgramHeaderCount", E->e_phnum);
+ W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
+ W.printString("SectionHeaderCount",
+ getSectionHeadersNumString(Obj, this->FileName));
+ W.printString("StringTableSectionIndex",
+ getSectionHeaderTableIndexString(Obj, this->FileName));
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
+ DictScope Lists(W, "Groups");
+ std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
+ DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
+ for (const GroupSection &G : V) {
+ DictScope D(W, "Group");
+ W.printNumber("Name", G.Name, G.ShName);
+ W.printNumber("Index", G.Index);
+ W.printNumber("Link", G.Link);
+ W.printNumber("Info", G.Info);
+ W.printHex("Type", getGroupType(G.Type), G.Type);
+ W.startLine() << "Signature: " << G.Signature << "\n";
+
+ ListScope L(W, "Section(s) in group");
+ for (const GroupMember &GM : G.Members) {
+ const GroupSection *MainGroup = Map[GM.Index];
+ if (MainGroup != &G) {
+ W.flush();
+ errs() << "Error: " << GM.Name << " (" << GM.Index
+ << ") in a group " + G.Name + " (" << G.Index
+ << ") is already in a group " + MainGroup->Name + " ("
+ << MainGroup->Index << ")\n";
+ errs().flush();
+ continue;
+ }
+ W.startLine() << GM.Name << " (" << GM.Index << ")\n";
+ }
+ }
+
+ if (V.empty())
+ W.startLine() << "There are no group sections in the file.\n";
+}
+
+template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
+ ListScope D(W, "Relocations");
+
+ int SectionNumber = -1;
+ for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
+ ++SectionNumber;
+
+ if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
+ Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
+ Sec.sh_type != ELF::SHT_ANDROID_RELA &&
+ Sec.sh_type != ELF::SHT_ANDROID_RELR)
+ continue;
+
+ StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
+
+ W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
+ W.indent();
+
+ printRelocations(&Sec, Obj);
+
+ W.unindent();
+ W.startLine() << "}\n";
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
+ const Elf_Shdr *SymTab =
+ unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
+
+ switch (Sec->sh_type) {
+ case ELF::SHT_REL:
+ for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) {
+ Elf_Rela Rela;
+ Rela.r_offset = R.r_offset;
+ Rela.r_info = R.r_info;
+ Rela.r_addend = 0;
+ printRelocation(Obj, Rela, SymTab);
+ }
+ break;
+ case ELF::SHT_RELA:
+ for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec)))
+ printRelocation(Obj, R, SymTab);
+ break;
+ case ELF::SHT_RELR:
+ case ELF::SHT_ANDROID_RELR: {
+ Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec));
+ if (opts::RawRelr) {
+ for (const Elf_Relr &R : Relrs)
+ W.startLine() << W.hex(R) << "\n";
+ } else {
+ std::vector<Elf_Rela> RelrRelas =
+ unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
+ for (const Elf_Rela &R : RelrRelas)
+ printRelocation(Obj, R, SymTab);
+ }
+ break;
+ }
+ case ELF::SHT_ANDROID_REL:
+ case ELF::SHT_ANDROID_RELA:
+ for (const Elf_Rela &R :
+ unwrapOrError(this->FileName, Obj->android_relas(Sec)))
+ printRelocation(Obj, R, SymTab);
+ break;
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
+ const Elf_Shdr *SymTab) {
+ SmallString<32> RelocName;
+ Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
+ std::string TargetName;
+ const Elf_Sym *Sym =
+ unwrapOrError(this->FileName, Obj->getRelocationSymbol(&Rel, SymTab));
+ if (Sym && Sym->getType() == ELF::STT_SECTION) {
+ const Elf_Shdr *Sec = unwrapOrError(
+ this->FileName,
+ Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
+ TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
+ } else if (Sym) {
+ StringRef StrTable =
+ unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
+ TargetName = this->dumper()->getFullSymbolName(
+ Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
+ }
+
+ if (opts::ExpandRelocs) {
+ DictScope Group(W, "Relocation");
+ W.printHex("Offset", Rel.r_offset);
+ W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
+ W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
+ Rel.getSymbol(Obj->isMips64EL()));
+ W.printHex("Addend", Rel.r_addend);
+ } else {
+ raw_ostream &OS = W.startLine();
+ OS << W.hex(Rel.r_offset) << " " << RelocName << " "
+ << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
+ << "\n";
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
+ ListScope SectionsD(W, "Sections");
+
+ int SectionIndex = -1;
+ ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
+ const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
+ for (const Elf_Shdr &Sec : Sections) {
+ StringRef Name = unwrapOrError(
+ ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
+ DictScope SectionD(W, "Section");
+ W.printNumber("Index", ++SectionIndex);
+ W.printNumber("Name", Name, Sec.sh_name);
+ W.printHex(
+ "Type",
+ object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
+ Sec.sh_type);
+ std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
+ std::end(ElfSectionFlags));
+ switch (Obj->getHeader()->e_machine) {
+ case EM_ARM:
+ SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
+ std::end(ElfARMSectionFlags));
+ break;
+ case EM_HEXAGON:
+ SectionFlags.insert(SectionFlags.end(),
+ std::begin(ElfHexagonSectionFlags),
+ std::end(ElfHexagonSectionFlags));
+ break;
+ case EM_MIPS:
+ SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
+ std::end(ElfMipsSectionFlags));
+ break;
+ case EM_X86_64:
+ SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
+ std::end(ElfX86_64SectionFlags));
+ break;
+ case EM_XCORE:
+ SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
+ std::end(ElfXCoreSectionFlags));
+ break;
+ default:
+ // Nothing to do.
+ break;
+ }
+ W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
+ W.printHex("Address", Sec.sh_addr);
+ W.printHex("Offset", Sec.sh_offset);
+ W.printNumber("Size", Sec.sh_size);
+ W.printNumber("Link", Sec.sh_link);
+ W.printNumber("Info", Sec.sh_info);
+ W.printNumber("AddressAlignment", Sec.sh_addralign);
+ W.printNumber("EntrySize", Sec.sh_entsize);
+
+ if (opts::SectionRelocations) {
+ ListScope D(W, "Relocations");
+ printRelocations(&Sec, Obj);
+ }
+
+ if (opts::SectionSymbols) {
+ ListScope D(W, "Symbols");
+ const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
+ StringRef StrTable =
+ unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab));
+
+ for (const Elf_Sym &Sym :
+ unwrapOrError(this->FileName, Obj->symbols(Symtab))) {
+ const Elf_Shdr *SymSec = unwrapOrError(
+ this->FileName,
+ Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
+ if (SymSec == &Sec)
+ printSymbol(
+ Obj, &Sym,
+ unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(),
+ StrTable, false, false);
+ }
+ }
+
+ if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
+ ArrayRef<uint8_t> Data =
+ unwrapOrError(this->FileName, Obj->getSectionContents(&Sec));
+ W.printBinaryBlock(
+ "SectionData",
+ StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
+ }
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
+ const Elf_Sym *First, StringRef StrTable,
+ bool IsDynamic,
+ bool /*NonVisibilityBitsUsed*/) {
+ unsigned SectionIndex = 0;
+ StringRef SectionName;
+ this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex);
+ std::string FullSymbolName =
+ this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
+ unsigned char SymbolType = Symbol->getType();
+
+ DictScope D(W, "Symbol");
+ W.printNumber("Name", FullSymbolName, Symbol->st_name);
+ W.printHex("Value", Symbol->st_value);
+ W.printNumber("Size", Symbol->st_size);
+ W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
+ if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
+ SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
+ W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
+ else
+ W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
+ if (Symbol->st_other == 0)
+ // Usually st_other flag is zero. Do not pollute the output
+ // by flags enumeration in that case.
+ W.printNumber("Other", 0);
+ else {
+ std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
+ std::end(ElfSymOtherFlags));
+ if (Obj->getHeader()->e_machine == EM_MIPS) {
+ // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
+ // flag overlapped with other ST_MIPS_xxx flags. So consider both
+ // cases separately.
+ if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
+ SymOtherFlags.insert(SymOtherFlags.end(),
+ std::begin(ElfMips16SymOtherFlags),
+ std::end(ElfMips16SymOtherFlags));
+ else
+ SymOtherFlags.insert(SymOtherFlags.end(),
+ std::begin(ElfMipsSymOtherFlags),
+ std::end(ElfMipsSymOtherFlags));
+ }
+ W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
+ }
+ W.printHex("Section", SectionName, SectionIndex);
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
+ bool PrintDynamicSymbols) {
+ if (PrintSymbols)
+ printSymbols(Obj);
+ if (PrintDynamicSymbols)
+ printDynamicSymbols(Obj);
+}
+
+template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
+ ListScope Group(W, "Symbols");
+ this->dumper()->printSymbolsHelper(false);
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
+ ListScope Group(W, "DynamicSymbols");
+ this->dumper()->printSymbolsHelper(true);
+}
+
+template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
+ Elf_Dyn_Range Table = this->dumper()->dynamic_table();
+ if (Table.empty())
+ return;
+
+ raw_ostream &OS = W.getOStream();
+ W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
+
+ bool Is64 = ELFT::Is64Bits;
+ if (Is64)
+ W.startLine() << " Tag Type Name/Value\n";
+ else
+ W.startLine() << " Tag Type Name/Value\n";
+ for (auto Entry : Table) {
+ uintX_t Tag = Entry.getTag();
+ W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
+ << format("%-21s",
+ getTypeString(Obj->getHeader()->e_machine, Tag));
+ this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
+ OS << "\n";
+ }
+
+ W.startLine() << "]\n";
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
+ const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
+ const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
+ const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
+ const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
+ if (DynRelRegion.Size && DynRelaRegion.Size)
+ report_fatal_error("There are both REL and RELA dynamic relocations");
+ W.startLine() << "Dynamic Relocations {\n";
+ W.indent();
+ if (DynRelaRegion.Size > 0)
+ for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
+ printDynamicRelocation(Obj, Rela);
+ else
+ for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
+ Elf_Rela Rela;
+ Rela.r_offset = Rel.r_offset;
+ Rela.r_info = Rel.r_info;
+ Rela.r_addend = 0;
+ printDynamicRelocation(Obj, Rela);
+ }
+ if (DynRelrRegion.Size > 0) {
+ Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
+ std::vector<Elf_Rela> RelrRelas =
+ unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
+ for (const Elf_Rela &Rela : RelrRelas)
+ printDynamicRelocation(Obj, Rela);
+ }
+ if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
+ for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
+ printDynamicRelocation(Obj, Rela);
+ else
+ for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
+ Elf_Rela Rela;
+ Rela.r_offset = Rel.r_offset;
+ Rela.r_info = Rel.r_info;
+ Rela.r_addend = 0;
+ printDynamicRelocation(Obj, Rela);
+ }
+ W.unindent();
+ W.startLine() << "}\n";
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
+ SmallString<32> RelocName;
+ Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
+ std::string SymbolName =
+ getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name;
+
+ if (opts::ExpandRelocs) {
+ DictScope Group(W, "Relocation");
+ W.printHex("Offset", Rel.r_offset);
+ W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
+ W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
+ W.printHex("Addend", Rel.r_addend);
+ } else {
+ raw_ostream &OS = W.startLine();
+ OS << W.hex(Rel.r_offset) << " " << RelocName << " "
+ << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
+ << "\n";
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printProgramHeaders(
+ const ELFO *Obj, bool PrintProgramHeaders,
+ cl::boolOrDefault PrintSectionMapping) {
+ if (PrintProgramHeaders)
+ printProgramHeaders(Obj);
+ if (PrintSectionMapping == cl::BOU_TRUE)
+ printSectionMapping(Obj);
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
+ ListScope L(W, "ProgramHeaders");
+
+ for (const Elf_Phdr &Phdr :
+ unwrapOrError(this->FileName, Obj->program_headers())) {
+ DictScope P(W, "ProgramHeader");
+ W.printHex("Type",
+ getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
+ Phdr.p_type);
+ W.printHex("Offset", Phdr.p_offset);
+ W.printHex("VirtualAddress", Phdr.p_vaddr);
+ W.printHex("PhysicalAddress", Phdr.p_paddr);
+ W.printNumber("FileSize", Phdr.p_filesz);
+ W.printNumber("MemSize", Phdr.p_memsz);
+ W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
+ W.printNumber("Alignment", Phdr.p_align);
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) {
+ ListScope SS(W, "VersionSymbols");
+ if (!Sec)
+ return;
+
+ const uint8_t *VersymBuf =
+ reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
+ const ELFDumper<ELFT> *Dumper = this->dumper();
+ StringRef StrTable = Dumper->getDynamicStringTable();
+
+ // Same number of entries in the dynamic symbol table (DT_SYMTAB).
+ for (const Elf_Sym &Sym : Dumper->dynamic_symbols()) {
+ DictScope S(W, "Symbol");
+ const Elf_Versym *Versym = reinterpret_cast<const Elf_Versym *>(VersymBuf);
+ std::string FullSymbolName =
+ Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
+ W.printNumber("Version", Versym->vs_index & VERSYM_VERSION);
+ W.printString("Name", FullSymbolName);
+ VersymBuf += sizeof(Elf_Versym);
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) {
+ ListScope SD(W, "VersionDefinitions");
+ if (!Sec)
+ return;
+
+ const uint8_t *SecStartAddress =
+ reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
+ const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
+ const uint8_t *VerdefBuf = SecStartAddress;
+ const Elf_Shdr *StrTab =
+ unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
+
+ unsigned VerDefsNum = Sec->sh_info;
+ while (VerDefsNum--) {
+ if (VerdefBuf + sizeof(Elf_Verdef) > SecEndAddress)
+ // FIXME: report_fatal_error is not a good way to report error. We should
+ // emit a parsing error here and below.
+ report_fatal_error("invalid offset in the section");
+
+ const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
+ DictScope Def(W, "Definition");
+ W.printNumber("Version", Verdef->vd_version);
+ W.printEnum("Flags", Verdef->vd_flags, makeArrayRef(SymVersionFlags));
+ W.printNumber("Index", Verdef->vd_ndx);
+ W.printNumber("Hash", Verdef->vd_hash);
+ W.printString("Name", StringRef(reinterpret_cast<const char *>(
+ Obj->base() + StrTab->sh_offset +
+ Verdef->getAux()->vda_name)));
+ if (!Verdef->vd_cnt)
+ report_fatal_error("at least one definition string must exist");
+ if (Verdef->vd_cnt > 2)
+ report_fatal_error("more than one predecessor is not expected");
+
+ if (Verdef->vd_cnt == 2) {
+ const uint8_t *VerdauxBuf =
+ VerdefBuf + Verdef->vd_aux + Verdef->getAux()->vda_next;
+ const Elf_Verdaux *Verdaux =
+ reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
+ W.printString("Predecessor",
+ StringRef(reinterpret_cast<const char *>(
+ Obj->base() + StrTab->sh_offset + Verdaux->vda_name)));
+ }
+ VerdefBuf += Verdef->vd_next;
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
+ const Elf_Shdr *Sec) {
+ ListScope SD(W, "VersionRequirements");
+ if (!Sec)
+ return;
+
+ const uint8_t *SecData =
+ reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
+ const Elf_Shdr *StrTab =
+ unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
+
+ const uint8_t *VerneedBuf = SecData;
+ unsigned VerneedNum = Sec->sh_info;
+ for (unsigned I = 0; I < VerneedNum; ++I) {
+ const Elf_Verneed *Verneed =
+ reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
+ DictScope Entry(W, "Dependency");
+ W.printNumber("Version", Verneed->vn_version);
+ W.printNumber("Count", Verneed->vn_cnt);
+ W.printString("FileName",
+ StringRef(reinterpret_cast<const char *>(
+ Obj->base() + StrTab->sh_offset + Verneed->vn_file)));
+
+ const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
+ ListScope L(W, "Entries");
+ for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
+ const Elf_Vernaux *Vernaux =
+ reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
+ DictScope Entry(W, "Entry");
+ W.printNumber("Hash", Vernaux->vna_hash);
+ W.printEnum("Flags", Vernaux->vna_flags, makeArrayRef(SymVersionFlags));
+ W.printNumber("Index", Vernaux->vna_other);
+ W.printString("Name",
+ StringRef(reinterpret_cast<const char *>(
+ Obj->base() + StrTab->sh_offset + Vernaux->vna_name)));
+ VernauxBuf += Vernaux->vna_next;
+ }
+ VerneedBuf += Verneed->vn_next;
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
+ W.startLine() << "Hash Histogram not implemented!\n";
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
+ ListScope L(W, "CGProfile");
+ if (!this->dumper()->getDotCGProfileSec())
+ return;
+ auto CGProfile = unwrapOrError(
+ this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>(
+ this->dumper()->getDotCGProfileSec()));
+ for (const Elf_CGProfile &CGPE : CGProfile) {
+ DictScope D(W, "CGProfileEntry");
+ W.printNumber(
+ "From",
+ unwrapOrError(this->FileName,
+ this->dumper()->getStaticSymbolName(CGPE.cgp_from)),
+ CGPE.cgp_from);
+ W.printNumber(
+ "To",
+ unwrapOrError(this->FileName,
+ this->dumper()->getStaticSymbolName(CGPE.cgp_to)),
+ CGPE.cgp_to);
+ W.printNumber("Weight", CGPE.cgp_weight);
+ }
+}
+
+static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
+ std::vector<uint64_t> Ret;
+ const uint8_t *Cur = Data.begin();
+ const uint8_t *End = Data.end();
+ while (Cur != End) {
+ unsigned Size;
+ const char *Err;
+ Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
+ if (Err)
+ return createError(Err);
+ Cur += Size;
+ }
+ return Ret;
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
+ ListScope L(W, "Addrsig");
+ if (!this->dumper()->getDotAddrsigSec())
+ return;
+ ArrayRef<uint8_t> Contents = unwrapOrError(
+ this->FileName,
+ Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
+ Expected<std::vector<uint64_t>> V = toULEB128Array(Contents);
+ if (!V) {
+ reportWarning(V.takeError(), this->FileName);
+ return;
+ }
+
+ for (uint64_t Sym : *V) {
+ Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym);
+ if (NameOrErr) {
+ W.printNumber("Sym", *NameOrErr, Sym);
+ continue;
+ }
+ reportWarning(NameOrErr.takeError(), this->FileName);
+ W.printNumber("Sym", "<?>", Sym);
+ }
+}
+
+template <typename ELFT>
+static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
+ ScopedPrinter &W) {
+ switch (NoteType) {
+ default:
+ return;
+ case ELF::NT_GNU_ABI_TAG: {
+ const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
+ if (!AbiTag.IsValid) {
+ W.printString("ABI", "<corrupt GNU_ABI_TAG>");
+ } else {
+ W.printString("OS", AbiTag.OSName);
+ W.printString("ABI", AbiTag.ABI);
+ }
+ break;
+ }
+ case ELF::NT_GNU_BUILD_ID: {
+ W.printString("Build ID", getGNUBuildId(Desc));
+ break;
+ }
+ case ELF::NT_GNU_GOLD_VERSION:
+ W.printString("Version", getGNUGoldVersion(Desc));
+ break;
+ case ELF::NT_GNU_PROPERTY_TYPE_0:
+ ListScope D(W, "Property");
+ for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
+ W.printString(Property);
+ break;
+ }
+}
+
+static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
+ W.printNumber("Page Size", Note.PageSize);
+ for (const CoreFileMapping &Mapping : Note.Mappings) {
+ ListScope D(W, "Mapping");
+ W.printHex("Start", Mapping.Start);
+ W.printHex("End", Mapping.End);
+ W.printHex("Offset", Mapping.Offset);
+ W.printString("Filename", Mapping.Filename);
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
+ ListScope L(W, "Notes");
+
+ auto PrintHeader = [&](const typename ELFT::Off Offset,
+ const typename ELFT::Addr Size) {
+ W.printHex("Offset", Offset);
+ W.printHex("Size", Size);
+ };
+
+ auto ProcessNote = [&](const Elf_Note &Note) {
+ DictScope D2(W, "Note");
+ StringRef Name = Note.getName();
+ ArrayRef<uint8_t> Descriptor = Note.getDesc();
+ Elf_Word Type = Note.getType();
+
+ // Print the note owner/type.
+ W.printString("Owner", Name);
+ W.printHex("Data size", Descriptor.size());
+ if (Name == "GNU") {
+ W.printString("Type", getGNUNoteTypeName(Type));
+ } else if (Name == "FreeBSD") {
+ W.printString("Type", getFreeBSDNoteTypeName(Type));
+ } else if (Name == "AMD") {
+ W.printString("Type", getAMDNoteTypeName(Type));
+ } else if (Name == "AMDGPU") {
+ W.printString("Type", getAMDGPUNoteTypeName(Type));
+ } else {
+ StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
+ ? getCoreNoteTypeName(Type)
+ : getGenericNoteTypeName(Type);
+ if (!NoteType.empty())
+ W.printString("Type", NoteType);
+ else
+ W.printString("Type",
+ "Unknown (" + to_string(format_hex(Type, 10)) + ")");
+ }
+
+ // Print the description, or fallback to printing raw bytes for unknown
+ // owners.
+ if (Name == "GNU") {
+ printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
+ } else if (Name == "AMD") {
+ const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
+ if (!N.Type.empty())
+ W.printString(N.Type, N.Value);
+ } else if (Name == "AMDGPU") {
+ const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
+ if (!N.Type.empty())
+ W.printString(N.Type, N.Value);
+ } else if (Name == "CORE") {
+ if (Type == ELF::NT_FILE) {
+ DataExtractor DescExtractor(Descriptor,
+ ELFT::TargetEndianness == support::little,
+ sizeof(Elf_Addr));
+ Expected<CoreNote> Note = readCoreNote(DescExtractor);
+ if (Note)
+ printCoreNoteLLVMStyle(*Note, W);
+ else
+ reportWarning(Note.takeError(), this->FileName);
+ }
+ } else if (!Descriptor.empty()) {
+ W.printBinaryBlock("Description data", Descriptor);
+ }
+ };
+
+ ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
+ if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
+ for (const auto &S : Sections) {
+ if (S.sh_type != SHT_NOTE)
+ continue;
+ DictScope D(W, "NoteSection");
+ PrintHeader(S.sh_offset, S.sh_size);
+ Error Err = Error::success();
+ for (const auto &Note : Obj->notes(S, Err))
+ ProcessNote(Note);
+ if (Err)
+ reportError(std::move(Err), this->FileName);
+ }
+ } else {
+ for (const auto &P :
+ unwrapOrError(this->FileName, Obj->program_headers())) {
+ if (P.p_type != PT_NOTE)
+ continue;
+ DictScope D(W, "NoteSection");
+ PrintHeader(P.p_offset, P.p_filesz);
+ Error Err = Error::success();
+ for (const auto &Note : Obj->notes(P, Err))
+ ProcessNote(Note);
+ if (Err)
+ reportError(std::move(Err), this->FileName);
+ }
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
+ ListScope L(W, "LinkerOptions");
+
+ for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
+ if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
+ continue;
+
+ ArrayRef<uint8_t> Contents =
+ unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr));
+ for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
+ StringRef Key = StringRef(reinterpret_cast<const char *>(P));
+ StringRef Value =
+ StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
+
+ W.printString(Key, Value);
+
+ P = P + Key.size() + Value.size() + 2;
+ }
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
+ ListScope L(W, "StackSizes");
+ if (Obj->isRelocatableObject())
+ this->printRelocatableStackSizes(Obj, []() {});
+ else
+ this->printNonRelocatableStackSizes(Obj, []() {});
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
+ DictScope D(W, "Entry");
+ W.printString("Function", FuncName);
+ W.printHex("Size", Size);
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
+ auto PrintEntry = [&](const Elf_Addr *E) {
+ W.printHex("Address", Parser.getGotAddress(E));
+ W.printNumber("Access", Parser.getGotOffset(E));
+ W.printHex("Initial", *E);
+ };
+
+ DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
+
+ W.printHex("Canonical gp value", Parser.getGp());
+ {
+ ListScope RS(W, "Reserved entries");
+ {
+ DictScope D(W, "Entry");
+ PrintEntry(Parser.getGotLazyResolver());
+ W.printString("Purpose", StringRef("Lazy resolver"));
+ }
+
+ if (Parser.getGotModulePointer()) {
+ DictScope D(W, "Entry");
+ PrintEntry(Parser.getGotModulePointer());
+ W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
+ }
+ }
+ {
+ ListScope LS(W, "Local entries");
+ for (auto &E : Parser.getLocalEntries()) {
+ DictScope D(W, "Entry");
+ PrintEntry(&E);
+ }
+ }
+
+ if (Parser.IsStatic)
+ return;
+
+ {
+ ListScope GS(W, "Global entries");
+ for (auto &E : Parser.getGlobalEntries()) {
+ DictScope D(W, "Entry");
+
+ PrintEntry(&E);
+
+ const Elf_Sym *Sym = Parser.getGotSym(&E);
+ W.printHex("Value", Sym->st_value);
+ W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
+
+ unsigned SectionIndex = 0;
+ StringRef SectionName;
+ this->dumper()->getSectionNameIndex(
+ Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
+ SectionIndex);
+ W.printHex("Section", SectionName, SectionIndex);
+
+ std::string SymName = this->dumper()->getFullSymbolName(
+ Sym, this->dumper()->getDynamicStringTable(), true);
+ W.printNumber("Name", SymName, Sym->st_name);
+ }
+ }
+
+ W.printNumber("Number of TLS and multi-GOT entries",
+ uint64_t(Parser.getOtherEntries().size()));
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
+ auto PrintEntry = [&](const Elf_Addr *E) {
+ W.printHex("Address", Parser.getPltAddress(E));
+ W.printHex("Initial", *E);
+ };
+
+ DictScope GS(W, "PLT GOT");
+
+ {
+ ListScope RS(W, "Reserved entries");
+ {
+ DictScope D(W, "Entry");
+ PrintEntry(Parser.getPltLazyResolver());
+ W.printString("Purpose", StringRef("PLT lazy resolver"));
+ }
+
+ if (auto E = Parser.getPltModulePointer()) {
+ DictScope D(W, "Entry");
+ PrintEntry(E);
+ W.printString("Purpose", StringRef("Module pointer"));
+ }
+ }
+ {
+ ListScope LS(W, "Entries");
+ for (auto &E : Parser.getPltEntries()) {
+ DictScope D(W, "Entry");
+ PrintEntry(&E);
+
+ const Elf_Sym *Sym = Parser.getPltSym(&E);
+ W.printHex("Value", Sym->st_value);
+ W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
+
+ unsigned SectionIndex = 0;
+ StringRef SectionName;
+ this->dumper()->getSectionNameIndex(
+ Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
+ SectionIndex);
+ W.printHex("Section", SectionName, SectionIndex);
+
+ std::string SymName =
+ this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
+ W.printNumber("Name", SymName, Sym->st_name);
+ }
+ }
+}
+
+template <class ELFT>
+void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
+ const ELFFile<ELFT> *Obj = ObjF->getELFFile();
+ const Elf_Shdr *Shdr =
+ findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
+ if (!Shdr) {
+ W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
+ return;
+ }
+ ArrayRef<uint8_t> Sec =
+ unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
+ if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
+ W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
+ return;
+ }
+
+ auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
+
+ raw_ostream &OS = W.getOStream();
+ DictScope GS(W, "MIPS ABI Flags");
+
+ W.printNumber("Version", Flags->version);
+ W.startLine() << "ISA: ";
+ if (Flags->isa_rev <= 1)
+ OS << format("MIPS%u", Flags->isa_level);
+ else
+ OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
+ OS << "\n";
+ W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
+ W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
+ W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
+ W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
+ W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
+ W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
+ W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
+ W.printHex("Flags 2", Flags->flags2);
+}