diff options
Diffstat (limited to 'llvm/tools/llvm-readobj/ELFDumper.cpp')
-rw-r--r-- | llvm/tools/llvm-readobj/ELFDumper.cpp | 6120 |
1 files changed, 6120 insertions, 0 deletions
diff --git a/llvm/tools/llvm-readobj/ELFDumper.cpp b/llvm/tools/llvm-readobj/ELFDumper.cpp new file mode 100644 index 000000000000..57144882c4b4 --- /dev/null +++ b/llvm/tools/llvm-readobj/ELFDumper.cpp @@ -0,0 +1,6120 @@ +//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements the ELF-specific dumper for llvm-readobj. +/// +//===----------------------------------------------------------------------===// + +#include "ARMEHABIPrinter.h" +#include "DwarfCFIEHPrinter.h" +#include "Error.h" +#include "ObjDumper.h" +#include "StackMapPrinter.h" +#include "llvm-readobj.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" +#include "llvm/BinaryFormat/ELF.h" +#include "llvm/Demangle/Demangle.h" +#include "llvm/Object/ELF.h" +#include "llvm/Object/ELFObjectFile.h" +#include "llvm/Object/ELFTypes.h" +#include "llvm/Object/Error.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Object/RelocationResolver.h" +#include "llvm/Object/StackMapParser.h" +#include "llvm/Support/AMDGPUMetadata.h" +#include "llvm/Support/ARMAttributeParser.h" +#include "llvm/Support/ARMBuildAttributes.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/FormatVariadic.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/LEB128.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/MipsABIFlags.h" +#include "llvm/Support/ScopedPrinter.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cinttypes> +#include <cstddef> +#include <cstdint> +#include <cstdlib> +#include <iterator> +#include <memory> +#include <string> +#include <system_error> +#include <unordered_set> +#include <vector> + +using namespace llvm; +using namespace llvm::object; +using namespace ELF; + +#define LLVM_READOBJ_ENUM_CASE(ns, enum) \ + case ns::enum: \ + return #enum; + +#define ENUM_ENT(enum, altName) \ + { #enum, altName, ELF::enum } + +#define ENUM_ENT_1(enum) \ + { #enum, #enum, ELF::enum } + +#define LLVM_READOBJ_PHDR_ENUM(ns, enum) \ + case ns::enum: \ + return std::string(#enum).substr(3); + +#define TYPEDEF_ELF_TYPES(ELFT) \ + using ELFO = ELFFile<ELFT>; \ + using Elf_Addr = typename ELFT::Addr; \ + using Elf_Shdr = typename ELFT::Shdr; \ + using Elf_Sym = typename ELFT::Sym; \ + using Elf_Dyn = typename ELFT::Dyn; \ + using Elf_Dyn_Range = typename ELFT::DynRange; \ + using Elf_Rel = typename ELFT::Rel; \ + using Elf_Rela = typename ELFT::Rela; \ + using Elf_Relr = typename ELFT::Relr; \ + using Elf_Rel_Range = typename ELFT::RelRange; \ + using Elf_Rela_Range = typename ELFT::RelaRange; \ + using Elf_Relr_Range = typename ELFT::RelrRange; \ + using Elf_Phdr = typename ELFT::Phdr; \ + using Elf_Half = typename ELFT::Half; \ + using Elf_Ehdr = typename ELFT::Ehdr; \ + using Elf_Word = typename ELFT::Word; \ + using Elf_Hash = typename ELFT::Hash; \ + using Elf_GnuHash = typename ELFT::GnuHash; \ + using Elf_Note = typename ELFT::Note; \ + using Elf_Sym_Range = typename ELFT::SymRange; \ + using Elf_Versym = typename ELFT::Versym; \ + using Elf_Verneed = typename ELFT::Verneed; \ + using Elf_Vernaux = typename ELFT::Vernaux; \ + using Elf_Verdef = typename ELFT::Verdef; \ + using Elf_Verdaux = typename ELFT::Verdaux; \ + using Elf_CGProfile = typename ELFT::CGProfile; \ + using uintX_t = typename ELFT::uint; + +namespace { + +template <class ELFT> class DumpStyle; + +/// Represents a contiguous uniform range in the file. We cannot just create a +/// range directly because when creating one of these from the .dynamic table +/// the size, entity size and virtual address are different entries in arbitrary +/// order (DT_REL, DT_RELSZ, DT_RELENT for example). +struct DynRegionInfo { + DynRegionInfo(StringRef ObjName) : FileName(ObjName) {} + DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName) + : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {} + + /// Address in current address space. + const void *Addr = nullptr; + /// Size in bytes of the region. + uint64_t Size = 0; + /// Size of each entity in the region. + uint64_t EntSize = 0; + + /// Name of the file. Used for error reporting. + StringRef FileName; + + template <typename Type> ArrayRef<Type> getAsArrayRef() const { + const Type *Start = reinterpret_cast<const Type *>(Addr); + if (!Start) + return {Start, Start}; + if (EntSize != sizeof(Type) || Size % EntSize) { + // TODO: Add a section index to this warning. + reportWarning(createError("invalid section size (" + Twine(Size) + + ") or entity size (" + Twine(EntSize) + ")"), + FileName); + return {Start, Start}; + } + return {Start, Start + (Size / EntSize)}; + } +}; + +template <typename ELFT> class ELFDumper : public ObjDumper { +public: + ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer); + + void printFileHeaders() override; + void printSectionHeaders() override; + void printRelocations() override; + void printDynamicRelocations() override; + void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; + void printHashSymbols() override; + void printUnwindInfo() override; + + void printDynamicTable() override; + void printNeededLibraries() override; + void printProgramHeaders(bool PrintProgramHeaders, + cl::boolOrDefault PrintSectionMapping) override; + void printHashTable() override; + void printGnuHashTable() override; + void printLoadName() override; + void printVersionInfo() override; + void printGroupSections() override; + + void printArchSpecificInfo() override; + + void printStackMap() const override; + + void printHashHistogram() override; + + void printCGProfile() override; + void printAddrsig() override; + + void printNotes() override; + + void printELFLinkerOptions() override; + void printStackSizes() override; + + const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; }; + +private: + std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle; + + TYPEDEF_ELF_TYPES(ELFT) + + DynRegionInfo checkDRI(DynRegionInfo DRI) { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + if (DRI.Addr < Obj->base() || + reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size > + Obj->base() + Obj->getBufSize()) + reportError(errorCodeToError(llvm::object::object_error::parse_failed), + ObjF->getFileName()); + return DRI; + } + + DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) { + return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz, + EntSize, ObjF->getFileName()}); + } + + DynRegionInfo createDRIFrom(const Elf_Shdr *S) { + return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size, + S->sh_entsize, ObjF->getFileName()}); + } + + void printAttributes(); + void printMipsReginfo(); + void printMipsOptions(); + + std::pair<const Elf_Phdr *, const Elf_Shdr *> + findDynamic(const ELFFile<ELFT> *Obj); + void loadDynamicTable(const ELFFile<ELFT> *Obj); + void parseDynamicTable(); + + StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb, + bool &IsDefault) const; + void LoadVersionMap() const; + void LoadVersionNeeds(const Elf_Shdr *ec) const; + void LoadVersionDefs(const Elf_Shdr *sec) const; + + const object::ELFObjectFile<ELFT> *ObjF; + DynRegionInfo DynRelRegion; + DynRegionInfo DynRelaRegion; + DynRegionInfo DynRelrRegion; + DynRegionInfo DynPLTRelRegion; + DynRegionInfo DynSymRegion; + DynRegionInfo DynamicTable; + StringRef DynamicStringTable; + std::string SOName = "<Not found>"; + const Elf_Hash *HashTable = nullptr; + const Elf_GnuHash *GnuHashTable = nullptr; + const Elf_Shdr *DotSymtabSec = nullptr; + const Elf_Shdr *DotCGProfileSec = nullptr; + const Elf_Shdr *DotAddrsigSec = nullptr; + StringRef DynSymtabName; + ArrayRef<Elf_Word> ShndxTable; + + const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version + const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r + const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d + + // Records for each version index the corresponding Verdef or Vernaux entry. + // This is filled the first time LoadVersionMap() is called. + class VersionMapEntry : public PointerIntPair<const void *, 1> { + public: + // If the integer is 0, this is an Elf_Verdef*. + // If the integer is 1, this is an Elf_Vernaux*. + VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {} + VersionMapEntry(const Elf_Verdef *verdef) + : PointerIntPair<const void *, 1>(verdef, 0) {} + VersionMapEntry(const Elf_Vernaux *vernaux) + : PointerIntPair<const void *, 1>(vernaux, 1) {} + + bool isNull() const { return getPointer() == nullptr; } + bool isVerdef() const { return !isNull() && getInt() == 0; } + bool isVernaux() const { return !isNull() && getInt() == 1; } + const Elf_Verdef *getVerdef() const { + return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr; + } + const Elf_Vernaux *getVernaux() const { + return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr; + } + }; + mutable SmallVector<VersionMapEntry, 16> VersionMap; + +public: + Elf_Dyn_Range dynamic_table() const { + // A valid .dynamic section contains an array of entries terminated + // with a DT_NULL entry. However, sometimes the section content may + // continue past the DT_NULL entry, so to dump the section correctly, + // we first find the end of the entries by iterating over them. + Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>(); + + size_t Size = 0; + while (Size < Table.size()) + if (Table[Size++].getTag() == DT_NULL) + break; + + return Table.slice(0, Size); + } + + Elf_Sym_Range dynamic_symbols() const { + return DynSymRegion.getAsArrayRef<Elf_Sym>(); + } + + Elf_Rel_Range dyn_rels() const; + Elf_Rela_Range dyn_relas() const; + Elf_Relr_Range dyn_relrs() const; + std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable, + bool IsDynamic) const; + void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym, + StringRef &SectionName, + unsigned &SectionIndex) const; + Expected<std::string> getStaticSymbolName(uint32_t Index) const; + std::string getDynamicString(uint64_t Value) const; + StringRef getSymbolVersionByIndex(StringRef StrTab, + uint32_t VersionSymbolIndex, + bool &IsDefault) const; + + void printSymbolsHelper(bool IsDynamic) const; + void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const; + + const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; } + const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; } + const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; } + ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; } + StringRef getDynamicStringTable() const { return DynamicStringTable; } + const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; } + const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; } + const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; } + const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; } + const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; } + const Elf_Hash *getHashTable() const { return HashTable; } + const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; } +}; + +template <class ELFT> +void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const { + StringRef StrTable, SymtabName; + size_t Entries = 0; + Elf_Sym_Range Syms(nullptr, nullptr); + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + if (IsDynamic) { + StrTable = DynamicStringTable; + Syms = dynamic_symbols(); + SymtabName = DynSymtabName; + if (DynSymRegion.Addr) + Entries = DynSymRegion.Size / DynSymRegion.EntSize; + } else { + if (!DotSymtabSec) + return; + StrTable = unwrapOrError(ObjF->getFileName(), + Obj->getStringTableForSymtab(*DotSymtabSec)); + Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec)); + SymtabName = + unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec)); + Entries = DotSymtabSec->getEntityCount(); + } + if (Syms.begin() == Syms.end()) + return; + + // The st_other field has 2 logical parts. The first two bits hold the symbol + // visibility (STV_*) and the remainder hold other platform-specific values. + bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) { + return S.st_other & ~0x3; + }) != Syms.end(); + + ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries, + NonVisibilityBitsUsed); + for (const auto &Sym : Syms) + ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic, + NonVisibilityBitsUsed); +} + +template <class ELFT> class MipsGOTParser; + +template <typename ELFT> class DumpStyle { +public: + using Elf_Shdr = typename ELFT::Shdr; + using Elf_Sym = typename ELFT::Sym; + using Elf_Addr = typename ELFT::Addr; + + DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) { + FileName = this->Dumper->getElfObject()->getFileName(); + + // Dumper reports all non-critical errors as warnings. + // It does not print the same warning more than once. + WarningHandler = [this](const Twine &Msg) { + if (Warnings.insert(Msg.str()).second) + reportWarning(createError(Msg), FileName); + return Error::success(); + }; + } + + virtual ~DumpStyle() = default; + + virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0; + virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0; + virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0; + virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0; + virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols, + bool PrintDynamicSymbols) = 0; + virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {} + virtual void printDynamic(const ELFFile<ELFT> *Obj) {} + virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0; + virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name, + size_t Offset, bool NonVisibilityBitsUsed) {} + virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol, + const Elf_Sym *FirstSym, StringRef StrTable, + bool IsDynamic, bool NonVisibilityBitsUsed) = 0; + virtual void printProgramHeaders(const ELFFile<ELFT> *Obj, + bool PrintProgramHeaders, + cl::boolOrDefault PrintSectionMapping) = 0; + virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) = 0; + virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) = 0; + virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) = 0; + virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0; + virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0; + virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0; + virtual void printNotes(const ELFFile<ELFT> *Obj) = 0; + virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0; + virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0; + void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj, + std::function<void()> PrintHeader); + void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj, + std::function<void()> PrintHeader); + void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, + SectionRef FunctionSec, + const StringRef SectionName, DataExtractor Data, + uint64_t *Offset); + void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel, + SectionRef FunctionSec, + const StringRef &StackSizeSectionName, + const RelocationResolver &Resolver, DataExtractor Data); + virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0; + virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; + virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; + virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0; + const ELFDumper<ELFT> *dumper() const { return Dumper; } + +protected: + std::function<Error(const Twine &Msg)> WarningHandler; + StringRef FileName; + +private: + std::unordered_set<std::string> Warnings; + const ELFDumper<ELFT> *Dumper; +}; + +template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> { + formatted_raw_ostream &OS; + +public: + TYPEDEF_ELF_TYPES(ELFT) + + GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper) + : DumpStyle<ELFT>(Dumper), + OS(static_cast<formatted_raw_ostream&>(W.getOStream())) { + assert (&W.getOStream() == &llvm::fouts()); + } + + void printFileHeaders(const ELFO *Obj) override; + void printGroupSections(const ELFFile<ELFT> *Obj) override; + void printRelocations(const ELFO *Obj) override; + void printSectionHeaders(const ELFO *Obj) override; + void printSymbols(const ELFO *Obj, bool PrintSymbols, + bool PrintDynamicSymbols) override; + void printHashSymbols(const ELFO *Obj) override; + void printDynamic(const ELFFile<ELFT> *Obj) override; + void printDynamicRelocations(const ELFO *Obj) override; + void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset, + bool NonVisibilityBitsUsed) override; + void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders, + cl::boolOrDefault PrintSectionMapping) override; + void printVersionSymbolSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) override; + void printVersionDefinitionSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) override; + void printVersionDependencySection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) override; + void printHashHistogram(const ELFFile<ELFT> *Obj) override; + void printCGProfile(const ELFFile<ELFT> *Obj) override; + void printAddrsig(const ELFFile<ELFT> *Obj) override; + void printNotes(const ELFFile<ELFT> *Obj) override; + void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override; + void printStackSizes(const ELFObjectFile<ELFT> *Obj) override; + void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; + void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; + void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; + void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override; + +private: + struct Field { + std::string Str; + unsigned Column; + + Field(StringRef S, unsigned Col) : Str(S), Column(Col) {} + Field(unsigned Col) : Column(Col) {} + }; + + template <typename T, typename TEnum> + std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) { + for (const auto &EnumItem : EnumValues) + if (EnumItem.Value == Value) + return EnumItem.AltName; + return to_hexString(Value, false); + } + + template <typename T, typename TEnum> + std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, + TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, + TEnum EnumMask3 = {}) { + std::string Str; + for (const auto &Flag : EnumValues) { + if (Flag.Value == 0) + continue; + + TEnum EnumMask{}; + if (Flag.Value & EnumMask1) + EnumMask = EnumMask1; + else if (Flag.Value & EnumMask2) + EnumMask = EnumMask2; + else if (Flag.Value & EnumMask3) + EnumMask = EnumMask3; + bool IsEnum = (Flag.Value & EnumMask) != 0; + if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || + (IsEnum && (Value & EnumMask) == Flag.Value)) { + if (!Str.empty()) + Str += ", "; + Str += Flag.AltName; + } + } + return Str; + } + + formatted_raw_ostream &printField(struct Field F) { + if (F.Column != 0) + OS.PadToColumn(F.Column); + OS << F.Str; + OS.flush(); + return OS; + } + void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym, + StringRef StrTable, uint32_t Bucket); + void printRelocHeader(unsigned SType); + void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab, + const Elf_Rela &R, bool IsRela); + void printRelocation(const ELFO *Obj, const Elf_Sym *Sym, + StringRef SymbolName, const Elf_Rela &R, bool IsRela); + void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, + StringRef StrTable, bool IsDynamic, + bool NonVisibilityBitsUsed) override; + std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol, + const Elf_Sym *FirstSym); + void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela); + bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); + bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); + bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); + bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); + void printProgramHeaders(const ELFO *Obj); + void printSectionMapping(const ELFO *Obj); +}; + +template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> { +public: + TYPEDEF_ELF_TYPES(ELFT) + + LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper) + : DumpStyle<ELFT>(Dumper), W(W) {} + + void printFileHeaders(const ELFO *Obj) override; + void printGroupSections(const ELFFile<ELFT> *Obj) override; + void printRelocations(const ELFO *Obj) override; + void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj); + void printSectionHeaders(const ELFO *Obj) override; + void printSymbols(const ELFO *Obj, bool PrintSymbols, + bool PrintDynamicSymbols) override; + void printDynamic(const ELFFile<ELFT> *Obj) override; + void printDynamicRelocations(const ELFO *Obj) override; + void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders, + cl::boolOrDefault PrintSectionMapping) override; + void printVersionSymbolSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) override; + void printVersionDefinitionSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) override; + void printVersionDependencySection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) override; + void printHashHistogram(const ELFFile<ELFT> *Obj) override; + void printCGProfile(const ELFFile<ELFT> *Obj) override; + void printAddrsig(const ELFFile<ELFT> *Obj) override; + void printNotes(const ELFFile<ELFT> *Obj) override; + void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override; + void printStackSizes(const ELFObjectFile<ELFT> *Obj) override; + void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; + void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; + void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; + void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override; + +private: + void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab); + void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel); + void printSymbols(const ELFO *Obj); + void printDynamicSymbols(const ELFO *Obj); + void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, + StringRef StrTable, bool IsDynamic, + bool /*NonVisibilityBitsUsed*/) override; + void printProgramHeaders(const ELFO *Obj); + void printSectionMapping(const ELFO *Obj) {} + + ScopedPrinter &W; +}; + +} // end anonymous namespace + +namespace llvm { + +template <class ELFT> +static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj, + ScopedPrinter &Writer, + std::unique_ptr<ObjDumper> &Result) { + Result.reset(new ELFDumper<ELFT>(Obj, Writer)); + return readobj_error::success; +} + +std::error_code createELFDumper(const object::ObjectFile *Obj, + ScopedPrinter &Writer, + std::unique_ptr<ObjDumper> &Result) { + // Little-endian 32-bit + if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) + return createELFDumper(ELFObj, Writer, Result); + + // Big-endian 32-bit + if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) + return createELFDumper(ELFObj, Writer, Result); + + // Little-endian 64-bit + if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) + return createELFDumper(ELFObj, Writer, Result); + + // Big-endian 64-bit + if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj)) + return createELFDumper(ELFObj, Writer, Result); + + return readobj_error::unsupported_obj_file_format; +} + +} // end namespace llvm + +// Iterate through the versions needed section, and place each Elf_Vernaux +// in the VersionMap according to its index. +template <class ELFT> +void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *Sec) const { + unsigned VerneedSize = Sec->sh_size; // Size of section in bytes + unsigned VerneedEntries = Sec->sh_info; // Number of Verneed entries + const uint8_t *VerneedStart = reinterpret_cast<const uint8_t *>( + ObjF->getELFFile()->base() + Sec->sh_offset); + const uint8_t *VerneedEnd = VerneedStart + VerneedSize; + // The first Verneed entry is at the start of the section. + const uint8_t *VerneedBuf = VerneedStart; + for (unsigned VerneedIndex = 0; VerneedIndex < VerneedEntries; + ++VerneedIndex) { + if (VerneedBuf + sizeof(Elf_Verneed) > VerneedEnd) + report_fatal_error("Section ended unexpectedly while scanning " + "version needed records."); + const Elf_Verneed *Verneed = + reinterpret_cast<const Elf_Verneed *>(VerneedBuf); + if (Verneed->vn_version != ELF::VER_NEED_CURRENT) + report_fatal_error("Unexpected verneed version"); + // Iterate through the Vernaux entries + const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; + for (unsigned VernauxIndex = 0; VernauxIndex < Verneed->vn_cnt; + ++VernauxIndex) { + if (VernauxBuf + sizeof(Elf_Vernaux) > VerneedEnd) + report_fatal_error("Section ended unexpected while scanning auxiliary " + "version needed records."); + const Elf_Vernaux *Vernaux = + reinterpret_cast<const Elf_Vernaux *>(VernauxBuf); + size_t Index = Vernaux->vna_other & ELF::VERSYM_VERSION; + if (Index >= VersionMap.size()) + VersionMap.resize(Index + 1); + VersionMap[Index] = VersionMapEntry(Vernaux); + VernauxBuf += Vernaux->vna_next; + } + VerneedBuf += Verneed->vn_next; + } +} + +// Iterate through the version definitions, and place each Elf_Verdef +// in the VersionMap according to its index. +template <class ELFT> +void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *Sec) const { + unsigned VerdefSize = Sec->sh_size; // Size of section in bytes + unsigned VerdefEntries = Sec->sh_info; // Number of Verdef entries + const uint8_t *VerdefStart = reinterpret_cast<const uint8_t *>( + ObjF->getELFFile()->base() + Sec->sh_offset); + const uint8_t *VerdefEnd = VerdefStart + VerdefSize; + // The first Verdef entry is at the start of the section. + const uint8_t *VerdefBuf = VerdefStart; + for (unsigned VerdefIndex = 0; VerdefIndex < VerdefEntries; ++VerdefIndex) { + if (VerdefBuf + sizeof(Elf_Verdef) > VerdefEnd) + report_fatal_error("Section ended unexpectedly while scanning " + "version definitions."); + const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf); + if (Verdef->vd_version != ELF::VER_DEF_CURRENT) + report_fatal_error("Unexpected verdef version"); + size_t Index = Verdef->vd_ndx & ELF::VERSYM_VERSION; + if (Index >= VersionMap.size()) + VersionMap.resize(Index + 1); + VersionMap[Index] = VersionMapEntry(Verdef); + VerdefBuf += Verdef->vd_next; + } +} + +template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const { + // If there is no dynamic symtab or version table, there is nothing to do. + if (!DynSymRegion.Addr || !SymbolVersionSection) + return; + + // Has the VersionMap already been loaded? + if (!VersionMap.empty()) + return; + + // The first two version indexes are reserved. + // Index 0 is LOCAL, index 1 is GLOBAL. + VersionMap.push_back(VersionMapEntry()); + VersionMap.push_back(VersionMapEntry()); + + if (SymbolVersionDefSection) + LoadVersionDefs(SymbolVersionDefSection); + + if (SymbolVersionNeedSection) + LoadVersionNeeds(SymbolVersionNeedSection); +} + +template <typename ELFT> +StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab, + const Elf_Sym *Sym, + bool &IsDefault) const { + // This is a dynamic symbol. Look in the GNU symbol version table. + if (!SymbolVersionSection) { + // No version table. + IsDefault = false; + return ""; + } + + // Determine the position in the symbol table of this entry. + size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) - + reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) / + sizeof(Elf_Sym); + + // Get the corresponding version index entry. + const Elf_Versym *Versym = unwrapOrError( + ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>( + SymbolVersionSection, EntryIndex)); + return this->getSymbolVersionByIndex(StrTab, Versym->vs_index, IsDefault); +} + +static std::string maybeDemangle(StringRef Name) { + return opts::Demangle ? demangle(Name) : Name.str(); +} + +template <typename ELFT> +Expected<std::string> +ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + Expected<const typename ELFT::Sym *> SymOrErr = + Obj->getSymbol(DotSymtabSec, Index); + if (!SymOrErr) + return SymOrErr.takeError(); + + Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec); + if (!StrTabOrErr) + return StrTabOrErr.takeError(); + + Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); + if (!NameOrErr) + return NameOrErr.takeError(); + return maybeDemangle(*NameOrErr); +} + +template <typename ELFT> +StringRef ELFDumper<ELFT>::getSymbolVersionByIndex(StringRef StrTab, + uint32_t SymbolVersionIndex, + bool &IsDefault) const { + size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION; + + // Special markers for unversioned symbols. + if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) { + IsDefault = false; + return ""; + } + + // Lookup this symbol in the version table. + LoadVersionMap(); + if (VersionIndex >= VersionMap.size() || VersionMap[VersionIndex].isNull()) + reportError(createError("Invalid version entry"), ObjF->getFileName()); + const VersionMapEntry &Entry = VersionMap[VersionIndex]; + + // Get the version name string. + size_t NameOffset; + if (Entry.isVerdef()) { + // The first Verdaux entry holds the name. + NameOffset = Entry.getVerdef()->getAux()->vda_name; + IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN); + } else { + NameOffset = Entry.getVernaux()->vna_name; + IsDefault = false; + } + if (NameOffset >= StrTab.size()) + reportError(createError("Invalid string offset"), ObjF->getFileName()); + return StrTab.data() + NameOffset; +} + +template <typename ELFT> +std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol, + StringRef StrTable, + bool IsDynamic) const { + std::string SymbolName = maybeDemangle( + unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable))); + + if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) { + unsigned SectionIndex; + StringRef SectionName; + Elf_Sym_Range Syms = unwrapOrError( + ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec)); + getSectionNameIndex(Symbol, Syms.begin(), SectionName, SectionIndex); + return SectionName; + } + + if (!IsDynamic) + return SymbolName; + + bool IsDefault; + StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault); + if (!Version.empty()) { + SymbolName += (IsDefault ? "@@" : "@"); + SymbolName += Version; + } + return SymbolName; +} + +template <typename ELFT> +void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol, + const Elf_Sym *FirstSym, + StringRef &SectionName, + unsigned &SectionIndex) const { + SectionIndex = Symbol->st_shndx; + if (Symbol->isUndefined()) + SectionName = "Undefined"; + else if (Symbol->isProcessorSpecific()) + SectionName = "Processor Specific"; + else if (Symbol->isOSSpecific()) + SectionName = "Operating System Specific"; + else if (Symbol->isAbsolute()) + SectionName = "Absolute"; + else if (Symbol->isCommon()) + SectionName = "Common"; + else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX) + SectionName = "Reserved"; + else { + if (SectionIndex == SHN_XINDEX) + SectionIndex = unwrapOrError(ObjF->getFileName(), + object::getExtendedSymbolTableIndex<ELFT>( + Symbol, FirstSym, ShndxTable)); + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + const typename ELFT::Shdr *Sec = + unwrapOrError(ObjF->getFileName(), Obj->getSection(SectionIndex)); + SectionName = unwrapOrError(ObjF->getFileName(), Obj->getSectionName(Sec)); + } +} + +template <class ELFO> +static const typename ELFO::Elf_Shdr * +findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName, + uint64_t Addr) { + for (const auto &Shdr : unwrapOrError(FileName, Obj->sections())) + if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) + return &Shdr; + return nullptr; +} + +template <class ELFO> +static const typename ELFO::Elf_Shdr * +findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) { + for (const auto &Shdr : unwrapOrError(FileName, Obj.sections())) + if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr))) + return &Shdr; + return nullptr; +} + +static const EnumEntry<unsigned> ElfClass[] = { + {"None", "none", ELF::ELFCLASSNONE}, + {"32-bit", "ELF32", ELF::ELFCLASS32}, + {"64-bit", "ELF64", ELF::ELFCLASS64}, +}; + +static const EnumEntry<unsigned> ElfDataEncoding[] = { + {"None", "none", ELF::ELFDATANONE}, + {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, + {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, +}; + +static const EnumEntry<unsigned> ElfObjectFileType[] = { + {"None", "NONE (none)", ELF::ET_NONE}, + {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, + {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, + {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, + {"Core", "CORE (Core file)", ELF::ET_CORE}, +}; + +static const EnumEntry<unsigned> ElfOSABI[] = { + {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, + {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, + {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, + {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, + {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, + {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, + {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, + {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, + {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, + {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, + {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, + {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, + {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, + {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, + {"AROS", "AROS", ELF::ELFOSABI_AROS}, + {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, + {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, + {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} +}; + +static const EnumEntry<unsigned> SymVersionFlags[] = { + {"Base", "BASE", VER_FLG_BASE}, + {"Weak", "WEAK", VER_FLG_WEAK}, + {"Info", "INFO", VER_FLG_INFO}}; + +static const EnumEntry<unsigned> AMDGPUElfOSABI[] = { + {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, + {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, + {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} +}; + +static const EnumEntry<unsigned> ARMElfOSABI[] = { + {"ARM", "ARM", ELF::ELFOSABI_ARM} +}; + +static const EnumEntry<unsigned> C6000ElfOSABI[] = { + {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, + {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} +}; + +static const EnumEntry<unsigned> ElfMachineType[] = { + ENUM_ENT(EM_NONE, "None"), + ENUM_ENT(EM_M32, "WE32100"), + ENUM_ENT(EM_SPARC, "Sparc"), + ENUM_ENT(EM_386, "Intel 80386"), + ENUM_ENT(EM_68K, "MC68000"), + ENUM_ENT(EM_88K, "MC88000"), + ENUM_ENT(EM_IAMCU, "EM_IAMCU"), + ENUM_ENT(EM_860, "Intel 80860"), + ENUM_ENT(EM_MIPS, "MIPS R3000"), + ENUM_ENT(EM_S370, "IBM System/370"), + ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), + ENUM_ENT(EM_PARISC, "HPPA"), + ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), + ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), + ENUM_ENT(EM_960, "Intel 80960"), + ENUM_ENT(EM_PPC, "PowerPC"), + ENUM_ENT(EM_PPC64, "PowerPC64"), + ENUM_ENT(EM_S390, "IBM S/390"), + ENUM_ENT(EM_SPU, "SPU"), + ENUM_ENT(EM_V800, "NEC V800 series"), + ENUM_ENT(EM_FR20, "Fujistsu FR20"), + ENUM_ENT(EM_RH32, "TRW RH-32"), + ENUM_ENT(EM_RCE, "Motorola RCE"), + ENUM_ENT(EM_ARM, "ARM"), + ENUM_ENT(EM_ALPHA, "EM_ALPHA"), + ENUM_ENT(EM_SH, "Hitachi SH"), + ENUM_ENT(EM_SPARCV9, "Sparc v9"), + ENUM_ENT(EM_TRICORE, "Siemens Tricore"), + ENUM_ENT(EM_ARC, "ARC"), + ENUM_ENT(EM_H8_300, "Hitachi H8/300"), + ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), + ENUM_ENT(EM_H8S, "Hitachi H8S"), + ENUM_ENT(EM_H8_500, "Hitachi H8/500"), + ENUM_ENT(EM_IA_64, "Intel IA-64"), + ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), + ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), + ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), + ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), + ENUM_ENT(EM_PCP, "Siemens PCP"), + ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), + ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), + ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), + ENUM_ENT(EM_ME16, "Toyota ME16 processor"), + ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), + ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), + ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), + ENUM_ENT(EM_PDSP, "Sony DSP processor"), + ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), + ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), + ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), + ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), + ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), + ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), + ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), + ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), + ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), + ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), + ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), + ENUM_ENT(EM_VAX, "Digital VAX"), + ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), + ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), + ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), + ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), + ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), + ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), + ENUM_ENT(EM_PRISM, "Vitesse Prism"), + ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), + ENUM_ENT(EM_FR30, "Fujitsu FR30"), + ENUM_ENT(EM_D10V, "Mitsubishi D10V"), + ENUM_ENT(EM_D30V, "Mitsubishi D30V"), + ENUM_ENT(EM_V850, "NEC v850"), + ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), + ENUM_ENT(EM_MN10300, "Matsushita MN10300"), + ENUM_ENT(EM_MN10200, "Matsushita MN10200"), + ENUM_ENT(EM_PJ, "picoJava"), + ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), + ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), + ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), + ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), + ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), + ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), + ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), + ENUM_ENT(EM_SNP1K, "EM_SNP1K"), + ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), + ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), + ENUM_ENT(EM_MAX, "MAX Processor"), + ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), + ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), + ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), + ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), + ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), + ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), + ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), + ENUM_ENT(EM_UNICORE, "Unicore"), + ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), + ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), + ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), + ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), + ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), + ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), + ENUM_ENT(EM_M16C, "Renesas M16C"), + ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), + ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), + ENUM_ENT(EM_M32C, "Renesas M32C"), + ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), + ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), + ENUM_ENT(EM_SHARC, "EM_SHARC"), + ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), + ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), + ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), + ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), + ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), + ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), + ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), + ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), + ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), + ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), + ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), + ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), + ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), + ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), + ENUM_ENT(EM_8051, "Intel 8051 and variants"), + ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), + ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), + ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), + ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), + ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), + ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), + ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), + ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), + ENUM_ENT(EM_RX, "Renesas RX"), + ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), + ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), + ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), + ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"), + ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), + ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), + ENUM_ENT(EM_L10M, "EM_L10M"), + ENUM_ENT(EM_K10M, "EM_K10M"), + ENUM_ENT(EM_AARCH64, "AArch64"), + ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), + ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), + ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), + ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), + ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), + ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), + ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), + ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), + ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), + ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), + ENUM_ENT(EM_OPEN8, "EM_OPEN8"), + ENUM_ENT(EM_RL78, "Renesas RL78"), + ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), + ENUM_ENT(EM_78KOR, "EM_78KOR"), + ENUM_ENT(EM_56800EX, "EM_56800EX"), + ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), + ENUM_ENT(EM_RISCV, "RISC-V"), + ENUM_ENT(EM_LANAI, "EM_LANAI"), + ENUM_ENT(EM_BPF, "EM_BPF"), +}; + +static const EnumEntry<unsigned> ElfSymbolBindings[] = { + {"Local", "LOCAL", ELF::STB_LOCAL}, + {"Global", "GLOBAL", ELF::STB_GLOBAL}, + {"Weak", "WEAK", ELF::STB_WEAK}, + {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; + +static const EnumEntry<unsigned> ElfSymbolVisibilities[] = { + {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, + {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, + {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, + {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; + +static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { + { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } +}; + +static const char *getGroupType(uint32_t Flag) { + if (Flag & ELF::GRP_COMDAT) + return "COMDAT"; + else + return "(unknown)"; +} + +static const EnumEntry<unsigned> ElfSectionFlags[] = { + ENUM_ENT(SHF_WRITE, "W"), + ENUM_ENT(SHF_ALLOC, "A"), + ENUM_ENT(SHF_EXCLUDE, "E"), + ENUM_ENT(SHF_EXECINSTR, "X"), + ENUM_ENT(SHF_MERGE, "M"), + ENUM_ENT(SHF_STRINGS, "S"), + ENUM_ENT(SHF_INFO_LINK, "I"), + ENUM_ENT(SHF_LINK_ORDER, "L"), + ENUM_ENT(SHF_OS_NONCONFORMING, "o"), + ENUM_ENT(SHF_GROUP, "G"), + ENUM_ENT(SHF_TLS, "T"), + ENUM_ENT(SHF_MASKOS, "o"), + ENUM_ENT(SHF_MASKPROC, "p"), + ENUM_ENT_1(SHF_COMPRESSED), +}; + +static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION), + LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION) +}; + +static const EnumEntry<unsigned> ElfARMSectionFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE) +}; + +static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL) +}; + +static const EnumEntry<unsigned> ElfMipsSectionFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ), + LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING ) +}; + +static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE) +}; + +static std::string getGNUFlags(uint64_t Flags) { + std::string Str; + for (auto Entry : ElfSectionFlags) { + uint64_t Flag = Entry.Value & Flags; + Flags &= ~Entry.Value; + switch (Flag) { + case ELF::SHF_WRITE: + case ELF::SHF_ALLOC: + case ELF::SHF_EXECINSTR: + case ELF::SHF_MERGE: + case ELF::SHF_STRINGS: + case ELF::SHF_INFO_LINK: + case ELF::SHF_LINK_ORDER: + case ELF::SHF_OS_NONCONFORMING: + case ELF::SHF_GROUP: + case ELF::SHF_TLS: + case ELF::SHF_EXCLUDE: + Str += Entry.AltName; + break; + default: + if (Flag & ELF::SHF_MASKOS) + Str += "o"; + else if (Flag & ELF::SHF_MASKPROC) + Str += "p"; + else if (Flag) + Str += "x"; + } + } + return Str; +} + +static const char *getElfSegmentType(unsigned Arch, unsigned Type) { + // Check potentially overlapped processor-specific + // program header type. + switch (Arch) { + case ELF::EM_ARM: + switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } + break; + case ELF::EM_MIPS: + case ELF::EM_MIPS_RS3_LE: + switch (Type) { + LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); + LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); + LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); + LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); + } + break; + } + + switch (Type) { + LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL ); + LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD ); + LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); + LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP ); + LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE ); + LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB ); + LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR ); + LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS ); + + LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); + LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); + + LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); + LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); + + LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); + LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); + LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); + + default: + return ""; + } +} + +static std::string getElfPtType(unsigned Arch, unsigned Type) { + switch (Type) { + LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK) + LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO) + default: + // All machine specific PT_* types + switch (Arch) { + case ELF::EM_ARM: + if (Type == ELF::PT_ARM_EXIDX) + return "EXIDX"; + break; + case ELF::EM_MIPS: + case ELF::EM_MIPS_RS3_LE: + switch (Type) { + case PT_MIPS_REGINFO: + return "REGINFO"; + case PT_MIPS_RTPROC: + return "RTPROC"; + case PT_MIPS_OPTIONS: + return "OPTIONS"; + case PT_MIPS_ABIFLAGS: + return "ABIFLAGS"; + } + break; + } + } + return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); +} + +static const EnumEntry<unsigned> ElfSegmentFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, PF_X), + LLVM_READOBJ_ENUM_ENT(ELF, PF_W), + LLVM_READOBJ_ENUM_ENT(ELF, PF_R) +}; + +static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { + ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), + ENUM_ENT(EF_MIPS_PIC, "pic"), + ENUM_ENT(EF_MIPS_CPIC, "cpic"), + ENUM_ENT(EF_MIPS_ABI2, "abi2"), + ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), + ENUM_ENT(EF_MIPS_FP64, "fp64"), + ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), + ENUM_ENT(EF_MIPS_ABI_O32, "o32"), + ENUM_ENT(EF_MIPS_ABI_O64, "o64"), + ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), + ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), + ENUM_ENT(EF_MIPS_MACH_3900, "3900"), + ENUM_ENT(EF_MIPS_MACH_4010, "4010"), + ENUM_ENT(EF_MIPS_MACH_4100, "4100"), + ENUM_ENT(EF_MIPS_MACH_4650, "4650"), + ENUM_ENT(EF_MIPS_MACH_4120, "4120"), + ENUM_ENT(EF_MIPS_MACH_4111, "4111"), + ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), + ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), + ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), + ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), + ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), + ENUM_ENT(EF_MIPS_MACH_5400, "5400"), + ENUM_ENT(EF_MIPS_MACH_5900, "5900"), + ENUM_ENT(EF_MIPS_MACH_5500, "5500"), + ENUM_ENT(EF_MIPS_MACH_9000, "9000"), + ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), + ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), + ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), + ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), + ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), + ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), + ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), + ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), + ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), + ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), + ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), + ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), + ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), + ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), + ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), + ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), + ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") +}; + +static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK), + LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC) +}; + +static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { + ENUM_ENT(EF_RISCV_RVC, "RVC"), + ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), + ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), + ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), + ENUM_ENT(EF_RISCV_RVE, "RVE") +}; + +static const EnumEntry<unsigned> ElfSymOtherFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), + LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), + LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) +}; + +static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) +}; + +static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), + LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) +}; + +static const char *getElfMipsOptionsOdkType(unsigned Odk) { + switch (Odk) { + LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); + LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); + default: + return "Unknown"; + } +} + +template <typename ELFT> +std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> +ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) { + // Try to locate the PT_DYNAMIC header. + const Elf_Phdr *DynamicPhdr = nullptr; + for (const Elf_Phdr &Phdr : + unwrapOrError(ObjF->getFileName(), Obj->program_headers())) { + if (Phdr.p_type != ELF::PT_DYNAMIC) + continue; + DynamicPhdr = &Phdr; + break; + } + + // Try to locate the .dynamic section in the sections header table. + const Elf_Shdr *DynamicSec = nullptr; + for (const Elf_Shdr &Sec : + unwrapOrError(ObjF->getFileName(), Obj->sections())) { + if (Sec.sh_type != ELF::SHT_DYNAMIC) + continue; + DynamicSec = &Sec; + break; + } + + if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz > + ObjF->getMemoryBufferRef().getBufferSize()) { + reportWarning( + createError( + "PT_DYNAMIC segment offset + size exceeds the size of the file"), + ObjF->getFileName()); + // Don't use the broken dynamic header. + DynamicPhdr = nullptr; + } + + if (DynamicPhdr && DynamicSec) { + StringRef Name = + unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec)); + if (DynamicSec->sh_addr + DynamicSec->sh_size > + DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || + DynamicSec->sh_addr < DynamicPhdr->p_vaddr) + reportWarning(createError("The SHT_DYNAMIC section '" + Name + + "' is not contained within the " + "PT_DYNAMIC segment"), + ObjF->getFileName()); + + if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) + reportWarning(createError("The SHT_DYNAMIC section '" + Name + + "' is not at the start of " + "PT_DYNAMIC segment"), + ObjF->getFileName()); + } + + return std::make_pair(DynamicPhdr, DynamicSec); +} + +template <typename ELFT> +void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) { + const Elf_Phdr *DynamicPhdr; + const Elf_Shdr *DynamicSec; + std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj); + if (!DynamicPhdr && !DynamicSec) + return; + + DynRegionInfo FromPhdr(ObjF->getFileName()); + bool IsPhdrTableValid = false; + if (DynamicPhdr) { + FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn)); + IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty(); + } + + // Locate the dynamic table described in a section header. + // Ignore sh_entsize and use the expected value for entry size explicitly. + // This allows us to dump dynamic sections with a broken sh_entsize + // field. + DynRegionInfo FromSec(ObjF->getFileName()); + bool IsSecTableValid = false; + if (DynamicSec) { + FromSec = + checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset, + DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()}); + IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty(); + } + + // When we only have information from one of the SHT_DYNAMIC section header or + // PT_DYNAMIC program header, just use that. + if (!DynamicPhdr || !DynamicSec) { + if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { + DynamicTable = DynamicPhdr ? FromPhdr : FromSec; + parseDynamicTable(); + } else { + reportWarning(createError("no valid dynamic table was found"), + ObjF->getFileName()); + } + return; + } + + // At this point we have tables found from the section header and from the + // dynamic segment. Usually they match, but we have to do sanity checks to + // verify that. + + if (FromPhdr.Addr != FromSec.Addr) + reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC " + "program header disagree about " + "the location of the dynamic table"), + ObjF->getFileName()); + + if (!IsPhdrTableValid && !IsSecTableValid) { + reportWarning(createError("no valid dynamic table was found"), + ObjF->getFileName()); + return; + } + + // Information in the PT_DYNAMIC program header has priority over the information + // in a section header. + if (IsPhdrTableValid) { + if (!IsSecTableValid) + reportWarning( + createError( + "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"), + ObjF->getFileName()); + DynamicTable = FromPhdr; + } else { + reportWarning( + createError( + "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"), + ObjF->getFileName()); + DynamicTable = FromSec; + } + + parseDynamicTable(); +} + +template <typename ELFT> +ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, + ScopedPrinter &Writer) + : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()), + DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()), + DynPLTRelRegion(ObjF->getFileName()), DynSymRegion(ObjF->getFileName()), + DynamicTable(ObjF->getFileName()) { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + for (const Elf_Shdr &Sec : + unwrapOrError(ObjF->getFileName(), Obj->sections())) { + switch (Sec.sh_type) { + case ELF::SHT_SYMTAB: + if (!DotSymtabSec) + DotSymtabSec = &Sec; + break; + case ELF::SHT_DYNSYM: + if (!DynSymRegion.Size) { + DynSymRegion = createDRIFrom(&Sec); + // This is only used (if Elf_Shdr present)for naming section in GNU + // style + DynSymtabName = + unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec)); + + if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec)) + DynamicStringTable = *E; + else + reportWarning(E.takeError(), ObjF->getFileName()); + } + break; + case ELF::SHT_SYMTAB_SHNDX: + ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec)); + break; + case ELF::SHT_GNU_versym: + if (!SymbolVersionSection) + SymbolVersionSection = &Sec; + break; + case ELF::SHT_GNU_verdef: + if (!SymbolVersionDefSection) + SymbolVersionDefSection = &Sec; + break; + case ELF::SHT_GNU_verneed: + if (!SymbolVersionNeedSection) + SymbolVersionNeedSection = &Sec; + break; + case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: + if (!DotCGProfileSec) + DotCGProfileSec = &Sec; + break; + case ELF::SHT_LLVM_ADDRSIG: + if (!DotAddrsigSec) + DotAddrsigSec = &Sec; + break; + } + } + + loadDynamicTable(Obj); + + if (opts::Output == opts::GNU) + ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this)); + else + ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this)); +} + +static const char *getTypeString(unsigned Arch, uint64_t Type) { +#define DYNAMIC_TAG(n, v) + switch (Arch) { + + case EM_AARCH64: + switch (Type) { +#define AARCH64_DYNAMIC_TAG(name, value) \ + case DT_##name: \ + return #name; +#include "llvm/BinaryFormat/DynamicTags.def" +#undef AARCH64_DYNAMIC_TAG + } + break; + + case EM_HEXAGON: + switch (Type) { +#define HEXAGON_DYNAMIC_TAG(name, value) \ + case DT_##name: \ + return #name; +#include "llvm/BinaryFormat/DynamicTags.def" +#undef HEXAGON_DYNAMIC_TAG + } + break; + + case EM_MIPS: + switch (Type) { +#define MIPS_DYNAMIC_TAG(name, value) \ + case DT_##name: \ + return #name; +#include "llvm/BinaryFormat/DynamicTags.def" +#undef MIPS_DYNAMIC_TAG + } + break; + + case EM_PPC64: + switch (Type) { +#define PPC64_DYNAMIC_TAG(name, value) \ + case DT_##name: \ + return #name; +#include "llvm/BinaryFormat/DynamicTags.def" +#undef PPC64_DYNAMIC_TAG + } + break; + } +#undef DYNAMIC_TAG + switch (Type) { +// Now handle all dynamic tags except the architecture specific ones +#define AARCH64_DYNAMIC_TAG(name, value) +#define MIPS_DYNAMIC_TAG(name, value) +#define HEXAGON_DYNAMIC_TAG(name, value) +#define PPC64_DYNAMIC_TAG(name, value) +// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. +#define DYNAMIC_TAG_MARKER(name, value) +#define DYNAMIC_TAG(name, value) \ + case DT_##name: \ + return #name; +#include "llvm/BinaryFormat/DynamicTags.def" +#undef DYNAMIC_TAG +#undef AARCH64_DYNAMIC_TAG +#undef MIPS_DYNAMIC_TAG +#undef HEXAGON_DYNAMIC_TAG +#undef PPC64_DYNAMIC_TAG +#undef DYNAMIC_TAG_MARKER + default: + return "unknown"; + } +} + +template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { + auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { + auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr); + if (!MappedAddrOrError) { + Error Err = + createError("Unable to parse DT_" + + Twine(getTypeString( + ObjF->getELFFile()->getHeader()->e_machine, Tag)) + + ": " + llvm::toString(MappedAddrOrError.takeError())); + + reportWarning(std::move(Err), ObjF->getFileName()); + return nullptr; + } + return MappedAddrOrError.get(); + }; + + uint64_t SONameOffset = 0; + const char *StringTableBegin = nullptr; + uint64_t StringTableSize = 0; + for (const Elf_Dyn &Dyn : dynamic_table()) { + switch (Dyn.d_tag) { + case ELF::DT_HASH: + HashTable = reinterpret_cast<const Elf_Hash *>( + toMappedAddr(Dyn.getTag(), Dyn.getPtr())); + break; + case ELF::DT_GNU_HASH: + GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( + toMappedAddr(Dyn.getTag(), Dyn.getPtr())); + break; + case ELF::DT_STRTAB: + StringTableBegin = reinterpret_cast<const char *>( + toMappedAddr(Dyn.getTag(), Dyn.getPtr())); + break; + case ELF::DT_STRSZ: + StringTableSize = Dyn.getVal(); + break; + case ELF::DT_SYMTAB: { + // Often we find the information about the dynamic symbol table + // location in the SHT_DYNSYM section header. However, the value in + // DT_SYMTAB has priority, because it is used by dynamic loaders to + // locate .dynsym at runtime. The location we find in the section header + // and the location we find here should match. If we can't map the + // DT_SYMTAB value to an address (e.g. when there are no program headers), we + // ignore its value. + if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { + // EntSize is non-zero if the dynamic symbol table has been found via a + // section header. + if (DynSymRegion.EntSize && VA != DynSymRegion.Addr) + reportWarning( + createError( + "SHT_DYNSYM section header and DT_SYMTAB disagree about " + "the location of the dynamic symbol table"), + ObjF->getFileName()); + + DynSymRegion.Addr = VA; + DynSymRegion.EntSize = sizeof(Elf_Sym); + } + break; + } + case ELF::DT_RELA: + DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); + break; + case ELF::DT_RELASZ: + DynRelaRegion.Size = Dyn.getVal(); + break; + case ELF::DT_RELAENT: + DynRelaRegion.EntSize = Dyn.getVal(); + break; + case ELF::DT_SONAME: + SONameOffset = Dyn.getVal(); + break; + case ELF::DT_REL: + DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); + break; + case ELF::DT_RELSZ: + DynRelRegion.Size = Dyn.getVal(); + break; + case ELF::DT_RELENT: + DynRelRegion.EntSize = Dyn.getVal(); + break; + case ELF::DT_RELR: + case ELF::DT_ANDROID_RELR: + DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); + break; + case ELF::DT_RELRSZ: + case ELF::DT_ANDROID_RELRSZ: + DynRelrRegion.Size = Dyn.getVal(); + break; + case ELF::DT_RELRENT: + case ELF::DT_ANDROID_RELRENT: + DynRelrRegion.EntSize = Dyn.getVal(); + break; + case ELF::DT_PLTREL: + if (Dyn.getVal() == DT_REL) + DynPLTRelRegion.EntSize = sizeof(Elf_Rel); + else if (Dyn.getVal() == DT_RELA) + DynPLTRelRegion.EntSize = sizeof(Elf_Rela); + else + reportError(createError(Twine("unknown DT_PLTREL value of ") + + Twine((uint64_t)Dyn.getVal())), + ObjF->getFileName()); + break; + case ELF::DT_JMPREL: + DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); + break; + case ELF::DT_PLTRELSZ: + DynPLTRelRegion.Size = Dyn.getVal(); + break; + } + } + if (StringTableBegin) + DynamicStringTable = StringRef(StringTableBegin, StringTableSize); + SOName = getDynamicString(SONameOffset); +} + +template <typename ELFT> +typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const { + return DynRelRegion.getAsArrayRef<Elf_Rel>(); +} + +template <typename ELFT> +typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const { + return DynRelaRegion.getAsArrayRef<Elf_Rela>(); +} + +template <typename ELFT> +typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const { + return DynRelrRegion.getAsArrayRef<Elf_Relr>(); +} + +template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() { + ELFDumperStyle->printFileHeaders(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() { + ELFDumperStyle->printSectionHeaders(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printRelocations() { + ELFDumperStyle->printRelocations(ObjF->getELFFile()); +} + +template <class ELFT> +void ELFDumper<ELFT>::printProgramHeaders( + bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { + ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders, + PrintSectionMapping); +} + +template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { + // Dump version symbol section. + ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(), + SymbolVersionSection); + + // Dump version definition section. + ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(), + SymbolVersionDefSection); + + // Dump version dependency section. + ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(), + SymbolVersionNeedSection); +} + +template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() { + ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile()); +} + +template <class ELFT> +void ELFDumper<ELFT>::printSymbols(bool PrintSymbols, + bool PrintDynamicSymbols) { + ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols, + PrintDynamicSymbols); +} + +template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() { + ELFDumperStyle->printHashSymbols(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() { + ELFDumperStyle->printHashHistogram(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printCGProfile() { + ELFDumperStyle->printCGProfile(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printNotes() { + ELFDumperStyle->printNotes(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() { + ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printStackSizes() { + ELFDumperStyle->printStackSizes(ObjF); +} + +#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ + { #enum, prefix##_##enum } + +static const EnumEntry<unsigned> ElfDynamicDTFlags[] = { + LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), + LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), + LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), + LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), + LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) +}; + +static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), + LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON) +}; + +static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { + LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), + LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), + LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), + LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), + LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), + LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), + LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), + LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), + LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), + LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), + LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), + LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), + LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), + LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), + LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), + LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) +}; + +#undef LLVM_READOBJ_DT_FLAG_ENT + +template <typename T, typename TFlag> +void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { + using FlagEntry = EnumEntry<TFlag>; + using FlagVector = SmallVector<FlagEntry, 10>; + FlagVector SetFlags; + + for (const auto &Flag : Flags) { + if (Flag.Value == 0) + continue; + + if ((Value & Flag.Value) == Flag.Value) + SetFlags.push_back(Flag); + } + + for (const auto &Flag : SetFlags) { + OS << Flag.Name << " "; + } +} + +template <class ELFT> +void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type, + uint64_t Value) const { + const char *ConvChar = + (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; + + // Handle custom printing of architecture specific tags + switch (ObjF->getELFFile()->getHeader()->e_machine) { + case EM_AARCH64: + switch (Type) { + case DT_AARCH64_BTI_PLT: + case DT_AARCH64_PAC_PLT: + OS << Value; + return; + default: + break; + } + break; + case EM_HEXAGON: + switch (Type) { + case DT_HEXAGON_VER: + OS << Value; + return; + case DT_HEXAGON_SYMSZ: + case DT_HEXAGON_PLT: + OS << format(ConvChar, Value); + return; + default: + break; + } + break; + case EM_MIPS: + switch (Type) { + case DT_MIPS_RLD_VERSION: + case DT_MIPS_LOCAL_GOTNO: + case DT_MIPS_SYMTABNO: + case DT_MIPS_UNREFEXTNO: + OS << Value; + return; + case DT_MIPS_TIME_STAMP: + case DT_MIPS_ICHECKSUM: + case DT_MIPS_IVERSION: + case DT_MIPS_BASE_ADDRESS: + case DT_MIPS_MSYM: + case DT_MIPS_CONFLICT: + case DT_MIPS_LIBLIST: + case DT_MIPS_CONFLICTNO: + case DT_MIPS_LIBLISTNO: + case DT_MIPS_GOTSYM: + case DT_MIPS_HIPAGENO: + case DT_MIPS_RLD_MAP: + case DT_MIPS_DELTA_CLASS: + case DT_MIPS_DELTA_CLASS_NO: + case DT_MIPS_DELTA_INSTANCE: + case DT_MIPS_DELTA_RELOC: + case DT_MIPS_DELTA_RELOC_NO: + case DT_MIPS_DELTA_SYM: + case DT_MIPS_DELTA_SYM_NO: + case DT_MIPS_DELTA_CLASSSYM: + case DT_MIPS_DELTA_CLASSSYM_NO: + case DT_MIPS_CXX_FLAGS: + case DT_MIPS_PIXIE_INIT: + case DT_MIPS_SYMBOL_LIB: + case DT_MIPS_LOCALPAGE_GOTIDX: + case DT_MIPS_LOCAL_GOTIDX: + case DT_MIPS_HIDDEN_GOTIDX: + case DT_MIPS_PROTECTED_GOTIDX: + case DT_MIPS_OPTIONS: + case DT_MIPS_INTERFACE: + case DT_MIPS_DYNSTR_ALIGN: + case DT_MIPS_INTERFACE_SIZE: + case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: + case DT_MIPS_PERF_SUFFIX: + case DT_MIPS_COMPACT_SIZE: + case DT_MIPS_GP_VALUE: + case DT_MIPS_AUX_DYNAMIC: + case DT_MIPS_PLTGOT: + case DT_MIPS_RWPLT: + case DT_MIPS_RLD_MAP_REL: + OS << format(ConvChar, Value); + return; + case DT_MIPS_FLAGS: + printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS); + return; + default: + break; + } + break; + default: + break; + } + + switch (Type) { + case DT_PLTREL: + if (Value == DT_REL) { + OS << "REL"; + break; + } else if (Value == DT_RELA) { + OS << "RELA"; + break; + } + LLVM_FALLTHROUGH; + case DT_PLTGOT: + case DT_HASH: + case DT_STRTAB: + case DT_SYMTAB: + case DT_RELA: + case DT_INIT: + case DT_FINI: + case DT_REL: + case DT_JMPREL: + case DT_INIT_ARRAY: + case DT_FINI_ARRAY: + case DT_PREINIT_ARRAY: + case DT_DEBUG: + case DT_VERDEF: + case DT_VERNEED: + case DT_VERSYM: + case DT_GNU_HASH: + case DT_NULL: + OS << format(ConvChar, Value); + break; + case DT_RELACOUNT: + case DT_RELCOUNT: + case DT_VERDEFNUM: + case DT_VERNEEDNUM: + OS << Value; + break; + case DT_PLTRELSZ: + case DT_RELASZ: + case DT_RELAENT: + case DT_STRSZ: + case DT_SYMENT: + case DT_RELSZ: + case DT_RELENT: + case DT_INIT_ARRAYSZ: + case DT_FINI_ARRAYSZ: + case DT_PREINIT_ARRAYSZ: + case DT_ANDROID_RELSZ: + case DT_ANDROID_RELASZ: + OS << Value << " (bytes)"; + break; + case DT_NEEDED: + case DT_SONAME: + case DT_AUXILIARY: + case DT_USED: + case DT_FILTER: + case DT_RPATH: + case DT_RUNPATH: { + const std::map<uint64_t, const char*> TagNames = { + {DT_NEEDED, "Shared library"}, + {DT_SONAME, "Library soname"}, + {DT_AUXILIARY, "Auxiliary library"}, + {DT_USED, "Not needed object"}, + {DT_FILTER, "Filter library"}, + {DT_RPATH, "Library rpath"}, + {DT_RUNPATH, "Library runpath"}, + }; + OS << TagNames.at(Type) << ": [" << getDynamicString(Value) << "]"; + break; + } + case DT_FLAGS: + printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS); + break; + case DT_FLAGS_1: + printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS); + break; + default: + OS << format(ConvChar, Value); + break; + } +} + +template <class ELFT> +std::string ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { + if (DynamicStringTable.empty()) + return "<String table is empty or was not found>"; + if (Value < DynamicStringTable.size()) + return DynamicStringTable.data() + Value; + return Twine("<Invalid offset 0x" + utohexstr(Value) + ">").str(); +} + +template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { + DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); + Ctx.printUnwindInformation(); +} + +namespace { + +template <> void ELFDumper<ELF32LE>::printUnwindInfo() { + const ELFFile<ELF32LE> *Obj = ObjF->getELFFile(); + const unsigned Machine = Obj->getHeader()->e_machine; + if (Machine == EM_ARM) { + ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(), + DotSymtabSec); + Ctx.PrintUnwindInformation(); + } + DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); + Ctx.printUnwindInformation(); +} + +} // end anonymous namespace + +template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() { + ELFDumperStyle->printDynamic(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { + ListScope D(W, "NeededLibraries"); + + std::vector<std::string> Libs; + for (const auto &Entry : dynamic_table()) + if (Entry.d_tag == ELF::DT_NEEDED) + Libs.push_back(getDynamicString(Entry.d_un.d_val)); + + llvm::stable_sort(Libs); + + for (const auto &L : Libs) + W.startLine() << L << "\n"; +} + +template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { + DictScope D(W, "HashTable"); + if (!HashTable) + return; + W.printNumber("Num Buckets", HashTable->nbucket); + W.printNumber("Num Chains", HashTable->nchain); + W.printList("Buckets", HashTable->buckets()); + W.printList("Chains", HashTable->chains()); +} + +template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() { + DictScope D(W, "GnuHashTable"); + if (!GnuHashTable) + return; + W.printNumber("Num Buckets", GnuHashTable->nbuckets); + W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); + W.printNumber("Num Mask Words", GnuHashTable->maskwords); + W.printNumber("Shift Count", GnuHashTable->shift2); + W.printHexList("Bloom Filter", GnuHashTable->filter()); + W.printList("Buckets", GnuHashTable->buckets()); + Elf_Sym_Range Syms = dynamic_symbols(); + unsigned NumSyms = std::distance(Syms.begin(), Syms.end()); + if (!NumSyms) + reportError(createError("No dynamic symbol section"), ObjF->getFileName()); + W.printHexList("Values", GnuHashTable->values(NumSyms)); +} + +template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { + W.printString("LoadName", SOName); +} + +template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + switch (Obj->getHeader()->e_machine) { + case EM_ARM: + printAttributes(); + break; + case EM_MIPS: { + ELFDumperStyle->printMipsABIFlags(ObjF); + printMipsOptions(); + printMipsReginfo(); + + MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(), + dynamic_symbols()); + if (Parser.hasGot()) + ELFDumperStyle->printMipsGOT(Parser); + if (Parser.hasPlt()) + ELFDumperStyle->printMipsPLT(Parser); + break; + } + default: + break; + } +} + +template <class ELFT> void ELFDumper<ELFT>::printAttributes() { + W.startLine() << "Attributes not implemented.\n"; +} + +namespace { + +template <> void ELFDumper<ELF32LE>::printAttributes() { + const ELFFile<ELF32LE> *Obj = ObjF->getELFFile(); + if (Obj->getHeader()->e_machine != EM_ARM) { + W.startLine() << "Attributes not implemented.\n"; + return; + } + + DictScope BA(W, "BuildAttributes"); + for (const ELFO::Elf_Shdr &Sec : + unwrapOrError(ObjF->getFileName(), Obj->sections())) { + if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES) + continue; + + ArrayRef<uint8_t> Contents = + unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec)); + if (Contents[0] != ARMBuildAttrs::Format_Version) { + errs() << "unrecognised FormatVersion: 0x" + << Twine::utohexstr(Contents[0]) << '\n'; + continue; + } + + W.printHex("FormatVersion", Contents[0]); + if (Contents.size() == 1) + continue; + + ARMAttributeParser(&W).Parse(Contents, true); + } +} + +template <class ELFT> class MipsGOTParser { +public: + TYPEDEF_ELF_TYPES(ELFT) + using Entry = typename ELFO::Elf_Addr; + using Entries = ArrayRef<Entry>; + + const bool IsStatic; + const ELFO * const Obj; + + MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable, + Elf_Sym_Range DynSyms); + + bool hasGot() const { return !GotEntries.empty(); } + bool hasPlt() const { return !PltEntries.empty(); } + + uint64_t getGp() const; + + const Entry *getGotLazyResolver() const; + const Entry *getGotModulePointer() const; + const Entry *getPltLazyResolver() const; + const Entry *getPltModulePointer() const; + + Entries getLocalEntries() const; + Entries getGlobalEntries() const; + Entries getOtherEntries() const; + Entries getPltEntries() const; + + uint64_t getGotAddress(const Entry * E) const; + int64_t getGotOffset(const Entry * E) const; + const Elf_Sym *getGotSym(const Entry *E) const; + + uint64_t getPltAddress(const Entry * E) const; + const Elf_Sym *getPltSym(const Entry *E) const; + + StringRef getPltStrTable() const { return PltStrTable; } + +private: + const Elf_Shdr *GotSec; + size_t LocalNum; + size_t GlobalNum; + + const Elf_Shdr *PltSec; + const Elf_Shdr *PltRelSec; + const Elf_Shdr *PltSymTable; + StringRef FileName; + + Elf_Sym_Range GotDynSyms; + StringRef PltStrTable; + + Entries GotEntries; + Entries PltEntries; +}; + +} // end anonymous namespace + +template <class ELFT> +MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName, + Elf_Dyn_Range DynTable, + Elf_Sym_Range DynSyms) + : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0), + GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr), + FileName(FileName) { + // See "Global Offset Table" in Chapter 5 in the following document + // for detailed GOT description. + // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf + + // Find static GOT secton. + if (IsStatic) { + GotSec = findSectionByName(*Obj, FileName, ".got"); + if (!GotSec) + return; + + ArrayRef<uint8_t> Content = + unwrapOrError(FileName, Obj->getSectionContents(GotSec)); + GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), + Content.size() / sizeof(Entry)); + LocalNum = GotEntries.size(); + return; + } + + // Lookup dynamic table tags which define GOT/PLT layouts. + Optional<uint64_t> DtPltGot; + Optional<uint64_t> DtLocalGotNum; + Optional<uint64_t> DtGotSym; + Optional<uint64_t> DtMipsPltGot; + Optional<uint64_t> DtJmpRel; + for (const auto &Entry : DynTable) { + switch (Entry.getTag()) { + case ELF::DT_PLTGOT: + DtPltGot = Entry.getVal(); + break; + case ELF::DT_MIPS_LOCAL_GOTNO: + DtLocalGotNum = Entry.getVal(); + break; + case ELF::DT_MIPS_GOTSYM: + DtGotSym = Entry.getVal(); + break; + case ELF::DT_MIPS_PLTGOT: + DtMipsPltGot = Entry.getVal(); + break; + case ELF::DT_JMPREL: + DtJmpRel = Entry.getVal(); + break; + } + } + + // Find dynamic GOT section. + if (DtPltGot || DtLocalGotNum || DtGotSym) { + if (!DtPltGot) + report_fatal_error("Cannot find PLTGOT dynamic table tag."); + if (!DtLocalGotNum) + report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag."); + if (!DtGotSym) + report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag."); + + size_t DynSymTotal = DynSyms.size(); + if (*DtGotSym > DynSymTotal) + reportError( + createError("MIPS_GOTSYM exceeds a number of dynamic symbols"), + FileName); + + GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); + if (!GotSec) + reportError(createError("There is no not empty GOT section at 0x" + + Twine::utohexstr(*DtPltGot)), + FileName); + + LocalNum = *DtLocalGotNum; + GlobalNum = DynSymTotal - *DtGotSym; + + ArrayRef<uint8_t> Content = + unwrapOrError(FileName, Obj->getSectionContents(GotSec)); + GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), + Content.size() / sizeof(Entry)); + GotDynSyms = DynSyms.drop_front(*DtGotSym); + } + + // Find PLT section. + if (DtMipsPltGot || DtJmpRel) { + if (!DtMipsPltGot) + report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag."); + if (!DtJmpRel) + report_fatal_error("Cannot find JMPREL dynamic table tag."); + + PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot); + if (!PltSec) + report_fatal_error("There is no not empty PLTGOT section at 0x " + + Twine::utohexstr(*DtMipsPltGot)); + + PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel); + if (!PltRelSec) + report_fatal_error("There is no not empty RELPLT section at 0x" + + Twine::utohexstr(*DtJmpRel)); + + ArrayRef<uint8_t> PltContent = + unwrapOrError(FileName, Obj->getSectionContents(PltSec)); + PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()), + PltContent.size() / sizeof(Entry)); + + PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link)); + PltStrTable = + unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable)); + } +} + +template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { + return GotSec->sh_addr + 0x7ff0; +} + +template <class ELFT> +const typename MipsGOTParser<ELFT>::Entry * +MipsGOTParser<ELFT>::getGotLazyResolver() const { + return LocalNum > 0 ? &GotEntries[0] : nullptr; +} + +template <class ELFT> +const typename MipsGOTParser<ELFT>::Entry * +MipsGOTParser<ELFT>::getGotModulePointer() const { + if (LocalNum < 2) + return nullptr; + const Entry &E = GotEntries[1]; + if ((E >> (sizeof(Entry) * 8 - 1)) == 0) + return nullptr; + return &E; +} + +template <class ELFT> +typename MipsGOTParser<ELFT>::Entries +MipsGOTParser<ELFT>::getLocalEntries() const { + size_t Skip = getGotModulePointer() ? 2 : 1; + if (LocalNum - Skip <= 0) + return Entries(); + return GotEntries.slice(Skip, LocalNum - Skip); +} + +template <class ELFT> +typename MipsGOTParser<ELFT>::Entries +MipsGOTParser<ELFT>::getGlobalEntries() const { + if (GlobalNum == 0) + return Entries(); + return GotEntries.slice(LocalNum, GlobalNum); +} + +template <class ELFT> +typename MipsGOTParser<ELFT>::Entries +MipsGOTParser<ELFT>::getOtherEntries() const { + size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; + if (OtherNum == 0) + return Entries(); + return GotEntries.slice(LocalNum + GlobalNum, OtherNum); +} + +template <class ELFT> +uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { + int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); + return GotSec->sh_addr + Offset; +} + +template <class ELFT> +int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { + int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); + return Offset - 0x7ff0; +} + +template <class ELFT> +const typename MipsGOTParser<ELFT>::Elf_Sym * +MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { + int64_t Offset = std::distance(GotEntries.data(), E); + return &GotDynSyms[Offset - LocalNum]; +} + +template <class ELFT> +const typename MipsGOTParser<ELFT>::Entry * +MipsGOTParser<ELFT>::getPltLazyResolver() const { + return PltEntries.empty() ? nullptr : &PltEntries[0]; +} + +template <class ELFT> +const typename MipsGOTParser<ELFT>::Entry * +MipsGOTParser<ELFT>::getPltModulePointer() const { + return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; +} + +template <class ELFT> +typename MipsGOTParser<ELFT>::Entries +MipsGOTParser<ELFT>::getPltEntries() const { + if (PltEntries.size() <= 2) + return Entries(); + return PltEntries.slice(2, PltEntries.size() - 2); +} + +template <class ELFT> +uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { + int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); + return PltSec->sh_addr + Offset; +} + +template <class ELFT> +const typename MipsGOTParser<ELFT>::Elf_Sym * +MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { + int64_t Offset = std::distance(getPltEntries().data(), E); + if (PltRelSec->sh_type == ELF::SHT_REL) { + Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec)); + return unwrapOrError(FileName, + Obj->getRelocationSymbol(&Rels[Offset], PltSymTable)); + } else { + Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec)); + return unwrapOrError(FileName, + Obj->getRelocationSymbol(&Rels[Offset], PltSymTable)); + } +} + +static const EnumEntry<unsigned> ElfMipsISAExtType[] = { + {"None", Mips::AFL_EXT_NONE}, + {"Broadcom SB-1", Mips::AFL_EXT_SB1}, + {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, + {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, + {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, + {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, + {"LSI R4010", Mips::AFL_EXT_4010}, + {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, + {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, + {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, + {"MIPS R4650", Mips::AFL_EXT_4650}, + {"MIPS R5900", Mips::AFL_EXT_5900}, + {"MIPS R10000", Mips::AFL_EXT_10000}, + {"NEC VR4100", Mips::AFL_EXT_4100}, + {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, + {"NEC VR4120", Mips::AFL_EXT_4120}, + {"NEC VR5400", Mips::AFL_EXT_5400}, + {"NEC VR5500", Mips::AFL_EXT_5500}, + {"RMI Xlr", Mips::AFL_EXT_XLR}, + {"Toshiba R3900", Mips::AFL_EXT_3900} +}; + +static const EnumEntry<unsigned> ElfMipsASEFlags[] = { + {"DSP", Mips::AFL_ASE_DSP}, + {"DSPR2", Mips::AFL_ASE_DSPR2}, + {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, + {"MCU", Mips::AFL_ASE_MCU}, + {"MDMX", Mips::AFL_ASE_MDMX}, + {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, + {"MT", Mips::AFL_ASE_MT}, + {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, + {"VZ", Mips::AFL_ASE_VIRT}, + {"MSA", Mips::AFL_ASE_MSA}, + {"MIPS16", Mips::AFL_ASE_MIPS16}, + {"microMIPS", Mips::AFL_ASE_MICROMIPS}, + {"XPA", Mips::AFL_ASE_XPA}, + {"CRC", Mips::AFL_ASE_CRC}, + {"GINV", Mips::AFL_ASE_GINV}, +}; + +static const EnumEntry<unsigned> ElfMipsFpABIType[] = { + {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, + {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, + {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, + {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, + {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", + Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, + {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, + {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, + {"Hard float compat (32-bit CPU, 64-bit FPU)", + Mips::Val_GNU_MIPS_ABI_FP_64A} +}; + +static const EnumEntry<unsigned> ElfMipsFlags1[] { + {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, +}; + +static int getMipsRegisterSize(uint8_t Flag) { + switch (Flag) { + case Mips::AFL_REG_NONE: + return 0; + case Mips::AFL_REG_32: + return 32; + case Mips::AFL_REG_64: + return 64; + case Mips::AFL_REG_128: + return 128; + default: + return -1; + } +} + +template <class ELFT> +static void printMipsReginfoData(ScopedPrinter &W, + const Elf_Mips_RegInfo<ELFT> &Reginfo) { + W.printHex("GP", Reginfo.ri_gp_value); + W.printHex("General Mask", Reginfo.ri_gprmask); + W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); + W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); + W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); + W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); +} + +template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo"); + if (!Shdr) { + W.startLine() << "There is no .reginfo section in the file.\n"; + return; + } + ArrayRef<uint8_t> Sec = + unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); + if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) { + W.startLine() << "The .reginfo section has a wrong size.\n"; + return; + } + + DictScope GS(W, "MIPS RegInfo"); + auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data()); + printMipsReginfoData(W, *Reginfo); +} + +template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + const Elf_Shdr *Shdr = + findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options"); + if (!Shdr) { + W.startLine() << "There is no .MIPS.options section in the file.\n"; + return; + } + + DictScope GS(W, "MIPS Options"); + + ArrayRef<uint8_t> Sec = + unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); + while (!Sec.empty()) { + if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) { + W.startLine() << "The .MIPS.options section has a wrong size.\n"; + return; + } + auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data()); + DictScope GS(W, getElfMipsOptionsOdkType(O->kind)); + switch (O->kind) { + case ODK_REGINFO: + printMipsReginfoData(W, O->getRegInfo()); + break; + default: + W.startLine() << "Unsupported MIPS options tag.\n"; + break; + } + Sec = Sec.slice(O->size); + } +} + +template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + const Elf_Shdr *StackMapSection = nullptr; + for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) { + StringRef Name = + unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec)); + if (Name == ".llvm_stackmaps") { + StackMapSection = &Sec; + break; + } + } + + if (!StackMapSection) + return; + + ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError( + ObjF->getFileName(), Obj->getSectionContents(StackMapSection)); + + prettyPrintStackMap( + W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray)); +} + +template <class ELFT> void ELFDumper<ELFT>::printGroupSections() { + ELFDumperStyle->printGroupSections(ObjF->getELFFile()); +} + +template <class ELFT> void ELFDumper<ELFT>::printAddrsig() { + ELFDumperStyle->printAddrsig(ObjF->getELFFile()); +} + +static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, + StringRef Str2) { + OS.PadToColumn(2u); + OS << Str1; + OS.PadToColumn(37u); + OS << Str2 << "\n"; + OS.flush(); +} + +template <class ELFT> +static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj, + StringRef FileName) { + const typename ELFT::Ehdr *ElfHeader = Obj->getHeader(); + if (ElfHeader->e_shnum != 0) + return to_string(ElfHeader->e_shnum); + + ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections()); + if (Arr.empty()) + return "0"; + return "0 (" + to_string(Arr[0].sh_size) + ")"; +} + +template <class ELFT> +static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj, + StringRef FileName) { + const typename ELFT::Ehdr *ElfHeader = Obj->getHeader(); + if (ElfHeader->e_shstrndx != SHN_XINDEX) + return to_string(ElfHeader->e_shstrndx); + + ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections()); + if (Arr.empty()) + return "65535 (corrupt: out of range)"; + return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) + + ")"; +} + +template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) { + const Elf_Ehdr *e = Obj->getHeader(); + OS << "ELF Header:\n"; + OS << " Magic: "; + std::string Str; + for (int i = 0; i < ELF::EI_NIDENT; i++) + OS << format(" %02x", static_cast<int>(e->e_ident[i])); + OS << "\n"; + Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); + printFields(OS, "Class:", Str); + Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); + printFields(OS, "Data:", Str); + OS.PadToColumn(2u); + OS << "Version:"; + OS.PadToColumn(37u); + OS << to_hexString(e->e_ident[ELF::EI_VERSION]); + if (e->e_version == ELF::EV_CURRENT) + OS << " (current)"; + OS << "\n"; + Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); + printFields(OS, "OS/ABI:", Str); + Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]); + printFields(OS, "ABI Version:", Str); + Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType)); + printFields(OS, "Type:", Str); + Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType)); + printFields(OS, "Machine:", Str); + Str = "0x" + to_hexString(e->e_version); + printFields(OS, "Version:", Str); + Str = "0x" + to_hexString(e->e_entry); + printFields(OS, "Entry point address:", Str); + Str = to_string(e->e_phoff) + " (bytes into file)"; + printFields(OS, "Start of program headers:", Str); + Str = to_string(e->e_shoff) + " (bytes into file)"; + printFields(OS, "Start of section headers:", Str); + std::string ElfFlags; + if (e->e_machine == EM_MIPS) + ElfFlags = + printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags), + unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), + unsigned(ELF::EF_MIPS_MACH)); + else if (e->e_machine == EM_RISCV) + ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags)); + Str = "0x" + to_hexString(e->e_flags); + if (!ElfFlags.empty()) + Str = Str + ", " + ElfFlags; + printFields(OS, "Flags:", Str); + Str = to_string(e->e_ehsize) + " (bytes)"; + printFields(OS, "Size of this header:", Str); + Str = to_string(e->e_phentsize) + " (bytes)"; + printFields(OS, "Size of program headers:", Str); + Str = to_string(e->e_phnum); + printFields(OS, "Number of program headers:", Str); + Str = to_string(e->e_shentsize) + " (bytes)"; + printFields(OS, "Size of section headers:", Str); + Str = getSectionHeadersNumString(Obj, this->FileName); + printFields(OS, "Number of section headers:", Str); + Str = getSectionHeaderTableIndexString(Obj, this->FileName); + printFields(OS, "Section header string table index:", Str); +} + +namespace { +struct GroupMember { + StringRef Name; + uint64_t Index; +}; + +struct GroupSection { + StringRef Name; + std::string Signature; + uint64_t ShName; + uint64_t Index; + uint32_t Link; + uint32_t Info; + uint32_t Type; + std::vector<GroupMember> Members; +}; + +template <class ELFT> +std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj, + StringRef FileName) { + using Elf_Shdr = typename ELFT::Shdr; + using Elf_Sym = typename ELFT::Sym; + using Elf_Word = typename ELFT::Word; + + std::vector<GroupSection> Ret; + uint64_t I = 0; + for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) { + ++I; + if (Sec.sh_type != ELF::SHT_GROUP) + continue; + + const Elf_Shdr *Symtab = + unwrapOrError(FileName, Obj->getSection(Sec.sh_link)); + StringRef StrTable = + unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab)); + const Elf_Sym *Sym = unwrapOrError( + FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info)); + auto Data = unwrapOrError( + FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec)); + + StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec)); + StringRef Signature = StrTable.data() + Sym->st_name; + Ret.push_back({Name, + maybeDemangle(Signature), + Sec.sh_name, + I - 1, + Sec.sh_link, + Sec.sh_info, + Data[0], + {}}); + + std::vector<GroupMember> &GM = Ret.back().Members; + for (uint32_t Ndx : Data.slice(1)) { + auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx)); + const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec)); + GM.push_back({Name, Ndx}); + } + } + return Ret; +} + +DenseMap<uint64_t, const GroupSection *> +mapSectionsToGroups(ArrayRef<GroupSection> Groups) { + DenseMap<uint64_t, const GroupSection *> Ret; + for (const GroupSection &G : Groups) + for (const GroupMember &GM : G.Members) + Ret.insert({GM.Index, &G}); + return Ret; +} + +} // namespace + +template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) { + std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName); + DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); + for (const GroupSection &G : V) { + OS << "\n" + << getGroupType(G.Type) << " group section [" + << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature + << "] contains " << G.Members.size() << " sections:\n" + << " [Index] Name\n"; + for (const GroupMember &GM : G.Members) { + const GroupSection *MainGroup = Map[GM.Index]; + if (MainGroup != &G) { + OS.flush(); + errs() << "Error: section [" << format_decimal(GM.Index, 5) + << "] in group section [" << format_decimal(G.Index, 5) + << "] already in group section [" + << format_decimal(MainGroup->Index, 5) << "]"; + errs().flush(); + continue; + } + OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; + } + } + + if (V.empty()) + OS << "There are no section groups in this file.\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab, + const Elf_Rela &R, bool IsRela) { + const Elf_Sym *Sym = + unwrapOrError(this->FileName, Obj->getRelocationSymbol(&R, SymTab)); + std::string TargetName; + if (Sym && Sym->getType() == ELF::STT_SECTION) { + const Elf_Shdr *Sec = unwrapOrError( + this->FileName, + Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable())); + TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec)); + } else if (Sym) { + StringRef StrTable = + unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab)); + TargetName = this->dumper()->getFullSymbolName( + Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */); + } + printRelocation(Obj, Sym, TargetName, R, IsRela); +} + +template <class ELFT> +void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym, + StringRef SymbolName, const Elf_Rela &R, + bool IsRela) { + // First two fields are bit width dependent. The rest of them are fixed width. + unsigned Bias = ELFT::Is64Bits ? 8 : 0; + Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; + unsigned Width = ELFT::Is64Bits ? 16 : 8; + + Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width)); + Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width)); + + SmallString<32> RelocName; + Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName); + Fields[2].Str = RelocName.c_str(); + + if (Sym && (!SymbolName.empty() || Sym->getValue() != 0)) + Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width)); + + Fields[4].Str = SymbolName; + for (const Field &F : Fields) + printField(F); + + std::string Addend; + if (IsRela) { + int64_t RelAddend = R.r_addend; + if (!SymbolName.empty()) { + if (R.r_addend < 0) { + Addend = " - "; + RelAddend = std::abs(RelAddend); + } else + Addend = " + "; + } + + Addend += to_hexString(RelAddend, false); + } + OS << Addend << "\n"; +} + +template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) { + bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; + bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; + if (ELFT::Is64Bits) + OS << " "; + else + OS << " "; + if (IsRelr && opts::RawRelr) + OS << "Data "; + else + OS << "Offset"; + if (ELFT::Is64Bits) + OS << " Info Type" + << " Symbol's Value Symbol's Name"; + else + OS << " Info Type Sym. Value Symbol's Name"; + if (IsRela) + OS << " + Addend"; + OS << "\n"; +} + +template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) { + bool HasRelocSections = false; + for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { + if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA && + Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL && + Sec.sh_type != ELF::SHT_ANDROID_RELA && + Sec.sh_type != ELF::SHT_ANDROID_RELR) + continue; + HasRelocSections = true; + StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec)); + unsigned Entries = Sec.getEntityCount(); + std::vector<Elf_Rela> AndroidRelas; + if (Sec.sh_type == ELF::SHT_ANDROID_REL || + Sec.sh_type == ELF::SHT_ANDROID_RELA) { + // Android's packed relocation section needs to be unpacked first + // to get the actual number of entries. + AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec)); + Entries = AndroidRelas.size(); + } + std::vector<Elf_Rela> RelrRelas; + if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || + Sec.sh_type == ELF::SHT_ANDROID_RELR)) { + // .relr.dyn relative relocation section needs to be unpacked first + // to get the actual number of entries. + Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec)); + RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); + Entries = RelrRelas.size(); + } + uintX_t Offset = Sec.sh_offset; + OS << "\nRelocation section '" << Name << "' at offset 0x" + << to_hexString(Offset, false) << " contains " << Entries + << " entries:\n"; + printRelocHeader(Sec.sh_type); + const Elf_Shdr *SymTab = + unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link)); + switch (Sec.sh_type) { + case ELF::SHT_REL: + for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) { + Elf_Rela Rela; + Rela.r_offset = R.r_offset; + Rela.r_info = R.r_info; + Rela.r_addend = 0; + printRelocation(Obj, SymTab, Rela, false); + } + break; + case ELF::SHT_RELA: + for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec))) + printRelocation(Obj, SymTab, R, true); + break; + case ELF::SHT_RELR: + case ELF::SHT_ANDROID_RELR: + if (opts::RawRelr) + for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec))) + OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) + << "\n"; + else + for (const auto &R : RelrRelas) + printRelocation(Obj, SymTab, R, false); + break; + case ELF::SHT_ANDROID_REL: + case ELF::SHT_ANDROID_RELA: + for (const auto &R : AndroidRelas) + printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA); + break; + } + } + if (!HasRelocSections) + OS << "\nThere are no relocations in this file.\n"; +} + +// Print the offset of a particular section from anyone of the ranges: +// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. +// If 'Type' does not fall within any of those ranges, then a string is +// returned as '<unknown>' followed by the type value. +static std::string getSectionTypeOffsetString(unsigned Type) { + if (Type >= SHT_LOOS && Type <= SHT_HIOS) + return "LOOS+0x" + to_hexString(Type - SHT_LOOS); + else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) + return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC); + else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) + return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER); + return "0x" + to_hexString(Type) + ": <unknown>"; +} + +static std::string getSectionTypeString(unsigned Arch, unsigned Type) { + using namespace ELF; + + switch (Arch) { + case EM_ARM: + switch (Type) { + case SHT_ARM_EXIDX: + return "ARM_EXIDX"; + case SHT_ARM_PREEMPTMAP: + return "ARM_PREEMPTMAP"; + case SHT_ARM_ATTRIBUTES: + return "ARM_ATTRIBUTES"; + case SHT_ARM_DEBUGOVERLAY: + return "ARM_DEBUGOVERLAY"; + case SHT_ARM_OVERLAYSECTION: + return "ARM_OVERLAYSECTION"; + } + break; + case EM_X86_64: + switch (Type) { + case SHT_X86_64_UNWIND: + return "X86_64_UNWIND"; + } + break; + case EM_MIPS: + case EM_MIPS_RS3_LE: + switch (Type) { + case SHT_MIPS_REGINFO: + return "MIPS_REGINFO"; + case SHT_MIPS_OPTIONS: + return "MIPS_OPTIONS"; + case SHT_MIPS_DWARF: + return "MIPS_DWARF"; + case SHT_MIPS_ABIFLAGS: + return "MIPS_ABIFLAGS"; + } + break; + } + switch (Type) { + case SHT_NULL: + return "NULL"; + case SHT_PROGBITS: + return "PROGBITS"; + case SHT_SYMTAB: + return "SYMTAB"; + case SHT_STRTAB: + return "STRTAB"; + case SHT_RELA: + return "RELA"; + case SHT_HASH: + return "HASH"; + case SHT_DYNAMIC: + return "DYNAMIC"; + case SHT_NOTE: + return "NOTE"; + case SHT_NOBITS: + return "NOBITS"; + case SHT_REL: + return "REL"; + case SHT_SHLIB: + return "SHLIB"; + case SHT_DYNSYM: + return "DYNSYM"; + case SHT_INIT_ARRAY: + return "INIT_ARRAY"; + case SHT_FINI_ARRAY: + return "FINI_ARRAY"; + case SHT_PREINIT_ARRAY: + return "PREINIT_ARRAY"; + case SHT_GROUP: + return "GROUP"; + case SHT_SYMTAB_SHNDX: + return "SYMTAB SECTION INDICES"; + case SHT_ANDROID_REL: + return "ANDROID_REL"; + case SHT_ANDROID_RELA: + return "ANDROID_RELA"; + case SHT_RELR: + case SHT_ANDROID_RELR: + return "RELR"; + case SHT_LLVM_ODRTAB: + return "LLVM_ODRTAB"; + case SHT_LLVM_LINKER_OPTIONS: + return "LLVM_LINKER_OPTIONS"; + case SHT_LLVM_CALL_GRAPH_PROFILE: + return "LLVM_CALL_GRAPH_PROFILE"; + case SHT_LLVM_ADDRSIG: + return "LLVM_ADDRSIG"; + case SHT_LLVM_DEPENDENT_LIBRARIES: + return "LLVM_DEPENDENT_LIBRARIES"; + case SHT_LLVM_SYMPART: + return "LLVM_SYMPART"; + case SHT_LLVM_PART_EHDR: + return "LLVM_PART_EHDR"; + case SHT_LLVM_PART_PHDR: + return "LLVM_PART_PHDR"; + // FIXME: Parse processor specific GNU attributes + case SHT_GNU_ATTRIBUTES: + return "ATTRIBUTES"; + case SHT_GNU_HASH: + return "GNU_HASH"; + case SHT_GNU_verdef: + return "VERDEF"; + case SHT_GNU_verneed: + return "VERNEED"; + case SHT_GNU_versym: + return "VERSYM"; + default: + return getSectionTypeOffsetString(Type); + } + return ""; +} + +template <class ELFT> +void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) { + unsigned Bias = ELFT::Is64Bits ? 0 : 8; + ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); + OS << "There are " << to_string(Sections.size()) + << " section headers, starting at offset " + << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n"; + OS << "Section Headers:\n"; + Field Fields[11] = { + {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, + {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, + {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, + {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; + for (auto &F : Fields) + printField(F); + OS << "\n"; + + const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject(); + size_t SectionIndex = 0; + for (const Elf_Shdr &Sec : Sections) { + Fields[0].Str = to_string(SectionIndex); + Fields[1].Str = unwrapOrError<StringRef>( + ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler)); + Fields[2].Str = + getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type); + Fields[3].Str = + to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); + Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); + Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); + Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); + Fields[7].Str = getGNUFlags(Sec.sh_flags); + Fields[8].Str = to_string(Sec.sh_link); + Fields[9].Str = to_string(Sec.sh_info); + Fields[10].Str = to_string(Sec.sh_addralign); + + OS.PadToColumn(Fields[0].Column); + OS << "[" << right_justify(Fields[0].Str, 2) << "]"; + for (int i = 1; i < 7; i++) + printField(Fields[i]); + OS.PadToColumn(Fields[7].Column); + OS << right_justify(Fields[7].Str, 3); + OS.PadToColumn(Fields[8].Column); + OS << right_justify(Fields[8].Str, 2); + OS.PadToColumn(Fields[9].Column); + OS << right_justify(Fields[9].Str, 3); + OS.PadToColumn(Fields[10].Column); + OS << right_justify(Fields[10].Str, 2); + OS << "\n"; + ++SectionIndex; + } + OS << "Key to Flags:\n" + << " W (write), A (alloc), X (execute), M (merge), S (strings), l " + "(large)\n" + << " I (info), L (link order), G (group), T (TLS), E (exclude),\ + x (unknown)\n" + << " O (extra OS processing required) o (OS specific),\ + p (processor specific)\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name, + size_t Entries, + bool NonVisibilityBitsUsed) { + if (!Name.empty()) + OS << "\nSymbol table '" << Name << "' contains " << Entries + << " entries:\n"; + else + OS << "\n Symbol table for image:\n"; + + if (ELFT::Is64Bits) + OS << " Num: Value Size Type Bind Vis"; + else + OS << " Num: Value Size Type Bind Vis"; + + if (NonVisibilityBitsUsed) + OS << " "; + OS << " Ndx Name\n"; +} + +template <class ELFT> +std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj, + const Elf_Sym *Symbol, + const Elf_Sym *FirstSym) { + unsigned SectionIndex = Symbol->st_shndx; + switch (SectionIndex) { + case ELF::SHN_UNDEF: + return "UND"; + case ELF::SHN_ABS: + return "ABS"; + case ELF::SHN_COMMON: + return "COM"; + case ELF::SHN_XINDEX: + return to_string(format_decimal( + unwrapOrError(this->FileName, + object::getExtendedSymbolTableIndex<ELFT>( + Symbol, FirstSym, this->dumper()->getShndxTable())), + 3)); + default: + // Find if: + // Processor specific + if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) + return std::string("PRC[0x") + + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; + // OS specific + if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) + return std::string("OS[0x") + + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; + // Architecture reserved: + if (SectionIndex >= ELF::SHN_LORESERVE && + SectionIndex <= ELF::SHN_HIRESERVE) + return std::string("RSV[0x") + + to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; + // A normal section with an index + return to_string(format_decimal(SectionIndex, 3)); + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, + const Elf_Sym *FirstSym, StringRef StrTable, + bool IsDynamic, bool NonVisibilityBitsUsed) { + static int Idx = 0; + static bool Dynamic = true; + + // If this function was called with a different value from IsDynamic + // from last call, happens when we move from dynamic to static symbol + // table, "Num" field should be reset. + if (!Dynamic != !IsDynamic) { + Idx = 0; + Dynamic = false; + } + + unsigned Bias = ELFT::Is64Bits ? 8 : 0; + Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, + 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; + Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":"; + Fields[1].Str = to_string( + format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); + Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5)); + + unsigned char SymbolType = Symbol->getType(); + if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && + SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) + Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); + else + Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); + + Fields[4].Str = + printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); + Fields[5].Str = + printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); + if (Symbol->st_other & ~0x3) + Fields[5].Str += + " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]"; + + Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; + Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym); + + Fields[7].Str = + this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic); + for (auto &Entry : Fields) + printField(Entry); + OS << "\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, + uint32_t Sym, StringRef StrTable, + uint32_t Bucket) { + unsigned Bias = ELFT::Is64Bits ? 8 : 0; + Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, + 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; + Fields[0].Str = to_string(format_decimal(Sym, 5)); + Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; + + const auto Symbol = FirstSym + Sym; + Fields[2].Str = to_string( + format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); + Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); + + unsigned char SymbolType = Symbol->getType(); + if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && + SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) + Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); + else + Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); + + Fields[5].Str = + printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); + Fields[6].Str = + printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); + Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym); + Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true); + + for (auto &Entry : Fields) + printField(Entry); + OS << "\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols, + bool PrintDynamicSymbols) { + if (!PrintSymbols && !PrintDynamicSymbols) + return; + // GNU readelf prints both the .dynsym and .symtab with --symbols. + this->dumper()->printSymbolsHelper(true); + if (PrintSymbols) + this->dumper()->printSymbolsHelper(false); +} + +template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) { + if (this->dumper()->getDynamicStringTable().empty()) + return; + auto StringTable = this->dumper()->getDynamicStringTable(); + auto DynSyms = this->dumper()->dynamic_symbols(); + + // Try printing .hash + if (auto SysVHash = this->dumper()->getHashTable()) { + OS << "\n Symbol table of .hash for image:\n"; + if (ELFT::Is64Bits) + OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; + else + OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; + OS << "\n"; + + auto Buckets = SysVHash->buckets(); + auto Chains = SysVHash->chains(); + for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) { + if (Buckets[Buc] == ELF::STN_UNDEF) + continue; + std::vector<bool> Visited(SysVHash->nchain); + for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) { + if (Ch == ELF::STN_UNDEF) + break; + + if (Visited[Ch]) { + reportWarning( + createError(".hash section is invalid: bucket " + Twine(Ch) + + ": a cycle was detected in the linked chain"), + this->FileName); + break; + } + + printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc); + Visited[Ch] = true; + } + } + } + + // Try printing .gnu.hash + if (auto GnuHash = this->dumper()->getGnuHashTable()) { + OS << "\n Symbol table of .gnu.hash for image:\n"; + if (ELFT::Is64Bits) + OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; + else + OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; + OS << "\n"; + auto Buckets = GnuHash->buckets(); + for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) { + if (Buckets[Buc] == ELF::STN_UNDEF) + continue; + uint32_t Index = Buckets[Buc]; + uint32_t GnuHashable = Index - GnuHash->symndx; + // Print whole chain + while (true) { + printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc); + // Chain ends at symbol with stopper bit + if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1) + break; + } + } + } +} + +static inline std::string printPhdrFlags(unsigned Flag) { + std::string Str; + Str = (Flag & PF_R) ? "R" : " "; + Str += (Flag & PF_W) ? "W" : " "; + Str += (Flag & PF_X) ? "E" : " "; + return Str; +} + +// SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO +// PT_TLS must only have SHF_TLS sections +template <class ELFT> +bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr, + const Elf_Shdr &Sec) { + return (((Sec.sh_flags & ELF::SHF_TLS) && + ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || + (Phdr.p_type == ELF::PT_GNU_RELRO))) || + (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS)); +} + +// Non-SHT_NOBITS must have its offset inside the segment +// Only non-zero section can be at end of segment +template <class ELFT> +bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { + if (Sec.sh_type == ELF::SHT_NOBITS) + return true; + bool IsSpecial = + (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); + // .tbss is special, it only has memory in PT_TLS and has NOBITS properties + auto SectionSize = + (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size; + if (Sec.sh_offset >= Phdr.p_offset) + return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset) + /*only non-zero sized sections at end*/ + && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz)); + return false; +} + +// SHF_ALLOC must have VMA inside segment +// Only non-zero section can be at end of segment +template <class ELFT> +bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { + if (!(Sec.sh_flags & ELF::SHF_ALLOC)) + return true; + bool IsSpecial = + (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); + // .tbss is special, it only has memory in PT_TLS and has NOBITS properties + auto SectionSize = + (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size; + if (Sec.sh_addr >= Phdr.p_vaddr) + return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) && + (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz)); + return false; +} + +// No section with zero size must be at start or end of PT_DYNAMIC +template <class ELFT> +bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { + if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0) + return true; + // Is section within the phdr both based on offset and VMA ? + return ((Sec.sh_type == ELF::SHT_NOBITS) || + (Sec.sh_offset > Phdr.p_offset && + Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) && + (!(Sec.sh_flags & ELF::SHF_ALLOC) || + (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz)); +} + +template <class ELFT> +void GNUStyle<ELFT>::printProgramHeaders( + const ELFO *Obj, bool PrintProgramHeaders, + cl::boolOrDefault PrintSectionMapping) { + if (PrintProgramHeaders) + printProgramHeaders(Obj); + + // Display the section mapping along with the program headers, unless + // -section-mapping is explicitly set to false. + if (PrintSectionMapping != cl::BOU_FALSE) + printSectionMapping(Obj); +} + +template <class ELFT> +void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) { + unsigned Bias = ELFT::Is64Bits ? 8 : 0; + const Elf_Ehdr *Header = Obj->getHeader(); + Field Fields[8] = {2, 17, 26, 37 + Bias, + 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; + OS << "\nElf file type is " + << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n" + << "Entry point " << format_hex(Header->e_entry, 3) << "\n" + << "There are " << Header->e_phnum << " program headers," + << " starting at offset " << Header->e_phoff << "\n\n" + << "Program Headers:\n"; + if (ELFT::Is64Bits) + OS << " Type Offset VirtAddr PhysAddr " + << " FileSiz MemSiz Flg Align\n"; + else + OS << " Type Offset VirtAddr PhysAddr FileSiz " + << "MemSiz Flg Align\n"; + + unsigned Width = ELFT::Is64Bits ? 18 : 10; + unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; + for (const auto &Phdr : + unwrapOrError(this->FileName, Obj->program_headers())) { + Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type); + Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); + Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); + Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); + Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); + Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); + Fields[6].Str = printPhdrFlags(Phdr.p_flags); + Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); + for (auto Field : Fields) + printField(Field); + if (Phdr.p_type == ELF::PT_INTERP) { + OS << "\n [Requesting program interpreter: "; + OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]"; + } + OS << "\n"; + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) { + OS << "\n Section to Segment mapping:\n Segment Sections...\n"; + DenseSet<const Elf_Shdr *> BelongsToSegment; + int Phnum = 0; + for (const Elf_Phdr &Phdr : + unwrapOrError(this->FileName, Obj->program_headers())) { + std::string Sections; + OS << format(" %2.2d ", Phnum++); + for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { + // Check if each section is in a segment and then print mapping. + // readelf additionally makes sure it does not print zero sized sections + // at end of segments and for PT_DYNAMIC both start and end of section + // .tbss must only be shown in PT_TLS section. + bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) && + ((Sec.sh_flags & ELF::SHF_TLS) != 0) && + Phdr.p_type != ELF::PT_TLS; + if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) && + checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) && + checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) { + Sections += + unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + + " "; + BelongsToSegment.insert(&Sec); + } + } + OS << Sections << "\n"; + OS.flush(); + } + + // Display sections that do not belong to a segment. + std::string Sections; + for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { + if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) + Sections += + unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' '; + } + if (!Sections.empty()) { + OS << " None " << Sections << '\n'; + OS.flush(); + } +} + +namespace { +template <class ELFT> struct RelSymbol { + const typename ELFT::Sym *Sym; + std::string Name; +}; + +template <class ELFT> +RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName, + const ELFDumper<ELFT> *Dumper, + const typename ELFT::Rela &Reloc) { + uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL()); + const typename ELFT::Sym *Sym = Dumper->dynamic_symbols().begin() + SymIndex; + Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable()); + + std::string Name; + if (ErrOrName) { + Name = maybeDemangle(*ErrOrName); + } else { + reportWarning( + createError("unable to get name of the dynamic symbol with index " + + Twine(SymIndex) + ": " + toString(ErrOrName.takeError())), + FileName); + Name = "<corrupt>"; + } + + return {Sym, std::move(Name)}; +} +} // namespace + +template <class ELFT> +void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R, + bool IsRela) { + RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R); + printRelocation(Obj, S.Sym, S.Name, R, IsRela); +} + +template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) { + Elf_Dyn_Range Table = this->dumper()->dynamic_table(); + if (Table.empty()) + return; + + const DynRegionInfo &DynamicTableRegion = + this->dumper()->getDynamicTableRegion(); + + OS << "Dynamic section at offset " + << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) - + Obj->base(), + 1) + << " contains " << Table.size() << " entries:\n"; + + bool Is64 = ELFT::Is64Bits; + if (Is64) + OS << " Tag Type Name/Value\n"; + else + OS << " Tag Type Name/Value\n"; + for (auto Entry : Table) { + uintX_t Tag = Entry.getTag(); + std::string TypeString = std::string("(") + + getTypeString(Obj->getHeader()->e_machine, Tag) + + ")"; + OS << " " << format_hex(Tag, Is64 ? 18 : 10) + << format(" %-20s ", TypeString.c_str()); + this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal()); + OS << "\n"; + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) { + const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion(); + const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion(); + const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion(); + const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion(); + if (DynRelaRegion.Size > 0) { + OS << "\n'RELA' relocation section at offset " + << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) - + Obj->base(), + 1) + << " contains " << DynRelaRegion.Size << " bytes:\n"; + printRelocHeader(ELF::SHT_RELA); + for (const Elf_Rela &Rela : this->dumper()->dyn_relas()) + printDynamicRelocation(Obj, Rela, true); + } + if (DynRelRegion.Size > 0) { + OS << "\n'REL' relocation section at offset " + << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) - + Obj->base(), + 1) + << " contains " << DynRelRegion.Size << " bytes:\n"; + printRelocHeader(ELF::SHT_REL); + for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) { + Elf_Rela Rela; + Rela.r_offset = Rel.r_offset; + Rela.r_info = Rel.r_info; + Rela.r_addend = 0; + printDynamicRelocation(Obj, Rela, false); + } + } + if (DynRelrRegion.Size > 0) { + OS << "\n'RELR' relocation section at offset " + << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) - + Obj->base(), + 1) + << " contains " << DynRelrRegion.Size << " bytes:\n"; + printRelocHeader(ELF::SHT_REL); + Elf_Relr_Range Relrs = this->dumper()->dyn_relrs(); + std::vector<Elf_Rela> RelrRelas = + unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); + for (const Elf_Rela &Rela : RelrRelas) { + printDynamicRelocation(Obj, Rela, false); + } + } + if (DynPLTRelRegion.Size) { + OS << "\n'PLT' relocation section at offset " + << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) - + Obj->base(), + 1) + << " contains " << DynPLTRelRegion.Size << " bytes:\n"; + } + if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { + printRelocHeader(ELF::SHT_RELA); + for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>()) + printDynamicRelocation(Obj, Rela, true); + } else { + printRelocHeader(ELF::SHT_REL); + for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) { + Elf_Rela Rela; + Rela.r_offset = Rel.r_offset; + Rela.r_info = Rel.r_info; + Rela.r_addend = 0; + printDynamicRelocation(Obj, Rela, false); + } + } +} + +template <class ELFT> +static void printGNUVersionSectionProlog(formatted_raw_ostream &OS, + const Twine &Name, unsigned EntriesNum, + const ELFFile<ELFT> *Obj, + const typename ELFT::Shdr *Sec, + StringRef FileName) { + StringRef SecName = unwrapOrError(FileName, Obj->getSectionName(Sec)); + OS << Name << " section '" << SecName << "' " + << "contains " << EntriesNum << " entries:\n"; + + const typename ELFT::Shdr *SymTab = + unwrapOrError(FileName, Obj->getSection(Sec->sh_link)); + StringRef SymTabName = unwrapOrError(FileName, Obj->getSectionName(SymTab)); + OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16) + << " Offset: " << format_hex(Sec->sh_offset, 8) + << " Link: " << Sec->sh_link << " (" << SymTabName << ")\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) { + if (!Sec) + return; + + unsigned Entries = Sec->sh_size / sizeof(Elf_Versym); + printGNUVersionSectionProlog(OS, "Version symbols", Entries, Obj, Sec, + this->FileName); + + const uint8_t *VersymBuf = + reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); + const ELFDumper<ELFT> *Dumper = this->dumper(); + StringRef StrTable = Dumper->getDynamicStringTable(); + + // readelf prints 4 entries per line. + for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { + OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; + + for (uint64_t VersymIndex = 0; + (VersymIndex < 4) && (VersymIndex + VersymRow) < Entries; + ++VersymIndex) { + const Elf_Versym *Versym = + reinterpret_cast<const Elf_Versym *>(VersymBuf); + switch (Versym->vs_index) { + case 0: + OS << " 0 (*local*) "; + break; + case 1: + OS << " 1 (*global*) "; + break; + default: + OS << format("%4x%c", Versym->vs_index & VERSYM_VERSION, + Versym->vs_index & VERSYM_HIDDEN ? 'h' : ' '); + + bool IsDefault = true; + std::string VersionName = Dumper->getSymbolVersionByIndex( + StrTable, Versym->vs_index, IsDefault); + + if (!VersionName.empty()) + VersionName = "(" + VersionName + ")"; + else + VersionName = "(*invalid*)"; + OS << left_justify(VersionName, 13); + } + VersymBuf += sizeof(Elf_Versym); + } + OS << '\n'; + } + OS << '\n'; +} + +static std::string versionFlagToString(unsigned Flags) { + if (Flags == 0) + return "none"; + + std::string Ret; + auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { + if (!(Flags & Flag)) + return; + if (!Ret.empty()) + Ret += " | "; + Ret += Name; + Flags &= ~Flag; + }; + + AddFlag(VER_FLG_BASE, "BASE"); + AddFlag(VER_FLG_WEAK, "WEAK"); + AddFlag(VER_FLG_INFO, "INFO"); + AddFlag(~0, "<unknown>"); + return Ret; +} + +template <class ELFT> +void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) { + if (!Sec) + return; + + unsigned VerDefsNum = Sec->sh_info; + printGNUVersionSectionProlog(OS, "Version definition", VerDefsNum, Obj, Sec, + this->FileName); + + const Elf_Shdr *StrTabSec = + unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); + StringRef StringTable( + reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset), + (size_t)StrTabSec->sh_size); + + const uint8_t *VerdefBuf = + unwrapOrError(this->FileName, Obj->getSectionContents(Sec)).data(); + const uint8_t *Begin = VerdefBuf; + + while (VerDefsNum--) { + const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf); + OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u", + VerdefBuf - Begin, (unsigned)Verdef->vd_version, + versionFlagToString(Verdef->vd_flags).c_str(), + (unsigned)Verdef->vd_ndx, (unsigned)Verdef->vd_cnt); + + const uint8_t *VerdauxBuf = VerdefBuf + Verdef->vd_aux; + const Elf_Verdaux *Verdaux = + reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf); + OS << format(" Name: %s\n", + StringTable.drop_front(Verdaux->vda_name).data()); + + for (unsigned I = 1; I < Verdef->vd_cnt; ++I) { + VerdauxBuf += Verdaux->vda_next; + Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf); + OS << format(" 0x%04x: Parent %u: %s\n", VerdauxBuf - Begin, I, + StringTable.drop_front(Verdaux->vda_name).data()); + } + + VerdefBuf += Verdef->vd_next; + } + OS << '\n'; +} + +template <class ELFT> +void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) { + if (!Sec) + return; + + unsigned VerneedNum = Sec->sh_info; + printGNUVersionSectionProlog(OS, "Version needs", VerneedNum, Obj, Sec, + this->FileName); + + ArrayRef<uint8_t> SecData = + unwrapOrError(this->FileName, Obj->getSectionContents(Sec)); + + const Elf_Shdr *StrTabSec = + unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); + StringRef StringTable = { + reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset), + (size_t)StrTabSec->sh_size}; + + const uint8_t *VerneedBuf = SecData.data(); + for (unsigned I = 0; I < VerneedNum; ++I) { + const Elf_Verneed *Verneed = + reinterpret_cast<const Elf_Verneed *>(VerneedBuf); + + OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", + reinterpret_cast<const uint8_t *>(Verneed) - SecData.begin(), + (unsigned)Verneed->vn_version, + StringTable.drop_front(Verneed->vn_file).data(), + (unsigned)Verneed->vn_cnt); + + const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; + for (unsigned J = 0; J < Verneed->vn_cnt; ++J) { + const Elf_Vernaux *Vernaux = + reinterpret_cast<const Elf_Vernaux *>(VernauxBuf); + + OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", + reinterpret_cast<const uint8_t *>(Vernaux) - SecData.begin(), + StringTable.drop_front(Vernaux->vna_name).data(), + versionFlagToString(Vernaux->vna_flags).c_str(), + (unsigned)Vernaux->vna_other); + VernauxBuf += Vernaux->vna_next; + } + VerneedBuf += Verneed->vn_next; + } + OS << '\n'; +} + +// Hash histogram shows statistics of how efficient the hash was for the +// dynamic symbol table. The table shows number of hash buckets for different +// lengths of chains as absolute number and percentage of the total buckets. +// Additionally cumulative coverage of symbols for each set of buckets. +template <class ELFT> +void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) { + // Print histogram for .hash section + if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) { + size_t NBucket = HashTable->nbucket; + size_t NChain = HashTable->nchain; + ArrayRef<Elf_Word> Buckets = HashTable->buckets(); + ArrayRef<Elf_Word> Chains = HashTable->chains(); + size_t TotalSyms = 0; + // If hash table is correct, we have at least chains with 0 length + size_t MaxChain = 1; + size_t CumulativeNonZero = 0; + + if (NChain == 0 || NBucket == 0) + return; + + std::vector<size_t> ChainLen(NBucket, 0); + // Go over all buckets and and note chain lengths of each bucket (total + // unique chain lengths). + for (size_t B = 0; B < NBucket; B++) { + std::vector<bool> Visited(NChain); + for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { + if (C == ELF::STN_UNDEF) + break; + if (Visited[C]) { + reportWarning( + createError(".hash section is invalid: bucket " + Twine(C) + + ": a cycle was detected in the linked chain"), + this->FileName); + break; + } + Visited[C] = true; + if (MaxChain <= ++ChainLen[B]) + MaxChain++; + } + TotalSyms += ChainLen[B]; + } + + if (!TotalSyms) + return; + + std::vector<size_t> Count(MaxChain, 0) ; + // Count how long is the chain for each bucket + for (size_t B = 0; B < NBucket; B++) + ++Count[ChainLen[B]]; + // Print Number of buckets with each chain lengths and their cumulative + // coverage of the symbols + OS << "Histogram for bucket list length (total of " << NBucket + << " buckets)\n" + << " Length Number % of total Coverage\n"; + for (size_t I = 0; I < MaxChain; I++) { + CumulativeNonZero += Count[I] * I; + OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], + (Count[I] * 100.0) / NBucket, + (CumulativeNonZero * 100.0) / TotalSyms); + } + } + + // Print histogram for .gnu.hash section + if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) { + size_t NBucket = GnuHashTable->nbuckets; + ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); + unsigned NumSyms = this->dumper()->dynamic_symbols().size(); + if (!NumSyms) + return; + ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms); + size_t Symndx = GnuHashTable->symndx; + size_t TotalSyms = 0; + size_t MaxChain = 1; + size_t CumulativeNonZero = 0; + + if (Chains.empty() || NBucket == 0) + return; + + std::vector<size_t> ChainLen(NBucket, 0); + + for (size_t B = 0; B < NBucket; B++) { + if (!Buckets[B]) + continue; + size_t Len = 1; + for (size_t C = Buckets[B] - Symndx; + C < Chains.size() && (Chains[C] & 1) == 0; C++) + if (MaxChain < ++Len) + MaxChain++; + ChainLen[B] = Len; + TotalSyms += Len; + } + MaxChain++; + + if (!TotalSyms) + return; + + std::vector<size_t> Count(MaxChain, 0) ; + for (size_t B = 0; B < NBucket; B++) + ++Count[ChainLen[B]]; + // Print Number of buckets with each chain lengths and their cumulative + // coverage of the symbols + OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket + << " buckets)\n" + << " Length Number % of total Coverage\n"; + for (size_t I = 0; I <MaxChain; I++) { + CumulativeNonZero += Count[I] * I; + OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], + (Count[I] * 100.0) / NBucket, + (CumulativeNonZero * 100.0) / TotalSyms); + } + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) { + OS << "GNUStyle::printCGProfile not implemented\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) { + reportError(createError("--addrsig: not implemented"), this->FileName); +} + +static StringRef getGenericNoteTypeName(const uint32_t NT) { + static const struct { + uint32_t ID; + const char *Name; + } Notes[] = { + {ELF::NT_VERSION, "NT_VERSION (version)"}, + {ELF::NT_ARCH, "NT_ARCH (architecture)"}, + {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, + {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, + }; + + for (const auto &Note : Notes) + if (Note.ID == NT) + return Note.Name; + + return ""; +} + +static StringRef getCoreNoteTypeName(const uint32_t NT) { + static const struct { + uint32_t ID; + const char *Name; + } Notes[] = { + {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, + {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, + {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, + {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, + {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, + {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, + {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, + {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, + {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, + {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, + {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, + + {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, + {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, + {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, + {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, + {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, + {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, + {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, + {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, + {ELF::NT_PPC_TM_CFPR, + "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, + {ELF::NT_PPC_TM_CVMX, + "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, + {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, + {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, + {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, + {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, + {ELF::NT_PPC_TM_CDSCR, + "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, + + {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, + {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, + {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, + + {ELF::NT_S390_HIGH_GPRS, + "NT_S390_HIGH_GPRS (s390 upper register halves)"}, + {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, + {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, + {ELF::NT_S390_TODPREG, + "NT_S390_TODPREG (s390 TOD programmable register)"}, + {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, + {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, + {ELF::NT_S390_LAST_BREAK, + "NT_S390_LAST_BREAK (s390 last breaking event address)"}, + {ELF::NT_S390_SYSTEM_CALL, + "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, + {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, + {ELF::NT_S390_VXRS_LOW, + "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, + {ELF::NT_S390_VXRS_HIGH, + "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, + {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, + {ELF::NT_S390_GS_BC, + "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, + + {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, + {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, + {ELF::NT_ARM_HW_BREAK, + "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, + {ELF::NT_ARM_HW_WATCH, + "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, + + {ELF::NT_FILE, "NT_FILE (mapped files)"}, + {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, + {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, + }; + + for (const auto &Note : Notes) + if (Note.ID == NT) + return Note.Name; + + return ""; +} + +static std::string getGNUNoteTypeName(const uint32_t NT) { + static const struct { + uint32_t ID; + const char *Name; + } Notes[] = { + {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, + {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, + {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, + {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, + {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, + }; + + for (const auto &Note : Notes) + if (Note.ID == NT) + return std::string(Note.Name); + + std::string string; + raw_string_ostream OS(string); + OS << format("Unknown note type (0x%08x)", NT); + return OS.str(); +} + +static std::string getFreeBSDNoteTypeName(const uint32_t NT) { + static const struct { + uint32_t ID; + const char *Name; + } Notes[] = { + {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, + {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, + {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, + {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, + {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, + {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, + {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, + {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, + {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, + "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, + {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, + }; + + for (const auto &Note : Notes) + if (Note.ID == NT) + return std::string(Note.Name); + + std::string string; + raw_string_ostream OS(string); + OS << format("Unknown note type (0x%08x)", NT); + return OS.str(); +} + +static std::string getAMDNoteTypeName(const uint32_t NT) { + static const struct { + uint32_t ID; + const char *Name; + } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA, + "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"}, + {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"}, + {ELF::NT_AMD_AMDGPU_PAL_METADATA, + "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}}; + + for (const auto &Note : Notes) + if (Note.ID == NT) + return std::string(Note.Name); + + std::string string; + raw_string_ostream OS(string); + OS << format("Unknown note type (0x%08x)", NT); + return OS.str(); +} + +static std::string getAMDGPUNoteTypeName(const uint32_t NT) { + if (NT == ELF::NT_AMDGPU_METADATA) + return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)"); + + std::string string; + raw_string_ostream OS(string); + OS << format("Unknown note type (0x%08x)", NT); + return OS.str(); +} + +template <typename ELFT> +static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, + ArrayRef<uint8_t> Data) { + std::string str; + raw_string_ostream OS(str); + uint32_t PrData; + auto DumpBit = [&](uint32_t Flag, StringRef Name) { + if (PrData & Flag) { + PrData &= ~Flag; + OS << Name; + if (PrData) + OS << ", "; + } + }; + + switch (Type) { + default: + OS << format("<application-specific type 0x%x>", Type); + return OS.str(); + case GNU_PROPERTY_STACK_SIZE: { + OS << "stack size: "; + if (DataSize == sizeof(typename ELFT::uint)) + OS << formatv("{0:x}", + (uint64_t)(*(const typename ELFT::Addr *)Data.data())); + else + OS << format("<corrupt length: 0x%x>", DataSize); + return OS.str(); + } + case GNU_PROPERTY_NO_COPY_ON_PROTECTED: + OS << "no copy on protected"; + if (DataSize) + OS << format(" <corrupt length: 0x%x>", DataSize); + return OS.str(); + case GNU_PROPERTY_AARCH64_FEATURE_1_AND: + case GNU_PROPERTY_X86_FEATURE_1_AND: + OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " + : "x86 feature: "); + if (DataSize != 4) { + OS << format("<corrupt length: 0x%x>", DataSize); + return OS.str(); + } + PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); + if (PrData == 0) { + OS << "<None>"; + return OS.str(); + } + if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { + DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); + DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); + } else { + DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); + DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); + } + if (PrData) + OS << format("<unknown flags: 0x%x>", PrData); + return OS.str(); + case GNU_PROPERTY_X86_ISA_1_NEEDED: + case GNU_PROPERTY_X86_ISA_1_USED: + OS << "x86 ISA " + << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); + if (DataSize != 4) { + OS << format("<corrupt length: 0x%x>", DataSize); + return OS.str(); + } + PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); + if (PrData == 0) { + OS << "<None>"; + return OS.str(); + } + DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV"); + DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE"); + DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2"); + DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3"); + DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3"); + DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1"); + DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2"); + DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2"); + DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI"); + if (PrData) + OS << format("<unknown flags: 0x%x>", PrData); + return OS.str(); + break; + case GNU_PROPERTY_X86_FEATURE_2_NEEDED: + case GNU_PROPERTY_X86_FEATURE_2_USED: + OS << "x86 feature " + << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); + if (DataSize != 4) { + OS << format("<corrupt length: 0x%x>", DataSize); + return OS.str(); + } + PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); + if (PrData == 0) { + OS << "<None>"; + return OS.str(); + } + DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); + DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); + if (PrData) + OS << format("<unknown flags: 0x%x>", PrData); + return OS.str(); + } +} + +template <typename ELFT> +static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { + using Elf_Word = typename ELFT::Word; + + SmallVector<std::string, 4> Properties; + while (Arr.size() >= 8) { + uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); + uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); + Arr = Arr.drop_front(8); + + // Take padding size into account if present. + uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); + std::string str; + raw_string_ostream OS(str); + if (Arr.size() < PaddedSize) { + OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); + Properties.push_back(OS.str()); + break; + } + Properties.push_back( + getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); + Arr = Arr.drop_front(PaddedSize); + } + + if (!Arr.empty()) + Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); + + return Properties; +} + +struct GNUAbiTag { + std::string OSName; + std::string ABI; + bool IsValid; +}; + +template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { + typedef typename ELFT::Word Elf_Word; + + ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), + reinterpret_cast<const Elf_Word *>(Desc.end())); + + if (Words.size() < 4) + return {"", "", /*IsValid=*/false}; + + static const char *OSNames[] = { + "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", + }; + StringRef OSName = "Unknown"; + if (Words[0] < array_lengthof(OSNames)) + OSName = OSNames[Words[0]]; + uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; + std::string str; + raw_string_ostream ABI(str); + ABI << Major << "." << Minor << "." << Patch; + return {OSName, ABI.str(), /*IsValid=*/true}; +} + +static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { + std::string str; + raw_string_ostream OS(str); + for (const auto &B : Desc) + OS << format_hex_no_prefix(B, 2); + return OS.str(); +} + +static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) { + return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); +} + +template <typename ELFT> +static void printGNUNote(raw_ostream &OS, uint32_t NoteType, + ArrayRef<uint8_t> Desc) { + switch (NoteType) { + default: + return; + case ELF::NT_GNU_ABI_TAG: { + const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); + if (!AbiTag.IsValid) + OS << " <corrupt GNU_ABI_TAG>"; + else + OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; + break; + } + case ELF::NT_GNU_BUILD_ID: { + OS << " Build ID: " << getGNUBuildId(Desc); + break; + } + case ELF::NT_GNU_GOLD_VERSION: + OS << " Version: " << getGNUGoldVersion(Desc); + break; + case ELF::NT_GNU_PROPERTY_TYPE_0: + OS << " Properties:"; + for (const auto &Property : getGNUPropertyList<ELFT>(Desc)) + OS << " " << Property << "\n"; + break; + } + OS << '\n'; +} + +struct AMDNote { + std::string Type; + std::string Value; +}; + +template <typename ELFT> +static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { + switch (NoteType) { + default: + return {"", ""}; + case ELF::NT_AMD_AMDGPU_HSA_METADATA: + return { + "HSA Metadata", + std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; + case ELF::NT_AMD_AMDGPU_ISA: + return { + "ISA Version", + std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; + } +} + +struct AMDGPUNote { + std::string Type; + std::string Value; +}; + +template <typename ELFT> +static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { + switch (NoteType) { + default: + return {"", ""}; + case ELF::NT_AMDGPU_METADATA: { + auto MsgPackString = + StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); + msgpack::Document MsgPackDoc; + if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) + return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; + + AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); + if (!Verifier.verify(MsgPackDoc.getRoot())) + return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; + + std::string HSAMetadataString; + raw_string_ostream StrOS(HSAMetadataString); + MsgPackDoc.toYAML(StrOS); + + return {"AMDGPU Metadata", StrOS.str()}; + } + } +} + +struct CoreFileMapping { + uint64_t Start, End, Offset; + StringRef Filename; +}; + +struct CoreNote { + uint64_t PageSize; + std::vector<CoreFileMapping> Mappings; +}; + +static Expected<CoreNote> readCoreNote(DataExtractor Desc) { + // Expected format of the NT_FILE note description: + // 1. # of file mappings (call it N) + // 2. Page size + // 3. N (start, end, offset) triples + // 4. N packed filenames (null delimited) + // Each field is an Elf_Addr, except for filenames which are char* strings. + + CoreNote Ret; + const int Bytes = Desc.getAddressSize(); + + if (!Desc.isValidOffsetForAddress(2)) + return createStringError(object_error::parse_failed, + "malformed note: header too short"); + if (Desc.getData().back() != 0) + return createStringError(object_error::parse_failed, + "malformed note: not NUL terminated"); + + uint64_t DescOffset = 0; + uint64_t FileCount = Desc.getAddress(&DescOffset); + Ret.PageSize = Desc.getAddress(&DescOffset); + + if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) + return createStringError(object_error::parse_failed, + "malformed note: too short for number of files"); + + uint64_t FilenamesOffset = 0; + DataExtractor Filenames( + Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), + Desc.isLittleEndian(), Desc.getAddressSize()); + + Ret.Mappings.resize(FileCount); + for (CoreFileMapping &Mapping : Ret.Mappings) { + if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) + return createStringError(object_error::parse_failed, + "malformed note: too few filenames"); + Mapping.Start = Desc.getAddress(&DescOffset); + Mapping.End = Desc.getAddress(&DescOffset); + Mapping.Offset = Desc.getAddress(&DescOffset); + Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); + } + + return Ret; +} + +template <typename ELFT> +static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { + // Length of "0x<address>" string. + const int FieldWidth = ELFT::Is64Bits ? 18 : 10; + + OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; + OS << " " << right_justify("Start", FieldWidth) << " " + << right_justify("End", FieldWidth) << " " + << right_justify("Page Offset", FieldWidth) << '\n'; + for (const CoreFileMapping &Mapping : Note.Mappings) { + OS << " " << format_hex(Mapping.Start, FieldWidth) << " " + << format_hex(Mapping.End, FieldWidth) << " " + << format_hex(Mapping.Offset, FieldWidth) << "\n " + << Mapping.Filename << '\n'; + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) { + auto PrintHeader = [&](const typename ELFT::Off Offset, + const typename ELFT::Addr Size) { + OS << "Displaying notes found at file offset " << format_hex(Offset, 10) + << " with length " << format_hex(Size, 10) << ":\n" + << " Owner Data size \tDescription\n"; + }; + + auto ProcessNote = [&](const Elf_Note &Note) { + StringRef Name = Note.getName(); + ArrayRef<uint8_t> Descriptor = Note.getDesc(); + Elf_Word Type = Note.getType(); + + // Print the note owner/type. + OS << " " << left_justify(Name, 20) << ' ' + << format_hex(Descriptor.size(), 10) << '\t'; + if (Name == "GNU") { + OS << getGNUNoteTypeName(Type) << '\n'; + } else if (Name == "FreeBSD") { + OS << getFreeBSDNoteTypeName(Type) << '\n'; + } else if (Name == "AMD") { + OS << getAMDNoteTypeName(Type) << '\n'; + } else if (Name == "AMDGPU") { + OS << getAMDGPUNoteTypeName(Type) << '\n'; + } else { + StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE + ? getCoreNoteTypeName(Type) + : getGenericNoteTypeName(Type); + if (!NoteType.empty()) + OS << NoteType << '\n'; + else + OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; + } + + // Print the description, or fallback to printing raw bytes for unknown + // owners. + if (Name == "GNU") { + printGNUNote<ELFT>(OS, Type, Descriptor); + } else if (Name == "AMD") { + const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); + if (!N.Type.empty()) + OS << " " << N.Type << ":\n " << N.Value << '\n'; + } else if (Name == "AMDGPU") { + const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); + if (!N.Type.empty()) + OS << " " << N.Type << ":\n " << N.Value << '\n'; + } else if (Name == "CORE") { + if (Type == ELF::NT_FILE) { + DataExtractor DescExtractor(Descriptor, + ELFT::TargetEndianness == support::little, + sizeof(Elf_Addr)); + Expected<CoreNote> Note = readCoreNote(DescExtractor); + if (Note) + printCoreNote<ELFT>(OS, *Note); + else + reportWarning(Note.takeError(), this->FileName); + } + } else if (!Descriptor.empty()) { + OS << " description data:"; + for (uint8_t B : Descriptor) + OS << " " << format("%02x", B); + OS << '\n'; + } + }; + + ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); + if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) { + for (const auto &S : Sections) { + if (S.sh_type != SHT_NOTE) + continue; + PrintHeader(S.sh_offset, S.sh_size); + Error Err = Error::success(); + for (const auto &Note : Obj->notes(S, Err)) + ProcessNote(Note); + if (Err) + reportError(std::move(Err), this->FileName); + } + } else { + for (const auto &P : + unwrapOrError(this->FileName, Obj->program_headers())) { + if (P.p_type != PT_NOTE) + continue; + PrintHeader(P.p_offset, P.p_filesz); + Error Err = Error::success(); + for (const auto &Note : Obj->notes(P, Err)) + ProcessNote(Note); + if (Err) + reportError(std::move(Err), this->FileName); + } + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) { + OS << "printELFLinkerOptions not implemented!\n"; +} + +// Used for printing section names in places where possible errors can be +// ignored. +static StringRef getSectionName(const SectionRef &Sec) { + Expected<StringRef> NameOrErr = Sec.getName(); + if (NameOrErr) + return *NameOrErr; + consumeError(NameOrErr.takeError()); + return "<?>"; +} + +// Used for printing symbol names in places where possible errors can be +// ignored. +static std::string getSymbolName(const ELFSymbolRef &Sym) { + Expected<StringRef> NameOrErr = Sym.getName(); + if (NameOrErr) + return maybeDemangle(*NameOrErr); + consumeError(NameOrErr.takeError()); + return "<?>"; +} + +template <class ELFT> +void DumpStyle<ELFT>::printFunctionStackSize( + const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, SectionRef FunctionSec, + const StringRef SectionName, DataExtractor Data, uint64_t *Offset) { + // This function ignores potentially erroneous input, unless it is directly + // related to stack size reporting. + SymbolRef FuncSym; + for (const ELFSymbolRef &Symbol : Obj->symbols()) { + Expected<uint64_t> SymAddrOrErr = Symbol.getAddress(); + if (!SymAddrOrErr) { + consumeError(SymAddrOrErr.takeError()); + continue; + } + if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) { + // Check if the symbol is in the right section. + if (FunctionSec.containsSymbol(Symbol)) { + FuncSym = Symbol; + break; + } + } + } + + std::string FuncName = "?"; + // A valid SymbolRef has a non-null object file pointer. + if (FuncSym.BasicSymbolRef::getObject()) + FuncName = getSymbolName(FuncSym); + else + reportWarning( + createError("could not identify function symbol for stack size entry"), + Obj->getFileName()); + + // Extract the size. The expectation is that Offset is pointing to the right + // place, i.e. past the function address. + uint64_t PrevOffset = *Offset; + uint64_t StackSize = Data.getULEB128(Offset); + // getULEB128() does not advance Offset if it is not able to extract a valid + // integer. + if (*Offset == PrevOffset) + reportError( + createStringError(object_error::parse_failed, + "could not extract a valid stack size in section %s", + SectionName.data()), + Obj->getFileName()); + + printStackSizeEntry(StackSize, FuncName); +} + +template <class ELFT> +void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) { + OS.PadToColumn(2); + OS << format_decimal(Size, 11); + OS.PadToColumn(18); + OS << FuncName << "\n"; +} + +template <class ELFT> +void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj, + RelocationRef Reloc, + SectionRef FunctionSec, + const StringRef &StackSizeSectionName, + const RelocationResolver &Resolver, + DataExtractor Data) { + // This function ignores potentially erroneous input, unless it is directly + // related to stack size reporting. + object::symbol_iterator RelocSym = Reloc.getSymbol(); + uint64_t RelocSymValue = 0; + StringRef FileStr = Obj->getFileName(); + if (RelocSym != Obj->symbol_end()) { + // Ensure that the relocation symbol is in the function section, i.e. the + // section where the functions whose stack sizes we are reporting are + // located. + auto SectionOrErr = RelocSym->getSection(); + if (!SectionOrErr) { + reportWarning( + createError("cannot identify the section for relocation symbol '" + + getSymbolName(*RelocSym) + "'"), + FileStr); + consumeError(SectionOrErr.takeError()); + } else if (*SectionOrErr != FunctionSec) { + reportWarning(createError("relocation symbol '" + + getSymbolName(*RelocSym) + + "' is not in the expected section"), + FileStr); + // Pretend that the symbol is in the correct section and report its + // stack size anyway. + FunctionSec = **SectionOrErr; + } + + Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue(); + if (RelocSymValueOrErr) + RelocSymValue = *RelocSymValueOrErr; + else + consumeError(RelocSymValueOrErr.takeError()); + } + + uint64_t Offset = Reloc.getOffset(); + if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) + reportError( + createStringError(object_error::parse_failed, + "found invalid relocation offset into section %s " + "while trying to extract a stack size entry", + StackSizeSectionName.data()), + FileStr); + + uint64_t Addend = Data.getAddress(&Offset); + uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend); + this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName, + Data, &Offset); +} + +template <class ELFT> +void DumpStyle<ELFT>::printNonRelocatableStackSizes( + const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) { + // This function ignores potentially erroneous input, unless it is directly + // related to stack size reporting. + const ELFFile<ELFT> *EF = Obj->getELFFile(); + StringRef FileStr = Obj->getFileName(); + for (const SectionRef &Sec : Obj->sections()) { + StringRef SectionName = getSectionName(Sec); + if (SectionName != ".stack_sizes") + continue; + PrintHeader(); + const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl()); + ArrayRef<uint8_t> Contents = + unwrapOrError(this->FileName, EF->getSectionContents(ElfSec)); + DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr)); + // A .stack_sizes section header's sh_link field is supposed to point + // to the section that contains the functions whose stack sizes are + // described in it. + const Elf_Shdr *FunctionELFSec = + unwrapOrError(this->FileName, EF->getSection(ElfSec->sh_link)); + uint64_t Offset = 0; + while (Offset < Contents.size()) { + // The function address is followed by a ULEB representing the stack + // size. Check for an extra byte before we try to process the entry. + if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { + reportError( + createStringError( + object_error::parse_failed, + "section %s ended while trying to extract a stack size entry", + SectionName.data()), + FileStr); + } + uint64_t SymValue = Data.getAddress(&Offset); + printFunctionStackSize(Obj, SymValue, Obj->toSectionRef(FunctionELFSec), + SectionName, Data, &Offset); + } + } +} + +template <class ELFT> +void DumpStyle<ELFT>::printRelocatableStackSizes( + const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) { + const ELFFile<ELFT> *EF = Obj->getELFFile(); + + // Build a map between stack size sections and their corresponding relocation + // sections. + llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap; + const SectionRef NullSection{}; + + for (const SectionRef &Sec : Obj->sections()) { + StringRef SectionName; + if (Expected<StringRef> NameOrErr = Sec.getName()) + SectionName = *NameOrErr; + else + consumeError(NameOrErr.takeError()); + + // A stack size section that we haven't encountered yet is mapped to the + // null section until we find its corresponding relocation section. + if (SectionName == ".stack_sizes") + if (StackSizeRelocMap.count(Sec) == 0) { + StackSizeRelocMap[Sec] = NullSection; + continue; + } + + // Check relocation sections if they are relocating contents of a + // stack sizes section. + const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl()); + uint32_t SectionType = ElfSec->sh_type; + if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL) + continue; + + Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection(); + if (!RelSecOrErr) + reportError(createStringError(object_error::parse_failed, + "%s: failed to get a relocated section: %s", + SectionName.data(), + toString(RelSecOrErr.takeError()).c_str()), + Obj->getFileName()); + + const Elf_Shdr *ContentsSec = + Obj->getSection((*RelSecOrErr)->getRawDataRefImpl()); + Expected<StringRef> ContentsSectionNameOrErr = + EF->getSectionName(ContentsSec); + if (!ContentsSectionNameOrErr) { + consumeError(ContentsSectionNameOrErr.takeError()); + continue; + } + if (*ContentsSectionNameOrErr != ".stack_sizes") + continue; + // Insert a mapping from the stack sizes section to its relocation section. + StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec; + } + + for (const auto &StackSizeMapEntry : StackSizeRelocMap) { + PrintHeader(); + const SectionRef &StackSizesSec = StackSizeMapEntry.first; + const SectionRef &RelocSec = StackSizeMapEntry.second; + + // Warn about stack size sections without a relocation section. + StringRef StackSizeSectionName = getSectionName(StackSizesSec); + if (RelocSec == NullSection) { + reportWarning(createError("section " + StackSizeSectionName + + " does not have a corresponding " + "relocation section"), + Obj->getFileName()); + continue; + } + + // A .stack_sizes section header's sh_link field is supposed to point + // to the section that contains the functions whose stack sizes are + // described in it. + const Elf_Shdr *StackSizesELFSec = + Obj->getSection(StackSizesSec.getRawDataRefImpl()); + const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError( + this->FileName, EF->getSection(StackSizesELFSec->sh_link))); + + bool (*IsSupportedFn)(uint64_t); + RelocationResolver Resolver; + std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj); + auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents()); + DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr)); + for (const RelocationRef &Reloc : RelocSec.relocations()) { + if (!IsSupportedFn || !IsSupportedFn(Reloc.getType())) + reportError(createStringError( + object_error::parse_failed, + "unsupported relocation type in section %s: %s", + getSectionName(RelocSec).data(), + EF->getRelocationTypeName(Reloc.getType()).data()), + Obj->getFileName()); + this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName, + Resolver, Data); + } + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) { + bool HeaderHasBeenPrinted = false; + auto PrintHeader = [&]() { + if (HeaderHasBeenPrinted) + return; + OS << "\nStack Sizes:\n"; + OS.PadToColumn(9); + OS << "Size"; + OS.PadToColumn(18); + OS << "Function\n"; + HeaderHasBeenPrinted = true; + }; + + // For non-relocatable objects, look directly for sections whose name starts + // with .stack_sizes and process the contents. + if (Obj->isRelocatableObject()) + this->printRelocatableStackSizes(Obj, PrintHeader); + else + this->printNonRelocatableStackSizes(Obj, PrintHeader); +} + +template <class ELFT> +void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { + size_t Bias = ELFT::Is64Bits ? 8 : 0; + auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { + OS.PadToColumn(2); + OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); + OS.PadToColumn(11 + Bias); + OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; + OS.PadToColumn(22 + Bias); + OS << format_hex_no_prefix(*E, 8 + Bias); + OS.PadToColumn(31 + 2 * Bias); + OS << Purpose << "\n"; + }; + + OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); + OS << " Canonical gp value: " + << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; + + OS << " Reserved entries:\n"; + if (ELFT::Is64Bits) + OS << " Address Access Initial Purpose\n"; + else + OS << " Address Access Initial Purpose\n"; + PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); + if (Parser.getGotModulePointer()) + PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); + + if (!Parser.getLocalEntries().empty()) { + OS << "\n"; + OS << " Local entries:\n"; + if (ELFT::Is64Bits) + OS << " Address Access Initial\n"; + else + OS << " Address Access Initial\n"; + for (auto &E : Parser.getLocalEntries()) + PrintEntry(&E, ""); + } + + if (Parser.IsStatic) + return; + + if (!Parser.getGlobalEntries().empty()) { + OS << "\n"; + OS << " Global entries:\n"; + if (ELFT::Is64Bits) + OS << " Address Access Initial Sym.Val." + << " Type Ndx Name\n"; + else + OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; + for (auto &E : Parser.getGlobalEntries()) { + const Elf_Sym *Sym = Parser.getGotSym(&E); + std::string SymName = this->dumper()->getFullSymbolName( + Sym, this->dumper()->getDynamicStringTable(), false); + + OS.PadToColumn(2); + OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); + OS.PadToColumn(11 + Bias); + OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; + OS.PadToColumn(22 + Bias); + OS << to_string(format_hex_no_prefix(E, 8 + Bias)); + OS.PadToColumn(31 + 2 * Bias); + OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias)); + OS.PadToColumn(40 + 3 * Bias); + OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes)); + OS.PadToColumn(48 + 3 * Bias); + OS << getSymbolSectionNdx(Parser.Obj, Sym, + this->dumper()->dynamic_symbols().begin()); + OS.PadToColumn(52 + 3 * Bias); + OS << SymName << "\n"; + } + } + + if (!Parser.getOtherEntries().empty()) + OS << "\n Number of TLS and multi-GOT entries " + << Parser.getOtherEntries().size() << "\n"; +} + +template <class ELFT> +void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { + size_t Bias = ELFT::Is64Bits ? 8 : 0; + auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { + OS.PadToColumn(2); + OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); + OS.PadToColumn(11 + Bias); + OS << format_hex_no_prefix(*E, 8 + Bias); + OS.PadToColumn(20 + 2 * Bias); + OS << Purpose << "\n"; + }; + + OS << "PLT GOT:\n\n"; + + OS << " Reserved entries:\n"; + OS << " Address Initial Purpose\n"; + PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); + if (Parser.getPltModulePointer()) + PrintEntry(Parser.getPltModulePointer(), "Module pointer"); + + if (!Parser.getPltEntries().empty()) { + OS << "\n"; + OS << " Entries:\n"; + OS << " Address Initial Sym.Val. Type Ndx Name\n"; + for (auto &E : Parser.getPltEntries()) { + const Elf_Sym *Sym = Parser.getPltSym(&E); + std::string SymName = this->dumper()->getFullSymbolName( + Sym, this->dumper()->getDynamicStringTable(), false); + + OS.PadToColumn(2); + OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); + OS.PadToColumn(11 + Bias); + OS << to_string(format_hex_no_prefix(E, 8 + Bias)); + OS.PadToColumn(20 + 2 * Bias); + OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias)); + OS.PadToColumn(29 + 3 * Bias); + OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes)); + OS.PadToColumn(37 + 3 * Bias); + OS << getSymbolSectionNdx(Parser.Obj, Sym, + this->dumper()->dynamic_symbols().begin()); + OS.PadToColumn(41 + 3 * Bias); + OS << SymName << "\n"; + } + } +} + +template <class ELFT> +void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + const Elf_Shdr *Shdr = + findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags"); + if (!Shdr) + return; + + ArrayRef<uint8_t> Sec = + unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); + if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) + reportError(createError(".MIPS.abiflags section has a wrong size"), + ObjF->getFileName()); + + auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data()); + + OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; + OS << "ISA: MIPS" << int(Flags->isa_level); + if (Flags->isa_rev > 1) + OS << "r" << int(Flags->isa_rev); + OS << "\n"; + OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; + OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; + OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; + OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) + << "\n"; + OS << "ISA Extension: " + << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n"; + if (Flags->ases == 0) + OS << "ASEs: None\n"; + else + // FIXME: Print each flag on a separate line. + OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags)) + << "\n"; + OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; + OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; + OS << "\n"; +} + +template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) { + const Elf_Ehdr *E = Obj->getHeader(); + { + DictScope D(W, "ElfHeader"); + { + DictScope D(W, "Ident"); + W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4)); + W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); + W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA], + makeArrayRef(ElfDataEncoding)); + W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]); + + auto OSABI = makeArrayRef(ElfOSABI); + if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && + E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { + switch (E->e_machine) { + case ELF::EM_AMDGPU: + OSABI = makeArrayRef(AMDGPUElfOSABI); + break; + case ELF::EM_ARM: + OSABI = makeArrayRef(ARMElfOSABI); + break; + case ELF::EM_TI_C6000: + OSABI = makeArrayRef(C6000ElfOSABI); + break; + } + } + W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI); + W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]); + W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD)); + } + + W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType)); + W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType)); + W.printNumber("Version", E->e_version); + W.printHex("Entry", E->e_entry); + W.printHex("ProgramHeaderOffset", E->e_phoff); + W.printHex("SectionHeaderOffset", E->e_shoff); + if (E->e_machine == EM_MIPS) + W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags), + unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), + unsigned(ELF::EF_MIPS_MACH)); + else if (E->e_machine == EM_AMDGPU) + W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags), + unsigned(ELF::EF_AMDGPU_MACH)); + else if (E->e_machine == EM_RISCV) + W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags)); + else + W.printFlags("Flags", E->e_flags); + W.printNumber("HeaderSize", E->e_ehsize); + W.printNumber("ProgramHeaderEntrySize", E->e_phentsize); + W.printNumber("ProgramHeaderCount", E->e_phnum); + W.printNumber("SectionHeaderEntrySize", E->e_shentsize); + W.printString("SectionHeaderCount", + getSectionHeadersNumString(Obj, this->FileName)); + W.printString("StringTableSectionIndex", + getSectionHeaderTableIndexString(Obj, this->FileName)); + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) { + DictScope Lists(W, "Groups"); + std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName); + DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); + for (const GroupSection &G : V) { + DictScope D(W, "Group"); + W.printNumber("Name", G.Name, G.ShName); + W.printNumber("Index", G.Index); + W.printNumber("Link", G.Link); + W.printNumber("Info", G.Info); + W.printHex("Type", getGroupType(G.Type), G.Type); + W.startLine() << "Signature: " << G.Signature << "\n"; + + ListScope L(W, "Section(s) in group"); + for (const GroupMember &GM : G.Members) { + const GroupSection *MainGroup = Map[GM.Index]; + if (MainGroup != &G) { + W.flush(); + errs() << "Error: " << GM.Name << " (" << GM.Index + << ") in a group " + G.Name + " (" << G.Index + << ") is already in a group " + MainGroup->Name + " (" + << MainGroup->Index << ")\n"; + errs().flush(); + continue; + } + W.startLine() << GM.Name << " (" << GM.Index << ")\n"; + } + } + + if (V.empty()) + W.startLine() << "There are no group sections in the file.\n"; +} + +template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) { + ListScope D(W, "Relocations"); + + int SectionNumber = -1; + for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { + ++SectionNumber; + + if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA && + Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL && + Sec.sh_type != ELF::SHT_ANDROID_RELA && + Sec.sh_type != ELF::SHT_ANDROID_RELR) + continue; + + StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec)); + + W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n"; + W.indent(); + + printRelocations(&Sec, Obj); + + W.unindent(); + W.startLine() << "}\n"; + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) { + const Elf_Shdr *SymTab = + unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); + + switch (Sec->sh_type) { + case ELF::SHT_REL: + for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) { + Elf_Rela Rela; + Rela.r_offset = R.r_offset; + Rela.r_info = R.r_info; + Rela.r_addend = 0; + printRelocation(Obj, Rela, SymTab); + } + break; + case ELF::SHT_RELA: + for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec))) + printRelocation(Obj, R, SymTab); + break; + case ELF::SHT_RELR: + case ELF::SHT_ANDROID_RELR: { + Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec)); + if (opts::RawRelr) { + for (const Elf_Relr &R : Relrs) + W.startLine() << W.hex(R) << "\n"; + } else { + std::vector<Elf_Rela> RelrRelas = + unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); + for (const Elf_Rela &R : RelrRelas) + printRelocation(Obj, R, SymTab); + } + break; + } + case ELF::SHT_ANDROID_REL: + case ELF::SHT_ANDROID_RELA: + for (const Elf_Rela &R : + unwrapOrError(this->FileName, Obj->android_relas(Sec))) + printRelocation(Obj, R, SymTab); + break; + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel, + const Elf_Shdr *SymTab) { + SmallString<32> RelocName; + Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); + std::string TargetName; + const Elf_Sym *Sym = + unwrapOrError(this->FileName, Obj->getRelocationSymbol(&Rel, SymTab)); + if (Sym && Sym->getType() == ELF::STT_SECTION) { + const Elf_Shdr *Sec = unwrapOrError( + this->FileName, + Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable())); + TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec)); + } else if (Sym) { + StringRef StrTable = + unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab)); + TargetName = this->dumper()->getFullSymbolName( + Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */); + } + + if (opts::ExpandRelocs) { + DictScope Group(W, "Relocation"); + W.printHex("Offset", Rel.r_offset); + W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); + W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-", + Rel.getSymbol(Obj->isMips64EL())); + W.printHex("Addend", Rel.r_addend); + } else { + raw_ostream &OS = W.startLine(); + OS << W.hex(Rel.r_offset) << " " << RelocName << " " + << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend) + << "\n"; + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) { + ListScope SectionsD(W, "Sections"); + + int SectionIndex = -1; + ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); + const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject(); + for (const Elf_Shdr &Sec : Sections) { + StringRef Name = unwrapOrError( + ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler)); + DictScope SectionD(W, "Section"); + W.printNumber("Index", ++SectionIndex); + W.printNumber("Name", Name, Sec.sh_name); + W.printHex( + "Type", + object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type), + Sec.sh_type); + std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags), + std::end(ElfSectionFlags)); + switch (Obj->getHeader()->e_machine) { + case EM_ARM: + SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags), + std::end(ElfARMSectionFlags)); + break; + case EM_HEXAGON: + SectionFlags.insert(SectionFlags.end(), + std::begin(ElfHexagonSectionFlags), + std::end(ElfHexagonSectionFlags)); + break; + case EM_MIPS: + SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags), + std::end(ElfMipsSectionFlags)); + break; + case EM_X86_64: + SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags), + std::end(ElfX86_64SectionFlags)); + break; + case EM_XCORE: + SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags), + std::end(ElfXCoreSectionFlags)); + break; + default: + // Nothing to do. + break; + } + W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags)); + W.printHex("Address", Sec.sh_addr); + W.printHex("Offset", Sec.sh_offset); + W.printNumber("Size", Sec.sh_size); + W.printNumber("Link", Sec.sh_link); + W.printNumber("Info", Sec.sh_info); + W.printNumber("AddressAlignment", Sec.sh_addralign); + W.printNumber("EntrySize", Sec.sh_entsize); + + if (opts::SectionRelocations) { + ListScope D(W, "Relocations"); + printRelocations(&Sec, Obj); + } + + if (opts::SectionSymbols) { + ListScope D(W, "Symbols"); + const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec(); + StringRef StrTable = + unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab)); + + for (const Elf_Sym &Sym : + unwrapOrError(this->FileName, Obj->symbols(Symtab))) { + const Elf_Shdr *SymSec = unwrapOrError( + this->FileName, + Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable())); + if (SymSec == &Sec) + printSymbol( + Obj, &Sym, + unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(), + StrTable, false, false); + } + } + + if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { + ArrayRef<uint8_t> Data = + unwrapOrError(this->FileName, Obj->getSectionContents(&Sec)); + W.printBinaryBlock( + "SectionData", + StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); + } + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, + const Elf_Sym *First, StringRef StrTable, + bool IsDynamic, + bool /*NonVisibilityBitsUsed*/) { + unsigned SectionIndex = 0; + StringRef SectionName; + this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex); + std::string FullSymbolName = + this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic); + unsigned char SymbolType = Symbol->getType(); + + DictScope D(W, "Symbol"); + W.printNumber("Name", FullSymbolName, Symbol->st_name); + W.printHex("Value", Symbol->st_value); + W.printNumber("Size", Symbol->st_size); + W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); + if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && + SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) + W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); + else + W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); + if (Symbol->st_other == 0) + // Usually st_other flag is zero. Do not pollute the output + // by flags enumeration in that case. + W.printNumber("Other", 0); + else { + std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), + std::end(ElfSymOtherFlags)); + if (Obj->getHeader()->e_machine == EM_MIPS) { + // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 + // flag overlapped with other ST_MIPS_xxx flags. So consider both + // cases separately. + if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) + SymOtherFlags.insert(SymOtherFlags.end(), + std::begin(ElfMips16SymOtherFlags), + std::end(ElfMips16SymOtherFlags)); + else + SymOtherFlags.insert(SymOtherFlags.end(), + std::begin(ElfMipsSymOtherFlags), + std::end(ElfMipsSymOtherFlags)); + } + W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u); + } + W.printHex("Section", SectionName, SectionIndex); +} + +template <class ELFT> +void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols, + bool PrintDynamicSymbols) { + if (PrintSymbols) + printSymbols(Obj); + if (PrintDynamicSymbols) + printDynamicSymbols(Obj); +} + +template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) { + ListScope Group(W, "Symbols"); + this->dumper()->printSymbolsHelper(false); +} + +template <class ELFT> +void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) { + ListScope Group(W, "DynamicSymbols"); + this->dumper()->printSymbolsHelper(true); +} + +template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) { + Elf_Dyn_Range Table = this->dumper()->dynamic_table(); + if (Table.empty()) + return; + + raw_ostream &OS = W.getOStream(); + W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; + + bool Is64 = ELFT::Is64Bits; + if (Is64) + W.startLine() << " Tag Type Name/Value\n"; + else + W.startLine() << " Tag Type Name/Value\n"; + for (auto Entry : Table) { + uintX_t Tag = Entry.getTag(); + W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " " + << format("%-21s", + getTypeString(Obj->getHeader()->e_machine, Tag)); + this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal()); + OS << "\n"; + } + + W.startLine() << "]\n"; +} + +template <class ELFT> +void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) { + const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion(); + const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion(); + const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion(); + const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion(); + if (DynRelRegion.Size && DynRelaRegion.Size) + report_fatal_error("There are both REL and RELA dynamic relocations"); + W.startLine() << "Dynamic Relocations {\n"; + W.indent(); + if (DynRelaRegion.Size > 0) + for (const Elf_Rela &Rela : this->dumper()->dyn_relas()) + printDynamicRelocation(Obj, Rela); + else + for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) { + Elf_Rela Rela; + Rela.r_offset = Rel.r_offset; + Rela.r_info = Rel.r_info; + Rela.r_addend = 0; + printDynamicRelocation(Obj, Rela); + } + if (DynRelrRegion.Size > 0) { + Elf_Relr_Range Relrs = this->dumper()->dyn_relrs(); + std::vector<Elf_Rela> RelrRelas = + unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); + for (const Elf_Rela &Rela : RelrRelas) + printDynamicRelocation(Obj, Rela); + } + if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) + for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>()) + printDynamicRelocation(Obj, Rela); + else + for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) { + Elf_Rela Rela; + Rela.r_offset = Rel.r_offset; + Rela.r_info = Rel.r_info; + Rela.r_addend = 0; + printDynamicRelocation(Obj, Rela); + } + W.unindent(); + W.startLine() << "}\n"; +} + +template <class ELFT> +void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) { + SmallString<32> RelocName; + Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); + std::string SymbolName = + getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name; + + if (opts::ExpandRelocs) { + DictScope Group(W, "Relocation"); + W.printHex("Offset", Rel.r_offset); + W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); + W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-"); + W.printHex("Addend", Rel.r_addend); + } else { + raw_ostream &OS = W.startLine(); + OS << W.hex(Rel.r_offset) << " " << RelocName << " " + << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend) + << "\n"; + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printProgramHeaders( + const ELFO *Obj, bool PrintProgramHeaders, + cl::boolOrDefault PrintSectionMapping) { + if (PrintProgramHeaders) + printProgramHeaders(Obj); + if (PrintSectionMapping == cl::BOU_TRUE) + printSectionMapping(Obj); +} + +template <class ELFT> +void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) { + ListScope L(W, "ProgramHeaders"); + + for (const Elf_Phdr &Phdr : + unwrapOrError(this->FileName, Obj->program_headers())) { + DictScope P(W, "ProgramHeader"); + W.printHex("Type", + getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type), + Phdr.p_type); + W.printHex("Offset", Phdr.p_offset); + W.printHex("VirtualAddress", Phdr.p_vaddr); + W.printHex("PhysicalAddress", Phdr.p_paddr); + W.printNumber("FileSize", Phdr.p_filesz); + W.printNumber("MemSize", Phdr.p_memsz); + W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); + W.printNumber("Alignment", Phdr.p_align); + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) { + ListScope SS(W, "VersionSymbols"); + if (!Sec) + return; + + const uint8_t *VersymBuf = + reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); + const ELFDumper<ELFT> *Dumper = this->dumper(); + StringRef StrTable = Dumper->getDynamicStringTable(); + + // Same number of entries in the dynamic symbol table (DT_SYMTAB). + for (const Elf_Sym &Sym : Dumper->dynamic_symbols()) { + DictScope S(W, "Symbol"); + const Elf_Versym *Versym = reinterpret_cast<const Elf_Versym *>(VersymBuf); + std::string FullSymbolName = + Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */); + W.printNumber("Version", Versym->vs_index & VERSYM_VERSION); + W.printString("Name", FullSymbolName); + VersymBuf += sizeof(Elf_Versym); + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) { + ListScope SD(W, "VersionDefinitions"); + if (!Sec) + return; + + const uint8_t *SecStartAddress = + reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); + const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size; + const uint8_t *VerdefBuf = SecStartAddress; + const Elf_Shdr *StrTab = + unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); + + unsigned VerDefsNum = Sec->sh_info; + while (VerDefsNum--) { + if (VerdefBuf + sizeof(Elf_Verdef) > SecEndAddress) + // FIXME: report_fatal_error is not a good way to report error. We should + // emit a parsing error here and below. + report_fatal_error("invalid offset in the section"); + + const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf); + DictScope Def(W, "Definition"); + W.printNumber("Version", Verdef->vd_version); + W.printEnum("Flags", Verdef->vd_flags, makeArrayRef(SymVersionFlags)); + W.printNumber("Index", Verdef->vd_ndx); + W.printNumber("Hash", Verdef->vd_hash); + W.printString("Name", StringRef(reinterpret_cast<const char *>( + Obj->base() + StrTab->sh_offset + + Verdef->getAux()->vda_name))); + if (!Verdef->vd_cnt) + report_fatal_error("at least one definition string must exist"); + if (Verdef->vd_cnt > 2) + report_fatal_error("more than one predecessor is not expected"); + + if (Verdef->vd_cnt == 2) { + const uint8_t *VerdauxBuf = + VerdefBuf + Verdef->vd_aux + Verdef->getAux()->vda_next; + const Elf_Verdaux *Verdaux = + reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf); + W.printString("Predecessor", + StringRef(reinterpret_cast<const char *>( + Obj->base() + StrTab->sh_offset + Verdaux->vda_name))); + } + VerdefBuf += Verdef->vd_next; + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj, + const Elf_Shdr *Sec) { + ListScope SD(W, "VersionRequirements"); + if (!Sec) + return; + + const uint8_t *SecData = + reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); + const Elf_Shdr *StrTab = + unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); + + const uint8_t *VerneedBuf = SecData; + unsigned VerneedNum = Sec->sh_info; + for (unsigned I = 0; I < VerneedNum; ++I) { + const Elf_Verneed *Verneed = + reinterpret_cast<const Elf_Verneed *>(VerneedBuf); + DictScope Entry(W, "Dependency"); + W.printNumber("Version", Verneed->vn_version); + W.printNumber("Count", Verneed->vn_cnt); + W.printString("FileName", + StringRef(reinterpret_cast<const char *>( + Obj->base() + StrTab->sh_offset + Verneed->vn_file))); + + const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; + ListScope L(W, "Entries"); + for (unsigned J = 0; J < Verneed->vn_cnt; ++J) { + const Elf_Vernaux *Vernaux = + reinterpret_cast<const Elf_Vernaux *>(VernauxBuf); + DictScope Entry(W, "Entry"); + W.printNumber("Hash", Vernaux->vna_hash); + W.printEnum("Flags", Vernaux->vna_flags, makeArrayRef(SymVersionFlags)); + W.printNumber("Index", Vernaux->vna_other); + W.printString("Name", + StringRef(reinterpret_cast<const char *>( + Obj->base() + StrTab->sh_offset + Vernaux->vna_name))); + VernauxBuf += Vernaux->vna_next; + } + VerneedBuf += Verneed->vn_next; + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) { + W.startLine() << "Hash Histogram not implemented!\n"; +} + +template <class ELFT> +void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) { + ListScope L(W, "CGProfile"); + if (!this->dumper()->getDotCGProfileSec()) + return; + auto CGProfile = unwrapOrError( + this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>( + this->dumper()->getDotCGProfileSec())); + for (const Elf_CGProfile &CGPE : CGProfile) { + DictScope D(W, "CGProfileEntry"); + W.printNumber( + "From", + unwrapOrError(this->FileName, + this->dumper()->getStaticSymbolName(CGPE.cgp_from)), + CGPE.cgp_from); + W.printNumber( + "To", + unwrapOrError(this->FileName, + this->dumper()->getStaticSymbolName(CGPE.cgp_to)), + CGPE.cgp_to); + W.printNumber("Weight", CGPE.cgp_weight); + } +} + +static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { + std::vector<uint64_t> Ret; + const uint8_t *Cur = Data.begin(); + const uint8_t *End = Data.end(); + while (Cur != End) { + unsigned Size; + const char *Err; + Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); + if (Err) + return createError(Err); + Cur += Size; + } + return Ret; +} + +template <class ELFT> +void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) { + ListScope L(W, "Addrsig"); + if (!this->dumper()->getDotAddrsigSec()) + return; + ArrayRef<uint8_t> Contents = unwrapOrError( + this->FileName, + Obj->getSectionContents(this->dumper()->getDotAddrsigSec())); + Expected<std::vector<uint64_t>> V = toULEB128Array(Contents); + if (!V) { + reportWarning(V.takeError(), this->FileName); + return; + } + + for (uint64_t Sym : *V) { + Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym); + if (NameOrErr) { + W.printNumber("Sym", *NameOrErr, Sym); + continue; + } + reportWarning(NameOrErr.takeError(), this->FileName); + W.printNumber("Sym", "<?>", Sym); + } +} + +template <typename ELFT> +static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, + ScopedPrinter &W) { + switch (NoteType) { + default: + return; + case ELF::NT_GNU_ABI_TAG: { + const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); + if (!AbiTag.IsValid) { + W.printString("ABI", "<corrupt GNU_ABI_TAG>"); + } else { + W.printString("OS", AbiTag.OSName); + W.printString("ABI", AbiTag.ABI); + } + break; + } + case ELF::NT_GNU_BUILD_ID: { + W.printString("Build ID", getGNUBuildId(Desc)); + break; + } + case ELF::NT_GNU_GOLD_VERSION: + W.printString("Version", getGNUGoldVersion(Desc)); + break; + case ELF::NT_GNU_PROPERTY_TYPE_0: + ListScope D(W, "Property"); + for (const auto &Property : getGNUPropertyList<ELFT>(Desc)) + W.printString(Property); + break; + } +} + +static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { + W.printNumber("Page Size", Note.PageSize); + for (const CoreFileMapping &Mapping : Note.Mappings) { + ListScope D(W, "Mapping"); + W.printHex("Start", Mapping.Start); + W.printHex("End", Mapping.End); + W.printHex("Offset", Mapping.Offset); + W.printString("Filename", Mapping.Filename); + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) { + ListScope L(W, "Notes"); + + auto PrintHeader = [&](const typename ELFT::Off Offset, + const typename ELFT::Addr Size) { + W.printHex("Offset", Offset); + W.printHex("Size", Size); + }; + + auto ProcessNote = [&](const Elf_Note &Note) { + DictScope D2(W, "Note"); + StringRef Name = Note.getName(); + ArrayRef<uint8_t> Descriptor = Note.getDesc(); + Elf_Word Type = Note.getType(); + + // Print the note owner/type. + W.printString("Owner", Name); + W.printHex("Data size", Descriptor.size()); + if (Name == "GNU") { + W.printString("Type", getGNUNoteTypeName(Type)); + } else if (Name == "FreeBSD") { + W.printString("Type", getFreeBSDNoteTypeName(Type)); + } else if (Name == "AMD") { + W.printString("Type", getAMDNoteTypeName(Type)); + } else if (Name == "AMDGPU") { + W.printString("Type", getAMDGPUNoteTypeName(Type)); + } else { + StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE + ? getCoreNoteTypeName(Type) + : getGenericNoteTypeName(Type); + if (!NoteType.empty()) + W.printString("Type", NoteType); + else + W.printString("Type", + "Unknown (" + to_string(format_hex(Type, 10)) + ")"); + } + + // Print the description, or fallback to printing raw bytes for unknown + // owners. + if (Name == "GNU") { + printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W); + } else if (Name == "AMD") { + const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); + if (!N.Type.empty()) + W.printString(N.Type, N.Value); + } else if (Name == "AMDGPU") { + const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); + if (!N.Type.empty()) + W.printString(N.Type, N.Value); + } else if (Name == "CORE") { + if (Type == ELF::NT_FILE) { + DataExtractor DescExtractor(Descriptor, + ELFT::TargetEndianness == support::little, + sizeof(Elf_Addr)); + Expected<CoreNote> Note = readCoreNote(DescExtractor); + if (Note) + printCoreNoteLLVMStyle(*Note, W); + else + reportWarning(Note.takeError(), this->FileName); + } + } else if (!Descriptor.empty()) { + W.printBinaryBlock("Description data", Descriptor); + } + }; + + ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); + if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) { + for (const auto &S : Sections) { + if (S.sh_type != SHT_NOTE) + continue; + DictScope D(W, "NoteSection"); + PrintHeader(S.sh_offset, S.sh_size); + Error Err = Error::success(); + for (const auto &Note : Obj->notes(S, Err)) + ProcessNote(Note); + if (Err) + reportError(std::move(Err), this->FileName); + } + } else { + for (const auto &P : + unwrapOrError(this->FileName, Obj->program_headers())) { + if (P.p_type != PT_NOTE) + continue; + DictScope D(W, "NoteSection"); + PrintHeader(P.p_offset, P.p_filesz); + Error Err = Error::success(); + for (const auto &Note : Obj->notes(P, Err)) + ProcessNote(Note); + if (Err) + reportError(std::move(Err), this->FileName); + } + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) { + ListScope L(W, "LinkerOptions"); + + for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) { + if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) + continue; + + ArrayRef<uint8_t> Contents = + unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr)); + for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) { + StringRef Key = StringRef(reinterpret_cast<const char *>(P)); + StringRef Value = + StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1); + + W.printString(Key, Value); + + P = P + Key.size() + Value.size() + 2; + } + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) { + ListScope L(W, "StackSizes"); + if (Obj->isRelocatableObject()) + this->printRelocatableStackSizes(Obj, []() {}); + else + this->printNonRelocatableStackSizes(Obj, []() {}); +} + +template <class ELFT> +void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) { + DictScope D(W, "Entry"); + W.printString("Function", FuncName); + W.printHex("Size", Size); +} + +template <class ELFT> +void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { + auto PrintEntry = [&](const Elf_Addr *E) { + W.printHex("Address", Parser.getGotAddress(E)); + W.printNumber("Access", Parser.getGotOffset(E)); + W.printHex("Initial", *E); + }; + + DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); + + W.printHex("Canonical gp value", Parser.getGp()); + { + ListScope RS(W, "Reserved entries"); + { + DictScope D(W, "Entry"); + PrintEntry(Parser.getGotLazyResolver()); + W.printString("Purpose", StringRef("Lazy resolver")); + } + + if (Parser.getGotModulePointer()) { + DictScope D(W, "Entry"); + PrintEntry(Parser.getGotModulePointer()); + W.printString("Purpose", StringRef("Module pointer (GNU extension)")); + } + } + { + ListScope LS(W, "Local entries"); + for (auto &E : Parser.getLocalEntries()) { + DictScope D(W, "Entry"); + PrintEntry(&E); + } + } + + if (Parser.IsStatic) + return; + + { + ListScope GS(W, "Global entries"); + for (auto &E : Parser.getGlobalEntries()) { + DictScope D(W, "Entry"); + + PrintEntry(&E); + + const Elf_Sym *Sym = Parser.getGotSym(&E); + W.printHex("Value", Sym->st_value); + W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); + + unsigned SectionIndex = 0; + StringRef SectionName; + this->dumper()->getSectionNameIndex( + Sym, this->dumper()->dynamic_symbols().begin(), SectionName, + SectionIndex); + W.printHex("Section", SectionName, SectionIndex); + + std::string SymName = this->dumper()->getFullSymbolName( + Sym, this->dumper()->getDynamicStringTable(), true); + W.printNumber("Name", SymName, Sym->st_name); + } + } + + W.printNumber("Number of TLS and multi-GOT entries", + uint64_t(Parser.getOtherEntries().size())); +} + +template <class ELFT> +void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { + auto PrintEntry = [&](const Elf_Addr *E) { + W.printHex("Address", Parser.getPltAddress(E)); + W.printHex("Initial", *E); + }; + + DictScope GS(W, "PLT GOT"); + + { + ListScope RS(W, "Reserved entries"); + { + DictScope D(W, "Entry"); + PrintEntry(Parser.getPltLazyResolver()); + W.printString("Purpose", StringRef("PLT lazy resolver")); + } + + if (auto E = Parser.getPltModulePointer()) { + DictScope D(W, "Entry"); + PrintEntry(E); + W.printString("Purpose", StringRef("Module pointer")); + } + } + { + ListScope LS(W, "Entries"); + for (auto &E : Parser.getPltEntries()) { + DictScope D(W, "Entry"); + PrintEntry(&E); + + const Elf_Sym *Sym = Parser.getPltSym(&E); + W.printHex("Value", Sym->st_value); + W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); + + unsigned SectionIndex = 0; + StringRef SectionName; + this->dumper()->getSectionNameIndex( + Sym, this->dumper()->dynamic_symbols().begin(), SectionName, + SectionIndex); + W.printHex("Section", SectionName, SectionIndex); + + std::string SymName = + this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true); + W.printNumber("Name", SymName, Sym->st_name); + } + } +} + +template <class ELFT> +void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) { + const ELFFile<ELFT> *Obj = ObjF->getELFFile(); + const Elf_Shdr *Shdr = + findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags"); + if (!Shdr) { + W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; + return; + } + ArrayRef<uint8_t> Sec = + unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); + if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) { + W.startLine() << "The .MIPS.abiflags section has a wrong size.\n"; + return; + } + + auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data()); + + raw_ostream &OS = W.getOStream(); + DictScope GS(W, "MIPS ABI Flags"); + + W.printNumber("Version", Flags->version); + W.startLine() << "ISA: "; + if (Flags->isa_rev <= 1) + OS << format("MIPS%u", Flags->isa_level); + else + OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); + OS << "\n"; + W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); + W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); + W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); + W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); + W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); + W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); + W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); + W.printHex("Flags 2", Flags->flags2); +} |