diff options
Diffstat (limited to 'llvm/utils/TableGen/CodeGenDAGPatterns.cpp')
| -rw-r--r-- | llvm/utils/TableGen/CodeGenDAGPatterns.cpp | 4688 | 
1 files changed, 4688 insertions, 0 deletions
| diff --git a/llvm/utils/TableGen/CodeGenDAGPatterns.cpp b/llvm/utils/TableGen/CodeGenDAGPatterns.cpp new file mode 100644 index 000000000000..46f986ca0176 --- /dev/null +++ b/llvm/utils/TableGen/CodeGenDAGPatterns.cpp @@ -0,0 +1,4688 @@ +//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the CodeGenDAGPatterns class, which is used to read and +// represent the patterns present in a .td file for instructions. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenDAGPatterns.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include <algorithm> +#include <cstdio> +#include <iterator> +#include <set> +using namespace llvm; + +#define DEBUG_TYPE "dag-patterns" + +static inline bool isIntegerOrPtr(MVT VT) { +  return VT.isInteger() || VT == MVT::iPTR; +} +static inline bool isFloatingPoint(MVT VT) { +  return VT.isFloatingPoint(); +} +static inline bool isVector(MVT VT) { +  return VT.isVector(); +} +static inline bool isScalar(MVT VT) { +  return !VT.isVector(); +} + +template <typename Predicate> +static bool berase_if(MachineValueTypeSet &S, Predicate P) { +  bool Erased = false; +  // It is ok to iterate over MachineValueTypeSet and remove elements from it +  // at the same time. +  for (MVT T : S) { +    if (!P(T)) +      continue; +    Erased = true; +    S.erase(T); +  } +  return Erased; +} + +// --- TypeSetByHwMode + +// This is a parameterized type-set class. For each mode there is a list +// of types that are currently possible for a given tree node. Type +// inference will apply to each mode separately. + +TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { +  for (const ValueTypeByHwMode &VVT : VTList) { +    insert(VVT); +    AddrSpaces.push_back(VVT.PtrAddrSpace); +  } +} + +bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { +  for (const auto &I : *this) { +    if (I.second.size() > 1) +      return false; +    if (!AllowEmpty && I.second.empty()) +      return false; +  } +  return true; +} + +ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { +  assert(isValueTypeByHwMode(true) && +         "The type set has multiple types for at least one HW mode"); +  ValueTypeByHwMode VVT; +  auto ASI = AddrSpaces.begin(); + +  for (const auto &I : *this) { +    MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); +    VVT.getOrCreateTypeForMode(I.first, T); +    if (ASI != AddrSpaces.end()) +      VVT.PtrAddrSpace = *ASI++; +  } +  return VVT; +} + +bool TypeSetByHwMode::isPossible() const { +  for (const auto &I : *this) +    if (!I.second.empty()) +      return true; +  return false; +} + +bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { +  bool Changed = false; +  bool ContainsDefault = false; +  MVT DT = MVT::Other; + +  SmallDenseSet<unsigned, 4> Modes; +  for (const auto &P : VVT) { +    unsigned M = P.first; +    Modes.insert(M); +    // Make sure there exists a set for each specific mode from VVT. +    Changed |= getOrCreate(M).insert(P.second).second; +    // Cache VVT's default mode. +    if (DefaultMode == M) { +      ContainsDefault = true; +      DT = P.second; +    } +  } + +  // If VVT has a default mode, add the corresponding type to all +  // modes in "this" that do not exist in VVT. +  if (ContainsDefault) +    for (auto &I : *this) +      if (!Modes.count(I.first)) +        Changed |= I.second.insert(DT).second; + +  return Changed; +} + +// Constrain the type set to be the intersection with VTS. +bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { +  bool Changed = false; +  if (hasDefault()) { +    for (const auto &I : VTS) { +      unsigned M = I.first; +      if (M == DefaultMode || hasMode(M)) +        continue; +      Map.insert({M, Map.at(DefaultMode)}); +      Changed = true; +    } +  } + +  for (auto &I : *this) { +    unsigned M = I.first; +    SetType &S = I.second; +    if (VTS.hasMode(M) || VTS.hasDefault()) { +      Changed |= intersect(I.second, VTS.get(M)); +    } else if (!S.empty()) { +      S.clear(); +      Changed = true; +    } +  } +  return Changed; +} + +template <typename Predicate> +bool TypeSetByHwMode::constrain(Predicate P) { +  bool Changed = false; +  for (auto &I : *this) +    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); +  return Changed; +} + +template <typename Predicate> +bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { +  assert(empty()); +  for (const auto &I : VTS) { +    SetType &S = getOrCreate(I.first); +    for (auto J : I.second) +      if (P(J)) +        S.insert(J); +  } +  return !empty(); +} + +void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { +  SmallVector<unsigned, 4> Modes; +  Modes.reserve(Map.size()); + +  for (const auto &I : *this) +    Modes.push_back(I.first); +  if (Modes.empty()) { +    OS << "{}"; +    return; +  } +  array_pod_sort(Modes.begin(), Modes.end()); + +  OS << '{'; +  for (unsigned M : Modes) { +    OS << ' ' << getModeName(M) << ':'; +    writeToStream(get(M), OS); +  } +  OS << " }"; +} + +void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { +  SmallVector<MVT, 4> Types(S.begin(), S.end()); +  array_pod_sort(Types.begin(), Types.end()); + +  OS << '['; +  for (unsigned i = 0, e = Types.size(); i != e; ++i) { +    OS << ValueTypeByHwMode::getMVTName(Types[i]); +    if (i != e-1) +      OS << ' '; +  } +  OS << ']'; +} + +bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { +  // The isSimple call is much quicker than hasDefault - check this first. +  bool IsSimple = isSimple(); +  bool VTSIsSimple = VTS.isSimple(); +  if (IsSimple && VTSIsSimple) +    return *begin() == *VTS.begin(); + +  // Speedup: We have a default if the set is simple. +  bool HaveDefault = IsSimple || hasDefault(); +  bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); +  if (HaveDefault != VTSHaveDefault) +    return false; + +  SmallDenseSet<unsigned, 4> Modes; +  for (auto &I : *this) +    Modes.insert(I.first); +  for (const auto &I : VTS) +    Modes.insert(I.first); + +  if (HaveDefault) { +    // Both sets have default mode. +    for (unsigned M : Modes) { +      if (get(M) != VTS.get(M)) +        return false; +    } +  } else { +    // Neither set has default mode. +    for (unsigned M : Modes) { +      // If there is no default mode, an empty set is equivalent to not having +      // the corresponding mode. +      bool NoModeThis = !hasMode(M) || get(M).empty(); +      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); +      if (NoModeThis != NoModeVTS) +        return false; +      if (!NoModeThis) +        if (get(M) != VTS.get(M)) +          return false; +    } +  } + +  return true; +} + +namespace llvm { +  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { +    T.writeToStream(OS); +    return OS; +  } +} + +LLVM_DUMP_METHOD +void TypeSetByHwMode::dump() const { +  dbgs() << *this << '\n'; +} + +bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { +  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); +  auto Int = [&In](MVT T) -> bool { return !In.count(T); }; + +  if (OutP == InP) +    return berase_if(Out, Int); + +  // Compute the intersection of scalars separately to account for only +  // one set containing iPTR. +  // The itersection of iPTR with a set of integer scalar types that does not +  // include iPTR will result in the most specific scalar type: +  // - iPTR is more specific than any set with two elements or more +  // - iPTR is less specific than any single integer scalar type. +  // For example +  // { iPTR } * { i32 }     -> { i32 } +  // { iPTR } * { i32 i64 } -> { iPTR } +  // and +  // { iPTR i32 } * { i32 }          -> { i32 } +  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 } +  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } + +  // Compute the difference between the two sets in such a way that the +  // iPTR is in the set that is being subtracted. This is to see if there +  // are any extra scalars in the set without iPTR that are not in the +  // set containing iPTR. Then the iPTR could be considered a "wildcard" +  // matching these scalars. If there is only one such scalar, it would +  // replace the iPTR, if there are more, the iPTR would be retained. +  SetType Diff; +  if (InP) { +    Diff = Out; +    berase_if(Diff, [&In](MVT T) { return In.count(T); }); +    // Pre-remove these elements and rely only on InP/OutP to determine +    // whether a change has been made. +    berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); +  } else { +    Diff = In; +    berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); +    Out.erase(MVT::iPTR); +  } + +  // The actual intersection. +  bool Changed = berase_if(Out, Int); +  unsigned NumD = Diff.size(); +  if (NumD == 0) +    return Changed; + +  if (NumD == 1) { +    Out.insert(*Diff.begin()); +    // This is a change only if Out was the one with iPTR (which is now +    // being replaced). +    Changed |= OutP; +  } else { +    // Multiple elements from Out are now replaced with iPTR. +    Out.insert(MVT::iPTR); +    Changed |= !OutP; +  } +  return Changed; +} + +bool TypeSetByHwMode::validate() const { +#ifndef NDEBUG +  if (empty()) +    return true; +  bool AllEmpty = true; +  for (const auto &I : *this) +    AllEmpty &= I.second.empty(); +  return !AllEmpty; +#endif +  return true; +} + +// --- TypeInfer + +bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, +                                const TypeSetByHwMode &In) { +  ValidateOnExit _1(Out, *this); +  In.validate(); +  if (In.empty() || Out == In || TP.hasError()) +    return false; +  if (Out.empty()) { +    Out = In; +    return true; +  } + +  bool Changed = Out.constrain(In); +  if (Changed && Out.empty()) +    TP.error("Type contradiction"); + +  return Changed; +} + +bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { +  ValidateOnExit _1(Out, *this); +  if (TP.hasError()) +    return false; +  assert(!Out.empty() && "cannot pick from an empty set"); + +  bool Changed = false; +  for (auto &I : Out) { +    TypeSetByHwMode::SetType &S = I.second; +    if (S.size() <= 1) +      continue; +    MVT T = *S.begin(); // Pick the first element. +    S.clear(); +    S.insert(T); +    Changed = true; +  } +  return Changed; +} + +bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { +  ValidateOnExit _1(Out, *this); +  if (TP.hasError()) +    return false; +  if (!Out.empty()) +    return Out.constrain(isIntegerOrPtr); + +  return Out.assign_if(getLegalTypes(), isIntegerOrPtr); +} + +bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { +  ValidateOnExit _1(Out, *this); +  if (TP.hasError()) +    return false; +  if (!Out.empty()) +    return Out.constrain(isFloatingPoint); + +  return Out.assign_if(getLegalTypes(), isFloatingPoint); +} + +bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { +  ValidateOnExit _1(Out, *this); +  if (TP.hasError()) +    return false; +  if (!Out.empty()) +    return Out.constrain(isScalar); + +  return Out.assign_if(getLegalTypes(), isScalar); +} + +bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { +  ValidateOnExit _1(Out, *this); +  if (TP.hasError()) +    return false; +  if (!Out.empty()) +    return Out.constrain(isVector); + +  return Out.assign_if(getLegalTypes(), isVector); +} + +bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { +  ValidateOnExit _1(Out, *this); +  if (TP.hasError() || !Out.empty()) +    return false; + +  Out = getLegalTypes(); +  return true; +} + +template <typename Iter, typename Pred, typename Less> +static Iter min_if(Iter B, Iter E, Pred P, Less L) { +  if (B == E) +    return E; +  Iter Min = E; +  for (Iter I = B; I != E; ++I) { +    if (!P(*I)) +      continue; +    if (Min == E || L(*I, *Min)) +      Min = I; +  } +  return Min; +} + +template <typename Iter, typename Pred, typename Less> +static Iter max_if(Iter B, Iter E, Pred P, Less L) { +  if (B == E) +    return E; +  Iter Max = E; +  for (Iter I = B; I != E; ++I) { +    if (!P(*I)) +      continue; +    if (Max == E || L(*Max, *I)) +      Max = I; +  } +  return Max; +} + +/// Make sure that for each type in Small, there exists a larger type in Big. +bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, +                                   TypeSetByHwMode &Big) { +  ValidateOnExit _1(Small, *this), _2(Big, *this); +  if (TP.hasError()) +    return false; +  bool Changed = false; + +  if (Small.empty()) +    Changed |= EnforceAny(Small); +  if (Big.empty()) +    Changed |= EnforceAny(Big); + +  assert(Small.hasDefault() && Big.hasDefault()); + +  std::vector<unsigned> Modes = union_modes(Small, Big); + +  // 1. Only allow integer or floating point types and make sure that +  //    both sides are both integer or both floating point. +  // 2. Make sure that either both sides have vector types, or neither +  //    of them does. +  for (unsigned M : Modes) { +    TypeSetByHwMode::SetType &S = Small.get(M); +    TypeSetByHwMode::SetType &B = Big.get(M); + +    if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { +      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; +      Changed |= berase_if(S, NotInt) | +                 berase_if(B, NotInt); +    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { +      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; +      Changed |= berase_if(S, NotFP) | +                 berase_if(B, NotFP); +    } else if (S.empty() || B.empty()) { +      Changed = !S.empty() || !B.empty(); +      S.clear(); +      B.clear(); +    } else { +      TP.error("Incompatible types"); +      return Changed; +    } + +    if (none_of(S, isVector) || none_of(B, isVector)) { +      Changed |= berase_if(S, isVector) | +                 berase_if(B, isVector); +    } +  } + +  auto LT = [](MVT A, MVT B) -> bool { +    return A.getScalarSizeInBits() < B.getScalarSizeInBits() || +           (A.getScalarSizeInBits() == B.getScalarSizeInBits() && +            A.getSizeInBits() < B.getSizeInBits()); +  }; +  auto LE = [<](MVT A, MVT B) -> bool { +    // This function is used when removing elements: when a vector is compared +    // to a non-vector, it should return false (to avoid removal). +    if (A.isVector() != B.isVector()) +      return false; + +    return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() && +                        A.getSizeInBits() == B.getSizeInBits()); +  }; + +  for (unsigned M : Modes) { +    TypeSetByHwMode::SetType &S = Small.get(M); +    TypeSetByHwMode::SetType &B = Big.get(M); +    // MinS = min scalar in Small, remove all scalars from Big that are +    // smaller-or-equal than MinS. +    auto MinS = min_if(S.begin(), S.end(), isScalar, LT); +    if (MinS != S.end()) +      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); + +    // MaxS = max scalar in Big, remove all scalars from Small that are +    // larger than MaxS. +    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); +    if (MaxS != B.end()) +      Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); + +    // MinV = min vector in Small, remove all vectors from Big that are +    // smaller-or-equal than MinV. +    auto MinV = min_if(S.begin(), S.end(), isVector, LT); +    if (MinV != S.end()) +      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); + +    // MaxV = max vector in Big, remove all vectors from Small that are +    // larger than MaxV. +    auto MaxV = max_if(B.begin(), B.end(), isVector, LT); +    if (MaxV != B.end()) +      Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); +  } + +  return Changed; +} + +/// 1. Ensure that for each type T in Vec, T is a vector type, and that +///    for each type U in Elem, U is a scalar type. +/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) +///    type T in Vec, such that U is the element type of T. +bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, +                                       TypeSetByHwMode &Elem) { +  ValidateOnExit _1(Vec, *this), _2(Elem, *this); +  if (TP.hasError()) +    return false; +  bool Changed = false; + +  if (Vec.empty()) +    Changed |= EnforceVector(Vec); +  if (Elem.empty()) +    Changed |= EnforceScalar(Elem); + +  for (unsigned M : union_modes(Vec, Elem)) { +    TypeSetByHwMode::SetType &V = Vec.get(M); +    TypeSetByHwMode::SetType &E = Elem.get(M); + +    Changed |= berase_if(V, isScalar);  // Scalar = !vector +    Changed |= berase_if(E, isVector);  // Vector = !scalar +    assert(!V.empty() && !E.empty()); + +    SmallSet<MVT,4> VT, ST; +    // Collect element types from the "vector" set. +    for (MVT T : V) +      VT.insert(T.getVectorElementType()); +    // Collect scalar types from the "element" set. +    for (MVT T : E) +      ST.insert(T); + +    // Remove from V all (vector) types whose element type is not in S. +    Changed |= berase_if(V, [&ST](MVT T) -> bool { +                              return !ST.count(T.getVectorElementType()); +                            }); +    // Remove from E all (scalar) types, for which there is no corresponding +    // type in V. +    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); +  } + +  return Changed; +} + +bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, +                                       const ValueTypeByHwMode &VVT) { +  TypeSetByHwMode Tmp(VVT); +  ValidateOnExit _1(Vec, *this), _2(Tmp, *this); +  return EnforceVectorEltTypeIs(Vec, Tmp); +} + +/// Ensure that for each type T in Sub, T is a vector type, and there +/// exists a type U in Vec such that U is a vector type with the same +/// element type as T and at least as many elements as T. +bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, +                                             TypeSetByHwMode &Sub) { +  ValidateOnExit _1(Vec, *this), _2(Sub, *this); +  if (TP.hasError()) +    return false; + +  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. +  auto IsSubVec = [](MVT B, MVT P) -> bool { +    if (!B.isVector() || !P.isVector()) +      return false; +    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> +    // but until there are obvious use-cases for this, keep the +    // types separate. +    if (B.isScalableVector() != P.isScalableVector()) +      return false; +    if (B.getVectorElementType() != P.getVectorElementType()) +      return false; +    return B.getVectorNumElements() < P.getVectorNumElements(); +  }; + +  /// Return true if S has no element (vector type) that T is a sub-vector of, +  /// i.e. has the same element type as T and more elements. +  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { +    for (const auto &I : S) +      if (IsSubVec(T, I)) +        return false; +    return true; +  }; + +  /// Return true if S has no element (vector type) that T is a super-vector +  /// of, i.e. has the same element type as T and fewer elements. +  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { +    for (const auto &I : S) +      if (IsSubVec(I, T)) +        return false; +    return true; +  }; + +  bool Changed = false; + +  if (Vec.empty()) +    Changed |= EnforceVector(Vec); +  if (Sub.empty()) +    Changed |= EnforceVector(Sub); + +  for (unsigned M : union_modes(Vec, Sub)) { +    TypeSetByHwMode::SetType &S = Sub.get(M); +    TypeSetByHwMode::SetType &V = Vec.get(M); + +    Changed |= berase_if(S, isScalar); + +    // Erase all types from S that are not sub-vectors of a type in V. +    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); + +    // Erase all types from V that are not super-vectors of a type in S. +    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); +  } + +  return Changed; +} + +/// 1. Ensure that V has a scalar type iff W has a scalar type. +/// 2. Ensure that for each vector type T in V, there exists a vector +///    type U in W, such that T and U have the same number of elements. +/// 3. Ensure that for each vector type U in W, there exists a vector +///    type T in V, such that T and U have the same number of elements +///    (reverse of 2). +bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { +  ValidateOnExit _1(V, *this), _2(W, *this); +  if (TP.hasError()) +    return false; + +  bool Changed = false; +  if (V.empty()) +    Changed |= EnforceAny(V); +  if (W.empty()) +    Changed |= EnforceAny(W); + +  // An actual vector type cannot have 0 elements, so we can treat scalars +  // as zero-length vectors. This way both vectors and scalars can be +  // processed identically. +  auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { +    return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); +  }; + +  for (unsigned M : union_modes(V, W)) { +    TypeSetByHwMode::SetType &VS = V.get(M); +    TypeSetByHwMode::SetType &WS = W.get(M); + +    SmallSet<unsigned,2> VN, WN; +    for (MVT T : VS) +      VN.insert(T.isVector() ? T.getVectorNumElements() : 0); +    for (MVT T : WS) +      WN.insert(T.isVector() ? T.getVectorNumElements() : 0); + +    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); +    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); +  } +  return Changed; +} + +/// 1. Ensure that for each type T in A, there exists a type U in B, +///    such that T and U have equal size in bits. +/// 2. Ensure that for each type U in B, there exists a type T in A +///    such that T and U have equal size in bits (reverse of 1). +bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { +  ValidateOnExit _1(A, *this), _2(B, *this); +  if (TP.hasError()) +    return false; +  bool Changed = false; +  if (A.empty()) +    Changed |= EnforceAny(A); +  if (B.empty()) +    Changed |= EnforceAny(B); + +  auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { +    return !Sizes.count(T.getSizeInBits()); +  }; + +  for (unsigned M : union_modes(A, B)) { +    TypeSetByHwMode::SetType &AS = A.get(M); +    TypeSetByHwMode::SetType &BS = B.get(M); +    SmallSet<unsigned,2> AN, BN; + +    for (MVT T : AS) +      AN.insert(T.getSizeInBits()); +    for (MVT T : BS) +      BN.insert(T.getSizeInBits()); + +    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); +    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); +  } + +  return Changed; +} + +void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { +  ValidateOnExit _1(VTS, *this); +  const TypeSetByHwMode &Legal = getLegalTypes(); +  assert(Legal.isDefaultOnly() && "Default-mode only expected"); +  const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); + +  for (auto &I : VTS) +    expandOverloads(I.second, LegalTypes); +} + +void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, +                                const TypeSetByHwMode::SetType &Legal) { +  std::set<MVT> Ovs; +  for (MVT T : Out) { +    if (!T.isOverloaded()) +      continue; + +    Ovs.insert(T); +    // MachineValueTypeSet allows iteration and erasing. +    Out.erase(T); +  } + +  for (MVT Ov : Ovs) { +    switch (Ov.SimpleTy) { +      case MVT::iPTRAny: +        Out.insert(MVT::iPTR); +        return; +      case MVT::iAny: +        for (MVT T : MVT::integer_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        for (MVT T : MVT::integer_scalable_vector_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        return; +      case MVT::fAny: +        for (MVT T : MVT::fp_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        for (MVT T : MVT::fp_scalable_vector_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        return; +      case MVT::vAny: +        for (MVT T : MVT::vector_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        return; +      case MVT::Any: +        for (MVT T : MVT::all_valuetypes()) +          if (Legal.count(T)) +            Out.insert(T); +        return; +      default: +        break; +    } +  } +} + +const TypeSetByHwMode &TypeInfer::getLegalTypes() { +  if (!LegalTypesCached) { +    TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); +    // Stuff all types from all modes into the default mode. +    const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); +    for (const auto &I : LTS) +      LegalTypes.insert(I.second); +    LegalTypesCached = true; +  } +  assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); +  return LegalCache; +} + +#ifndef NDEBUG +TypeInfer::ValidateOnExit::~ValidateOnExit() { +  if (Infer.Validate && !VTS.validate()) { +    dbgs() << "Type set is empty for each HW mode:\n" +              "possible type contradiction in the pattern below " +              "(use -print-records with llvm-tblgen to see all " +              "expanded records).\n"; +    Infer.TP.dump(); +    llvm_unreachable(nullptr); +  } +} +#endif + + +//===----------------------------------------------------------------------===// +// ScopedName Implementation +//===----------------------------------------------------------------------===// + +bool ScopedName::operator==(const ScopedName &o) const { +  return Scope == o.Scope && Identifier == o.Identifier; +} + +bool ScopedName::operator!=(const ScopedName &o) const { +  return !(*this == o); +} + + +//===----------------------------------------------------------------------===// +// TreePredicateFn Implementation +//===----------------------------------------------------------------------===// + +/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag. +TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { +  assert( +      (!hasPredCode() || !hasImmCode()) && +      ".td file corrupt: can't have a node predicate *and* an imm predicate"); +} + +bool TreePredicateFn::hasPredCode() const { +  return isLoad() || isStore() || isAtomic() || +         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); +} + +std::string TreePredicateFn::getPredCode() const { +  std::string Code = ""; + +  if (!isLoad() && !isStore() && !isAtomic()) { +    Record *MemoryVT = getMemoryVT(); + +    if (MemoryVT) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "MemoryVT requires IsLoad or IsStore"); +  } + +  if (!isLoad() && !isStore()) { +    if (isUnindexed()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsUnindexed requires IsLoad or IsStore"); + +    Record *ScalarMemoryVT = getScalarMemoryVT(); + +    if (ScalarMemoryVT) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "ScalarMemoryVT requires IsLoad or IsStore"); +  } + +  if (isLoad() + isStore() + isAtomic() > 1) +    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                    "IsLoad, IsStore, and IsAtomic are mutually exclusive"); + +  if (isLoad()) { +    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && +        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && +        getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && +        getMinAlignment() < 1) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsLoad cannot be used by itself"); +  } else { +    if (isNonExtLoad()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsNonExtLoad requires IsLoad"); +    if (isAnyExtLoad()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAnyExtLoad requires IsLoad"); +    if (isSignExtLoad()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsSignExtLoad requires IsLoad"); +    if (isZeroExtLoad()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsZeroExtLoad requires IsLoad"); +  } + +  if (isStore()) { +    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && +        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && +        getAddressSpaces() == nullptr && getMinAlignment() < 1) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsStore cannot be used by itself"); +  } else { +    if (isNonTruncStore()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsNonTruncStore requires IsStore"); +    if (isTruncStore()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsTruncStore requires IsStore"); +  } + +  if (isAtomic()) { +    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && +        getAddressSpaces() == nullptr && +        !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && +        !isAtomicOrderingAcquireRelease() && +        !isAtomicOrderingSequentiallyConsistent() && +        !isAtomicOrderingAcquireOrStronger() && +        !isAtomicOrderingReleaseOrStronger() && +        !isAtomicOrderingWeakerThanAcquire() && +        !isAtomicOrderingWeakerThanRelease()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomic cannot be used by itself"); +  } else { +    if (isAtomicOrderingMonotonic()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingMonotonic requires IsAtomic"); +    if (isAtomicOrderingAcquire()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingAcquire requires IsAtomic"); +    if (isAtomicOrderingRelease()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingRelease requires IsAtomic"); +    if (isAtomicOrderingAcquireRelease()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingAcquireRelease requires IsAtomic"); +    if (isAtomicOrderingSequentiallyConsistent()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); +    if (isAtomicOrderingAcquireOrStronger()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); +    if (isAtomicOrderingReleaseOrStronger()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); +    if (isAtomicOrderingWeakerThanAcquire()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); +  } + +  if (isLoad() || isStore() || isAtomic()) { +    if (ListInit *AddressSpaces = getAddressSpaces()) { +      Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" +        " if ("; + +      bool First = true; +      for (Init *Val : AddressSpaces->getValues()) { +        if (First) +          First = false; +        else +          Code += " && "; + +        IntInit *IntVal = dyn_cast<IntInit>(Val); +        if (!IntVal) { +          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                          "AddressSpaces element must be integer"); +        } + +        Code += "AddrSpace != " + utostr(IntVal->getValue()); +      } + +      Code += ")\nreturn false;\n"; +    } + +    int64_t MinAlign = getMinAlignment(); +    if (MinAlign > 0) { +      Code += "if (cast<MemSDNode>(N)->getAlignment() < "; +      Code += utostr(MinAlign); +      Code += ")\nreturn false;\n"; +    } + +    Record *MemoryVT = getMemoryVT(); + +    if (MemoryVT) +      Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + +               MemoryVT->getName() + ") return false;\n") +                  .str(); +  } + +  if (isAtomic() && isAtomicOrderingMonotonic()) +    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " +            "AtomicOrdering::Monotonic) return false;\n"; +  if (isAtomic() && isAtomicOrderingAcquire()) +    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " +            "AtomicOrdering::Acquire) return false;\n"; +  if (isAtomic() && isAtomicOrderingRelease()) +    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " +            "AtomicOrdering::Release) return false;\n"; +  if (isAtomic() && isAtomicOrderingAcquireRelease()) +    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " +            "AtomicOrdering::AcquireRelease) return false;\n"; +  if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) +    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " +            "AtomicOrdering::SequentiallyConsistent) return false;\n"; + +  if (isAtomic() && isAtomicOrderingAcquireOrStronger()) +    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " +            "return false;\n"; +  if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) +    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " +            "return false;\n"; + +  if (isAtomic() && isAtomicOrderingReleaseOrStronger()) +    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " +            "return false;\n"; +  if (isAtomic() && isAtomicOrderingWeakerThanRelease()) +    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " +            "return false;\n"; + +  if (isLoad() || isStore()) { +    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; + +    if (isUnindexed()) +      Code += ("if (cast<" + SDNodeName + +               ">(N)->getAddressingMode() != ISD::UNINDEXED) " +               "return false;\n") +                  .str(); + +    if (isLoad()) { +      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + +           isZeroExtLoad()) > 1) +        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " +                        "IsZeroExtLoad are mutually exclusive"); +      if (isNonExtLoad()) +        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " +                "ISD::NON_EXTLOAD) return false;\n"; +      if (isAnyExtLoad()) +        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " +                "return false;\n"; +      if (isSignExtLoad()) +        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " +                "return false;\n"; +      if (isZeroExtLoad()) +        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " +                "return false;\n"; +    } else { +      if ((isNonTruncStore() + isTruncStore()) > 1) +        PrintFatalError( +            getOrigPatFragRecord()->getRecord()->getLoc(), +            "IsNonTruncStore, and IsTruncStore are mutually exclusive"); +      if (isNonTruncStore()) +        Code += +            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; +      if (isTruncStore()) +        Code += +            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; +    } + +    Record *ScalarMemoryVT = getScalarMemoryVT(); + +    if (ScalarMemoryVT) +      Code += ("if (cast<" + SDNodeName + +               ">(N)->getMemoryVT().getScalarType() != MVT::" + +               ScalarMemoryVT->getName() + ") return false;\n") +                  .str(); +  } + +  std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); + +  Code += PredicateCode; + +  if (PredicateCode.empty() && !Code.empty()) +    Code += "return true;\n"; + +  return Code; +} + +bool TreePredicateFn::hasImmCode() const { +  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); +} + +std::string TreePredicateFn::getImmCode() const { +  return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); +} + +bool TreePredicateFn::immCodeUsesAPInt() const { +  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); +} + +bool TreePredicateFn::immCodeUsesAPFloat() const { +  bool Unset; +  // The return value will be false when IsAPFloat is unset. +  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", +                                                                   Unset); +} + +bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, +                                                   bool Value) const { +  bool Unset; +  bool Result = +      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); +  if (Unset) +    return false; +  return Result == Value; +} +bool TreePredicateFn::usesOperands() const { +  return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); +} +bool TreePredicateFn::isLoad() const { +  return isPredefinedPredicateEqualTo("IsLoad", true); +} +bool TreePredicateFn::isStore() const { +  return isPredefinedPredicateEqualTo("IsStore", true); +} +bool TreePredicateFn::isAtomic() const { +  return isPredefinedPredicateEqualTo("IsAtomic", true); +} +bool TreePredicateFn::isUnindexed() const { +  return isPredefinedPredicateEqualTo("IsUnindexed", true); +} +bool TreePredicateFn::isNonExtLoad() const { +  return isPredefinedPredicateEqualTo("IsNonExtLoad", true); +} +bool TreePredicateFn::isAnyExtLoad() const { +  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); +} +bool TreePredicateFn::isSignExtLoad() const { +  return isPredefinedPredicateEqualTo("IsSignExtLoad", true); +} +bool TreePredicateFn::isZeroExtLoad() const { +  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); +} +bool TreePredicateFn::isNonTruncStore() const { +  return isPredefinedPredicateEqualTo("IsTruncStore", false); +} +bool TreePredicateFn::isTruncStore() const { +  return isPredefinedPredicateEqualTo("IsTruncStore", true); +} +bool TreePredicateFn::isAtomicOrderingMonotonic() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); +} +bool TreePredicateFn::isAtomicOrderingAcquire() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); +} +bool TreePredicateFn::isAtomicOrderingRelease() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); +} +bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); +} +bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", +                                      true); +} +bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); +} +bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); +} +bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); +} +bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { +  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); +} +Record *TreePredicateFn::getMemoryVT() const { +  Record *R = getOrigPatFragRecord()->getRecord(); +  if (R->isValueUnset("MemoryVT")) +    return nullptr; +  return R->getValueAsDef("MemoryVT"); +} + +ListInit *TreePredicateFn::getAddressSpaces() const { +  Record *R = getOrigPatFragRecord()->getRecord(); +  if (R->isValueUnset("AddressSpaces")) +    return nullptr; +  return R->getValueAsListInit("AddressSpaces"); +} + +int64_t TreePredicateFn::getMinAlignment() const { +  Record *R = getOrigPatFragRecord()->getRecord(); +  if (R->isValueUnset("MinAlignment")) +    return 0; +  return R->getValueAsInt("MinAlignment"); +} + +Record *TreePredicateFn::getScalarMemoryVT() const { +  Record *R = getOrigPatFragRecord()->getRecord(); +  if (R->isValueUnset("ScalarMemoryVT")) +    return nullptr; +  return R->getValueAsDef("ScalarMemoryVT"); +} +bool TreePredicateFn::hasGISelPredicateCode() const { +  return !PatFragRec->getRecord() +              ->getValueAsString("GISelPredicateCode") +              .empty(); +} +std::string TreePredicateFn::getGISelPredicateCode() const { +  return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); +} + +StringRef TreePredicateFn::getImmType() const { +  if (immCodeUsesAPInt()) +    return "const APInt &"; +  if (immCodeUsesAPFloat()) +    return "const APFloat &"; +  return "int64_t"; +} + +StringRef TreePredicateFn::getImmTypeIdentifier() const { +  if (immCodeUsesAPInt()) +    return "APInt"; +  else if (immCodeUsesAPFloat()) +    return "APFloat"; +  return "I64"; +} + +/// isAlwaysTrue - Return true if this is a noop predicate. +bool TreePredicateFn::isAlwaysTrue() const { +  return !hasPredCode() && !hasImmCode(); +} + +/// Return the name to use in the generated code to reference this, this is +/// "Predicate_foo" if from a pattern fragment "foo". +std::string TreePredicateFn::getFnName() const { +  return "Predicate_" + PatFragRec->getRecord()->getName().str(); +} + +/// getCodeToRunOnSDNode - Return the code for the function body that +/// evaluates this predicate.  The argument is expected to be in "Node", +/// not N.  This handles casting and conversion to a concrete node type as +/// appropriate. +std::string TreePredicateFn::getCodeToRunOnSDNode() const { +  // Handle immediate predicates first. +  std::string ImmCode = getImmCode(); +  if (!ImmCode.empty()) { +    if (isLoad()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsLoad cannot be used with ImmLeaf or its subclasses"); +    if (isStore()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "IsStore cannot be used with ImmLeaf or its subclasses"); +    if (isUnindexed()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsUnindexed cannot be used with ImmLeaf or its subclasses"); +    if (isNonExtLoad()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); +    if (isAnyExtLoad()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); +    if (isSignExtLoad()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); +    if (isZeroExtLoad()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); +    if (isNonTruncStore()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); +    if (isTruncStore()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "IsTruncStore cannot be used with ImmLeaf or its subclasses"); +    if (getMemoryVT()) +      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), +                      "MemoryVT cannot be used with ImmLeaf or its subclasses"); +    if (getScalarMemoryVT()) +      PrintFatalError( +          getOrigPatFragRecord()->getRecord()->getLoc(), +          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); + +    std::string Result = ("    " + getImmType() + " Imm = ").str(); +    if (immCodeUsesAPFloat()) +      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; +    else if (immCodeUsesAPInt()) +      Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; +    else +      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; +    return Result + ImmCode; +  } + +  // Handle arbitrary node predicates. +  assert(hasPredCode() && "Don't have any predicate code!"); +  StringRef ClassName; +  if (PatFragRec->getOnlyTree()->isLeaf()) +    ClassName = "SDNode"; +  else { +    Record *Op = PatFragRec->getOnlyTree()->getOperator(); +    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); +  } +  std::string Result; +  if (ClassName == "SDNode") +    Result = "    SDNode *N = Node;\n"; +  else +    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n"; + +  return (Twine(Result) + "    (void)N;\n" + getPredCode()).str(); +} + +//===----------------------------------------------------------------------===// +// PatternToMatch implementation +// + +static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { +  if (!P->isLeaf()) +    return false; +  DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); +  if (!DI) +    return false; + +  Record *R = DI->getDef(); +  return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; +} + +/// getPatternSize - Return the 'size' of this pattern.  We want to match large +/// patterns before small ones.  This is used to determine the size of a +/// pattern. +static unsigned getPatternSize(const TreePatternNode *P, +                               const CodeGenDAGPatterns &CGP) { +  unsigned Size = 3;  // The node itself. +  // If the root node is a ConstantSDNode, increases its size. +  // e.g. (set R32:$dst, 0). +  if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) +    Size += 2; + +  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { +    Size += AM->getComplexity(); +    // We don't want to count any children twice, so return early. +    return Size; +  } + +  // If this node has some predicate function that must match, it adds to the +  // complexity of this node. +  if (!P->getPredicateCalls().empty()) +    ++Size; + +  // Count children in the count if they are also nodes. +  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { +    const TreePatternNode *Child = P->getChild(i); +    if (!Child->isLeaf() && Child->getNumTypes()) { +      const TypeSetByHwMode &T0 = Child->getExtType(0); +      // At this point, all variable type sets should be simple, i.e. only +      // have a default mode. +      if (T0.getMachineValueType() != MVT::Other) { +        Size += getPatternSize(Child, CGP); +        continue; +      } +    } +    if (Child->isLeaf()) { +      if (isa<IntInit>(Child->getLeafValue())) +        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2). +      else if (Child->getComplexPatternInfo(CGP)) +        Size += getPatternSize(Child, CGP); +      else if (isImmAllOnesAllZerosMatch(Child)) +        Size += 4; // Matches a build_vector(+3) and a predicate (+1). +      else if (!Child->getPredicateCalls().empty()) +        ++Size; +    } +  } + +  return Size; +} + +/// Compute the complexity metric for the input pattern.  This roughly +/// corresponds to the number of nodes that are covered. +int PatternToMatch:: +getPatternComplexity(const CodeGenDAGPatterns &CGP) const { +  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); +} + +/// getPredicateCheck - Return a single string containing all of this +/// pattern's predicates concatenated with "&&" operators. +/// +std::string PatternToMatch::getPredicateCheck() const { +  SmallVector<const Predicate*,4> PredList; +  for (const Predicate &P : Predicates) { +    if (!P.getCondString().empty()) +      PredList.push_back(&P); +  } +  llvm::sort(PredList, deref<std::less<>>()); + +  std::string Check; +  for (unsigned i = 0, e = PredList.size(); i != e; ++i) { +    if (i != 0) +      Check += " && "; +    Check += '(' + PredList[i]->getCondString() + ')'; +  } +  return Check; +} + +//===----------------------------------------------------------------------===// +// SDTypeConstraint implementation +// + +SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { +  OperandNo = R->getValueAsInt("OperandNum"); + +  if (R->isSubClassOf("SDTCisVT")) { +    ConstraintType = SDTCisVT; +    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); +    for (const auto &P : VVT) +      if (P.second == MVT::isVoid) +        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); +  } else if (R->isSubClassOf("SDTCisPtrTy")) { +    ConstraintType = SDTCisPtrTy; +  } else if (R->isSubClassOf("SDTCisInt")) { +    ConstraintType = SDTCisInt; +  } else if (R->isSubClassOf("SDTCisFP")) { +    ConstraintType = SDTCisFP; +  } else if (R->isSubClassOf("SDTCisVec")) { +    ConstraintType = SDTCisVec; +  } else if (R->isSubClassOf("SDTCisSameAs")) { +    ConstraintType = SDTCisSameAs; +    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); +  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { +    ConstraintType = SDTCisVTSmallerThanOp; +    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = +      R->getValueAsInt("OtherOperandNum"); +  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { +    ConstraintType = SDTCisOpSmallerThanOp; +    x.SDTCisOpSmallerThanOp_Info.BigOperandNum = +      R->getValueAsInt("BigOperandNum"); +  } else if (R->isSubClassOf("SDTCisEltOfVec")) { +    ConstraintType = SDTCisEltOfVec; +    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); +  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { +    ConstraintType = SDTCisSubVecOfVec; +    x.SDTCisSubVecOfVec_Info.OtherOperandNum = +      R->getValueAsInt("OtherOpNum"); +  } else if (R->isSubClassOf("SDTCVecEltisVT")) { +    ConstraintType = SDTCVecEltisVT; +    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); +    for (const auto &P : VVT) { +      MVT T = P.second; +      if (T.isVector()) +        PrintFatalError(R->getLoc(), +                        "Cannot use vector type as SDTCVecEltisVT"); +      if (!T.isInteger() && !T.isFloatingPoint()) +        PrintFatalError(R->getLoc(), "Must use integer or floating point type " +                                     "as SDTCVecEltisVT"); +    } +  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { +    ConstraintType = SDTCisSameNumEltsAs; +    x.SDTCisSameNumEltsAs_Info.OtherOperandNum = +      R->getValueAsInt("OtherOperandNum"); +  } else if (R->isSubClassOf("SDTCisSameSizeAs")) { +    ConstraintType = SDTCisSameSizeAs; +    x.SDTCisSameSizeAs_Info.OtherOperandNum = +      R->getValueAsInt("OtherOperandNum"); +  } else { +    PrintFatalError(R->getLoc(), +                    "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); +  } +} + +/// getOperandNum - Return the node corresponding to operand #OpNo in tree +/// N, and the result number in ResNo. +static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, +                                      const SDNodeInfo &NodeInfo, +                                      unsigned &ResNo) { +  unsigned NumResults = NodeInfo.getNumResults(); +  if (OpNo < NumResults) { +    ResNo = OpNo; +    return N; +  } + +  OpNo -= NumResults; + +  if (OpNo >= N->getNumChildren()) { +    std::string S; +    raw_string_ostream OS(S); +    OS << "Invalid operand number in type constraint " +           << (OpNo+NumResults) << " "; +    N->print(OS); +    PrintFatalError(OS.str()); +  } + +  return N->getChild(OpNo); +} + +/// ApplyTypeConstraint - Given a node in a pattern, apply this type +/// constraint to the nodes operands.  This returns true if it makes a +/// change, false otherwise.  If a type contradiction is found, flag an error. +bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, +                                           const SDNodeInfo &NodeInfo, +                                           TreePattern &TP) const { +  if (TP.hasError()) +    return false; + +  unsigned ResNo = 0; // The result number being referenced. +  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); +  TypeInfer &TI = TP.getInfer(); + +  switch (ConstraintType) { +  case SDTCisVT: +    // Operand must be a particular type. +    return NodeToApply->UpdateNodeType(ResNo, VVT, TP); +  case SDTCisPtrTy: +    // Operand must be same as target pointer type. +    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); +  case SDTCisInt: +    // Require it to be one of the legal integer VTs. +     return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); +  case SDTCisFP: +    // Require it to be one of the legal fp VTs. +    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); +  case SDTCisVec: +    // Require it to be one of the legal vector VTs. +    return TI.EnforceVector(NodeToApply->getExtType(ResNo)); +  case SDTCisSameAs: { +    unsigned OResNo = 0; +    TreePatternNode *OtherNode = +      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); +    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| +           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); +  } +  case SDTCisVTSmallerThanOp: { +    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must +    // have an integer type that is smaller than the VT. +    if (!NodeToApply->isLeaf() || +        !isa<DefInit>(NodeToApply->getLeafValue()) || +        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() +               ->isSubClassOf("ValueType")) { +      TP.error(N->getOperator()->getName() + " expects a VT operand!"); +      return false; +    } +    DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); +    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); +    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); +    TypeSetByHwMode TypeListTmp(VVT); + +    unsigned OResNo = 0; +    TreePatternNode *OtherNode = +      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, +                    OResNo); + +    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); +  } +  case SDTCisOpSmallerThanOp: { +    unsigned BResNo = 0; +    TreePatternNode *BigOperand = +      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, +                    BResNo); +    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), +                                 BigOperand->getExtType(BResNo)); +  } +  case SDTCisEltOfVec: { +    unsigned VResNo = 0; +    TreePatternNode *VecOperand = +      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, +                    VResNo); +    // Filter vector types out of VecOperand that don't have the right element +    // type. +    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), +                                     NodeToApply->getExtType(ResNo)); +  } +  case SDTCisSubVecOfVec: { +    unsigned VResNo = 0; +    TreePatternNode *BigVecOperand = +      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, +                    VResNo); + +    // Filter vector types out of BigVecOperand that don't have the +    // right subvector type. +    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), +                                           NodeToApply->getExtType(ResNo)); +  } +  case SDTCVecEltisVT: { +    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); +  } +  case SDTCisSameNumEltsAs: { +    unsigned OResNo = 0; +    TreePatternNode *OtherNode = +      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, +                    N, NodeInfo, OResNo); +    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), +                                 NodeToApply->getExtType(ResNo)); +  } +  case SDTCisSameSizeAs: { +    unsigned OResNo = 0; +    TreePatternNode *OtherNode = +      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, +                    N, NodeInfo, OResNo); +    return TI.EnforceSameSize(OtherNode->getExtType(OResNo), +                              NodeToApply->getExtType(ResNo)); +  } +  } +  llvm_unreachable("Invalid ConstraintType!"); +} + +// Update the node type to match an instruction operand or result as specified +// in the ins or outs lists on the instruction definition. Return true if the +// type was actually changed. +bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, +                                             Record *Operand, +                                             TreePattern &TP) { +  // The 'unknown' operand indicates that types should be inferred from the +  // context. +  if (Operand->isSubClassOf("unknown_class")) +    return false; + +  // The Operand class specifies a type directly. +  if (Operand->isSubClassOf("Operand")) { +    Record *R = Operand->getValueAsDef("Type"); +    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); +    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); +  } + +  // PointerLikeRegClass has a type that is determined at runtime. +  if (Operand->isSubClassOf("PointerLikeRegClass")) +    return UpdateNodeType(ResNo, MVT::iPTR, TP); + +  // Both RegisterClass and RegisterOperand operands derive their types from a +  // register class def. +  Record *RC = nullptr; +  if (Operand->isSubClassOf("RegisterClass")) +    RC = Operand; +  else if (Operand->isSubClassOf("RegisterOperand")) +    RC = Operand->getValueAsDef("RegClass"); + +  assert(RC && "Unknown operand type"); +  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); +  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); +} + +bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { +  for (unsigned i = 0, e = Types.size(); i != e; ++i) +    if (!TP.getInfer().isConcrete(Types[i], true)) +      return true; +  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +    if (getChild(i)->ContainsUnresolvedType(TP)) +      return true; +  return false; +} + +bool TreePatternNode::hasProperTypeByHwMode() const { +  for (const TypeSetByHwMode &S : Types) +    if (!S.isDefaultOnly()) +      return true; +  for (const TreePatternNodePtr &C : Children) +    if (C->hasProperTypeByHwMode()) +      return true; +  return false; +} + +bool TreePatternNode::hasPossibleType() const { +  for (const TypeSetByHwMode &S : Types) +    if (!S.isPossible()) +      return false; +  for (const TreePatternNodePtr &C : Children) +    if (!C->hasPossibleType()) +      return false; +  return true; +} + +bool TreePatternNode::setDefaultMode(unsigned Mode) { +  for (TypeSetByHwMode &S : Types) { +    S.makeSimple(Mode); +    // Check if the selected mode had a type conflict. +    if (S.get(DefaultMode).empty()) +      return false; +  } +  for (const TreePatternNodePtr &C : Children) +    if (!C->setDefaultMode(Mode)) +      return false; +  return true; +} + +//===----------------------------------------------------------------------===// +// SDNodeInfo implementation +// +SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { +  EnumName    = R->getValueAsString("Opcode"); +  SDClassName = R->getValueAsString("SDClass"); +  Record *TypeProfile = R->getValueAsDef("TypeProfile"); +  NumResults = TypeProfile->getValueAsInt("NumResults"); +  NumOperands = TypeProfile->getValueAsInt("NumOperands"); + +  // Parse the properties. +  Properties = parseSDPatternOperatorProperties(R); + +  // Parse the type constraints. +  std::vector<Record*> ConstraintList = +    TypeProfile->getValueAsListOfDefs("Constraints"); +  for (Record *R : ConstraintList) +    TypeConstraints.emplace_back(R, CGH); +} + +/// getKnownType - If the type constraints on this node imply a fixed type +/// (e.g. all stores return void, etc), then return it as an +/// MVT::SimpleValueType.  Otherwise, return EEVT::Other. +MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { +  unsigned NumResults = getNumResults(); +  assert(NumResults <= 1 && +         "We only work with nodes with zero or one result so far!"); +  assert(ResNo == 0 && "Only handles single result nodes so far"); + +  for (const SDTypeConstraint &Constraint : TypeConstraints) { +    // Make sure that this applies to the correct node result. +    if (Constraint.OperandNo >= NumResults)  // FIXME: need value # +      continue; + +    switch (Constraint.ConstraintType) { +    default: break; +    case SDTypeConstraint::SDTCisVT: +      if (Constraint.VVT.isSimple()) +        return Constraint.VVT.getSimple().SimpleTy; +      break; +    case SDTypeConstraint::SDTCisPtrTy: +      return MVT::iPTR; +    } +  } +  return MVT::Other; +} + +//===----------------------------------------------------------------------===// +// TreePatternNode implementation +// + +static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { +  if (Operator->getName() == "set" || +      Operator->getName() == "implicit") +    return 0;  // All return nothing. + +  if (Operator->isSubClassOf("Intrinsic")) +    return CDP.getIntrinsic(Operator).IS.RetVTs.size(); + +  if (Operator->isSubClassOf("SDNode")) +    return CDP.getSDNodeInfo(Operator).getNumResults(); + +  if (Operator->isSubClassOf("PatFrags")) { +    // If we've already parsed this pattern fragment, get it.  Otherwise, handle +    // the forward reference case where one pattern fragment references another +    // before it is processed. +    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { +      // The number of results of a fragment with alternative records is the +      // maximum number of results across all alternatives. +      unsigned NumResults = 0; +      for (auto T : PFRec->getTrees()) +        NumResults = std::max(NumResults, T->getNumTypes()); +      return NumResults; +    } + +    ListInit *LI = Operator->getValueAsListInit("Fragments"); +    assert(LI && "Invalid Fragment"); +    unsigned NumResults = 0; +    for (Init *I : LI->getValues()) { +      Record *Op = nullptr; +      if (DagInit *Dag = dyn_cast<DagInit>(I)) +        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) +          Op = DI->getDef(); +      assert(Op && "Invalid Fragment"); +      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); +    } +    return NumResults; +  } + +  if (Operator->isSubClassOf("Instruction")) { +    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); + +    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; + +    // Subtract any defaulted outputs. +    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { +      Record *OperandNode = InstInfo.Operands[i].Rec; + +      if (OperandNode->isSubClassOf("OperandWithDefaultOps") && +          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) +        --NumDefsToAdd; +    } + +    // Add on one implicit def if it has a resolvable type. +    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) +      ++NumDefsToAdd; +    return NumDefsToAdd; +  } + +  if (Operator->isSubClassOf("SDNodeXForm")) +    return 1;  // FIXME: Generalize SDNodeXForm + +  if (Operator->isSubClassOf("ValueType")) +    return 1;  // A type-cast of one result. + +  if (Operator->isSubClassOf("ComplexPattern")) +    return 1; + +  errs() << *Operator; +  PrintFatalError("Unhandled node in GetNumNodeResults"); +} + +void TreePatternNode::print(raw_ostream &OS) const { +  if (isLeaf()) +    OS << *getLeafValue(); +  else +    OS << '(' << getOperator()->getName(); + +  for (unsigned i = 0, e = Types.size(); i != e; ++i) { +    OS << ':'; +    getExtType(i).writeToStream(OS); +  } + +  if (!isLeaf()) { +    if (getNumChildren() != 0) { +      OS << " "; +      getChild(0)->print(OS); +      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { +        OS << ", "; +        getChild(i)->print(OS); +      } +    } +    OS << ")"; +  } + +  for (const TreePredicateCall &Pred : PredicateCalls) { +    OS << "<<P:"; +    if (Pred.Scope) +      OS << Pred.Scope << ":"; +    OS << Pred.Fn.getFnName() << ">>"; +  } +  if (TransformFn) +    OS << "<<X:" << TransformFn->getName() << ">>"; +  if (!getName().empty()) +    OS << ":$" << getName(); + +  for (const ScopedName &Name : NamesAsPredicateArg) +    OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); +} +void TreePatternNode::dump() const { +  print(errs()); +} + +/// isIsomorphicTo - Return true if this node is recursively +/// isomorphic to the specified node.  For this comparison, the node's +/// entire state is considered. The assigned name is ignored, since +/// nodes with differing names are considered isomorphic. However, if +/// the assigned name is present in the dependent variable set, then +/// the assigned name is considered significant and the node is +/// isomorphic if the names match. +bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, +                                     const MultipleUseVarSet &DepVars) const { +  if (N == this) return true; +  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || +      getPredicateCalls() != N->getPredicateCalls() || +      getTransformFn() != N->getTransformFn()) +    return false; + +  if (isLeaf()) { +    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { +      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { +        return ((DI->getDef() == NDI->getDef()) +                && (DepVars.find(getName()) == DepVars.end() +                    || getName() == N->getName())); +      } +    } +    return getLeafValue() == N->getLeafValue(); +  } + +  if (N->getOperator() != getOperator() || +      N->getNumChildren() != getNumChildren()) return false; +  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) +      return false; +  return true; +} + +/// clone - Make a copy of this tree and all of its children. +/// +TreePatternNodePtr TreePatternNode::clone() const { +  TreePatternNodePtr New; +  if (isLeaf()) { +    New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); +  } else { +    std::vector<TreePatternNodePtr> CChildren; +    CChildren.reserve(Children.size()); +    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +      CChildren.push_back(getChild(i)->clone()); +    New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), +                                            getNumTypes()); +  } +  New->setName(getName()); +  New->setNamesAsPredicateArg(getNamesAsPredicateArg()); +  New->Types = Types; +  New->setPredicateCalls(getPredicateCalls()); +  New->setTransformFn(getTransformFn()); +  return New; +} + +/// RemoveAllTypes - Recursively strip all the types of this tree. +void TreePatternNode::RemoveAllTypes() { +  // Reset to unknown type. +  std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); +  if (isLeaf()) return; +  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +    getChild(i)->RemoveAllTypes(); +} + + +/// SubstituteFormalArguments - Replace the formal arguments in this tree +/// with actual values specified by ArgMap. +void TreePatternNode::SubstituteFormalArguments( +    std::map<std::string, TreePatternNodePtr> &ArgMap) { +  if (isLeaf()) return; + +  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { +    TreePatternNode *Child = getChild(i); +    if (Child->isLeaf()) { +      Init *Val = Child->getLeafValue(); +      // Note that, when substituting into an output pattern, Val might be an +      // UnsetInit. +      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && +          cast<DefInit>(Val)->getDef()->getName() == "node")) { +        // We found a use of a formal argument, replace it with its value. +        TreePatternNodePtr NewChild = ArgMap[Child->getName()]; +        assert(NewChild && "Couldn't find formal argument!"); +        assert((Child->getPredicateCalls().empty() || +                NewChild->getPredicateCalls() == Child->getPredicateCalls()) && +               "Non-empty child predicate clobbered!"); +        setChild(i, std::move(NewChild)); +      } +    } else { +      getChild(i)->SubstituteFormalArguments(ArgMap); +    } +  } +} + + +/// InlinePatternFragments - If this pattern refers to any pattern +/// fragments, return the set of inlined versions (this can be more than +/// one if a PatFrags record has multiple alternatives). +void TreePatternNode::InlinePatternFragments( +  TreePatternNodePtr T, TreePattern &TP, +  std::vector<TreePatternNodePtr> &OutAlternatives) { + +  if (TP.hasError()) +    return; + +  if (isLeaf()) { +    OutAlternatives.push_back(T);  // nothing to do. +    return; +  } + +  Record *Op = getOperator(); + +  if (!Op->isSubClassOf("PatFrags")) { +    if (getNumChildren() == 0) { +      OutAlternatives.push_back(T); +      return; +    } + +    // Recursively inline children nodes. +    std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; +    ChildAlternatives.resize(getNumChildren()); +    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { +      TreePatternNodePtr Child = getChildShared(i); +      Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); +      // If there are no alternatives for any child, there are no +      // alternatives for this expression as whole. +      if (ChildAlternatives[i].empty()) +        return; + +      for (auto NewChild : ChildAlternatives[i]) +        assert((Child->getPredicateCalls().empty() || +                NewChild->getPredicateCalls() == Child->getPredicateCalls()) && +               "Non-empty child predicate clobbered!"); +    } + +    // The end result is an all-pairs construction of the resultant pattern. +    std::vector<unsigned> Idxs; +    Idxs.resize(ChildAlternatives.size()); +    bool NotDone; +    do { +      // Create the variant and add it to the output list. +      std::vector<TreePatternNodePtr> NewChildren; +      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) +        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); +      TreePatternNodePtr R = std::make_shared<TreePatternNode>( +          getOperator(), std::move(NewChildren), getNumTypes()); + +      // Copy over properties. +      R->setName(getName()); +      R->setNamesAsPredicateArg(getNamesAsPredicateArg()); +      R->setPredicateCalls(getPredicateCalls()); +      R->setTransformFn(getTransformFn()); +      for (unsigned i = 0, e = getNumTypes(); i != e; ++i) +        R->setType(i, getExtType(i)); +      for (unsigned i = 0, e = getNumResults(); i != e; ++i) +        R->setResultIndex(i, getResultIndex(i)); + +      // Register alternative. +      OutAlternatives.push_back(R); + +      // Increment indices to the next permutation by incrementing the +      // indices from last index backward, e.g., generate the sequence +      // [0, 0], [0, 1], [1, 0], [1, 1]. +      int IdxsIdx; +      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { +        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) +          Idxs[IdxsIdx] = 0; +        else +          break; +      } +      NotDone = (IdxsIdx >= 0); +    } while (NotDone); + +    return; +  } + +  // Otherwise, we found a reference to a fragment.  First, look up its +  // TreePattern record. +  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); + +  // Verify that we are passing the right number of operands. +  if (Frag->getNumArgs() != Children.size()) { +    TP.error("'" + Op->getName() + "' fragment requires " + +             Twine(Frag->getNumArgs()) + " operands!"); +    return; +  } + +  TreePredicateFn PredFn(Frag); +  unsigned Scope = 0; +  if (TreePredicateFn(Frag).usesOperands()) +    Scope = TP.getDAGPatterns().allocateScope(); + +  // Compute the map of formal to actual arguments. +  std::map<std::string, TreePatternNodePtr> ArgMap; +  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { +    TreePatternNodePtr Child = getChildShared(i); +    if (Scope != 0) { +      Child = Child->clone(); +      Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); +    } +    ArgMap[Frag->getArgName(i)] = Child; +  } + +  // Loop over all fragment alternatives. +  for (auto Alternative : Frag->getTrees()) { +    TreePatternNodePtr FragTree = Alternative->clone(); + +    if (!PredFn.isAlwaysTrue()) +      FragTree->addPredicateCall(PredFn, Scope); + +    // Resolve formal arguments to their actual value. +    if (Frag->getNumArgs()) +      FragTree->SubstituteFormalArguments(ArgMap); + +    // Transfer types.  Note that the resolved alternative may have fewer +    // (but not more) results than the PatFrags node. +    FragTree->setName(getName()); +    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) +      FragTree->UpdateNodeType(i, getExtType(i), TP); + +    // Transfer in the old predicates. +    for (const TreePredicateCall &Pred : getPredicateCalls()) +      FragTree->addPredicateCall(Pred); + +    // The fragment we inlined could have recursive inlining that is needed.  See +    // if there are any pattern fragments in it and inline them as needed. +    FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); +  } +} + +/// getImplicitType - Check to see if the specified record has an implicit +/// type which should be applied to it.  This will infer the type of register +/// references from the register file information, for example. +/// +/// When Unnamed is set, return the type of a DAG operand with no name, such as +/// the F8RC register class argument in: +/// +///   (COPY_TO_REGCLASS GPR:$src, F8RC) +/// +/// When Unnamed is false, return the type of a named DAG operand such as the +/// GPR:$src operand above. +/// +static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, +                                       bool NotRegisters, +                                       bool Unnamed, +                                       TreePattern &TP) { +  CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); + +  // Check to see if this is a register operand. +  if (R->isSubClassOf("RegisterOperand")) { +    assert(ResNo == 0 && "Regoperand ref only has one result!"); +    if (NotRegisters) +      return TypeSetByHwMode(); // Unknown. +    Record *RegClass = R->getValueAsDef("RegClass"); +    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); +    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); +  } + +  // Check to see if this is a register or a register class. +  if (R->isSubClassOf("RegisterClass")) { +    assert(ResNo == 0 && "Regclass ref only has one result!"); +    // An unnamed register class represents itself as an i32 immediate, for +    // example on a COPY_TO_REGCLASS instruction. +    if (Unnamed) +      return TypeSetByHwMode(MVT::i32); + +    // In a named operand, the register class provides the possible set of +    // types. +    if (NotRegisters) +      return TypeSetByHwMode(); // Unknown. +    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); +    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); +  } + +  if (R->isSubClassOf("PatFrags")) { +    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); +    // Pattern fragment types will be resolved when they are inlined. +    return TypeSetByHwMode(); // Unknown. +  } + +  if (R->isSubClassOf("Register")) { +    assert(ResNo == 0 && "Registers only produce one result!"); +    if (NotRegisters) +      return TypeSetByHwMode(); // Unknown. +    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); +    return TypeSetByHwMode(T.getRegisterVTs(R)); +  } + +  if (R->isSubClassOf("SubRegIndex")) { +    assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); +    return TypeSetByHwMode(MVT::i32); +  } + +  if (R->isSubClassOf("ValueType")) { +    assert(ResNo == 0 && "This node only has one result!"); +    // An unnamed VTSDNode represents itself as an MVT::Other immediate. +    // +    //   (sext_inreg GPR:$src, i16) +    //                         ~~~ +    if (Unnamed) +      return TypeSetByHwMode(MVT::Other); +    // With a name, the ValueType simply provides the type of the named +    // variable. +    // +    //   (sext_inreg i32:$src, i16) +    //               ~~~~~~~~ +    if (NotRegisters) +      return TypeSetByHwMode(); // Unknown. +    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); +    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); +  } + +  if (R->isSubClassOf("CondCode")) { +    assert(ResNo == 0 && "This node only has one result!"); +    // Using a CondCodeSDNode. +    return TypeSetByHwMode(MVT::Other); +  } + +  if (R->isSubClassOf("ComplexPattern")) { +    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); +    if (NotRegisters) +      return TypeSetByHwMode(); // Unknown. +    return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); +  } +  if (R->isSubClassOf("PointerLikeRegClass")) { +    assert(ResNo == 0 && "Regclass can only have one result!"); +    TypeSetByHwMode VTS(MVT::iPTR); +    TP.getInfer().expandOverloads(VTS); +    return VTS; +  } + +  if (R->getName() == "node" || R->getName() == "srcvalue" || +      R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || +      R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { +    // Placeholder. +    return TypeSetByHwMode(); // Unknown. +  } + +  if (R->isSubClassOf("Operand")) { +    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); +    Record *T = R->getValueAsDef("Type"); +    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); +  } + +  TP.error("Unknown node flavor used in pattern: " + R->getName()); +  return TypeSetByHwMode(MVT::Other); +} + + +/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the +/// CodeGenIntrinsic information for it, otherwise return a null pointer. +const CodeGenIntrinsic *TreePatternNode:: +getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { +  if (getOperator() != CDP.get_intrinsic_void_sdnode() && +      getOperator() != CDP.get_intrinsic_w_chain_sdnode() && +      getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) +    return nullptr; + +  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); +  return &CDP.getIntrinsicInfo(IID); +} + +/// getComplexPatternInfo - If this node corresponds to a ComplexPattern, +/// return the ComplexPattern information, otherwise return null. +const ComplexPattern * +TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { +  Record *Rec; +  if (isLeaf()) { +    DefInit *DI = dyn_cast<DefInit>(getLeafValue()); +    if (!DI) +      return nullptr; +    Rec = DI->getDef(); +  } else +    Rec = getOperator(); + +  if (!Rec->isSubClassOf("ComplexPattern")) +    return nullptr; +  return &CGP.getComplexPattern(Rec); +} + +unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { +  // A ComplexPattern specifically declares how many results it fills in. +  if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) +    return CP->getNumOperands(); + +  // If MIOperandInfo is specified, that gives the count. +  if (isLeaf()) { +    DefInit *DI = dyn_cast<DefInit>(getLeafValue()); +    if (DI && DI->getDef()->isSubClassOf("Operand")) { +      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); +      if (MIOps->getNumArgs()) +        return MIOps->getNumArgs(); +    } +  } + +  // Otherwise there is just one result. +  return 1; +} + +/// NodeHasProperty - Return true if this node has the specified property. +bool TreePatternNode::NodeHasProperty(SDNP Property, +                                      const CodeGenDAGPatterns &CGP) const { +  if (isLeaf()) { +    if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) +      return CP->hasProperty(Property); + +    return false; +  } + +  if (Property != SDNPHasChain) { +    // The chain proprety is already present on the different intrinsic node +    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed +    // on the intrinsic. Anything else is specific to the individual intrinsic. +    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) +      return Int->hasProperty(Property); +  } + +  if (!Operator->isSubClassOf("SDPatternOperator")) +    return false; + +  return CGP.getSDNodeInfo(Operator).hasProperty(Property); +} + + + + +/// TreeHasProperty - Return true if any node in this tree has the specified +/// property. +bool TreePatternNode::TreeHasProperty(SDNP Property, +                                      const CodeGenDAGPatterns &CGP) const { +  if (NodeHasProperty(Property, CGP)) +    return true; +  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +    if (getChild(i)->TreeHasProperty(Property, CGP)) +      return true; +  return false; +} + +/// isCommutativeIntrinsic - Return true if the node corresponds to a +/// commutative intrinsic. +bool +TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { +  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) +    return Int->isCommutative; +  return false; +} + +static bool isOperandClass(const TreePatternNode *N, StringRef Class) { +  if (!N->isLeaf()) +    return N->getOperator()->isSubClassOf(Class); + +  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); +  if (DI && DI->getDef()->isSubClassOf(Class)) +    return true; + +  return false; +} + +static void emitTooManyOperandsError(TreePattern &TP, +                                     StringRef InstName, +                                     unsigned Expected, +                                     unsigned Actual) { +  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + +           " operands but expected only " + Twine(Expected) + "!"); +} + +static void emitTooFewOperandsError(TreePattern &TP, +                                    StringRef InstName, +                                    unsigned Actual) { +  TP.error("Instruction '" + InstName + +           "' expects more than the provided " + Twine(Actual) + " operands!"); +} + +/// ApplyTypeConstraints - Apply all of the type constraints relevant to +/// this node and its children in the tree.  This returns true if it makes a +/// change, false otherwise.  If a type contradiction is found, flag an error. +bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { +  if (TP.hasError()) +    return false; + +  CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); +  if (isLeaf()) { +    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { +      // If it's a regclass or something else known, include the type. +      bool MadeChange = false; +      for (unsigned i = 0, e = Types.size(); i != e; ++i) +        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, +                                                        NotRegisters, +                                                        !hasName(), TP), TP); +      return MadeChange; +    } + +    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { +      assert(Types.size() == 1 && "Invalid IntInit"); + +      // Int inits are always integers. :) +      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); + +      if (!TP.getInfer().isConcrete(Types[0], false)) +        return MadeChange; + +      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); +      for (auto &P : VVT) { +        MVT::SimpleValueType VT = P.second.SimpleTy; +        if (VT == MVT::iPTR || VT == MVT::iPTRAny) +          continue; +        unsigned Size = MVT(VT).getSizeInBits(); +        // Make sure that the value is representable for this type. +        if (Size >= 32) +          continue; +        // Check that the value doesn't use more bits than we have. It must +        // either be a sign- or zero-extended equivalent of the original. +        int64_t SignBitAndAbove = II->getValue() >> (Size - 1); +        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || +            SignBitAndAbove == 1) +          continue; + +        TP.error("Integer value '" + Twine(II->getValue()) + +                 "' is out of range for type '" + getEnumName(VT) + "'!"); +        break; +      } +      return MadeChange; +    } + +    return false; +  } + +  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { +    bool MadeChange = false; + +    // Apply the result type to the node. +    unsigned NumRetVTs = Int->IS.RetVTs.size(); +    unsigned NumParamVTs = Int->IS.ParamVTs.size(); + +    for (unsigned i = 0, e = NumRetVTs; i != e; ++i) +      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); + +    if (getNumChildren() != NumParamVTs + 1) { +      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + +               " operands, not " + Twine(getNumChildren() - 1) + " operands!"); +      return false; +    } + +    // Apply type info to the intrinsic ID. +    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); + +    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { +      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); + +      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; +      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); +      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); +    } +    return MadeChange; +  } + +  if (getOperator()->isSubClassOf("SDNode")) { +    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); + +    // Check that the number of operands is sane.  Negative operands -> varargs. +    if (NI.getNumOperands() >= 0 && +        getNumChildren() != (unsigned)NI.getNumOperands()) { +      TP.error(getOperator()->getName() + " node requires exactly " + +               Twine(NI.getNumOperands()) + " operands!"); +      return false; +    } + +    bool MadeChange = false; +    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); +    MadeChange |= NI.ApplyTypeConstraints(this, TP); +    return MadeChange; +  } + +  if (getOperator()->isSubClassOf("Instruction")) { +    const DAGInstruction &Inst = CDP.getInstruction(getOperator()); +    CodeGenInstruction &InstInfo = +      CDP.getTargetInfo().getInstruction(getOperator()); + +    bool MadeChange = false; + +    // Apply the result types to the node, these come from the things in the +    // (outs) list of the instruction. +    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, +                                        Inst.getNumResults()); +    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) +      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); + +    // If the instruction has implicit defs, we apply the first one as a result. +    // FIXME: This sucks, it should apply all implicit defs. +    if (!InstInfo.ImplicitDefs.empty()) { +      unsigned ResNo = NumResultsToAdd; + +      // FIXME: Generalize to multiple possible types and multiple possible +      // ImplicitDefs. +      MVT::SimpleValueType VT = +        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); + +      if (VT != MVT::Other) +        MadeChange |= UpdateNodeType(ResNo, VT, TP); +    } + +    // If this is an INSERT_SUBREG, constrain the source and destination VTs to +    // be the same. +    if (getOperator()->getName() == "INSERT_SUBREG") { +      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); +      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); +      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); +    } else if (getOperator()->getName() == "REG_SEQUENCE") { +      // We need to do extra, custom typechecking for REG_SEQUENCE since it is +      // variadic. + +      unsigned NChild = getNumChildren(); +      if (NChild < 3) { +        TP.error("REG_SEQUENCE requires at least 3 operands!"); +        return false; +      } + +      if (NChild % 2 == 0) { +        TP.error("REG_SEQUENCE requires an odd number of operands!"); +        return false; +      } + +      if (!isOperandClass(getChild(0), "RegisterClass")) { +        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); +        return false; +      } + +      for (unsigned I = 1; I < NChild; I += 2) { +        TreePatternNode *SubIdxChild = getChild(I + 1); +        if (!isOperandClass(SubIdxChild, "SubRegIndex")) { +          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + +                   Twine(I + 1) + "!"); +          return false; +        } +      } +    } + +    // If one or more operands with a default value appear at the end of the +    // formal operand list for an instruction, we allow them to be overridden +    // by optional operands provided in the pattern. +    // +    // But if an operand B without a default appears at any point after an +    // operand A with a default, then we don't allow A to be overridden, +    // because there would be no way to specify whether the next operand in +    // the pattern was intended to override A or skip it. +    unsigned NonOverridableOperands = Inst.getNumOperands(); +    while (NonOverridableOperands > 0 && +           CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1))) +      --NonOverridableOperands; + +    unsigned ChildNo = 0; +    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { +      Record *OperandNode = Inst.getOperand(i); + +      // If the operand has a default value, do we use it? We must use the +      // default if we've run out of children of the pattern DAG to consume, +      // or if the operand is followed by a non-defaulted one. +      if (CDP.operandHasDefault(OperandNode) && +          (i < NonOverridableOperands || ChildNo >= getNumChildren())) +        continue; + +      // If we have run out of child nodes and there _isn't_ a default +      // value we can use for the next operand, give an error. +      if (ChildNo >= getNumChildren()) { +        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); +        return false; +      } + +      TreePatternNode *Child = getChild(ChildNo++); +      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op. + +      // If the operand has sub-operands, they may be provided by distinct +      // child patterns, so attempt to match each sub-operand separately. +      if (OperandNode->isSubClassOf("Operand")) { +        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); +        if (unsigned NumArgs = MIOpInfo->getNumArgs()) { +          // But don't do that if the whole operand is being provided by +          // a single ComplexPattern-related Operand. + +          if (Child->getNumMIResults(CDP) < NumArgs) { +            // Match first sub-operand against the child we already have. +            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); +            MadeChange |= +              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); + +            // And the remaining sub-operands against subsequent children. +            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { +              if (ChildNo >= getNumChildren()) { +                emitTooFewOperandsError(TP, getOperator()->getName(), +                                        getNumChildren()); +                return false; +              } +              Child = getChild(ChildNo++); + +              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); +              MadeChange |= +                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); +            } +            continue; +          } +        } +      } + +      // If we didn't match by pieces above, attempt to match the whole +      // operand now. +      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); +    } + +    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { +      emitTooManyOperandsError(TP, getOperator()->getName(), +                               ChildNo, getNumChildren()); +      return false; +    } + +    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); +    return MadeChange; +  } + +  if (getOperator()->isSubClassOf("ComplexPattern")) { +    bool MadeChange = false; + +    for (unsigned i = 0; i < getNumChildren(); ++i) +      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); + +    return MadeChange; +  } + +  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); + +  // Node transforms always take one operand. +  if (getNumChildren() != 1) { +    TP.error("Node transform '" + getOperator()->getName() + +             "' requires one operand!"); +    return false; +  } + +  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); +  return MadeChange; +} + +/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the +/// RHS of a commutative operation, not the on LHS. +static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { +  if (!N->isLeaf() && N->getOperator()->getName() == "imm") +    return true; +  if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) +    return true; +  return false; +} + + +/// canPatternMatch - If it is impossible for this pattern to match on this +/// target, fill in Reason and return false.  Otherwise, return true.  This is +/// used as a sanity check for .td files (to prevent people from writing stuff +/// that can never possibly work), and to prevent the pattern permuter from +/// generating stuff that is useless. +bool TreePatternNode::canPatternMatch(std::string &Reason, +                                      const CodeGenDAGPatterns &CDP) { +  if (isLeaf()) return true; + +  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) +    if (!getChild(i)->canPatternMatch(Reason, CDP)) +      return false; + +  // If this is an intrinsic, handle cases that would make it not match.  For +  // example, if an operand is required to be an immediate. +  if (getOperator()->isSubClassOf("Intrinsic")) { +    // TODO: +    return true; +  } + +  if (getOperator()->isSubClassOf("ComplexPattern")) +    return true; + +  // If this node is a commutative operator, check that the LHS isn't an +  // immediate. +  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); +  bool isCommIntrinsic = isCommutativeIntrinsic(CDP); +  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { +    // Scan all of the operands of the node and make sure that only the last one +    // is a constant node, unless the RHS also is. +    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { +      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. +      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) +        if (OnlyOnRHSOfCommutative(getChild(i))) { +          Reason="Immediate value must be on the RHS of commutative operators!"; +          return false; +        } +    } +  } + +  return true; +} + +//===----------------------------------------------------------------------===// +// TreePattern implementation +// + +TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, +                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), +                         isInputPattern(isInput), HasError(false), +                         Infer(*this) { +  for (Init *I : RawPat->getValues()) +    Trees.push_back(ParseTreePattern(I, "")); +} + +TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, +                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), +                         isInputPattern(isInput), HasError(false), +                         Infer(*this) { +  Trees.push_back(ParseTreePattern(Pat, "")); +} + +TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, +                         CodeGenDAGPatterns &cdp) +    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), +      Infer(*this) { +  Trees.push_back(Pat); +} + +void TreePattern::error(const Twine &Msg) { +  if (HasError) +    return; +  dump(); +  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); +  HasError = true; +} + +void TreePattern::ComputeNamedNodes() { +  for (TreePatternNodePtr &Tree : Trees) +    ComputeNamedNodes(Tree.get()); +} + +void TreePattern::ComputeNamedNodes(TreePatternNode *N) { +  if (!N->getName().empty()) +    NamedNodes[N->getName()].push_back(N); + +  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) +    ComputeNamedNodes(N->getChild(i)); +} + +TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, +                                                 StringRef OpName) { +  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { +    Record *R = DI->getDef(); + +    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a +    // TreePatternNode of its own.  For example: +    ///   (foo GPR, imm) -> (foo GPR, (imm)) +    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) +      return ParseTreePattern( +        DagInit::get(DI, nullptr, +                     std::vector<std::pair<Init*, StringInit*> >()), +        OpName); + +    // Input argument? +    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); +    if (R->getName() == "node" && !OpName.empty()) { +      if (OpName.empty()) +        error("'node' argument requires a name to match with operand list"); +      Args.push_back(OpName); +    } + +    Res->setName(OpName); +    return Res; +  } + +  // ?:$name or just $name. +  if (isa<UnsetInit>(TheInit)) { +    if (OpName.empty()) +      error("'?' argument requires a name to match with operand list"); +    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); +    Args.push_back(OpName); +    Res->setName(OpName); +    return Res; +  } + +  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { +    if (!OpName.empty()) +      error("Constant int or bit argument should not have a name!"); +    if (isa<BitInit>(TheInit)) +      TheInit = TheInit->convertInitializerTo(IntRecTy::get()); +    return std::make_shared<TreePatternNode>(TheInit, 1); +  } + +  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { +    // Turn this into an IntInit. +    Init *II = BI->convertInitializerTo(IntRecTy::get()); +    if (!II || !isa<IntInit>(II)) +      error("Bits value must be constants!"); +    return ParseTreePattern(II, OpName); +  } + +  DagInit *Dag = dyn_cast<DagInit>(TheInit); +  if (!Dag) { +    TheInit->print(errs()); +    error("Pattern has unexpected init kind!"); +  } +  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); +  if (!OpDef) error("Pattern has unexpected operator type!"); +  Record *Operator = OpDef->getDef(); + +  if (Operator->isSubClassOf("ValueType")) { +    // If the operator is a ValueType, then this must be "type cast" of a leaf +    // node. +    if (Dag->getNumArgs() != 1) +      error("Type cast only takes one operand!"); + +    TreePatternNodePtr New = +        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); + +    // Apply the type cast. +    assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); +    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); +    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); + +    if (!OpName.empty()) +      error("ValueType cast should not have a name!"); +    return New; +  } + +  // Verify that this is something that makes sense for an operator. +  if (!Operator->isSubClassOf("PatFrags") && +      !Operator->isSubClassOf("SDNode") && +      !Operator->isSubClassOf("Instruction") && +      !Operator->isSubClassOf("SDNodeXForm") && +      !Operator->isSubClassOf("Intrinsic") && +      !Operator->isSubClassOf("ComplexPattern") && +      Operator->getName() != "set" && +      Operator->getName() != "implicit") +    error("Unrecognized node '" + Operator->getName() + "'!"); + +  //  Check to see if this is something that is illegal in an input pattern. +  if (isInputPattern) { +    if (Operator->isSubClassOf("Instruction") || +        Operator->isSubClassOf("SDNodeXForm")) +      error("Cannot use '" + Operator->getName() + "' in an input pattern!"); +  } else { +    if (Operator->isSubClassOf("Intrinsic")) +      error("Cannot use '" + Operator->getName() + "' in an output pattern!"); + +    if (Operator->isSubClassOf("SDNode") && +        Operator->getName() != "imm" && +        Operator->getName() != "timm" && +        Operator->getName() != "fpimm" && +        Operator->getName() != "tglobaltlsaddr" && +        Operator->getName() != "tconstpool" && +        Operator->getName() != "tjumptable" && +        Operator->getName() != "tframeindex" && +        Operator->getName() != "texternalsym" && +        Operator->getName() != "tblockaddress" && +        Operator->getName() != "tglobaladdr" && +        Operator->getName() != "bb" && +        Operator->getName() != "vt" && +        Operator->getName() != "mcsym") +      error("Cannot use '" + Operator->getName() + "' in an output pattern!"); +  } + +  std::vector<TreePatternNodePtr> Children; + +  // Parse all the operands. +  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) +    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); + +  // Get the actual number of results before Operator is converted to an intrinsic +  // node (which is hard-coded to have either zero or one result). +  unsigned NumResults = GetNumNodeResults(Operator, CDP); + +  // If the operator is an intrinsic, then this is just syntactic sugar for +  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and +  // convert the intrinsic name to a number. +  if (Operator->isSubClassOf("Intrinsic")) { +    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); +    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; + +    // If this intrinsic returns void, it must have side-effects and thus a +    // chain. +    if (Int.IS.RetVTs.empty()) +      Operator = getDAGPatterns().get_intrinsic_void_sdnode(); +    else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) +      // Has side-effects, requires chain. +      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); +    else // Otherwise, no chain. +      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); + +    Children.insert(Children.begin(), +                    std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); +  } + +  if (Operator->isSubClassOf("ComplexPattern")) { +    for (unsigned i = 0; i < Children.size(); ++i) { +      TreePatternNodePtr Child = Children[i]; + +      if (Child->getName().empty()) +        error("All arguments to a ComplexPattern must be named"); + +      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" +      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; +      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". +      auto OperandId = std::make_pair(Operator, i); +      auto PrevOp = ComplexPatternOperands.find(Child->getName()); +      if (PrevOp != ComplexPatternOperands.end()) { +        if (PrevOp->getValue() != OperandId) +          error("All ComplexPattern operands must appear consistently: " +                "in the same order in just one ComplexPattern instance."); +      } else +        ComplexPatternOperands[Child->getName()] = OperandId; +    } +  } + +  TreePatternNodePtr Result = +      std::make_shared<TreePatternNode>(Operator, std::move(Children), +                                        NumResults); +  Result->setName(OpName); + +  if (Dag->getName()) { +    assert(Result->getName().empty()); +    Result->setName(Dag->getNameStr()); +  } +  return Result; +} + +/// SimplifyTree - See if we can simplify this tree to eliminate something that +/// will never match in favor of something obvious that will.  This is here +/// strictly as a convenience to target authors because it allows them to write +/// more type generic things and have useless type casts fold away. +/// +/// This returns true if any change is made. +static bool SimplifyTree(TreePatternNodePtr &N) { +  if (N->isLeaf()) +    return false; + +  // If we have a bitconvert with a resolved type and if the source and +  // destination types are the same, then the bitconvert is useless, remove it. +  if (N->getOperator()->getName() == "bitconvert" && +      N->getExtType(0).isValueTypeByHwMode(false) && +      N->getExtType(0) == N->getChild(0)->getExtType(0) && +      N->getName().empty()) { +    N = N->getChildShared(0); +    SimplifyTree(N); +    return true; +  } + +  // Walk all children. +  bool MadeChange = false; +  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { +    TreePatternNodePtr Child = N->getChildShared(i); +    MadeChange |= SimplifyTree(Child); +    N->setChild(i, std::move(Child)); +  } +  return MadeChange; +} + + + +/// InferAllTypes - Infer/propagate as many types throughout the expression +/// patterns as possible.  Return true if all types are inferred, false +/// otherwise.  Flags an error if a type contradiction is found. +bool TreePattern:: +InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { +  if (NamedNodes.empty()) +    ComputeNamedNodes(); + +  bool MadeChange = true; +  while (MadeChange) { +    MadeChange = false; +    for (TreePatternNodePtr &Tree : Trees) { +      MadeChange |= Tree->ApplyTypeConstraints(*this, false); +      MadeChange |= SimplifyTree(Tree); +    } + +    // If there are constraints on our named nodes, apply them. +    for (auto &Entry : NamedNodes) { +      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; + +      // If we have input named node types, propagate their types to the named +      // values here. +      if (InNamedTypes) { +        if (!InNamedTypes->count(Entry.getKey())) { +          error("Node '" + std::string(Entry.getKey()) + +                "' in output pattern but not input pattern"); +          return true; +        } + +        const SmallVectorImpl<TreePatternNode*> &InNodes = +          InNamedTypes->find(Entry.getKey())->second; + +        // The input types should be fully resolved by now. +        for (TreePatternNode *Node : Nodes) { +          // If this node is a register class, and it is the root of the pattern +          // then we're mapping something onto an input register.  We allow +          // changing the type of the input register in this case.  This allows +          // us to match things like: +          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; +          if (Node == Trees[0].get() && Node->isLeaf()) { +            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); +            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || +                       DI->getDef()->isSubClassOf("RegisterOperand"))) +              continue; +          } + +          assert(Node->getNumTypes() == 1 && +                 InNodes[0]->getNumTypes() == 1 && +                 "FIXME: cannot name multiple result nodes yet"); +          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), +                                             *this); +        } +      } + +      // If there are multiple nodes with the same name, they must all have the +      // same type. +      if (Entry.second.size() > 1) { +        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { +          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; +          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && +                 "FIXME: cannot name multiple result nodes yet"); + +          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); +          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); +        } +      } +    } +  } + +  bool HasUnresolvedTypes = false; +  for (const TreePatternNodePtr &Tree : Trees) +    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); +  return !HasUnresolvedTypes; +} + +void TreePattern::print(raw_ostream &OS) const { +  OS << getRecord()->getName(); +  if (!Args.empty()) { +    OS << "(" << Args[0]; +    for (unsigned i = 1, e = Args.size(); i != e; ++i) +      OS << ", " << Args[i]; +    OS << ")"; +  } +  OS << ": "; + +  if (Trees.size() > 1) +    OS << "[\n"; +  for (const TreePatternNodePtr &Tree : Trees) { +    OS << "\t"; +    Tree->print(OS); +    OS << "\n"; +  } + +  if (Trees.size() > 1) +    OS << "]\n"; +} + +void TreePattern::dump() const { print(errs()); } + +//===----------------------------------------------------------------------===// +// CodeGenDAGPatterns implementation +// + +CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, +                                       PatternRewriterFn PatternRewriter) +    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), +      PatternRewriter(PatternRewriter) { + +  Intrinsics = CodeGenIntrinsicTable(Records, false); +  TgtIntrinsics = CodeGenIntrinsicTable(Records, true); +  ParseNodeInfo(); +  ParseNodeTransforms(); +  ParseComplexPatterns(); +  ParsePatternFragments(); +  ParseDefaultOperands(); +  ParseInstructions(); +  ParsePatternFragments(/*OutFrags*/true); +  ParsePatterns(); + +  // Break patterns with parameterized types into a series of patterns, +  // where each one has a fixed type and is predicated on the conditions +  // of the associated HW mode. +  ExpandHwModeBasedTypes(); + +  // Generate variants.  For example, commutative patterns can match +  // multiple ways.  Add them to PatternsToMatch as well. +  GenerateVariants(); + +  // Infer instruction flags.  For example, we can detect loads, +  // stores, and side effects in many cases by examining an +  // instruction's pattern. +  InferInstructionFlags(); + +  // Verify that instruction flags match the patterns. +  VerifyInstructionFlags(); +} + +Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { +  Record *N = Records.getDef(Name); +  if (!N || !N->isSubClassOf("SDNode")) +    PrintFatalError("Error getting SDNode '" + Name + "'!"); + +  return N; +} + +// Parse all of the SDNode definitions for the target, populating SDNodes. +void CodeGenDAGPatterns::ParseNodeInfo() { +  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); +  const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); + +  while (!Nodes.empty()) { +    Record *R = Nodes.back(); +    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); +    Nodes.pop_back(); +  } + +  // Get the builtin intrinsic nodes. +  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void"); +  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain"); +  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); +} + +/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms +/// map, and emit them to the file as functions. +void CodeGenDAGPatterns::ParseNodeTransforms() { +  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); +  while (!Xforms.empty()) { +    Record *XFormNode = Xforms.back(); +    Record *SDNode = XFormNode->getValueAsDef("Opcode"); +    StringRef Code = XFormNode->getValueAsString("XFormFunction"); +    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); + +    Xforms.pop_back(); +  } +} + +void CodeGenDAGPatterns::ParseComplexPatterns() { +  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); +  while (!AMs.empty()) { +    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); +    AMs.pop_back(); +  } +} + + +/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td +/// file, building up the PatternFragments map.  After we've collected them all, +/// inline fragments together as necessary, so that there are no references left +/// inside a pattern fragment to a pattern fragment. +/// +void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { +  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); + +  // First step, parse all of the fragments. +  for (Record *Frag : Fragments) { +    if (OutFrags != Frag->isSubClassOf("OutPatFrag")) +      continue; + +    ListInit *LI = Frag->getValueAsListInit("Fragments"); +    TreePattern *P = +        (PatternFragments[Frag] = std::make_unique<TreePattern>( +             Frag, LI, !Frag->isSubClassOf("OutPatFrag"), +             *this)).get(); + +    // Validate the argument list, converting it to set, to discard duplicates. +    std::vector<std::string> &Args = P->getArgList(); +    // Copy the args so we can take StringRefs to them. +    auto ArgsCopy = Args; +    SmallDenseSet<StringRef, 4> OperandsSet; +    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); + +    if (OperandsSet.count("")) +      P->error("Cannot have unnamed 'node' values in pattern fragment!"); + +    // Parse the operands list. +    DagInit *OpsList = Frag->getValueAsDag("Operands"); +    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); +    // Special cases: ops == outs == ins. Different names are used to +    // improve readability. +    if (!OpsOp || +        (OpsOp->getDef()->getName() != "ops" && +         OpsOp->getDef()->getName() != "outs" && +         OpsOp->getDef()->getName() != "ins")) +      P->error("Operands list should start with '(ops ... '!"); + +    // Copy over the arguments. +    Args.clear(); +    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { +      if (!isa<DefInit>(OpsList->getArg(j)) || +          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") +        P->error("Operands list should all be 'node' values."); +      if (!OpsList->getArgName(j)) +        P->error("Operands list should have names for each operand!"); +      StringRef ArgNameStr = OpsList->getArgNameStr(j); +      if (!OperandsSet.count(ArgNameStr)) +        P->error("'" + ArgNameStr + +                 "' does not occur in pattern or was multiply specified!"); +      OperandsSet.erase(ArgNameStr); +      Args.push_back(ArgNameStr); +    } + +    if (!OperandsSet.empty()) +      P->error("Operands list does not contain an entry for operand '" + +               *OperandsSet.begin() + "'!"); + +    // If there is a node transformation corresponding to this, keep track of +    // it. +    Record *Transform = Frag->getValueAsDef("OperandTransform"); +    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform? +      for (auto T : P->getTrees()) +        T->setTransformFn(Transform); +  } + +  // Now that we've parsed all of the tree fragments, do a closure on them so +  // that there are not references to PatFrags left inside of them. +  for (Record *Frag : Fragments) { +    if (OutFrags != Frag->isSubClassOf("OutPatFrag")) +      continue; + +    TreePattern &ThePat = *PatternFragments[Frag]; +    ThePat.InlinePatternFragments(); + +    // Infer as many types as possible.  Don't worry about it if we don't infer +    // all of them, some may depend on the inputs of the pattern.  Also, don't +    // validate type sets; validation may cause spurious failures e.g. if a +    // fragment needs floating-point types but the current target does not have +    // any (this is only an error if that fragment is ever used!). +    { +      TypeInfer::SuppressValidation SV(ThePat.getInfer()); +      ThePat.InferAllTypes(); +      ThePat.resetError(); +    } + +    // If debugging, print out the pattern fragment result. +    LLVM_DEBUG(ThePat.dump()); +  } +} + +void CodeGenDAGPatterns::ParseDefaultOperands() { +  std::vector<Record*> DefaultOps; +  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); + +  // Find some SDNode. +  assert(!SDNodes.empty() && "No SDNodes parsed?"); +  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); + +  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { +    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); + +    // Clone the DefaultInfo dag node, changing the operator from 'ops' to +    // SomeSDnode so that we can parse this. +    std::vector<std::pair<Init*, StringInit*> > Ops; +    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) +      Ops.push_back(std::make_pair(DefaultInfo->getArg(op), +                                   DefaultInfo->getArgName(op))); +    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); + +    // Create a TreePattern to parse this. +    TreePattern P(DefaultOps[i], DI, false, *this); +    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); + +    // Copy the operands over into a DAGDefaultOperand. +    DAGDefaultOperand DefaultOpInfo; + +    const TreePatternNodePtr &T = P.getTree(0); +    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { +      TreePatternNodePtr TPN = T->getChildShared(op); +      while (TPN->ApplyTypeConstraints(P, false)) +        /* Resolve all types */; + +      if (TPN->ContainsUnresolvedType(P)) { +        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + +                        DefaultOps[i]->getName() + +                        "' doesn't have a concrete type!"); +      } +      DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); +    } + +    // Insert it into the DefaultOperands map so we can find it later. +    DefaultOperands[DefaultOps[i]] = DefaultOpInfo; +  } +} + +/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an +/// instruction input.  Return true if this is a real use. +static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, +                      std::map<std::string, TreePatternNodePtr> &InstInputs) { +  // No name -> not interesting. +  if (Pat->getName().empty()) { +    if (Pat->isLeaf()) { +      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); +      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || +                 DI->getDef()->isSubClassOf("RegisterOperand"))) +        I.error("Input " + DI->getDef()->getName() + " must be named!"); +    } +    return false; +  } + +  Record *Rec; +  if (Pat->isLeaf()) { +    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); +    if (!DI) +      I.error("Input $" + Pat->getName() + " must be an identifier!"); +    Rec = DI->getDef(); +  } else { +    Rec = Pat->getOperator(); +  } + +  // SRCVALUE nodes are ignored. +  if (Rec->getName() == "srcvalue") +    return false; + +  TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; +  if (!Slot) { +    Slot = Pat; +    return true; +  } +  Record *SlotRec; +  if (Slot->isLeaf()) { +    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); +  } else { +    assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); +    SlotRec = Slot->getOperator(); +  } + +  // Ensure that the inputs agree if we've already seen this input. +  if (Rec != SlotRec) +    I.error("All $" + Pat->getName() + " inputs must agree with each other"); +  // Ensure that the types can agree as well. +  Slot->UpdateNodeType(0, Pat->getExtType(0), I); +  Pat->UpdateNodeType(0, Slot->getExtType(0), I); +  if (Slot->getExtTypes() != Pat->getExtTypes()) +    I.error("All $" + Pat->getName() + " inputs must agree with each other"); +  return true; +} + +/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is +/// part of "I", the instruction), computing the set of inputs and outputs of +/// the pattern.  Report errors if we see anything naughty. +void CodeGenDAGPatterns::FindPatternInputsAndOutputs( +    TreePattern &I, TreePatternNodePtr Pat, +    std::map<std::string, TreePatternNodePtr> &InstInputs, +    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> +        &InstResults, +    std::vector<Record *> &InstImpResults) { + +  // The instruction pattern still has unresolved fragments.  For *named* +  // nodes we must resolve those here.  This may not result in multiple +  // alternatives. +  if (!Pat->getName().empty()) { +    TreePattern SrcPattern(I.getRecord(), Pat, true, *this); +    SrcPattern.InlinePatternFragments(); +    SrcPattern.InferAllTypes(); +    Pat = SrcPattern.getOnlyTree(); +  } + +  if (Pat->isLeaf()) { +    bool isUse = HandleUse(I, Pat, InstInputs); +    if (!isUse && Pat->getTransformFn()) +      I.error("Cannot specify a transform function for a non-input value!"); +    return; +  } + +  if (Pat->getOperator()->getName() == "implicit") { +    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { +      TreePatternNode *Dest = Pat->getChild(i); +      if (!Dest->isLeaf()) +        I.error("implicitly defined value should be a register!"); + +      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); +      if (!Val || !Val->getDef()->isSubClassOf("Register")) +        I.error("implicitly defined value should be a register!"); +      InstImpResults.push_back(Val->getDef()); +    } +    return; +  } + +  if (Pat->getOperator()->getName() != "set") { +    // If this is not a set, verify that the children nodes are not void typed, +    // and recurse. +    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { +      if (Pat->getChild(i)->getNumTypes() == 0) +        I.error("Cannot have void nodes inside of patterns!"); +      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, +                                  InstResults, InstImpResults); +    } + +    // If this is a non-leaf node with no children, treat it basically as if +    // it were a leaf.  This handles nodes like (imm). +    bool isUse = HandleUse(I, Pat, InstInputs); + +    if (!isUse && Pat->getTransformFn()) +      I.error("Cannot specify a transform function for a non-input value!"); +    return; +  } + +  // Otherwise, this is a set, validate and collect instruction results. +  if (Pat->getNumChildren() == 0) +    I.error("set requires operands!"); + +  if (Pat->getTransformFn()) +    I.error("Cannot specify a transform function on a set node!"); + +  // Check the set destinations. +  unsigned NumDests = Pat->getNumChildren()-1; +  for (unsigned i = 0; i != NumDests; ++i) { +    TreePatternNodePtr Dest = Pat->getChildShared(i); +    // For set destinations we also must resolve fragments here. +    TreePattern DestPattern(I.getRecord(), Dest, false, *this); +    DestPattern.InlinePatternFragments(); +    DestPattern.InferAllTypes(); +    Dest = DestPattern.getOnlyTree(); + +    if (!Dest->isLeaf()) +      I.error("set destination should be a register!"); + +    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); +    if (!Val) { +      I.error("set destination should be a register!"); +      continue; +    } + +    if (Val->getDef()->isSubClassOf("RegisterClass") || +        Val->getDef()->isSubClassOf("ValueType") || +        Val->getDef()->isSubClassOf("RegisterOperand") || +        Val->getDef()->isSubClassOf("PointerLikeRegClass")) { +      if (Dest->getName().empty()) +        I.error("set destination must have a name!"); +      if (InstResults.count(Dest->getName())) +        I.error("cannot set '" + Dest->getName() + "' multiple times"); +      InstResults[Dest->getName()] = Dest; +    } else if (Val->getDef()->isSubClassOf("Register")) { +      InstImpResults.push_back(Val->getDef()); +    } else { +      I.error("set destination should be a register!"); +    } +  } + +  // Verify and collect info from the computation. +  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, +                              InstResults, InstImpResults); +} + +//===----------------------------------------------------------------------===// +// Instruction Analysis +//===----------------------------------------------------------------------===// + +class InstAnalyzer { +  const CodeGenDAGPatterns &CDP; +public: +  bool hasSideEffects; +  bool mayStore; +  bool mayLoad; +  bool isBitcast; +  bool isVariadic; +  bool hasChain; + +  InstAnalyzer(const CodeGenDAGPatterns &cdp) +    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), +      isBitcast(false), isVariadic(false), hasChain(false) {} + +  void Analyze(const PatternToMatch &Pat) { +    const TreePatternNode *N = Pat.getSrcPattern(); +    AnalyzeNode(N); +    // These properties are detected only on the root node. +    isBitcast = IsNodeBitcast(N); +  } + +private: +  bool IsNodeBitcast(const TreePatternNode *N) const { +    if (hasSideEffects || mayLoad || mayStore || isVariadic) +      return false; + +    if (N->isLeaf()) +      return false; +    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) +      return false; + +    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); +    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) +      return false; +    return OpInfo.getEnumName() == "ISD::BITCAST"; +  } + +public: +  void AnalyzeNode(const TreePatternNode *N) { +    if (N->isLeaf()) { +      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { +        Record *LeafRec = DI->getDef(); +        // Handle ComplexPattern leaves. +        if (LeafRec->isSubClassOf("ComplexPattern")) { +          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); +          if (CP.hasProperty(SDNPMayStore)) mayStore = true; +          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; +          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; +        } +      } +      return; +    } + +    // Analyze children. +    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) +      AnalyzeNode(N->getChild(i)); + +    // Notice properties of the node. +    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; +    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; +    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; +    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; +    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; + +    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { +      // If this is an intrinsic, analyze it. +      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) +        mayLoad = true;// These may load memory. + +      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) +        mayStore = true;// Intrinsics that can write to memory are 'mayStore'. + +      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || +          IntInfo->hasSideEffects) +        // ReadWriteMem intrinsics can have other strange effects. +        hasSideEffects = true; +    } +  } + +}; + +static bool InferFromPattern(CodeGenInstruction &InstInfo, +                             const InstAnalyzer &PatInfo, +                             Record *PatDef) { +  bool Error = false; + +  // Remember where InstInfo got its flags. +  if (InstInfo.hasUndefFlags()) +      InstInfo.InferredFrom = PatDef; + +  // Check explicitly set flags for consistency. +  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && +      !InstInfo.hasSideEffects_Unset) { +    // Allow explicitly setting hasSideEffects = 1 on instructions, even when +    // the pattern has no side effects. That could be useful for div/rem +    // instructions that may trap. +    if (!InstInfo.hasSideEffects) { +      Error = true; +      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + +                 Twine(InstInfo.hasSideEffects)); +    } +  } + +  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { +    Error = true; +    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + +               Twine(InstInfo.mayStore)); +  } + +  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { +    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. +    // Some targets translate immediates to loads. +    if (!InstInfo.mayLoad) { +      Error = true; +      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + +                 Twine(InstInfo.mayLoad)); +    } +  } + +  // Transfer inferred flags. +  InstInfo.hasSideEffects |= PatInfo.hasSideEffects; +  InstInfo.mayStore |= PatInfo.mayStore; +  InstInfo.mayLoad |= PatInfo.mayLoad; + +  // These flags are silently added without any verification. +  // FIXME: To match historical behavior of TableGen, for now add those flags +  // only when we're inferring from the primary instruction pattern. +  if (PatDef->isSubClassOf("Instruction")) { +    InstInfo.isBitcast |= PatInfo.isBitcast; +    InstInfo.hasChain |= PatInfo.hasChain; +    InstInfo.hasChain_Inferred = true; +  } + +  // Don't infer isVariadic. This flag means something different on SDNodes and +  // instructions. For example, a CALL SDNode is variadic because it has the +  // call arguments as operands, but a CALL instruction is not variadic - it +  // has argument registers as implicit, not explicit uses. + +  return Error; +} + +/// hasNullFragReference - Return true if the DAG has any reference to the +/// null_frag operator. +static bool hasNullFragReference(DagInit *DI) { +  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); +  if (!OpDef) return false; +  Record *Operator = OpDef->getDef(); + +  // If this is the null fragment, return true. +  if (Operator->getName() == "null_frag") return true; +  // If any of the arguments reference the null fragment, return true. +  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { +    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); +    if (Arg && hasNullFragReference(Arg)) +      return true; +  } + +  return false; +} + +/// hasNullFragReference - Return true if any DAG in the list references +/// the null_frag operator. +static bool hasNullFragReference(ListInit *LI) { +  for (Init *I : LI->getValues()) { +    DagInit *DI = dyn_cast<DagInit>(I); +    assert(DI && "non-dag in an instruction Pattern list?!"); +    if (hasNullFragReference(DI)) +      return true; +  } +  return false; +} + +/// Get all the instructions in a tree. +static void +getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { +  if (Tree->isLeaf()) +    return; +  if (Tree->getOperator()->isSubClassOf("Instruction")) +    Instrs.push_back(Tree->getOperator()); +  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) +    getInstructionsInTree(Tree->getChild(i), Instrs); +} + +/// Check the class of a pattern leaf node against the instruction operand it +/// represents. +static bool checkOperandClass(CGIOperandList::OperandInfo &OI, +                              Record *Leaf) { +  if (OI.Rec == Leaf) +    return true; + +  // Allow direct value types to be used in instruction set patterns. +  // The type will be checked later. +  if (Leaf->isSubClassOf("ValueType")) +    return true; + +  // Patterns can also be ComplexPattern instances. +  if (Leaf->isSubClassOf("ComplexPattern")) +    return true; + +  return false; +} + +void CodeGenDAGPatterns::parseInstructionPattern( +    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { + +  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); + +  // Parse the instruction. +  TreePattern I(CGI.TheDef, Pat, true, *this); + +  // InstInputs - Keep track of all of the inputs of the instruction, along +  // with the record they are declared as. +  std::map<std::string, TreePatternNodePtr> InstInputs; + +  // InstResults - Keep track of all the virtual registers that are 'set' +  // in the instruction, including what reg class they are. +  MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> +      InstResults; + +  std::vector<Record*> InstImpResults; + +  // Verify that the top-level forms in the instruction are of void type, and +  // fill in the InstResults map. +  SmallString<32> TypesString; +  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { +    TypesString.clear(); +    TreePatternNodePtr Pat = I.getTree(j); +    if (Pat->getNumTypes() != 0) { +      raw_svector_ostream OS(TypesString); +      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { +        if (k > 0) +          OS << ", "; +        Pat->getExtType(k).writeToStream(OS); +      } +      I.error("Top-level forms in instruction pattern should have" +               " void types, has types " + +               OS.str()); +    } + +    // Find inputs and outputs, and verify the structure of the uses/defs. +    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, +                                InstImpResults); +  } + +  // Now that we have inputs and outputs of the pattern, inspect the operands +  // list for the instruction.  This determines the order that operands are +  // added to the machine instruction the node corresponds to. +  unsigned NumResults = InstResults.size(); + +  // Parse the operands list from the (ops) list, validating it. +  assert(I.getArgList().empty() && "Args list should still be empty here!"); + +  // Check that all of the results occur first in the list. +  std::vector<Record*> Results; +  std::vector<unsigned> ResultIndices; +  SmallVector<TreePatternNodePtr, 2> ResNodes; +  for (unsigned i = 0; i != NumResults; ++i) { +    if (i == CGI.Operands.size()) { +      const std::string &OpName = +          std::find_if(InstResults.begin(), InstResults.end(), +                       [](const std::pair<std::string, TreePatternNodePtr> &P) { +                         return P.second; +                       }) +              ->first; + +      I.error("'" + OpName + "' set but does not appear in operand list!"); +    } + +    const std::string &OpName = CGI.Operands[i].Name; + +    // Check that it exists in InstResults. +    auto InstResultIter = InstResults.find(OpName); +    if (InstResultIter == InstResults.end() || !InstResultIter->second) +      I.error("Operand $" + OpName + " does not exist in operand list!"); + +    TreePatternNodePtr RNode = InstResultIter->second; +    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); +    ResNodes.push_back(std::move(RNode)); +    if (!R) +      I.error("Operand $" + OpName + " should be a set destination: all " +               "outputs must occur before inputs in operand list!"); + +    if (!checkOperandClass(CGI.Operands[i], R)) +      I.error("Operand $" + OpName + " class mismatch!"); + +    // Remember the return type. +    Results.push_back(CGI.Operands[i].Rec); + +    // Remember the result index. +    ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); + +    // Okay, this one checks out. +    InstResultIter->second = nullptr; +  } + +  // Loop over the inputs next. +  std::vector<TreePatternNodePtr> ResultNodeOperands; +  std::vector<Record*> Operands; +  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { +    CGIOperandList::OperandInfo &Op = CGI.Operands[i]; +    const std::string &OpName = Op.Name; +    if (OpName.empty()) +      I.error("Operand #" + Twine(i) + " in operands list has no name!"); + +    if (!InstInputs.count(OpName)) { +      // If this is an operand with a DefaultOps set filled in, we can ignore +      // this.  When we codegen it, we will do so as always executed. +      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { +        // Does it have a non-empty DefaultOps field?  If so, ignore this +        // operand. +        if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) +          continue; +      } +      I.error("Operand $" + OpName + +               " does not appear in the instruction pattern"); +    } +    TreePatternNodePtr InVal = InstInputs[OpName]; +    InstInputs.erase(OpName);   // It occurred, remove from map. + +    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { +      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); +      if (!checkOperandClass(Op, InRec)) +        I.error("Operand $" + OpName + "'s register class disagrees" +                 " between the operand and pattern"); +    } +    Operands.push_back(Op.Rec); + +    // Construct the result for the dest-pattern operand list. +    TreePatternNodePtr OpNode = InVal->clone(); + +    // No predicate is useful on the result. +    OpNode->clearPredicateCalls(); + +    // Promote the xform function to be an explicit node if set. +    if (Record *Xform = OpNode->getTransformFn()) { +      OpNode->setTransformFn(nullptr); +      std::vector<TreePatternNodePtr> Children; +      Children.push_back(OpNode); +      OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), +                                                 OpNode->getNumTypes()); +    } + +    ResultNodeOperands.push_back(std::move(OpNode)); +  } + +  if (!InstInputs.empty()) +    I.error("Input operand $" + InstInputs.begin()->first + +            " occurs in pattern but not in operands list!"); + +  TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( +      I.getRecord(), std::move(ResultNodeOperands), +      GetNumNodeResults(I.getRecord(), *this)); +  // Copy fully inferred output node types to instruction result pattern. +  for (unsigned i = 0; i != NumResults; ++i) { +    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); +    ResultPattern->setType(i, ResNodes[i]->getExtType(0)); +    ResultPattern->setResultIndex(i, ResultIndices[i]); +  } + +  // FIXME: Assume only the first tree is the pattern. The others are clobber +  // nodes. +  TreePatternNodePtr Pattern = I.getTree(0); +  TreePatternNodePtr SrcPattern; +  if (Pattern->getOperator()->getName() == "set") { +    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); +  } else{ +    // Not a set (store or something?) +    SrcPattern = Pattern; +  } + +  // Create and insert the instruction. +  // FIXME: InstImpResults should not be part of DAGInstruction. +  Record *R = I.getRecord(); +  DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), +                   std::forward_as_tuple(Results, Operands, InstImpResults, +                                         SrcPattern, ResultPattern)); + +  LLVM_DEBUG(I.dump()); +} + +/// ParseInstructions - Parse all of the instructions, inlining and resolving +/// any fragments involved.  This populates the Instructions list with fully +/// resolved instructions. +void CodeGenDAGPatterns::ParseInstructions() { +  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); + +  for (Record *Instr : Instrs) { +    ListInit *LI = nullptr; + +    if (isa<ListInit>(Instr->getValueInit("Pattern"))) +      LI = Instr->getValueAsListInit("Pattern"); + +    // If there is no pattern, only collect minimal information about the +    // instruction for its operand list.  We have to assume that there is one +    // result, as we have no detailed info. A pattern which references the +    // null_frag operator is as-if no pattern were specified. Normally this +    // is from a multiclass expansion w/ a SDPatternOperator passed in as +    // null_frag. +    if (!LI || LI->empty() || hasNullFragReference(LI)) { +      std::vector<Record*> Results; +      std::vector<Record*> Operands; + +      CodeGenInstruction &InstInfo = Target.getInstruction(Instr); + +      if (InstInfo.Operands.size() != 0) { +        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) +          Results.push_back(InstInfo.Operands[j].Rec); + +        // The rest are inputs. +        for (unsigned j = InstInfo.Operands.NumDefs, +               e = InstInfo.Operands.size(); j < e; ++j) +          Operands.push_back(InstInfo.Operands[j].Rec); +      } + +      // Create and insert the instruction. +      std::vector<Record*> ImpResults; +      Instructions.insert(std::make_pair(Instr, +                            DAGInstruction(Results, Operands, ImpResults))); +      continue;  // no pattern. +    } + +    CodeGenInstruction &CGI = Target.getInstruction(Instr); +    parseInstructionPattern(CGI, LI, Instructions); +  } + +  // If we can, convert the instructions to be patterns that are matched! +  for (auto &Entry : Instructions) { +    Record *Instr = Entry.first; +    DAGInstruction &TheInst = Entry.second; +    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); +    TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); + +    if (SrcPattern && ResultPattern) { +      TreePattern Pattern(Instr, SrcPattern, true, *this); +      TreePattern Result(Instr, ResultPattern, false, *this); +      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); +    } +  } +} + +typedef std::pair<TreePatternNode *, unsigned> NameRecord; + +static void FindNames(TreePatternNode *P, +                      std::map<std::string, NameRecord> &Names, +                      TreePattern *PatternTop) { +  if (!P->getName().empty()) { +    NameRecord &Rec = Names[P->getName()]; +    // If this is the first instance of the name, remember the node. +    if (Rec.second++ == 0) +      Rec.first = P; +    else if (Rec.first->getExtTypes() != P->getExtTypes()) +      PatternTop->error("repetition of value: $" + P->getName() + +                        " where different uses have different types!"); +  } + +  if (!P->isLeaf()) { +    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) +      FindNames(P->getChild(i), Names, PatternTop); +  } +} + +std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { +  std::vector<Predicate> Preds; +  for (Init *I : L->getValues()) { +    if (DefInit *Pred = dyn_cast<DefInit>(I)) +      Preds.push_back(Pred->getDef()); +    else +      llvm_unreachable("Non-def on the list"); +  } + +  // Sort so that different orders get canonicalized to the same string. +  llvm::sort(Preds); +  return Preds; +} + +void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, +                                           PatternToMatch &&PTM) { +  // Do some sanity checking on the pattern we're about to match. +  std::string Reason; +  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { +    PrintWarning(Pattern->getRecord()->getLoc(), +      Twine("Pattern can never match: ") + Reason); +    return; +  } + +  // If the source pattern's root is a complex pattern, that complex pattern +  // must specify the nodes it can potentially match. +  if (const ComplexPattern *CP = +        PTM.getSrcPattern()->getComplexPatternInfo(*this)) +    if (CP->getRootNodes().empty()) +      Pattern->error("ComplexPattern at root must specify list of opcodes it" +                     " could match"); + + +  // Find all of the named values in the input and output, ensure they have the +  // same type. +  std::map<std::string, NameRecord> SrcNames, DstNames; +  FindNames(PTM.getSrcPattern(), SrcNames, Pattern); +  FindNames(PTM.getDstPattern(), DstNames, Pattern); + +  // Scan all of the named values in the destination pattern, rejecting them if +  // they don't exist in the input pattern. +  for (const auto &Entry : DstNames) { +    if (SrcNames[Entry.first].first == nullptr) +      Pattern->error("Pattern has input without matching name in output: $" + +                     Entry.first); +  } + +  // Scan all of the named values in the source pattern, rejecting them if the +  // name isn't used in the dest, and isn't used to tie two values together. +  for (const auto &Entry : SrcNames) +    if (DstNames[Entry.first].first == nullptr && +        SrcNames[Entry.first].second == 1) +      Pattern->error("Pattern has dead named input: $" + Entry.first); + +  PatternsToMatch.push_back(PTM); +} + +void CodeGenDAGPatterns::InferInstructionFlags() { +  ArrayRef<const CodeGenInstruction*> Instructions = +    Target.getInstructionsByEnumValue(); + +  unsigned Errors = 0; + +  // Try to infer flags from all patterns in PatternToMatch.  These include +  // both the primary instruction patterns (which always come first) and +  // patterns defined outside the instruction. +  for (const PatternToMatch &PTM : ptms()) { +    // We can only infer from single-instruction patterns, otherwise we won't +    // know which instruction should get the flags. +    SmallVector<Record*, 8> PatInstrs; +    getInstructionsInTree(PTM.getDstPattern(), PatInstrs); +    if (PatInstrs.size() != 1) +      continue; + +    // Get the single instruction. +    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); + +    // Only infer properties from the first pattern. We'll verify the others. +    if (InstInfo.InferredFrom) +      continue; + +    InstAnalyzer PatInfo(*this); +    PatInfo.Analyze(PTM); +    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); +  } + +  if (Errors) +    PrintFatalError("pattern conflicts"); + +  // If requested by the target, guess any undefined properties. +  if (Target.guessInstructionProperties()) { +    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { +      CodeGenInstruction *InstInfo = +        const_cast<CodeGenInstruction *>(Instructions[i]); +      if (InstInfo->InferredFrom) +        continue; +      // The mayLoad and mayStore flags default to false. +      // Conservatively assume hasSideEffects if it wasn't explicit. +      if (InstInfo->hasSideEffects_Unset) +        InstInfo->hasSideEffects = true; +    } +    return; +  } + +  // Complain about any flags that are still undefined. +  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { +    CodeGenInstruction *InstInfo = +      const_cast<CodeGenInstruction *>(Instructions[i]); +    if (InstInfo->InferredFrom) +      continue; +    if (InstInfo->hasSideEffects_Unset) +      PrintError(InstInfo->TheDef->getLoc(), +                 "Can't infer hasSideEffects from patterns"); +    if (InstInfo->mayStore_Unset) +      PrintError(InstInfo->TheDef->getLoc(), +                 "Can't infer mayStore from patterns"); +    if (InstInfo->mayLoad_Unset) +      PrintError(InstInfo->TheDef->getLoc(), +                 "Can't infer mayLoad from patterns"); +  } +} + + +/// Verify instruction flags against pattern node properties. +void CodeGenDAGPatterns::VerifyInstructionFlags() { +  unsigned Errors = 0; +  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { +    const PatternToMatch &PTM = *I; +    SmallVector<Record*, 8> Instrs; +    getInstructionsInTree(PTM.getDstPattern(), Instrs); +    if (Instrs.empty()) +      continue; + +    // Count the number of instructions with each flag set. +    unsigned NumSideEffects = 0; +    unsigned NumStores = 0; +    unsigned NumLoads = 0; +    for (const Record *Instr : Instrs) { +      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); +      NumSideEffects += InstInfo.hasSideEffects; +      NumStores += InstInfo.mayStore; +      NumLoads += InstInfo.mayLoad; +    } + +    // Analyze the source pattern. +    InstAnalyzer PatInfo(*this); +    PatInfo.Analyze(PTM); + +    // Collect error messages. +    SmallVector<std::string, 4> Msgs; + +    // Check for missing flags in the output. +    // Permit extra flags for now at least. +    if (PatInfo.hasSideEffects && !NumSideEffects) +      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); + +    // Don't verify store flags on instructions with side effects. At least for +    // intrinsics, side effects implies mayStore. +    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) +      Msgs.push_back("pattern may store, but mayStore isn't set"); + +    // Similarly, mayStore implies mayLoad on intrinsics. +    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) +      Msgs.push_back("pattern may load, but mayLoad isn't set"); + +    // Print error messages. +    if (Msgs.empty()) +      continue; +    ++Errors; + +    for (const std::string &Msg : Msgs) +      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + +                 (Instrs.size() == 1 ? +                  "instruction" : "output instructions")); +    // Provide the location of the relevant instruction definitions. +    for (const Record *Instr : Instrs) { +      if (Instr != PTM.getSrcRecord()) +        PrintError(Instr->getLoc(), "defined here"); +      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); +      if (InstInfo.InferredFrom && +          InstInfo.InferredFrom != InstInfo.TheDef && +          InstInfo.InferredFrom != PTM.getSrcRecord()) +        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); +    } +  } +  if (Errors) +    PrintFatalError("Errors in DAG patterns"); +} + +/// Given a pattern result with an unresolved type, see if we can find one +/// instruction with an unresolved result type.  Force this result type to an +/// arbitrary element if it's possible types to converge results. +static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { +  if (N->isLeaf()) +    return false; + +  // Analyze children. +  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) +    if (ForceArbitraryInstResultType(N->getChild(i), TP)) +      return true; + +  if (!N->getOperator()->isSubClassOf("Instruction")) +    return false; + +  // If this type is already concrete or completely unknown we can't do +  // anything. +  TypeInfer &TI = TP.getInfer(); +  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { +    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) +      continue; + +    // Otherwise, force its type to an arbitrary choice. +    if (TI.forceArbitrary(N->getExtType(i))) +      return true; +  } + +  return false; +} + +// Promote xform function to be an explicit node wherever set. +static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { +  if (Record *Xform = N->getTransformFn()) { +      N->setTransformFn(nullptr); +      std::vector<TreePatternNodePtr> Children; +      Children.push_back(PromoteXForms(N)); +      return std::make_shared<TreePatternNode>(Xform, std::move(Children), +                                               N->getNumTypes()); +  } + +  if (!N->isLeaf()) +    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { +      TreePatternNodePtr Child = N->getChildShared(i); +      N->setChild(i, PromoteXForms(Child)); +    } +  return N; +} + +void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, +       TreePattern &Pattern, TreePattern &Result, +       const std::vector<Record *> &InstImpResults) { + +  // Inline pattern fragments and expand multiple alternatives. +  Pattern.InlinePatternFragments(); +  Result.InlinePatternFragments(); + +  if (Result.getNumTrees() != 1) +    Result.error("Cannot use multi-alternative fragments in result pattern!"); + +  // Infer types. +  bool IterateInference; +  bool InferredAllPatternTypes, InferredAllResultTypes; +  do { +    // Infer as many types as possible.  If we cannot infer all of them, we +    // can never do anything with this pattern: report it to the user. +    InferredAllPatternTypes = +        Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); + +    // Infer as many types as possible.  If we cannot infer all of them, we +    // can never do anything with this pattern: report it to the user. +    InferredAllResultTypes = +        Result.InferAllTypes(&Pattern.getNamedNodesMap()); + +    IterateInference = false; + +    // Apply the type of the result to the source pattern.  This helps us +    // resolve cases where the input type is known to be a pointer type (which +    // is considered resolved), but the result knows it needs to be 32- or +    // 64-bits.  Infer the other way for good measure. +    for (auto T : Pattern.getTrees()) +      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), +                                        T->getNumTypes()); +         i != e; ++i) { +        IterateInference |= T->UpdateNodeType( +            i, Result.getOnlyTree()->getExtType(i), Result); +        IterateInference |= Result.getOnlyTree()->UpdateNodeType( +            i, T->getExtType(i), Result); +      } + +    // If our iteration has converged and the input pattern's types are fully +    // resolved but the result pattern is not fully resolved, we may have a +    // situation where we have two instructions in the result pattern and +    // the instructions require a common register class, but don't care about +    // what actual MVT is used.  This is actually a bug in our modelling: +    // output patterns should have register classes, not MVTs. +    // +    // In any case, to handle this, we just go through and disambiguate some +    // arbitrary types to the result pattern's nodes. +    if (!IterateInference && InferredAllPatternTypes && +        !InferredAllResultTypes) +      IterateInference = +          ForceArbitraryInstResultType(Result.getTree(0).get(), Result); +  } while (IterateInference); + +  // Verify that we inferred enough types that we can do something with the +  // pattern and result.  If these fire the user has to add type casts. +  if (!InferredAllPatternTypes) +    Pattern.error("Could not infer all types in pattern!"); +  if (!InferredAllResultTypes) { +    Pattern.dump(); +    Result.error("Could not infer all types in pattern result!"); +  } + +  // Promote xform function to be an explicit node wherever set. +  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); + +  TreePattern Temp(Result.getRecord(), DstShared, false, *this); +  Temp.InferAllTypes(); + +  ListInit *Preds = TheDef->getValueAsListInit("Predicates"); +  int Complexity = TheDef->getValueAsInt("AddedComplexity"); + +  if (PatternRewriter) +    PatternRewriter(&Pattern); + +  // A pattern may end up with an "impossible" type, i.e. a situation +  // where all types have been eliminated for some node in this pattern. +  // This could occur for intrinsics that only make sense for a specific +  // value type, and use a specific register class. If, for some mode, +  // that register class does not accept that type, the type inference +  // will lead to a contradiction, which is not an error however, but +  // a sign that this pattern will simply never match. +  if (Temp.getOnlyTree()->hasPossibleType()) +    for (auto T : Pattern.getTrees()) +      if (T->hasPossibleType()) +        AddPatternToMatch(&Pattern, +                          PatternToMatch(TheDef, makePredList(Preds), +                                         T, Temp.getOnlyTree(), +                                         InstImpResults, Complexity, +                                         TheDef->getID())); +} + +void CodeGenDAGPatterns::ParsePatterns() { +  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); + +  for (Record *CurPattern : Patterns) { +    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); + +    // If the pattern references the null_frag, there's nothing to do. +    if (hasNullFragReference(Tree)) +      continue; + +    TreePattern Pattern(CurPattern, Tree, true, *this); + +    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); +    if (LI->empty()) continue;  // no pattern. + +    // Parse the instruction. +    TreePattern Result(CurPattern, LI, false, *this); + +    if (Result.getNumTrees() != 1) +      Result.error("Cannot handle instructions producing instructions " +                   "with temporaries yet!"); + +    // Validate that the input pattern is correct. +    std::map<std::string, TreePatternNodePtr> InstInputs; +    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> +        InstResults; +    std::vector<Record*> InstImpResults; +    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) +      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, +                                  InstResults, InstImpResults); + +    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); +  } +} + +static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { +  for (const TypeSetByHwMode &VTS : N->getExtTypes()) +    for (const auto &I : VTS) +      Modes.insert(I.first); + +  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) +    collectModes(Modes, N->getChild(i)); +} + +void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { +  const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); +  std::map<unsigned,std::vector<Predicate>> ModeChecks; +  std::vector<PatternToMatch> Copy = PatternsToMatch; +  PatternsToMatch.clear(); + +  auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { +    TreePatternNodePtr NewSrc = P.SrcPattern->clone(); +    TreePatternNodePtr NewDst = P.DstPattern->clone(); +    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { +      return; +    } + +    std::vector<Predicate> Preds = P.Predicates; +    const std::vector<Predicate> &MC = ModeChecks[Mode]; +    Preds.insert(Preds.end(), MC.begin(), MC.end()); +    PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), +                                 std::move(NewDst), P.getDstRegs(), +                                 P.getAddedComplexity(), Record::getNewUID(), +                                 Mode); +  }; + +  for (PatternToMatch &P : Copy) { +    TreePatternNodePtr SrcP = nullptr, DstP = nullptr; +    if (P.SrcPattern->hasProperTypeByHwMode()) +      SrcP = P.SrcPattern; +    if (P.DstPattern->hasProperTypeByHwMode()) +      DstP = P.DstPattern; +    if (!SrcP && !DstP) { +      PatternsToMatch.push_back(P); +      continue; +    } + +    std::set<unsigned> Modes; +    if (SrcP) +      collectModes(Modes, SrcP.get()); +    if (DstP) +      collectModes(Modes, DstP.get()); + +    // The predicate for the default mode needs to be constructed for each +    // pattern separately. +    // Since not all modes must be present in each pattern, if a mode m is +    // absent, then there is no point in constructing a check for m. If such +    // a check was created, it would be equivalent to checking the default +    // mode, except not all modes' predicates would be a part of the checking +    // code. The subsequently generated check for the default mode would then +    // have the exact same patterns, but a different predicate code. To avoid +    // duplicated patterns with different predicate checks, construct the +    // default check as a negation of all predicates that are actually present +    // in the source/destination patterns. +    std::vector<Predicate> DefaultPred; + +    for (unsigned M : Modes) { +      if (M == DefaultMode) +        continue; +      if (ModeChecks.find(M) != ModeChecks.end()) +        continue; + +      // Fill the map entry for this mode. +      const HwMode &HM = CGH.getMode(M); +      ModeChecks[M].emplace_back(Predicate(HM.Features, true)); + +      // Add negations of the HM's predicates to the default predicate. +      DefaultPred.emplace_back(Predicate(HM.Features, false)); +    } + +    for (unsigned M : Modes) { +      if (M == DefaultMode) +        continue; +      AppendPattern(P, M); +    } + +    bool HasDefault = Modes.count(DefaultMode); +    if (HasDefault) +      AppendPattern(P, DefaultMode); +  } +} + +/// Dependent variable map for CodeGenDAGPattern variant generation +typedef StringMap<int> DepVarMap; + +static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { +  if (N->isLeaf()) { +    if (N->hasName() && isa<DefInit>(N->getLeafValue())) +      DepMap[N->getName()]++; +  } else { +    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) +      FindDepVarsOf(N->getChild(i), DepMap); +  } +} + +/// Find dependent variables within child patterns +static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { +  DepVarMap depcounts; +  FindDepVarsOf(N, depcounts); +  for (const auto &Pair : depcounts) { +    if (Pair.getValue() > 1) +      DepVars.insert(Pair.getKey()); +  } +} + +#ifndef NDEBUG +/// Dump the dependent variable set: +static void DumpDepVars(MultipleUseVarSet &DepVars) { +  if (DepVars.empty()) { +    LLVM_DEBUG(errs() << "<empty set>"); +  } else { +    LLVM_DEBUG(errs() << "[ "); +    for (const auto &DepVar : DepVars) { +      LLVM_DEBUG(errs() << DepVar.getKey() << " "); +    } +    LLVM_DEBUG(errs() << "]"); +  } +} +#endif + + +/// CombineChildVariants - Given a bunch of permutations of each child of the +/// 'operator' node, put them together in all possible ways. +static void CombineChildVariants( +    TreePatternNodePtr Orig, +    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, +    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, +    const MultipleUseVarSet &DepVars) { +  // Make sure that each operand has at least one variant to choose from. +  for (const auto &Variants : ChildVariants) +    if (Variants.empty()) +      return; + +  // The end result is an all-pairs construction of the resultant pattern. +  std::vector<unsigned> Idxs; +  Idxs.resize(ChildVariants.size()); +  bool NotDone; +  do { +#ifndef NDEBUG +    LLVM_DEBUG(if (!Idxs.empty()) { +      errs() << Orig->getOperator()->getName() << ": Idxs = [ "; +      for (unsigned Idx : Idxs) { +        errs() << Idx << " "; +      } +      errs() << "]\n"; +    }); +#endif +    // Create the variant and add it to the output list. +    std::vector<TreePatternNodePtr> NewChildren; +    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) +      NewChildren.push_back(ChildVariants[i][Idxs[i]]); +    TreePatternNodePtr R = std::make_shared<TreePatternNode>( +        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); + +    // Copy over properties. +    R->setName(Orig->getName()); +    R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); +    R->setPredicateCalls(Orig->getPredicateCalls()); +    R->setTransformFn(Orig->getTransformFn()); +    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) +      R->setType(i, Orig->getExtType(i)); + +    // If this pattern cannot match, do not include it as a variant. +    std::string ErrString; +    // Scan to see if this pattern has already been emitted.  We can get +    // duplication due to things like commuting: +    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) +    // which are the same pattern.  Ignore the dups. +    if (R->canPatternMatch(ErrString, CDP) && +        none_of(OutVariants, [&](TreePatternNodePtr Variant) { +          return R->isIsomorphicTo(Variant.get(), DepVars); +        })) +      OutVariants.push_back(R); + +    // Increment indices to the next permutation by incrementing the +    // indices from last index backward, e.g., generate the sequence +    // [0, 0], [0, 1], [1, 0], [1, 1]. +    int IdxsIdx; +    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { +      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) +        Idxs[IdxsIdx] = 0; +      else +        break; +    } +    NotDone = (IdxsIdx >= 0); +  } while (NotDone); +} + +/// CombineChildVariants - A helper function for binary operators. +/// +static void CombineChildVariants(TreePatternNodePtr Orig, +                                 const std::vector<TreePatternNodePtr> &LHS, +                                 const std::vector<TreePatternNodePtr> &RHS, +                                 std::vector<TreePatternNodePtr> &OutVariants, +                                 CodeGenDAGPatterns &CDP, +                                 const MultipleUseVarSet &DepVars) { +  std::vector<std::vector<TreePatternNodePtr>> ChildVariants; +  ChildVariants.push_back(LHS); +  ChildVariants.push_back(RHS); +  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); +} + +static void +GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, +                                  std::vector<TreePatternNodePtr> &Children) { +  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); +  Record *Operator = N->getOperator(); + +  // Only permit raw nodes. +  if (!N->getName().empty() || !N->getPredicateCalls().empty() || +      N->getTransformFn()) { +    Children.push_back(N); +    return; +  } + +  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) +    Children.push_back(N->getChildShared(0)); +  else +    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); + +  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) +    Children.push_back(N->getChildShared(1)); +  else +    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); +} + +/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of +/// the (potentially recursive) pattern by using algebraic laws. +/// +static void GenerateVariantsOf(TreePatternNodePtr N, +                               std::vector<TreePatternNodePtr> &OutVariants, +                               CodeGenDAGPatterns &CDP, +                               const MultipleUseVarSet &DepVars) { +  // We cannot permute leaves or ComplexPattern uses. +  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { +    OutVariants.push_back(N); +    return; +  } + +  // Look up interesting info about the node. +  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); + +  // If this node is associative, re-associate. +  if (NodeInfo.hasProperty(SDNPAssociative)) { +    // Re-associate by pulling together all of the linked operators +    std::vector<TreePatternNodePtr> MaximalChildren; +    GatherChildrenOfAssociativeOpcode(N, MaximalChildren); + +    // Only handle child sizes of 3.  Otherwise we'll end up trying too many +    // permutations. +    if (MaximalChildren.size() == 3) { +      // Find the variants of all of our maximal children. +      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; +      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); +      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); +      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); + +      // There are only two ways we can permute the tree: +      //   (A op B) op C    and    A op (B op C) +      // Within these forms, we can also permute A/B/C. + +      // Generate legal pair permutations of A/B/C. +      std::vector<TreePatternNodePtr> ABVariants; +      std::vector<TreePatternNodePtr> BAVariants; +      std::vector<TreePatternNodePtr> ACVariants; +      std::vector<TreePatternNodePtr> CAVariants; +      std::vector<TreePatternNodePtr> BCVariants; +      std::vector<TreePatternNodePtr> CBVariants; +      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); +      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); +      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); +      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); +      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); +      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); + +      // Combine those into the result: (x op x) op x +      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); + +      // Combine those into the result: x op (x op x) +      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); +      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); +      return; +    } +  } + +  // Compute permutations of all children. +  std::vector<std::vector<TreePatternNodePtr>> ChildVariants; +  ChildVariants.resize(N->getNumChildren()); +  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) +    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); + +  // Build all permutations based on how the children were formed. +  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); + +  // If this node is commutative, consider the commuted order. +  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); +  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { +    assert((N->getNumChildren()>=2 || isCommIntrinsic) && +           "Commutative but doesn't have 2 children!"); +    // Don't count children which are actually register references. +    unsigned NC = 0; +    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { +      TreePatternNode *Child = N->getChild(i); +      if (Child->isLeaf()) +        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { +          Record *RR = DI->getDef(); +          if (RR->isSubClassOf("Register")) +            continue; +        } +      NC++; +    } +    // Consider the commuted order. +    if (isCommIntrinsic) { +      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd +      // operands are the commutative operands, and there might be more operands +      // after those. +      assert(NC >= 3 && +             "Commutative intrinsic should have at least 3 children!"); +      std::vector<std::vector<TreePatternNodePtr>> Variants; +      Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. +      Variants.push_back(std::move(ChildVariants[2])); +      Variants.push_back(std::move(ChildVariants[1])); +      for (unsigned i = 3; i != NC; ++i) +        Variants.push_back(std::move(ChildVariants[i])); +      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); +    } else if (NC == N->getNumChildren()) { +      std::vector<std::vector<TreePatternNodePtr>> Variants; +      Variants.push_back(std::move(ChildVariants[1])); +      Variants.push_back(std::move(ChildVariants[0])); +      for (unsigned i = 2; i != NC; ++i) +        Variants.push_back(std::move(ChildVariants[i])); +      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); +    } +  } +} + + +// GenerateVariants - Generate variants.  For example, commutative patterns can +// match multiple ways.  Add them to PatternsToMatch as well. +void CodeGenDAGPatterns::GenerateVariants() { +  LLVM_DEBUG(errs() << "Generating instruction variants.\n"); + +  // Loop over all of the patterns we've collected, checking to see if we can +  // generate variants of the instruction, through the exploitation of +  // identities.  This permits the target to provide aggressive matching without +  // the .td file having to contain tons of variants of instructions. +  // +  // Note that this loop adds new patterns to the PatternsToMatch list, but we +  // intentionally do not reconsider these.  Any variants of added patterns have +  // already been added. +  // +  const unsigned NumOriginalPatterns = PatternsToMatch.size(); +  BitVector MatchedPatterns(NumOriginalPatterns); +  std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, +                                           BitVector(NumOriginalPatterns)); + +  typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> +      DepsAndVariants; +  std::map<unsigned, DepsAndVariants> PatternsWithVariants; + +  // Collect patterns with more than one variant. +  for (unsigned i = 0; i != NumOriginalPatterns; ++i) { +    MultipleUseVarSet DepVars; +    std::vector<TreePatternNodePtr> Variants; +    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); +    LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); +    LLVM_DEBUG(DumpDepVars(DepVars)); +    LLVM_DEBUG(errs() << "\n"); +    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, +                       *this, DepVars); + +    assert(!Variants.empty() && "Must create at least original variant!"); +    if (Variants.size() == 1) // No additional variants for this pattern. +      continue; + +    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; +               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); + +    PatternsWithVariants[i] = std::make_pair(DepVars, Variants); + +    // Cache matching predicates. +    if (MatchedPatterns[i]) +      continue; + +    const std::vector<Predicate> &Predicates = +        PatternsToMatch[i].getPredicates(); + +    BitVector &Matches = MatchedPredicates[i]; +    MatchedPatterns.set(i); +    Matches.set(i); + +    // Don't test patterns that have already been cached - it won't match. +    for (unsigned p = 0; p != NumOriginalPatterns; ++p) +      if (!MatchedPatterns[p]) +        Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); + +    // Copy this to all the matching patterns. +    for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) +      if (p != (int)i) { +        MatchedPatterns.set(p); +        MatchedPredicates[p] = Matches; +      } +  } + +  for (auto it : PatternsWithVariants) { +    unsigned i = it.first; +    const MultipleUseVarSet &DepVars = it.second.first; +    const std::vector<TreePatternNodePtr> &Variants = it.second.second; + +    for (unsigned v = 0, e = Variants.size(); v != e; ++v) { +      TreePatternNodePtr Variant = Variants[v]; +      BitVector &Matches = MatchedPredicates[i]; + +      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump(); +                 errs() << "\n"); + +      // Scan to see if an instruction or explicit pattern already matches this. +      bool AlreadyExists = false; +      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { +        // Skip if the top level predicates do not match. +        if (!Matches[p]) +          continue; +        // Check to see if this variant already exists. +        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), +                                    DepVars)) { +          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n"); +          AlreadyExists = true; +          break; +        } +      } +      // If we already have it, ignore the variant. +      if (AlreadyExists) continue; + +      // Otherwise, add it to the list of patterns we have. +      PatternsToMatch.push_back(PatternToMatch( +          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), +          Variant, PatternsToMatch[i].getDstPatternShared(), +          PatternsToMatch[i].getDstRegs(), +          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); +      MatchedPredicates.push_back(Matches); + +      // Add a new match the same as this pattern. +      for (auto &P : MatchedPredicates) +        P.push_back(P[i]); +    } + +    LLVM_DEBUG(errs() << "\n"); +  } +} | 
