diff options
Diffstat (limited to 'llvm/utils/TableGen/CodeGenDAGPatterns.h')
| -rw-r--r-- | llvm/utils/TableGen/CodeGenDAGPatterns.h | 1334 | 
1 files changed, 1334 insertions, 0 deletions
diff --git a/llvm/utils/TableGen/CodeGenDAGPatterns.h b/llvm/utils/TableGen/CodeGenDAGPatterns.h new file mode 100644 index 000000000000..80fc932a7a50 --- /dev/null +++ b/llvm/utils/TableGen/CodeGenDAGPatterns.h @@ -0,0 +1,1334 @@ +//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file declares the CodeGenDAGPatterns class, which is used to read and +// represent the patterns present in a .td file for instructions. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H +#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H + +#include "CodeGenHwModes.h" +#include "CodeGenIntrinsics.h" +#include "CodeGenTarget.h" +#include "SDNodeProperties.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <array> +#include <functional> +#include <map> +#include <numeric> +#include <set> +#include <vector> + +namespace llvm { + +class Record; +class Init; +class ListInit; +class DagInit; +class SDNodeInfo; +class TreePattern; +class TreePatternNode; +class CodeGenDAGPatterns; +class ComplexPattern; + +/// Shared pointer for TreePatternNode. +using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; + +/// This represents a set of MVTs. Since the underlying type for the MVT +/// is uint8_t, there are at most 256 values. To reduce the number of memory +/// allocations and deallocations, represent the set as a sequence of bits. +/// To reduce the allocations even further, make MachineValueTypeSet own +/// the storage and use std::array as the bit container. +struct MachineValueTypeSet { +  static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, +                             uint8_t>::value, +                "Change uint8_t here to the SimpleValueType's type"); +  static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; +  using WordType = uint64_t; +  static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); +  static unsigned constexpr NumWords = Capacity/WordWidth; +  static_assert(NumWords*WordWidth == Capacity, +                "Capacity should be a multiple of WordWidth"); + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  MachineValueTypeSet() { +    clear(); +  } + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  unsigned size() const { +    unsigned Count = 0; +    for (WordType W : Words) +      Count += countPopulation(W); +    return Count; +  } +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  void clear() { +    std::memset(Words.data(), 0, NumWords*sizeof(WordType)); +  } +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  bool empty() const { +    for (WordType W : Words) +      if (W != 0) +        return false; +    return true; +  } +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  unsigned count(MVT T) const { +    return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; +  } +  std::pair<MachineValueTypeSet&,bool> insert(MVT T) { +    bool V = count(T.SimpleTy); +    Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); +    return {*this, V}; +  } +  MachineValueTypeSet &insert(const MachineValueTypeSet &S) { +    for (unsigned i = 0; i != NumWords; ++i) +      Words[i] |= S.Words[i]; +    return *this; +  } +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  void erase(MVT T) { +    Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); +  } + +  struct const_iterator { +    // Some implementations of the C++ library require these traits to be +    // defined. +    using iterator_category = std::forward_iterator_tag; +    using value_type = MVT; +    using difference_type = ptrdiff_t; +    using pointer = const MVT*; +    using reference = const MVT&; + +    LLVM_ATTRIBUTE_ALWAYS_INLINE +    MVT operator*() const { +      assert(Pos != Capacity); +      return MVT::SimpleValueType(Pos); +    } +    LLVM_ATTRIBUTE_ALWAYS_INLINE +    const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { +      Pos = End ? Capacity : find_from_pos(0); +    } +    LLVM_ATTRIBUTE_ALWAYS_INLINE +    const_iterator &operator++() { +      assert(Pos != Capacity); +      Pos = find_from_pos(Pos+1); +      return *this; +    } + +    LLVM_ATTRIBUTE_ALWAYS_INLINE +    bool operator==(const const_iterator &It) const { +      return Set == It.Set && Pos == It.Pos; +    } +    LLVM_ATTRIBUTE_ALWAYS_INLINE +    bool operator!=(const const_iterator &It) const { +      return !operator==(It); +    } + +  private: +    unsigned find_from_pos(unsigned P) const { +      unsigned SkipWords = P / WordWidth; +      unsigned SkipBits = P % WordWidth; +      unsigned Count = SkipWords * WordWidth; + +      // If P is in the middle of a word, process it manually here, because +      // the trailing bits need to be masked off to use findFirstSet. +      if (SkipBits != 0) { +        WordType W = Set->Words[SkipWords]; +        W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); +        if (W != 0) +          return Count + findFirstSet(W); +        Count += WordWidth; +        SkipWords++; +      } + +      for (unsigned i = SkipWords; i != NumWords; ++i) { +        WordType W = Set->Words[i]; +        if (W != 0) +          return Count + findFirstSet(W); +        Count += WordWidth; +      } +      return Capacity; +    } + +    const MachineValueTypeSet *Set; +    unsigned Pos; +  }; + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  const_iterator begin() const { return const_iterator(this, false); } +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  const_iterator end()   const { return const_iterator(this, true); } + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  bool operator==(const MachineValueTypeSet &S) const { +    return Words == S.Words; +  } +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  bool operator!=(const MachineValueTypeSet &S) const { +    return !operator==(S); +  } + +private: +  friend struct const_iterator; +  std::array<WordType,NumWords> Words; +}; + +struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { +  using SetType = MachineValueTypeSet; +  std::vector<unsigned> AddrSpaces; + +  TypeSetByHwMode() = default; +  TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; +  TypeSetByHwMode(MVT::SimpleValueType VT) +    : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} +  TypeSetByHwMode(ValueTypeByHwMode VT) +    : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} +  TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); + +  SetType &getOrCreate(unsigned Mode) { +    if (hasMode(Mode)) +      return get(Mode); +    return Map.insert({Mode,SetType()}).first->second; +  } + +  bool isValueTypeByHwMode(bool AllowEmpty) const; +  ValueTypeByHwMode getValueTypeByHwMode() const; + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  bool isMachineValueType() const { +    return isDefaultOnly() && Map.begin()->second.size() == 1; +  } + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  MVT getMachineValueType() const { +    assert(isMachineValueType()); +    return *Map.begin()->second.begin(); +  } + +  bool isPossible() const; + +  LLVM_ATTRIBUTE_ALWAYS_INLINE +  bool isDefaultOnly() const { +    return Map.size() == 1 && Map.begin()->first == DefaultMode; +  } + +  bool isPointer() const { +    return getValueTypeByHwMode().isPointer(); +  } + +  unsigned getPtrAddrSpace() const { +    assert(isPointer()); +    return getValueTypeByHwMode().PtrAddrSpace; +  } + +  bool insert(const ValueTypeByHwMode &VVT); +  bool constrain(const TypeSetByHwMode &VTS); +  template <typename Predicate> bool constrain(Predicate P); +  template <typename Predicate> +  bool assign_if(const TypeSetByHwMode &VTS, Predicate P); + +  void writeToStream(raw_ostream &OS) const; +  static void writeToStream(const SetType &S, raw_ostream &OS); + +  bool operator==(const TypeSetByHwMode &VTS) const; +  bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } + +  void dump() const; +  bool validate() const; + +private: +  unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); +  /// Intersect two sets. Return true if anything has changed. +  bool intersect(SetType &Out, const SetType &In); +}; + +raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); + +struct TypeInfer { +  TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} + +  bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { +    return VTS.isValueTypeByHwMode(AllowEmpty); +  } +  ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, +                                bool AllowEmpty) const { +    assert(VTS.isValueTypeByHwMode(AllowEmpty)); +    return VTS.getValueTypeByHwMode(); +  } + +  /// The protocol in the following functions (Merge*, force*, Enforce*, +  /// expand*) is to return "true" if a change has been made, "false" +  /// otherwise. + +  bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); +  bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { +    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); +  } +  bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { +    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); +  } + +  /// Reduce the set \p Out to have at most one element for each mode. +  bool forceArbitrary(TypeSetByHwMode &Out); + +  /// The following four functions ensure that upon return the set \p Out +  /// will only contain types of the specified kind: integer, floating-point, +  /// scalar, or vector. +  /// If \p Out is empty, all legal types of the specified kind will be added +  /// to it. Otherwise, all types that are not of the specified kind will be +  /// removed from \p Out. +  bool EnforceInteger(TypeSetByHwMode &Out); +  bool EnforceFloatingPoint(TypeSetByHwMode &Out); +  bool EnforceScalar(TypeSetByHwMode &Out); +  bool EnforceVector(TypeSetByHwMode &Out); + +  /// If \p Out is empty, fill it with all legal types. Otherwise, leave it +  /// unchanged. +  bool EnforceAny(TypeSetByHwMode &Out); +  /// Make sure that for each type in \p Small, there exists a larger type +  /// in \p Big. +  bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); +  /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that +  ///    for each type U in \p Elem, U is a scalar type. +  /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a +  ///    (vector) type T in \p Vec, such that U is the element type of T. +  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); +  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, +                              const ValueTypeByHwMode &VVT); +  /// Ensure that for each type T in \p Sub, T is a vector type, and there +  /// exists a type U in \p Vec such that U is a vector type with the same +  /// element type as T and at least as many elements as T. +  bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, +                                    TypeSetByHwMode &Sub); +  /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. +  /// 2. Ensure that for each vector type T in \p V, there exists a vector +  ///    type U in \p W, such that T and U have the same number of elements. +  /// 3. Ensure that for each vector type U in \p W, there exists a vector +  ///    type T in \p V, such that T and U have the same number of elements +  ///    (reverse of 2). +  bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); +  /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, +  ///    such that T and U have equal size in bits. +  /// 2. Ensure that for each type U in \p B, there exists a type T in \p A +  ///    such that T and U have equal size in bits (reverse of 1). +  bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); + +  /// For each overloaded type (i.e. of form *Any), replace it with the +  /// corresponding subset of legal, specific types. +  void expandOverloads(TypeSetByHwMode &VTS); +  void expandOverloads(TypeSetByHwMode::SetType &Out, +                       const TypeSetByHwMode::SetType &Legal); + +  struct ValidateOnExit { +    ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} +  #ifndef NDEBUG +    ~ValidateOnExit(); +  #else +    ~ValidateOnExit() {}  // Empty destructor with NDEBUG. +  #endif +    TypeInfer &Infer; +    TypeSetByHwMode &VTS; +  }; + +  struct SuppressValidation { +    SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { +      Infer.Validate = false; +    } +    ~SuppressValidation() { +      Infer.Validate = SavedValidate; +    } +    TypeInfer &Infer; +    bool SavedValidate; +  }; + +  TreePattern &TP; +  unsigned ForceMode;     // Mode to use when set. +  bool CodeGen = false;   // Set during generation of matcher code. +  bool Validate = true;   // Indicate whether to validate types. + +private: +  const TypeSetByHwMode &getLegalTypes(); + +  /// Cached legal types (in default mode). +  bool LegalTypesCached = false; +  TypeSetByHwMode LegalCache; +}; + +/// Set type used to track multiply used variables in patterns +typedef StringSet<> MultipleUseVarSet; + +/// SDTypeConstraint - This is a discriminated union of constraints, +/// corresponding to the SDTypeConstraint tablegen class in Target.td. +struct SDTypeConstraint { +  SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); + +  unsigned OperandNo;   // The operand # this constraint applies to. +  enum { +    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, +    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, +    SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs +  } ConstraintType; + +  union {   // The discriminated union. +    struct { +      unsigned OtherOperandNum; +    } SDTCisSameAs_Info; +    struct { +      unsigned OtherOperandNum; +    } SDTCisVTSmallerThanOp_Info; +    struct { +      unsigned BigOperandNum; +    } SDTCisOpSmallerThanOp_Info; +    struct { +      unsigned OtherOperandNum; +    } SDTCisEltOfVec_Info; +    struct { +      unsigned OtherOperandNum; +    } SDTCisSubVecOfVec_Info; +    struct { +      unsigned OtherOperandNum; +    } SDTCisSameNumEltsAs_Info; +    struct { +      unsigned OtherOperandNum; +    } SDTCisSameSizeAs_Info; +  } x; + +  // The VT for SDTCisVT and SDTCVecEltisVT. +  // Must not be in the union because it has a non-trivial destructor. +  ValueTypeByHwMode VVT; + +  /// ApplyTypeConstraint - Given a node in a pattern, apply this type +  /// constraint to the nodes operands.  This returns true if it makes a +  /// change, false otherwise.  If a type contradiction is found, an error +  /// is flagged. +  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, +                           TreePattern &TP) const; +}; + +/// ScopedName - A name of a node associated with a "scope" that indicates +/// the context (e.g. instance of Pattern or PatFrag) in which the name was +/// used. This enables substitution of pattern fragments while keeping track +/// of what name(s) were originally given to various nodes in the tree. +class ScopedName { +  unsigned Scope; +  std::string Identifier; +public: +  ScopedName(unsigned Scope, StringRef Identifier) +    : Scope(Scope), Identifier(Identifier) { +    assert(Scope != 0 && +           "Scope == 0 is used to indicate predicates without arguments"); +  } + +  unsigned getScope() const { return Scope; } +  const std::string &getIdentifier() const { return Identifier; } + +  std::string getFullName() const; + +  bool operator==(const ScopedName &o) const; +  bool operator!=(const ScopedName &o) const; +}; + +/// SDNodeInfo - One of these records is created for each SDNode instance in +/// the target .td file.  This represents the various dag nodes we will be +/// processing. +class SDNodeInfo { +  Record *Def; +  StringRef EnumName; +  StringRef SDClassName; +  unsigned Properties; +  unsigned NumResults; +  int NumOperands; +  std::vector<SDTypeConstraint> TypeConstraints; +public: +  // Parse the specified record. +  SDNodeInfo(Record *R, const CodeGenHwModes &CGH); + +  unsigned getNumResults() const { return NumResults; } + +  /// getNumOperands - This is the number of operands required or -1 if +  /// variadic. +  int getNumOperands() const { return NumOperands; } +  Record *getRecord() const { return Def; } +  StringRef getEnumName() const { return EnumName; } +  StringRef getSDClassName() const { return SDClassName; } + +  const std::vector<SDTypeConstraint> &getTypeConstraints() const { +    return TypeConstraints; +  } + +  /// getKnownType - If the type constraints on this node imply a fixed type +  /// (e.g. all stores return void, etc), then return it as an +  /// MVT::SimpleValueType.  Otherwise, return MVT::Other. +  MVT::SimpleValueType getKnownType(unsigned ResNo) const; + +  /// hasProperty - Return true if this node has the specified property. +  /// +  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } + +  /// ApplyTypeConstraints - Given a node in a pattern, apply the type +  /// constraints for this node to the operands of the node.  This returns +  /// true if it makes a change, false otherwise.  If a type contradiction is +  /// found, an error is flagged. +  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; +}; + +/// TreePredicateFn - This is an abstraction that represents the predicates on +/// a PatFrag node.  This is a simple one-word wrapper around a pointer to +/// provide nice accessors. +class TreePredicateFn { +  /// PatFragRec - This is the TreePattern for the PatFrag that we +  /// originally came from. +  TreePattern *PatFragRec; +public: +  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag. +  TreePredicateFn(TreePattern *N); + + +  TreePattern *getOrigPatFragRecord() const { return PatFragRec; } + +  /// isAlwaysTrue - Return true if this is a noop predicate. +  bool isAlwaysTrue() const; + +  bool isImmediatePattern() const { return hasImmCode(); } + +  /// getImmediatePredicateCode - Return the code that evaluates this pattern if +  /// this is an immediate predicate.  It is an error to call this on a +  /// non-immediate pattern. +  std::string getImmediatePredicateCode() const { +    std::string Result = getImmCode(); +    assert(!Result.empty() && "Isn't an immediate pattern!"); +    return Result; +  } + +  bool operator==(const TreePredicateFn &RHS) const { +    return PatFragRec == RHS.PatFragRec; +  } + +  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } + +  /// Return the name to use in the generated code to reference this, this is +  /// "Predicate_foo" if from a pattern fragment "foo". +  std::string getFnName() const; + +  /// getCodeToRunOnSDNode - Return the code for the function body that +  /// evaluates this predicate.  The argument is expected to be in "Node", +  /// not N.  This handles casting and conversion to a concrete node type as +  /// appropriate. +  std::string getCodeToRunOnSDNode() const; + +  /// Get the data type of the argument to getImmediatePredicateCode(). +  StringRef getImmType() const; + +  /// Get a string that describes the type returned by getImmType() but is +  /// usable as part of an identifier. +  StringRef getImmTypeIdentifier() const; + +  // Predicate code uses the PatFrag's captured operands. +  bool usesOperands() const; + +  // Is the desired predefined predicate for a load? +  bool isLoad() const; +  // Is the desired predefined predicate for a store? +  bool isStore() const; +  // Is the desired predefined predicate for an atomic? +  bool isAtomic() const; + +  /// Is this predicate the predefined unindexed load predicate? +  /// Is this predicate the predefined unindexed store predicate? +  bool isUnindexed() const; +  /// Is this predicate the predefined non-extending load predicate? +  bool isNonExtLoad() const; +  /// Is this predicate the predefined any-extend load predicate? +  bool isAnyExtLoad() const; +  /// Is this predicate the predefined sign-extend load predicate? +  bool isSignExtLoad() const; +  /// Is this predicate the predefined zero-extend load predicate? +  bool isZeroExtLoad() const; +  /// Is this predicate the predefined non-truncating store predicate? +  bool isNonTruncStore() const; +  /// Is this predicate the predefined truncating store predicate? +  bool isTruncStore() const; + +  /// Is this predicate the predefined monotonic atomic predicate? +  bool isAtomicOrderingMonotonic() const; +  /// Is this predicate the predefined acquire atomic predicate? +  bool isAtomicOrderingAcquire() const; +  /// Is this predicate the predefined release atomic predicate? +  bool isAtomicOrderingRelease() const; +  /// Is this predicate the predefined acquire-release atomic predicate? +  bool isAtomicOrderingAcquireRelease() const; +  /// Is this predicate the predefined sequentially consistent atomic predicate? +  bool isAtomicOrderingSequentiallyConsistent() const; + +  /// Is this predicate the predefined acquire-or-stronger atomic predicate? +  bool isAtomicOrderingAcquireOrStronger() const; +  /// Is this predicate the predefined weaker-than-acquire atomic predicate? +  bool isAtomicOrderingWeakerThanAcquire() const; + +  /// Is this predicate the predefined release-or-stronger atomic predicate? +  bool isAtomicOrderingReleaseOrStronger() const; +  /// Is this predicate the predefined weaker-than-release atomic predicate? +  bool isAtomicOrderingWeakerThanRelease() const; + +  /// If non-null, indicates that this predicate is a predefined memory VT +  /// predicate for a load/store and returns the ValueType record for the memory VT. +  Record *getMemoryVT() const; +  /// If non-null, indicates that this predicate is a predefined memory VT +  /// predicate (checking only the scalar type) for load/store and returns the +  /// ValueType record for the memory VT. +  Record *getScalarMemoryVT() const; + +  ListInit *getAddressSpaces() const; +  int64_t getMinAlignment() const; + +  // If true, indicates that GlobalISel-based C++ code was supplied. +  bool hasGISelPredicateCode() const; +  std::string getGISelPredicateCode() const; + +private: +  bool hasPredCode() const; +  bool hasImmCode() const; +  std::string getPredCode() const; +  std::string getImmCode() const; +  bool immCodeUsesAPInt() const; +  bool immCodeUsesAPFloat() const; + +  bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; +}; + +struct TreePredicateCall { +  TreePredicateFn Fn; + +  // Scope -- unique identifier for retrieving named arguments. 0 is used when +  // the predicate does not use named arguments. +  unsigned Scope; + +  TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) +    : Fn(Fn), Scope(Scope) {} + +  bool operator==(const TreePredicateCall &o) const { +    return Fn == o.Fn && Scope == o.Scope; +  } +  bool operator!=(const TreePredicateCall &o) const { +    return !(*this == o); +  } +}; + +class TreePatternNode { +  /// The type of each node result.  Before and during type inference, each +  /// result may be a set of possible types.  After (successful) type inference, +  /// each is a single concrete type. +  std::vector<TypeSetByHwMode> Types; + +  /// The index of each result in results of the pattern. +  std::vector<unsigned> ResultPerm; + +  /// Operator - The Record for the operator if this is an interior node (not +  /// a leaf). +  Record *Operator; + +  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. +  /// +  Init *Val; + +  /// Name - The name given to this node with the :$foo notation. +  /// +  std::string Name; + +  std::vector<ScopedName> NamesAsPredicateArg; + +  /// PredicateCalls - The predicate functions to execute on this node to check +  /// for a match.  If this list is empty, no predicate is involved. +  std::vector<TreePredicateCall> PredicateCalls; + +  /// TransformFn - The transformation function to execute on this node before +  /// it can be substituted into the resulting instruction on a pattern match. +  Record *TransformFn; + +  std::vector<TreePatternNodePtr> Children; + +public: +  TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, +                  unsigned NumResults) +      : Operator(Op), Val(nullptr), TransformFn(nullptr), +        Children(std::move(Ch)) { +    Types.resize(NumResults); +    ResultPerm.resize(NumResults); +    std::iota(ResultPerm.begin(), ResultPerm.end(), 0); +  } +  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor +    : Operator(nullptr), Val(val), TransformFn(nullptr) { +    Types.resize(NumResults); +    ResultPerm.resize(NumResults); +    std::iota(ResultPerm.begin(), ResultPerm.end(), 0); +  } + +  bool hasName() const { return !Name.empty(); } +  const std::string &getName() const { return Name; } +  void setName(StringRef N) { Name.assign(N.begin(), N.end()); } + +  const std::vector<ScopedName> &getNamesAsPredicateArg() const { +    return NamesAsPredicateArg; +  } +  void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { +    NamesAsPredicateArg = Names; +  } +  void addNameAsPredicateArg(const ScopedName &N) { +    NamesAsPredicateArg.push_back(N); +  } + +  bool isLeaf() const { return Val != nullptr; } + +  // Type accessors. +  unsigned getNumTypes() const { return Types.size(); } +  ValueTypeByHwMode getType(unsigned ResNo) const { +    return Types[ResNo].getValueTypeByHwMode(); +  } +  const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } +  const TypeSetByHwMode &getExtType(unsigned ResNo) const { +    return Types[ResNo]; +  } +  TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } +  void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } +  MVT::SimpleValueType getSimpleType(unsigned ResNo) const { +    return Types[ResNo].getMachineValueType().SimpleTy; +  } + +  bool hasConcreteType(unsigned ResNo) const { +    return Types[ResNo].isValueTypeByHwMode(false); +  } +  bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { +    return Types[ResNo].empty(); +  } + +  unsigned getNumResults() const { return ResultPerm.size(); } +  unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } +  void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } + +  Init *getLeafValue() const { assert(isLeaf()); return Val; } +  Record *getOperator() const { assert(!isLeaf()); return Operator; } + +  unsigned getNumChildren() const { return Children.size(); } +  TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } +  const TreePatternNodePtr &getChildShared(unsigned N) const { +    return Children[N]; +  } +  void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } + +  /// hasChild - Return true if N is any of our children. +  bool hasChild(const TreePatternNode *N) const { +    for (unsigned i = 0, e = Children.size(); i != e; ++i) +      if (Children[i].get() == N) +        return true; +    return false; +  } + +  bool hasProperTypeByHwMode() const; +  bool hasPossibleType() const; +  bool setDefaultMode(unsigned Mode); + +  bool hasAnyPredicate() const { return !PredicateCalls.empty(); } + +  const std::vector<TreePredicateCall> &getPredicateCalls() const { +    return PredicateCalls; +  } +  void clearPredicateCalls() { PredicateCalls.clear(); } +  void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { +    assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); +    PredicateCalls = Calls; +  } +  void addPredicateCall(const TreePredicateCall &Call) { +    assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); +    assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); +    PredicateCalls.push_back(Call); +  } +  void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { +    assert((Scope != 0) == Fn.usesOperands()); +    addPredicateCall(TreePredicateCall(Fn, Scope)); +  } + +  Record *getTransformFn() const { return TransformFn; } +  void setTransformFn(Record *Fn) { TransformFn = Fn; } + +  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the +  /// CodeGenIntrinsic information for it, otherwise return a null pointer. +  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; + +  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, +  /// return the ComplexPattern information, otherwise return null. +  const ComplexPattern * +  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; + +  /// Returns the number of MachineInstr operands that would be produced by this +  /// node if it mapped directly to an output Instruction's +  /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it +  /// for Operands; otherwise 1. +  unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; + +  /// NodeHasProperty - Return true if this node has the specified property. +  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; + +  /// TreeHasProperty - Return true if any node in this tree has the specified +  /// property. +  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; + +  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is +  /// marked isCommutative. +  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; + +  void print(raw_ostream &OS) const; +  void dump() const; + +public:   // Higher level manipulation routines. + +  /// clone - Return a new copy of this tree. +  /// +  TreePatternNodePtr clone() const; + +  /// RemoveAllTypes - Recursively strip all the types of this tree. +  void RemoveAllTypes(); + +  /// isIsomorphicTo - Return true if this node is recursively isomorphic to +  /// the specified node.  For this comparison, all of the state of the node +  /// is considered, except for the assigned name.  Nodes with differing names +  /// that are otherwise identical are considered isomorphic. +  bool isIsomorphicTo(const TreePatternNode *N, +                      const MultipleUseVarSet &DepVars) const; + +  /// SubstituteFormalArguments - Replace the formal arguments in this tree +  /// with actual values specified by ArgMap. +  void +  SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); + +  /// InlinePatternFragments - If this pattern refers to any pattern +  /// fragments, return the set of inlined versions (this can be more than +  /// one if a PatFrags record has multiple alternatives). +  void InlinePatternFragments(TreePatternNodePtr T, +                              TreePattern &TP, +                              std::vector<TreePatternNodePtr> &OutAlternatives); + +  /// ApplyTypeConstraints - Apply all of the type constraints relevant to +  /// this node and its children in the tree.  This returns true if it makes a +  /// change, false otherwise.  If a type contradiction is found, flag an error. +  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); + +  /// UpdateNodeType - Set the node type of N to VT if VT contains +  /// information.  If N already contains a conflicting type, then flag an +  /// error.  This returns true if any information was updated. +  /// +  bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, +                      TreePattern &TP); +  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, +                      TreePattern &TP); +  bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, +                      TreePattern &TP); + +  // Update node type with types inferred from an instruction operand or result +  // def from the ins/outs lists. +  // Return true if the type changed. +  bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); + +  /// ContainsUnresolvedType - Return true if this tree contains any +  /// unresolved types. +  bool ContainsUnresolvedType(TreePattern &TP) const; + +  /// canPatternMatch - If it is impossible for this pattern to match on this +  /// target, fill in Reason and return false.  Otherwise, return true. +  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); +}; + +inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { +  TPN.print(OS); +  return OS; +} + + +/// TreePattern - Represent a pattern, used for instructions, pattern +/// fragments, etc. +/// +class TreePattern { +  /// Trees - The list of pattern trees which corresponds to this pattern. +  /// Note that PatFrag's only have a single tree. +  /// +  std::vector<TreePatternNodePtr> Trees; + +  /// NamedNodes - This is all of the nodes that have names in the trees in this +  /// pattern. +  StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; + +  /// TheRecord - The actual TableGen record corresponding to this pattern. +  /// +  Record *TheRecord; + +  /// Args - This is a list of all of the arguments to this pattern (for +  /// PatFrag patterns), which are the 'node' markers in this pattern. +  std::vector<std::string> Args; + +  /// CDP - the top-level object coordinating this madness. +  /// +  CodeGenDAGPatterns &CDP; + +  /// isInputPattern - True if this is an input pattern, something to match. +  /// False if this is an output pattern, something to emit. +  bool isInputPattern; + +  /// hasError - True if the currently processed nodes have unresolvable types +  /// or other non-fatal errors +  bool HasError; + +  /// It's important that the usage of operands in ComplexPatterns is +  /// consistent: each named operand can be defined by at most one +  /// ComplexPattern. This records the ComplexPattern instance and the operand +  /// number for each operand encountered in a ComplexPattern to aid in that +  /// check. +  StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; + +  TypeInfer Infer; + +public: + +  /// TreePattern constructor - Parse the specified DagInits into the +  /// current record. +  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, +              CodeGenDAGPatterns &ise); +  TreePattern(Record *TheRec, DagInit *Pat, bool isInput, +              CodeGenDAGPatterns &ise); +  TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, +              CodeGenDAGPatterns &ise); + +  /// getTrees - Return the tree patterns which corresponds to this pattern. +  /// +  const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } +  unsigned getNumTrees() const { return Trees.size(); } +  const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } +  void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } +  const TreePatternNodePtr &getOnlyTree() const { +    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); +    return Trees[0]; +  } + +  const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { +    if (NamedNodes.empty()) +      ComputeNamedNodes(); +    return NamedNodes; +  } + +  /// getRecord - Return the actual TableGen record corresponding to this +  /// pattern. +  /// +  Record *getRecord() const { return TheRecord; } + +  unsigned getNumArgs() const { return Args.size(); } +  const std::string &getArgName(unsigned i) const { +    assert(i < Args.size() && "Argument reference out of range!"); +    return Args[i]; +  } +  std::vector<std::string> &getArgList() { return Args; } + +  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } + +  /// InlinePatternFragments - If this pattern refers to any pattern +  /// fragments, inline them into place, giving us a pattern without any +  /// PatFrags references.  This may increase the number of trees in the +  /// pattern if a PatFrags has multiple alternatives. +  void InlinePatternFragments() { +    std::vector<TreePatternNodePtr> Copy = Trees; +    Trees.clear(); +    for (unsigned i = 0, e = Copy.size(); i != e; ++i) +      Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); +  } + +  /// InferAllTypes - Infer/propagate as many types throughout the expression +  /// patterns as possible.  Return true if all types are inferred, false +  /// otherwise.  Bail out if a type contradiction is found. +  bool InferAllTypes( +      const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); + +  /// error - If this is the first error in the current resolution step, +  /// print it and set the error flag.  Otherwise, continue silently. +  void error(const Twine &Msg); +  bool hasError() const { +    return HasError; +  } +  void resetError() { +    HasError = false; +  } + +  TypeInfer &getInfer() { return Infer; } + +  void print(raw_ostream &OS) const; +  void dump() const; + +private: +  TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); +  void ComputeNamedNodes(); +  void ComputeNamedNodes(TreePatternNode *N); +}; + + +inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, +                                            const TypeSetByHwMode &InTy, +                                            TreePattern &TP) { +  TypeSetByHwMode VTS(InTy); +  TP.getInfer().expandOverloads(VTS); +  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); +} + +inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, +                                            MVT::SimpleValueType InTy, +                                            TreePattern &TP) { +  TypeSetByHwMode VTS(InTy); +  TP.getInfer().expandOverloads(VTS); +  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); +} + +inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, +                                            ValueTypeByHwMode InTy, +                                            TreePattern &TP) { +  TypeSetByHwMode VTS(InTy); +  TP.getInfer().expandOverloads(VTS); +  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); +} + + +/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps +/// that has a set ExecuteAlways / DefaultOps field. +struct DAGDefaultOperand { +  std::vector<TreePatternNodePtr> DefaultOps; +}; + +class DAGInstruction { +  std::vector<Record*> Results; +  std::vector<Record*> Operands; +  std::vector<Record*> ImpResults; +  TreePatternNodePtr SrcPattern; +  TreePatternNodePtr ResultPattern; + +public: +  DAGInstruction(const std::vector<Record*> &results, +                 const std::vector<Record*> &operands, +                 const std::vector<Record*> &impresults, +                 TreePatternNodePtr srcpattern = nullptr, +                 TreePatternNodePtr resultpattern = nullptr) +    : Results(results), Operands(operands), ImpResults(impresults), +      SrcPattern(srcpattern), ResultPattern(resultpattern) {} + +  unsigned getNumResults() const { return Results.size(); } +  unsigned getNumOperands() const { return Operands.size(); } +  unsigned getNumImpResults() const { return ImpResults.size(); } +  const std::vector<Record*>& getImpResults() const { return ImpResults; } + +  Record *getResult(unsigned RN) const { +    assert(RN < Results.size()); +    return Results[RN]; +  } + +  Record *getOperand(unsigned ON) const { +    assert(ON < Operands.size()); +    return Operands[ON]; +  } + +  Record *getImpResult(unsigned RN) const { +    assert(RN < ImpResults.size()); +    return ImpResults[RN]; +  } + +  TreePatternNodePtr getSrcPattern() const { return SrcPattern; } +  TreePatternNodePtr getResultPattern() const { return ResultPattern; } +}; + +/// This class represents a condition that has to be satisfied for a pattern +/// to be tried. It is a generalization of a class "Pattern" from Target.td: +/// in addition to the Target.td's predicates, this class can also represent +/// conditions associated with HW modes. Both types will eventually become +/// strings containing C++ code to be executed, the difference is in how +/// these strings are generated. +class Predicate { +public: +  Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { +    assert(R->isSubClassOf("Predicate") && +           "Predicate objects should only be created for records derived" +           "from Predicate class"); +  } +  Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), +    IfCond(C), IsHwMode(true) {} + +  /// Return a string which contains the C++ condition code that will serve +  /// as a predicate during instruction selection. +  std::string getCondString() const { +    // The string will excute in a subclass of SelectionDAGISel. +    // Cast to std::string explicitly to avoid ambiguity with StringRef. +    std::string C = IsHwMode +        ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")") +        : std::string(Def->getValueAsString("CondString")); +    if (C.empty()) +      return ""; +    return IfCond ? C : "!("+C+')'; +  } + +  bool operator==(const Predicate &P) const { +    return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; +  } +  bool operator<(const Predicate &P) const { +    if (IsHwMode != P.IsHwMode) +      return IsHwMode < P.IsHwMode; +    assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); +    if (IfCond != P.IfCond) +      return IfCond < P.IfCond; +    if (Def) +      return LessRecord()(Def, P.Def); +    return Features < P.Features; +  } +  Record *Def;            ///< Predicate definition from .td file, null for +                          ///< HW modes. +  std::string Features;   ///< Feature string for HW mode. +  bool IfCond;            ///< The boolean value that the condition has to +                          ///< evaluate to for this predicate to be true. +  bool IsHwMode;          ///< Does this predicate correspond to a HW mode? +}; + +/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns +/// processed to produce isel. +class PatternToMatch { +public: +  PatternToMatch(Record *srcrecord, std::vector<Predicate> preds, +                 TreePatternNodePtr src, TreePatternNodePtr dst, +                 std::vector<Record *> dstregs, int complexity, +                 unsigned uid, unsigned setmode = 0) +      : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), +        Predicates(std::move(preds)), Dstregs(std::move(dstregs)), +        AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} + +  Record          *SrcRecord;   // Originating Record for the pattern. +  TreePatternNodePtr SrcPattern;      // Source pattern to match. +  TreePatternNodePtr DstPattern;      // Resulting pattern. +  std::vector<Predicate> Predicates;  // Top level predicate conditions +                                      // to match. +  std::vector<Record*> Dstregs; // Physical register defs being matched. +  int              AddedComplexity; // Add to matching pattern complexity. +  unsigned         ID;          // Unique ID for the record. +  unsigned         ForceMode;   // Force this mode in type inference when set. + +  Record          *getSrcRecord()  const { return SrcRecord; } +  TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } +  TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } +  TreePatternNode *getDstPattern() const { return DstPattern.get(); } +  TreePatternNodePtr getDstPatternShared() const { return DstPattern; } +  const std::vector<Record*> &getDstRegs() const { return Dstregs; } +  int         getAddedComplexity() const { return AddedComplexity; } +  const std::vector<Predicate> &getPredicates() const { return Predicates; } + +  std::string getPredicateCheck() const; + +  /// Compute the complexity metric for the input pattern.  This roughly +  /// corresponds to the number of nodes that are covered. +  int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; +}; + +class CodeGenDAGPatterns { +  RecordKeeper &Records; +  CodeGenTarget Target; +  CodeGenIntrinsicTable Intrinsics; +  CodeGenIntrinsicTable TgtIntrinsics; + +  std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; +  std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> +      SDNodeXForms; +  std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; +  std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> +      PatternFragments; +  std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; +  std::map<Record*, DAGInstruction, LessRecordByID> Instructions; + +  // Specific SDNode definitions: +  Record *intrinsic_void_sdnode; +  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; + +  /// PatternsToMatch - All of the things we are matching on the DAG.  The first +  /// value is the pattern to match, the second pattern is the result to +  /// emit. +  std::vector<PatternToMatch> PatternsToMatch; + +  TypeSetByHwMode LegalVTS; + +  using PatternRewriterFn = std::function<void (TreePattern *)>; +  PatternRewriterFn PatternRewriter; + +  unsigned NumScopes = 0; + +public: +  CodeGenDAGPatterns(RecordKeeper &R, +                     PatternRewriterFn PatternRewriter = nullptr); + +  CodeGenTarget &getTargetInfo() { return Target; } +  const CodeGenTarget &getTargetInfo() const { return Target; } +  const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } + +  Record *getSDNodeNamed(const std::string &Name) const; + +  const SDNodeInfo &getSDNodeInfo(Record *R) const { +    auto F = SDNodes.find(R); +    assert(F != SDNodes.end() && "Unknown node!"); +    return F->second; +  } + +  // Node transformation lookups. +  typedef std::pair<Record*, std::string> NodeXForm; +  const NodeXForm &getSDNodeTransform(Record *R) const { +    auto F = SDNodeXForms.find(R); +    assert(F != SDNodeXForms.end() && "Invalid transform!"); +    return F->second; +  } + +  typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator +          nx_iterator; +  nx_iterator nx_begin() const { return SDNodeXForms.begin(); } +  nx_iterator nx_end() const { return SDNodeXForms.end(); } + + +  const ComplexPattern &getComplexPattern(Record *R) const { +    auto F = ComplexPatterns.find(R); +    assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); +    return F->second; +  } + +  const CodeGenIntrinsic &getIntrinsic(Record *R) const { +    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) +      if (Intrinsics[i].TheDef == R) return Intrinsics[i]; +    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) +      if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; +    llvm_unreachable("Unknown intrinsic!"); +  } + +  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { +    if (IID-1 < Intrinsics.size()) +      return Intrinsics[IID-1]; +    if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) +      return TgtIntrinsics[IID-Intrinsics.size()-1]; +    llvm_unreachable("Bad intrinsic ID!"); +  } + +  unsigned getIntrinsicID(Record *R) const { +    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) +      if (Intrinsics[i].TheDef == R) return i; +    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) +      if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); +    llvm_unreachable("Unknown intrinsic!"); +  } + +  const DAGDefaultOperand &getDefaultOperand(Record *R) const { +    auto F = DefaultOperands.find(R); +    assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); +    return F->second; +  } + +  // Pattern Fragment information. +  TreePattern *getPatternFragment(Record *R) const { +    auto F = PatternFragments.find(R); +    assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); +    return F->second.get(); +  } +  TreePattern *getPatternFragmentIfRead(Record *R) const { +    auto F = PatternFragments.find(R); +    if (F == PatternFragments.end()) +      return nullptr; +    return F->second.get(); +  } + +  typedef std::map<Record *, std::unique_ptr<TreePattern>, +                   LessRecordByID>::const_iterator pf_iterator; +  pf_iterator pf_begin() const { return PatternFragments.begin(); } +  pf_iterator pf_end() const { return PatternFragments.end(); } +  iterator_range<pf_iterator> ptfs() const { return PatternFragments; } + +  // Patterns to match information. +  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; +  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } +  ptm_iterator ptm_end() const { return PatternsToMatch.end(); } +  iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } + +  /// Parse the Pattern for an instruction, and insert the result in DAGInsts. +  typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; +  void parseInstructionPattern( +      CodeGenInstruction &CGI, ListInit *Pattern, +      DAGInstMap &DAGInsts); + +  const DAGInstruction &getInstruction(Record *R) const { +    auto F = Instructions.find(R); +    assert(F != Instructions.end() && "Unknown instruction!"); +    return F->second; +  } + +  Record *get_intrinsic_void_sdnode() const { +    return intrinsic_void_sdnode; +  } +  Record *get_intrinsic_w_chain_sdnode() const { +    return intrinsic_w_chain_sdnode; +  } +  Record *get_intrinsic_wo_chain_sdnode() const { +    return intrinsic_wo_chain_sdnode; +  } + +  bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } + +  unsigned allocateScope() { return ++NumScopes; } + +  bool operandHasDefault(Record *Op) const { +    return Op->isSubClassOf("OperandWithDefaultOps") && +      !getDefaultOperand(Op).DefaultOps.empty(); +  } + +private: +  void ParseNodeInfo(); +  void ParseNodeTransforms(); +  void ParseComplexPatterns(); +  void ParsePatternFragments(bool OutFrags = false); +  void ParseDefaultOperands(); +  void ParseInstructions(); +  void ParsePatterns(); +  void ExpandHwModeBasedTypes(); +  void InferInstructionFlags(); +  void GenerateVariants(); +  void VerifyInstructionFlags(); + +  std::vector<Predicate> makePredList(ListInit *L); + +  void ParseOnePattern(Record *TheDef, +                       TreePattern &Pattern, TreePattern &Result, +                       const std::vector<Record *> &InstImpResults); +  void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); +  void FindPatternInputsAndOutputs( +      TreePattern &I, TreePatternNodePtr Pat, +      std::map<std::string, TreePatternNodePtr> &InstInputs, +      MapVector<std::string, TreePatternNodePtr, +                std::map<std::string, unsigned>> &InstResults, +      std::vector<Record *> &InstImpResults); +}; + + +inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, +                                             TreePattern &TP) const { +    bool MadeChange = false; +    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) +      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); +    return MadeChange; +  } + +} // end namespace llvm + +#endif  | 
