summaryrefslogtreecommitdiff
path: root/llvm/utils/TableGen/CodeGenSchedule.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/utils/TableGen/CodeGenSchedule.cpp')
-rw-r--r--llvm/utils/TableGen/CodeGenSchedule.cpp2234
1 files changed, 2234 insertions, 0 deletions
diff --git a/llvm/utils/TableGen/CodeGenSchedule.cpp b/llvm/utils/TableGen/CodeGenSchedule.cpp
new file mode 100644
index 000000000000..f12d7d484a8e
--- /dev/null
+++ b/llvm/utils/TableGen/CodeGenSchedule.cpp
@@ -0,0 +1,2234 @@
+//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines structures to encapsulate the machine model as described in
+// the target description.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenSchedule.h"
+#include "CodeGenInstruction.h"
+#include "CodeGenTarget.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/TableGen/Error.h"
+#include <algorithm>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "subtarget-emitter"
+
+#ifndef NDEBUG
+static void dumpIdxVec(ArrayRef<unsigned> V) {
+ for (unsigned Idx : V)
+ dbgs() << Idx << ", ";
+}
+#endif
+
+namespace {
+
+// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
+struct InstrsOp : public SetTheory::Operator {
+ void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
+ ArrayRef<SMLoc> Loc) override {
+ ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
+ }
+};
+
+// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
+struct InstRegexOp : public SetTheory::Operator {
+ const CodeGenTarget &Target;
+ InstRegexOp(const CodeGenTarget &t): Target(t) {}
+
+ /// Remove any text inside of parentheses from S.
+ static std::string removeParens(llvm::StringRef S) {
+ std::string Result;
+ unsigned Paren = 0;
+ // NB: We don't care about escaped parens here.
+ for (char C : S) {
+ switch (C) {
+ case '(':
+ ++Paren;
+ break;
+ case ')':
+ --Paren;
+ break;
+ default:
+ if (Paren == 0)
+ Result += C;
+ }
+ }
+ return Result;
+ }
+
+ void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
+ ArrayRef<SMLoc> Loc) override {
+ ArrayRef<const CodeGenInstruction *> Instructions =
+ Target.getInstructionsByEnumValue();
+
+ unsigned NumGeneric = Target.getNumFixedInstructions();
+ unsigned NumPseudos = Target.getNumPseudoInstructions();
+ auto Generics = Instructions.slice(0, NumGeneric);
+ auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
+ auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
+
+ for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
+ StringInit *SI = dyn_cast<StringInit>(Arg);
+ if (!SI)
+ PrintFatalError(Loc, "instregex requires pattern string: " +
+ Expr->getAsString());
+ StringRef Original = SI->getValue();
+
+ // Extract a prefix that we can binary search on.
+ static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
+ auto FirstMeta = Original.find_first_of(RegexMetachars);
+
+ // Look for top-level | or ?. We cannot optimize them to binary search.
+ if (removeParens(Original).find_first_of("|?") != std::string::npos)
+ FirstMeta = 0;
+
+ Optional<Regex> Regexpr = None;
+ StringRef Prefix = Original.substr(0, FirstMeta);
+ StringRef PatStr = Original.substr(FirstMeta);
+ if (!PatStr.empty()) {
+ // For the rest use a python-style prefix match.
+ std::string pat = PatStr;
+ if (pat[0] != '^') {
+ pat.insert(0, "^(");
+ pat.insert(pat.end(), ')');
+ }
+ Regexpr = Regex(pat);
+ }
+
+ int NumMatches = 0;
+
+ // The generic opcodes are unsorted, handle them manually.
+ for (auto *Inst : Generics) {
+ StringRef InstName = Inst->TheDef->getName();
+ if (InstName.startswith(Prefix) &&
+ (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
+ Elts.insert(Inst->TheDef);
+ NumMatches++;
+ }
+ }
+
+ // Target instructions are split into two ranges: pseudo instructions
+ // first, than non-pseudos. Each range is in lexicographical order
+ // sorted by name. Find the sub-ranges that start with our prefix.
+ struct Comp {
+ bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
+ return LHS->TheDef->getName() < RHS;
+ }
+ bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
+ return LHS < RHS->TheDef->getName() &&
+ !RHS->TheDef->getName().startswith(LHS);
+ }
+ };
+ auto Range1 =
+ std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
+ auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
+ Prefix, Comp());
+
+ // For these ranges we know that instruction names start with the prefix.
+ // Check if there's a regex that needs to be checked.
+ const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
+ StringRef InstName = Inst->TheDef->getName();
+ if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
+ Elts.insert(Inst->TheDef);
+ NumMatches++;
+ }
+ };
+ std::for_each(Range1.first, Range1.second, HandleNonGeneric);
+ std::for_each(Range2.first, Range2.second, HandleNonGeneric);
+
+ if (0 == NumMatches)
+ PrintFatalError(Loc, "instregex has no matches: " + Original);
+ }
+ }
+};
+
+} // end anonymous namespace
+
+/// CodeGenModels ctor interprets machine model records and populates maps.
+CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
+ const CodeGenTarget &TGT):
+ Records(RK), Target(TGT) {
+
+ Sets.addFieldExpander("InstRW", "Instrs");
+
+ // Allow Set evaluation to recognize the dags used in InstRW records:
+ // (instrs Op1, Op1...)
+ Sets.addOperator("instrs", std::make_unique<InstrsOp>());
+ Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
+
+ // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
+ // that are explicitly referenced in tablegen records. Resources associated
+ // with each processor will be derived later. Populate ProcModelMap with the
+ // CodeGenProcModel instances.
+ collectProcModels();
+
+ // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
+ // defined, and populate SchedReads and SchedWrites vectors. Implicit
+ // SchedReadWrites that represent sequences derived from expanded variant will
+ // be inferred later.
+ collectSchedRW();
+
+ // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
+ // required by an instruction definition, and populate SchedClassIdxMap. Set
+ // NumItineraryClasses to the number of explicit itinerary classes referenced
+ // by instructions. Set NumInstrSchedClasses to the number of itinerary
+ // classes plus any classes implied by instructions that derive from class
+ // Sched and provide SchedRW list. This does not infer any new classes from
+ // SchedVariant.
+ collectSchedClasses();
+
+ // Find instruction itineraries for each processor. Sort and populate
+ // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
+ // all itinerary classes to be discovered.
+ collectProcItins();
+
+ // Find ItinRW records for each processor and itinerary class.
+ // (For per-operand resources mapped to itinerary classes).
+ collectProcItinRW();
+
+ // Find UnsupportedFeatures records for each processor.
+ // (For per-operand resources mapped to itinerary classes).
+ collectProcUnsupportedFeatures();
+
+ // Infer new SchedClasses from SchedVariant.
+ inferSchedClasses();
+
+ // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
+ // ProcResourceDefs.
+ LLVM_DEBUG(
+ dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
+ collectProcResources();
+
+ // Collect optional processor description.
+ collectOptionalProcessorInfo();
+
+ // Check MCInstPredicate definitions.
+ checkMCInstPredicates();
+
+ // Check STIPredicate definitions.
+ checkSTIPredicates();
+
+ // Find STIPredicate definitions for each processor model, and construct
+ // STIPredicateFunction objects.
+ collectSTIPredicates();
+
+ checkCompleteness();
+}
+
+void CodeGenSchedModels::checkSTIPredicates() const {
+ DenseMap<StringRef, const Record *> Declarations;
+
+ // There cannot be multiple declarations with the same name.
+ const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
+ for (const Record *R : Decls) {
+ StringRef Name = R->getValueAsString("Name");
+ const auto It = Declarations.find(Name);
+ if (It == Declarations.end()) {
+ Declarations[Name] = R;
+ continue;
+ }
+
+ PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
+ PrintNote(It->second->getLoc(), "Previous declaration was here.");
+ PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
+ }
+
+ // Disallow InstructionEquivalenceClasses with an empty instruction list.
+ const RecVec Defs =
+ Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
+ for (const Record *R : Defs) {
+ RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
+ if (Opcodes.empty()) {
+ PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
+ "defined with an empty opcode list.");
+ }
+ }
+}
+
+// Used by function `processSTIPredicate` to construct a mask of machine
+// instruction operands.
+static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
+ APInt OperandMask;
+ if (Indices.empty())
+ return OperandMask;
+
+ int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
+ assert(MaxIndex >= 0 && "Invalid negative indices in input!");
+ OperandMask = OperandMask.zext(MaxIndex + 1);
+ for (const int64_t Index : Indices) {
+ assert(Index >= 0 && "Invalid negative indices!");
+ OperandMask.setBit(Index);
+ }
+
+ return OperandMask;
+}
+
+static void
+processSTIPredicate(STIPredicateFunction &Fn,
+ const DenseMap<Record *, unsigned> &ProcModelMap) {
+ DenseMap<const Record *, unsigned> Opcode2Index;
+ using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
+ std::vector<OpcodeMapPair> OpcodeMappings;
+ std::vector<std::pair<APInt, APInt>> OpcodeMasks;
+
+ DenseMap<const Record *, unsigned> Predicate2Index;
+ unsigned NumUniquePredicates = 0;
+
+ // Number unique predicates and opcodes used by InstructionEquivalenceClass
+ // definitions. Each unique opcode will be associated with an OpcodeInfo
+ // object.
+ for (const Record *Def : Fn.getDefinitions()) {
+ RecVec Classes = Def->getValueAsListOfDefs("Classes");
+ for (const Record *EC : Classes) {
+ const Record *Pred = EC->getValueAsDef("Predicate");
+ if (Predicate2Index.find(Pred) == Predicate2Index.end())
+ Predicate2Index[Pred] = NumUniquePredicates++;
+
+ RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
+ for (const Record *Opcode : Opcodes) {
+ if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
+ Opcode2Index[Opcode] = OpcodeMappings.size();
+ OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
+ }
+ }
+ }
+ }
+
+ // Initialize vector `OpcodeMasks` with default values. We want to keep track
+ // of which processors "use" which opcodes. We also want to be able to
+ // identify predicates that are used by different processors for a same
+ // opcode.
+ // This information is used later on by this algorithm to sort OpcodeMapping
+ // elements based on their processor and predicate sets.
+ OpcodeMasks.resize(OpcodeMappings.size());
+ APInt DefaultProcMask(ProcModelMap.size(), 0);
+ APInt DefaultPredMask(NumUniquePredicates, 0);
+ for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
+ MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
+
+ // Construct a OpcodeInfo object for every unique opcode declared by an
+ // InstructionEquivalenceClass definition.
+ for (const Record *Def : Fn.getDefinitions()) {
+ RecVec Classes = Def->getValueAsListOfDefs("Classes");
+ const Record *SchedModel = Def->getValueAsDef("SchedModel");
+ unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
+ APInt ProcMask(ProcModelMap.size(), 0);
+ ProcMask.setBit(ProcIndex);
+
+ for (const Record *EC : Classes) {
+ RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
+
+ std::vector<int64_t> OpIndices =
+ EC->getValueAsListOfInts("OperandIndices");
+ APInt OperandMask = constructOperandMask(OpIndices);
+
+ const Record *Pred = EC->getValueAsDef("Predicate");
+ APInt PredMask(NumUniquePredicates, 0);
+ PredMask.setBit(Predicate2Index[Pred]);
+
+ for (const Record *Opcode : Opcodes) {
+ unsigned OpcodeIdx = Opcode2Index[Opcode];
+ if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
+ std::string Message =
+ "Opcode " + Opcode->getName().str() +
+ " used by multiple InstructionEquivalenceClass definitions.";
+ PrintFatalError(EC->getLoc(), Message);
+ }
+ OpcodeMasks[OpcodeIdx].first |= ProcMask;
+ OpcodeMasks[OpcodeIdx].second |= PredMask;
+ OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
+
+ OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
+ }
+ }
+ }
+
+ // Sort OpcodeMappings elements based on their CPU and predicate masks.
+ // As a last resort, order elements by opcode identifier.
+ llvm::sort(OpcodeMappings,
+ [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
+ unsigned LhsIdx = Opcode2Index[Lhs.first];
+ unsigned RhsIdx = Opcode2Index[Rhs.first];
+ const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
+ const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
+
+ auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
+ unsigned LhsCountPopulation = Lhs.countPopulation();
+ unsigned RhsCountPopulation = Rhs.countPopulation();
+ return ((LhsCountPopulation < RhsCountPopulation) ||
+ ((LhsCountPopulation == RhsCountPopulation) &&
+ (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
+ };
+
+ if (LhsMasks.first != RhsMasks.first)
+ return LessThan(LhsMasks.first, RhsMasks.first);
+
+ if (LhsMasks.second != RhsMasks.second)
+ return LessThan(LhsMasks.second, RhsMasks.second);
+
+ return LhsIdx < RhsIdx;
+ });
+
+ // Now construct opcode groups. Groups are used by the SubtargetEmitter when
+ // expanding the body of a STIPredicate function. In particular, each opcode
+ // group is expanded into a sequence of labels in a switch statement.
+ // It identifies opcodes for which different processors define same predicates
+ // and same opcode masks.
+ for (OpcodeMapPair &Info : OpcodeMappings)
+ Fn.addOpcode(Info.first, std::move(Info.second));
+}
+
+void CodeGenSchedModels::collectSTIPredicates() {
+ // Map STIPredicateDecl records to elements of vector
+ // CodeGenSchedModels::STIPredicates.
+ DenseMap<const Record *, unsigned> Decl2Index;
+
+ RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
+ for (const Record *R : RV) {
+ const Record *Decl = R->getValueAsDef("Declaration");
+
+ const auto It = Decl2Index.find(Decl);
+ if (It == Decl2Index.end()) {
+ Decl2Index[Decl] = STIPredicates.size();
+ STIPredicateFunction Predicate(Decl);
+ Predicate.addDefinition(R);
+ STIPredicates.emplace_back(std::move(Predicate));
+ continue;
+ }
+
+ STIPredicateFunction &PreviousDef = STIPredicates[It->second];
+ PreviousDef.addDefinition(R);
+ }
+
+ for (STIPredicateFunction &Fn : STIPredicates)
+ processSTIPredicate(Fn, ProcModelMap);
+}
+
+void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
+ const llvm::APInt &OperandMask,
+ const Record *Predicate) {
+ auto It = llvm::find_if(
+ Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
+ return P.Predicate == Predicate && P.OperandMask == OperandMask;
+ });
+ if (It == Predicates.end()) {
+ Predicates.emplace_back(CpuMask, OperandMask, Predicate);
+ return;
+ }
+ It->ProcModelMask |= CpuMask;
+}
+
+void CodeGenSchedModels::checkMCInstPredicates() const {
+ RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
+ if (MCPredicates.empty())
+ return;
+
+ // A target cannot have multiple TIIPredicate definitions with a same name.
+ llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
+ for (const Record *TIIPred : MCPredicates) {
+ StringRef Name = TIIPred->getValueAsString("FunctionName");
+ StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
+ if (It == TIIPredicates.end()) {
+ TIIPredicates[Name] = TIIPred;
+ continue;
+ }
+
+ PrintError(TIIPred->getLoc(),
+ "TIIPredicate " + Name + " is multiply defined.");
+ PrintNote(It->second->getLoc(),
+ " Previous definition of " + Name + " was here.");
+ PrintFatalError(TIIPred->getLoc(),
+ "Found conflicting definitions of TIIPredicate.");
+ }
+}
+
+void CodeGenSchedModels::collectRetireControlUnits() {
+ RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
+
+ for (Record *RCU : Units) {
+ CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
+ if (PM.RetireControlUnit) {
+ PrintError(RCU->getLoc(),
+ "Expected a single RetireControlUnit definition");
+ PrintNote(PM.RetireControlUnit->getLoc(),
+ "Previous definition of RetireControlUnit was here");
+ }
+ PM.RetireControlUnit = RCU;
+ }
+}
+
+void CodeGenSchedModels::collectLoadStoreQueueInfo() {
+ RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
+
+ for (Record *Queue : Queues) {
+ CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
+ if (Queue->isSubClassOf("LoadQueue")) {
+ if (PM.LoadQueue) {
+ PrintError(Queue->getLoc(),
+ "Expected a single LoadQueue definition");
+ PrintNote(PM.LoadQueue->getLoc(),
+ "Previous definition of LoadQueue was here");
+ }
+
+ PM.LoadQueue = Queue;
+ }
+
+ if (Queue->isSubClassOf("StoreQueue")) {
+ if (PM.StoreQueue) {
+ PrintError(Queue->getLoc(),
+ "Expected a single StoreQueue definition");
+ PrintNote(PM.LoadQueue->getLoc(),
+ "Previous definition of StoreQueue was here");
+ }
+
+ PM.StoreQueue = Queue;
+ }
+ }
+}
+
+/// Collect optional processor information.
+void CodeGenSchedModels::collectOptionalProcessorInfo() {
+ // Find register file definitions for each processor.
+ collectRegisterFiles();
+
+ // Collect processor RetireControlUnit descriptors if available.
+ collectRetireControlUnits();
+
+ // Collect information about load/store queues.
+ collectLoadStoreQueueInfo();
+
+ checkCompleteness();
+}
+
+/// Gather all processor models.
+void CodeGenSchedModels::collectProcModels() {
+ RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
+ llvm::sort(ProcRecords, LessRecordFieldName());
+
+ // Reserve space because we can. Reallocation would be ok.
+ ProcModels.reserve(ProcRecords.size()+1);
+
+ // Use idx=0 for NoModel/NoItineraries.
+ Record *NoModelDef = Records.getDef("NoSchedModel");
+ Record *NoItinsDef = Records.getDef("NoItineraries");
+ ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
+ ProcModelMap[NoModelDef] = 0;
+
+ // For each processor, find a unique machine model.
+ LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
+ for (Record *ProcRecord : ProcRecords)
+ addProcModel(ProcRecord);
+}
+
+/// Get a unique processor model based on the defined MachineModel and
+/// ProcessorItineraries.
+void CodeGenSchedModels::addProcModel(Record *ProcDef) {
+ Record *ModelKey = getModelOrItinDef(ProcDef);
+ if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
+ return;
+
+ std::string Name = ModelKey->getName();
+ if (ModelKey->isSubClassOf("SchedMachineModel")) {
+ Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
+ ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
+ }
+ else {
+ // An itinerary is defined without a machine model. Infer a new model.
+ if (!ModelKey->getValueAsListOfDefs("IID").empty())
+ Name = Name + "Model";
+ ProcModels.emplace_back(ProcModels.size(), Name,
+ ProcDef->getValueAsDef("SchedModel"), ModelKey);
+ }
+ LLVM_DEBUG(ProcModels.back().dump());
+}
+
+// Recursively find all reachable SchedReadWrite records.
+static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
+ SmallPtrSet<Record*, 16> &RWSet) {
+ if (!RWSet.insert(RWDef).second)
+ return;
+ RWDefs.push_back(RWDef);
+ // Reads don't currently have sequence records, but it can be added later.
+ if (RWDef->isSubClassOf("WriteSequence")) {
+ RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
+ for (Record *WSRec : Seq)
+ scanSchedRW(WSRec, RWDefs, RWSet);
+ }
+ else if (RWDef->isSubClassOf("SchedVariant")) {
+ // Visit each variant (guarded by a different predicate).
+ RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
+ for (Record *Variant : Vars) {
+ // Visit each RW in the sequence selected by the current variant.
+ RecVec Selected = Variant->getValueAsListOfDefs("Selected");
+ for (Record *SelDef : Selected)
+ scanSchedRW(SelDef, RWDefs, RWSet);
+ }
+ }
+}
+
+// Collect and sort all SchedReadWrites reachable via tablegen records.
+// More may be inferred later when inferring new SchedClasses from variants.
+void CodeGenSchedModels::collectSchedRW() {
+ // Reserve idx=0 for invalid writes/reads.
+ SchedWrites.resize(1);
+ SchedReads.resize(1);
+
+ SmallPtrSet<Record*, 16> RWSet;
+
+ // Find all SchedReadWrites referenced by instruction defs.
+ RecVec SWDefs, SRDefs;
+ for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
+ Record *SchedDef = Inst->TheDef;
+ if (SchedDef->isValueUnset("SchedRW"))
+ continue;
+ RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
+ for (Record *RW : RWs) {
+ if (RW->isSubClassOf("SchedWrite"))
+ scanSchedRW(RW, SWDefs, RWSet);
+ else {
+ assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
+ scanSchedRW(RW, SRDefs, RWSet);
+ }
+ }
+ }
+ // Find all ReadWrites referenced by InstRW.
+ RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
+ for (Record *InstRWDef : InstRWDefs) {
+ // For all OperandReadWrites.
+ RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
+ for (Record *RWDef : RWDefs) {
+ if (RWDef->isSubClassOf("SchedWrite"))
+ scanSchedRW(RWDef, SWDefs, RWSet);
+ else {
+ assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
+ scanSchedRW(RWDef, SRDefs, RWSet);
+ }
+ }
+ }
+ // Find all ReadWrites referenced by ItinRW.
+ RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
+ for (Record *ItinRWDef : ItinRWDefs) {
+ // For all OperandReadWrites.
+ RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
+ for (Record *RWDef : RWDefs) {
+ if (RWDef->isSubClassOf("SchedWrite"))
+ scanSchedRW(RWDef, SWDefs, RWSet);
+ else {
+ assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
+ scanSchedRW(RWDef, SRDefs, RWSet);
+ }
+ }
+ }
+ // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
+ // for the loop below that initializes Alias vectors.
+ RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
+ llvm::sort(AliasDefs, LessRecord());
+ for (Record *ADef : AliasDefs) {
+ Record *MatchDef = ADef->getValueAsDef("MatchRW");
+ Record *AliasDef = ADef->getValueAsDef("AliasRW");
+ if (MatchDef->isSubClassOf("SchedWrite")) {
+ if (!AliasDef->isSubClassOf("SchedWrite"))
+ PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
+ scanSchedRW(AliasDef, SWDefs, RWSet);
+ }
+ else {
+ assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
+ if (!AliasDef->isSubClassOf("SchedRead"))
+ PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
+ scanSchedRW(AliasDef, SRDefs, RWSet);
+ }
+ }
+ // Sort and add the SchedReadWrites directly referenced by instructions or
+ // itinerary resources. Index reads and writes in separate domains.
+ llvm::sort(SWDefs, LessRecord());
+ for (Record *SWDef : SWDefs) {
+ assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
+ SchedWrites.emplace_back(SchedWrites.size(), SWDef);
+ }
+ llvm::sort(SRDefs, LessRecord());
+ for (Record *SRDef : SRDefs) {
+ assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
+ SchedReads.emplace_back(SchedReads.size(), SRDef);
+ }
+ // Initialize WriteSequence vectors.
+ for (CodeGenSchedRW &CGRW : SchedWrites) {
+ if (!CGRW.IsSequence)
+ continue;
+ findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
+ /*IsRead=*/false);
+ }
+ // Initialize Aliases vectors.
+ for (Record *ADef : AliasDefs) {
+ Record *AliasDef = ADef->getValueAsDef("AliasRW");
+ getSchedRW(AliasDef).IsAlias = true;
+ Record *MatchDef = ADef->getValueAsDef("MatchRW");
+ CodeGenSchedRW &RW = getSchedRW(MatchDef);
+ if (RW.IsAlias)
+ PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
+ RW.Aliases.push_back(ADef);
+ }
+ LLVM_DEBUG(
+ dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
+ for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
+ dbgs() << WIdx << ": ";
+ SchedWrites[WIdx].dump();
+ dbgs() << '\n';
+ } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
+ ++RIdx) {
+ dbgs() << RIdx << ": ";
+ SchedReads[RIdx].dump();
+ dbgs() << '\n';
+ } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
+ for (Record *RWDef
+ : RWDefs) {
+ if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
+ StringRef Name = RWDef->getName();
+ if (Name != "NoWrite" && Name != "ReadDefault")
+ dbgs() << "Unused SchedReadWrite " << Name << '\n';
+ }
+ });
+}
+
+/// Compute a SchedWrite name from a sequence of writes.
+std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
+ std::string Name("(");
+ for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
+ if (I != Seq.begin())
+ Name += '_';
+ Name += getSchedRW(*I, IsRead).Name;
+ }
+ Name += ')';
+ return Name;
+}
+
+unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
+ bool IsRead) const {
+ const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
+ const auto I = find_if(
+ RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
+ return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
+}
+
+bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
+ for (const CodeGenSchedRW &Read : SchedReads) {
+ Record *ReadDef = Read.TheDef;
+ if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
+ continue;
+
+ RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
+ if (is_contained(ValidWrites, WriteDef)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+static void splitSchedReadWrites(const RecVec &RWDefs,
+ RecVec &WriteDefs, RecVec &ReadDefs) {
+ for (Record *RWDef : RWDefs) {
+ if (RWDef->isSubClassOf("SchedWrite"))
+ WriteDefs.push_back(RWDef);
+ else {
+ assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
+ ReadDefs.push_back(RWDef);
+ }
+ }
+}
+
+// Split the SchedReadWrites defs and call findRWs for each list.
+void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
+ IdxVec &Writes, IdxVec &Reads) const {
+ RecVec WriteDefs;
+ RecVec ReadDefs;
+ splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
+ findRWs(WriteDefs, Writes, false);
+ findRWs(ReadDefs, Reads, true);
+}
+
+// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
+void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
+ bool IsRead) const {
+ for (Record *RWDef : RWDefs) {
+ unsigned Idx = getSchedRWIdx(RWDef, IsRead);
+ assert(Idx && "failed to collect SchedReadWrite");
+ RWs.push_back(Idx);
+ }
+}
+
+void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
+ bool IsRead) const {
+ const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
+ if (!SchedRW.IsSequence) {
+ RWSeq.push_back(RWIdx);
+ return;
+ }
+ int Repeat =
+ SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
+ for (int i = 0; i < Repeat; ++i) {
+ for (unsigned I : SchedRW.Sequence) {
+ expandRWSequence(I, RWSeq, IsRead);
+ }
+ }
+}
+
+// Expand a SchedWrite as a sequence following any aliases that coincide with
+// the given processor model.
+void CodeGenSchedModels::expandRWSeqForProc(
+ unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
+ const CodeGenProcModel &ProcModel) const {
+
+ const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
+ Record *AliasDef = nullptr;
+ for (const Record *Rec : SchedWrite.Aliases) {
+ const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
+ if (Rec->getValueInit("SchedModel")->isComplete()) {
+ Record *ModelDef = Rec->getValueAsDef("SchedModel");
+ if (&getProcModel(ModelDef) != &ProcModel)
+ continue;
+ }
+ if (AliasDef)
+ PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
+ "defined for processor " + ProcModel.ModelName +
+ " Ensure only one SchedAlias exists per RW.");
+ AliasDef = AliasRW.TheDef;
+ }
+ if (AliasDef) {
+ expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
+ RWSeq, IsRead,ProcModel);
+ return;
+ }
+ if (!SchedWrite.IsSequence) {
+ RWSeq.push_back(RWIdx);
+ return;
+ }
+ int Repeat =
+ SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
+ for (int I = 0, E = Repeat; I < E; ++I) {
+ for (unsigned Idx : SchedWrite.Sequence) {
+ expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
+ }
+ }
+}
+
+// Find the existing SchedWrite that models this sequence of writes.
+unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
+ bool IsRead) {
+ std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
+
+ auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
+ return makeArrayRef(RW.Sequence) == Seq;
+ });
+ // Index zero reserved for invalid RW.
+ return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
+}
+
+/// Add this ReadWrite if it doesn't already exist.
+unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
+ bool IsRead) {
+ assert(!Seq.empty() && "cannot insert empty sequence");
+ if (Seq.size() == 1)
+ return Seq.back();
+
+ unsigned Idx = findRWForSequence(Seq, IsRead);
+ if (Idx)
+ return Idx;
+
+ std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
+ unsigned RWIdx = RWVec.size();
+ CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
+ RWVec.push_back(SchedRW);
+ return RWIdx;
+}
+
+/// Visit all the instruction definitions for this target to gather and
+/// enumerate the itinerary classes. These are the explicitly specified
+/// SchedClasses. More SchedClasses may be inferred.
+void CodeGenSchedModels::collectSchedClasses() {
+
+ // NoItinerary is always the first class at Idx=0
+ assert(SchedClasses.empty() && "Expected empty sched class");
+ SchedClasses.emplace_back(0, "NoInstrModel",
+ Records.getDef("NoItinerary"));
+ SchedClasses.back().ProcIndices.push_back(0);
+
+ // Create a SchedClass for each unique combination of itinerary class and
+ // SchedRW list.
+ for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
+ Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
+ IdxVec Writes, Reads;
+ if (!Inst->TheDef->isValueUnset("SchedRW"))
+ findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
+
+ // ProcIdx == 0 indicates the class applies to all processors.
+ unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
+ InstrClassMap[Inst->TheDef] = SCIdx;
+ }
+ // Create classes for InstRW defs.
+ RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
+ llvm::sort(InstRWDefs, LessRecord());
+ LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
+ for (Record *RWDef : InstRWDefs)
+ createInstRWClass(RWDef);
+
+ NumInstrSchedClasses = SchedClasses.size();
+
+ bool EnableDump = false;
+ LLVM_DEBUG(EnableDump = true);
+ if (!EnableDump)
+ return;
+
+ LLVM_DEBUG(
+ dbgs()
+ << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
+ for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
+ StringRef InstName = Inst->TheDef->getName();
+ unsigned SCIdx = getSchedClassIdx(*Inst);
+ if (!SCIdx) {
+ LLVM_DEBUG({
+ if (!Inst->hasNoSchedulingInfo)
+ dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
+ });
+ continue;
+ }
+ CodeGenSchedClass &SC = getSchedClass(SCIdx);
+ if (SC.ProcIndices[0] != 0)
+ PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
+ "must not be subtarget specific.");
+
+ IdxVec ProcIndices;
+ if (SC.ItinClassDef->getName() != "NoItinerary") {
+ ProcIndices.push_back(0);
+ dbgs() << "Itinerary for " << InstName << ": "
+ << SC.ItinClassDef->getName() << '\n';
+ }
+ if (!SC.Writes.empty()) {
+ ProcIndices.push_back(0);
+ LLVM_DEBUG({
+ dbgs() << "SchedRW machine model for " << InstName;
+ for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
+ ++WI)
+ dbgs() << " " << SchedWrites[*WI].Name;
+ for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
+ dbgs() << " " << SchedReads[*RI].Name;
+ dbgs() << '\n';
+ });
+ }
+ const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
+ for (Record *RWDef : RWDefs) {
+ const CodeGenProcModel &ProcModel =
+ getProcModel(RWDef->getValueAsDef("SchedModel"));
+ ProcIndices.push_back(ProcModel.Index);
+ LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
+ << InstName);
+ IdxVec Writes;
+ IdxVec Reads;
+ findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
+ Writes, Reads);
+ LLVM_DEBUG({
+ for (unsigned WIdx : Writes)
+ dbgs() << " " << SchedWrites[WIdx].Name;
+ for (unsigned RIdx : Reads)
+ dbgs() << " " << SchedReads[RIdx].Name;
+ dbgs() << '\n';
+ });
+ }
+ // If ProcIndices contains zero, the class applies to all processors.
+ LLVM_DEBUG({
+ if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
+ for (const CodeGenProcModel &PM : ProcModels) {
+ if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
+ dbgs() << "No machine model for " << Inst->TheDef->getName()
+ << " on processor " << PM.ModelName << '\n';
+ }
+ }
+ });
+ }
+}
+
+// Get the SchedClass index for an instruction.
+unsigned
+CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
+ return InstrClassMap.lookup(Inst.TheDef);
+}
+
+std::string
+CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
+ ArrayRef<unsigned> OperWrites,
+ ArrayRef<unsigned> OperReads) {
+
+ std::string Name;
+ if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
+ Name = ItinClassDef->getName();
+ for (unsigned Idx : OperWrites) {
+ if (!Name.empty())
+ Name += '_';
+ Name += SchedWrites[Idx].Name;
+ }
+ for (unsigned Idx : OperReads) {
+ Name += '_';
+ Name += SchedReads[Idx].Name;
+ }
+ return Name;
+}
+
+std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
+
+ std::string Name;
+ for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
+ if (I != InstDefs.begin())
+ Name += '_';
+ Name += (*I)->getName();
+ }
+ return Name;
+}
+
+/// Add an inferred sched class from an itinerary class and per-operand list of
+/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
+/// processors that may utilize this class.
+unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
+ ArrayRef<unsigned> OperWrites,
+ ArrayRef<unsigned> OperReads,
+ ArrayRef<unsigned> ProcIndices) {
+ assert(!ProcIndices.empty() && "expect at least one ProcIdx");
+
+ auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
+ return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
+ };
+
+ auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
+ unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
+ if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
+ IdxVec PI;
+ std::set_union(SchedClasses[Idx].ProcIndices.begin(),
+ SchedClasses[Idx].ProcIndices.end(),
+ ProcIndices.begin(), ProcIndices.end(),
+ std::back_inserter(PI));
+ SchedClasses[Idx].ProcIndices = std::move(PI);
+ return Idx;
+ }
+ Idx = SchedClasses.size();
+ SchedClasses.emplace_back(Idx,
+ createSchedClassName(ItinClassDef, OperWrites,
+ OperReads),
+ ItinClassDef);
+ CodeGenSchedClass &SC = SchedClasses.back();
+ SC.Writes = OperWrites;
+ SC.Reads = OperReads;
+ SC.ProcIndices = ProcIndices;
+
+ return Idx;
+}
+
+// Create classes for each set of opcodes that are in the same InstReadWrite
+// definition across all processors.
+void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
+ // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
+ // intersects with an existing class via a previous InstRWDef. Instrs that do
+ // not intersect with an existing class refer back to their former class as
+ // determined from ItinDef or SchedRW.
+ SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
+ // Sort Instrs into sets.
+ const RecVec *InstDefs = Sets.expand(InstRWDef);
+ if (InstDefs->empty())
+ PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
+
+ for (Record *InstDef : *InstDefs) {
+ InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
+ if (Pos == InstrClassMap.end())
+ PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
+ unsigned SCIdx = Pos->second;
+ ClassInstrs[SCIdx].push_back(InstDef);
+ }
+ // For each set of Instrs, create a new class if necessary, and map or remap
+ // the Instrs to it.
+ for (auto &Entry : ClassInstrs) {
+ unsigned OldSCIdx = Entry.first;
+ ArrayRef<Record*> InstDefs = Entry.second;
+ // If the all instrs in the current class are accounted for, then leave
+ // them mapped to their old class.
+ if (OldSCIdx) {
+ const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
+ if (!RWDefs.empty()) {
+ const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
+ unsigned OrigNumInstrs =
+ count_if(*OrigInstDefs, [&](Record *OIDef) {
+ return InstrClassMap[OIDef] == OldSCIdx;
+ });
+ if (OrigNumInstrs == InstDefs.size()) {
+ assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
+ "expected a generic SchedClass");
+ Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
+ // Make sure we didn't already have a InstRW containing this
+ // instruction on this model.
+ for (Record *RWD : RWDefs) {
+ if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
+ RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
+ for (Record *Inst : InstDefs) {
+ PrintFatalError
+ (InstRWDef->getLoc(),
+ "Overlapping InstRW definition for \"" +
+ Inst->getName() +
+ "\" also matches previous \"" +
+ RWD->getValue("Instrs")->getValue()->getAsString() +
+ "\".");
+ }
+ }
+ }
+ LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
+ << SchedClasses[OldSCIdx].Name << " on "
+ << RWModelDef->getName() << "\n");
+ SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
+ continue;
+ }
+ }
+ }
+ unsigned SCIdx = SchedClasses.size();
+ SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
+ CodeGenSchedClass &SC = SchedClasses.back();
+ LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
+ << InstRWDef->getValueAsDef("SchedModel")->getName()
+ << "\n");
+
+ // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
+ SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
+ SC.Writes = SchedClasses[OldSCIdx].Writes;
+ SC.Reads = SchedClasses[OldSCIdx].Reads;
+ SC.ProcIndices.push_back(0);
+ // If we had an old class, copy it's InstRWs to this new class.
+ if (OldSCIdx) {
+ Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
+ for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
+ if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
+ for (Record *InstDef : InstDefs) {
+ PrintFatalError
+ (InstRWDef->getLoc(),
+ "Overlapping InstRW definition for \"" +
+ InstDef->getName() +
+ "\" also matches previous \"" +
+ OldRWDef->getValue("Instrs")->getValue()->getAsString() +
+ "\".");
+ }
+ }
+ assert(OldRWDef != InstRWDef &&
+ "SchedClass has duplicate InstRW def");
+ SC.InstRWs.push_back(OldRWDef);
+ }
+ }
+ // Map each Instr to this new class.
+ for (Record *InstDef : InstDefs)
+ InstrClassMap[InstDef] = SCIdx;
+ SC.InstRWs.push_back(InstRWDef);
+ }
+}
+
+// True if collectProcItins found anything.
+bool CodeGenSchedModels::hasItineraries() const {
+ for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
+ if (PM.hasItineraries())
+ return true;
+ return false;
+}
+
+// Gather the processor itineraries.
+void CodeGenSchedModels::collectProcItins() {
+ LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
+ for (CodeGenProcModel &ProcModel : ProcModels) {
+ if (!ProcModel.hasItineraries())
+ continue;
+
+ RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
+ assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
+
+ // Populate ItinDefList with Itinerary records.
+ ProcModel.ItinDefList.resize(NumInstrSchedClasses);
+
+ // Insert each itinerary data record in the correct position within
+ // the processor model's ItinDefList.
+ for (Record *ItinData : ItinRecords) {
+ const Record *ItinDef = ItinData->getValueAsDef("TheClass");
+ bool FoundClass = false;
+
+ for (const CodeGenSchedClass &SC :
+ make_range(schedClassBegin(), schedClassEnd())) {
+ // Multiple SchedClasses may share an itinerary. Update all of them.
+ if (SC.ItinClassDef == ItinDef) {
+ ProcModel.ItinDefList[SC.Index] = ItinData;
+ FoundClass = true;
+ }
+ }
+ if (!FoundClass) {
+ LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
+ << " missing class for itinerary "
+ << ItinDef->getName() << '\n');
+ }
+ }
+ // Check for missing itinerary entries.
+ assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
+ LLVM_DEBUG(
+ for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
+ if (!ProcModel.ItinDefList[i])
+ dbgs() << ProcModel.ItinsDef->getName()
+ << " missing itinerary for class " << SchedClasses[i].Name
+ << '\n';
+ });
+ }
+}
+
+// Gather the read/write types for each itinerary class.
+void CodeGenSchedModels::collectProcItinRW() {
+ RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
+ llvm::sort(ItinRWDefs, LessRecord());
+ for (Record *RWDef : ItinRWDefs) {
+ if (!RWDef->getValueInit("SchedModel")->isComplete())
+ PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
+ Record *ModelDef = RWDef->getValueAsDef("SchedModel");
+ ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
+ if (I == ProcModelMap.end()) {
+ PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
+ + ModelDef->getName());
+ }
+ ProcModels[I->second].ItinRWDefs.push_back(RWDef);
+ }
+}
+
+// Gather the unsupported features for processor models.
+void CodeGenSchedModels::collectProcUnsupportedFeatures() {
+ for (CodeGenProcModel &ProcModel : ProcModels) {
+ for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
+ ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
+ }
+ }
+}
+
+/// Infer new classes from existing classes. In the process, this may create new
+/// SchedWrites from sequences of existing SchedWrites.
+void CodeGenSchedModels::inferSchedClasses() {
+ LLVM_DEBUG(
+ dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
+ LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
+
+ // Visit all existing classes and newly created classes.
+ for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
+ assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
+
+ if (SchedClasses[Idx].ItinClassDef)
+ inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
+ if (!SchedClasses[Idx].InstRWs.empty())
+ inferFromInstRWs(Idx);
+ if (!SchedClasses[Idx].Writes.empty()) {
+ inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
+ Idx, SchedClasses[Idx].ProcIndices);
+ }
+ assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
+ "too many SchedVariants");
+ }
+}
+
+/// Infer classes from per-processor itinerary resources.
+void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
+ unsigned FromClassIdx) {
+ for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
+ const CodeGenProcModel &PM = ProcModels[PIdx];
+ // For all ItinRW entries.
+ bool HasMatch = false;
+ for (const Record *Rec : PM.ItinRWDefs) {
+ RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
+ if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
+ continue;
+ if (HasMatch)
+ PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
+ + ItinClassDef->getName()
+ + " in ItinResources for " + PM.ModelName);
+ HasMatch = true;
+ IdxVec Writes, Reads;
+ findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
+ inferFromRW(Writes, Reads, FromClassIdx, PIdx);
+ }
+ }
+}
+
+/// Infer classes from per-processor InstReadWrite definitions.
+void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
+ for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
+ assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
+ Record *Rec = SchedClasses[SCIdx].InstRWs[I];
+ const RecVec *InstDefs = Sets.expand(Rec);
+ RecIter II = InstDefs->begin(), IE = InstDefs->end();
+ for (; II != IE; ++II) {
+ if (InstrClassMap[*II] == SCIdx)
+ break;
+ }
+ // If this class no longer has any instructions mapped to it, it has become
+ // irrelevant.
+ if (II == IE)
+ continue;
+ IdxVec Writes, Reads;
+ findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
+ unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
+ inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
+ }
+}
+
+namespace {
+
+// Helper for substituteVariantOperand.
+struct TransVariant {
+ Record *VarOrSeqDef; // Variant or sequence.
+ unsigned RWIdx; // Index of this variant or sequence's matched type.
+ unsigned ProcIdx; // Processor model index or zero for any.
+ unsigned TransVecIdx; // Index into PredTransitions::TransVec.
+
+ TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
+ VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
+};
+
+// Associate a predicate with the SchedReadWrite that it guards.
+// RWIdx is the index of the read/write variant.
+struct PredCheck {
+ bool IsRead;
+ unsigned RWIdx;
+ Record *Predicate;
+
+ PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
+};
+
+// A Predicate transition is a list of RW sequences guarded by a PredTerm.
+struct PredTransition {
+ // A predicate term is a conjunction of PredChecks.
+ SmallVector<PredCheck, 4> PredTerm;
+ SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
+ SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
+ SmallVector<unsigned, 4> ProcIndices;
+};
+
+// Encapsulate a set of partially constructed transitions.
+// The results are built by repeated calls to substituteVariants.
+class PredTransitions {
+ CodeGenSchedModels &SchedModels;
+
+public:
+ std::vector<PredTransition> TransVec;
+
+ PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
+
+ void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
+ bool IsRead, unsigned StartIdx);
+
+ void substituteVariants(const PredTransition &Trans);
+
+#ifndef NDEBUG
+ void dump() const;
+#endif
+
+private:
+ bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
+ void getIntersectingVariants(
+ const CodeGenSchedRW &SchedRW, unsigned TransIdx,
+ std::vector<TransVariant> &IntersectingVariants);
+ void pushVariant(const TransVariant &VInfo, bool IsRead);
+};
+
+} // end anonymous namespace
+
+// Return true if this predicate is mutually exclusive with a PredTerm. This
+// degenerates into checking if the predicate is mutually exclusive with any
+// predicate in the Term's conjunction.
+//
+// All predicates associated with a given SchedRW are considered mutually
+// exclusive. This should work even if the conditions expressed by the
+// predicates are not exclusive because the predicates for a given SchedWrite
+// are always checked in the order they are defined in the .td file. Later
+// conditions implicitly negate any prior condition.
+bool PredTransitions::mutuallyExclusive(Record *PredDef,
+ ArrayRef<PredCheck> Term) {
+ for (const PredCheck &PC: Term) {
+ if (PC.Predicate == PredDef)
+ return false;
+
+ const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
+ assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
+ RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
+ if (any_of(Variants, [PredDef](const Record *R) {
+ return R->getValueAsDef("Predicate") == PredDef;
+ }))
+ return true;
+ }
+ return false;
+}
+
+static bool hasAliasedVariants(const CodeGenSchedRW &RW,
+ CodeGenSchedModels &SchedModels) {
+ if (RW.HasVariants)
+ return true;
+
+ for (Record *Alias : RW.Aliases) {
+ const CodeGenSchedRW &AliasRW =
+ SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
+ if (AliasRW.HasVariants)
+ return true;
+ if (AliasRW.IsSequence) {
+ IdxVec ExpandedRWs;
+ SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
+ for (unsigned SI : ExpandedRWs) {
+ if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
+ SchedModels))
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+static bool hasVariant(ArrayRef<PredTransition> Transitions,
+ CodeGenSchedModels &SchedModels) {
+ for (const PredTransition &PTI : Transitions) {
+ for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
+ for (unsigned WI : WSI)
+ if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
+ return true;
+
+ for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
+ for (unsigned RI : RSI)
+ if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
+ return true;
+ }
+ return false;
+}
+
+// Populate IntersectingVariants with any variants or aliased sequences of the
+// given SchedRW whose processor indices and predicates are not mutually
+// exclusive with the given transition.
+void PredTransitions::getIntersectingVariants(
+ const CodeGenSchedRW &SchedRW, unsigned TransIdx,
+ std::vector<TransVariant> &IntersectingVariants) {
+
+ bool GenericRW = false;
+
+ std::vector<TransVariant> Variants;
+ if (SchedRW.HasVariants) {
+ unsigned VarProcIdx = 0;
+ if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
+ Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
+ VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
+ }
+ // Push each variant. Assign TransVecIdx later.
+ const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
+ for (Record *VarDef : VarDefs)
+ Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
+ if (VarProcIdx == 0)
+ GenericRW = true;
+ }
+ for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
+ AI != AE; ++AI) {
+ // If either the SchedAlias itself or the SchedReadWrite that it aliases
+ // to is defined within a processor model, constrain all variants to
+ // that processor.
+ unsigned AliasProcIdx = 0;
+ if ((*AI)->getValueInit("SchedModel")->isComplete()) {
+ Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
+ AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
+ }
+ const CodeGenSchedRW &AliasRW =
+ SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
+
+ if (AliasRW.HasVariants) {
+ const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
+ for (Record *VD : VarDefs)
+ Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
+ }
+ if (AliasRW.IsSequence)
+ Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
+ if (AliasProcIdx == 0)
+ GenericRW = true;
+ }
+ for (TransVariant &Variant : Variants) {
+ // Don't expand variants if the processor models don't intersect.
+ // A zero processor index means any processor.
+ SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
+ if (ProcIndices[0] && Variant.ProcIdx) {
+ unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
+ Variant.ProcIdx);
+ if (!Cnt)
+ continue;
+ if (Cnt > 1) {
+ const CodeGenProcModel &PM =
+ *(SchedModels.procModelBegin() + Variant.ProcIdx);
+ PrintFatalError(Variant.VarOrSeqDef->getLoc(),
+ "Multiple variants defined for processor " +
+ PM.ModelName +
+ " Ensure only one SchedAlias exists per RW.");
+ }
+ }
+ if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
+ Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
+ if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
+ continue;
+ }
+ if (IntersectingVariants.empty()) {
+ // The first variant builds on the existing transition.
+ Variant.TransVecIdx = TransIdx;
+ IntersectingVariants.push_back(Variant);
+ }
+ else {
+ // Push another copy of the current transition for more variants.
+ Variant.TransVecIdx = TransVec.size();
+ IntersectingVariants.push_back(Variant);
+ TransVec.push_back(TransVec[TransIdx]);
+ }
+ }
+ if (GenericRW && IntersectingVariants.empty()) {
+ PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
+ "a matching predicate on any processor");
+ }
+}
+
+// Push the Reads/Writes selected by this variant onto the PredTransition
+// specified by VInfo.
+void PredTransitions::
+pushVariant(const TransVariant &VInfo, bool IsRead) {
+ PredTransition &Trans = TransVec[VInfo.TransVecIdx];
+
+ // If this operand transition is reached through a processor-specific alias,
+ // then the whole transition is specific to this processor.
+ if (VInfo.ProcIdx != 0)
+ Trans.ProcIndices.assign(1, VInfo.ProcIdx);
+
+ IdxVec SelectedRWs;
+ if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
+ Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
+ Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
+ RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
+ SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
+ }
+ else {
+ assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
+ "variant must be a SchedVariant or aliased WriteSequence");
+ SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
+ }
+
+ const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
+
+ SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
+ ? Trans.ReadSequences : Trans.WriteSequences;
+ if (SchedRW.IsVariadic) {
+ unsigned OperIdx = RWSequences.size()-1;
+ // Make N-1 copies of this transition's last sequence.
+ RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
+ RWSequences[OperIdx]);
+ // Push each of the N elements of the SelectedRWs onto a copy of the last
+ // sequence (split the current operand into N operands).
+ // Note that write sequences should be expanded within this loop--the entire
+ // sequence belongs to a single operand.
+ for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
+ RWI != RWE; ++RWI, ++OperIdx) {
+ IdxVec ExpandedRWs;
+ if (IsRead)
+ ExpandedRWs.push_back(*RWI);
+ else
+ SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
+ RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
+ ExpandedRWs.begin(), ExpandedRWs.end());
+ }
+ assert(OperIdx == RWSequences.size() && "missed a sequence");
+ }
+ else {
+ // Push this transition's expanded sequence onto this transition's last
+ // sequence (add to the current operand's sequence).
+ SmallVectorImpl<unsigned> &Seq = RWSequences.back();
+ IdxVec ExpandedRWs;
+ for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
+ RWI != RWE; ++RWI) {
+ if (IsRead)
+ ExpandedRWs.push_back(*RWI);
+ else
+ SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
+ }
+ Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
+ }
+}
+
+// RWSeq is a sequence of all Reads or all Writes for the next read or write
+// operand. StartIdx is an index into TransVec where partial results
+// starts. RWSeq must be applied to all transitions between StartIdx and the end
+// of TransVec.
+void PredTransitions::substituteVariantOperand(
+ const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
+
+ // Visit each original RW within the current sequence.
+ for (SmallVectorImpl<unsigned>::const_iterator
+ RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
+ const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
+ // Push this RW on all partial PredTransitions or distribute variants.
+ // New PredTransitions may be pushed within this loop which should not be
+ // revisited (TransEnd must be loop invariant).
+ for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
+ TransIdx != TransEnd; ++TransIdx) {
+ // In the common case, push RW onto the current operand's sequence.
+ if (!hasAliasedVariants(SchedRW, SchedModels)) {
+ if (IsRead)
+ TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
+ else
+ TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
+ continue;
+ }
+ // Distribute this partial PredTransition across intersecting variants.
+ // This will push a copies of TransVec[TransIdx] on the back of TransVec.
+ std::vector<TransVariant> IntersectingVariants;
+ getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
+ // Now expand each variant on top of its copy of the transition.
+ for (std::vector<TransVariant>::const_iterator
+ IVI = IntersectingVariants.begin(),
+ IVE = IntersectingVariants.end();
+ IVI != IVE; ++IVI) {
+ pushVariant(*IVI, IsRead);
+ }
+ }
+ }
+}
+
+// For each variant of a Read/Write in Trans, substitute the sequence of
+// Read/Writes guarded by the variant. This is exponential in the number of
+// variant Read/Writes, but in practice detection of mutually exclusive
+// predicates should result in linear growth in the total number variants.
+//
+// This is one step in a breadth-first search of nested variants.
+void PredTransitions::substituteVariants(const PredTransition &Trans) {
+ // Build up a set of partial results starting at the back of
+ // PredTransitions. Remember the first new transition.
+ unsigned StartIdx = TransVec.size();
+ TransVec.emplace_back();
+ TransVec.back().PredTerm = Trans.PredTerm;
+ TransVec.back().ProcIndices = Trans.ProcIndices;
+
+ // Visit each original write sequence.
+ for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
+ WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
+ WSI != WSE; ++WSI) {
+ // Push a new (empty) write sequence onto all partial Transitions.
+ for (std::vector<PredTransition>::iterator I =
+ TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
+ I->WriteSequences.emplace_back();
+ }
+ substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
+ }
+ // Visit each original read sequence.
+ for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
+ RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
+ RSI != RSE; ++RSI) {
+ // Push a new (empty) read sequence onto all partial Transitions.
+ for (std::vector<PredTransition>::iterator I =
+ TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
+ I->ReadSequences.emplace_back();
+ }
+ substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
+ }
+}
+
+// Create a new SchedClass for each variant found by inferFromRW. Pass
+static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
+ unsigned FromClassIdx,
+ CodeGenSchedModels &SchedModels) {
+ // For each PredTransition, create a new CodeGenSchedTransition, which usually
+ // requires creating a new SchedClass.
+ for (ArrayRef<PredTransition>::iterator
+ I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
+ IdxVec OperWritesVariant;
+ transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
+ [&SchedModels](ArrayRef<unsigned> WS) {
+ return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
+ });
+ IdxVec OperReadsVariant;
+ transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
+ [&SchedModels](ArrayRef<unsigned> RS) {
+ return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
+ });
+ CodeGenSchedTransition SCTrans;
+ SCTrans.ToClassIdx =
+ SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
+ OperReadsVariant, I->ProcIndices);
+ SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
+ // The final PredTerm is unique set of predicates guarding the transition.
+ RecVec Preds;
+ transform(I->PredTerm, std::back_inserter(Preds),
+ [](const PredCheck &P) {
+ return P.Predicate;
+ });
+ Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
+ SCTrans.PredTerm = std::move(Preds);
+ SchedModels.getSchedClass(FromClassIdx)
+ .Transitions.push_back(std::move(SCTrans));
+ }
+}
+
+// Create new SchedClasses for the given ReadWrite list. If any of the
+// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
+// of the ReadWrite list, following Aliases if necessary.
+void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
+ ArrayRef<unsigned> OperReads,
+ unsigned FromClassIdx,
+ ArrayRef<unsigned> ProcIndices) {
+ LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
+ dbgs() << ") ");
+
+ // Create a seed transition with an empty PredTerm and the expanded sequences
+ // of SchedWrites for the current SchedClass.
+ std::vector<PredTransition> LastTransitions;
+ LastTransitions.emplace_back();
+ LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
+ ProcIndices.end());
+
+ for (unsigned WriteIdx : OperWrites) {
+ IdxVec WriteSeq;
+ expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
+ LastTransitions[0].WriteSequences.emplace_back();
+ SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
+ Seq.append(WriteSeq.begin(), WriteSeq.end());
+ LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
+ }
+ LLVM_DEBUG(dbgs() << " Reads: ");
+ for (unsigned ReadIdx : OperReads) {
+ IdxVec ReadSeq;
+ expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
+ LastTransitions[0].ReadSequences.emplace_back();
+ SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
+ Seq.append(ReadSeq.begin(), ReadSeq.end());
+ LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
+ }
+ LLVM_DEBUG(dbgs() << '\n');
+
+ // Collect all PredTransitions for individual operands.
+ // Iterate until no variant writes remain.
+ while (hasVariant(LastTransitions, *this)) {
+ PredTransitions Transitions(*this);
+ for (const PredTransition &Trans : LastTransitions)
+ Transitions.substituteVariants(Trans);
+ LLVM_DEBUG(Transitions.dump());
+ LastTransitions.swap(Transitions.TransVec);
+ }
+ // If the first transition has no variants, nothing to do.
+ if (LastTransitions[0].PredTerm.empty())
+ return;
+
+ // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
+ // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
+ inferFromTransitions(LastTransitions, FromClassIdx, *this);
+}
+
+// Check if any processor resource group contains all resource records in
+// SubUnits.
+bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
+ for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
+ if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
+ continue;
+ RecVec SuperUnits =
+ PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
+ RecIter RI = SubUnits.begin(), RE = SubUnits.end();
+ for ( ; RI != RE; ++RI) {
+ if (!is_contained(SuperUnits, *RI)) {
+ break;
+ }
+ }
+ if (RI == RE)
+ return true;
+ }
+ return false;
+}
+
+// Verify that overlapping groups have a common supergroup.
+void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
+ for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
+ if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
+ continue;
+ RecVec CheckUnits =
+ PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
+ for (unsigned j = i+1; j < e; ++j) {
+ if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
+ continue;
+ RecVec OtherUnits =
+ PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
+ if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
+ OtherUnits.begin(), OtherUnits.end())
+ != CheckUnits.end()) {
+ // CheckUnits and OtherUnits overlap
+ OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
+ CheckUnits.end());
+ if (!hasSuperGroup(OtherUnits, PM)) {
+ PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
+ "proc resource group overlaps with "
+ + PM.ProcResourceDefs[j]->getName()
+ + " but no supergroup contains both.");
+ }
+ }
+ }
+ }
+}
+
+// Collect all the RegisterFile definitions available in this target.
+void CodeGenSchedModels::collectRegisterFiles() {
+ RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
+
+ // RegisterFiles is the vector of CodeGenRegisterFile.
+ for (Record *RF : RegisterFileDefs) {
+ // For each register file definition, construct a CodeGenRegisterFile object
+ // and add it to the appropriate scheduling model.
+ CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
+ PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
+ CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
+ CGRF.MaxMovesEliminatedPerCycle =
+ RF->getValueAsInt("MaxMovesEliminatedPerCycle");
+ CGRF.AllowZeroMoveEliminationOnly =
+ RF->getValueAsBit("AllowZeroMoveEliminationOnly");
+
+ // Now set the number of physical registers as well as the cost of registers
+ // in each register class.
+ CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
+ if (!CGRF.NumPhysRegs) {
+ PrintFatalError(RF->getLoc(),
+ "Invalid RegisterFile with zero physical registers");
+ }
+
+ RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
+ std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
+ ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
+ for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
+ int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
+
+ bool AllowMoveElim = false;
+ if (MoveElimInfo->size() > I) {
+ BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
+ AllowMoveElim = Val->getValue();
+ }
+
+ CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
+ }
+ }
+}
+
+// Collect and sort WriteRes, ReadAdvance, and ProcResources.
+void CodeGenSchedModels::collectProcResources() {
+ ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
+ ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
+
+ // Add any subtarget-specific SchedReadWrites that are directly associated
+ // with processor resources. Refer to the parent SchedClass's ProcIndices to
+ // determine which processors they apply to.
+ for (const CodeGenSchedClass &SC :
+ make_range(schedClassBegin(), schedClassEnd())) {
+ if (SC.ItinClassDef) {
+ collectItinProcResources(SC.ItinClassDef);
+ continue;
+ }
+
+ // This class may have a default ReadWrite list which can be overriden by
+ // InstRW definitions.
+ for (Record *RW : SC.InstRWs) {
+ Record *RWModelDef = RW->getValueAsDef("SchedModel");
+ unsigned PIdx = getProcModel(RWModelDef).Index;
+ IdxVec Writes, Reads;
+ findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
+ collectRWResources(Writes, Reads, PIdx);
+ }
+
+ collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
+ }
+ // Add resources separately defined by each subtarget.
+ RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
+ for (Record *WR : WRDefs) {
+ Record *ModelDef = WR->getValueAsDef("SchedModel");
+ addWriteRes(WR, getProcModel(ModelDef).Index);
+ }
+ RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
+ for (Record *SWR : SWRDefs) {
+ Record *ModelDef = SWR->getValueAsDef("SchedModel");
+ addWriteRes(SWR, getProcModel(ModelDef).Index);
+ }
+ RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
+ for (Record *RA : RADefs) {
+ Record *ModelDef = RA->getValueAsDef("SchedModel");
+ addReadAdvance(RA, getProcModel(ModelDef).Index);
+ }
+ RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
+ for (Record *SRA : SRADefs) {
+ if (SRA->getValueInit("SchedModel")->isComplete()) {
+ Record *ModelDef = SRA->getValueAsDef("SchedModel");
+ addReadAdvance(SRA, getProcModel(ModelDef).Index);
+ }
+ }
+ // Add ProcResGroups that are defined within this processor model, which may
+ // not be directly referenced but may directly specify a buffer size.
+ RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
+ for (Record *PRG : ProcResGroups) {
+ if (!PRG->getValueInit("SchedModel")->isComplete())
+ continue;
+ CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
+ if (!is_contained(PM.ProcResourceDefs, PRG))
+ PM.ProcResourceDefs.push_back(PRG);
+ }
+ // Add ProcResourceUnits unconditionally.
+ for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
+ if (!PRU->getValueInit("SchedModel")->isComplete())
+ continue;
+ CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
+ if (!is_contained(PM.ProcResourceDefs, PRU))
+ PM.ProcResourceDefs.push_back(PRU);
+ }
+ // Finalize each ProcModel by sorting the record arrays.
+ for (CodeGenProcModel &PM : ProcModels) {
+ llvm::sort(PM.WriteResDefs, LessRecord());
+ llvm::sort(PM.ReadAdvanceDefs, LessRecord());
+ llvm::sort(PM.ProcResourceDefs, LessRecord());
+ LLVM_DEBUG(
+ PM.dump();
+ dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
+ RE = PM.WriteResDefs.end();
+ RI != RE; ++RI) {
+ if ((*RI)->isSubClassOf("WriteRes"))
+ dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
+ else
+ dbgs() << (*RI)->getName() << " ";
+ } dbgs() << "\nReadAdvanceDefs: ";
+ for (RecIter RI = PM.ReadAdvanceDefs.begin(),
+ RE = PM.ReadAdvanceDefs.end();
+ RI != RE; ++RI) {
+ if ((*RI)->isSubClassOf("ReadAdvance"))
+ dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
+ else
+ dbgs() << (*RI)->getName() << " ";
+ } dbgs()
+ << "\nProcResourceDefs: ";
+ for (RecIter RI = PM.ProcResourceDefs.begin(),
+ RE = PM.ProcResourceDefs.end();
+ RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
+ << '\n');
+ verifyProcResourceGroups(PM);
+ }
+
+ ProcResourceDefs.clear();
+ ProcResGroups.clear();
+}
+
+void CodeGenSchedModels::checkCompleteness() {
+ bool Complete = true;
+ bool HadCompleteModel = false;
+ for (const CodeGenProcModel &ProcModel : procModels()) {
+ const bool HasItineraries = ProcModel.hasItineraries();
+ if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
+ continue;
+ for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
+ if (Inst->hasNoSchedulingInfo)
+ continue;
+ if (ProcModel.isUnsupported(*Inst))
+ continue;
+ unsigned SCIdx = getSchedClassIdx(*Inst);
+ if (!SCIdx) {
+ if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
+ PrintError(Inst->TheDef->getLoc(),
+ "No schedule information for instruction '" +
+ Inst->TheDef->getName() + "' in SchedMachineModel '" +
+ ProcModel.ModelDef->getName() + "'");
+ Complete = false;
+ }
+ continue;
+ }
+
+ const CodeGenSchedClass &SC = getSchedClass(SCIdx);
+ if (!SC.Writes.empty())
+ continue;
+ if (HasItineraries && SC.ItinClassDef != nullptr &&
+ SC.ItinClassDef->getName() != "NoItinerary")
+ continue;
+
+ const RecVec &InstRWs = SC.InstRWs;
+ auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
+ return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
+ });
+ if (I == InstRWs.end()) {
+ PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
+ "' lacks information for '" +
+ Inst->TheDef->getName() + "'");
+ Complete = false;
+ }
+ }
+ HadCompleteModel = true;
+ }
+ if (!Complete) {
+ errs() << "\n\nIncomplete schedule models found.\n"
+ << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
+ << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
+ << "- Instructions should usually have Sched<[...]> as a superclass, "
+ "you may temporarily use an empty list.\n"
+ << "- Instructions related to unsupported features can be excluded with "
+ "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
+ "processor model.\n\n";
+ PrintFatalError("Incomplete schedule model");
+ }
+}
+
+// Collect itinerary class resources for each processor.
+void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
+ for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
+ const CodeGenProcModel &PM = ProcModels[PIdx];
+ // For all ItinRW entries.
+ bool HasMatch = false;
+ for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
+ II != IE; ++II) {
+ RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
+ if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
+ continue;
+ if (HasMatch)
+ PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
+ + ItinClassDef->getName()
+ + " in ItinResources for " + PM.ModelName);
+ HasMatch = true;
+ IdxVec Writes, Reads;
+ findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
+ collectRWResources(Writes, Reads, PIdx);
+ }
+ }
+}
+
+void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
+ ArrayRef<unsigned> ProcIndices) {
+ const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
+ if (SchedRW.TheDef) {
+ if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
+ for (unsigned Idx : ProcIndices)
+ addWriteRes(SchedRW.TheDef, Idx);
+ }
+ else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
+ for (unsigned Idx : ProcIndices)
+ addReadAdvance(SchedRW.TheDef, Idx);
+ }
+ }
+ for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
+ AI != AE; ++AI) {
+ IdxVec AliasProcIndices;
+ if ((*AI)->getValueInit("SchedModel")->isComplete()) {
+ AliasProcIndices.push_back(
+ getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
+ }
+ else
+ AliasProcIndices = ProcIndices;
+ const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
+ assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
+
+ IdxVec ExpandedRWs;
+ expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
+ for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
+ SI != SE; ++SI) {
+ collectRWResources(*SI, IsRead, AliasProcIndices);
+ }
+ }
+}
+
+// Collect resources for a set of read/write types and processor indices.
+void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
+ ArrayRef<unsigned> Reads,
+ ArrayRef<unsigned> ProcIndices) {
+ for (unsigned Idx : Writes)
+ collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
+
+ for (unsigned Idx : Reads)
+ collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
+}
+
+// Find the processor's resource units for this kind of resource.
+Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
+ const CodeGenProcModel &PM,
+ ArrayRef<SMLoc> Loc) const {
+ if (ProcResKind->isSubClassOf("ProcResourceUnits"))
+ return ProcResKind;
+
+ Record *ProcUnitDef = nullptr;
+ assert(!ProcResourceDefs.empty());
+ assert(!ProcResGroups.empty());
+
+ for (Record *ProcResDef : ProcResourceDefs) {
+ if (ProcResDef->getValueAsDef("Kind") == ProcResKind
+ && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
+ if (ProcUnitDef) {
+ PrintFatalError(Loc,
+ "Multiple ProcessorResourceUnits associated with "
+ + ProcResKind->getName());
+ }
+ ProcUnitDef = ProcResDef;
+ }
+ }
+ for (Record *ProcResGroup : ProcResGroups) {
+ if (ProcResGroup == ProcResKind
+ && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
+ if (ProcUnitDef) {
+ PrintFatalError(Loc,
+ "Multiple ProcessorResourceUnits associated with "
+ + ProcResKind->getName());
+ }
+ ProcUnitDef = ProcResGroup;
+ }
+ }
+ if (!ProcUnitDef) {
+ PrintFatalError(Loc,
+ "No ProcessorResources associated with "
+ + ProcResKind->getName());
+ }
+ return ProcUnitDef;
+}
+
+// Iteratively add a resource and its super resources.
+void CodeGenSchedModels::addProcResource(Record *ProcResKind,
+ CodeGenProcModel &PM,
+ ArrayRef<SMLoc> Loc) {
+ while (true) {
+ Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
+
+ // See if this ProcResource is already associated with this processor.
+ if (is_contained(PM.ProcResourceDefs, ProcResUnits))
+ return;
+
+ PM.ProcResourceDefs.push_back(ProcResUnits);
+ if (ProcResUnits->isSubClassOf("ProcResGroup"))
+ return;
+
+ if (!ProcResUnits->getValueInit("Super")->isComplete())
+ return;
+
+ ProcResKind = ProcResUnits->getValueAsDef("Super");
+ }
+}
+
+// Add resources for a SchedWrite to this processor if they don't exist.
+void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
+ assert(PIdx && "don't add resources to an invalid Processor model");
+
+ RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
+ if (is_contained(WRDefs, ProcWriteResDef))
+ return;
+ WRDefs.push_back(ProcWriteResDef);
+
+ // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
+ RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
+ for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
+ WritePRI != WritePRE; ++WritePRI) {
+ addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
+ }
+}
+
+// Add resources for a ReadAdvance to this processor if they don't exist.
+void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
+ unsigned PIdx) {
+ RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
+ if (is_contained(RADefs, ProcReadAdvanceDef))
+ return;
+ RADefs.push_back(ProcReadAdvanceDef);
+}
+
+unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
+ RecIter PRPos = find(ProcResourceDefs, PRDef);
+ if (PRPos == ProcResourceDefs.end())
+ PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
+ "the ProcResources list for " + ModelName);
+ // Idx=0 is reserved for invalid.
+ return 1 + (PRPos - ProcResourceDefs.begin());
+}
+
+bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
+ for (const Record *TheDef : UnsupportedFeaturesDefs) {
+ for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
+ if (TheDef->getName() == PredDef->getName())
+ return true;
+ }
+ }
+ return false;
+}
+
+#ifndef NDEBUG
+void CodeGenProcModel::dump() const {
+ dbgs() << Index << ": " << ModelName << " "
+ << (ModelDef ? ModelDef->getName() : "inferred") << " "
+ << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
+}
+
+void CodeGenSchedRW::dump() const {
+ dbgs() << Name << (IsVariadic ? " (V) " : " ");
+ if (IsSequence) {
+ dbgs() << "(";
+ dumpIdxVec(Sequence);
+ dbgs() << ")";
+ }
+}
+
+void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
+ dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
+ << " Writes: ";
+ for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
+ SchedModels->getSchedWrite(Writes[i]).dump();
+ if (i < N-1) {
+ dbgs() << '\n';
+ dbgs().indent(10);
+ }
+ }
+ dbgs() << "\n Reads: ";
+ for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
+ SchedModels->getSchedRead(Reads[i]).dump();
+ if (i < N-1) {
+ dbgs() << '\n';
+ dbgs().indent(10);
+ }
+ }
+ dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
+ if (!Transitions.empty()) {
+ dbgs() << "\n Transitions for Proc ";
+ for (const CodeGenSchedTransition &Transition : Transitions) {
+ dumpIdxVec(Transition.ProcIndices);
+ }
+ }
+}
+
+void PredTransitions::dump() const {
+ dbgs() << "Expanded Variants:\n";
+ for (std::vector<PredTransition>::const_iterator
+ TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
+ dbgs() << "{";
+ for (SmallVectorImpl<PredCheck>::const_iterator
+ PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
+ PCI != PCE; ++PCI) {
+ if (PCI != TI->PredTerm.begin())
+ dbgs() << ", ";
+ dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
+ << ":" << PCI->Predicate->getName();
+ }
+ dbgs() << "},\n => {";
+ for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
+ WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
+ WSI != WSE; ++WSI) {
+ dbgs() << "(";
+ for (SmallVectorImpl<unsigned>::const_iterator
+ WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
+ if (WI != WSI->begin())
+ dbgs() << ", ";
+ dbgs() << SchedModels.getSchedWrite(*WI).Name;
+ }
+ dbgs() << "),";
+ }
+ dbgs() << "}\n";
+ }
+}
+#endif // NDEBUG