diff options
Diffstat (limited to 'llvm/utils/TableGen/GlobalISelEmitter.cpp')
| -rw-r--r-- | llvm/utils/TableGen/GlobalISelEmitter.cpp | 5620 |
1 files changed, 5620 insertions, 0 deletions
diff --git a/llvm/utils/TableGen/GlobalISelEmitter.cpp b/llvm/utils/TableGen/GlobalISelEmitter.cpp new file mode 100644 index 000000000000..d8d4c9f4f55c --- /dev/null +++ b/llvm/utils/TableGen/GlobalISelEmitter.cpp @@ -0,0 +1,5620 @@ +//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This tablegen backend emits code for use by the GlobalISel instruction +/// selector. See include/llvm/CodeGen/TargetGlobalISel.td. +/// +/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen +/// backend, filters out the ones that are unsupported, maps +/// SelectionDAG-specific constructs to their GlobalISel counterpart +/// (when applicable: MVT to LLT; SDNode to generic Instruction). +/// +/// Not all patterns are supported: pass the tablegen invocation +/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, +/// as well as why. +/// +/// The generated file defines a single method: +/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; +/// intended to be used in InstructionSelector::select as the first-step +/// selector for the patterns that don't require complex C++. +/// +/// FIXME: We'll probably want to eventually define a base +/// "TargetGenInstructionSelector" class. +/// +//===----------------------------------------------------------------------===// + +#include "CodeGenDAGPatterns.h" +#include "SubtargetFeatureInfo.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/CodeGenCoverage.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/ScopedPrinter.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include "llvm/TableGen/TableGenBackend.h" +#include <numeric> +#include <string> +using namespace llvm; + +#define DEBUG_TYPE "gisel-emitter" + +STATISTIC(NumPatternTotal, "Total number of patterns"); +STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); +STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); +STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); +STATISTIC(NumPatternEmitted, "Number of patterns emitted"); + +cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); + +static cl::opt<bool> WarnOnSkippedPatterns( + "warn-on-skipped-patterns", + cl::desc("Explain why a pattern was skipped for inclusion " + "in the GlobalISel selector"), + cl::init(false), cl::cat(GlobalISelEmitterCat)); + +static cl::opt<bool> GenerateCoverage( + "instrument-gisel-coverage", + cl::desc("Generate coverage instrumentation for GlobalISel"), + cl::init(false), cl::cat(GlobalISelEmitterCat)); + +static cl::opt<std::string> UseCoverageFile( + "gisel-coverage-file", cl::init(""), + cl::desc("Specify file to retrieve coverage information from"), + cl::cat(GlobalISelEmitterCat)); + +static cl::opt<bool> OptimizeMatchTable( + "optimize-match-table", + cl::desc("Generate an optimized version of the match table"), + cl::init(true), cl::cat(GlobalISelEmitterCat)); + +namespace { +//===- Helper functions ---------------------------------------------------===// + +/// Get the name of the enum value used to number the predicate function. +std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { + if (Predicate.hasGISelPredicateCode()) + return "GIPFP_MI_" + Predicate.getFnName(); + return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + + Predicate.getFnName(); +} + +/// Get the opcode used to check this predicate. +std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) { + return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; +} + +/// This class stands in for LLT wherever we want to tablegen-erate an +/// equivalent at compiler run-time. +class LLTCodeGen { +private: + LLT Ty; + +public: + LLTCodeGen() = default; + LLTCodeGen(const LLT &Ty) : Ty(Ty) {} + + std::string getCxxEnumValue() const { + std::string Str; + raw_string_ostream OS(Str); + + emitCxxEnumValue(OS); + return OS.str(); + } + + void emitCxxEnumValue(raw_ostream &OS) const { + if (Ty.isScalar()) { + OS << "GILLT_s" << Ty.getSizeInBits(); + return; + } + if (Ty.isVector()) { + OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits(); + return; + } + if (Ty.isPointer()) { + OS << "GILLT_p" << Ty.getAddressSpace(); + if (Ty.getSizeInBits() > 0) + OS << "s" << Ty.getSizeInBits(); + return; + } + llvm_unreachable("Unhandled LLT"); + } + + void emitCxxConstructorCall(raw_ostream &OS) const { + if (Ty.isScalar()) { + OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; + return; + } + if (Ty.isVector()) { + OS << "LLT::vector(" << Ty.getNumElements() << ", " + << Ty.getScalarSizeInBits() << ")"; + return; + } + if (Ty.isPointer() && Ty.getSizeInBits() > 0) { + OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " + << Ty.getSizeInBits() << ")"; + return; + } + llvm_unreachable("Unhandled LLT"); + } + + const LLT &get() const { return Ty; } + + /// This ordering is used for std::unique() and llvm::sort(). There's no + /// particular logic behind the order but either A < B or B < A must be + /// true if A != B. + bool operator<(const LLTCodeGen &Other) const { + if (Ty.isValid() != Other.Ty.isValid()) + return Ty.isValid() < Other.Ty.isValid(); + if (!Ty.isValid()) + return false; + + if (Ty.isVector() != Other.Ty.isVector()) + return Ty.isVector() < Other.Ty.isVector(); + if (Ty.isScalar() != Other.Ty.isScalar()) + return Ty.isScalar() < Other.Ty.isScalar(); + if (Ty.isPointer() != Other.Ty.isPointer()) + return Ty.isPointer() < Other.Ty.isPointer(); + + if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) + return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); + + if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements()) + return Ty.getNumElements() < Other.Ty.getNumElements(); + + return Ty.getSizeInBits() < Other.Ty.getSizeInBits(); + } + + bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } +}; + +// Track all types that are used so we can emit the corresponding enum. +std::set<LLTCodeGen> KnownTypes; + +class InstructionMatcher; +/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for +/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). +static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { + MVT VT(SVT); + + if (VT.isVector() && VT.getVectorNumElements() != 1) + return LLTCodeGen( + LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits())); + + if (VT.isInteger() || VT.isFloatingPoint()) + return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); + return None; +} + +static std::string explainPredicates(const TreePatternNode *N) { + std::string Explanation = ""; + StringRef Separator = ""; + for (const TreePredicateCall &Call : N->getPredicateCalls()) { + const TreePredicateFn &P = Call.Fn; + Explanation += + (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); + Separator = ", "; + + if (P.isAlwaysTrue()) + Explanation += " always-true"; + if (P.isImmediatePattern()) + Explanation += " immediate"; + + if (P.isUnindexed()) + Explanation += " unindexed"; + + if (P.isNonExtLoad()) + Explanation += " non-extload"; + if (P.isAnyExtLoad()) + Explanation += " extload"; + if (P.isSignExtLoad()) + Explanation += " sextload"; + if (P.isZeroExtLoad()) + Explanation += " zextload"; + + if (P.isNonTruncStore()) + Explanation += " non-truncstore"; + if (P.isTruncStore()) + Explanation += " truncstore"; + + if (Record *VT = P.getMemoryVT()) + Explanation += (" MemVT=" + VT->getName()).str(); + if (Record *VT = P.getScalarMemoryVT()) + Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); + + if (ListInit *AddrSpaces = P.getAddressSpaces()) { + raw_string_ostream OS(Explanation); + OS << " AddressSpaces=["; + + StringRef AddrSpaceSeparator; + for (Init *Val : AddrSpaces->getValues()) { + IntInit *IntVal = dyn_cast<IntInit>(Val); + if (!IntVal) + continue; + + OS << AddrSpaceSeparator << IntVal->getValue(); + AddrSpaceSeparator = ", "; + } + + OS << ']'; + } + + int64_t MinAlign = P.getMinAlignment(); + if (MinAlign > 0) + Explanation += " MinAlign=" + utostr(MinAlign); + + if (P.isAtomicOrderingMonotonic()) + Explanation += " monotonic"; + if (P.isAtomicOrderingAcquire()) + Explanation += " acquire"; + if (P.isAtomicOrderingRelease()) + Explanation += " release"; + if (P.isAtomicOrderingAcquireRelease()) + Explanation += " acq_rel"; + if (P.isAtomicOrderingSequentiallyConsistent()) + Explanation += " seq_cst"; + if (P.isAtomicOrderingAcquireOrStronger()) + Explanation += " >=acquire"; + if (P.isAtomicOrderingWeakerThanAcquire()) + Explanation += " <acquire"; + if (P.isAtomicOrderingReleaseOrStronger()) + Explanation += " >=release"; + if (P.isAtomicOrderingWeakerThanRelease()) + Explanation += " <release"; + } + return Explanation; +} + +std::string explainOperator(Record *Operator) { + if (Operator->isSubClassOf("SDNode")) + return (" (" + Operator->getValueAsString("Opcode") + ")").str(); + + if (Operator->isSubClassOf("Intrinsic")) + return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); + + if (Operator->isSubClassOf("ComplexPattern")) + return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + + ")") + .str(); + + if (Operator->isSubClassOf("SDNodeXForm")) + return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + + ")") + .str(); + + return (" (Operator " + Operator->getName() + " not understood)").str(); +} + +/// Helper function to let the emitter report skip reason error messages. +static Error failedImport(const Twine &Reason) { + return make_error<StringError>(Reason, inconvertibleErrorCode()); +} + +static Error isTrivialOperatorNode(const TreePatternNode *N) { + std::string Explanation = ""; + std::string Separator = ""; + + bool HasUnsupportedPredicate = false; + for (const TreePredicateCall &Call : N->getPredicateCalls()) { + const TreePredicateFn &Predicate = Call.Fn; + + if (Predicate.isAlwaysTrue()) + continue; + + if (Predicate.isImmediatePattern()) + continue; + + if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || + Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) + continue; + + if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) + continue; + + if (Predicate.isLoad() && Predicate.getMemoryVT()) + continue; + + if (Predicate.isLoad() || Predicate.isStore()) { + if (Predicate.isUnindexed()) + continue; + } + + if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { + const ListInit *AddrSpaces = Predicate.getAddressSpaces(); + if (AddrSpaces && !AddrSpaces->empty()) + continue; + + if (Predicate.getMinAlignment() > 0) + continue; + } + + if (Predicate.isAtomic() && Predicate.getMemoryVT()) + continue; + + if (Predicate.isAtomic() && + (Predicate.isAtomicOrderingMonotonic() || + Predicate.isAtomicOrderingAcquire() || + Predicate.isAtomicOrderingRelease() || + Predicate.isAtomicOrderingAcquireRelease() || + Predicate.isAtomicOrderingSequentiallyConsistent() || + Predicate.isAtomicOrderingAcquireOrStronger() || + Predicate.isAtomicOrderingWeakerThanAcquire() || + Predicate.isAtomicOrderingReleaseOrStronger() || + Predicate.isAtomicOrderingWeakerThanRelease())) + continue; + + if (Predicate.hasGISelPredicateCode()) + continue; + + HasUnsupportedPredicate = true; + Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; + Separator = ", "; + Explanation += (Separator + "first-failing:" + + Predicate.getOrigPatFragRecord()->getRecord()->getName()) + .str(); + break; + } + + if (!HasUnsupportedPredicate) + return Error::success(); + + return failedImport(Explanation); +} + +static Record *getInitValueAsRegClass(Init *V) { + if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { + if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) + return VDefInit->getDef()->getValueAsDef("RegClass"); + if (VDefInit->getDef()->isSubClassOf("RegisterClass")) + return VDefInit->getDef(); + } + return nullptr; +} + +std::string +getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { + std::string Name = "GIFBS"; + for (const auto &Feature : FeatureBitset) + Name += ("_" + Feature->getName()).str(); + return Name; +} + +//===- MatchTable Helpers -------------------------------------------------===// + +class MatchTable; + +/// A record to be stored in a MatchTable. +/// +/// This class represents any and all output that may be required to emit the +/// MatchTable. Instances are most often configured to represent an opcode or +/// value that will be emitted to the table with some formatting but it can also +/// represent commas, comments, and other formatting instructions. +struct MatchTableRecord { + enum RecordFlagsBits { + MTRF_None = 0x0, + /// Causes EmitStr to be formatted as comment when emitted. + MTRF_Comment = 0x1, + /// Causes the record value to be followed by a comma when emitted. + MTRF_CommaFollows = 0x2, + /// Causes the record value to be followed by a line break when emitted. + MTRF_LineBreakFollows = 0x4, + /// Indicates that the record defines a label and causes an additional + /// comment to be emitted containing the index of the label. + MTRF_Label = 0x8, + /// Causes the record to be emitted as the index of the label specified by + /// LabelID along with a comment indicating where that label is. + MTRF_JumpTarget = 0x10, + /// Causes the formatter to add a level of indentation before emitting the + /// record. + MTRF_Indent = 0x20, + /// Causes the formatter to remove a level of indentation after emitting the + /// record. + MTRF_Outdent = 0x40, + }; + + /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to + /// reference or define. + unsigned LabelID; + /// The string to emit. Depending on the MTRF_* flags it may be a comment, a + /// value, a label name. + std::string EmitStr; + +private: + /// The number of MatchTable elements described by this record. Comments are 0 + /// while values are typically 1. Values >1 may occur when we need to emit + /// values that exceed the size of a MatchTable element. + unsigned NumElements; + +public: + /// A bitfield of RecordFlagsBits flags. + unsigned Flags; + + /// The actual run-time value, if known + int64_t RawValue; + + MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, + unsigned NumElements, unsigned Flags, + int64_t RawValue = std::numeric_limits<int64_t>::min()) + : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u), + EmitStr(EmitStr), NumElements(NumElements), Flags(Flags), + RawValue(RawValue) { + + assert((!LabelID_.hasValue() || LabelID != ~0u) && + "This value is reserved for non-labels"); + } + MatchTableRecord(const MatchTableRecord &Other) = default; + MatchTableRecord(MatchTableRecord &&Other) = default; + + /// Useful if a Match Table Record gets optimized out + void turnIntoComment() { + Flags |= MTRF_Comment; + Flags &= ~MTRF_CommaFollows; + NumElements = 0; + } + + /// For Jump Table generation purposes + bool operator<(const MatchTableRecord &Other) const { + return RawValue < Other.RawValue; + } + int64_t getRawValue() const { return RawValue; } + + void emit(raw_ostream &OS, bool LineBreakNextAfterThis, + const MatchTable &Table) const; + unsigned size() const { return NumElements; } +}; + +class Matcher; + +/// Holds the contents of a generated MatchTable to enable formatting and the +/// necessary index tracking needed to support GIM_Try. +class MatchTable { + /// An unique identifier for the table. The generated table will be named + /// MatchTable${ID}. + unsigned ID; + /// The records that make up the table. Also includes comments describing the + /// values being emitted and line breaks to format it. + std::vector<MatchTableRecord> Contents; + /// The currently defined labels. + DenseMap<unsigned, unsigned> LabelMap; + /// Tracks the sum of MatchTableRecord::NumElements as the table is built. + unsigned CurrentSize = 0; + /// A unique identifier for a MatchTable label. + unsigned CurrentLabelID = 0; + /// Determines if the table should be instrumented for rule coverage tracking. + bool IsWithCoverage; + +public: + static MatchTableRecord LineBreak; + static MatchTableRecord Comment(StringRef Comment) { + return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); + } + static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { + unsigned ExtraFlags = 0; + if (IndentAdjust > 0) + ExtraFlags |= MatchTableRecord::MTRF_Indent; + if (IndentAdjust < 0) + ExtraFlags |= MatchTableRecord::MTRF_Outdent; + + return MatchTableRecord(None, Opcode, 1, + MatchTableRecord::MTRF_CommaFollows | ExtraFlags); + } + static MatchTableRecord NamedValue(StringRef NamedValue) { + return MatchTableRecord(None, NamedValue, 1, + MatchTableRecord::MTRF_CommaFollows); + } + static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { + return MatchTableRecord(None, NamedValue, 1, + MatchTableRecord::MTRF_CommaFollows, RawValue); + } + static MatchTableRecord NamedValue(StringRef Namespace, + StringRef NamedValue) { + return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, + MatchTableRecord::MTRF_CommaFollows); + } + static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, + int64_t RawValue) { + return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, + MatchTableRecord::MTRF_CommaFollows, RawValue); + } + static MatchTableRecord IntValue(int64_t IntValue) { + return MatchTableRecord(None, llvm::to_string(IntValue), 1, + MatchTableRecord::MTRF_CommaFollows); + } + static MatchTableRecord Label(unsigned LabelID) { + return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, + MatchTableRecord::MTRF_Label | + MatchTableRecord::MTRF_Comment | + MatchTableRecord::MTRF_LineBreakFollows); + } + static MatchTableRecord JumpTarget(unsigned LabelID) { + return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, + MatchTableRecord::MTRF_JumpTarget | + MatchTableRecord::MTRF_Comment | + MatchTableRecord::MTRF_CommaFollows); + } + + static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); + + MatchTable(bool WithCoverage, unsigned ID = 0) + : ID(ID), IsWithCoverage(WithCoverage) {} + + bool isWithCoverage() const { return IsWithCoverage; } + + void push_back(const MatchTableRecord &Value) { + if (Value.Flags & MatchTableRecord::MTRF_Label) + defineLabel(Value.LabelID); + Contents.push_back(Value); + CurrentSize += Value.size(); + } + + unsigned allocateLabelID() { return CurrentLabelID++; } + + void defineLabel(unsigned LabelID) { + LabelMap.insert(std::make_pair(LabelID, CurrentSize)); + } + + unsigned getLabelIndex(unsigned LabelID) const { + const auto I = LabelMap.find(LabelID); + assert(I != LabelMap.end() && "Use of undeclared label"); + return I->second; + } + + void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } + + void emitDeclaration(raw_ostream &OS) const { + unsigned Indentation = 4; + OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; + LineBreak.emit(OS, true, *this); + OS << std::string(Indentation, ' '); + + for (auto I = Contents.begin(), E = Contents.end(); I != E; + ++I) { + bool LineBreakIsNext = false; + const auto &NextI = std::next(I); + + if (NextI != E) { + if (NextI->EmitStr == "" && + NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) + LineBreakIsNext = true; + } + + if (I->Flags & MatchTableRecord::MTRF_Indent) + Indentation += 2; + + I->emit(OS, LineBreakIsNext, *this); + if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) + OS << std::string(Indentation, ' '); + + if (I->Flags & MatchTableRecord::MTRF_Outdent) + Indentation -= 2; + } + OS << "};\n"; + } +}; + +MatchTableRecord MatchTable::LineBreak = { + None, "" /* Emit String */, 0 /* Elements */, + MatchTableRecord::MTRF_LineBreakFollows}; + +void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, + const MatchTable &Table) const { + bool UseLineComment = + LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows); + if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) + UseLineComment = false; + + if (Flags & MTRF_Comment) + OS << (UseLineComment ? "// " : "/*"); + + OS << EmitStr; + if (Flags & MTRF_Label) + OS << ": @" << Table.getLabelIndex(LabelID); + + if (Flags & MTRF_Comment && !UseLineComment) + OS << "*/"; + + if (Flags & MTRF_JumpTarget) { + if (Flags & MTRF_Comment) + OS << " "; + OS << Table.getLabelIndex(LabelID); + } + + if (Flags & MTRF_CommaFollows) { + OS << ","; + if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) + OS << " "; + } + + if (Flags & MTRF_LineBreakFollows) + OS << "\n"; +} + +MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { + Table.push_back(Value); + return Table; +} + +//===- Matchers -----------------------------------------------------------===// + +class OperandMatcher; +class MatchAction; +class PredicateMatcher; +class RuleMatcher; + +class Matcher { +public: + virtual ~Matcher() = default; + virtual void optimize() {} + virtual void emit(MatchTable &Table) = 0; + + virtual bool hasFirstCondition() const = 0; + virtual const PredicateMatcher &getFirstCondition() const = 0; + virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; +}; + +MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, + bool WithCoverage) { + MatchTable Table(WithCoverage); + for (Matcher *Rule : Rules) + Rule->emit(Table); + + return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; +} + +class GroupMatcher final : public Matcher { + /// Conditions that form a common prefix of all the matchers contained. + SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; + + /// All the nested matchers, sharing a common prefix. + std::vector<Matcher *> Matchers; + + /// An owning collection for any auxiliary matchers created while optimizing + /// nested matchers contained. + std::vector<std::unique_ptr<Matcher>> MatcherStorage; + +public: + /// Add a matcher to the collection of nested matchers if it meets the + /// requirements, and return true. If it doesn't, do nothing and return false. + /// + /// Expected to preserve its argument, so it could be moved out later on. + bool addMatcher(Matcher &Candidate); + + /// Mark the matcher as fully-built and ensure any invariants expected by both + /// optimize() and emit(...) methods. Generally, both sequences of calls + /// are expected to lead to a sensible result: + /// + /// addMatcher(...)*; finalize(); optimize(); emit(...); and + /// addMatcher(...)*; finalize(); emit(...); + /// + /// or generally + /// + /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* + /// + /// Multiple calls to optimize() are expected to be handled gracefully, though + /// optimize() is not expected to be idempotent. Multiple calls to finalize() + /// aren't generally supported. emit(...) is expected to be non-mutating and + /// producing the exact same results upon repeated calls. + /// + /// addMatcher() calls after the finalize() call are not supported. + /// + /// finalize() and optimize() are both allowed to mutate the contained + /// matchers, so moving them out after finalize() is not supported. + void finalize(); + void optimize() override; + void emit(MatchTable &Table) override; + + /// Could be used to move out the matchers added previously, unless finalize() + /// has been already called. If any of the matchers are moved out, the group + /// becomes safe to destroy, but not safe to re-use for anything else. + iterator_range<std::vector<Matcher *>::iterator> matchers() { + return make_range(Matchers.begin(), Matchers.end()); + } + size_t size() const { return Matchers.size(); } + bool empty() const { return Matchers.empty(); } + + std::unique_ptr<PredicateMatcher> popFirstCondition() override { + assert(!Conditions.empty() && + "Trying to pop a condition from a condition-less group"); + std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); + Conditions.erase(Conditions.begin()); + return P; + } + const PredicateMatcher &getFirstCondition() const override { + assert(!Conditions.empty() && + "Trying to get a condition from a condition-less group"); + return *Conditions.front(); + } + bool hasFirstCondition() const override { return !Conditions.empty(); } + +private: + /// See if a candidate matcher could be added to this group solely by + /// analyzing its first condition. + bool candidateConditionMatches(const PredicateMatcher &Predicate) const; +}; + +class SwitchMatcher : public Matcher { + /// All the nested matchers, representing distinct switch-cases. The first + /// conditions (as Matcher::getFirstCondition() reports) of all the nested + /// matchers must share the same type and path to a value they check, in other + /// words, be isIdenticalDownToValue, but have different values they check + /// against. + std::vector<Matcher *> Matchers; + + /// The representative condition, with a type and a path (InsnVarID and OpIdx + /// in most cases) shared by all the matchers contained. + std::unique_ptr<PredicateMatcher> Condition = nullptr; + + /// Temporary set used to check that the case values don't repeat within the + /// same switch. + std::set<MatchTableRecord> Values; + + /// An owning collection for any auxiliary matchers created while optimizing + /// nested matchers contained. + std::vector<std::unique_ptr<Matcher>> MatcherStorage; + +public: + bool addMatcher(Matcher &Candidate); + + void finalize(); + void emit(MatchTable &Table) override; + + iterator_range<std::vector<Matcher *>::iterator> matchers() { + return make_range(Matchers.begin(), Matchers.end()); + } + size_t size() const { return Matchers.size(); } + bool empty() const { return Matchers.empty(); } + + std::unique_ptr<PredicateMatcher> popFirstCondition() override { + // SwitchMatcher doesn't have a common first condition for its cases, as all + // the cases only share a kind of a value (a type and a path to it) they + // match, but deliberately differ in the actual value they match. + llvm_unreachable("Trying to pop a condition from a condition-less group"); + } + const PredicateMatcher &getFirstCondition() const override { + llvm_unreachable("Trying to pop a condition from a condition-less group"); + } + bool hasFirstCondition() const override { return false; } + +private: + /// See if the predicate type has a Switch-implementation for it. + static bool isSupportedPredicateType(const PredicateMatcher &Predicate); + + bool candidateConditionMatches(const PredicateMatcher &Predicate) const; + + /// emit()-helper + static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, + MatchTable &Table); +}; + +/// Generates code to check that a match rule matches. +class RuleMatcher : public Matcher { +public: + using ActionList = std::list<std::unique_ptr<MatchAction>>; + using action_iterator = ActionList::iterator; + +protected: + /// A list of matchers that all need to succeed for the current rule to match. + /// FIXME: This currently supports a single match position but could be + /// extended to support multiple positions to support div/rem fusion or + /// load-multiple instructions. + using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; + MatchersTy Matchers; + + /// A list of actions that need to be taken when all predicates in this rule + /// have succeeded. + ActionList Actions; + + using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; + + /// A map of instruction matchers to the local variables + DefinedInsnVariablesMap InsnVariableIDs; + + using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; + + // The set of instruction matchers that have not yet been claimed for mutation + // by a BuildMI. + MutatableInsnSet MutatableInsns; + + /// A map of named operands defined by the matchers that may be referenced by + /// the renderers. + StringMap<OperandMatcher *> DefinedOperands; + + /// A map of anonymous physical register operands defined by the matchers that + /// may be referenced by the renderers. + DenseMap<Record *, OperandMatcher *> PhysRegOperands; + + /// ID for the next instruction variable defined with implicitlyDefineInsnVar() + unsigned NextInsnVarID; + + /// ID for the next output instruction allocated with allocateOutputInsnID() + unsigned NextOutputInsnID; + + /// ID for the next temporary register ID allocated with allocateTempRegID() + unsigned NextTempRegID; + + std::vector<Record *> RequiredFeatures; + std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; + + ArrayRef<SMLoc> SrcLoc; + + typedef std::tuple<Record *, unsigned, unsigned> + DefinedComplexPatternSubOperand; + typedef StringMap<DefinedComplexPatternSubOperand> + DefinedComplexPatternSubOperandMap; + /// A map of Symbolic Names to ComplexPattern sub-operands. + DefinedComplexPatternSubOperandMap ComplexSubOperands; + + uint64_t RuleID; + static uint64_t NextRuleID; + +public: + RuleMatcher(ArrayRef<SMLoc> SrcLoc) + : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(), + DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0), + NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(), + RuleID(NextRuleID++) {} + RuleMatcher(RuleMatcher &&Other) = default; + RuleMatcher &operator=(RuleMatcher &&Other) = default; + + uint64_t getRuleID() const { return RuleID; } + + InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); + void addRequiredFeature(Record *Feature); + const std::vector<Record *> &getRequiredFeatures() const; + + template <class Kind, class... Args> Kind &addAction(Args &&... args); + template <class Kind, class... Args> + action_iterator insertAction(action_iterator InsertPt, Args &&... args); + + /// Define an instruction without emitting any code to do so. + unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); + + unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; + DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { + return InsnVariableIDs.begin(); + } + DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { + return InsnVariableIDs.end(); + } + iterator_range<typename DefinedInsnVariablesMap::const_iterator> + defined_insn_vars() const { + return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); + } + + MutatableInsnSet::const_iterator mutatable_insns_begin() const { + return MutatableInsns.begin(); + } + MutatableInsnSet::const_iterator mutatable_insns_end() const { + return MutatableInsns.end(); + } + iterator_range<typename MutatableInsnSet::const_iterator> + mutatable_insns() const { + return make_range(mutatable_insns_begin(), mutatable_insns_end()); + } + void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { + bool R = MutatableInsns.erase(InsnMatcher); + assert(R && "Reserving a mutatable insn that isn't available"); + (void)R; + } + + action_iterator actions_begin() { return Actions.begin(); } + action_iterator actions_end() { return Actions.end(); } + iterator_range<action_iterator> actions() { + return make_range(actions_begin(), actions_end()); + } + + void defineOperand(StringRef SymbolicName, OperandMatcher &OM); + + void definePhysRegOperand(Record *Reg, OperandMatcher &OM); + + Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, + unsigned RendererID, unsigned SubOperandID) { + if (ComplexSubOperands.count(SymbolicName)) + return failedImport( + "Complex suboperand referenced more than once (Operand: " + + SymbolicName + ")"); + + ComplexSubOperands[SymbolicName] = + std::make_tuple(ComplexPattern, RendererID, SubOperandID); + + return Error::success(); + } + + Optional<DefinedComplexPatternSubOperand> + getComplexSubOperand(StringRef SymbolicName) const { + const auto &I = ComplexSubOperands.find(SymbolicName); + if (I == ComplexSubOperands.end()) + return None; + return I->second; + } + + InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; + const OperandMatcher &getOperandMatcher(StringRef Name) const; + const OperandMatcher &getPhysRegOperandMatcher(Record *) const; + + void optimize() override; + void emit(MatchTable &Table) override; + + /// Compare the priority of this object and B. + /// + /// Returns true if this object is more important than B. + bool isHigherPriorityThan(const RuleMatcher &B) const; + + /// Report the maximum number of temporary operands needed by the rule + /// matcher. + unsigned countRendererFns() const; + + std::unique_ptr<PredicateMatcher> popFirstCondition() override; + const PredicateMatcher &getFirstCondition() const override; + LLTCodeGen getFirstConditionAsRootType(); + bool hasFirstCondition() const override; + unsigned getNumOperands() const; + StringRef getOpcode() const; + + // FIXME: Remove this as soon as possible + InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } + + unsigned allocateOutputInsnID() { return NextOutputInsnID++; } + unsigned allocateTempRegID() { return NextTempRegID++; } + + iterator_range<MatchersTy::iterator> insnmatchers() { + return make_range(Matchers.begin(), Matchers.end()); + } + bool insnmatchers_empty() const { return Matchers.empty(); } + void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } +}; + +uint64_t RuleMatcher::NextRuleID = 0; + +using action_iterator = RuleMatcher::action_iterator; + +template <class PredicateTy> class PredicateListMatcher { +private: + /// Template instantiations should specialize this to return a string to use + /// for the comment emitted when there are no predicates. + std::string getNoPredicateComment() const; + +protected: + using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; + PredicatesTy Predicates; + + /// Track if the list of predicates was manipulated by one of the optimization + /// methods. + bool Optimized = false; + +public: + /// Construct a new predicate and add it to the matcher. + template <class Kind, class... Args> + Optional<Kind *> addPredicate(Args &&... args); + + typename PredicatesTy::iterator predicates_begin() { + return Predicates.begin(); + } + typename PredicatesTy::iterator predicates_end() { + return Predicates.end(); + } + iterator_range<typename PredicatesTy::iterator> predicates() { + return make_range(predicates_begin(), predicates_end()); + } + typename PredicatesTy::size_type predicates_size() const { + return Predicates.size(); + } + bool predicates_empty() const { return Predicates.empty(); } + + std::unique_ptr<PredicateTy> predicates_pop_front() { + std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); + Predicates.pop_front(); + Optimized = true; + return Front; + } + + void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { + Predicates.push_front(std::move(Predicate)); + } + + void eraseNullPredicates() { + const auto NewEnd = + std::stable_partition(Predicates.begin(), Predicates.end(), + std::logical_not<std::unique_ptr<PredicateTy>>()); + if (NewEnd != Predicates.begin()) { + Predicates.erase(Predicates.begin(), NewEnd); + Optimized = true; + } + } + + /// Emit MatchTable opcodes that tests whether all the predicates are met. + template <class... Args> + void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { + if (Predicates.empty() && !Optimized) { + Table << MatchTable::Comment(getNoPredicateComment()) + << MatchTable::LineBreak; + return; + } + + for (const auto &Predicate : predicates()) + Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); + } +}; + +class PredicateMatcher { +public: + /// This enum is used for RTTI and also defines the priority that is given to + /// the predicate when generating the matcher code. Kinds with higher priority + /// must be tested first. + /// + /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter + /// but OPM_Int must have priority over OPM_RegBank since constant integers + /// are represented by a virtual register defined by a G_CONSTANT instruction. + /// + /// Note: The relative priority between IPM_ and OPM_ does not matter, they + /// are currently not compared between each other. + enum PredicateKind { + IPM_Opcode, + IPM_NumOperands, + IPM_ImmPredicate, + IPM_Imm, + IPM_AtomicOrderingMMO, + IPM_MemoryLLTSize, + IPM_MemoryVsLLTSize, + IPM_MemoryAddressSpace, + IPM_MemoryAlignment, + IPM_GenericPredicate, + OPM_SameOperand, + OPM_ComplexPattern, + OPM_IntrinsicID, + OPM_CmpPredicate, + OPM_Instruction, + OPM_Int, + OPM_LiteralInt, + OPM_LLT, + OPM_PointerToAny, + OPM_RegBank, + OPM_MBB, + }; + +protected: + PredicateKind Kind; + unsigned InsnVarID; + unsigned OpIdx; + +public: + PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) + : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} + + unsigned getInsnVarID() const { return InsnVarID; } + unsigned getOpIdx() const { return OpIdx; } + + virtual ~PredicateMatcher() = default; + /// Emit MatchTable opcodes that check the predicate for the given operand. + virtual void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const = 0; + + PredicateKind getKind() const { return Kind; } + + virtual bool isIdentical(const PredicateMatcher &B) const { + return B.getKind() == getKind() && InsnVarID == B.InsnVarID && + OpIdx == B.OpIdx; + } + + virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { + return hasValue() && PredicateMatcher::isIdentical(B); + } + + virtual MatchTableRecord getValue() const { + assert(hasValue() && "Can not get a value of a value-less predicate!"); + llvm_unreachable("Not implemented yet"); + } + virtual bool hasValue() const { return false; } + + /// Report the maximum number of temporary operands needed by the predicate + /// matcher. + virtual unsigned countRendererFns() const { return 0; } +}; + +/// Generates code to check a predicate of an operand. +/// +/// Typical predicates include: +/// * Operand is a particular register. +/// * Operand is assigned a particular register bank. +/// * Operand is an MBB. +class OperandPredicateMatcher : public PredicateMatcher { +public: + OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, + unsigned OpIdx) + : PredicateMatcher(Kind, InsnVarID, OpIdx) {} + virtual ~OperandPredicateMatcher() {} + + /// Compare the priority of this object and B. + /// + /// Returns true if this object is more important than B. + virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; +}; + +template <> +std::string +PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { + return "No operand predicates"; +} + +/// Generates code to check that a register operand is defined by the same exact +/// one as another. +class SameOperandMatcher : public OperandPredicateMatcher { + std::string MatchingName; + +public: + SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName) + : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), + MatchingName(MatchingName) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_SameOperand; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override; + + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; + } +}; + +/// Generates code to check that an operand is a particular LLT. +class LLTOperandMatcher : public OperandPredicateMatcher { +protected: + LLTCodeGen Ty; + +public: + static std::map<LLTCodeGen, unsigned> TypeIDValues; + + static void initTypeIDValuesMap() { + TypeIDValues.clear(); + + unsigned ID = 0; + for (const LLTCodeGen LLTy : KnownTypes) + TypeIDValues[LLTy] = ID++; + } + + LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) + : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { + KnownTypes.insert(Ty); + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_LLT; + } + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + Ty == cast<LLTOperandMatcher>(&B)->Ty; + } + MatchTableRecord getValue() const override { + const auto VI = TypeIDValues.find(Ty); + if (VI == TypeIDValues.end()) + return MatchTable::NamedValue(getTy().getCxxEnumValue()); + return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); + } + bool hasValue() const override { + if (TypeIDValues.size() != KnownTypes.size()) + initTypeIDValuesMap(); + return TypeIDValues.count(Ty); + } + + LLTCodeGen getTy() const { return Ty; } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") + << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") + << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") + << getValue() << MatchTable::LineBreak; + } +}; + +std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; + +/// Generates code to check that an operand is a pointer to any address space. +/// +/// In SelectionDAG, the types did not describe pointers or address spaces. As a +/// result, iN is used to describe a pointer of N bits to any address space and +/// PatFrag predicates are typically used to constrain the address space. There's +/// no reliable means to derive the missing type information from the pattern so +/// imported rules must test the components of a pointer separately. +/// +/// If SizeInBits is zero, then the pointer size will be obtained from the +/// subtarget. +class PointerToAnyOperandMatcher : public OperandPredicateMatcher { +protected: + unsigned SizeInBits; + +public: + PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, + unsigned SizeInBits) + : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), + SizeInBits(SizeInBits) {} + + static bool classof(const OperandPredicateMatcher *P) { + return P->getKind() == OPM_PointerToAny; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckPointerToAny") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::Comment("SizeInBits") + << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; + } +}; + +/// Generates code to check that an operand is a particular target constant. +class ComplexPatternOperandMatcher : public OperandPredicateMatcher { +protected: + const OperandMatcher &Operand; + const Record &TheDef; + + unsigned getAllocatedTemporariesBaseID() const; + +public: + bool isIdentical(const PredicateMatcher &B) const override { return false; } + + ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, + const OperandMatcher &Operand, + const Record &TheDef) + : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), + Operand(Operand), TheDef(TheDef) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_ComplexPattern; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + unsigned ID = getAllocatedTemporariesBaseID(); + Table << MatchTable::Opcode("GIM_CheckComplexPattern") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) + << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) + << MatchTable::LineBreak; + } + + unsigned countRendererFns() const override { + return 1; + } +}; + +/// Generates code to check that an operand is in a particular register bank. +class RegisterBankOperandMatcher : public OperandPredicateMatcher { +protected: + const CodeGenRegisterClass &RC; + +public: + RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, + const CodeGenRegisterClass &RC) + : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} + + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_RegBank; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckRegBankForClass") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::Comment("RC") + << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that an operand is a basic block. +class MBBOperandMatcher : public OperandPredicateMatcher { +public: + MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) + : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_MBB; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") + << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") + << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; + } +}; + +class ImmOperandMatcher : public OperandPredicateMatcher { +public: + ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) + : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_Imm; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") + << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") + << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; + } +}; + +/// Generates code to check that an operand is a G_CONSTANT with a particular +/// int. +class ConstantIntOperandMatcher : public OperandPredicateMatcher { +protected: + int64_t Value; + +public: + ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) + : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} + + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + Value == cast<ConstantIntOperandMatcher>(&B)->Value; + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_Int; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckConstantInt") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::IntValue(Value) << MatchTable::LineBreak; + } +}; + +/// Generates code to check that an operand is a raw int (where MO.isImm() or +/// MO.isCImm() is true). +class LiteralIntOperandMatcher : public OperandPredicateMatcher { +protected: + int64_t Value; + +public: + LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) + : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), + Value(Value) {} + + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + Value == cast<LiteralIntOperandMatcher>(&B)->Value; + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_LiteralInt; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckLiteralInt") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::IntValue(Value) << MatchTable::LineBreak; + } +}; + +/// Generates code to check that an operand is an CmpInst predicate +class CmpPredicateOperandMatcher : public OperandPredicateMatcher { +protected: + std::string PredName; + +public: + CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, + std::string P) + : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} + + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_CmpPredicate; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckCmpPredicate") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::Comment("Predicate") + << MatchTable::NamedValue("CmpInst", PredName) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that an operand is an intrinsic ID. +class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { +protected: + const CodeGenIntrinsic *II; + +public: + IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, + const CodeGenIntrinsic *II) + : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} + + bool isIdentical(const PredicateMatcher &B) const override { + return OperandPredicateMatcher::isIdentical(B) && + II == cast<IntrinsicIDOperandMatcher>(&B)->II; + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_IntrinsicID; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckIntrinsicID") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::NamedValue("Intrinsic::" + II->EnumName) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that a set of predicates match for a particular +/// operand. +class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { +protected: + InstructionMatcher &Insn; + unsigned OpIdx; + std::string SymbolicName; + + /// The index of the first temporary variable allocated to this operand. The + /// number of allocated temporaries can be found with + /// countRendererFns(). + unsigned AllocatedTemporariesBaseID; + +public: + OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, + const std::string &SymbolicName, + unsigned AllocatedTemporariesBaseID) + : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), + AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} + + bool hasSymbolicName() const { return !SymbolicName.empty(); } + const StringRef getSymbolicName() const { return SymbolicName; } + void setSymbolicName(StringRef Name) { + assert(SymbolicName.empty() && "Operand already has a symbolic name"); + SymbolicName = Name; + } + + /// Construct a new operand predicate and add it to the matcher. + template <class Kind, class... Args> + Optional<Kind *> addPredicate(Args &&... args) { + if (isSameAsAnotherOperand()) + return None; + Predicates.emplace_back(std::make_unique<Kind>( + getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); + return static_cast<Kind *>(Predicates.back().get()); + } + + unsigned getOpIdx() const { return OpIdx; } + unsigned getInsnVarID() const; + + std::string getOperandExpr(unsigned InsnVarID) const { + return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + + llvm::to_string(OpIdx) + ")"; + } + + InstructionMatcher &getInstructionMatcher() const { return Insn; } + + Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, + bool OperandIsAPointer); + + /// Emit MatchTable opcodes that test whether the instruction named in + /// InsnVarID matches all the predicates and all the operands. + void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { + if (!Optimized) { + std::string Comment; + raw_string_ostream CommentOS(Comment); + CommentOS << "MIs[" << getInsnVarID() << "] "; + if (SymbolicName.empty()) + CommentOS << "Operand " << OpIdx; + else + CommentOS << SymbolicName; + Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak; + } + + emitPredicateListOpcodes(Table, Rule); + } + + /// Compare the priority of this object and B. + /// + /// Returns true if this object is more important than B. + bool isHigherPriorityThan(OperandMatcher &B) { + // Operand matchers involving more predicates have higher priority. + if (predicates_size() > B.predicates_size()) + return true; + if (predicates_size() < B.predicates_size()) + return false; + + // This assumes that predicates are added in a consistent order. + for (auto &&Predicate : zip(predicates(), B.predicates())) { + if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) + return true; + if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) + return false; + } + + return false; + }; + + /// Report the maximum number of temporary operands needed by the operand + /// matcher. + unsigned countRendererFns() { + return std::accumulate( + predicates().begin(), predicates().end(), 0, + [](unsigned A, + const std::unique_ptr<OperandPredicateMatcher> &Predicate) { + return A + Predicate->countRendererFns(); + }); + } + + unsigned getAllocatedTemporariesBaseID() const { + return AllocatedTemporariesBaseID; + } + + bool isSameAsAnotherOperand() { + for (const auto &Predicate : predicates()) + if (isa<SameOperandMatcher>(Predicate)) + return true; + return false; + } +}; + +Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, + bool OperandIsAPointer) { + if (!VTy.isMachineValueType()) + return failedImport("unsupported typeset"); + + if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { + addPredicate<PointerToAnyOperandMatcher>(0); + return Error::success(); + } + + auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); + if (!OpTyOrNone) + return failedImport("unsupported type"); + + if (OperandIsAPointer) + addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); + else if (VTy.isPointer()) + addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), + OpTyOrNone->get().getSizeInBits())); + else + addPredicate<LLTOperandMatcher>(*OpTyOrNone); + return Error::success(); +} + +unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { + return Operand.getAllocatedTemporariesBaseID(); +} + +/// Generates code to check a predicate on an instruction. +/// +/// Typical predicates include: +/// * The opcode of the instruction is a particular value. +/// * The nsw/nuw flag is/isn't set. +class InstructionPredicateMatcher : public PredicateMatcher { +public: + InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) + : PredicateMatcher(Kind, InsnVarID) {} + virtual ~InstructionPredicateMatcher() {} + + /// Compare the priority of this object and B. + /// + /// Returns true if this object is more important than B. + virtual bool + isHigherPriorityThan(const InstructionPredicateMatcher &B) const { + return Kind < B.Kind; + }; +}; + +template <> +std::string +PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { + return "No instruction predicates"; +} + +/// Generates code to check the opcode of an instruction. +class InstructionOpcodeMatcher : public InstructionPredicateMatcher { +protected: + const CodeGenInstruction *I; + + static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; + +public: + static void initOpcodeValuesMap(const CodeGenTarget &Target) { + OpcodeValues.clear(); + + unsigned OpcodeValue = 0; + for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) + OpcodeValues[I] = OpcodeValue++; + } + + InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I) + : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_Opcode; + } + + bool isIdentical(const PredicateMatcher &B) const override { + return InstructionPredicateMatcher::isIdentical(B) && + I == cast<InstructionOpcodeMatcher>(&B)->I; + } + MatchTableRecord getValue() const override { + const auto VI = OpcodeValues.find(I); + if (VI != OpcodeValues.end()) + return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), + VI->second); + return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); + } + bool hasValue() const override { return OpcodeValues.count(I); } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI") + << MatchTable::IntValue(InsnVarID) << getValue() + << MatchTable::LineBreak; + } + + /// Compare the priority of this object and B. + /// + /// Returns true if this object is more important than B. + bool + isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { + if (InstructionPredicateMatcher::isHigherPriorityThan(B)) + return true; + if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) + return false; + + // Prioritize opcodes for cosmetic reasons in the generated source. Although + // this is cosmetic at the moment, we may want to drive a similar ordering + // using instruction frequency information to improve compile time. + if (const InstructionOpcodeMatcher *BO = + dyn_cast<InstructionOpcodeMatcher>(&B)) + return I->TheDef->getName() < BO->I->TheDef->getName(); + + return false; + }; + + bool isConstantInstruction() const { + return I->TheDef->getName() == "G_CONSTANT"; + } + + StringRef getOpcode() const { return I->TheDef->getName(); } + unsigned getNumOperands() const { return I->Operands.size(); } + + StringRef getOperandType(unsigned OpIdx) const { + return I->Operands[OpIdx].OperandType; + } +}; + +DenseMap<const CodeGenInstruction *, unsigned> + InstructionOpcodeMatcher::OpcodeValues; + +class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { + unsigned NumOperands = 0; + +public: + InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) + : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), + NumOperands(NumOperands) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_NumOperands; + } + + bool isIdentical(const PredicateMatcher &B) const override { + return InstructionPredicateMatcher::isIdentical(B) && + NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckNumOperands") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Expected") + << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; + } +}; + +/// Generates code to check that this instruction is a constant whose value +/// meets an immediate predicate. +/// +/// Immediates are slightly odd since they are typically used like an operand +/// but are represented as an operator internally. We typically write simm8:$src +/// in a tablegen pattern, but this is just syntactic sugar for +/// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes +/// that will be matched and the predicate (which is attached to the imm +/// operator) that will be tested. In SelectionDAG this describes a +/// ConstantSDNode whose internal value will be tested using the simm8 predicate. +/// +/// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In +/// this representation, the immediate could be tested with an +/// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a +/// OperandPredicateMatcher-subclass to check the Value meets the predicate but +/// there are two implementation issues with producing that matcher +/// configuration from the SelectionDAG pattern: +/// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that +/// were we to sink the immediate predicate to the operand we would have to +/// have two partial implementations of PatFrag support, one for immediates +/// and one for non-immediates. +/// * At the point we handle the predicate, the OperandMatcher hasn't been +/// created yet. If we were to sink the predicate to the OperandMatcher we +/// would also have to complicate (or duplicate) the code that descends and +/// creates matchers for the subtree. +/// Overall, it's simpler to handle it in the place it was found. +class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { +protected: + TreePredicateFn Predicate; + +public: + InstructionImmPredicateMatcher(unsigned InsnVarID, + const TreePredicateFn &Predicate) + : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), + Predicate(Predicate) {} + + bool isIdentical(const PredicateMatcher &B) const override { + return InstructionPredicateMatcher::isIdentical(B) && + Predicate.getOrigPatFragRecord() == + cast<InstructionImmPredicateMatcher>(&B) + ->Predicate.getOrigPatFragRecord(); + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_ImmPredicate; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate)) + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("Predicate") + << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that a memory instruction has a atomic ordering +/// MachineMemoryOperand. +class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { +public: + enum AOComparator { + AO_Exactly, + AO_OrStronger, + AO_WeakerThan, + }; + +protected: + StringRef Order; + AOComparator Comparator; + +public: + AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, + AOComparator Comparator = AO_Exactly) + : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), + Order(Order), Comparator(Comparator) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_AtomicOrderingMMO; + } + + bool isIdentical(const PredicateMatcher &B) const override { + if (!InstructionPredicateMatcher::isIdentical(B)) + return false; + const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); + return Order == R.Order && Comparator == R.Comparator; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + StringRef Opcode = "GIM_CheckAtomicOrdering"; + + if (Comparator == AO_OrStronger) + Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; + if (Comparator == AO_WeakerThan) + Opcode = "GIM_CheckAtomicOrderingWeakerThan"; + + Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") + << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") + << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that the size of an MMO is exactly N bytes. +class MemorySizePredicateMatcher : public InstructionPredicateMatcher { +protected: + unsigned MMOIdx; + uint64_t Size; + +public: + MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) + : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), + MMOIdx(MMOIdx), Size(Size) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_MemoryLLTSize; + } + bool isIdentical(const PredicateMatcher &B) const override { + return InstructionPredicateMatcher::isIdentical(B) && + MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && + Size == cast<MemorySizePredicateMatcher>(&B)->Size; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) + << MatchTable::Comment("Size") << MatchTable::IntValue(Size) + << MatchTable::LineBreak; + } +}; + +class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { +protected: + unsigned MMOIdx; + SmallVector<unsigned, 4> AddrSpaces; + +public: + MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, + ArrayRef<unsigned> AddrSpaces) + : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), + MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_MemoryAddressSpace; + } + bool isIdentical(const PredicateMatcher &B) const override { + if (!InstructionPredicateMatcher::isIdentical(B)) + return false; + auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); + return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) + // Encode number of address spaces to expect. + << MatchTable::Comment("NumAddrSpace") + << MatchTable::IntValue(AddrSpaces.size()); + for (unsigned AS : AddrSpaces) + Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); + + Table << MatchTable::LineBreak; + } +}; + +class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { +protected: + unsigned MMOIdx; + int MinAlign; + +public: + MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, + int MinAlign) + : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), + MMOIdx(MMOIdx), MinAlign(MinAlign) { + assert(MinAlign > 0); + } + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_MemoryAlignment; + } + + bool isIdentical(const PredicateMatcher &B) const override { + if (!InstructionPredicateMatcher::isIdentical(B)) + return false; + auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); + return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) + << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that the size of an MMO is less-than, equal-to, or +/// greater than a given LLT. +class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { +public: + enum RelationKind { + GreaterThan, + EqualTo, + LessThan, + }; + +protected: + unsigned MMOIdx; + RelationKind Relation; + unsigned OpIdx; + +public: + MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, + enum RelationKind Relation, + unsigned OpIdx) + : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), + MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == IPM_MemoryVsLLTSize; + } + bool isIdentical(const PredicateMatcher &B) const override { + return InstructionPredicateMatcher::isIdentical(B) && + MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && + Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && + OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode(Relation == EqualTo + ? "GIM_CheckMemorySizeEqualToLLT" + : Relation == GreaterThan + ? "GIM_CheckMemorySizeGreaterThanLLT" + : "GIM_CheckMemorySizeLessThanLLT") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) + << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check an arbitrary C++ instruction predicate. +class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { +protected: + TreePredicateFn Predicate; + +public: + GenericInstructionPredicateMatcher(unsigned InsnVarID, + TreePredicateFn Predicate) + : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), + Predicate(Predicate) {} + + static bool classof(const InstructionPredicateMatcher *P) { + return P->getKind() == IPM_GenericPredicate; + } + bool isIdentical(const PredicateMatcher &B) const override { + return InstructionPredicateMatcher::isIdentical(B) && + Predicate == + static_cast<const GenericInstructionPredicateMatcher &>(B) + .Predicate; + } + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("FnId") + << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) + << MatchTable::LineBreak; + } +}; + +/// Generates code to check that a set of predicates and operands match for a +/// particular instruction. +/// +/// Typical predicates include: +/// * Has a specific opcode. +/// * Has an nsw/nuw flag or doesn't. +class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { +protected: + typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; + + RuleMatcher &Rule; + + /// The operands to match. All rendered operands must be present even if the + /// condition is always true. + OperandVec Operands; + bool NumOperandsCheck = true; + + std::string SymbolicName; + unsigned InsnVarID; + + /// PhysRegInputs - List list has an entry for each explicitly specified + /// physreg input to the pattern. The first elt is the Register node, the + /// second is the recorded slot number the input pattern match saved it in. + SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; + +public: + InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName) + : Rule(Rule), SymbolicName(SymbolicName) { + // We create a new instruction matcher. + // Get a new ID for that instruction. + InsnVarID = Rule.implicitlyDefineInsnVar(*this); + } + + /// Construct a new instruction predicate and add it to the matcher. + template <class Kind, class... Args> + Optional<Kind *> addPredicate(Args &&... args) { + Predicates.emplace_back( + std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); + return static_cast<Kind *>(Predicates.back().get()); + } + + RuleMatcher &getRuleMatcher() const { return Rule; } + + unsigned getInsnVarID() const { return InsnVarID; } + + /// Add an operand to the matcher. + OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, + unsigned AllocatedTemporariesBaseID) { + Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, + AllocatedTemporariesBaseID)); + if (!SymbolicName.empty()) + Rule.defineOperand(SymbolicName, *Operands.back()); + + return *Operands.back(); + } + + OperandMatcher &getOperand(unsigned OpIdx) { + auto I = std::find_if(Operands.begin(), Operands.end(), + [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { + return X->getOpIdx() == OpIdx; + }); + if (I != Operands.end()) + return **I; + llvm_unreachable("Failed to lookup operand"); + } + + OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, + unsigned TempOpIdx) { + assert(SymbolicName.empty()); + OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); + Operands.emplace_back(OM); + Rule.definePhysRegOperand(Reg, *OM); + PhysRegInputs.emplace_back(Reg, OpIdx); + return *OM; + } + + ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { + return PhysRegInputs; + } + + StringRef getSymbolicName() const { return SymbolicName; } + unsigned getNumOperands() const { return Operands.size(); } + OperandVec::iterator operands_begin() { return Operands.begin(); } + OperandVec::iterator operands_end() { return Operands.end(); } + iterator_range<OperandVec::iterator> operands() { + return make_range(operands_begin(), operands_end()); + } + OperandVec::const_iterator operands_begin() const { return Operands.begin(); } + OperandVec::const_iterator operands_end() const { return Operands.end(); } + iterator_range<OperandVec::const_iterator> operands() const { + return make_range(operands_begin(), operands_end()); + } + bool operands_empty() const { return Operands.empty(); } + + void pop_front() { Operands.erase(Operands.begin()); } + + void optimize(); + + /// Emit MatchTable opcodes that test whether the instruction named in + /// InsnVarName matches all the predicates and all the operands. + void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { + if (NumOperandsCheck) + InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) + .emitPredicateOpcodes(Table, Rule); + + emitPredicateListOpcodes(Table, Rule); + + for (const auto &Operand : Operands) + Operand->emitPredicateOpcodes(Table, Rule); + } + + /// Compare the priority of this object and B. + /// + /// Returns true if this object is more important than B. + bool isHigherPriorityThan(InstructionMatcher &B) { + // Instruction matchers involving more operands have higher priority. + if (Operands.size() > B.Operands.size()) + return true; + if (Operands.size() < B.Operands.size()) + return false; + + for (auto &&P : zip(predicates(), B.predicates())) { + auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); + auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); + if (L->isHigherPriorityThan(*R)) + return true; + if (R->isHigherPriorityThan(*L)) + return false; + } + + for (const auto &Operand : zip(Operands, B.Operands)) { + if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) + return true; + if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) + return false; + } + + return false; + }; + + /// Report the maximum number of temporary operands needed by the instruction + /// matcher. + unsigned countRendererFns() { + return std::accumulate( + predicates().begin(), predicates().end(), 0, + [](unsigned A, + const std::unique_ptr<PredicateMatcher> &Predicate) { + return A + Predicate->countRendererFns(); + }) + + std::accumulate( + Operands.begin(), Operands.end(), 0, + [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { + return A + Operand->countRendererFns(); + }); + } + + InstructionOpcodeMatcher &getOpcodeMatcher() { + for (auto &P : predicates()) + if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) + return *OpMatcher; + llvm_unreachable("Didn't find an opcode matcher"); + } + + bool isConstantInstruction() { + return getOpcodeMatcher().isConstantInstruction(); + } + + StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } +}; + +StringRef RuleMatcher::getOpcode() const { + return Matchers.front()->getOpcode(); +} + +unsigned RuleMatcher::getNumOperands() const { + return Matchers.front()->getNumOperands(); +} + +LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { + InstructionMatcher &InsnMatcher = *Matchers.front(); + if (!InsnMatcher.predicates_empty()) + if (const auto *TM = + dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) + if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) + return TM->getTy(); + return {}; +} + +/// Generates code to check that the operand is a register defined by an +/// instruction that matches the given instruction matcher. +/// +/// For example, the pattern: +/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) +/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match +/// the: +/// (G_ADD $src1, $src2) +/// subpattern. +class InstructionOperandMatcher : public OperandPredicateMatcher { +protected: + std::unique_ptr<InstructionMatcher> InsnMatcher; + +public: + InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, + RuleMatcher &Rule, StringRef SymbolicName) + : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), + InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {} + + static bool classof(const PredicateMatcher *P) { + return P->getKind() == OPM_Instruction; + } + + InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } + + void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { + const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); + Table << MatchTable::Opcode("GIM_RecordInsn") + << MatchTable::Comment("DefineMI") + << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") + << MatchTable::IntValue(getInsnVarID()) + << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) + << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") + << MatchTable::LineBreak; + } + + void emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const override { + emitCaptureOpcodes(Table, Rule); + InsnMatcher->emitPredicateOpcodes(Table, Rule); + } + + bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { + if (OperandPredicateMatcher::isHigherPriorityThan(B)) + return true; + if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) + return false; + + if (const InstructionOperandMatcher *BP = + dyn_cast<InstructionOperandMatcher>(&B)) + if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) + return true; + return false; + } +}; + +void InstructionMatcher::optimize() { + SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; + const auto &OpcMatcher = getOpcodeMatcher(); + + Stash.push_back(predicates_pop_front()); + if (Stash.back().get() == &OpcMatcher) { + if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands()) + Stash.emplace_back( + new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); + NumOperandsCheck = false; + + for (auto &OM : Operands) + for (auto &OP : OM->predicates()) + if (isa<IntrinsicIDOperandMatcher>(OP)) { + Stash.push_back(std::move(OP)); + OM->eraseNullPredicates(); + break; + } + } + + if (InsnVarID > 0) { + assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); + for (auto &OP : Operands[0]->predicates()) + OP.reset(); + Operands[0]->eraseNullPredicates(); + } + for (auto &OM : Operands) { + for (auto &OP : OM->predicates()) + if (isa<LLTOperandMatcher>(OP)) + Stash.push_back(std::move(OP)); + OM->eraseNullPredicates(); + } + while (!Stash.empty()) + prependPredicate(Stash.pop_back_val()); +} + +//===- Actions ------------------------------------------------------------===// +class OperandRenderer { +public: + enum RendererKind { + OR_Copy, + OR_CopyOrAddZeroReg, + OR_CopySubReg, + OR_CopyPhysReg, + OR_CopyConstantAsImm, + OR_CopyFConstantAsFPImm, + OR_Imm, + OR_SubRegIndex, + OR_Register, + OR_TempRegister, + OR_ComplexPattern, + OR_Custom + }; + +protected: + RendererKind Kind; + +public: + OperandRenderer(RendererKind Kind) : Kind(Kind) {} + virtual ~OperandRenderer() {} + + RendererKind getKind() const { return Kind; } + + virtual void emitRenderOpcodes(MatchTable &Table, + RuleMatcher &Rule) const = 0; +}; + +/// A CopyRenderer emits code to copy a single operand from an existing +/// instruction to the one being built. +class CopyRenderer : public OperandRenderer { +protected: + unsigned NewInsnID; + /// The name of the operand. + const StringRef SymbolicName; + +public: + CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) + : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), + SymbolicName(SymbolicName) { + assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); + } + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_Copy; + } + + const StringRef getSymbolicName() const { return SymbolicName; } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); + unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); + Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") + << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") + << MatchTable::IntValue(Operand.getOpIdx()) + << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +/// A CopyRenderer emits code to copy a virtual register to a specific physical +/// register. +class CopyPhysRegRenderer : public OperandRenderer { +protected: + unsigned NewInsnID; + Record *PhysReg; + +public: + CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) + : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), + PhysReg(Reg) { + assert(PhysReg); + } + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_CopyPhysReg; + } + + Record *getPhysReg() const { return PhysReg; } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); + unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); + Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") + << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") + << MatchTable::IntValue(Operand.getOpIdx()) + << MatchTable::Comment(PhysReg->getName()) + << MatchTable::LineBreak; + } +}; + +/// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an +/// existing instruction to the one being built. If the operand turns out to be +/// a 'G_CONSTANT 0' then it replaces the operand with a zero register. +class CopyOrAddZeroRegRenderer : public OperandRenderer { +protected: + unsigned NewInsnID; + /// The name of the operand. + const StringRef SymbolicName; + const Record *ZeroRegisterDef; + +public: + CopyOrAddZeroRegRenderer(unsigned NewInsnID, + StringRef SymbolicName, Record *ZeroRegisterDef) + : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), + SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { + assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); + } + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_CopyOrAddZeroReg; + } + + const StringRef getSymbolicName() const { return SymbolicName; } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); + unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); + Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") + << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) + << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") + << MatchTable::IntValue(Operand.getOpIdx()) + << MatchTable::NamedValue( + (ZeroRegisterDef->getValue("Namespace") + ? ZeroRegisterDef->getValueAsString("Namespace") + : ""), + ZeroRegisterDef->getName()) + << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +/// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to +/// an extended immediate operand. +class CopyConstantAsImmRenderer : public OperandRenderer { +protected: + unsigned NewInsnID; + /// The name of the operand. + const std::string SymbolicName; + bool Signed; + +public: + CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) + : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), + SymbolicName(SymbolicName), Signed(true) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_CopyConstantAsImm; + } + + const StringRef getSymbolicName() const { return SymbolicName; } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); + unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); + Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" + : "GIR_CopyConstantAsUImm") + << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) + << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) + << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +/// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT +/// instruction to an extended immediate operand. +class CopyFConstantAsFPImmRenderer : public OperandRenderer { +protected: + unsigned NewInsnID; + /// The name of the operand. + const std::string SymbolicName; + +public: + CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) + : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), + SymbolicName(SymbolicName) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_CopyFConstantAsFPImm; + } + + const StringRef getSymbolicName() const { return SymbolicName; } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); + unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); + Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") + << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) + << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) + << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +/// A CopySubRegRenderer emits code to copy a single register operand from an +/// existing instruction to the one being built and indicate that only a +/// subregister should be copied. +class CopySubRegRenderer : public OperandRenderer { +protected: + unsigned NewInsnID; + /// The name of the operand. + const StringRef SymbolicName; + /// The subregister to extract. + const CodeGenSubRegIndex *SubReg; + +public: + CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, + const CodeGenSubRegIndex *SubReg) + : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), + SymbolicName(SymbolicName), SubReg(SubReg) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_CopySubReg; + } + + const StringRef getSymbolicName() const { return SymbolicName; } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); + unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); + Table << MatchTable::Opcode("GIR_CopySubReg") + << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) + << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") + << MatchTable::IntValue(Operand.getOpIdx()) + << MatchTable::Comment("SubRegIdx") + << MatchTable::IntValue(SubReg->EnumValue) + << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +/// Adds a specific physical register to the instruction being built. +/// This is typically useful for WZR/XZR on AArch64. +class AddRegisterRenderer : public OperandRenderer { +protected: + unsigned InsnID; + const Record *RegisterDef; + bool IsDef; + +public: + AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef, + bool IsDef = false) + : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), + IsDef(IsDef) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_Register; + } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_AddRegister") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::NamedValue( + (RegisterDef->getValue("Namespace") + ? RegisterDef->getValueAsString("Namespace") + : ""), + RegisterDef->getName()) + << MatchTable::Comment("AddRegisterRegFlags"); + + // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are + // really needed for a physical register reference. We can pack the + // register and flags in a single field. + if (IsDef) + Table << MatchTable::NamedValue("RegState::Define"); + else + Table << MatchTable::IntValue(0); + Table << MatchTable::LineBreak; + } +}; + +/// Adds a specific temporary virtual register to the instruction being built. +/// This is used to chain instructions together when emitting multiple +/// instructions. +class TempRegRenderer : public OperandRenderer { +protected: + unsigned InsnID; + unsigned TempRegID; + bool IsDef; + +public: + TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false) + : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), + IsDef(IsDef) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_TempRegister; + } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_AddTempRegister") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) + << MatchTable::Comment("TempRegFlags"); + if (IsDef) + Table << MatchTable::NamedValue("RegState::Define"); + else + Table << MatchTable::IntValue(0); + Table << MatchTable::LineBreak; + } +}; + +/// Adds a specific immediate to the instruction being built. +class ImmRenderer : public OperandRenderer { +protected: + unsigned InsnID; + int64_t Imm; + +public: + ImmRenderer(unsigned InsnID, int64_t Imm) + : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_Imm; + } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") + << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") + << MatchTable::IntValue(Imm) << MatchTable::LineBreak; + } +}; + +/// Adds an enum value for a subreg index to the instruction being built. +class SubRegIndexRenderer : public OperandRenderer { +protected: + unsigned InsnID; + const CodeGenSubRegIndex *SubRegIdx; + +public: + SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) + : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_SubRegIndex; + } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") + << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") + << MatchTable::IntValue(SubRegIdx->EnumValue) + << MatchTable::LineBreak; + } +}; + +/// Adds operands by calling a renderer function supplied by the ComplexPattern +/// matcher function. +class RenderComplexPatternOperand : public OperandRenderer { +private: + unsigned InsnID; + const Record &TheDef; + /// The name of the operand. + const StringRef SymbolicName; + /// The renderer number. This must be unique within a rule since it's used to + /// identify a temporary variable to hold the renderer function. + unsigned RendererID; + /// When provided, this is the suboperand of the ComplexPattern operand to + /// render. Otherwise all the suboperands will be rendered. + Optional<unsigned> SubOperand; + + unsigned getNumOperands() const { + return TheDef.getValueAsDag("Operands")->getNumArgs(); + } + +public: + RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, + StringRef SymbolicName, unsigned RendererID, + Optional<unsigned> SubOperand = None) + : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), + SymbolicName(SymbolicName), RendererID(RendererID), + SubOperand(SubOperand) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_ComplexPattern; + } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer" + : "GIR_ComplexRenderer") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::Comment("RendererID") + << MatchTable::IntValue(RendererID); + if (SubOperand.hasValue()) + Table << MatchTable::Comment("SubOperand") + << MatchTable::IntValue(SubOperand.getValue()); + Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +class CustomRenderer : public OperandRenderer { +protected: + unsigned InsnID; + const Record &Renderer; + /// The name of the operand. + const std::string SymbolicName; + +public: + CustomRenderer(unsigned InsnID, const Record &Renderer, + StringRef SymbolicName) + : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), + SymbolicName(SymbolicName) {} + + static bool classof(const OperandRenderer *R) { + return R->getKind() == OR_Custom; + } + + void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); + unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); + Table << MatchTable::Opcode("GIR_CustomRenderer") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::Comment("OldInsnID") + << MatchTable::IntValue(OldInsnVarID) + << MatchTable::Comment("Renderer") + << MatchTable::NamedValue( + "GICR_" + Renderer.getValueAsString("RendererFn").str()) + << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; + } +}; + +/// An action taken when all Matcher predicates succeeded for a parent rule. +/// +/// Typical actions include: +/// * Changing the opcode of an instruction. +/// * Adding an operand to an instruction. +class MatchAction { +public: + virtual ~MatchAction() {} + + /// Emit the MatchTable opcodes to implement the action. + virtual void emitActionOpcodes(MatchTable &Table, + RuleMatcher &Rule) const = 0; +}; + +/// Generates a comment describing the matched rule being acted upon. +class DebugCommentAction : public MatchAction { +private: + std::string S; + +public: + DebugCommentAction(StringRef S) : S(S) {} + + void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Comment(S) << MatchTable::LineBreak; + } +}; + +/// Generates code to build an instruction or mutate an existing instruction +/// into the desired instruction when this is possible. +class BuildMIAction : public MatchAction { +private: + unsigned InsnID; + const CodeGenInstruction *I; + InstructionMatcher *Matched; + std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; + + /// True if the instruction can be built solely by mutating the opcode. + bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { + if (!Insn) + return false; + + if (OperandRenderers.size() != Insn->getNumOperands()) + return false; + + for (const auto &Renderer : enumerate(OperandRenderers)) { + if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { + const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); + if (Insn != &OM.getInstructionMatcher() || + OM.getOpIdx() != Renderer.index()) + return false; + } else + return false; + } + + return true; + } + +public: + BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) + : InsnID(InsnID), I(I), Matched(nullptr) {} + + unsigned getInsnID() const { return InsnID; } + const CodeGenInstruction *getCGI() const { return I; } + + void chooseInsnToMutate(RuleMatcher &Rule) { + for (auto *MutateCandidate : Rule.mutatable_insns()) { + if (canMutate(Rule, MutateCandidate)) { + // Take the first one we're offered that we're able to mutate. + Rule.reserveInsnMatcherForMutation(MutateCandidate); + Matched = MutateCandidate; + return; + } + } + } + + template <class Kind, class... Args> + Kind &addRenderer(Args&&... args) { + OperandRenderers.emplace_back( + std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); + return *static_cast<Kind *>(OperandRenderers.back().get()); + } + + void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + if (Matched) { + assert(canMutate(Rule, Matched) && + "Arranged to mutate an insn that isn't mutatable"); + + unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); + Table << MatchTable::Opcode("GIR_MutateOpcode") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::Comment("RecycleInsnID") + << MatchTable::IntValue(RecycleInsnID) + << MatchTable::Comment("Opcode") + << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) + << MatchTable::LineBreak; + + if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { + for (auto Def : I->ImplicitDefs) { + auto Namespace = Def->getValue("Namespace") + ? Def->getValueAsString("Namespace") + : ""; + Table << MatchTable::Opcode("GIR_AddImplicitDef") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::NamedValue(Namespace, Def->getName()) + << MatchTable::LineBreak; + } + for (auto Use : I->ImplicitUses) { + auto Namespace = Use->getValue("Namespace") + ? Use->getValueAsString("Namespace") + : ""; + Table << MatchTable::Opcode("GIR_AddImplicitUse") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::NamedValue(Namespace, Use->getName()) + << MatchTable::LineBreak; + } + } + return; + } + + // TODO: Simple permutation looks like it could be almost as common as + // mutation due to commutative operations. + + Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") + << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") + << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) + << MatchTable::LineBreak; + for (const auto &Renderer : OperandRenderers) + Renderer->emitRenderOpcodes(Table, Rule); + + if (I->mayLoad || I->mayStore) { + Table << MatchTable::Opcode("GIR_MergeMemOperands") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::Comment("MergeInsnID's"); + // Emit the ID's for all the instructions that are matched by this rule. + // TODO: Limit this to matched instructions that mayLoad/mayStore or have + // some other means of having a memoperand. Also limit this to + // emitted instructions that expect to have a memoperand too. For + // example, (G_SEXT (G_LOAD x)) that results in separate load and + // sign-extend instructions shouldn't put the memoperand on the + // sign-extend since it has no effect there. + std::vector<unsigned> MergeInsnIDs; + for (const auto &IDMatcherPair : Rule.defined_insn_vars()) + MergeInsnIDs.push_back(IDMatcherPair.second); + llvm::sort(MergeInsnIDs); + for (const auto &MergeInsnID : MergeInsnIDs) + Table << MatchTable::IntValue(MergeInsnID); + Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") + << MatchTable::LineBreak; + } + + // FIXME: This is a hack but it's sufficient for ISel. We'll need to do + // better for combines. Particularly when there are multiple match + // roots. + if (InsnID == 0) + Table << MatchTable::Opcode("GIR_EraseFromParent") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::LineBreak; + } +}; + +/// Generates code to constrain the operands of an output instruction to the +/// register classes specified by the definition of that instruction. +class ConstrainOperandsToDefinitionAction : public MatchAction { + unsigned InsnID; + +public: + ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} + + void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::LineBreak; + } +}; + +/// Generates code to constrain the specified operand of an output instruction +/// to the specified register class. +class ConstrainOperandToRegClassAction : public MatchAction { + unsigned InsnID; + unsigned OpIdx; + const CodeGenRegisterClass &RC; + +public: + ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, + const CodeGenRegisterClass &RC) + : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} + + void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_ConstrainOperandRC") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) + << MatchTable::Comment("RC " + RC.getName()) + << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak; + } +}; + +/// Generates code to create a temporary register which can be used to chain +/// instructions together. +class MakeTempRegisterAction : public MatchAction { +private: + LLTCodeGen Ty; + unsigned TempRegID; + +public: + MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) + : Ty(Ty), TempRegID(TempRegID) { + KnownTypes.insert(Ty); + } + + void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { + Table << MatchTable::Opcode("GIR_MakeTempReg") + << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) + << MatchTable::Comment("TypeID") + << MatchTable::NamedValue(Ty.getCxxEnumValue()) + << MatchTable::LineBreak; + } +}; + +InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { + Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); + MutatableInsns.insert(Matchers.back().get()); + return *Matchers.back(); +} + +void RuleMatcher::addRequiredFeature(Record *Feature) { + RequiredFeatures.push_back(Feature); +} + +const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { + return RequiredFeatures; +} + +// Emplaces an action of the specified Kind at the end of the action list. +// +// Returns a reference to the newly created action. +// +// Like std::vector::emplace_back(), may invalidate all iterators if the new +// size exceeds the capacity. Otherwise, only invalidates the past-the-end +// iterator. +template <class Kind, class... Args> +Kind &RuleMatcher::addAction(Args &&... args) { + Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); + return *static_cast<Kind *>(Actions.back().get()); +} + +// Emplaces an action of the specified Kind before the given insertion point. +// +// Returns an iterator pointing at the newly created instruction. +// +// Like std::vector::insert(), may invalidate all iterators if the new size +// exceeds the capacity. Otherwise, only invalidates the iterators from the +// insertion point onwards. +template <class Kind, class... Args> +action_iterator RuleMatcher::insertAction(action_iterator InsertPt, + Args &&... args) { + return Actions.emplace(InsertPt, + std::make_unique<Kind>(std::forward<Args>(args)...)); +} + +unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { + unsigned NewInsnVarID = NextInsnVarID++; + InsnVariableIDs[&Matcher] = NewInsnVarID; + return NewInsnVarID; +} + +unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { + const auto &I = InsnVariableIDs.find(&InsnMatcher); + if (I != InsnVariableIDs.end()) + return I->second; + llvm_unreachable("Matched Insn was not captured in a local variable"); +} + +void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { + if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { + DefinedOperands[SymbolicName] = &OM; + return; + } + + // If the operand is already defined, then we must ensure both references in + // the matcher have the exact same node. + OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName()); +} + +void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { + if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { + PhysRegOperands[Reg] = &OM; + return; + } +} + +InstructionMatcher & +RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { + for (const auto &I : InsnVariableIDs) + if (I.first->getSymbolicName() == SymbolicName) + return *I.first; + llvm_unreachable( + ("Failed to lookup instruction " + SymbolicName).str().c_str()); +} + +const OperandMatcher & +RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { + const auto &I = PhysRegOperands.find(Reg); + + if (I == PhysRegOperands.end()) { + PrintFatalError(SrcLoc, "Register " + Reg->getName() + + " was not declared in matcher"); + } + + return *I->second; +} + +const OperandMatcher & +RuleMatcher::getOperandMatcher(StringRef Name) const { + const auto &I = DefinedOperands.find(Name); + + if (I == DefinedOperands.end()) + PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); + + return *I->second; +} + +void RuleMatcher::emit(MatchTable &Table) { + if (Matchers.empty()) + llvm_unreachable("Unexpected empty matcher!"); + + // The representation supports rules that require multiple roots such as: + // %ptr(p0) = ... + // %elt0(s32) = G_LOAD %ptr + // %1(p0) = G_ADD %ptr, 4 + // %elt1(s32) = G_LOAD p0 %1 + // which could be usefully folded into: + // %ptr(p0) = ... + // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr + // on some targets but we don't need to make use of that yet. + assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); + + unsigned LabelID = Table.allocateLabelID(); + Table << MatchTable::Opcode("GIM_Try", +1) + << MatchTable::Comment("On fail goto") + << MatchTable::JumpTarget(LabelID) + << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) + << MatchTable::LineBreak; + + if (!RequiredFeatures.empty()) { + Table << MatchTable::Opcode("GIM_CheckFeatures") + << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) + << MatchTable::LineBreak; + } + + Matchers.front()->emitPredicateOpcodes(Table, *this); + + // We must also check if it's safe to fold the matched instructions. + if (InsnVariableIDs.size() >= 2) { + // Invert the map to create stable ordering (by var names) + SmallVector<unsigned, 2> InsnIDs; + for (const auto &Pair : InsnVariableIDs) { + // Skip the root node since it isn't moving anywhere. Everything else is + // sinking to meet it. + if (Pair.first == Matchers.front().get()) + continue; + + InsnIDs.push_back(Pair.second); + } + llvm::sort(InsnIDs); + + for (const auto &InsnID : InsnIDs) { + // Reject the difficult cases until we have a more accurate check. + Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") + << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) + << MatchTable::LineBreak; + + // FIXME: Emit checks to determine it's _actually_ safe to fold and/or + // account for unsafe cases. + // + // Example: + // MI1--> %0 = ... + // %1 = ... %0 + // MI0--> %2 = ... %0 + // It's not safe to erase MI1. We currently handle this by not + // erasing %0 (even when it's dead). + // + // Example: + // MI1--> %0 = load volatile @a + // %1 = load volatile @a + // MI0--> %2 = ... %0 + // It's not safe to sink %0's def past %1. We currently handle + // this by rejecting all loads. + // + // Example: + // MI1--> %0 = load @a + // %1 = store @a + // MI0--> %2 = ... %0 + // It's not safe to sink %0's def past %1. We currently handle + // this by rejecting all loads. + // + // Example: + // G_CONDBR %cond, @BB1 + // BB0: + // MI1--> %0 = load @a + // G_BR @BB1 + // BB1: + // MI0--> %2 = ... %0 + // It's not always safe to sink %0 across control flow. In this + // case it may introduce a memory fault. We currentl handle this + // by rejecting all loads. + } + } + + for (const auto &PM : EpilogueMatchers) + PM->emitPredicateOpcodes(Table, *this); + + for (const auto &MA : Actions) + MA->emitActionOpcodes(Table, *this); + + if (Table.isWithCoverage()) + Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) + << MatchTable::LineBreak; + else + Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) + << MatchTable::LineBreak; + + Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak + << MatchTable::Label(LabelID); + ++NumPatternEmitted; +} + +bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { + // Rules involving more match roots have higher priority. + if (Matchers.size() > B.Matchers.size()) + return true; + if (Matchers.size() < B.Matchers.size()) + return false; + + for (const auto &Matcher : zip(Matchers, B.Matchers)) { + if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) + return true; + if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) + return false; + } + + return false; +} + +unsigned RuleMatcher::countRendererFns() const { + return std::accumulate( + Matchers.begin(), Matchers.end(), 0, + [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { + return A + Matcher->countRendererFns(); + }); +} + +bool OperandPredicateMatcher::isHigherPriorityThan( + const OperandPredicateMatcher &B) const { + // Generally speaking, an instruction is more important than an Int or a + // LiteralInt because it can cover more nodes but theres an exception to + // this. G_CONSTANT's are less important than either of those two because they + // are more permissive. + + const InstructionOperandMatcher *AOM = + dyn_cast<InstructionOperandMatcher>(this); + const InstructionOperandMatcher *BOM = + dyn_cast<InstructionOperandMatcher>(&B); + bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); + bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); + + if (AOM && BOM) { + // The relative priorities between a G_CONSTANT and any other instruction + // don't actually matter but this code is needed to ensure a strict weak + // ordering. This is particularly important on Windows where the rules will + // be incorrectly sorted without it. + if (AIsConstantInsn != BIsConstantInsn) + return AIsConstantInsn < BIsConstantInsn; + return false; + } + + if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) + return false; + if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) + return true; + + return Kind < B.Kind; +} + +void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, + RuleMatcher &Rule) const { + const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); + unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); + assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); + + Table << MatchTable::Opcode("GIM_CheckIsSameOperand") + << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) + << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) + << MatchTable::Comment("OtherMI") + << MatchTable::IntValue(OtherInsnVarID) + << MatchTable::Comment("OtherOpIdx") + << MatchTable::IntValue(OtherOM.getOpIdx()) + << MatchTable::LineBreak; +} + +//===- GlobalISelEmitter class --------------------------------------------===// + +class GlobalISelEmitter { +public: + explicit GlobalISelEmitter(RecordKeeper &RK); + void run(raw_ostream &OS); + +private: + const RecordKeeper &RK; + const CodeGenDAGPatterns CGP; + const CodeGenTarget &Target; + CodeGenRegBank CGRegs; + + /// Keep track of the equivalence between SDNodes and Instruction by mapping + /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to + /// check for attributes on the relation such as CheckMMOIsNonAtomic. + /// This is defined using 'GINodeEquiv' in the target description. + DenseMap<Record *, Record *> NodeEquivs; + + /// Keep track of the equivalence between ComplexPattern's and + /// GIComplexOperandMatcher. Map entries are specified by subclassing + /// GIComplexPatternEquiv. + DenseMap<const Record *, const Record *> ComplexPatternEquivs; + + /// Keep track of the equivalence between SDNodeXForm's and + /// GICustomOperandRenderer. Map entries are specified by subclassing + /// GISDNodeXFormEquiv. + DenseMap<const Record *, const Record *> SDNodeXFormEquivs; + + /// Keep track of Scores of PatternsToMatch similar to how the DAG does. + /// This adds compatibility for RuleMatchers to use this for ordering rules. + DenseMap<uint64_t, int> RuleMatcherScores; + + // Map of predicates to their subtarget features. + SubtargetFeatureInfoMap SubtargetFeatures; + + // Rule coverage information. + Optional<CodeGenCoverage> RuleCoverage; + + void gatherOpcodeValues(); + void gatherTypeIDValues(); + void gatherNodeEquivs(); + + Record *findNodeEquiv(Record *N) const; + const CodeGenInstruction *getEquivNode(Record &Equiv, + const TreePatternNode *N) const; + + Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates); + Expected<InstructionMatcher &> + createAndImportSelDAGMatcher(RuleMatcher &Rule, + InstructionMatcher &InsnMatcher, + const TreePatternNode *Src, unsigned &TempOpIdx); + Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, + unsigned &TempOpIdx) const; + Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, + const TreePatternNode *SrcChild, + bool OperandIsAPointer, unsigned OpIdx, + unsigned &TempOpIdx); + + Expected<BuildMIAction &> createAndImportInstructionRenderer( + RuleMatcher &M, InstructionMatcher &InsnMatcher, + const TreePatternNode *Src, const TreePatternNode *Dst); + Expected<action_iterator> createAndImportSubInstructionRenderer( + action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, + unsigned TempReg); + Expected<action_iterator> + createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, + const TreePatternNode *Dst); + void importExplicitDefRenderers(BuildMIAction &DstMIBuilder); + + Expected<action_iterator> + importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, + BuildMIAction &DstMIBuilder, + const llvm::TreePatternNode *Dst); + Expected<action_iterator> + importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, + BuildMIAction &DstMIBuilder, + TreePatternNode *DstChild); + Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, + BuildMIAction &DstMIBuilder, + DagInit *DefaultOps) const; + Error + importImplicitDefRenderers(BuildMIAction &DstMIBuilder, + const std::vector<Record *> &ImplicitDefs) const; + + void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, + StringRef TypeIdentifier, StringRef ArgType, + StringRef ArgName, StringRef AdditionalDeclarations, + std::function<bool(const Record *R)> Filter); + void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, + StringRef ArgType, + std::function<bool(const Record *R)> Filter); + void emitMIPredicateFns(raw_ostream &OS); + + /// Analyze pattern \p P, returning a matcher for it if possible. + /// Otherwise, return an Error explaining why we don't support it. + Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); + + void declareSubtargetFeature(Record *Predicate); + + MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, + bool WithCoverage); + + /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned + /// CodeGenRegisterClass will support the CodeGenRegisterClass of + /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. + /// If no register class is found, return None. + Optional<const CodeGenRegisterClass *> + inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, + TreePatternNode *SuperRegNode, + TreePatternNode *SubRegIdxNode); + Optional<CodeGenSubRegIndex *> + inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); + + /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. + /// Return None if no such class exists. + Optional<const CodeGenRegisterClass *> + inferSuperRegisterClass(const TypeSetByHwMode &Ty, + TreePatternNode *SubRegIdxNode); + + /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. + Optional<const CodeGenRegisterClass *> + getRegClassFromLeaf(TreePatternNode *Leaf); + + /// Return a CodeGenRegisterClass for \p N if one can be found. Return None + /// otherwise. + Optional<const CodeGenRegisterClass *> + inferRegClassFromPattern(TreePatternNode *N); + +public: + /// Takes a sequence of \p Rules and group them based on the predicates + /// they share. \p MatcherStorage is used as a memory container + /// for the group that are created as part of this process. + /// + /// What this optimization does looks like if GroupT = GroupMatcher: + /// Output without optimization: + /// \verbatim + /// # R1 + /// # predicate A + /// # predicate B + /// ... + /// # R2 + /// # predicate A // <-- effectively this is going to be checked twice. + /// // Once in R1 and once in R2. + /// # predicate C + /// \endverbatim + /// Output with optimization: + /// \verbatim + /// # Group1_2 + /// # predicate A // <-- Check is now shared. + /// # R1 + /// # predicate B + /// # R2 + /// # predicate C + /// \endverbatim + template <class GroupT> + static std::vector<Matcher *> optimizeRules( + ArrayRef<Matcher *> Rules, + std::vector<std::unique_ptr<Matcher>> &MatcherStorage); +}; + +void GlobalISelEmitter::gatherOpcodeValues() { + InstructionOpcodeMatcher::initOpcodeValuesMap(Target); +} + +void GlobalISelEmitter::gatherTypeIDValues() { + LLTOperandMatcher::initTypeIDValuesMap(); +} + +void GlobalISelEmitter::gatherNodeEquivs() { + assert(NodeEquivs.empty()); + for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) + NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; + + assert(ComplexPatternEquivs.empty()); + for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { + Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); + if (!SelDAGEquiv) + continue; + ComplexPatternEquivs[SelDAGEquiv] = Equiv; + } + + assert(SDNodeXFormEquivs.empty()); + for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { + Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); + if (!SelDAGEquiv) + continue; + SDNodeXFormEquivs[SelDAGEquiv] = Equiv; + } +} + +Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { + return NodeEquivs.lookup(N); +} + +const CodeGenInstruction * +GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { + if (N->getNumChildren() >= 1) { + // setcc operation maps to two different G_* instructions based on the type. + if (!Equiv.isValueUnset("IfFloatingPoint") && + MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) + return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); + } + + for (const TreePredicateCall &Call : N->getPredicateCalls()) { + const TreePredicateFn &Predicate = Call.Fn; + if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() && + Predicate.isSignExtLoad()) + return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); + if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() && + Predicate.isZeroExtLoad()) + return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); + } + + return &Target.getInstruction(Equiv.getValueAsDef("I")); +} + +GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) + : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), + CGRegs(RK, Target.getHwModes()) {} + +//===- Emitter ------------------------------------------------------------===// + +Error +GlobalISelEmitter::importRulePredicates(RuleMatcher &M, + ArrayRef<Predicate> Predicates) { + for (const Predicate &P : Predicates) { + if (!P.Def || P.getCondString().empty()) + continue; + declareSubtargetFeature(P.Def); + M.addRequiredFeature(P.Def); + } + + return Error::success(); +} + +Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( + RuleMatcher &Rule, InstructionMatcher &InsnMatcher, + const TreePatternNode *Src, unsigned &TempOpIdx) { + Record *SrcGIEquivOrNull = nullptr; + const CodeGenInstruction *SrcGIOrNull = nullptr; + + // Start with the defined operands (i.e., the results of the root operator). + if (Src->getExtTypes().size() > 1) + return failedImport("Src pattern has multiple results"); + + if (Src->isLeaf()) { + Init *SrcInit = Src->getLeafValue(); + if (isa<IntInit>(SrcInit)) { + InsnMatcher.addPredicate<InstructionOpcodeMatcher>( + &Target.getInstruction(RK.getDef("G_CONSTANT"))); + } else + return failedImport( + "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); + } else { + SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); + if (!SrcGIEquivOrNull) + return failedImport("Pattern operator lacks an equivalent Instruction" + + explainOperator(Src->getOperator())); + SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); + + // The operators look good: match the opcode + InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); + } + + unsigned OpIdx = 0; + for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { + // Results don't have a name unless they are the root node. The caller will + // set the name if appropriate. + OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); + if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) + return failedImport(toString(std::move(Error)) + + " for result of Src pattern operator"); + } + + for (const TreePredicateCall &Call : Src->getPredicateCalls()) { + const TreePredicateFn &Predicate = Call.Fn; + if (Predicate.isAlwaysTrue()) + continue; + + if (Predicate.isImmediatePattern()) { + InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); + continue; + } + + // An address space check is needed in all contexts if there is one. + if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { + if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { + SmallVector<unsigned, 4> ParsedAddrSpaces; + + for (Init *Val : AddrSpaces->getValues()) { + IntInit *IntVal = dyn_cast<IntInit>(Val); + if (!IntVal) + return failedImport("Address space is not an integer"); + ParsedAddrSpaces.push_back(IntVal->getValue()); + } + + if (!ParsedAddrSpaces.empty()) { + InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( + 0, ParsedAddrSpaces); + } + } + + int64_t MinAlign = Predicate.getMinAlignment(); + if (MinAlign > 0) + InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); + } + + // G_LOAD is used for both non-extending and any-extending loads. + if (Predicate.isLoad() && Predicate.isNonExtLoad()) { + InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( + 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); + continue; + } + if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { + InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( + 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); + continue; + } + + if (Predicate.isStore()) { + if (Predicate.isTruncStore()) { + // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. + InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( + 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); + continue; + } + if (Predicate.isNonTruncStore()) { + // We need to check the sizes match here otherwise we could incorrectly + // match truncating stores with non-truncating ones. + InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( + 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); + } + } + + // No check required. We already did it by swapping the opcode. + if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && + Predicate.isSignExtLoad()) + continue; + + // No check required. We already did it by swapping the opcode. + if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && + Predicate.isZeroExtLoad()) + continue; + + // No check required. G_STORE by itself is a non-extending store. + if (Predicate.isNonTruncStore()) + continue; + + if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { + if (Predicate.getMemoryVT() != nullptr) { + Optional<LLTCodeGen> MemTyOrNone = + MVTToLLT(getValueType(Predicate.getMemoryVT())); + + if (!MemTyOrNone) + return failedImport("MemVT could not be converted to LLT"); + + // MMO's work in bytes so we must take care of unusual types like i1 + // don't round down. + unsigned MemSizeInBits = + llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8); + + InsnMatcher.addPredicate<MemorySizePredicateMatcher>( + 0, MemSizeInBits / 8); + continue; + } + } + + if (Predicate.isLoad() || Predicate.isStore()) { + // No check required. A G_LOAD/G_STORE is an unindexed load. + if (Predicate.isUnindexed()) + continue; + } + + if (Predicate.isAtomic()) { + if (Predicate.isAtomicOrderingMonotonic()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "Monotonic"); + continue; + } + if (Predicate.isAtomicOrderingAcquire()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); + continue; + } + if (Predicate.isAtomicOrderingRelease()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); + continue; + } + if (Predicate.isAtomicOrderingAcquireRelease()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "AcquireRelease"); + continue; + } + if (Predicate.isAtomicOrderingSequentiallyConsistent()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "SequentiallyConsistent"); + continue; + } + + if (Predicate.isAtomicOrderingAcquireOrStronger()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); + continue; + } + if (Predicate.isAtomicOrderingWeakerThanAcquire()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); + continue; + } + + if (Predicate.isAtomicOrderingReleaseOrStronger()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); + continue; + } + if (Predicate.isAtomicOrderingWeakerThanRelease()) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); + continue; + } + } + + if (Predicate.hasGISelPredicateCode()) { + InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); + continue; + } + + return failedImport("Src pattern child has predicate (" + + explainPredicates(Src) + ")"); + } + if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); + else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { + InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( + "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); + } + + if (Src->isLeaf()) { + Init *SrcInit = Src->getLeafValue(); + if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { + OperandMatcher &OM = + InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); + OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); + } else + return failedImport( + "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); + } else { + assert(SrcGIOrNull && + "Expected to have already found an equivalent Instruction"); + if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || + SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { + // imm/fpimm still have operands but we don't need to do anything with it + // here since we don't support ImmLeaf predicates yet. However, we still + // need to note the hidden operand to get GIM_CheckNumOperands correct. + InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); + return InsnMatcher; + } + + // Special case because the operand order is changed from setcc. The + // predicate operand needs to be swapped from the last operand to the first + // source. + + unsigned NumChildren = Src->getNumChildren(); + bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; + + if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { + TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); + if (SrcChild->isLeaf()) { + DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); + Record *CCDef = DI ? DI->getDef() : nullptr; + if (!CCDef || !CCDef->isSubClassOf("CondCode")) + return failedImport("Unable to handle CondCode"); + + OperandMatcher &OM = + InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); + StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : + CCDef->getValueAsString("ICmpPredicate"); + + if (!PredType.empty()) { + OM.addPredicate<CmpPredicateOperandMatcher>(PredType); + // Process the other 2 operands normally. + --NumChildren; + } + } + } + + // Match the used operands (i.e. the children of the operator). + bool IsIntrinsic = + SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || + SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; + const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); + if (IsIntrinsic && !II) + return failedImport("Expected IntInit containing intrinsic ID)"); + + for (unsigned i = 0; i != NumChildren; ++i) { + TreePatternNode *SrcChild = Src->getChild(i); + + // SelectionDAG allows pointers to be represented with iN since it doesn't + // distinguish between pointers and integers but they are different types in GlobalISel. + // Coerce integers to pointers to address space 0 if the context indicates a pointer. + bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); + + if (IsIntrinsic) { + // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately + // following the defs is an intrinsic ID. + if (i == 0) { + OperandMatcher &OM = + InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); + OM.addPredicate<IntrinsicIDOperandMatcher>(II); + continue; + } + + // We have to check intrinsics for llvm_anyptr_ty parameters. + // + // Note that we have to look at the i-1th parameter, because we don't + // have the intrinsic ID in the intrinsic's parameter list. + OperandIsAPointer |= II->isParamAPointer(i - 1); + } + + if (auto Error = + importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, + OpIdx++, TempOpIdx)) + return std::move(Error); + } + } + + return InsnMatcher; +} + +Error GlobalISelEmitter::importComplexPatternOperandMatcher( + OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { + const auto &ComplexPattern = ComplexPatternEquivs.find(R); + if (ComplexPattern == ComplexPatternEquivs.end()) + return failedImport("SelectionDAG ComplexPattern (" + R->getName() + + ") not mapped to GlobalISel"); + + OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); + TempOpIdx++; + return Error::success(); +} + +// Get the name to use for a pattern operand. For an anonymous physical register +// input, this should use the register name. +static StringRef getSrcChildName(const TreePatternNode *SrcChild, + Record *&PhysReg) { + StringRef SrcChildName = SrcChild->getName(); + if (SrcChildName.empty() && SrcChild->isLeaf()) { + if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { + auto *ChildRec = ChildDefInit->getDef(); + if (ChildRec->isSubClassOf("Register")) { + SrcChildName = ChildRec->getName(); + PhysReg = ChildRec; + } + } + } + + return SrcChildName; +} + +Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule, + InstructionMatcher &InsnMatcher, + const TreePatternNode *SrcChild, + bool OperandIsAPointer, + unsigned OpIdx, + unsigned &TempOpIdx) { + + Record *PhysReg = nullptr; + StringRef SrcChildName = getSrcChildName(SrcChild, PhysReg); + + OperandMatcher &OM = PhysReg ? + InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) : + InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); + if (OM.isSameAsAnotherOperand()) + return Error::success(); + + ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); + if (ChildTypes.size() != 1) + return failedImport("Src pattern child has multiple results"); + + // Check MBB's before the type check since they are not a known type. + if (!SrcChild->isLeaf()) { + if (SrcChild->getOperator()->isSubClassOf("SDNode")) { + auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); + if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { + OM.addPredicate<MBBOperandMatcher>(); + return Error::success(); + } + if (SrcChild->getOperator()->getName() == "timm") { + OM.addPredicate<ImmOperandMatcher>(); + return Error::success(); + } + } + } + + if (auto Error = + OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) + return failedImport(toString(std::move(Error)) + " for Src operand (" + + to_string(*SrcChild) + ")"); + + // Check for nested instructions. + if (!SrcChild->isLeaf()) { + if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { + // When a ComplexPattern is used as an operator, it should do the same + // thing as when used as a leaf. However, the children of the operator + // name the sub-operands that make up the complex operand and we must + // prepare to reference them in the renderer too. + unsigned RendererID = TempOpIdx; + if (auto Error = importComplexPatternOperandMatcher( + OM, SrcChild->getOperator(), TempOpIdx)) + return Error; + + for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { + auto *SubOperand = SrcChild->getChild(i); + if (!SubOperand->getName().empty()) { + if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(), + SrcChild->getOperator(), + RendererID, i)) + return Error; + } + } + + return Error::success(); + } + + auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( + InsnMatcher.getRuleMatcher(), SrcChild->getName()); + if (!MaybeInsnOperand.hasValue()) { + // This isn't strictly true. If the user were to provide exactly the same + // matchers as the original operand then we could allow it. However, it's + // simpler to not permit the redundant specification. + return failedImport("Nested instruction cannot be the same as another operand"); + } + + // Map the node to a gMIR instruction. + InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; + auto InsnMatcherOrError = createAndImportSelDAGMatcher( + Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); + if (auto Error = InsnMatcherOrError.takeError()) + return Error; + + return Error::success(); + } + + if (SrcChild->hasAnyPredicate()) + return failedImport("Src pattern child has unsupported predicate"); + + // Check for constant immediates. + if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { + OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); + return Error::success(); + } + + // Check for def's like register classes or ComplexPattern's. + if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { + auto *ChildRec = ChildDefInit->getDef(); + + // Check for register classes. + if (ChildRec->isSubClassOf("RegisterClass") || + ChildRec->isSubClassOf("RegisterOperand")) { + OM.addPredicate<RegisterBankOperandMatcher>( + Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); + return Error::success(); + } + + if (ChildRec->isSubClassOf("Register")) { + // This just be emitted as a copy to the specific register. + ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); + const CodeGenRegisterClass *RC + = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); + if (!RC) { + return failedImport( + "Could not determine physical register class of pattern source"); + } + + OM.addPredicate<RegisterBankOperandMatcher>(*RC); + return Error::success(); + } + + // Check for ValueType. + if (ChildRec->isSubClassOf("ValueType")) { + // We already added a type check as standard practice so this doesn't need + // to do anything. + return Error::success(); + } + + // Check for ComplexPattern's. + if (ChildRec->isSubClassOf("ComplexPattern")) + return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); + + if (ChildRec->isSubClassOf("ImmLeaf")) { + return failedImport( + "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); + } + + return failedImport( + "Src pattern child def is an unsupported tablegen class"); + } + + return failedImport("Src pattern child is an unsupported kind"); +} + +Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( + action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, + TreePatternNode *DstChild) { + + const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); + if (SubOperand.hasValue()) { + DstMIBuilder.addRenderer<RenderComplexPatternOperand>( + *std::get<0>(*SubOperand), DstChild->getName(), + std::get<1>(*SubOperand), std::get<2>(*SubOperand)); + return InsertPt; + } + + if (!DstChild->isLeaf()) { + + if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { + auto Child = DstChild->getChild(0); + auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); + if (I != SDNodeXFormEquivs.end()) { + DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName()); + return InsertPt; + } + return failedImport("SDNodeXForm " + Child->getName() + + " has no custom renderer"); + } + + // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't + // inline, but in MI it's just another operand. + if (DstChild->getOperator()->isSubClassOf("SDNode")) { + auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); + if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { + DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); + return InsertPt; + } + } + + // Similarly, imm is an operator in TreePatternNode's view but must be + // rendered as operands. + // FIXME: The target should be able to choose sign-extended when appropriate + // (e.g. on Mips). + if (DstChild->getOperator()->getName() == "timm") { + DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); + return InsertPt; + } else if (DstChild->getOperator()->getName() == "imm") { + DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); + return InsertPt; + } else if (DstChild->getOperator()->getName() == "fpimm") { + DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( + DstChild->getName()); + return InsertPt; + } + + if (DstChild->getOperator()->isSubClassOf("Instruction")) { + ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); + if (ChildTypes.size() != 1) + return failedImport("Dst pattern child has multiple results"); + + Optional<LLTCodeGen> OpTyOrNone = None; + if (ChildTypes.front().isMachineValueType()) + OpTyOrNone = + MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); + if (!OpTyOrNone) + return failedImport("Dst operand has an unsupported type"); + + unsigned TempRegID = Rule.allocateTempRegID(); + InsertPt = Rule.insertAction<MakeTempRegisterAction>( + InsertPt, OpTyOrNone.getValue(), TempRegID); + DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); + + auto InsertPtOrError = createAndImportSubInstructionRenderer( + ++InsertPt, Rule, DstChild, TempRegID); + if (auto Error = InsertPtOrError.takeError()) + return std::move(Error); + return InsertPtOrError.get(); + } + + return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); + } + + // It could be a specific immediate in which case we should just check for + // that immediate. + if (const IntInit *ChildIntInit = + dyn_cast<IntInit>(DstChild->getLeafValue())) { + DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); + return InsertPt; + } + + // Otherwise, we're looking for a bog-standard RegisterClass operand. + if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { + auto *ChildRec = ChildDefInit->getDef(); + + ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); + if (ChildTypes.size() != 1) + return failedImport("Dst pattern child has multiple results"); + + Optional<LLTCodeGen> OpTyOrNone = None; + if (ChildTypes.front().isMachineValueType()) + OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); + if (!OpTyOrNone) + return failedImport("Dst operand has an unsupported type"); + + if (ChildRec->isSubClassOf("Register")) { + DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec); + return InsertPt; + } + + if (ChildRec->isSubClassOf("RegisterClass") || + ChildRec->isSubClassOf("RegisterOperand") || + ChildRec->isSubClassOf("ValueType")) { + if (ChildRec->isSubClassOf("RegisterOperand") && + !ChildRec->isValueUnset("GIZeroRegister")) { + DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( + DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); + return InsertPt; + } + + DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); + return InsertPt; + } + + if (ChildRec->isSubClassOf("SubRegIndex")) { + CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); + DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); + return InsertPt; + } + + if (ChildRec->isSubClassOf("ComplexPattern")) { + const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); + if (ComplexPattern == ComplexPatternEquivs.end()) + return failedImport( + "SelectionDAG ComplexPattern not mapped to GlobalISel"); + + const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); + DstMIBuilder.addRenderer<RenderComplexPatternOperand>( + *ComplexPattern->second, DstChild->getName(), + OM.getAllocatedTemporariesBaseID()); + return InsertPt; + } + + return failedImport( + "Dst pattern child def is an unsupported tablegen class"); + } + + return failedImport("Dst pattern child is an unsupported kind"); +} + +Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( + RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, + const TreePatternNode *Dst) { + auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); + if (auto Error = InsertPtOrError.takeError()) + return std::move(Error); + + action_iterator InsertPt = InsertPtOrError.get(); + BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); + + for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { + InsertPt = M.insertAction<BuildMIAction>( + InsertPt, M.allocateOutputInsnID(), + &Target.getInstruction(RK.getDef("COPY"))); + BuildMIAction &CopyToPhysRegMIBuilder = + *static_cast<BuildMIAction *>(InsertPt->get()); + CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(PhysInput.first, + true); + CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); + } + + importExplicitDefRenderers(DstMIBuilder); + + if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) + .takeError()) + return std::move(Error); + + return DstMIBuilder; +} + +Expected<action_iterator> +GlobalISelEmitter::createAndImportSubInstructionRenderer( + const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, + unsigned TempRegID) { + auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); + + // TODO: Assert there's exactly one result. + + if (auto Error = InsertPtOrError.takeError()) + return std::move(Error); + + BuildMIAction &DstMIBuilder = + *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); + + // Assign the result to TempReg. + DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); + + InsertPtOrError = + importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); + if (auto Error = InsertPtOrError.takeError()) + return std::move(Error); + + // We need to make sure that when we import an INSERT_SUBREG as a + // subinstruction that it ends up being constrained to the correct super + // register and subregister classes. + auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); + if (OpName == "INSERT_SUBREG") { + auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); + if (!SubClass) + return failedImport( + "Cannot infer register class from INSERT_SUBREG operand #1"); + Optional<const CodeGenRegisterClass *> SuperClass = + inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), + Dst->getChild(2)); + if (!SuperClass) + return failedImport( + "Cannot infer register class for INSERT_SUBREG operand #0"); + // The destination and the super register source of an INSERT_SUBREG must + // be the same register class. + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); + return InsertPtOrError.get(); + } + + if (OpName == "EXTRACT_SUBREG") { + // EXTRACT_SUBREG selects into a subregister COPY but unlike most + // instructions, the result register class is controlled by the + // subregisters of the operand. As a result, we must constrain the result + // class rather than check that it's already the right one. + auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); + if (!SuperClass) + return failedImport( + "Cannot infer register class from EXTRACT_SUBREG operand #0"); + + auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); + if (!SubIdx) + return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); + + const auto &SrcRCDstRCPair = + (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); + assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); + + // We're done with this pattern! It's eligible for GISel emission; return + // it. + return InsertPtOrError.get(); + } + + // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a + // subinstruction. + if (OpName == "SUBREG_TO_REG") { + auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); + if (!SubClass) + return failedImport( + "Cannot infer register class from SUBREG_TO_REG child #1"); + auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), + Dst->getChild(2)); + if (!SuperClass) + return failedImport( + "Cannot infer register class for SUBREG_TO_REG operand #0"); + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); + M.insertAction<ConstrainOperandToRegClassAction>( + InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); + return InsertPtOrError.get(); + } + + M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, + DstMIBuilder.getInsnID()); + return InsertPtOrError.get(); +} + +Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( + action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { + Record *DstOp = Dst->getOperator(); + if (!DstOp->isSubClassOf("Instruction")) { + if (DstOp->isSubClassOf("ValueType")) + return failedImport( + "Pattern operator isn't an instruction (it's a ValueType)"); + return failedImport("Pattern operator isn't an instruction"); + } + CodeGenInstruction *DstI = &Target.getInstruction(DstOp); + + // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction + // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. + StringRef Name = DstI->TheDef->getName(); + if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") + DstI = &Target.getInstruction(RK.getDef("COPY")); + + return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), + DstI); +} + +void GlobalISelEmitter::importExplicitDefRenderers( + BuildMIAction &DstMIBuilder) { + const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); + for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) { + const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I]; + DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); + } +} + +Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( + action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, + const llvm::TreePatternNode *Dst) { + const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); + CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); + + StringRef Name = OrigDstI->TheDef->getName(); + unsigned ExpectedDstINumUses = Dst->getNumChildren(); + + // EXTRACT_SUBREG needs to use a subregister COPY. + if (Name == "EXTRACT_SUBREG") { + if (!Dst->getChild(0)->isLeaf()) + return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); + + if (DefInit *SubRegInit = + dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) { + Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); + if (!RCDef) + return failedImport("EXTRACT_SUBREG child #0 could not " + "be coerced to a register class"); + + CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); + CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); + + const auto &SrcRCDstRCPair = + RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); + if (SrcRCDstRCPair.hasValue()) { + assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); + if (SrcRCDstRCPair->first != RC) + return failedImport("EXTRACT_SUBREG requires an additional COPY"); + } + + DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), + SubIdx); + return InsertPt; + } + + return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); + } + + if (Name == "REG_SEQUENCE") { + if (!Dst->getChild(0)->isLeaf()) + return failedImport("REG_SEQUENCE child #0 is not a leaf"); + + Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); + if (!RCDef) + return failedImport("REG_SEQUENCE child #0 could not " + "be coerced to a register class"); + + if ((ExpectedDstINumUses - 1) % 2 != 0) + return failedImport("Malformed REG_SEQUENCE"); + + for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { + TreePatternNode *ValChild = Dst->getChild(I); + TreePatternNode *SubRegChild = Dst->getChild(I + 1); + + if (DefInit *SubRegInit = + dyn_cast<DefInit>(SubRegChild->getLeafValue())) { + CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); + + auto InsertPtOrError = + importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); + if (auto Error = InsertPtOrError.takeError()) + return std::move(Error); + InsertPt = InsertPtOrError.get(); + DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); + } + } + + return InsertPt; + } + + // Render the explicit uses. + unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; + if (Name == "COPY_TO_REGCLASS") { + DstINumUses--; // Ignore the class constraint. + ExpectedDstINumUses--; + } + + unsigned Child = 0; + unsigned NumDefaultOps = 0; + for (unsigned I = 0; I != DstINumUses; ++I) { + const CGIOperandList::OperandInfo &DstIOperand = + DstI->Operands[DstI->Operands.NumDefs + I]; + + // If the operand has default values, introduce them now. + // FIXME: Until we have a decent test case that dictates we should do + // otherwise, we're going to assume that operands with default values cannot + // be specified in the patterns. Therefore, adding them will not cause us to + // end up with too many rendered operands. + if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) { + DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); + if (auto Error = importDefaultOperandRenderers( + InsertPt, M, DstMIBuilder, DefaultOps)) + return std::move(Error); + ++NumDefaultOps; + continue; + } + + auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, + Dst->getChild(Child)); + if (auto Error = InsertPtOrError.takeError()) + return std::move(Error); + InsertPt = InsertPtOrError.get(); + ++Child; + } + + if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) + return failedImport("Expected " + llvm::to_string(DstINumUses) + + " used operands but found " + + llvm::to_string(ExpectedDstINumUses) + + " explicit ones and " + llvm::to_string(NumDefaultOps) + + " default ones"); + + return InsertPt; +} + +Error GlobalISelEmitter::importDefaultOperandRenderers( + action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, + DagInit *DefaultOps) const { + for (const auto *DefaultOp : DefaultOps->getArgs()) { + Optional<LLTCodeGen> OpTyOrNone = None; + + // Look through ValueType operators. + if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { + if (const DefInit *DefaultDagOperator = + dyn_cast<DefInit>(DefaultDagOp->getOperator())) { + if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { + OpTyOrNone = MVTToLLT(getValueType( + DefaultDagOperator->getDef())); + DefaultOp = DefaultDagOp->getArg(0); + } + } + } + + if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { + auto Def = DefaultDefOp->getDef(); + if (Def->getName() == "undef_tied_input") { + unsigned TempRegID = M.allocateTempRegID(); + M.insertAction<MakeTempRegisterAction>( + InsertPt, OpTyOrNone.getValue(), TempRegID); + InsertPt = M.insertAction<BuildMIAction>( + InsertPt, M.allocateOutputInsnID(), + &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); + BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( + InsertPt->get()); + IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); + DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); + } else { + DstMIBuilder.addRenderer<AddRegisterRenderer>(Def); + } + continue; + } + + if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { + DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); + continue; + } + + return failedImport("Could not add default op"); + } + + return Error::success(); +} + +Error GlobalISelEmitter::importImplicitDefRenderers( + BuildMIAction &DstMIBuilder, + const std::vector<Record *> &ImplicitDefs) const { + if (!ImplicitDefs.empty()) + return failedImport("Pattern defines a physical register"); + return Error::success(); +} + +Optional<const CodeGenRegisterClass *> +GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { + assert(Leaf && "Expected node?"); + assert(Leaf->isLeaf() && "Expected leaf?"); + Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); + if (!RCRec) + return None; + CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); + if (!RC) + return None; + return RC; +} + +Optional<const CodeGenRegisterClass *> +GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { + if (!N) + return None; + + if (N->isLeaf()) + return getRegClassFromLeaf(N); + + // We don't have a leaf node, so we have to try and infer something. Check + // that we have an instruction that we an infer something from. + + // Only handle things that produce a single type. + if (N->getNumTypes() != 1) + return None; + Record *OpRec = N->getOperator(); + + // We only want instructions. + if (!OpRec->isSubClassOf("Instruction")) + return None; + + // Don't want to try and infer things when there could potentially be more + // than one candidate register class. + auto &Inst = Target.getInstruction(OpRec); + if (Inst.Operands.NumDefs > 1) + return None; + + // Handle any special-case instructions which we can safely infer register + // classes from. + StringRef InstName = Inst.TheDef->getName(); + bool IsRegSequence = InstName == "REG_SEQUENCE"; + if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { + // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It + // has the desired register class as the first child. + TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); + if (!RCChild->isLeaf()) + return None; + return getRegClassFromLeaf(RCChild); + } + + // Handle destination record types that we can safely infer a register class + // from. + const auto &DstIOperand = Inst.Operands[0]; + Record *DstIOpRec = DstIOperand.Rec; + if (DstIOpRec->isSubClassOf("RegisterOperand")) { + DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); + const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); + return &RC; + } + + if (DstIOpRec->isSubClassOf("RegisterClass")) { + const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); + return &RC; + } + + return None; +} + +Optional<const CodeGenRegisterClass *> +GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, + TreePatternNode *SubRegIdxNode) { + assert(SubRegIdxNode && "Expected subregister index node!"); + // We need a ValueTypeByHwMode for getSuperRegForSubReg. + if (!Ty.isValueTypeByHwMode(false)) + return None; + if (!SubRegIdxNode->isLeaf()) + return None; + DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); + if (!SubRegInit) + return None; + CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); + + // Use the information we found above to find a minimal register class which + // supports the subregister and type we want. + auto RC = + Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx); + if (!RC) + return None; + return *RC; +} + +Optional<const CodeGenRegisterClass *> +GlobalISelEmitter::inferSuperRegisterClassForNode( + const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, + TreePatternNode *SubRegIdxNode) { + assert(SuperRegNode && "Expected super register node!"); + // Check if we already have a defined register class for the super register + // node. If we do, then we should preserve that rather than inferring anything + // from the subregister index node. We can assume that whoever wrote the + // pattern in the first place made sure that the super register and + // subregister are compatible. + if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = + inferRegClassFromPattern(SuperRegNode)) + return *SuperRegisterClass; + return inferSuperRegisterClass(Ty, SubRegIdxNode); +} + +Optional<CodeGenSubRegIndex *> +GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { + if (!SubRegIdxNode->isLeaf()) + return None; + + DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); + if (!SubRegInit) + return None; + return CGRegs.getSubRegIdx(SubRegInit->getDef()); +} + +Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { + // Keep track of the matchers and actions to emit. + int Score = P.getPatternComplexity(CGP); + RuleMatcher M(P.getSrcRecord()->getLoc()); + RuleMatcherScores[M.getRuleID()] = Score; + M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + + " => " + + llvm::to_string(*P.getDstPattern())); + + if (auto Error = importRulePredicates(M, P.getPredicates())) + return std::move(Error); + + // Next, analyze the pattern operators. + TreePatternNode *Src = P.getSrcPattern(); + TreePatternNode *Dst = P.getDstPattern(); + + // If the root of either pattern isn't a simple operator, ignore it. + if (auto Err = isTrivialOperatorNode(Dst)) + return failedImport("Dst pattern root isn't a trivial operator (" + + toString(std::move(Err)) + ")"); + if (auto Err = isTrivialOperatorNode(Src)) + return failedImport("Src pattern root isn't a trivial operator (" + + toString(std::move(Err)) + ")"); + + // The different predicates and matchers created during + // addInstructionMatcher use the RuleMatcher M to set up their + // instruction ID (InsnVarID) that are going to be used when + // M is going to be emitted. + // However, the code doing the emission still relies on the IDs + // returned during that process by the RuleMatcher when issuing + // the recordInsn opcodes. + // Because of that: + // 1. The order in which we created the predicates + // and such must be the same as the order in which we emit them, + // and + // 2. We need to reset the generation of the IDs in M somewhere between + // addInstructionMatcher and emit + // + // FIXME: Long term, we don't want to have to rely on this implicit + // naming being the same. One possible solution would be to have + // explicit operator for operation capture and reference those. + // The plus side is that it would expose opportunities to share + // the capture accross rules. The downside is that it would + // introduce a dependency between predicates (captures must happen + // before their first use.) + InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); + unsigned TempOpIdx = 0; + auto InsnMatcherOrError = + createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); + if (auto Error = InsnMatcherOrError.takeError()) + return std::move(Error); + InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); + + if (Dst->isLeaf()) { + Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); + + const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); + if (RCDef) { + // We need to replace the def and all its uses with the specified + // operand. However, we must also insert COPY's wherever needed. + // For now, emit a copy and let the register allocator clean up. + auto &DstI = Target.getInstruction(RK.getDef("COPY")); + const auto &DstIOperand = DstI.Operands[0]; + + OperandMatcher &OM0 = InsnMatcher.getOperand(0); + OM0.setSymbolicName(DstIOperand.Name); + M.defineOperand(OM0.getSymbolicName(), OM0); + OM0.addPredicate<RegisterBankOperandMatcher>(RC); + + auto &DstMIBuilder = + M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); + DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); + DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); + M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); + + // We're done with this pattern! It's eligible for GISel emission; return + // it. + ++NumPatternImported; + return std::move(M); + } + + return failedImport("Dst pattern root isn't a known leaf"); + } + + // Start with the defined operands (i.e., the results of the root operator). + Record *DstOp = Dst->getOperator(); + if (!DstOp->isSubClassOf("Instruction")) + return failedImport("Pattern operator isn't an instruction"); + + auto &DstI = Target.getInstruction(DstOp); + StringRef DstIName = DstI.TheDef->getName(); + + if (DstI.Operands.NumDefs != Src->getExtTypes().size()) + return failedImport("Src pattern results and dst MI defs are different (" + + to_string(Src->getExtTypes().size()) + " def(s) vs " + + to_string(DstI.Operands.NumDefs) + " def(s))"); + + // The root of the match also has constraints on the register bank so that it + // matches the result instruction. + unsigned OpIdx = 0; + for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { + (void)VTy; + + const auto &DstIOperand = DstI.Operands[OpIdx]; + Record *DstIOpRec = DstIOperand.Rec; + if (DstIName == "COPY_TO_REGCLASS") { + DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); + + if (DstIOpRec == nullptr) + return failedImport( + "COPY_TO_REGCLASS operand #1 isn't a register class"); + } else if (DstIName == "REG_SEQUENCE") { + DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); + if (DstIOpRec == nullptr) + return failedImport("REG_SEQUENCE operand #0 isn't a register class"); + } else if (DstIName == "EXTRACT_SUBREG") { + if (!Dst->getChild(0)->isLeaf()) + return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf"); + + // We can assume that a subregister is in the same bank as it's super + // register. + DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); + + if (DstIOpRec == nullptr) + return failedImport("EXTRACT_SUBREG operand #0 isn't a register class"); + } else if (DstIName == "INSERT_SUBREG") { + auto MaybeSuperClass = inferSuperRegisterClassForNode( + VTy, Dst->getChild(0), Dst->getChild(2)); + if (!MaybeSuperClass) + return failedImport( + "Cannot infer register class for INSERT_SUBREG operand #0"); + // Move to the next pattern here, because the register class we found + // doesn't necessarily have a record associated with it. So, we can't + // set DstIOpRec using this. + OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); + OM.setSymbolicName(DstIOperand.Name); + M.defineOperand(OM.getSymbolicName(), OM); + OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); + ++OpIdx; + continue; + } else if (DstIName == "SUBREG_TO_REG") { + auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); + if (!MaybeRegClass) + return failedImport( + "Cannot infer register class for SUBREG_TO_REG operand #0"); + OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); + OM.setSymbolicName(DstIOperand.Name); + M.defineOperand(OM.getSymbolicName(), OM); + OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); + ++OpIdx; + continue; + } else if (DstIOpRec->isSubClassOf("RegisterOperand")) + DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); + else if (!DstIOpRec->isSubClassOf("RegisterClass")) + return failedImport("Dst MI def isn't a register class" + + to_string(*Dst)); + + OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); + OM.setSymbolicName(DstIOperand.Name); + M.defineOperand(OM.getSymbolicName(), OM); + OM.addPredicate<RegisterBankOperandMatcher>( + Target.getRegisterClass(DstIOpRec)); + ++OpIdx; + } + + auto DstMIBuilderOrError = + createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); + if (auto Error = DstMIBuilderOrError.takeError()) + return std::move(Error); + BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); + + // Render the implicit defs. + // These are only added to the root of the result. + if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) + return std::move(Error); + + DstMIBuilder.chooseInsnToMutate(M); + + // Constrain the registers to classes. This is normally derived from the + // emitted instruction but a few instructions require special handling. + if (DstIName == "COPY_TO_REGCLASS") { + // COPY_TO_REGCLASS does not provide operand constraints itself but the + // result is constrained to the class given by the second child. + Record *DstIOpRec = + getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); + + if (DstIOpRec == nullptr) + return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); + + M.addAction<ConstrainOperandToRegClassAction>( + 0, 0, Target.getRegisterClass(DstIOpRec)); + + // We're done with this pattern! It's eligible for GISel emission; return + // it. + ++NumPatternImported; + return std::move(M); + } + + if (DstIName == "EXTRACT_SUBREG") { + auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); + if (!SuperClass) + return failedImport( + "Cannot infer register class from EXTRACT_SUBREG operand #0"); + + auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); + if (!SubIdx) + return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); + + // It would be nice to leave this constraint implicit but we're required + // to pick a register class so constrain the result to a register class + // that can hold the correct MVT. + // + // FIXME: This may introduce an extra copy if the chosen class doesn't + // actually contain the subregisters. + assert(Src->getExtTypes().size() == 1 && + "Expected Src of EXTRACT_SUBREG to have one result type"); + + const auto &SrcRCDstRCPair = + (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); + assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); + M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); + M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); + + // We're done with this pattern! It's eligible for GISel emission; return + // it. + ++NumPatternImported; + return std::move(M); + } + + if (DstIName == "INSERT_SUBREG") { + assert(Src->getExtTypes().size() == 1 && + "Expected Src of INSERT_SUBREG to have one result type"); + // We need to constrain the destination, a super regsister source, and a + // subregister source. + auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); + if (!SubClass) + return failedImport( + "Cannot infer register class from INSERT_SUBREG operand #1"); + auto SuperClass = inferSuperRegisterClassForNode( + Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); + if (!SuperClass) + return failedImport( + "Cannot infer register class for INSERT_SUBREG operand #0"); + M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); + M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); + M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); + ++NumPatternImported; + return std::move(M); + } + + if (DstIName == "SUBREG_TO_REG") { + // We need to constrain the destination and subregister source. + assert(Src->getExtTypes().size() == 1 && + "Expected Src of SUBREG_TO_REG to have one result type"); + + // Attempt to infer the subregister source from the first child. If it has + // an explicitly given register class, we'll use that. Otherwise, we will + // fail. + auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); + if (!SubClass) + return failedImport( + "Cannot infer register class from SUBREG_TO_REG child #1"); + // We don't have a child to look at that might have a super register node. + auto SuperClass = + inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); + if (!SuperClass) + return failedImport( + "Cannot infer register class for SUBREG_TO_REG operand #0"); + M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); + M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); + ++NumPatternImported; + return std::move(M); + } + + M.addAction<ConstrainOperandsToDefinitionAction>(0); + + // We're done with this pattern! It's eligible for GISel emission; return it. + ++NumPatternImported; + return std::move(M); +} + +// Emit imm predicate table and an enum to reference them with. +// The 'Predicate_' part of the name is redundant but eliminating it is more +// trouble than it's worth. +void GlobalISelEmitter::emitCxxPredicateFns( + raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, + StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations, + std::function<bool(const Record *R)> Filter) { + std::vector<const Record *> MatchedRecords; + const auto &Defs = RK.getAllDerivedDefinitions("PatFrag"); + std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), + [&](Record *Record) { + return !Record->getValueAsString(CodeFieldName).empty() && + Filter(Record); + }); + + if (!MatchedRecords.empty()) { + OS << "// PatFrag predicates.\n" + << "enum {\n"; + std::string EnumeratorSeparator = + (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); + for (const auto *Record : MatchedRecords) { + OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() + << EnumeratorSeparator; + EnumeratorSeparator = ",\n"; + } + OS << "};\n"; + } + + OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName + << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " + << ArgName << ") const {\n" + << AdditionalDeclarations; + if (!AdditionalDeclarations.empty()) + OS << "\n"; + if (!MatchedRecords.empty()) + OS << " switch (PredicateID) {\n"; + for (const auto *Record : MatchedRecords) { + OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" + << Record->getName() << ": {\n" + << " " << Record->getValueAsString(CodeFieldName) << "\n" + << " llvm_unreachable(\"" << CodeFieldName + << " should have returned\");\n" + << " return false;\n" + << " }\n"; + } + if (!MatchedRecords.empty()) + OS << " }\n"; + OS << " llvm_unreachable(\"Unknown predicate\");\n" + << " return false;\n" + << "}\n"; +} + +void GlobalISelEmitter::emitImmPredicateFns( + raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, + std::function<bool(const Record *R)> Filter) { + return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, + "Imm", "", Filter); +} + +void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { + return emitCxxPredicateFns( + OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", + " const MachineFunction &MF = *MI.getParent()->getParent();\n" + " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" + " (void)MRI;", + [](const Record *R) { return true; }); +} + +template <class GroupT> +std::vector<Matcher *> GlobalISelEmitter::optimizeRules( + ArrayRef<Matcher *> Rules, + std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { + + std::vector<Matcher *> OptRules; + std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); + assert(CurrentGroup->empty() && "Newly created group isn't empty!"); + unsigned NumGroups = 0; + + auto ProcessCurrentGroup = [&]() { + if (CurrentGroup->empty()) + // An empty group is good to be reused: + return; + + // If the group isn't large enough to provide any benefit, move all the + // added rules out of it and make sure to re-create the group to properly + // re-initialize it: + if (CurrentGroup->size() < 2) + for (Matcher *M : CurrentGroup->matchers()) + OptRules.push_back(M); + else { + CurrentGroup->finalize(); + OptRules.push_back(CurrentGroup.get()); + MatcherStorage.emplace_back(std::move(CurrentGroup)); + ++NumGroups; + } + CurrentGroup = std::make_unique<GroupT>(); + }; + for (Matcher *Rule : Rules) { + // Greedily add as many matchers as possible to the current group: + if (CurrentGroup->addMatcher(*Rule)) + continue; + + ProcessCurrentGroup(); + assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); + + // Try to add the pending matcher to a newly created empty group: + if (!CurrentGroup->addMatcher(*Rule)) + // If we couldn't add the matcher to an empty group, that group type + // doesn't support that kind of matchers at all, so just skip it: + OptRules.push_back(Rule); + } + ProcessCurrentGroup(); + + LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); + assert(CurrentGroup->empty() && "The last group wasn't properly processed"); + return OptRules; +} + +MatchTable +GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, + bool Optimize, bool WithCoverage) { + std::vector<Matcher *> InputRules; + for (Matcher &Rule : Rules) + InputRules.push_back(&Rule); + + if (!Optimize) + return MatchTable::buildTable(InputRules, WithCoverage); + + unsigned CurrentOrdering = 0; + StringMap<unsigned> OpcodeOrder; + for (RuleMatcher &Rule : Rules) { + const StringRef Opcode = Rule.getOpcode(); + assert(!Opcode.empty() && "Didn't expect an undefined opcode"); + if (OpcodeOrder.count(Opcode) == 0) + OpcodeOrder[Opcode] = CurrentOrdering++; + } + + std::stable_sort(InputRules.begin(), InputRules.end(), + [&OpcodeOrder](const Matcher *A, const Matcher *B) { + auto *L = static_cast<const RuleMatcher *>(A); + auto *R = static_cast<const RuleMatcher *>(B); + return std::make_tuple(OpcodeOrder[L->getOpcode()], + L->getNumOperands()) < + std::make_tuple(OpcodeOrder[R->getOpcode()], + R->getNumOperands()); + }); + + for (Matcher *Rule : InputRules) + Rule->optimize(); + + std::vector<std::unique_ptr<Matcher>> MatcherStorage; + std::vector<Matcher *> OptRules = + optimizeRules<GroupMatcher>(InputRules, MatcherStorage); + + for (Matcher *Rule : OptRules) + Rule->optimize(); + + OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); + + return MatchTable::buildTable(OptRules, WithCoverage); +} + +void GroupMatcher::optimize() { + // Make sure we only sort by a specific predicate within a range of rules that + // all have that predicate checked against a specific value (not a wildcard): + auto F = Matchers.begin(); + auto T = F; + auto E = Matchers.end(); + while (T != E) { + while (T != E) { + auto *R = static_cast<RuleMatcher *>(*T); + if (!R->getFirstConditionAsRootType().get().isValid()) + break; + ++T; + } + std::stable_sort(F, T, [](Matcher *A, Matcher *B) { + auto *L = static_cast<RuleMatcher *>(A); + auto *R = static_cast<RuleMatcher *>(B); + return L->getFirstConditionAsRootType() < + R->getFirstConditionAsRootType(); + }); + if (T != E) + F = ++T; + } + GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) + .swap(Matchers); + GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) + .swap(Matchers); +} + +void GlobalISelEmitter::run(raw_ostream &OS) { + if (!UseCoverageFile.empty()) { + RuleCoverage = CodeGenCoverage(); + auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); + if (!RuleCoverageBufOrErr) { + PrintWarning(SMLoc(), "Missing rule coverage data"); + RuleCoverage = None; + } else { + if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { + PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); + RuleCoverage = None; + } + } + } + + // Track the run-time opcode values + gatherOpcodeValues(); + // Track the run-time LLT ID values + gatherTypeIDValues(); + + // Track the GINodeEquiv definitions. + gatherNodeEquivs(); + + emitSourceFileHeader(("Global Instruction Selector for the " + + Target.getName() + " target").str(), OS); + std::vector<RuleMatcher> Rules; + // Look through the SelectionDAG patterns we found, possibly emitting some. + for (const PatternToMatch &Pat : CGP.ptms()) { + ++NumPatternTotal; + + auto MatcherOrErr = runOnPattern(Pat); + + // The pattern analysis can fail, indicating an unsupported pattern. + // Report that if we've been asked to do so. + if (auto Err = MatcherOrErr.takeError()) { + if (WarnOnSkippedPatterns) { + PrintWarning(Pat.getSrcRecord()->getLoc(), + "Skipped pattern: " + toString(std::move(Err))); + } else { + consumeError(std::move(Err)); + } + ++NumPatternImportsSkipped; + continue; + } + + if (RuleCoverage) { + if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) + ++NumPatternsTested; + else + PrintWarning(Pat.getSrcRecord()->getLoc(), + "Pattern is not covered by a test"); + } + Rules.push_back(std::move(MatcherOrErr.get())); + } + + // Comparison function to order records by name. + auto orderByName = [](const Record *A, const Record *B) { + return A->getName() < B->getName(); + }; + + std::vector<Record *> ComplexPredicates = + RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); + llvm::sort(ComplexPredicates, orderByName); + + std::vector<Record *> CustomRendererFns = + RK.getAllDerivedDefinitions("GICustomOperandRenderer"); + llvm::sort(CustomRendererFns, orderByName); + + unsigned MaxTemporaries = 0; + for (const auto &Rule : Rules) + MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); + + OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" + << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() + << ";\n" + << "using PredicateBitset = " + "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" + << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; + + OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" + << " mutable MatcherState State;\n" + << " typedef " + "ComplexRendererFns(" + << Target.getName() + << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" + + << " typedef void(" << Target.getName() + << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " + "MachineInstr&) " + "const;\n" + << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " + "CustomRendererFn> " + "ISelInfo;\n"; + OS << " static " << Target.getName() + << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" + << " static " << Target.getName() + << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" + << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " + "override;\n" + << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " + "const override;\n" + << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " + "&Imm) const override;\n" + << " const int64_t *getMatchTable() const override;\n" + << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) " + "const override;\n" + << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; + + OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" + << ", State(" << MaxTemporaries << "),\n" + << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" + << ", ComplexPredicateFns, CustomRenderers)\n" + << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; + + OS << "#ifdef GET_GLOBALISEL_IMPL\n"; + SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, + OS); + + // Separate subtarget features by how often they must be recomputed. + SubtargetFeatureInfoMap ModuleFeatures; + std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), + std::inserter(ModuleFeatures, ModuleFeatures.end()), + [](const SubtargetFeatureInfoMap::value_type &X) { + return !X.second.mustRecomputePerFunction(); + }); + SubtargetFeatureInfoMap FunctionFeatures; + std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), + std::inserter(FunctionFeatures, FunctionFeatures.end()), + [](const SubtargetFeatureInfoMap::value_type &X) { + return X.second.mustRecomputePerFunction(); + }); + + SubtargetFeatureInfo::emitComputeAvailableFeatures( + Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", + ModuleFeatures, OS); + SubtargetFeatureInfo::emitComputeAvailableFeatures( + Target.getName(), "InstructionSelector", + "computeAvailableFunctionFeatures", FunctionFeatures, OS, + "const MachineFunction *MF"); + + // Emit a table containing the LLT objects needed by the matcher and an enum + // for the matcher to reference them with. + std::vector<LLTCodeGen> TypeObjects; + for (const auto &Ty : KnownTypes) + TypeObjects.push_back(Ty); + llvm::sort(TypeObjects); + OS << "// LLT Objects.\n" + << "enum {\n"; + for (const auto &TypeObject : TypeObjects) { + OS << " "; + TypeObject.emitCxxEnumValue(OS); + OS << ",\n"; + } + OS << "};\n"; + OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" + << "const static LLT TypeObjects[] = {\n"; + for (const auto &TypeObject : TypeObjects) { + OS << " "; + TypeObject.emitCxxConstructorCall(OS); + OS << ",\n"; + } + OS << "};\n\n"; + + // Emit a table containing the PredicateBitsets objects needed by the matcher + // and an enum for the matcher to reference them with. + std::vector<std::vector<Record *>> FeatureBitsets; + for (auto &Rule : Rules) + FeatureBitsets.push_back(Rule.getRequiredFeatures()); + llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, + const std::vector<Record *> &B) { + if (A.size() < B.size()) + return true; + if (A.size() > B.size()) + return false; + for (const auto &Pair : zip(A, B)) { + if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) + return true; + if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) + return false; + } + return false; + }); + FeatureBitsets.erase( + std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), + FeatureBitsets.end()); + OS << "// Feature bitsets.\n" + << "enum {\n" + << " GIFBS_Invalid,\n"; + for (const auto &FeatureBitset : FeatureBitsets) { + if (FeatureBitset.empty()) + continue; + OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; + } + OS << "};\n" + << "const static PredicateBitset FeatureBitsets[] {\n" + << " {}, // GIFBS_Invalid\n"; + for (const auto &FeatureBitset : FeatureBitsets) { + if (FeatureBitset.empty()) + continue; + OS << " {"; + for (const auto &Feature : FeatureBitset) { + const auto &I = SubtargetFeatures.find(Feature); + assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); + OS << I->second.getEnumBitName() << ", "; + } + OS << "},\n"; + } + OS << "};\n\n"; + + // Emit complex predicate table and an enum to reference them with. + OS << "// ComplexPattern predicates.\n" + << "enum {\n" + << " GICP_Invalid,\n"; + for (const auto &Record : ComplexPredicates) + OS << " GICP_" << Record->getName() << ",\n"; + OS << "};\n" + << "// See constructor for table contents\n\n"; + + emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { + bool Unset; + return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && + !R->getValueAsBit("IsAPInt"); + }); + emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { + bool Unset; + return R->getValueAsBitOrUnset("IsAPFloat", Unset); + }); + emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { + return R->getValueAsBit("IsAPInt"); + }); + emitMIPredicateFns(OS); + OS << "\n"; + + OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" + << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" + << " nullptr, // GICP_Invalid\n"; + for (const auto &Record : ComplexPredicates) + OS << " &" << Target.getName() + << "InstructionSelector::" << Record->getValueAsString("MatcherFn") + << ", // " << Record->getName() << "\n"; + OS << "};\n\n"; + + OS << "// Custom renderers.\n" + << "enum {\n" + << " GICR_Invalid,\n"; + for (const auto &Record : CustomRendererFns) + OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n"; + OS << "};\n"; + + OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" + << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" + << " nullptr, // GICP_Invalid\n"; + for (const auto &Record : CustomRendererFns) + OS << " &" << Target.getName() + << "InstructionSelector::" << Record->getValueAsString("RendererFn") + << ", // " << Record->getName() << "\n"; + OS << "};\n\n"; + + llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { + int ScoreA = RuleMatcherScores[A.getRuleID()]; + int ScoreB = RuleMatcherScores[B.getRuleID()]; + if (ScoreA > ScoreB) + return true; + if (ScoreB > ScoreA) + return false; + if (A.isHigherPriorityThan(B)) { + assert(!B.isHigherPriorityThan(A) && "Cannot be more important " + "and less important at " + "the same time"); + return true; + } + return false; + }); + + OS << "bool " << Target.getName() + << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " + "&CoverageInfo) const {\n" + << " MachineFunction &MF = *I.getParent()->getParent();\n" + << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" + << " // FIXME: This should be computed on a per-function basis rather " + "than per-insn.\n" + << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, " + "&MF);\n" + << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" + << " NewMIVector OutMIs;\n" + << " State.MIs.clear();\n" + << " State.MIs.push_back(&I);\n\n" + << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" + << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" + << ", CoverageInfo)) {\n" + << " return true;\n" + << " }\n\n" + << " return false;\n" + << "}\n\n"; + + const MatchTable Table = + buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); + OS << "const int64_t *" << Target.getName() + << "InstructionSelector::getMatchTable() const {\n"; + Table.emitDeclaration(OS); + OS << " return "; + Table.emitUse(OS); + OS << ";\n}\n"; + OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; + + OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" + << "PredicateBitset AvailableModuleFeatures;\n" + << "mutable PredicateBitset AvailableFunctionFeatures;\n" + << "PredicateBitset getAvailableFeatures() const {\n" + << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" + << "}\n" + << "PredicateBitset\n" + << "computeAvailableModuleFeatures(const " << Target.getName() + << "Subtarget *Subtarget) const;\n" + << "PredicateBitset\n" + << "computeAvailableFunctionFeatures(const " << Target.getName() + << "Subtarget *Subtarget,\n" + << " const MachineFunction *MF) const;\n" + << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; + + OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" + << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" + << "AvailableFunctionFeatures()\n" + << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; +} + +void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { + if (SubtargetFeatures.count(Predicate) == 0) + SubtargetFeatures.emplace( + Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); +} + +void RuleMatcher::optimize() { + for (auto &Item : InsnVariableIDs) { + InstructionMatcher &InsnMatcher = *Item.first; + for (auto &OM : InsnMatcher.operands()) { + // Complex Patterns are usually expensive and they relatively rarely fail + // on their own: more often we end up throwing away all the work done by a + // matching part of a complex pattern because some other part of the + // enclosing pattern didn't match. All of this makes it beneficial to + // delay complex patterns until the very end of the rule matching, + // especially for targets having lots of complex patterns. + for (auto &OP : OM->predicates()) + if (isa<ComplexPatternOperandMatcher>(OP)) + EpilogueMatchers.emplace_back(std::move(OP)); + OM->eraseNullPredicates(); + } + InsnMatcher.optimize(); + } + llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, + const std::unique_ptr<PredicateMatcher> &R) { + return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < + std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); + }); +} + +bool RuleMatcher::hasFirstCondition() const { + if (insnmatchers_empty()) + return false; + InstructionMatcher &Matcher = insnmatchers_front(); + if (!Matcher.predicates_empty()) + return true; + for (auto &OM : Matcher.operands()) + for (auto &OP : OM->predicates()) + if (!isa<InstructionOperandMatcher>(OP)) + return true; + return false; +} + +const PredicateMatcher &RuleMatcher::getFirstCondition() const { + assert(!insnmatchers_empty() && + "Trying to get a condition from an empty RuleMatcher"); + + InstructionMatcher &Matcher = insnmatchers_front(); + if (!Matcher.predicates_empty()) + return **Matcher.predicates_begin(); + // If there is no more predicate on the instruction itself, look at its + // operands. + for (auto &OM : Matcher.operands()) + for (auto &OP : OM->predicates()) + if (!isa<InstructionOperandMatcher>(OP)) + return *OP; + + llvm_unreachable("Trying to get a condition from an InstructionMatcher with " + "no conditions"); +} + +std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { + assert(!insnmatchers_empty() && + "Trying to pop a condition from an empty RuleMatcher"); + + InstructionMatcher &Matcher = insnmatchers_front(); + if (!Matcher.predicates_empty()) + return Matcher.predicates_pop_front(); + // If there is no more predicate on the instruction itself, look at its + // operands. + for (auto &OM : Matcher.operands()) + for (auto &OP : OM->predicates()) + if (!isa<InstructionOperandMatcher>(OP)) { + std::unique_ptr<PredicateMatcher> Result = std::move(OP); + OM->eraseNullPredicates(); + return Result; + } + + llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " + "no conditions"); +} + +bool GroupMatcher::candidateConditionMatches( + const PredicateMatcher &Predicate) const { + + if (empty()) { + // Sharing predicates for nested instructions is not supported yet as we + // currently don't hoist the GIM_RecordInsn's properly, therefore we can + // only work on the original root instruction (InsnVarID == 0): + if (Predicate.getInsnVarID() != 0) + return false; + // ... otherwise an empty group can handle any predicate with no specific + // requirements: + return true; + } + + const Matcher &Representative = **Matchers.begin(); + const auto &RepresentativeCondition = Representative.getFirstCondition(); + // ... if not empty, the group can only accomodate matchers with the exact + // same first condition: + return Predicate.isIdentical(RepresentativeCondition); +} + +bool GroupMatcher::addMatcher(Matcher &Candidate) { + if (!Candidate.hasFirstCondition()) + return false; + + const PredicateMatcher &Predicate = Candidate.getFirstCondition(); + if (!candidateConditionMatches(Predicate)) + return false; + + Matchers.push_back(&Candidate); + return true; +} + +void GroupMatcher::finalize() { + assert(Conditions.empty() && "Already finalized?"); + if (empty()) + return; + + Matcher &FirstRule = **Matchers.begin(); + for (;;) { + // All the checks are expected to succeed during the first iteration: + for (const auto &Rule : Matchers) + if (!Rule->hasFirstCondition()) + return; + const auto &FirstCondition = FirstRule.getFirstCondition(); + for (unsigned I = 1, E = Matchers.size(); I < E; ++I) + if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) + return; + + Conditions.push_back(FirstRule.popFirstCondition()); + for (unsigned I = 1, E = Matchers.size(); I < E; ++I) + Matchers[I]->popFirstCondition(); + } +} + +void GroupMatcher::emit(MatchTable &Table) { + unsigned LabelID = ~0U; + if (!Conditions.empty()) { + LabelID = Table.allocateLabelID(); + Table << MatchTable::Opcode("GIM_Try", +1) + << MatchTable::Comment("On fail goto") + << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; + } + for (auto &Condition : Conditions) + Condition->emitPredicateOpcodes( + Table, *static_cast<RuleMatcher *>(*Matchers.begin())); + + for (const auto &M : Matchers) + M->emit(Table); + + // Exit the group + if (!Conditions.empty()) + Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak + << MatchTable::Label(LabelID); +} + +bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { + return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); +} + +bool SwitchMatcher::candidateConditionMatches( + const PredicateMatcher &Predicate) const { + + if (empty()) { + // Sharing predicates for nested instructions is not supported yet as we + // currently don't hoist the GIM_RecordInsn's properly, therefore we can + // only work on the original root instruction (InsnVarID == 0): + if (Predicate.getInsnVarID() != 0) + return false; + // ... while an attempt to add even a root matcher to an empty SwitchMatcher + // could fail as not all the types of conditions are supported: + if (!isSupportedPredicateType(Predicate)) + return false; + // ... or the condition might not have a proper implementation of + // getValue() / isIdenticalDownToValue() yet: + if (!Predicate.hasValue()) + return false; + // ... otherwise an empty Switch can accomodate the condition with no + // further requirements: + return true; + } + + const Matcher &CaseRepresentative = **Matchers.begin(); + const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); + // Switch-cases must share the same kind of condition and path to the value it + // checks: + if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) + return false; + + const auto Value = Predicate.getValue(); + // ... but be unique with respect to the actual value they check: + return Values.count(Value) == 0; +} + +bool SwitchMatcher::addMatcher(Matcher &Candidate) { + if (!Candidate.hasFirstCondition()) + return false; + + const PredicateMatcher &Predicate = Candidate.getFirstCondition(); + if (!candidateConditionMatches(Predicate)) + return false; + const auto Value = Predicate.getValue(); + Values.insert(Value); + + Matchers.push_back(&Candidate); + return true; +} + +void SwitchMatcher::finalize() { + assert(Condition == nullptr && "Already finalized"); + assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); + if (empty()) + return; + + std::stable_sort(Matchers.begin(), Matchers.end(), + [](const Matcher *L, const Matcher *R) { + return L->getFirstCondition().getValue() < + R->getFirstCondition().getValue(); + }); + Condition = Matchers[0]->popFirstCondition(); + for (unsigned I = 1, E = Values.size(); I < E; ++I) + Matchers[I]->popFirstCondition(); +} + +void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, + MatchTable &Table) { + assert(isSupportedPredicateType(P) && "Predicate type is not supported"); + + if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { + Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") + << MatchTable::IntValue(Condition->getInsnVarID()); + return; + } + if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { + Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") + << MatchTable::IntValue(Condition->getInsnVarID()) + << MatchTable::Comment("Op") + << MatchTable::IntValue(Condition->getOpIdx()); + return; + } + + llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " + "predicate type that is claimed to be supported"); +} + +void SwitchMatcher::emit(MatchTable &Table) { + assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); + if (empty()) + return; + assert(Condition != nullptr && + "Broken SwitchMatcher, hasn't been finalized?"); + + std::vector<unsigned> LabelIDs(Values.size()); + std::generate(LabelIDs.begin(), LabelIDs.end(), + [&Table]() { return Table.allocateLabelID(); }); + const unsigned Default = Table.allocateLabelID(); + + const int64_t LowerBound = Values.begin()->getRawValue(); + const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; + + emitPredicateSpecificOpcodes(*Condition, Table); + + Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) + << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") + << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); + + int64_t J = LowerBound; + auto VI = Values.begin(); + for (unsigned I = 0, E = Values.size(); I < E; ++I) { + auto V = *VI++; + while (J++ < V.getRawValue()) + Table << MatchTable::IntValue(0); + V.turnIntoComment(); + Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); + } + Table << MatchTable::LineBreak; + + for (unsigned I = 0, E = Values.size(); I < E; ++I) { + Table << MatchTable::Label(LabelIDs[I]); + Matchers[I]->emit(Table); + Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; + } + Table << MatchTable::Label(Default); +} + +unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// + +namespace llvm { +void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { + GlobalISelEmitter(RK).run(OS); +} +} // End llvm namespace |
