summaryrefslogtreecommitdiff
path: root/llvm/utils/TableGen/GlobalISelEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/utils/TableGen/GlobalISelEmitter.cpp')
-rw-r--r--llvm/utils/TableGen/GlobalISelEmitter.cpp5620
1 files changed, 5620 insertions, 0 deletions
diff --git a/llvm/utils/TableGen/GlobalISelEmitter.cpp b/llvm/utils/TableGen/GlobalISelEmitter.cpp
new file mode 100644
index 000000000000..d8d4c9f4f55c
--- /dev/null
+++ b/llvm/utils/TableGen/GlobalISelEmitter.cpp
@@ -0,0 +1,5620 @@
+//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This tablegen backend emits code for use by the GlobalISel instruction
+/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
+///
+/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
+/// backend, filters out the ones that are unsupported, maps
+/// SelectionDAG-specific constructs to their GlobalISel counterpart
+/// (when applicable: MVT to LLT; SDNode to generic Instruction).
+///
+/// Not all patterns are supported: pass the tablegen invocation
+/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
+/// as well as why.
+///
+/// The generated file defines a single method:
+/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
+/// intended to be used in InstructionSelector::select as the first-step
+/// selector for the patterns that don't require complex C++.
+///
+/// FIXME: We'll probably want to eventually define a base
+/// "TargetGenInstructionSelector" class.
+///
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenDAGPatterns.h"
+#include "SubtargetFeatureInfo.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CodeGenCoverage.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include "llvm/TableGen/TableGenBackend.h"
+#include <numeric>
+#include <string>
+using namespace llvm;
+
+#define DEBUG_TYPE "gisel-emitter"
+
+STATISTIC(NumPatternTotal, "Total number of patterns");
+STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
+STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
+STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
+STATISTIC(NumPatternEmitted, "Number of patterns emitted");
+
+cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
+
+static cl::opt<bool> WarnOnSkippedPatterns(
+ "warn-on-skipped-patterns",
+ cl::desc("Explain why a pattern was skipped for inclusion "
+ "in the GlobalISel selector"),
+ cl::init(false), cl::cat(GlobalISelEmitterCat));
+
+static cl::opt<bool> GenerateCoverage(
+ "instrument-gisel-coverage",
+ cl::desc("Generate coverage instrumentation for GlobalISel"),
+ cl::init(false), cl::cat(GlobalISelEmitterCat));
+
+static cl::opt<std::string> UseCoverageFile(
+ "gisel-coverage-file", cl::init(""),
+ cl::desc("Specify file to retrieve coverage information from"),
+ cl::cat(GlobalISelEmitterCat));
+
+static cl::opt<bool> OptimizeMatchTable(
+ "optimize-match-table",
+ cl::desc("Generate an optimized version of the match table"),
+ cl::init(true), cl::cat(GlobalISelEmitterCat));
+
+namespace {
+//===- Helper functions ---------------------------------------------------===//
+
+/// Get the name of the enum value used to number the predicate function.
+std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
+ if (Predicate.hasGISelPredicateCode())
+ return "GIPFP_MI_" + Predicate.getFnName();
+ return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
+ Predicate.getFnName();
+}
+
+/// Get the opcode used to check this predicate.
+std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
+ return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
+}
+
+/// This class stands in for LLT wherever we want to tablegen-erate an
+/// equivalent at compiler run-time.
+class LLTCodeGen {
+private:
+ LLT Ty;
+
+public:
+ LLTCodeGen() = default;
+ LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
+
+ std::string getCxxEnumValue() const {
+ std::string Str;
+ raw_string_ostream OS(Str);
+
+ emitCxxEnumValue(OS);
+ return OS.str();
+ }
+
+ void emitCxxEnumValue(raw_ostream &OS) const {
+ if (Ty.isScalar()) {
+ OS << "GILLT_s" << Ty.getSizeInBits();
+ return;
+ }
+ if (Ty.isVector()) {
+ OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
+ return;
+ }
+ if (Ty.isPointer()) {
+ OS << "GILLT_p" << Ty.getAddressSpace();
+ if (Ty.getSizeInBits() > 0)
+ OS << "s" << Ty.getSizeInBits();
+ return;
+ }
+ llvm_unreachable("Unhandled LLT");
+ }
+
+ void emitCxxConstructorCall(raw_ostream &OS) const {
+ if (Ty.isScalar()) {
+ OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
+ return;
+ }
+ if (Ty.isVector()) {
+ OS << "LLT::vector(" << Ty.getNumElements() << ", "
+ << Ty.getScalarSizeInBits() << ")";
+ return;
+ }
+ if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
+ OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
+ << Ty.getSizeInBits() << ")";
+ return;
+ }
+ llvm_unreachable("Unhandled LLT");
+ }
+
+ const LLT &get() const { return Ty; }
+
+ /// This ordering is used for std::unique() and llvm::sort(). There's no
+ /// particular logic behind the order but either A < B or B < A must be
+ /// true if A != B.
+ bool operator<(const LLTCodeGen &Other) const {
+ if (Ty.isValid() != Other.Ty.isValid())
+ return Ty.isValid() < Other.Ty.isValid();
+ if (!Ty.isValid())
+ return false;
+
+ if (Ty.isVector() != Other.Ty.isVector())
+ return Ty.isVector() < Other.Ty.isVector();
+ if (Ty.isScalar() != Other.Ty.isScalar())
+ return Ty.isScalar() < Other.Ty.isScalar();
+ if (Ty.isPointer() != Other.Ty.isPointer())
+ return Ty.isPointer() < Other.Ty.isPointer();
+
+ if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
+ return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
+
+ if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
+ return Ty.getNumElements() < Other.Ty.getNumElements();
+
+ return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
+ }
+
+ bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
+};
+
+// Track all types that are used so we can emit the corresponding enum.
+std::set<LLTCodeGen> KnownTypes;
+
+class InstructionMatcher;
+/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
+/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
+static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
+ MVT VT(SVT);
+
+ if (VT.isVector() && VT.getVectorNumElements() != 1)
+ return LLTCodeGen(
+ LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
+
+ if (VT.isInteger() || VT.isFloatingPoint())
+ return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
+ return None;
+}
+
+static std::string explainPredicates(const TreePatternNode *N) {
+ std::string Explanation = "";
+ StringRef Separator = "";
+ for (const TreePredicateCall &Call : N->getPredicateCalls()) {
+ const TreePredicateFn &P = Call.Fn;
+ Explanation +=
+ (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
+ Separator = ", ";
+
+ if (P.isAlwaysTrue())
+ Explanation += " always-true";
+ if (P.isImmediatePattern())
+ Explanation += " immediate";
+
+ if (P.isUnindexed())
+ Explanation += " unindexed";
+
+ if (P.isNonExtLoad())
+ Explanation += " non-extload";
+ if (P.isAnyExtLoad())
+ Explanation += " extload";
+ if (P.isSignExtLoad())
+ Explanation += " sextload";
+ if (P.isZeroExtLoad())
+ Explanation += " zextload";
+
+ if (P.isNonTruncStore())
+ Explanation += " non-truncstore";
+ if (P.isTruncStore())
+ Explanation += " truncstore";
+
+ if (Record *VT = P.getMemoryVT())
+ Explanation += (" MemVT=" + VT->getName()).str();
+ if (Record *VT = P.getScalarMemoryVT())
+ Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
+
+ if (ListInit *AddrSpaces = P.getAddressSpaces()) {
+ raw_string_ostream OS(Explanation);
+ OS << " AddressSpaces=[";
+
+ StringRef AddrSpaceSeparator;
+ for (Init *Val : AddrSpaces->getValues()) {
+ IntInit *IntVal = dyn_cast<IntInit>(Val);
+ if (!IntVal)
+ continue;
+
+ OS << AddrSpaceSeparator << IntVal->getValue();
+ AddrSpaceSeparator = ", ";
+ }
+
+ OS << ']';
+ }
+
+ int64_t MinAlign = P.getMinAlignment();
+ if (MinAlign > 0)
+ Explanation += " MinAlign=" + utostr(MinAlign);
+
+ if (P.isAtomicOrderingMonotonic())
+ Explanation += " monotonic";
+ if (P.isAtomicOrderingAcquire())
+ Explanation += " acquire";
+ if (P.isAtomicOrderingRelease())
+ Explanation += " release";
+ if (P.isAtomicOrderingAcquireRelease())
+ Explanation += " acq_rel";
+ if (P.isAtomicOrderingSequentiallyConsistent())
+ Explanation += " seq_cst";
+ if (P.isAtomicOrderingAcquireOrStronger())
+ Explanation += " >=acquire";
+ if (P.isAtomicOrderingWeakerThanAcquire())
+ Explanation += " <acquire";
+ if (P.isAtomicOrderingReleaseOrStronger())
+ Explanation += " >=release";
+ if (P.isAtomicOrderingWeakerThanRelease())
+ Explanation += " <release";
+ }
+ return Explanation;
+}
+
+std::string explainOperator(Record *Operator) {
+ if (Operator->isSubClassOf("SDNode"))
+ return (" (" + Operator->getValueAsString("Opcode") + ")").str();
+
+ if (Operator->isSubClassOf("Intrinsic"))
+ return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
+
+ if (Operator->isSubClassOf("ComplexPattern"))
+ return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
+ ")")
+ .str();
+
+ if (Operator->isSubClassOf("SDNodeXForm"))
+ return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
+ ")")
+ .str();
+
+ return (" (Operator " + Operator->getName() + " not understood)").str();
+}
+
+/// Helper function to let the emitter report skip reason error messages.
+static Error failedImport(const Twine &Reason) {
+ return make_error<StringError>(Reason, inconvertibleErrorCode());
+}
+
+static Error isTrivialOperatorNode(const TreePatternNode *N) {
+ std::string Explanation = "";
+ std::string Separator = "";
+
+ bool HasUnsupportedPredicate = false;
+ for (const TreePredicateCall &Call : N->getPredicateCalls()) {
+ const TreePredicateFn &Predicate = Call.Fn;
+
+ if (Predicate.isAlwaysTrue())
+ continue;
+
+ if (Predicate.isImmediatePattern())
+ continue;
+
+ if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
+ Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
+ continue;
+
+ if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
+ continue;
+
+ if (Predicate.isLoad() && Predicate.getMemoryVT())
+ continue;
+
+ if (Predicate.isLoad() || Predicate.isStore()) {
+ if (Predicate.isUnindexed())
+ continue;
+ }
+
+ if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
+ const ListInit *AddrSpaces = Predicate.getAddressSpaces();
+ if (AddrSpaces && !AddrSpaces->empty())
+ continue;
+
+ if (Predicate.getMinAlignment() > 0)
+ continue;
+ }
+
+ if (Predicate.isAtomic() && Predicate.getMemoryVT())
+ continue;
+
+ if (Predicate.isAtomic() &&
+ (Predicate.isAtomicOrderingMonotonic() ||
+ Predicate.isAtomicOrderingAcquire() ||
+ Predicate.isAtomicOrderingRelease() ||
+ Predicate.isAtomicOrderingAcquireRelease() ||
+ Predicate.isAtomicOrderingSequentiallyConsistent() ||
+ Predicate.isAtomicOrderingAcquireOrStronger() ||
+ Predicate.isAtomicOrderingWeakerThanAcquire() ||
+ Predicate.isAtomicOrderingReleaseOrStronger() ||
+ Predicate.isAtomicOrderingWeakerThanRelease()))
+ continue;
+
+ if (Predicate.hasGISelPredicateCode())
+ continue;
+
+ HasUnsupportedPredicate = true;
+ Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
+ Separator = ", ";
+ Explanation += (Separator + "first-failing:" +
+ Predicate.getOrigPatFragRecord()->getRecord()->getName())
+ .str();
+ break;
+ }
+
+ if (!HasUnsupportedPredicate)
+ return Error::success();
+
+ return failedImport(Explanation);
+}
+
+static Record *getInitValueAsRegClass(Init *V) {
+ if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
+ if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
+ return VDefInit->getDef()->getValueAsDef("RegClass");
+ if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
+ return VDefInit->getDef();
+ }
+ return nullptr;
+}
+
+std::string
+getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
+ std::string Name = "GIFBS";
+ for (const auto &Feature : FeatureBitset)
+ Name += ("_" + Feature->getName()).str();
+ return Name;
+}
+
+//===- MatchTable Helpers -------------------------------------------------===//
+
+class MatchTable;
+
+/// A record to be stored in a MatchTable.
+///
+/// This class represents any and all output that may be required to emit the
+/// MatchTable. Instances are most often configured to represent an opcode or
+/// value that will be emitted to the table with some formatting but it can also
+/// represent commas, comments, and other formatting instructions.
+struct MatchTableRecord {
+ enum RecordFlagsBits {
+ MTRF_None = 0x0,
+ /// Causes EmitStr to be formatted as comment when emitted.
+ MTRF_Comment = 0x1,
+ /// Causes the record value to be followed by a comma when emitted.
+ MTRF_CommaFollows = 0x2,
+ /// Causes the record value to be followed by a line break when emitted.
+ MTRF_LineBreakFollows = 0x4,
+ /// Indicates that the record defines a label and causes an additional
+ /// comment to be emitted containing the index of the label.
+ MTRF_Label = 0x8,
+ /// Causes the record to be emitted as the index of the label specified by
+ /// LabelID along with a comment indicating where that label is.
+ MTRF_JumpTarget = 0x10,
+ /// Causes the formatter to add a level of indentation before emitting the
+ /// record.
+ MTRF_Indent = 0x20,
+ /// Causes the formatter to remove a level of indentation after emitting the
+ /// record.
+ MTRF_Outdent = 0x40,
+ };
+
+ /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
+ /// reference or define.
+ unsigned LabelID;
+ /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
+ /// value, a label name.
+ std::string EmitStr;
+
+private:
+ /// The number of MatchTable elements described by this record. Comments are 0
+ /// while values are typically 1. Values >1 may occur when we need to emit
+ /// values that exceed the size of a MatchTable element.
+ unsigned NumElements;
+
+public:
+ /// A bitfield of RecordFlagsBits flags.
+ unsigned Flags;
+
+ /// The actual run-time value, if known
+ int64_t RawValue;
+
+ MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
+ unsigned NumElements, unsigned Flags,
+ int64_t RawValue = std::numeric_limits<int64_t>::min())
+ : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
+ EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
+ RawValue(RawValue) {
+
+ assert((!LabelID_.hasValue() || LabelID != ~0u) &&
+ "This value is reserved for non-labels");
+ }
+ MatchTableRecord(const MatchTableRecord &Other) = default;
+ MatchTableRecord(MatchTableRecord &&Other) = default;
+
+ /// Useful if a Match Table Record gets optimized out
+ void turnIntoComment() {
+ Flags |= MTRF_Comment;
+ Flags &= ~MTRF_CommaFollows;
+ NumElements = 0;
+ }
+
+ /// For Jump Table generation purposes
+ bool operator<(const MatchTableRecord &Other) const {
+ return RawValue < Other.RawValue;
+ }
+ int64_t getRawValue() const { return RawValue; }
+
+ void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
+ const MatchTable &Table) const;
+ unsigned size() const { return NumElements; }
+};
+
+class Matcher;
+
+/// Holds the contents of a generated MatchTable to enable formatting and the
+/// necessary index tracking needed to support GIM_Try.
+class MatchTable {
+ /// An unique identifier for the table. The generated table will be named
+ /// MatchTable${ID}.
+ unsigned ID;
+ /// The records that make up the table. Also includes comments describing the
+ /// values being emitted and line breaks to format it.
+ std::vector<MatchTableRecord> Contents;
+ /// The currently defined labels.
+ DenseMap<unsigned, unsigned> LabelMap;
+ /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
+ unsigned CurrentSize = 0;
+ /// A unique identifier for a MatchTable label.
+ unsigned CurrentLabelID = 0;
+ /// Determines if the table should be instrumented for rule coverage tracking.
+ bool IsWithCoverage;
+
+public:
+ static MatchTableRecord LineBreak;
+ static MatchTableRecord Comment(StringRef Comment) {
+ return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
+ }
+ static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
+ unsigned ExtraFlags = 0;
+ if (IndentAdjust > 0)
+ ExtraFlags |= MatchTableRecord::MTRF_Indent;
+ if (IndentAdjust < 0)
+ ExtraFlags |= MatchTableRecord::MTRF_Outdent;
+
+ return MatchTableRecord(None, Opcode, 1,
+ MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
+ }
+ static MatchTableRecord NamedValue(StringRef NamedValue) {
+ return MatchTableRecord(None, NamedValue, 1,
+ MatchTableRecord::MTRF_CommaFollows);
+ }
+ static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
+ return MatchTableRecord(None, NamedValue, 1,
+ MatchTableRecord::MTRF_CommaFollows, RawValue);
+ }
+ static MatchTableRecord NamedValue(StringRef Namespace,
+ StringRef NamedValue) {
+ return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
+ MatchTableRecord::MTRF_CommaFollows);
+ }
+ static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
+ int64_t RawValue) {
+ return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
+ MatchTableRecord::MTRF_CommaFollows, RawValue);
+ }
+ static MatchTableRecord IntValue(int64_t IntValue) {
+ return MatchTableRecord(None, llvm::to_string(IntValue), 1,
+ MatchTableRecord::MTRF_CommaFollows);
+ }
+ static MatchTableRecord Label(unsigned LabelID) {
+ return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
+ MatchTableRecord::MTRF_Label |
+ MatchTableRecord::MTRF_Comment |
+ MatchTableRecord::MTRF_LineBreakFollows);
+ }
+ static MatchTableRecord JumpTarget(unsigned LabelID) {
+ return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
+ MatchTableRecord::MTRF_JumpTarget |
+ MatchTableRecord::MTRF_Comment |
+ MatchTableRecord::MTRF_CommaFollows);
+ }
+
+ static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
+
+ MatchTable(bool WithCoverage, unsigned ID = 0)
+ : ID(ID), IsWithCoverage(WithCoverage) {}
+
+ bool isWithCoverage() const { return IsWithCoverage; }
+
+ void push_back(const MatchTableRecord &Value) {
+ if (Value.Flags & MatchTableRecord::MTRF_Label)
+ defineLabel(Value.LabelID);
+ Contents.push_back(Value);
+ CurrentSize += Value.size();
+ }
+
+ unsigned allocateLabelID() { return CurrentLabelID++; }
+
+ void defineLabel(unsigned LabelID) {
+ LabelMap.insert(std::make_pair(LabelID, CurrentSize));
+ }
+
+ unsigned getLabelIndex(unsigned LabelID) const {
+ const auto I = LabelMap.find(LabelID);
+ assert(I != LabelMap.end() && "Use of undeclared label");
+ return I->second;
+ }
+
+ void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
+
+ void emitDeclaration(raw_ostream &OS) const {
+ unsigned Indentation = 4;
+ OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
+ LineBreak.emit(OS, true, *this);
+ OS << std::string(Indentation, ' ');
+
+ for (auto I = Contents.begin(), E = Contents.end(); I != E;
+ ++I) {
+ bool LineBreakIsNext = false;
+ const auto &NextI = std::next(I);
+
+ if (NextI != E) {
+ if (NextI->EmitStr == "" &&
+ NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
+ LineBreakIsNext = true;
+ }
+
+ if (I->Flags & MatchTableRecord::MTRF_Indent)
+ Indentation += 2;
+
+ I->emit(OS, LineBreakIsNext, *this);
+ if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
+ OS << std::string(Indentation, ' ');
+
+ if (I->Flags & MatchTableRecord::MTRF_Outdent)
+ Indentation -= 2;
+ }
+ OS << "};\n";
+ }
+};
+
+MatchTableRecord MatchTable::LineBreak = {
+ None, "" /* Emit String */, 0 /* Elements */,
+ MatchTableRecord::MTRF_LineBreakFollows};
+
+void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
+ const MatchTable &Table) const {
+ bool UseLineComment =
+ LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
+ if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
+ UseLineComment = false;
+
+ if (Flags & MTRF_Comment)
+ OS << (UseLineComment ? "// " : "/*");
+
+ OS << EmitStr;
+ if (Flags & MTRF_Label)
+ OS << ": @" << Table.getLabelIndex(LabelID);
+
+ if (Flags & MTRF_Comment && !UseLineComment)
+ OS << "*/";
+
+ if (Flags & MTRF_JumpTarget) {
+ if (Flags & MTRF_Comment)
+ OS << " ";
+ OS << Table.getLabelIndex(LabelID);
+ }
+
+ if (Flags & MTRF_CommaFollows) {
+ OS << ",";
+ if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
+ OS << " ";
+ }
+
+ if (Flags & MTRF_LineBreakFollows)
+ OS << "\n";
+}
+
+MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
+ Table.push_back(Value);
+ return Table;
+}
+
+//===- Matchers -----------------------------------------------------------===//
+
+class OperandMatcher;
+class MatchAction;
+class PredicateMatcher;
+class RuleMatcher;
+
+class Matcher {
+public:
+ virtual ~Matcher() = default;
+ virtual void optimize() {}
+ virtual void emit(MatchTable &Table) = 0;
+
+ virtual bool hasFirstCondition() const = 0;
+ virtual const PredicateMatcher &getFirstCondition() const = 0;
+ virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
+};
+
+MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
+ bool WithCoverage) {
+ MatchTable Table(WithCoverage);
+ for (Matcher *Rule : Rules)
+ Rule->emit(Table);
+
+ return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
+}
+
+class GroupMatcher final : public Matcher {
+ /// Conditions that form a common prefix of all the matchers contained.
+ SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
+
+ /// All the nested matchers, sharing a common prefix.
+ std::vector<Matcher *> Matchers;
+
+ /// An owning collection for any auxiliary matchers created while optimizing
+ /// nested matchers contained.
+ std::vector<std::unique_ptr<Matcher>> MatcherStorage;
+
+public:
+ /// Add a matcher to the collection of nested matchers if it meets the
+ /// requirements, and return true. If it doesn't, do nothing and return false.
+ ///
+ /// Expected to preserve its argument, so it could be moved out later on.
+ bool addMatcher(Matcher &Candidate);
+
+ /// Mark the matcher as fully-built and ensure any invariants expected by both
+ /// optimize() and emit(...) methods. Generally, both sequences of calls
+ /// are expected to lead to a sensible result:
+ ///
+ /// addMatcher(...)*; finalize(); optimize(); emit(...); and
+ /// addMatcher(...)*; finalize(); emit(...);
+ ///
+ /// or generally
+ ///
+ /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
+ ///
+ /// Multiple calls to optimize() are expected to be handled gracefully, though
+ /// optimize() is not expected to be idempotent. Multiple calls to finalize()
+ /// aren't generally supported. emit(...) is expected to be non-mutating and
+ /// producing the exact same results upon repeated calls.
+ ///
+ /// addMatcher() calls after the finalize() call are not supported.
+ ///
+ /// finalize() and optimize() are both allowed to mutate the contained
+ /// matchers, so moving them out after finalize() is not supported.
+ void finalize();
+ void optimize() override;
+ void emit(MatchTable &Table) override;
+
+ /// Could be used to move out the matchers added previously, unless finalize()
+ /// has been already called. If any of the matchers are moved out, the group
+ /// becomes safe to destroy, but not safe to re-use for anything else.
+ iterator_range<std::vector<Matcher *>::iterator> matchers() {
+ return make_range(Matchers.begin(), Matchers.end());
+ }
+ size_t size() const { return Matchers.size(); }
+ bool empty() const { return Matchers.empty(); }
+
+ std::unique_ptr<PredicateMatcher> popFirstCondition() override {
+ assert(!Conditions.empty() &&
+ "Trying to pop a condition from a condition-less group");
+ std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
+ Conditions.erase(Conditions.begin());
+ return P;
+ }
+ const PredicateMatcher &getFirstCondition() const override {
+ assert(!Conditions.empty() &&
+ "Trying to get a condition from a condition-less group");
+ return *Conditions.front();
+ }
+ bool hasFirstCondition() const override { return !Conditions.empty(); }
+
+private:
+ /// See if a candidate matcher could be added to this group solely by
+ /// analyzing its first condition.
+ bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
+};
+
+class SwitchMatcher : public Matcher {
+ /// All the nested matchers, representing distinct switch-cases. The first
+ /// conditions (as Matcher::getFirstCondition() reports) of all the nested
+ /// matchers must share the same type and path to a value they check, in other
+ /// words, be isIdenticalDownToValue, but have different values they check
+ /// against.
+ std::vector<Matcher *> Matchers;
+
+ /// The representative condition, with a type and a path (InsnVarID and OpIdx
+ /// in most cases) shared by all the matchers contained.
+ std::unique_ptr<PredicateMatcher> Condition = nullptr;
+
+ /// Temporary set used to check that the case values don't repeat within the
+ /// same switch.
+ std::set<MatchTableRecord> Values;
+
+ /// An owning collection for any auxiliary matchers created while optimizing
+ /// nested matchers contained.
+ std::vector<std::unique_ptr<Matcher>> MatcherStorage;
+
+public:
+ bool addMatcher(Matcher &Candidate);
+
+ void finalize();
+ void emit(MatchTable &Table) override;
+
+ iterator_range<std::vector<Matcher *>::iterator> matchers() {
+ return make_range(Matchers.begin(), Matchers.end());
+ }
+ size_t size() const { return Matchers.size(); }
+ bool empty() const { return Matchers.empty(); }
+
+ std::unique_ptr<PredicateMatcher> popFirstCondition() override {
+ // SwitchMatcher doesn't have a common first condition for its cases, as all
+ // the cases only share a kind of a value (a type and a path to it) they
+ // match, but deliberately differ in the actual value they match.
+ llvm_unreachable("Trying to pop a condition from a condition-less group");
+ }
+ const PredicateMatcher &getFirstCondition() const override {
+ llvm_unreachable("Trying to pop a condition from a condition-less group");
+ }
+ bool hasFirstCondition() const override { return false; }
+
+private:
+ /// See if the predicate type has a Switch-implementation for it.
+ static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
+
+ bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
+
+ /// emit()-helper
+ static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
+ MatchTable &Table);
+};
+
+/// Generates code to check that a match rule matches.
+class RuleMatcher : public Matcher {
+public:
+ using ActionList = std::list<std::unique_ptr<MatchAction>>;
+ using action_iterator = ActionList::iterator;
+
+protected:
+ /// A list of matchers that all need to succeed for the current rule to match.
+ /// FIXME: This currently supports a single match position but could be
+ /// extended to support multiple positions to support div/rem fusion or
+ /// load-multiple instructions.
+ using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
+ MatchersTy Matchers;
+
+ /// A list of actions that need to be taken when all predicates in this rule
+ /// have succeeded.
+ ActionList Actions;
+
+ using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
+
+ /// A map of instruction matchers to the local variables
+ DefinedInsnVariablesMap InsnVariableIDs;
+
+ using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
+
+ // The set of instruction matchers that have not yet been claimed for mutation
+ // by a BuildMI.
+ MutatableInsnSet MutatableInsns;
+
+ /// A map of named operands defined by the matchers that may be referenced by
+ /// the renderers.
+ StringMap<OperandMatcher *> DefinedOperands;
+
+ /// A map of anonymous physical register operands defined by the matchers that
+ /// may be referenced by the renderers.
+ DenseMap<Record *, OperandMatcher *> PhysRegOperands;
+
+ /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
+ unsigned NextInsnVarID;
+
+ /// ID for the next output instruction allocated with allocateOutputInsnID()
+ unsigned NextOutputInsnID;
+
+ /// ID for the next temporary register ID allocated with allocateTempRegID()
+ unsigned NextTempRegID;
+
+ std::vector<Record *> RequiredFeatures;
+ std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
+
+ ArrayRef<SMLoc> SrcLoc;
+
+ typedef std::tuple<Record *, unsigned, unsigned>
+ DefinedComplexPatternSubOperand;
+ typedef StringMap<DefinedComplexPatternSubOperand>
+ DefinedComplexPatternSubOperandMap;
+ /// A map of Symbolic Names to ComplexPattern sub-operands.
+ DefinedComplexPatternSubOperandMap ComplexSubOperands;
+
+ uint64_t RuleID;
+ static uint64_t NextRuleID;
+
+public:
+ RuleMatcher(ArrayRef<SMLoc> SrcLoc)
+ : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
+ DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
+ NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
+ RuleID(NextRuleID++) {}
+ RuleMatcher(RuleMatcher &&Other) = default;
+ RuleMatcher &operator=(RuleMatcher &&Other) = default;
+
+ uint64_t getRuleID() const { return RuleID; }
+
+ InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
+ void addRequiredFeature(Record *Feature);
+ const std::vector<Record *> &getRequiredFeatures() const;
+
+ template <class Kind, class... Args> Kind &addAction(Args &&... args);
+ template <class Kind, class... Args>
+ action_iterator insertAction(action_iterator InsertPt, Args &&... args);
+
+ /// Define an instruction without emitting any code to do so.
+ unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
+
+ unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
+ DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
+ return InsnVariableIDs.begin();
+ }
+ DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
+ return InsnVariableIDs.end();
+ }
+ iterator_range<typename DefinedInsnVariablesMap::const_iterator>
+ defined_insn_vars() const {
+ return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
+ }
+
+ MutatableInsnSet::const_iterator mutatable_insns_begin() const {
+ return MutatableInsns.begin();
+ }
+ MutatableInsnSet::const_iterator mutatable_insns_end() const {
+ return MutatableInsns.end();
+ }
+ iterator_range<typename MutatableInsnSet::const_iterator>
+ mutatable_insns() const {
+ return make_range(mutatable_insns_begin(), mutatable_insns_end());
+ }
+ void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
+ bool R = MutatableInsns.erase(InsnMatcher);
+ assert(R && "Reserving a mutatable insn that isn't available");
+ (void)R;
+ }
+
+ action_iterator actions_begin() { return Actions.begin(); }
+ action_iterator actions_end() { return Actions.end(); }
+ iterator_range<action_iterator> actions() {
+ return make_range(actions_begin(), actions_end());
+ }
+
+ void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
+
+ void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
+
+ Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
+ unsigned RendererID, unsigned SubOperandID) {
+ if (ComplexSubOperands.count(SymbolicName))
+ return failedImport(
+ "Complex suboperand referenced more than once (Operand: " +
+ SymbolicName + ")");
+
+ ComplexSubOperands[SymbolicName] =
+ std::make_tuple(ComplexPattern, RendererID, SubOperandID);
+
+ return Error::success();
+ }
+
+ Optional<DefinedComplexPatternSubOperand>
+ getComplexSubOperand(StringRef SymbolicName) const {
+ const auto &I = ComplexSubOperands.find(SymbolicName);
+ if (I == ComplexSubOperands.end())
+ return None;
+ return I->second;
+ }
+
+ InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
+ const OperandMatcher &getOperandMatcher(StringRef Name) const;
+ const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
+
+ void optimize() override;
+ void emit(MatchTable &Table) override;
+
+ /// Compare the priority of this object and B.
+ ///
+ /// Returns true if this object is more important than B.
+ bool isHigherPriorityThan(const RuleMatcher &B) const;
+
+ /// Report the maximum number of temporary operands needed by the rule
+ /// matcher.
+ unsigned countRendererFns() const;
+
+ std::unique_ptr<PredicateMatcher> popFirstCondition() override;
+ const PredicateMatcher &getFirstCondition() const override;
+ LLTCodeGen getFirstConditionAsRootType();
+ bool hasFirstCondition() const override;
+ unsigned getNumOperands() const;
+ StringRef getOpcode() const;
+
+ // FIXME: Remove this as soon as possible
+ InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
+
+ unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
+ unsigned allocateTempRegID() { return NextTempRegID++; }
+
+ iterator_range<MatchersTy::iterator> insnmatchers() {
+ return make_range(Matchers.begin(), Matchers.end());
+ }
+ bool insnmatchers_empty() const { return Matchers.empty(); }
+ void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
+};
+
+uint64_t RuleMatcher::NextRuleID = 0;
+
+using action_iterator = RuleMatcher::action_iterator;
+
+template <class PredicateTy> class PredicateListMatcher {
+private:
+ /// Template instantiations should specialize this to return a string to use
+ /// for the comment emitted when there are no predicates.
+ std::string getNoPredicateComment() const;
+
+protected:
+ using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
+ PredicatesTy Predicates;
+
+ /// Track if the list of predicates was manipulated by one of the optimization
+ /// methods.
+ bool Optimized = false;
+
+public:
+ /// Construct a new predicate and add it to the matcher.
+ template <class Kind, class... Args>
+ Optional<Kind *> addPredicate(Args &&... args);
+
+ typename PredicatesTy::iterator predicates_begin() {
+ return Predicates.begin();
+ }
+ typename PredicatesTy::iterator predicates_end() {
+ return Predicates.end();
+ }
+ iterator_range<typename PredicatesTy::iterator> predicates() {
+ return make_range(predicates_begin(), predicates_end());
+ }
+ typename PredicatesTy::size_type predicates_size() const {
+ return Predicates.size();
+ }
+ bool predicates_empty() const { return Predicates.empty(); }
+
+ std::unique_ptr<PredicateTy> predicates_pop_front() {
+ std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
+ Predicates.pop_front();
+ Optimized = true;
+ return Front;
+ }
+
+ void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
+ Predicates.push_front(std::move(Predicate));
+ }
+
+ void eraseNullPredicates() {
+ const auto NewEnd =
+ std::stable_partition(Predicates.begin(), Predicates.end(),
+ std::logical_not<std::unique_ptr<PredicateTy>>());
+ if (NewEnd != Predicates.begin()) {
+ Predicates.erase(Predicates.begin(), NewEnd);
+ Optimized = true;
+ }
+ }
+
+ /// Emit MatchTable opcodes that tests whether all the predicates are met.
+ template <class... Args>
+ void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
+ if (Predicates.empty() && !Optimized) {
+ Table << MatchTable::Comment(getNoPredicateComment())
+ << MatchTable::LineBreak;
+ return;
+ }
+
+ for (const auto &Predicate : predicates())
+ Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
+ }
+};
+
+class PredicateMatcher {
+public:
+ /// This enum is used for RTTI and also defines the priority that is given to
+ /// the predicate when generating the matcher code. Kinds with higher priority
+ /// must be tested first.
+ ///
+ /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
+ /// but OPM_Int must have priority over OPM_RegBank since constant integers
+ /// are represented by a virtual register defined by a G_CONSTANT instruction.
+ ///
+ /// Note: The relative priority between IPM_ and OPM_ does not matter, they
+ /// are currently not compared between each other.
+ enum PredicateKind {
+ IPM_Opcode,
+ IPM_NumOperands,
+ IPM_ImmPredicate,
+ IPM_Imm,
+ IPM_AtomicOrderingMMO,
+ IPM_MemoryLLTSize,
+ IPM_MemoryVsLLTSize,
+ IPM_MemoryAddressSpace,
+ IPM_MemoryAlignment,
+ IPM_GenericPredicate,
+ OPM_SameOperand,
+ OPM_ComplexPattern,
+ OPM_IntrinsicID,
+ OPM_CmpPredicate,
+ OPM_Instruction,
+ OPM_Int,
+ OPM_LiteralInt,
+ OPM_LLT,
+ OPM_PointerToAny,
+ OPM_RegBank,
+ OPM_MBB,
+ };
+
+protected:
+ PredicateKind Kind;
+ unsigned InsnVarID;
+ unsigned OpIdx;
+
+public:
+ PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
+ : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
+
+ unsigned getInsnVarID() const { return InsnVarID; }
+ unsigned getOpIdx() const { return OpIdx; }
+
+ virtual ~PredicateMatcher() = default;
+ /// Emit MatchTable opcodes that check the predicate for the given operand.
+ virtual void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const = 0;
+
+ PredicateKind getKind() const { return Kind; }
+
+ virtual bool isIdentical(const PredicateMatcher &B) const {
+ return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
+ OpIdx == B.OpIdx;
+ }
+
+ virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
+ return hasValue() && PredicateMatcher::isIdentical(B);
+ }
+
+ virtual MatchTableRecord getValue() const {
+ assert(hasValue() && "Can not get a value of a value-less predicate!");
+ llvm_unreachable("Not implemented yet");
+ }
+ virtual bool hasValue() const { return false; }
+
+ /// Report the maximum number of temporary operands needed by the predicate
+ /// matcher.
+ virtual unsigned countRendererFns() const { return 0; }
+};
+
+/// Generates code to check a predicate of an operand.
+///
+/// Typical predicates include:
+/// * Operand is a particular register.
+/// * Operand is assigned a particular register bank.
+/// * Operand is an MBB.
+class OperandPredicateMatcher : public PredicateMatcher {
+public:
+ OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
+ unsigned OpIdx)
+ : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
+ virtual ~OperandPredicateMatcher() {}
+
+ /// Compare the priority of this object and B.
+ ///
+ /// Returns true if this object is more important than B.
+ virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
+};
+
+template <>
+std::string
+PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
+ return "No operand predicates";
+}
+
+/// Generates code to check that a register operand is defined by the same exact
+/// one as another.
+class SameOperandMatcher : public OperandPredicateMatcher {
+ std::string MatchingName;
+
+public:
+ SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
+ : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
+ MatchingName(MatchingName) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_SameOperand;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override;
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
+ }
+};
+
+/// Generates code to check that an operand is a particular LLT.
+class LLTOperandMatcher : public OperandPredicateMatcher {
+protected:
+ LLTCodeGen Ty;
+
+public:
+ static std::map<LLTCodeGen, unsigned> TypeIDValues;
+
+ static void initTypeIDValuesMap() {
+ TypeIDValues.clear();
+
+ unsigned ID = 0;
+ for (const LLTCodeGen LLTy : KnownTypes)
+ TypeIDValues[LLTy] = ID++;
+ }
+
+ LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
+ : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
+ KnownTypes.insert(Ty);
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_LLT;
+ }
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ Ty == cast<LLTOperandMatcher>(&B)->Ty;
+ }
+ MatchTableRecord getValue() const override {
+ const auto VI = TypeIDValues.find(Ty);
+ if (VI == TypeIDValues.end())
+ return MatchTable::NamedValue(getTy().getCxxEnumValue());
+ return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
+ }
+ bool hasValue() const override {
+ if (TypeIDValues.size() != KnownTypes.size())
+ initTypeIDValuesMap();
+ return TypeIDValues.count(Ty);
+ }
+
+ LLTCodeGen getTy() const { return Ty; }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
+ << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
+ << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
+ << getValue() << MatchTable::LineBreak;
+ }
+};
+
+std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
+
+/// Generates code to check that an operand is a pointer to any address space.
+///
+/// In SelectionDAG, the types did not describe pointers or address spaces. As a
+/// result, iN is used to describe a pointer of N bits to any address space and
+/// PatFrag predicates are typically used to constrain the address space. There's
+/// no reliable means to derive the missing type information from the pattern so
+/// imported rules must test the components of a pointer separately.
+///
+/// If SizeInBits is zero, then the pointer size will be obtained from the
+/// subtarget.
+class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
+protected:
+ unsigned SizeInBits;
+
+public:
+ PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
+ unsigned SizeInBits)
+ : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
+ SizeInBits(SizeInBits) {}
+
+ static bool classof(const OperandPredicateMatcher *P) {
+ return P->getKind() == OPM_PointerToAny;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckPointerToAny")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::Comment("SizeInBits")
+ << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that an operand is a particular target constant.
+class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
+protected:
+ const OperandMatcher &Operand;
+ const Record &TheDef;
+
+ unsigned getAllocatedTemporariesBaseID() const;
+
+public:
+ bool isIdentical(const PredicateMatcher &B) const override { return false; }
+
+ ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
+ const OperandMatcher &Operand,
+ const Record &TheDef)
+ : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
+ Operand(Operand), TheDef(TheDef) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_ComplexPattern;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ unsigned ID = getAllocatedTemporariesBaseID();
+ Table << MatchTable::Opcode("GIM_CheckComplexPattern")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
+ << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
+ << MatchTable::LineBreak;
+ }
+
+ unsigned countRendererFns() const override {
+ return 1;
+ }
+};
+
+/// Generates code to check that an operand is in a particular register bank.
+class RegisterBankOperandMatcher : public OperandPredicateMatcher {
+protected:
+ const CodeGenRegisterClass &RC;
+
+public:
+ RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
+ const CodeGenRegisterClass &RC)
+ : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_RegBank;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::Comment("RC")
+ << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that an operand is a basic block.
+class MBBOperandMatcher : public OperandPredicateMatcher {
+public:
+ MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
+ : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_MBB;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
+ << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
+ << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
+ }
+};
+
+class ImmOperandMatcher : public OperandPredicateMatcher {
+public:
+ ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
+ : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_Imm;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
+ << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
+ << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that an operand is a G_CONSTANT with a particular
+/// int.
+class ConstantIntOperandMatcher : public OperandPredicateMatcher {
+protected:
+ int64_t Value;
+
+public:
+ ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
+ : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ Value == cast<ConstantIntOperandMatcher>(&B)->Value;
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_Int;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckConstantInt")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::IntValue(Value) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that an operand is a raw int (where MO.isImm() or
+/// MO.isCImm() is true).
+class LiteralIntOperandMatcher : public OperandPredicateMatcher {
+protected:
+ int64_t Value;
+
+public:
+ LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
+ : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
+ Value(Value) {}
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ Value == cast<LiteralIntOperandMatcher>(&B)->Value;
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_LiteralInt;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckLiteralInt")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::IntValue(Value) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that an operand is an CmpInst predicate
+class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
+protected:
+ std::string PredName;
+
+public:
+ CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
+ std::string P)
+ : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_CmpPredicate;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::Comment("Predicate")
+ << MatchTable::NamedValue("CmpInst", PredName)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that an operand is an intrinsic ID.
+class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
+protected:
+ const CodeGenIntrinsic *II;
+
+public:
+ IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
+ const CodeGenIntrinsic *II)
+ : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return OperandPredicateMatcher::isIdentical(B) &&
+ II == cast<IntrinsicIDOperandMatcher>(&B)->II;
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_IntrinsicID;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that a set of predicates match for a particular
+/// operand.
+class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
+protected:
+ InstructionMatcher &Insn;
+ unsigned OpIdx;
+ std::string SymbolicName;
+
+ /// The index of the first temporary variable allocated to this operand. The
+ /// number of allocated temporaries can be found with
+ /// countRendererFns().
+ unsigned AllocatedTemporariesBaseID;
+
+public:
+ OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
+ const std::string &SymbolicName,
+ unsigned AllocatedTemporariesBaseID)
+ : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
+ AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
+
+ bool hasSymbolicName() const { return !SymbolicName.empty(); }
+ const StringRef getSymbolicName() const { return SymbolicName; }
+ void setSymbolicName(StringRef Name) {
+ assert(SymbolicName.empty() && "Operand already has a symbolic name");
+ SymbolicName = Name;
+ }
+
+ /// Construct a new operand predicate and add it to the matcher.
+ template <class Kind, class... Args>
+ Optional<Kind *> addPredicate(Args &&... args) {
+ if (isSameAsAnotherOperand())
+ return None;
+ Predicates.emplace_back(std::make_unique<Kind>(
+ getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
+ return static_cast<Kind *>(Predicates.back().get());
+ }
+
+ unsigned getOpIdx() const { return OpIdx; }
+ unsigned getInsnVarID() const;
+
+ std::string getOperandExpr(unsigned InsnVarID) const {
+ return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
+ llvm::to_string(OpIdx) + ")";
+ }
+
+ InstructionMatcher &getInstructionMatcher() const { return Insn; }
+
+ Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
+ bool OperandIsAPointer);
+
+ /// Emit MatchTable opcodes that test whether the instruction named in
+ /// InsnVarID matches all the predicates and all the operands.
+ void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
+ if (!Optimized) {
+ std::string Comment;
+ raw_string_ostream CommentOS(Comment);
+ CommentOS << "MIs[" << getInsnVarID() << "] ";
+ if (SymbolicName.empty())
+ CommentOS << "Operand " << OpIdx;
+ else
+ CommentOS << SymbolicName;
+ Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
+ }
+
+ emitPredicateListOpcodes(Table, Rule);
+ }
+
+ /// Compare the priority of this object and B.
+ ///
+ /// Returns true if this object is more important than B.
+ bool isHigherPriorityThan(OperandMatcher &B) {
+ // Operand matchers involving more predicates have higher priority.
+ if (predicates_size() > B.predicates_size())
+ return true;
+ if (predicates_size() < B.predicates_size())
+ return false;
+
+ // This assumes that predicates are added in a consistent order.
+ for (auto &&Predicate : zip(predicates(), B.predicates())) {
+ if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
+ return true;
+ if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
+ return false;
+ }
+
+ return false;
+ };
+
+ /// Report the maximum number of temporary operands needed by the operand
+ /// matcher.
+ unsigned countRendererFns() {
+ return std::accumulate(
+ predicates().begin(), predicates().end(), 0,
+ [](unsigned A,
+ const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
+ return A + Predicate->countRendererFns();
+ });
+ }
+
+ unsigned getAllocatedTemporariesBaseID() const {
+ return AllocatedTemporariesBaseID;
+ }
+
+ bool isSameAsAnotherOperand() {
+ for (const auto &Predicate : predicates())
+ if (isa<SameOperandMatcher>(Predicate))
+ return true;
+ return false;
+ }
+};
+
+Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
+ bool OperandIsAPointer) {
+ if (!VTy.isMachineValueType())
+ return failedImport("unsupported typeset");
+
+ if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
+ addPredicate<PointerToAnyOperandMatcher>(0);
+ return Error::success();
+ }
+
+ auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
+ if (!OpTyOrNone)
+ return failedImport("unsupported type");
+
+ if (OperandIsAPointer)
+ addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
+ else if (VTy.isPointer())
+ addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
+ OpTyOrNone->get().getSizeInBits()));
+ else
+ addPredicate<LLTOperandMatcher>(*OpTyOrNone);
+ return Error::success();
+}
+
+unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
+ return Operand.getAllocatedTemporariesBaseID();
+}
+
+/// Generates code to check a predicate on an instruction.
+///
+/// Typical predicates include:
+/// * The opcode of the instruction is a particular value.
+/// * The nsw/nuw flag is/isn't set.
+class InstructionPredicateMatcher : public PredicateMatcher {
+public:
+ InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
+ : PredicateMatcher(Kind, InsnVarID) {}
+ virtual ~InstructionPredicateMatcher() {}
+
+ /// Compare the priority of this object and B.
+ ///
+ /// Returns true if this object is more important than B.
+ virtual bool
+ isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
+ return Kind < B.Kind;
+ };
+};
+
+template <>
+std::string
+PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
+ return "No instruction predicates";
+}
+
+/// Generates code to check the opcode of an instruction.
+class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
+protected:
+ const CodeGenInstruction *I;
+
+ static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
+
+public:
+ static void initOpcodeValuesMap(const CodeGenTarget &Target) {
+ OpcodeValues.clear();
+
+ unsigned OpcodeValue = 0;
+ for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
+ OpcodeValues[I] = OpcodeValue++;
+ }
+
+ InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
+ : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_Opcode;
+ }
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return InstructionPredicateMatcher::isIdentical(B) &&
+ I == cast<InstructionOpcodeMatcher>(&B)->I;
+ }
+ MatchTableRecord getValue() const override {
+ const auto VI = OpcodeValues.find(I);
+ if (VI != OpcodeValues.end())
+ return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
+ VI->second);
+ return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
+ }
+ bool hasValue() const override { return OpcodeValues.count(I); }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
+ << MatchTable::IntValue(InsnVarID) << getValue()
+ << MatchTable::LineBreak;
+ }
+
+ /// Compare the priority of this object and B.
+ ///
+ /// Returns true if this object is more important than B.
+ bool
+ isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
+ if (InstructionPredicateMatcher::isHigherPriorityThan(B))
+ return true;
+ if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
+ return false;
+
+ // Prioritize opcodes for cosmetic reasons in the generated source. Although
+ // this is cosmetic at the moment, we may want to drive a similar ordering
+ // using instruction frequency information to improve compile time.
+ if (const InstructionOpcodeMatcher *BO =
+ dyn_cast<InstructionOpcodeMatcher>(&B))
+ return I->TheDef->getName() < BO->I->TheDef->getName();
+
+ return false;
+ };
+
+ bool isConstantInstruction() const {
+ return I->TheDef->getName() == "G_CONSTANT";
+ }
+
+ StringRef getOpcode() const { return I->TheDef->getName(); }
+ unsigned getNumOperands() const { return I->Operands.size(); }
+
+ StringRef getOperandType(unsigned OpIdx) const {
+ return I->Operands[OpIdx].OperandType;
+ }
+};
+
+DenseMap<const CodeGenInstruction *, unsigned>
+ InstructionOpcodeMatcher::OpcodeValues;
+
+class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
+ unsigned NumOperands = 0;
+
+public:
+ InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
+ : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
+ NumOperands(NumOperands) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_NumOperands;
+ }
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return InstructionPredicateMatcher::isIdentical(B) &&
+ NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckNumOperands")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Expected")
+ << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that this instruction is a constant whose value
+/// meets an immediate predicate.
+///
+/// Immediates are slightly odd since they are typically used like an operand
+/// but are represented as an operator internally. We typically write simm8:$src
+/// in a tablegen pattern, but this is just syntactic sugar for
+/// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
+/// that will be matched and the predicate (which is attached to the imm
+/// operator) that will be tested. In SelectionDAG this describes a
+/// ConstantSDNode whose internal value will be tested using the simm8 predicate.
+///
+/// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
+/// this representation, the immediate could be tested with an
+/// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
+/// OperandPredicateMatcher-subclass to check the Value meets the predicate but
+/// there are two implementation issues with producing that matcher
+/// configuration from the SelectionDAG pattern:
+/// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
+/// were we to sink the immediate predicate to the operand we would have to
+/// have two partial implementations of PatFrag support, one for immediates
+/// and one for non-immediates.
+/// * At the point we handle the predicate, the OperandMatcher hasn't been
+/// created yet. If we were to sink the predicate to the OperandMatcher we
+/// would also have to complicate (or duplicate) the code that descends and
+/// creates matchers for the subtree.
+/// Overall, it's simpler to handle it in the place it was found.
+class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
+protected:
+ TreePredicateFn Predicate;
+
+public:
+ InstructionImmPredicateMatcher(unsigned InsnVarID,
+ const TreePredicateFn &Predicate)
+ : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
+ Predicate(Predicate) {}
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return InstructionPredicateMatcher::isIdentical(B) &&
+ Predicate.getOrigPatFragRecord() ==
+ cast<InstructionImmPredicateMatcher>(&B)
+ ->Predicate.getOrigPatFragRecord();
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_ImmPredicate;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("Predicate")
+ << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that a memory instruction has a atomic ordering
+/// MachineMemoryOperand.
+class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
+public:
+ enum AOComparator {
+ AO_Exactly,
+ AO_OrStronger,
+ AO_WeakerThan,
+ };
+
+protected:
+ StringRef Order;
+ AOComparator Comparator;
+
+public:
+ AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
+ AOComparator Comparator = AO_Exactly)
+ : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
+ Order(Order), Comparator(Comparator) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_AtomicOrderingMMO;
+ }
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ if (!InstructionPredicateMatcher::isIdentical(B))
+ return false;
+ const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
+ return Order == R.Order && Comparator == R.Comparator;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ StringRef Opcode = "GIM_CheckAtomicOrdering";
+
+ if (Comparator == AO_OrStronger)
+ Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
+ if (Comparator == AO_WeakerThan)
+ Opcode = "GIM_CheckAtomicOrderingWeakerThan";
+
+ Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
+ << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
+ << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that the size of an MMO is exactly N bytes.
+class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
+protected:
+ unsigned MMOIdx;
+ uint64_t Size;
+
+public:
+ MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
+ : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
+ MMOIdx(MMOIdx), Size(Size) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_MemoryLLTSize;
+ }
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return InstructionPredicateMatcher::isIdentical(B) &&
+ MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
+ Size == cast<MemorySizePredicateMatcher>(&B)->Size;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
+ << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
+ << MatchTable::LineBreak;
+ }
+};
+
+class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
+protected:
+ unsigned MMOIdx;
+ SmallVector<unsigned, 4> AddrSpaces;
+
+public:
+ MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
+ ArrayRef<unsigned> AddrSpaces)
+ : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
+ MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_MemoryAddressSpace;
+ }
+ bool isIdentical(const PredicateMatcher &B) const override {
+ if (!InstructionPredicateMatcher::isIdentical(B))
+ return false;
+ auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
+ return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
+ // Encode number of address spaces to expect.
+ << MatchTable::Comment("NumAddrSpace")
+ << MatchTable::IntValue(AddrSpaces.size());
+ for (unsigned AS : AddrSpaces)
+ Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
+
+ Table << MatchTable::LineBreak;
+ }
+};
+
+class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
+protected:
+ unsigned MMOIdx;
+ int MinAlign;
+
+public:
+ MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
+ int MinAlign)
+ : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
+ MMOIdx(MMOIdx), MinAlign(MinAlign) {
+ assert(MinAlign > 0);
+ }
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_MemoryAlignment;
+ }
+
+ bool isIdentical(const PredicateMatcher &B) const override {
+ if (!InstructionPredicateMatcher::isIdentical(B))
+ return false;
+ auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
+ return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
+ << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that the size of an MMO is less-than, equal-to, or
+/// greater than a given LLT.
+class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
+public:
+ enum RelationKind {
+ GreaterThan,
+ EqualTo,
+ LessThan,
+ };
+
+protected:
+ unsigned MMOIdx;
+ RelationKind Relation;
+ unsigned OpIdx;
+
+public:
+ MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
+ enum RelationKind Relation,
+ unsigned OpIdx)
+ : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
+ MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == IPM_MemoryVsLLTSize;
+ }
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return InstructionPredicateMatcher::isIdentical(B) &&
+ MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
+ Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
+ OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode(Relation == EqualTo
+ ? "GIM_CheckMemorySizeEqualToLLT"
+ : Relation == GreaterThan
+ ? "GIM_CheckMemorySizeGreaterThanLLT"
+ : "GIM_CheckMemorySizeLessThanLLT")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
+ << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check an arbitrary C++ instruction predicate.
+class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
+protected:
+ TreePredicateFn Predicate;
+
+public:
+ GenericInstructionPredicateMatcher(unsigned InsnVarID,
+ TreePredicateFn Predicate)
+ : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
+ Predicate(Predicate) {}
+
+ static bool classof(const InstructionPredicateMatcher *P) {
+ return P->getKind() == IPM_GenericPredicate;
+ }
+ bool isIdentical(const PredicateMatcher &B) const override {
+ return InstructionPredicateMatcher::isIdentical(B) &&
+ Predicate ==
+ static_cast<const GenericInstructionPredicateMatcher &>(B)
+ .Predicate;
+ }
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("FnId")
+ << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to check that a set of predicates and operands match for a
+/// particular instruction.
+///
+/// Typical predicates include:
+/// * Has a specific opcode.
+/// * Has an nsw/nuw flag or doesn't.
+class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
+protected:
+ typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
+
+ RuleMatcher &Rule;
+
+ /// The operands to match. All rendered operands must be present even if the
+ /// condition is always true.
+ OperandVec Operands;
+ bool NumOperandsCheck = true;
+
+ std::string SymbolicName;
+ unsigned InsnVarID;
+
+ /// PhysRegInputs - List list has an entry for each explicitly specified
+ /// physreg input to the pattern. The first elt is the Register node, the
+ /// second is the recorded slot number the input pattern match saved it in.
+ SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
+
+public:
+ InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
+ : Rule(Rule), SymbolicName(SymbolicName) {
+ // We create a new instruction matcher.
+ // Get a new ID for that instruction.
+ InsnVarID = Rule.implicitlyDefineInsnVar(*this);
+ }
+
+ /// Construct a new instruction predicate and add it to the matcher.
+ template <class Kind, class... Args>
+ Optional<Kind *> addPredicate(Args &&... args) {
+ Predicates.emplace_back(
+ std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
+ return static_cast<Kind *>(Predicates.back().get());
+ }
+
+ RuleMatcher &getRuleMatcher() const { return Rule; }
+
+ unsigned getInsnVarID() const { return InsnVarID; }
+
+ /// Add an operand to the matcher.
+ OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
+ unsigned AllocatedTemporariesBaseID) {
+ Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
+ AllocatedTemporariesBaseID));
+ if (!SymbolicName.empty())
+ Rule.defineOperand(SymbolicName, *Operands.back());
+
+ return *Operands.back();
+ }
+
+ OperandMatcher &getOperand(unsigned OpIdx) {
+ auto I = std::find_if(Operands.begin(), Operands.end(),
+ [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
+ return X->getOpIdx() == OpIdx;
+ });
+ if (I != Operands.end())
+ return **I;
+ llvm_unreachable("Failed to lookup operand");
+ }
+
+ OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
+ unsigned TempOpIdx) {
+ assert(SymbolicName.empty());
+ OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
+ Operands.emplace_back(OM);
+ Rule.definePhysRegOperand(Reg, *OM);
+ PhysRegInputs.emplace_back(Reg, OpIdx);
+ return *OM;
+ }
+
+ ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
+ return PhysRegInputs;
+ }
+
+ StringRef getSymbolicName() const { return SymbolicName; }
+ unsigned getNumOperands() const { return Operands.size(); }
+ OperandVec::iterator operands_begin() { return Operands.begin(); }
+ OperandVec::iterator operands_end() { return Operands.end(); }
+ iterator_range<OperandVec::iterator> operands() {
+ return make_range(operands_begin(), operands_end());
+ }
+ OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
+ OperandVec::const_iterator operands_end() const { return Operands.end(); }
+ iterator_range<OperandVec::const_iterator> operands() const {
+ return make_range(operands_begin(), operands_end());
+ }
+ bool operands_empty() const { return Operands.empty(); }
+
+ void pop_front() { Operands.erase(Operands.begin()); }
+
+ void optimize();
+
+ /// Emit MatchTable opcodes that test whether the instruction named in
+ /// InsnVarName matches all the predicates and all the operands.
+ void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
+ if (NumOperandsCheck)
+ InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
+ .emitPredicateOpcodes(Table, Rule);
+
+ emitPredicateListOpcodes(Table, Rule);
+
+ for (const auto &Operand : Operands)
+ Operand->emitPredicateOpcodes(Table, Rule);
+ }
+
+ /// Compare the priority of this object and B.
+ ///
+ /// Returns true if this object is more important than B.
+ bool isHigherPriorityThan(InstructionMatcher &B) {
+ // Instruction matchers involving more operands have higher priority.
+ if (Operands.size() > B.Operands.size())
+ return true;
+ if (Operands.size() < B.Operands.size())
+ return false;
+
+ for (auto &&P : zip(predicates(), B.predicates())) {
+ auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
+ auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
+ if (L->isHigherPriorityThan(*R))
+ return true;
+ if (R->isHigherPriorityThan(*L))
+ return false;
+ }
+
+ for (const auto &Operand : zip(Operands, B.Operands)) {
+ if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
+ return true;
+ if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
+ return false;
+ }
+
+ return false;
+ };
+
+ /// Report the maximum number of temporary operands needed by the instruction
+ /// matcher.
+ unsigned countRendererFns() {
+ return std::accumulate(
+ predicates().begin(), predicates().end(), 0,
+ [](unsigned A,
+ const std::unique_ptr<PredicateMatcher> &Predicate) {
+ return A + Predicate->countRendererFns();
+ }) +
+ std::accumulate(
+ Operands.begin(), Operands.end(), 0,
+ [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
+ return A + Operand->countRendererFns();
+ });
+ }
+
+ InstructionOpcodeMatcher &getOpcodeMatcher() {
+ for (auto &P : predicates())
+ if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
+ return *OpMatcher;
+ llvm_unreachable("Didn't find an opcode matcher");
+ }
+
+ bool isConstantInstruction() {
+ return getOpcodeMatcher().isConstantInstruction();
+ }
+
+ StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
+};
+
+StringRef RuleMatcher::getOpcode() const {
+ return Matchers.front()->getOpcode();
+}
+
+unsigned RuleMatcher::getNumOperands() const {
+ return Matchers.front()->getNumOperands();
+}
+
+LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
+ InstructionMatcher &InsnMatcher = *Matchers.front();
+ if (!InsnMatcher.predicates_empty())
+ if (const auto *TM =
+ dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
+ if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
+ return TM->getTy();
+ return {};
+}
+
+/// Generates code to check that the operand is a register defined by an
+/// instruction that matches the given instruction matcher.
+///
+/// For example, the pattern:
+/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
+/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
+/// the:
+/// (G_ADD $src1, $src2)
+/// subpattern.
+class InstructionOperandMatcher : public OperandPredicateMatcher {
+protected:
+ std::unique_ptr<InstructionMatcher> InsnMatcher;
+
+public:
+ InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
+ RuleMatcher &Rule, StringRef SymbolicName)
+ : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
+ InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
+
+ static bool classof(const PredicateMatcher *P) {
+ return P->getKind() == OPM_Instruction;
+ }
+
+ InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
+
+ void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
+ const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
+ Table << MatchTable::Opcode("GIM_RecordInsn")
+ << MatchTable::Comment("DefineMI")
+ << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
+ << MatchTable::IntValue(getInsnVarID())
+ << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
+ << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
+ << MatchTable::LineBreak;
+ }
+
+ void emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const override {
+ emitCaptureOpcodes(Table, Rule);
+ InsnMatcher->emitPredicateOpcodes(Table, Rule);
+ }
+
+ bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
+ if (OperandPredicateMatcher::isHigherPriorityThan(B))
+ return true;
+ if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
+ return false;
+
+ if (const InstructionOperandMatcher *BP =
+ dyn_cast<InstructionOperandMatcher>(&B))
+ if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
+ return true;
+ return false;
+ }
+};
+
+void InstructionMatcher::optimize() {
+ SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
+ const auto &OpcMatcher = getOpcodeMatcher();
+
+ Stash.push_back(predicates_pop_front());
+ if (Stash.back().get() == &OpcMatcher) {
+ if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
+ Stash.emplace_back(
+ new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
+ NumOperandsCheck = false;
+
+ for (auto &OM : Operands)
+ for (auto &OP : OM->predicates())
+ if (isa<IntrinsicIDOperandMatcher>(OP)) {
+ Stash.push_back(std::move(OP));
+ OM->eraseNullPredicates();
+ break;
+ }
+ }
+
+ if (InsnVarID > 0) {
+ assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
+ for (auto &OP : Operands[0]->predicates())
+ OP.reset();
+ Operands[0]->eraseNullPredicates();
+ }
+ for (auto &OM : Operands) {
+ for (auto &OP : OM->predicates())
+ if (isa<LLTOperandMatcher>(OP))
+ Stash.push_back(std::move(OP));
+ OM->eraseNullPredicates();
+ }
+ while (!Stash.empty())
+ prependPredicate(Stash.pop_back_val());
+}
+
+//===- Actions ------------------------------------------------------------===//
+class OperandRenderer {
+public:
+ enum RendererKind {
+ OR_Copy,
+ OR_CopyOrAddZeroReg,
+ OR_CopySubReg,
+ OR_CopyPhysReg,
+ OR_CopyConstantAsImm,
+ OR_CopyFConstantAsFPImm,
+ OR_Imm,
+ OR_SubRegIndex,
+ OR_Register,
+ OR_TempRegister,
+ OR_ComplexPattern,
+ OR_Custom
+ };
+
+protected:
+ RendererKind Kind;
+
+public:
+ OperandRenderer(RendererKind Kind) : Kind(Kind) {}
+ virtual ~OperandRenderer() {}
+
+ RendererKind getKind() const { return Kind; }
+
+ virtual void emitRenderOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const = 0;
+};
+
+/// A CopyRenderer emits code to copy a single operand from an existing
+/// instruction to the one being built.
+class CopyRenderer : public OperandRenderer {
+protected:
+ unsigned NewInsnID;
+ /// The name of the operand.
+ const StringRef SymbolicName;
+
+public:
+ CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
+ : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
+ SymbolicName(SymbolicName) {
+ assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
+ }
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_Copy;
+ }
+
+ const StringRef getSymbolicName() const { return SymbolicName; }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
+ unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
+ Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
+ << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
+ << MatchTable::IntValue(Operand.getOpIdx())
+ << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+/// A CopyRenderer emits code to copy a virtual register to a specific physical
+/// register.
+class CopyPhysRegRenderer : public OperandRenderer {
+protected:
+ unsigned NewInsnID;
+ Record *PhysReg;
+
+public:
+ CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
+ : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
+ PhysReg(Reg) {
+ assert(PhysReg);
+ }
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_CopyPhysReg;
+ }
+
+ Record *getPhysReg() const { return PhysReg; }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
+ unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
+ Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
+ << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
+ << MatchTable::IntValue(Operand.getOpIdx())
+ << MatchTable::Comment(PhysReg->getName())
+ << MatchTable::LineBreak;
+ }
+};
+
+/// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
+/// existing instruction to the one being built. If the operand turns out to be
+/// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
+class CopyOrAddZeroRegRenderer : public OperandRenderer {
+protected:
+ unsigned NewInsnID;
+ /// The name of the operand.
+ const StringRef SymbolicName;
+ const Record *ZeroRegisterDef;
+
+public:
+ CopyOrAddZeroRegRenderer(unsigned NewInsnID,
+ StringRef SymbolicName, Record *ZeroRegisterDef)
+ : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
+ SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
+ assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
+ }
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_CopyOrAddZeroReg;
+ }
+
+ const StringRef getSymbolicName() const { return SymbolicName; }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
+ unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
+ Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
+ << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
+ << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
+ << MatchTable::IntValue(Operand.getOpIdx())
+ << MatchTable::NamedValue(
+ (ZeroRegisterDef->getValue("Namespace")
+ ? ZeroRegisterDef->getValueAsString("Namespace")
+ : ""),
+ ZeroRegisterDef->getName())
+ << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+/// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
+/// an extended immediate operand.
+class CopyConstantAsImmRenderer : public OperandRenderer {
+protected:
+ unsigned NewInsnID;
+ /// The name of the operand.
+ const std::string SymbolicName;
+ bool Signed;
+
+public:
+ CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
+ : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
+ SymbolicName(SymbolicName), Signed(true) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_CopyConstantAsImm;
+ }
+
+ const StringRef getSymbolicName() const { return SymbolicName; }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
+ unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
+ Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
+ : "GIR_CopyConstantAsUImm")
+ << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
+ << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID)
+ << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+/// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
+/// instruction to an extended immediate operand.
+class CopyFConstantAsFPImmRenderer : public OperandRenderer {
+protected:
+ unsigned NewInsnID;
+ /// The name of the operand.
+ const std::string SymbolicName;
+
+public:
+ CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
+ : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
+ SymbolicName(SymbolicName) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_CopyFConstantAsFPImm;
+ }
+
+ const StringRef getSymbolicName() const { return SymbolicName; }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
+ unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
+ Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
+ << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
+ << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID)
+ << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+/// A CopySubRegRenderer emits code to copy a single register operand from an
+/// existing instruction to the one being built and indicate that only a
+/// subregister should be copied.
+class CopySubRegRenderer : public OperandRenderer {
+protected:
+ unsigned NewInsnID;
+ /// The name of the operand.
+ const StringRef SymbolicName;
+ /// The subregister to extract.
+ const CodeGenSubRegIndex *SubReg;
+
+public:
+ CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
+ const CodeGenSubRegIndex *SubReg)
+ : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
+ SymbolicName(SymbolicName), SubReg(SubReg) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_CopySubReg;
+ }
+
+ const StringRef getSymbolicName() const { return SymbolicName; }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
+ unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
+ Table << MatchTable::Opcode("GIR_CopySubReg")
+ << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
+ << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
+ << MatchTable::IntValue(Operand.getOpIdx())
+ << MatchTable::Comment("SubRegIdx")
+ << MatchTable::IntValue(SubReg->EnumValue)
+ << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+/// Adds a specific physical register to the instruction being built.
+/// This is typically useful for WZR/XZR on AArch64.
+class AddRegisterRenderer : public OperandRenderer {
+protected:
+ unsigned InsnID;
+ const Record *RegisterDef;
+ bool IsDef;
+
+public:
+ AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef,
+ bool IsDef = false)
+ : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
+ IsDef(IsDef) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_Register;
+ }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_AddRegister")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::NamedValue(
+ (RegisterDef->getValue("Namespace")
+ ? RegisterDef->getValueAsString("Namespace")
+ : ""),
+ RegisterDef->getName())
+ << MatchTable::Comment("AddRegisterRegFlags");
+
+ // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are
+ // really needed for a physical register reference. We can pack the
+ // register and flags in a single field.
+ if (IsDef)
+ Table << MatchTable::NamedValue("RegState::Define");
+ else
+ Table << MatchTable::IntValue(0);
+ Table << MatchTable::LineBreak;
+ }
+};
+
+/// Adds a specific temporary virtual register to the instruction being built.
+/// This is used to chain instructions together when emitting multiple
+/// instructions.
+class TempRegRenderer : public OperandRenderer {
+protected:
+ unsigned InsnID;
+ unsigned TempRegID;
+ bool IsDef;
+
+public:
+ TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
+ : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
+ IsDef(IsDef) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_TempRegister;
+ }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_AddTempRegister")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
+ << MatchTable::Comment("TempRegFlags");
+ if (IsDef)
+ Table << MatchTable::NamedValue("RegState::Define");
+ else
+ Table << MatchTable::IntValue(0);
+ Table << MatchTable::LineBreak;
+ }
+};
+
+/// Adds a specific immediate to the instruction being built.
+class ImmRenderer : public OperandRenderer {
+protected:
+ unsigned InsnID;
+ int64_t Imm;
+
+public:
+ ImmRenderer(unsigned InsnID, int64_t Imm)
+ : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_Imm;
+ }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
+ << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
+ << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
+ }
+};
+
+/// Adds an enum value for a subreg index to the instruction being built.
+class SubRegIndexRenderer : public OperandRenderer {
+protected:
+ unsigned InsnID;
+ const CodeGenSubRegIndex *SubRegIdx;
+
+public:
+ SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
+ : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_SubRegIndex;
+ }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
+ << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
+ << MatchTable::IntValue(SubRegIdx->EnumValue)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Adds operands by calling a renderer function supplied by the ComplexPattern
+/// matcher function.
+class RenderComplexPatternOperand : public OperandRenderer {
+private:
+ unsigned InsnID;
+ const Record &TheDef;
+ /// The name of the operand.
+ const StringRef SymbolicName;
+ /// The renderer number. This must be unique within a rule since it's used to
+ /// identify a temporary variable to hold the renderer function.
+ unsigned RendererID;
+ /// When provided, this is the suboperand of the ComplexPattern operand to
+ /// render. Otherwise all the suboperands will be rendered.
+ Optional<unsigned> SubOperand;
+
+ unsigned getNumOperands() const {
+ return TheDef.getValueAsDag("Operands")->getNumArgs();
+ }
+
+public:
+ RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
+ StringRef SymbolicName, unsigned RendererID,
+ Optional<unsigned> SubOperand = None)
+ : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
+ SymbolicName(SymbolicName), RendererID(RendererID),
+ SubOperand(SubOperand) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_ComplexPattern;
+ }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
+ : "GIR_ComplexRenderer")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::Comment("RendererID")
+ << MatchTable::IntValue(RendererID);
+ if (SubOperand.hasValue())
+ Table << MatchTable::Comment("SubOperand")
+ << MatchTable::IntValue(SubOperand.getValue());
+ Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+class CustomRenderer : public OperandRenderer {
+protected:
+ unsigned InsnID;
+ const Record &Renderer;
+ /// The name of the operand.
+ const std::string SymbolicName;
+
+public:
+ CustomRenderer(unsigned InsnID, const Record &Renderer,
+ StringRef SymbolicName)
+ : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
+ SymbolicName(SymbolicName) {}
+
+ static bool classof(const OperandRenderer *R) {
+ return R->getKind() == OR_Custom;
+ }
+
+ void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
+ unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
+ Table << MatchTable::Opcode("GIR_CustomRenderer")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::Comment("OldInsnID")
+ << MatchTable::IntValue(OldInsnVarID)
+ << MatchTable::Comment("Renderer")
+ << MatchTable::NamedValue(
+ "GICR_" + Renderer.getValueAsString("RendererFn").str())
+ << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
+ }
+};
+
+/// An action taken when all Matcher predicates succeeded for a parent rule.
+///
+/// Typical actions include:
+/// * Changing the opcode of an instruction.
+/// * Adding an operand to an instruction.
+class MatchAction {
+public:
+ virtual ~MatchAction() {}
+
+ /// Emit the MatchTable opcodes to implement the action.
+ virtual void emitActionOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const = 0;
+};
+
+/// Generates a comment describing the matched rule being acted upon.
+class DebugCommentAction : public MatchAction {
+private:
+ std::string S;
+
+public:
+ DebugCommentAction(StringRef S) : S(S) {}
+
+ void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Comment(S) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to build an instruction or mutate an existing instruction
+/// into the desired instruction when this is possible.
+class BuildMIAction : public MatchAction {
+private:
+ unsigned InsnID;
+ const CodeGenInstruction *I;
+ InstructionMatcher *Matched;
+ std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
+
+ /// True if the instruction can be built solely by mutating the opcode.
+ bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
+ if (!Insn)
+ return false;
+
+ if (OperandRenderers.size() != Insn->getNumOperands())
+ return false;
+
+ for (const auto &Renderer : enumerate(OperandRenderers)) {
+ if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
+ const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
+ if (Insn != &OM.getInstructionMatcher() ||
+ OM.getOpIdx() != Renderer.index())
+ return false;
+ } else
+ return false;
+ }
+
+ return true;
+ }
+
+public:
+ BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
+ : InsnID(InsnID), I(I), Matched(nullptr) {}
+
+ unsigned getInsnID() const { return InsnID; }
+ const CodeGenInstruction *getCGI() const { return I; }
+
+ void chooseInsnToMutate(RuleMatcher &Rule) {
+ for (auto *MutateCandidate : Rule.mutatable_insns()) {
+ if (canMutate(Rule, MutateCandidate)) {
+ // Take the first one we're offered that we're able to mutate.
+ Rule.reserveInsnMatcherForMutation(MutateCandidate);
+ Matched = MutateCandidate;
+ return;
+ }
+ }
+ }
+
+ template <class Kind, class... Args>
+ Kind &addRenderer(Args&&... args) {
+ OperandRenderers.emplace_back(
+ std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
+ return *static_cast<Kind *>(OperandRenderers.back().get());
+ }
+
+ void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ if (Matched) {
+ assert(canMutate(Rule, Matched) &&
+ "Arranged to mutate an insn that isn't mutatable");
+
+ unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
+ Table << MatchTable::Opcode("GIR_MutateOpcode")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::Comment("RecycleInsnID")
+ << MatchTable::IntValue(RecycleInsnID)
+ << MatchTable::Comment("Opcode")
+ << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
+ << MatchTable::LineBreak;
+
+ if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
+ for (auto Def : I->ImplicitDefs) {
+ auto Namespace = Def->getValue("Namespace")
+ ? Def->getValueAsString("Namespace")
+ : "";
+ Table << MatchTable::Opcode("GIR_AddImplicitDef")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::NamedValue(Namespace, Def->getName())
+ << MatchTable::LineBreak;
+ }
+ for (auto Use : I->ImplicitUses) {
+ auto Namespace = Use->getValue("Namespace")
+ ? Use->getValueAsString("Namespace")
+ : "";
+ Table << MatchTable::Opcode("GIR_AddImplicitUse")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::NamedValue(Namespace, Use->getName())
+ << MatchTable::LineBreak;
+ }
+ }
+ return;
+ }
+
+ // TODO: Simple permutation looks like it could be almost as common as
+ // mutation due to commutative operations.
+
+ Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
+ << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
+ << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
+ << MatchTable::LineBreak;
+ for (const auto &Renderer : OperandRenderers)
+ Renderer->emitRenderOpcodes(Table, Rule);
+
+ if (I->mayLoad || I->mayStore) {
+ Table << MatchTable::Opcode("GIR_MergeMemOperands")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::Comment("MergeInsnID's");
+ // Emit the ID's for all the instructions that are matched by this rule.
+ // TODO: Limit this to matched instructions that mayLoad/mayStore or have
+ // some other means of having a memoperand. Also limit this to
+ // emitted instructions that expect to have a memoperand too. For
+ // example, (G_SEXT (G_LOAD x)) that results in separate load and
+ // sign-extend instructions shouldn't put the memoperand on the
+ // sign-extend since it has no effect there.
+ std::vector<unsigned> MergeInsnIDs;
+ for (const auto &IDMatcherPair : Rule.defined_insn_vars())
+ MergeInsnIDs.push_back(IDMatcherPair.second);
+ llvm::sort(MergeInsnIDs);
+ for (const auto &MergeInsnID : MergeInsnIDs)
+ Table << MatchTable::IntValue(MergeInsnID);
+ Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
+ << MatchTable::LineBreak;
+ }
+
+ // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
+ // better for combines. Particularly when there are multiple match
+ // roots.
+ if (InsnID == 0)
+ Table << MatchTable::Opcode("GIR_EraseFromParent")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to constrain the operands of an output instruction to the
+/// register classes specified by the definition of that instruction.
+class ConstrainOperandsToDefinitionAction : public MatchAction {
+ unsigned InsnID;
+
+public:
+ ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
+
+ void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to constrain the specified operand of an output instruction
+/// to the specified register class.
+class ConstrainOperandToRegClassAction : public MatchAction {
+ unsigned InsnID;
+ unsigned OpIdx;
+ const CodeGenRegisterClass &RC;
+
+public:
+ ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
+ const CodeGenRegisterClass &RC)
+ : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
+
+ void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
+ << MatchTable::Comment("RC " + RC.getName())
+ << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
+ }
+};
+
+/// Generates code to create a temporary register which can be used to chain
+/// instructions together.
+class MakeTempRegisterAction : public MatchAction {
+private:
+ LLTCodeGen Ty;
+ unsigned TempRegID;
+
+public:
+ MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
+ : Ty(Ty), TempRegID(TempRegID) {
+ KnownTypes.insert(Ty);
+ }
+
+ void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
+ Table << MatchTable::Opcode("GIR_MakeTempReg")
+ << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
+ << MatchTable::Comment("TypeID")
+ << MatchTable::NamedValue(Ty.getCxxEnumValue())
+ << MatchTable::LineBreak;
+ }
+};
+
+InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
+ Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
+ MutatableInsns.insert(Matchers.back().get());
+ return *Matchers.back();
+}
+
+void RuleMatcher::addRequiredFeature(Record *Feature) {
+ RequiredFeatures.push_back(Feature);
+}
+
+const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
+ return RequiredFeatures;
+}
+
+// Emplaces an action of the specified Kind at the end of the action list.
+//
+// Returns a reference to the newly created action.
+//
+// Like std::vector::emplace_back(), may invalidate all iterators if the new
+// size exceeds the capacity. Otherwise, only invalidates the past-the-end
+// iterator.
+template <class Kind, class... Args>
+Kind &RuleMatcher::addAction(Args &&... args) {
+ Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
+ return *static_cast<Kind *>(Actions.back().get());
+}
+
+// Emplaces an action of the specified Kind before the given insertion point.
+//
+// Returns an iterator pointing at the newly created instruction.
+//
+// Like std::vector::insert(), may invalidate all iterators if the new size
+// exceeds the capacity. Otherwise, only invalidates the iterators from the
+// insertion point onwards.
+template <class Kind, class... Args>
+action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
+ Args &&... args) {
+ return Actions.emplace(InsertPt,
+ std::make_unique<Kind>(std::forward<Args>(args)...));
+}
+
+unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
+ unsigned NewInsnVarID = NextInsnVarID++;
+ InsnVariableIDs[&Matcher] = NewInsnVarID;
+ return NewInsnVarID;
+}
+
+unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
+ const auto &I = InsnVariableIDs.find(&InsnMatcher);
+ if (I != InsnVariableIDs.end())
+ return I->second;
+ llvm_unreachable("Matched Insn was not captured in a local variable");
+}
+
+void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
+ if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
+ DefinedOperands[SymbolicName] = &OM;
+ return;
+ }
+
+ // If the operand is already defined, then we must ensure both references in
+ // the matcher have the exact same node.
+ OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
+}
+
+void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
+ if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
+ PhysRegOperands[Reg] = &OM;
+ return;
+ }
+}
+
+InstructionMatcher &
+RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
+ for (const auto &I : InsnVariableIDs)
+ if (I.first->getSymbolicName() == SymbolicName)
+ return *I.first;
+ llvm_unreachable(
+ ("Failed to lookup instruction " + SymbolicName).str().c_str());
+}
+
+const OperandMatcher &
+RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
+ const auto &I = PhysRegOperands.find(Reg);
+
+ if (I == PhysRegOperands.end()) {
+ PrintFatalError(SrcLoc, "Register " + Reg->getName() +
+ " was not declared in matcher");
+ }
+
+ return *I->second;
+}
+
+const OperandMatcher &
+RuleMatcher::getOperandMatcher(StringRef Name) const {
+ const auto &I = DefinedOperands.find(Name);
+
+ if (I == DefinedOperands.end())
+ PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
+
+ return *I->second;
+}
+
+void RuleMatcher::emit(MatchTable &Table) {
+ if (Matchers.empty())
+ llvm_unreachable("Unexpected empty matcher!");
+
+ // The representation supports rules that require multiple roots such as:
+ // %ptr(p0) = ...
+ // %elt0(s32) = G_LOAD %ptr
+ // %1(p0) = G_ADD %ptr, 4
+ // %elt1(s32) = G_LOAD p0 %1
+ // which could be usefully folded into:
+ // %ptr(p0) = ...
+ // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
+ // on some targets but we don't need to make use of that yet.
+ assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
+
+ unsigned LabelID = Table.allocateLabelID();
+ Table << MatchTable::Opcode("GIM_Try", +1)
+ << MatchTable::Comment("On fail goto")
+ << MatchTable::JumpTarget(LabelID)
+ << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
+ << MatchTable::LineBreak;
+
+ if (!RequiredFeatures.empty()) {
+ Table << MatchTable::Opcode("GIM_CheckFeatures")
+ << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
+ << MatchTable::LineBreak;
+ }
+
+ Matchers.front()->emitPredicateOpcodes(Table, *this);
+
+ // We must also check if it's safe to fold the matched instructions.
+ if (InsnVariableIDs.size() >= 2) {
+ // Invert the map to create stable ordering (by var names)
+ SmallVector<unsigned, 2> InsnIDs;
+ for (const auto &Pair : InsnVariableIDs) {
+ // Skip the root node since it isn't moving anywhere. Everything else is
+ // sinking to meet it.
+ if (Pair.first == Matchers.front().get())
+ continue;
+
+ InsnIDs.push_back(Pair.second);
+ }
+ llvm::sort(InsnIDs);
+
+ for (const auto &InsnID : InsnIDs) {
+ // Reject the difficult cases until we have a more accurate check.
+ Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
+ << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
+ << MatchTable::LineBreak;
+
+ // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
+ // account for unsafe cases.
+ //
+ // Example:
+ // MI1--> %0 = ...
+ // %1 = ... %0
+ // MI0--> %2 = ... %0
+ // It's not safe to erase MI1. We currently handle this by not
+ // erasing %0 (even when it's dead).
+ //
+ // Example:
+ // MI1--> %0 = load volatile @a
+ // %1 = load volatile @a
+ // MI0--> %2 = ... %0
+ // It's not safe to sink %0's def past %1. We currently handle
+ // this by rejecting all loads.
+ //
+ // Example:
+ // MI1--> %0 = load @a
+ // %1 = store @a
+ // MI0--> %2 = ... %0
+ // It's not safe to sink %0's def past %1. We currently handle
+ // this by rejecting all loads.
+ //
+ // Example:
+ // G_CONDBR %cond, @BB1
+ // BB0:
+ // MI1--> %0 = load @a
+ // G_BR @BB1
+ // BB1:
+ // MI0--> %2 = ... %0
+ // It's not always safe to sink %0 across control flow. In this
+ // case it may introduce a memory fault. We currentl handle this
+ // by rejecting all loads.
+ }
+ }
+
+ for (const auto &PM : EpilogueMatchers)
+ PM->emitPredicateOpcodes(Table, *this);
+
+ for (const auto &MA : Actions)
+ MA->emitActionOpcodes(Table, *this);
+
+ if (Table.isWithCoverage())
+ Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
+ << MatchTable::LineBreak;
+ else
+ Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
+ << MatchTable::LineBreak;
+
+ Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
+ << MatchTable::Label(LabelID);
+ ++NumPatternEmitted;
+}
+
+bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
+ // Rules involving more match roots have higher priority.
+ if (Matchers.size() > B.Matchers.size())
+ return true;
+ if (Matchers.size() < B.Matchers.size())
+ return false;
+
+ for (const auto &Matcher : zip(Matchers, B.Matchers)) {
+ if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
+ return true;
+ if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
+ return false;
+ }
+
+ return false;
+}
+
+unsigned RuleMatcher::countRendererFns() const {
+ return std::accumulate(
+ Matchers.begin(), Matchers.end(), 0,
+ [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
+ return A + Matcher->countRendererFns();
+ });
+}
+
+bool OperandPredicateMatcher::isHigherPriorityThan(
+ const OperandPredicateMatcher &B) const {
+ // Generally speaking, an instruction is more important than an Int or a
+ // LiteralInt because it can cover more nodes but theres an exception to
+ // this. G_CONSTANT's are less important than either of those two because they
+ // are more permissive.
+
+ const InstructionOperandMatcher *AOM =
+ dyn_cast<InstructionOperandMatcher>(this);
+ const InstructionOperandMatcher *BOM =
+ dyn_cast<InstructionOperandMatcher>(&B);
+ bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
+ bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
+
+ if (AOM && BOM) {
+ // The relative priorities between a G_CONSTANT and any other instruction
+ // don't actually matter but this code is needed to ensure a strict weak
+ // ordering. This is particularly important on Windows where the rules will
+ // be incorrectly sorted without it.
+ if (AIsConstantInsn != BIsConstantInsn)
+ return AIsConstantInsn < BIsConstantInsn;
+ return false;
+ }
+
+ if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
+ return false;
+ if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
+ return true;
+
+ return Kind < B.Kind;
+}
+
+void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
+ RuleMatcher &Rule) const {
+ const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
+ unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
+ assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
+
+ Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
+ << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
+ << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
+ << MatchTable::Comment("OtherMI")
+ << MatchTable::IntValue(OtherInsnVarID)
+ << MatchTable::Comment("OtherOpIdx")
+ << MatchTable::IntValue(OtherOM.getOpIdx())
+ << MatchTable::LineBreak;
+}
+
+//===- GlobalISelEmitter class --------------------------------------------===//
+
+class GlobalISelEmitter {
+public:
+ explicit GlobalISelEmitter(RecordKeeper &RK);
+ void run(raw_ostream &OS);
+
+private:
+ const RecordKeeper &RK;
+ const CodeGenDAGPatterns CGP;
+ const CodeGenTarget &Target;
+ CodeGenRegBank CGRegs;
+
+ /// Keep track of the equivalence between SDNodes and Instruction by mapping
+ /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
+ /// check for attributes on the relation such as CheckMMOIsNonAtomic.
+ /// This is defined using 'GINodeEquiv' in the target description.
+ DenseMap<Record *, Record *> NodeEquivs;
+
+ /// Keep track of the equivalence between ComplexPattern's and
+ /// GIComplexOperandMatcher. Map entries are specified by subclassing
+ /// GIComplexPatternEquiv.
+ DenseMap<const Record *, const Record *> ComplexPatternEquivs;
+
+ /// Keep track of the equivalence between SDNodeXForm's and
+ /// GICustomOperandRenderer. Map entries are specified by subclassing
+ /// GISDNodeXFormEquiv.
+ DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
+
+ /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
+ /// This adds compatibility for RuleMatchers to use this for ordering rules.
+ DenseMap<uint64_t, int> RuleMatcherScores;
+
+ // Map of predicates to their subtarget features.
+ SubtargetFeatureInfoMap SubtargetFeatures;
+
+ // Rule coverage information.
+ Optional<CodeGenCoverage> RuleCoverage;
+
+ void gatherOpcodeValues();
+ void gatherTypeIDValues();
+ void gatherNodeEquivs();
+
+ Record *findNodeEquiv(Record *N) const;
+ const CodeGenInstruction *getEquivNode(Record &Equiv,
+ const TreePatternNode *N) const;
+
+ Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
+ Expected<InstructionMatcher &>
+ createAndImportSelDAGMatcher(RuleMatcher &Rule,
+ InstructionMatcher &InsnMatcher,
+ const TreePatternNode *Src, unsigned &TempOpIdx);
+ Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
+ unsigned &TempOpIdx) const;
+ Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
+ const TreePatternNode *SrcChild,
+ bool OperandIsAPointer, unsigned OpIdx,
+ unsigned &TempOpIdx);
+
+ Expected<BuildMIAction &> createAndImportInstructionRenderer(
+ RuleMatcher &M, InstructionMatcher &InsnMatcher,
+ const TreePatternNode *Src, const TreePatternNode *Dst);
+ Expected<action_iterator> createAndImportSubInstructionRenderer(
+ action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
+ unsigned TempReg);
+ Expected<action_iterator>
+ createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
+ const TreePatternNode *Dst);
+ void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
+
+ Expected<action_iterator>
+ importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
+ BuildMIAction &DstMIBuilder,
+ const llvm::TreePatternNode *Dst);
+ Expected<action_iterator>
+ importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
+ BuildMIAction &DstMIBuilder,
+ TreePatternNode *DstChild);
+ Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
+ BuildMIAction &DstMIBuilder,
+ DagInit *DefaultOps) const;
+ Error
+ importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
+ const std::vector<Record *> &ImplicitDefs) const;
+
+ void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
+ StringRef TypeIdentifier, StringRef ArgType,
+ StringRef ArgName, StringRef AdditionalDeclarations,
+ std::function<bool(const Record *R)> Filter);
+ void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
+ StringRef ArgType,
+ std::function<bool(const Record *R)> Filter);
+ void emitMIPredicateFns(raw_ostream &OS);
+
+ /// Analyze pattern \p P, returning a matcher for it if possible.
+ /// Otherwise, return an Error explaining why we don't support it.
+ Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
+
+ void declareSubtargetFeature(Record *Predicate);
+
+ MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
+ bool WithCoverage);
+
+ /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
+ /// CodeGenRegisterClass will support the CodeGenRegisterClass of
+ /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
+ /// If no register class is found, return None.
+ Optional<const CodeGenRegisterClass *>
+ inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
+ TreePatternNode *SuperRegNode,
+ TreePatternNode *SubRegIdxNode);
+ Optional<CodeGenSubRegIndex *>
+ inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
+
+ /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
+ /// Return None if no such class exists.
+ Optional<const CodeGenRegisterClass *>
+ inferSuperRegisterClass(const TypeSetByHwMode &Ty,
+ TreePatternNode *SubRegIdxNode);
+
+ /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
+ Optional<const CodeGenRegisterClass *>
+ getRegClassFromLeaf(TreePatternNode *Leaf);
+
+ /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
+ /// otherwise.
+ Optional<const CodeGenRegisterClass *>
+ inferRegClassFromPattern(TreePatternNode *N);
+
+public:
+ /// Takes a sequence of \p Rules and group them based on the predicates
+ /// they share. \p MatcherStorage is used as a memory container
+ /// for the group that are created as part of this process.
+ ///
+ /// What this optimization does looks like if GroupT = GroupMatcher:
+ /// Output without optimization:
+ /// \verbatim
+ /// # R1
+ /// # predicate A
+ /// # predicate B
+ /// ...
+ /// # R2
+ /// # predicate A // <-- effectively this is going to be checked twice.
+ /// // Once in R1 and once in R2.
+ /// # predicate C
+ /// \endverbatim
+ /// Output with optimization:
+ /// \verbatim
+ /// # Group1_2
+ /// # predicate A // <-- Check is now shared.
+ /// # R1
+ /// # predicate B
+ /// # R2
+ /// # predicate C
+ /// \endverbatim
+ template <class GroupT>
+ static std::vector<Matcher *> optimizeRules(
+ ArrayRef<Matcher *> Rules,
+ std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
+};
+
+void GlobalISelEmitter::gatherOpcodeValues() {
+ InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
+}
+
+void GlobalISelEmitter::gatherTypeIDValues() {
+ LLTOperandMatcher::initTypeIDValuesMap();
+}
+
+void GlobalISelEmitter::gatherNodeEquivs() {
+ assert(NodeEquivs.empty());
+ for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
+ NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
+
+ assert(ComplexPatternEquivs.empty());
+ for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
+ Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
+ if (!SelDAGEquiv)
+ continue;
+ ComplexPatternEquivs[SelDAGEquiv] = Equiv;
+ }
+
+ assert(SDNodeXFormEquivs.empty());
+ for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
+ Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
+ if (!SelDAGEquiv)
+ continue;
+ SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
+ }
+}
+
+Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
+ return NodeEquivs.lookup(N);
+}
+
+const CodeGenInstruction *
+GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
+ if (N->getNumChildren() >= 1) {
+ // setcc operation maps to two different G_* instructions based on the type.
+ if (!Equiv.isValueUnset("IfFloatingPoint") &&
+ MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
+ return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
+ }
+
+ for (const TreePredicateCall &Call : N->getPredicateCalls()) {
+ const TreePredicateFn &Predicate = Call.Fn;
+ if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
+ Predicate.isSignExtLoad())
+ return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
+ if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
+ Predicate.isZeroExtLoad())
+ return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
+ }
+
+ return &Target.getInstruction(Equiv.getValueAsDef("I"));
+}
+
+GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
+ : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
+ CGRegs(RK, Target.getHwModes()) {}
+
+//===- Emitter ------------------------------------------------------------===//
+
+Error
+GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
+ ArrayRef<Predicate> Predicates) {
+ for (const Predicate &P : Predicates) {
+ if (!P.Def || P.getCondString().empty())
+ continue;
+ declareSubtargetFeature(P.Def);
+ M.addRequiredFeature(P.Def);
+ }
+
+ return Error::success();
+}
+
+Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
+ RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
+ const TreePatternNode *Src, unsigned &TempOpIdx) {
+ Record *SrcGIEquivOrNull = nullptr;
+ const CodeGenInstruction *SrcGIOrNull = nullptr;
+
+ // Start with the defined operands (i.e., the results of the root operator).
+ if (Src->getExtTypes().size() > 1)
+ return failedImport("Src pattern has multiple results");
+
+ if (Src->isLeaf()) {
+ Init *SrcInit = Src->getLeafValue();
+ if (isa<IntInit>(SrcInit)) {
+ InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
+ &Target.getInstruction(RK.getDef("G_CONSTANT")));
+ } else
+ return failedImport(
+ "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
+ } else {
+ SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
+ if (!SrcGIEquivOrNull)
+ return failedImport("Pattern operator lacks an equivalent Instruction" +
+ explainOperator(Src->getOperator()));
+ SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
+
+ // The operators look good: match the opcode
+ InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
+ }
+
+ unsigned OpIdx = 0;
+ for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
+ // Results don't have a name unless they are the root node. The caller will
+ // set the name if appropriate.
+ OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
+ if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
+ return failedImport(toString(std::move(Error)) +
+ " for result of Src pattern operator");
+ }
+
+ for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
+ const TreePredicateFn &Predicate = Call.Fn;
+ if (Predicate.isAlwaysTrue())
+ continue;
+
+ if (Predicate.isImmediatePattern()) {
+ InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
+ continue;
+ }
+
+ // An address space check is needed in all contexts if there is one.
+ if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
+ if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
+ SmallVector<unsigned, 4> ParsedAddrSpaces;
+
+ for (Init *Val : AddrSpaces->getValues()) {
+ IntInit *IntVal = dyn_cast<IntInit>(Val);
+ if (!IntVal)
+ return failedImport("Address space is not an integer");
+ ParsedAddrSpaces.push_back(IntVal->getValue());
+ }
+
+ if (!ParsedAddrSpaces.empty()) {
+ InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
+ 0, ParsedAddrSpaces);
+ }
+ }
+
+ int64_t MinAlign = Predicate.getMinAlignment();
+ if (MinAlign > 0)
+ InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
+ }
+
+ // G_LOAD is used for both non-extending and any-extending loads.
+ if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
+ InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
+ 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
+ continue;
+ }
+ if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
+ InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
+ 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
+ continue;
+ }
+
+ if (Predicate.isStore()) {
+ if (Predicate.isTruncStore()) {
+ // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
+ InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
+ 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
+ continue;
+ }
+ if (Predicate.isNonTruncStore()) {
+ // We need to check the sizes match here otherwise we could incorrectly
+ // match truncating stores with non-truncating ones.
+ InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
+ 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
+ }
+ }
+
+ // No check required. We already did it by swapping the opcode.
+ if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
+ Predicate.isSignExtLoad())
+ continue;
+
+ // No check required. We already did it by swapping the opcode.
+ if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
+ Predicate.isZeroExtLoad())
+ continue;
+
+ // No check required. G_STORE by itself is a non-extending store.
+ if (Predicate.isNonTruncStore())
+ continue;
+
+ if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
+ if (Predicate.getMemoryVT() != nullptr) {
+ Optional<LLTCodeGen> MemTyOrNone =
+ MVTToLLT(getValueType(Predicate.getMemoryVT()));
+
+ if (!MemTyOrNone)
+ return failedImport("MemVT could not be converted to LLT");
+
+ // MMO's work in bytes so we must take care of unusual types like i1
+ // don't round down.
+ unsigned MemSizeInBits =
+ llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
+
+ InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
+ 0, MemSizeInBits / 8);
+ continue;
+ }
+ }
+
+ if (Predicate.isLoad() || Predicate.isStore()) {
+ // No check required. A G_LOAD/G_STORE is an unindexed load.
+ if (Predicate.isUnindexed())
+ continue;
+ }
+
+ if (Predicate.isAtomic()) {
+ if (Predicate.isAtomicOrderingMonotonic()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "Monotonic");
+ continue;
+ }
+ if (Predicate.isAtomicOrderingAcquire()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
+ continue;
+ }
+ if (Predicate.isAtomicOrderingRelease()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
+ continue;
+ }
+ if (Predicate.isAtomicOrderingAcquireRelease()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "AcquireRelease");
+ continue;
+ }
+ if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "SequentiallyConsistent");
+ continue;
+ }
+
+ if (Predicate.isAtomicOrderingAcquireOrStronger()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
+ continue;
+ }
+ if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
+ continue;
+ }
+
+ if (Predicate.isAtomicOrderingReleaseOrStronger()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
+ continue;
+ }
+ if (Predicate.isAtomicOrderingWeakerThanRelease()) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
+ continue;
+ }
+ }
+
+ if (Predicate.hasGISelPredicateCode()) {
+ InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
+ continue;
+ }
+
+ return failedImport("Src pattern child has predicate (" +
+ explainPredicates(Src) + ")");
+ }
+ if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
+ else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
+ InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
+ "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
+ }
+
+ if (Src->isLeaf()) {
+ Init *SrcInit = Src->getLeafValue();
+ if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
+ OperandMatcher &OM =
+ InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
+ OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
+ } else
+ return failedImport(
+ "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
+ } else {
+ assert(SrcGIOrNull &&
+ "Expected to have already found an equivalent Instruction");
+ if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
+ SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
+ // imm/fpimm still have operands but we don't need to do anything with it
+ // here since we don't support ImmLeaf predicates yet. However, we still
+ // need to note the hidden operand to get GIM_CheckNumOperands correct.
+ InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
+ return InsnMatcher;
+ }
+
+ // Special case because the operand order is changed from setcc. The
+ // predicate operand needs to be swapped from the last operand to the first
+ // source.
+
+ unsigned NumChildren = Src->getNumChildren();
+ bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
+
+ if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
+ TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
+ if (SrcChild->isLeaf()) {
+ DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
+ Record *CCDef = DI ? DI->getDef() : nullptr;
+ if (!CCDef || !CCDef->isSubClassOf("CondCode"))
+ return failedImport("Unable to handle CondCode");
+
+ OperandMatcher &OM =
+ InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
+ StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
+ CCDef->getValueAsString("ICmpPredicate");
+
+ if (!PredType.empty()) {
+ OM.addPredicate<CmpPredicateOperandMatcher>(PredType);
+ // Process the other 2 operands normally.
+ --NumChildren;
+ }
+ }
+ }
+
+ // Match the used operands (i.e. the children of the operator).
+ bool IsIntrinsic =
+ SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
+ SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
+ const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
+ if (IsIntrinsic && !II)
+ return failedImport("Expected IntInit containing intrinsic ID)");
+
+ for (unsigned i = 0; i != NumChildren; ++i) {
+ TreePatternNode *SrcChild = Src->getChild(i);
+
+ // SelectionDAG allows pointers to be represented with iN since it doesn't
+ // distinguish between pointers and integers but they are different types in GlobalISel.
+ // Coerce integers to pointers to address space 0 if the context indicates a pointer.
+ bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
+
+ if (IsIntrinsic) {
+ // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
+ // following the defs is an intrinsic ID.
+ if (i == 0) {
+ OperandMatcher &OM =
+ InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
+ OM.addPredicate<IntrinsicIDOperandMatcher>(II);
+ continue;
+ }
+
+ // We have to check intrinsics for llvm_anyptr_ty parameters.
+ //
+ // Note that we have to look at the i-1th parameter, because we don't
+ // have the intrinsic ID in the intrinsic's parameter list.
+ OperandIsAPointer |= II->isParamAPointer(i - 1);
+ }
+
+ if (auto Error =
+ importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
+ OpIdx++, TempOpIdx))
+ return std::move(Error);
+ }
+ }
+
+ return InsnMatcher;
+}
+
+Error GlobalISelEmitter::importComplexPatternOperandMatcher(
+ OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
+ const auto &ComplexPattern = ComplexPatternEquivs.find(R);
+ if (ComplexPattern == ComplexPatternEquivs.end())
+ return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
+ ") not mapped to GlobalISel");
+
+ OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
+ TempOpIdx++;
+ return Error::success();
+}
+
+// Get the name to use for a pattern operand. For an anonymous physical register
+// input, this should use the register name.
+static StringRef getSrcChildName(const TreePatternNode *SrcChild,
+ Record *&PhysReg) {
+ StringRef SrcChildName = SrcChild->getName();
+ if (SrcChildName.empty() && SrcChild->isLeaf()) {
+ if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
+ auto *ChildRec = ChildDefInit->getDef();
+ if (ChildRec->isSubClassOf("Register")) {
+ SrcChildName = ChildRec->getName();
+ PhysReg = ChildRec;
+ }
+ }
+ }
+
+ return SrcChildName;
+}
+
+Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
+ InstructionMatcher &InsnMatcher,
+ const TreePatternNode *SrcChild,
+ bool OperandIsAPointer,
+ unsigned OpIdx,
+ unsigned &TempOpIdx) {
+
+ Record *PhysReg = nullptr;
+ StringRef SrcChildName = getSrcChildName(SrcChild, PhysReg);
+
+ OperandMatcher &OM = PhysReg ?
+ InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) :
+ InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
+ if (OM.isSameAsAnotherOperand())
+ return Error::success();
+
+ ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
+ if (ChildTypes.size() != 1)
+ return failedImport("Src pattern child has multiple results");
+
+ // Check MBB's before the type check since they are not a known type.
+ if (!SrcChild->isLeaf()) {
+ if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
+ auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
+ if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
+ OM.addPredicate<MBBOperandMatcher>();
+ return Error::success();
+ }
+ if (SrcChild->getOperator()->getName() == "timm") {
+ OM.addPredicate<ImmOperandMatcher>();
+ return Error::success();
+ }
+ }
+ }
+
+ if (auto Error =
+ OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
+ return failedImport(toString(std::move(Error)) + " for Src operand (" +
+ to_string(*SrcChild) + ")");
+
+ // Check for nested instructions.
+ if (!SrcChild->isLeaf()) {
+ if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
+ // When a ComplexPattern is used as an operator, it should do the same
+ // thing as when used as a leaf. However, the children of the operator
+ // name the sub-operands that make up the complex operand and we must
+ // prepare to reference them in the renderer too.
+ unsigned RendererID = TempOpIdx;
+ if (auto Error = importComplexPatternOperandMatcher(
+ OM, SrcChild->getOperator(), TempOpIdx))
+ return Error;
+
+ for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
+ auto *SubOperand = SrcChild->getChild(i);
+ if (!SubOperand->getName().empty()) {
+ if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(),
+ SrcChild->getOperator(),
+ RendererID, i))
+ return Error;
+ }
+ }
+
+ return Error::success();
+ }
+
+ auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
+ InsnMatcher.getRuleMatcher(), SrcChild->getName());
+ if (!MaybeInsnOperand.hasValue()) {
+ // This isn't strictly true. If the user were to provide exactly the same
+ // matchers as the original operand then we could allow it. However, it's
+ // simpler to not permit the redundant specification.
+ return failedImport("Nested instruction cannot be the same as another operand");
+ }
+
+ // Map the node to a gMIR instruction.
+ InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
+ auto InsnMatcherOrError = createAndImportSelDAGMatcher(
+ Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
+ if (auto Error = InsnMatcherOrError.takeError())
+ return Error;
+
+ return Error::success();
+ }
+
+ if (SrcChild->hasAnyPredicate())
+ return failedImport("Src pattern child has unsupported predicate");
+
+ // Check for constant immediates.
+ if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
+ OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
+ return Error::success();
+ }
+
+ // Check for def's like register classes or ComplexPattern's.
+ if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
+ auto *ChildRec = ChildDefInit->getDef();
+
+ // Check for register classes.
+ if (ChildRec->isSubClassOf("RegisterClass") ||
+ ChildRec->isSubClassOf("RegisterOperand")) {
+ OM.addPredicate<RegisterBankOperandMatcher>(
+ Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
+ return Error::success();
+ }
+
+ if (ChildRec->isSubClassOf("Register")) {
+ // This just be emitted as a copy to the specific register.
+ ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
+ const CodeGenRegisterClass *RC
+ = CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
+ if (!RC) {
+ return failedImport(
+ "Could not determine physical register class of pattern source");
+ }
+
+ OM.addPredicate<RegisterBankOperandMatcher>(*RC);
+ return Error::success();
+ }
+
+ // Check for ValueType.
+ if (ChildRec->isSubClassOf("ValueType")) {
+ // We already added a type check as standard practice so this doesn't need
+ // to do anything.
+ return Error::success();
+ }
+
+ // Check for ComplexPattern's.
+ if (ChildRec->isSubClassOf("ComplexPattern"))
+ return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
+
+ if (ChildRec->isSubClassOf("ImmLeaf")) {
+ return failedImport(
+ "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
+ }
+
+ return failedImport(
+ "Src pattern child def is an unsupported tablegen class");
+ }
+
+ return failedImport("Src pattern child is an unsupported kind");
+}
+
+Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
+ action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
+ TreePatternNode *DstChild) {
+
+ const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
+ if (SubOperand.hasValue()) {
+ DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
+ *std::get<0>(*SubOperand), DstChild->getName(),
+ std::get<1>(*SubOperand), std::get<2>(*SubOperand));
+ return InsertPt;
+ }
+
+ if (!DstChild->isLeaf()) {
+
+ if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
+ auto Child = DstChild->getChild(0);
+ auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
+ if (I != SDNodeXFormEquivs.end()) {
+ DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
+ return InsertPt;
+ }
+ return failedImport("SDNodeXForm " + Child->getName() +
+ " has no custom renderer");
+ }
+
+ // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
+ // inline, but in MI it's just another operand.
+ if (DstChild->getOperator()->isSubClassOf("SDNode")) {
+ auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
+ if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
+ DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
+ return InsertPt;
+ }
+ }
+
+ // Similarly, imm is an operator in TreePatternNode's view but must be
+ // rendered as operands.
+ // FIXME: The target should be able to choose sign-extended when appropriate
+ // (e.g. on Mips).
+ if (DstChild->getOperator()->getName() == "timm") {
+ DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
+ return InsertPt;
+ } else if (DstChild->getOperator()->getName() == "imm") {
+ DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
+ return InsertPt;
+ } else if (DstChild->getOperator()->getName() == "fpimm") {
+ DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
+ DstChild->getName());
+ return InsertPt;
+ }
+
+ if (DstChild->getOperator()->isSubClassOf("Instruction")) {
+ ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
+ if (ChildTypes.size() != 1)
+ return failedImport("Dst pattern child has multiple results");
+
+ Optional<LLTCodeGen> OpTyOrNone = None;
+ if (ChildTypes.front().isMachineValueType())
+ OpTyOrNone =
+ MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
+ if (!OpTyOrNone)
+ return failedImport("Dst operand has an unsupported type");
+
+ unsigned TempRegID = Rule.allocateTempRegID();
+ InsertPt = Rule.insertAction<MakeTempRegisterAction>(
+ InsertPt, OpTyOrNone.getValue(), TempRegID);
+ DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
+
+ auto InsertPtOrError = createAndImportSubInstructionRenderer(
+ ++InsertPt, Rule, DstChild, TempRegID);
+ if (auto Error = InsertPtOrError.takeError())
+ return std::move(Error);
+ return InsertPtOrError.get();
+ }
+
+ return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
+ }
+
+ // It could be a specific immediate in which case we should just check for
+ // that immediate.
+ if (const IntInit *ChildIntInit =
+ dyn_cast<IntInit>(DstChild->getLeafValue())) {
+ DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
+ return InsertPt;
+ }
+
+ // Otherwise, we're looking for a bog-standard RegisterClass operand.
+ if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
+ auto *ChildRec = ChildDefInit->getDef();
+
+ ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
+ if (ChildTypes.size() != 1)
+ return failedImport("Dst pattern child has multiple results");
+
+ Optional<LLTCodeGen> OpTyOrNone = None;
+ if (ChildTypes.front().isMachineValueType())
+ OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
+ if (!OpTyOrNone)
+ return failedImport("Dst operand has an unsupported type");
+
+ if (ChildRec->isSubClassOf("Register")) {
+ DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
+ return InsertPt;
+ }
+
+ if (ChildRec->isSubClassOf("RegisterClass") ||
+ ChildRec->isSubClassOf("RegisterOperand") ||
+ ChildRec->isSubClassOf("ValueType")) {
+ if (ChildRec->isSubClassOf("RegisterOperand") &&
+ !ChildRec->isValueUnset("GIZeroRegister")) {
+ DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
+ DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
+ return InsertPt;
+ }
+
+ DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
+ return InsertPt;
+ }
+
+ if (ChildRec->isSubClassOf("SubRegIndex")) {
+ CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
+ DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
+ return InsertPt;
+ }
+
+ if (ChildRec->isSubClassOf("ComplexPattern")) {
+ const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
+ if (ComplexPattern == ComplexPatternEquivs.end())
+ return failedImport(
+ "SelectionDAG ComplexPattern not mapped to GlobalISel");
+
+ const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
+ DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
+ *ComplexPattern->second, DstChild->getName(),
+ OM.getAllocatedTemporariesBaseID());
+ return InsertPt;
+ }
+
+ return failedImport(
+ "Dst pattern child def is an unsupported tablegen class");
+ }
+
+ return failedImport("Dst pattern child is an unsupported kind");
+}
+
+Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
+ RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
+ const TreePatternNode *Dst) {
+ auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
+ if (auto Error = InsertPtOrError.takeError())
+ return std::move(Error);
+
+ action_iterator InsertPt = InsertPtOrError.get();
+ BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
+
+ for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
+ InsertPt = M.insertAction<BuildMIAction>(
+ InsertPt, M.allocateOutputInsnID(),
+ &Target.getInstruction(RK.getDef("COPY")));
+ BuildMIAction &CopyToPhysRegMIBuilder =
+ *static_cast<BuildMIAction *>(InsertPt->get());
+ CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(PhysInput.first,
+ true);
+ CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
+ }
+
+ importExplicitDefRenderers(DstMIBuilder);
+
+ if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
+ .takeError())
+ return std::move(Error);
+
+ return DstMIBuilder;
+}
+
+Expected<action_iterator>
+GlobalISelEmitter::createAndImportSubInstructionRenderer(
+ const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
+ unsigned TempRegID) {
+ auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
+
+ // TODO: Assert there's exactly one result.
+
+ if (auto Error = InsertPtOrError.takeError())
+ return std::move(Error);
+
+ BuildMIAction &DstMIBuilder =
+ *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
+
+ // Assign the result to TempReg.
+ DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
+
+ InsertPtOrError =
+ importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
+ if (auto Error = InsertPtOrError.takeError())
+ return std::move(Error);
+
+ // We need to make sure that when we import an INSERT_SUBREG as a
+ // subinstruction that it ends up being constrained to the correct super
+ // register and subregister classes.
+ auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
+ if (OpName == "INSERT_SUBREG") {
+ auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
+ if (!SubClass)
+ return failedImport(
+ "Cannot infer register class from INSERT_SUBREG operand #1");
+ Optional<const CodeGenRegisterClass *> SuperClass =
+ inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
+ Dst->getChild(2));
+ if (!SuperClass)
+ return failedImport(
+ "Cannot infer register class for INSERT_SUBREG operand #0");
+ // The destination and the super register source of an INSERT_SUBREG must
+ // be the same register class.
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
+ return InsertPtOrError.get();
+ }
+
+ if (OpName == "EXTRACT_SUBREG") {
+ // EXTRACT_SUBREG selects into a subregister COPY but unlike most
+ // instructions, the result register class is controlled by the
+ // subregisters of the operand. As a result, we must constrain the result
+ // class rather than check that it's already the right one.
+ auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
+ if (!SuperClass)
+ return failedImport(
+ "Cannot infer register class from EXTRACT_SUBREG operand #0");
+
+ auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
+ if (!SubIdx)
+ return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
+
+ const auto &SrcRCDstRCPair =
+ (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
+ assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
+
+ // We're done with this pattern! It's eligible for GISel emission; return
+ // it.
+ return InsertPtOrError.get();
+ }
+
+ // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
+ // subinstruction.
+ if (OpName == "SUBREG_TO_REG") {
+ auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
+ if (!SubClass)
+ return failedImport(
+ "Cannot infer register class from SUBREG_TO_REG child #1");
+ auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
+ Dst->getChild(2));
+ if (!SuperClass)
+ return failedImport(
+ "Cannot infer register class for SUBREG_TO_REG operand #0");
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
+ M.insertAction<ConstrainOperandToRegClassAction>(
+ InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
+ return InsertPtOrError.get();
+ }
+
+ M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
+ DstMIBuilder.getInsnID());
+ return InsertPtOrError.get();
+}
+
+Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
+ action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
+ Record *DstOp = Dst->getOperator();
+ if (!DstOp->isSubClassOf("Instruction")) {
+ if (DstOp->isSubClassOf("ValueType"))
+ return failedImport(
+ "Pattern operator isn't an instruction (it's a ValueType)");
+ return failedImport("Pattern operator isn't an instruction");
+ }
+ CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
+
+ // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
+ // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
+ StringRef Name = DstI->TheDef->getName();
+ if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
+ DstI = &Target.getInstruction(RK.getDef("COPY"));
+
+ return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
+ DstI);
+}
+
+void GlobalISelEmitter::importExplicitDefRenderers(
+ BuildMIAction &DstMIBuilder) {
+ const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
+ for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
+ const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
+ DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
+ }
+}
+
+Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
+ action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
+ const llvm::TreePatternNode *Dst) {
+ const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
+ CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
+
+ StringRef Name = OrigDstI->TheDef->getName();
+ unsigned ExpectedDstINumUses = Dst->getNumChildren();
+
+ // EXTRACT_SUBREG needs to use a subregister COPY.
+ if (Name == "EXTRACT_SUBREG") {
+ if (!Dst->getChild(0)->isLeaf())
+ return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
+
+ if (DefInit *SubRegInit =
+ dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
+ Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
+ if (!RCDef)
+ return failedImport("EXTRACT_SUBREG child #0 could not "
+ "be coerced to a register class");
+
+ CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
+ CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
+
+ const auto &SrcRCDstRCPair =
+ RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
+ if (SrcRCDstRCPair.hasValue()) {
+ assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
+ if (SrcRCDstRCPair->first != RC)
+ return failedImport("EXTRACT_SUBREG requires an additional COPY");
+ }
+
+ DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
+ SubIdx);
+ return InsertPt;
+ }
+
+ return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
+ }
+
+ if (Name == "REG_SEQUENCE") {
+ if (!Dst->getChild(0)->isLeaf())
+ return failedImport("REG_SEQUENCE child #0 is not a leaf");
+
+ Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
+ if (!RCDef)
+ return failedImport("REG_SEQUENCE child #0 could not "
+ "be coerced to a register class");
+
+ if ((ExpectedDstINumUses - 1) % 2 != 0)
+ return failedImport("Malformed REG_SEQUENCE");
+
+ for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
+ TreePatternNode *ValChild = Dst->getChild(I);
+ TreePatternNode *SubRegChild = Dst->getChild(I + 1);
+
+ if (DefInit *SubRegInit =
+ dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
+ CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
+
+ auto InsertPtOrError =
+ importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
+ if (auto Error = InsertPtOrError.takeError())
+ return std::move(Error);
+ InsertPt = InsertPtOrError.get();
+ DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
+ }
+ }
+
+ return InsertPt;
+ }
+
+ // Render the explicit uses.
+ unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
+ if (Name == "COPY_TO_REGCLASS") {
+ DstINumUses--; // Ignore the class constraint.
+ ExpectedDstINumUses--;
+ }
+
+ unsigned Child = 0;
+ unsigned NumDefaultOps = 0;
+ for (unsigned I = 0; I != DstINumUses; ++I) {
+ const CGIOperandList::OperandInfo &DstIOperand =
+ DstI->Operands[DstI->Operands.NumDefs + I];
+
+ // If the operand has default values, introduce them now.
+ // FIXME: Until we have a decent test case that dictates we should do
+ // otherwise, we're going to assume that operands with default values cannot
+ // be specified in the patterns. Therefore, adding them will not cause us to
+ // end up with too many rendered operands.
+ if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
+ DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
+ if (auto Error = importDefaultOperandRenderers(
+ InsertPt, M, DstMIBuilder, DefaultOps))
+ return std::move(Error);
+ ++NumDefaultOps;
+ continue;
+ }
+
+ auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
+ Dst->getChild(Child));
+ if (auto Error = InsertPtOrError.takeError())
+ return std::move(Error);
+ InsertPt = InsertPtOrError.get();
+ ++Child;
+ }
+
+ if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
+ return failedImport("Expected " + llvm::to_string(DstINumUses) +
+ " used operands but found " +
+ llvm::to_string(ExpectedDstINumUses) +
+ " explicit ones and " + llvm::to_string(NumDefaultOps) +
+ " default ones");
+
+ return InsertPt;
+}
+
+Error GlobalISelEmitter::importDefaultOperandRenderers(
+ action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
+ DagInit *DefaultOps) const {
+ for (const auto *DefaultOp : DefaultOps->getArgs()) {
+ Optional<LLTCodeGen> OpTyOrNone = None;
+
+ // Look through ValueType operators.
+ if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
+ if (const DefInit *DefaultDagOperator =
+ dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
+ if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
+ OpTyOrNone = MVTToLLT(getValueType(
+ DefaultDagOperator->getDef()));
+ DefaultOp = DefaultDagOp->getArg(0);
+ }
+ }
+ }
+
+ if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
+ auto Def = DefaultDefOp->getDef();
+ if (Def->getName() == "undef_tied_input") {
+ unsigned TempRegID = M.allocateTempRegID();
+ M.insertAction<MakeTempRegisterAction>(
+ InsertPt, OpTyOrNone.getValue(), TempRegID);
+ InsertPt = M.insertAction<BuildMIAction>(
+ InsertPt, M.allocateOutputInsnID(),
+ &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
+ BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
+ InsertPt->get());
+ IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
+ DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
+ } else {
+ DstMIBuilder.addRenderer<AddRegisterRenderer>(Def);
+ }
+ continue;
+ }
+
+ if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
+ DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
+ continue;
+ }
+
+ return failedImport("Could not add default op");
+ }
+
+ return Error::success();
+}
+
+Error GlobalISelEmitter::importImplicitDefRenderers(
+ BuildMIAction &DstMIBuilder,
+ const std::vector<Record *> &ImplicitDefs) const {
+ if (!ImplicitDefs.empty())
+ return failedImport("Pattern defines a physical register");
+ return Error::success();
+}
+
+Optional<const CodeGenRegisterClass *>
+GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
+ assert(Leaf && "Expected node?");
+ assert(Leaf->isLeaf() && "Expected leaf?");
+ Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
+ if (!RCRec)
+ return None;
+ CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
+ if (!RC)
+ return None;
+ return RC;
+}
+
+Optional<const CodeGenRegisterClass *>
+GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
+ if (!N)
+ return None;
+
+ if (N->isLeaf())
+ return getRegClassFromLeaf(N);
+
+ // We don't have a leaf node, so we have to try and infer something. Check
+ // that we have an instruction that we an infer something from.
+
+ // Only handle things that produce a single type.
+ if (N->getNumTypes() != 1)
+ return None;
+ Record *OpRec = N->getOperator();
+
+ // We only want instructions.
+ if (!OpRec->isSubClassOf("Instruction"))
+ return None;
+
+ // Don't want to try and infer things when there could potentially be more
+ // than one candidate register class.
+ auto &Inst = Target.getInstruction(OpRec);
+ if (Inst.Operands.NumDefs > 1)
+ return None;
+
+ // Handle any special-case instructions which we can safely infer register
+ // classes from.
+ StringRef InstName = Inst.TheDef->getName();
+ bool IsRegSequence = InstName == "REG_SEQUENCE";
+ if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
+ // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
+ // has the desired register class as the first child.
+ TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
+ if (!RCChild->isLeaf())
+ return None;
+ return getRegClassFromLeaf(RCChild);
+ }
+
+ // Handle destination record types that we can safely infer a register class
+ // from.
+ const auto &DstIOperand = Inst.Operands[0];
+ Record *DstIOpRec = DstIOperand.Rec;
+ if (DstIOpRec->isSubClassOf("RegisterOperand")) {
+ DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
+ const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
+ return &RC;
+ }
+
+ if (DstIOpRec->isSubClassOf("RegisterClass")) {
+ const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
+ return &RC;
+ }
+
+ return None;
+}
+
+Optional<const CodeGenRegisterClass *>
+GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
+ TreePatternNode *SubRegIdxNode) {
+ assert(SubRegIdxNode && "Expected subregister index node!");
+ // We need a ValueTypeByHwMode for getSuperRegForSubReg.
+ if (!Ty.isValueTypeByHwMode(false))
+ return None;
+ if (!SubRegIdxNode->isLeaf())
+ return None;
+ DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
+ if (!SubRegInit)
+ return None;
+ CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
+
+ // Use the information we found above to find a minimal register class which
+ // supports the subregister and type we want.
+ auto RC =
+ Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx);
+ if (!RC)
+ return None;
+ return *RC;
+}
+
+Optional<const CodeGenRegisterClass *>
+GlobalISelEmitter::inferSuperRegisterClassForNode(
+ const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
+ TreePatternNode *SubRegIdxNode) {
+ assert(SuperRegNode && "Expected super register node!");
+ // Check if we already have a defined register class for the super register
+ // node. If we do, then we should preserve that rather than inferring anything
+ // from the subregister index node. We can assume that whoever wrote the
+ // pattern in the first place made sure that the super register and
+ // subregister are compatible.
+ if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
+ inferRegClassFromPattern(SuperRegNode))
+ return *SuperRegisterClass;
+ return inferSuperRegisterClass(Ty, SubRegIdxNode);
+}
+
+Optional<CodeGenSubRegIndex *>
+GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
+ if (!SubRegIdxNode->isLeaf())
+ return None;
+
+ DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
+ if (!SubRegInit)
+ return None;
+ return CGRegs.getSubRegIdx(SubRegInit->getDef());
+}
+
+Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
+ // Keep track of the matchers and actions to emit.
+ int Score = P.getPatternComplexity(CGP);
+ RuleMatcher M(P.getSrcRecord()->getLoc());
+ RuleMatcherScores[M.getRuleID()] = Score;
+ M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
+ " => " +
+ llvm::to_string(*P.getDstPattern()));
+
+ if (auto Error = importRulePredicates(M, P.getPredicates()))
+ return std::move(Error);
+
+ // Next, analyze the pattern operators.
+ TreePatternNode *Src = P.getSrcPattern();
+ TreePatternNode *Dst = P.getDstPattern();
+
+ // If the root of either pattern isn't a simple operator, ignore it.
+ if (auto Err = isTrivialOperatorNode(Dst))
+ return failedImport("Dst pattern root isn't a trivial operator (" +
+ toString(std::move(Err)) + ")");
+ if (auto Err = isTrivialOperatorNode(Src))
+ return failedImport("Src pattern root isn't a trivial operator (" +
+ toString(std::move(Err)) + ")");
+
+ // The different predicates and matchers created during
+ // addInstructionMatcher use the RuleMatcher M to set up their
+ // instruction ID (InsnVarID) that are going to be used when
+ // M is going to be emitted.
+ // However, the code doing the emission still relies on the IDs
+ // returned during that process by the RuleMatcher when issuing
+ // the recordInsn opcodes.
+ // Because of that:
+ // 1. The order in which we created the predicates
+ // and such must be the same as the order in which we emit them,
+ // and
+ // 2. We need to reset the generation of the IDs in M somewhere between
+ // addInstructionMatcher and emit
+ //
+ // FIXME: Long term, we don't want to have to rely on this implicit
+ // naming being the same. One possible solution would be to have
+ // explicit operator for operation capture and reference those.
+ // The plus side is that it would expose opportunities to share
+ // the capture accross rules. The downside is that it would
+ // introduce a dependency between predicates (captures must happen
+ // before their first use.)
+ InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
+ unsigned TempOpIdx = 0;
+ auto InsnMatcherOrError =
+ createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
+ if (auto Error = InsnMatcherOrError.takeError())
+ return std::move(Error);
+ InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
+
+ if (Dst->isLeaf()) {
+ Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
+
+ const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
+ if (RCDef) {
+ // We need to replace the def and all its uses with the specified
+ // operand. However, we must also insert COPY's wherever needed.
+ // For now, emit a copy and let the register allocator clean up.
+ auto &DstI = Target.getInstruction(RK.getDef("COPY"));
+ const auto &DstIOperand = DstI.Operands[0];
+
+ OperandMatcher &OM0 = InsnMatcher.getOperand(0);
+ OM0.setSymbolicName(DstIOperand.Name);
+ M.defineOperand(OM0.getSymbolicName(), OM0);
+ OM0.addPredicate<RegisterBankOperandMatcher>(RC);
+
+ auto &DstMIBuilder =
+ M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
+ DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
+ DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
+ M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
+
+ // We're done with this pattern! It's eligible for GISel emission; return
+ // it.
+ ++NumPatternImported;
+ return std::move(M);
+ }
+
+ return failedImport("Dst pattern root isn't a known leaf");
+ }
+
+ // Start with the defined operands (i.e., the results of the root operator).
+ Record *DstOp = Dst->getOperator();
+ if (!DstOp->isSubClassOf("Instruction"))
+ return failedImport("Pattern operator isn't an instruction");
+
+ auto &DstI = Target.getInstruction(DstOp);
+ StringRef DstIName = DstI.TheDef->getName();
+
+ if (DstI.Operands.NumDefs != Src->getExtTypes().size())
+ return failedImport("Src pattern results and dst MI defs are different (" +
+ to_string(Src->getExtTypes().size()) + " def(s) vs " +
+ to_string(DstI.Operands.NumDefs) + " def(s))");
+
+ // The root of the match also has constraints on the register bank so that it
+ // matches the result instruction.
+ unsigned OpIdx = 0;
+ for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
+ (void)VTy;
+
+ const auto &DstIOperand = DstI.Operands[OpIdx];
+ Record *DstIOpRec = DstIOperand.Rec;
+ if (DstIName == "COPY_TO_REGCLASS") {
+ DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
+
+ if (DstIOpRec == nullptr)
+ return failedImport(
+ "COPY_TO_REGCLASS operand #1 isn't a register class");
+ } else if (DstIName == "REG_SEQUENCE") {
+ DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
+ if (DstIOpRec == nullptr)
+ return failedImport("REG_SEQUENCE operand #0 isn't a register class");
+ } else if (DstIName == "EXTRACT_SUBREG") {
+ if (!Dst->getChild(0)->isLeaf())
+ return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
+
+ // We can assume that a subregister is in the same bank as it's super
+ // register.
+ DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
+
+ if (DstIOpRec == nullptr)
+ return failedImport("EXTRACT_SUBREG operand #0 isn't a register class");
+ } else if (DstIName == "INSERT_SUBREG") {
+ auto MaybeSuperClass = inferSuperRegisterClassForNode(
+ VTy, Dst->getChild(0), Dst->getChild(2));
+ if (!MaybeSuperClass)
+ return failedImport(
+ "Cannot infer register class for INSERT_SUBREG operand #0");
+ // Move to the next pattern here, because the register class we found
+ // doesn't necessarily have a record associated with it. So, we can't
+ // set DstIOpRec using this.
+ OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
+ OM.setSymbolicName(DstIOperand.Name);
+ M.defineOperand(OM.getSymbolicName(), OM);
+ OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
+ ++OpIdx;
+ continue;
+ } else if (DstIName == "SUBREG_TO_REG") {
+ auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
+ if (!MaybeRegClass)
+ return failedImport(
+ "Cannot infer register class for SUBREG_TO_REG operand #0");
+ OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
+ OM.setSymbolicName(DstIOperand.Name);
+ M.defineOperand(OM.getSymbolicName(), OM);
+ OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
+ ++OpIdx;
+ continue;
+ } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
+ DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
+ else if (!DstIOpRec->isSubClassOf("RegisterClass"))
+ return failedImport("Dst MI def isn't a register class" +
+ to_string(*Dst));
+
+ OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
+ OM.setSymbolicName(DstIOperand.Name);
+ M.defineOperand(OM.getSymbolicName(), OM);
+ OM.addPredicate<RegisterBankOperandMatcher>(
+ Target.getRegisterClass(DstIOpRec));
+ ++OpIdx;
+ }
+
+ auto DstMIBuilderOrError =
+ createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
+ if (auto Error = DstMIBuilderOrError.takeError())
+ return std::move(Error);
+ BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
+
+ // Render the implicit defs.
+ // These are only added to the root of the result.
+ if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
+ return std::move(Error);
+
+ DstMIBuilder.chooseInsnToMutate(M);
+
+ // Constrain the registers to classes. This is normally derived from the
+ // emitted instruction but a few instructions require special handling.
+ if (DstIName == "COPY_TO_REGCLASS") {
+ // COPY_TO_REGCLASS does not provide operand constraints itself but the
+ // result is constrained to the class given by the second child.
+ Record *DstIOpRec =
+ getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
+
+ if (DstIOpRec == nullptr)
+ return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
+
+ M.addAction<ConstrainOperandToRegClassAction>(
+ 0, 0, Target.getRegisterClass(DstIOpRec));
+
+ // We're done with this pattern! It's eligible for GISel emission; return
+ // it.
+ ++NumPatternImported;
+ return std::move(M);
+ }
+
+ if (DstIName == "EXTRACT_SUBREG") {
+ auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
+ if (!SuperClass)
+ return failedImport(
+ "Cannot infer register class from EXTRACT_SUBREG operand #0");
+
+ auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
+ if (!SubIdx)
+ return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
+
+ // It would be nice to leave this constraint implicit but we're required
+ // to pick a register class so constrain the result to a register class
+ // that can hold the correct MVT.
+ //
+ // FIXME: This may introduce an extra copy if the chosen class doesn't
+ // actually contain the subregisters.
+ assert(Src->getExtTypes().size() == 1 &&
+ "Expected Src of EXTRACT_SUBREG to have one result type");
+
+ const auto &SrcRCDstRCPair =
+ (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
+ assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
+ M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
+ M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
+
+ // We're done with this pattern! It's eligible for GISel emission; return
+ // it.
+ ++NumPatternImported;
+ return std::move(M);
+ }
+
+ if (DstIName == "INSERT_SUBREG") {
+ assert(Src->getExtTypes().size() == 1 &&
+ "Expected Src of INSERT_SUBREG to have one result type");
+ // We need to constrain the destination, a super regsister source, and a
+ // subregister source.
+ auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
+ if (!SubClass)
+ return failedImport(
+ "Cannot infer register class from INSERT_SUBREG operand #1");
+ auto SuperClass = inferSuperRegisterClassForNode(
+ Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
+ if (!SuperClass)
+ return failedImport(
+ "Cannot infer register class for INSERT_SUBREG operand #0");
+ M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
+ M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
+ M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
+ ++NumPatternImported;
+ return std::move(M);
+ }
+
+ if (DstIName == "SUBREG_TO_REG") {
+ // We need to constrain the destination and subregister source.
+ assert(Src->getExtTypes().size() == 1 &&
+ "Expected Src of SUBREG_TO_REG to have one result type");
+
+ // Attempt to infer the subregister source from the first child. If it has
+ // an explicitly given register class, we'll use that. Otherwise, we will
+ // fail.
+ auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
+ if (!SubClass)
+ return failedImport(
+ "Cannot infer register class from SUBREG_TO_REG child #1");
+ // We don't have a child to look at that might have a super register node.
+ auto SuperClass =
+ inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
+ if (!SuperClass)
+ return failedImport(
+ "Cannot infer register class for SUBREG_TO_REG operand #0");
+ M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
+ M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
+ ++NumPatternImported;
+ return std::move(M);
+ }
+
+ M.addAction<ConstrainOperandsToDefinitionAction>(0);
+
+ // We're done with this pattern! It's eligible for GISel emission; return it.
+ ++NumPatternImported;
+ return std::move(M);
+}
+
+// Emit imm predicate table and an enum to reference them with.
+// The 'Predicate_' part of the name is redundant but eliminating it is more
+// trouble than it's worth.
+void GlobalISelEmitter::emitCxxPredicateFns(
+ raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
+ StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
+ std::function<bool(const Record *R)> Filter) {
+ std::vector<const Record *> MatchedRecords;
+ const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
+ std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
+ [&](Record *Record) {
+ return !Record->getValueAsString(CodeFieldName).empty() &&
+ Filter(Record);
+ });
+
+ if (!MatchedRecords.empty()) {
+ OS << "// PatFrag predicates.\n"
+ << "enum {\n";
+ std::string EnumeratorSeparator =
+ (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
+ for (const auto *Record : MatchedRecords) {
+ OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
+ << EnumeratorSeparator;
+ EnumeratorSeparator = ",\n";
+ }
+ OS << "};\n";
+ }
+
+ OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
+ << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
+ << ArgName << ") const {\n"
+ << AdditionalDeclarations;
+ if (!AdditionalDeclarations.empty())
+ OS << "\n";
+ if (!MatchedRecords.empty())
+ OS << " switch (PredicateID) {\n";
+ for (const auto *Record : MatchedRecords) {
+ OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
+ << Record->getName() << ": {\n"
+ << " " << Record->getValueAsString(CodeFieldName) << "\n"
+ << " llvm_unreachable(\"" << CodeFieldName
+ << " should have returned\");\n"
+ << " return false;\n"
+ << " }\n";
+ }
+ if (!MatchedRecords.empty())
+ OS << " }\n";
+ OS << " llvm_unreachable(\"Unknown predicate\");\n"
+ << " return false;\n"
+ << "}\n";
+}
+
+void GlobalISelEmitter::emitImmPredicateFns(
+ raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
+ std::function<bool(const Record *R)> Filter) {
+ return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
+ "Imm", "", Filter);
+}
+
+void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
+ return emitCxxPredicateFns(
+ OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
+ " const MachineFunction &MF = *MI.getParent()->getParent();\n"
+ " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
+ " (void)MRI;",
+ [](const Record *R) { return true; });
+}
+
+template <class GroupT>
+std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
+ ArrayRef<Matcher *> Rules,
+ std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
+
+ std::vector<Matcher *> OptRules;
+ std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
+ assert(CurrentGroup->empty() && "Newly created group isn't empty!");
+ unsigned NumGroups = 0;
+
+ auto ProcessCurrentGroup = [&]() {
+ if (CurrentGroup->empty())
+ // An empty group is good to be reused:
+ return;
+
+ // If the group isn't large enough to provide any benefit, move all the
+ // added rules out of it and make sure to re-create the group to properly
+ // re-initialize it:
+ if (CurrentGroup->size() < 2)
+ for (Matcher *M : CurrentGroup->matchers())
+ OptRules.push_back(M);
+ else {
+ CurrentGroup->finalize();
+ OptRules.push_back(CurrentGroup.get());
+ MatcherStorage.emplace_back(std::move(CurrentGroup));
+ ++NumGroups;
+ }
+ CurrentGroup = std::make_unique<GroupT>();
+ };
+ for (Matcher *Rule : Rules) {
+ // Greedily add as many matchers as possible to the current group:
+ if (CurrentGroup->addMatcher(*Rule))
+ continue;
+
+ ProcessCurrentGroup();
+ assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
+
+ // Try to add the pending matcher to a newly created empty group:
+ if (!CurrentGroup->addMatcher(*Rule))
+ // If we couldn't add the matcher to an empty group, that group type
+ // doesn't support that kind of matchers at all, so just skip it:
+ OptRules.push_back(Rule);
+ }
+ ProcessCurrentGroup();
+
+ LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
+ assert(CurrentGroup->empty() && "The last group wasn't properly processed");
+ return OptRules;
+}
+
+MatchTable
+GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
+ bool Optimize, bool WithCoverage) {
+ std::vector<Matcher *> InputRules;
+ for (Matcher &Rule : Rules)
+ InputRules.push_back(&Rule);
+
+ if (!Optimize)
+ return MatchTable::buildTable(InputRules, WithCoverage);
+
+ unsigned CurrentOrdering = 0;
+ StringMap<unsigned> OpcodeOrder;
+ for (RuleMatcher &Rule : Rules) {
+ const StringRef Opcode = Rule.getOpcode();
+ assert(!Opcode.empty() && "Didn't expect an undefined opcode");
+ if (OpcodeOrder.count(Opcode) == 0)
+ OpcodeOrder[Opcode] = CurrentOrdering++;
+ }
+
+ std::stable_sort(InputRules.begin(), InputRules.end(),
+ [&OpcodeOrder](const Matcher *A, const Matcher *B) {
+ auto *L = static_cast<const RuleMatcher *>(A);
+ auto *R = static_cast<const RuleMatcher *>(B);
+ return std::make_tuple(OpcodeOrder[L->getOpcode()],
+ L->getNumOperands()) <
+ std::make_tuple(OpcodeOrder[R->getOpcode()],
+ R->getNumOperands());
+ });
+
+ for (Matcher *Rule : InputRules)
+ Rule->optimize();
+
+ std::vector<std::unique_ptr<Matcher>> MatcherStorage;
+ std::vector<Matcher *> OptRules =
+ optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
+
+ for (Matcher *Rule : OptRules)
+ Rule->optimize();
+
+ OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
+
+ return MatchTable::buildTable(OptRules, WithCoverage);
+}
+
+void GroupMatcher::optimize() {
+ // Make sure we only sort by a specific predicate within a range of rules that
+ // all have that predicate checked against a specific value (not a wildcard):
+ auto F = Matchers.begin();
+ auto T = F;
+ auto E = Matchers.end();
+ while (T != E) {
+ while (T != E) {
+ auto *R = static_cast<RuleMatcher *>(*T);
+ if (!R->getFirstConditionAsRootType().get().isValid())
+ break;
+ ++T;
+ }
+ std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
+ auto *L = static_cast<RuleMatcher *>(A);
+ auto *R = static_cast<RuleMatcher *>(B);
+ return L->getFirstConditionAsRootType() <
+ R->getFirstConditionAsRootType();
+ });
+ if (T != E)
+ F = ++T;
+ }
+ GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
+ .swap(Matchers);
+ GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
+ .swap(Matchers);
+}
+
+void GlobalISelEmitter::run(raw_ostream &OS) {
+ if (!UseCoverageFile.empty()) {
+ RuleCoverage = CodeGenCoverage();
+ auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
+ if (!RuleCoverageBufOrErr) {
+ PrintWarning(SMLoc(), "Missing rule coverage data");
+ RuleCoverage = None;
+ } else {
+ if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
+ PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
+ RuleCoverage = None;
+ }
+ }
+ }
+
+ // Track the run-time opcode values
+ gatherOpcodeValues();
+ // Track the run-time LLT ID values
+ gatherTypeIDValues();
+
+ // Track the GINodeEquiv definitions.
+ gatherNodeEquivs();
+
+ emitSourceFileHeader(("Global Instruction Selector for the " +
+ Target.getName() + " target").str(), OS);
+ std::vector<RuleMatcher> Rules;
+ // Look through the SelectionDAG patterns we found, possibly emitting some.
+ for (const PatternToMatch &Pat : CGP.ptms()) {
+ ++NumPatternTotal;
+
+ auto MatcherOrErr = runOnPattern(Pat);
+
+ // The pattern analysis can fail, indicating an unsupported pattern.
+ // Report that if we've been asked to do so.
+ if (auto Err = MatcherOrErr.takeError()) {
+ if (WarnOnSkippedPatterns) {
+ PrintWarning(Pat.getSrcRecord()->getLoc(),
+ "Skipped pattern: " + toString(std::move(Err)));
+ } else {
+ consumeError(std::move(Err));
+ }
+ ++NumPatternImportsSkipped;
+ continue;
+ }
+
+ if (RuleCoverage) {
+ if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
+ ++NumPatternsTested;
+ else
+ PrintWarning(Pat.getSrcRecord()->getLoc(),
+ "Pattern is not covered by a test");
+ }
+ Rules.push_back(std::move(MatcherOrErr.get()));
+ }
+
+ // Comparison function to order records by name.
+ auto orderByName = [](const Record *A, const Record *B) {
+ return A->getName() < B->getName();
+ };
+
+ std::vector<Record *> ComplexPredicates =
+ RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
+ llvm::sort(ComplexPredicates, orderByName);
+
+ std::vector<Record *> CustomRendererFns =
+ RK.getAllDerivedDefinitions("GICustomOperandRenderer");
+ llvm::sort(CustomRendererFns, orderByName);
+
+ unsigned MaxTemporaries = 0;
+ for (const auto &Rule : Rules)
+ MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
+
+ OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
+ << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
+ << ";\n"
+ << "using PredicateBitset = "
+ "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
+ << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
+
+ OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
+ << " mutable MatcherState State;\n"
+ << " typedef "
+ "ComplexRendererFns("
+ << Target.getName()
+ << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
+
+ << " typedef void(" << Target.getName()
+ << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
+ "MachineInstr&) "
+ "const;\n"
+ << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
+ "CustomRendererFn> "
+ "ISelInfo;\n";
+ OS << " static " << Target.getName()
+ << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
+ << " static " << Target.getName()
+ << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
+ << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
+ "override;\n"
+ << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
+ "const override;\n"
+ << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
+ "&Imm) const override;\n"
+ << " const int64_t *getMatchTable() const override;\n"
+ << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
+ "const override;\n"
+ << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
+
+ OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
+ << ", State(" << MaxTemporaries << "),\n"
+ << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
+ << ", ComplexPredicateFns, CustomRenderers)\n"
+ << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
+
+ OS << "#ifdef GET_GLOBALISEL_IMPL\n";
+ SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
+ OS);
+
+ // Separate subtarget features by how often they must be recomputed.
+ SubtargetFeatureInfoMap ModuleFeatures;
+ std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
+ std::inserter(ModuleFeatures, ModuleFeatures.end()),
+ [](const SubtargetFeatureInfoMap::value_type &X) {
+ return !X.second.mustRecomputePerFunction();
+ });
+ SubtargetFeatureInfoMap FunctionFeatures;
+ std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
+ std::inserter(FunctionFeatures, FunctionFeatures.end()),
+ [](const SubtargetFeatureInfoMap::value_type &X) {
+ return X.second.mustRecomputePerFunction();
+ });
+
+ SubtargetFeatureInfo::emitComputeAvailableFeatures(
+ Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
+ ModuleFeatures, OS);
+ SubtargetFeatureInfo::emitComputeAvailableFeatures(
+ Target.getName(), "InstructionSelector",
+ "computeAvailableFunctionFeatures", FunctionFeatures, OS,
+ "const MachineFunction *MF");
+
+ // Emit a table containing the LLT objects needed by the matcher and an enum
+ // for the matcher to reference them with.
+ std::vector<LLTCodeGen> TypeObjects;
+ for (const auto &Ty : KnownTypes)
+ TypeObjects.push_back(Ty);
+ llvm::sort(TypeObjects);
+ OS << "// LLT Objects.\n"
+ << "enum {\n";
+ for (const auto &TypeObject : TypeObjects) {
+ OS << " ";
+ TypeObject.emitCxxEnumValue(OS);
+ OS << ",\n";
+ }
+ OS << "};\n";
+ OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
+ << "const static LLT TypeObjects[] = {\n";
+ for (const auto &TypeObject : TypeObjects) {
+ OS << " ";
+ TypeObject.emitCxxConstructorCall(OS);
+ OS << ",\n";
+ }
+ OS << "};\n\n";
+
+ // Emit a table containing the PredicateBitsets objects needed by the matcher
+ // and an enum for the matcher to reference them with.
+ std::vector<std::vector<Record *>> FeatureBitsets;
+ for (auto &Rule : Rules)
+ FeatureBitsets.push_back(Rule.getRequiredFeatures());
+ llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
+ const std::vector<Record *> &B) {
+ if (A.size() < B.size())
+ return true;
+ if (A.size() > B.size())
+ return false;
+ for (const auto &Pair : zip(A, B)) {
+ if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
+ return true;
+ if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
+ return false;
+ }
+ return false;
+ });
+ FeatureBitsets.erase(
+ std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
+ FeatureBitsets.end());
+ OS << "// Feature bitsets.\n"
+ << "enum {\n"
+ << " GIFBS_Invalid,\n";
+ for (const auto &FeatureBitset : FeatureBitsets) {
+ if (FeatureBitset.empty())
+ continue;
+ OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
+ }
+ OS << "};\n"
+ << "const static PredicateBitset FeatureBitsets[] {\n"
+ << " {}, // GIFBS_Invalid\n";
+ for (const auto &FeatureBitset : FeatureBitsets) {
+ if (FeatureBitset.empty())
+ continue;
+ OS << " {";
+ for (const auto &Feature : FeatureBitset) {
+ const auto &I = SubtargetFeatures.find(Feature);
+ assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
+ OS << I->second.getEnumBitName() << ", ";
+ }
+ OS << "},\n";
+ }
+ OS << "};\n\n";
+
+ // Emit complex predicate table and an enum to reference them with.
+ OS << "// ComplexPattern predicates.\n"
+ << "enum {\n"
+ << " GICP_Invalid,\n";
+ for (const auto &Record : ComplexPredicates)
+ OS << " GICP_" << Record->getName() << ",\n";
+ OS << "};\n"
+ << "// See constructor for table contents\n\n";
+
+ emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
+ bool Unset;
+ return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
+ !R->getValueAsBit("IsAPInt");
+ });
+ emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
+ bool Unset;
+ return R->getValueAsBitOrUnset("IsAPFloat", Unset);
+ });
+ emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
+ return R->getValueAsBit("IsAPInt");
+ });
+ emitMIPredicateFns(OS);
+ OS << "\n";
+
+ OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
+ << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
+ << " nullptr, // GICP_Invalid\n";
+ for (const auto &Record : ComplexPredicates)
+ OS << " &" << Target.getName()
+ << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
+ << ", // " << Record->getName() << "\n";
+ OS << "};\n\n";
+
+ OS << "// Custom renderers.\n"
+ << "enum {\n"
+ << " GICR_Invalid,\n";
+ for (const auto &Record : CustomRendererFns)
+ OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n";
+ OS << "};\n";
+
+ OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
+ << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
+ << " nullptr, // GICP_Invalid\n";
+ for (const auto &Record : CustomRendererFns)
+ OS << " &" << Target.getName()
+ << "InstructionSelector::" << Record->getValueAsString("RendererFn")
+ << ", // " << Record->getName() << "\n";
+ OS << "};\n\n";
+
+ llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
+ int ScoreA = RuleMatcherScores[A.getRuleID()];
+ int ScoreB = RuleMatcherScores[B.getRuleID()];
+ if (ScoreA > ScoreB)
+ return true;
+ if (ScoreB > ScoreA)
+ return false;
+ if (A.isHigherPriorityThan(B)) {
+ assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
+ "and less important at "
+ "the same time");
+ return true;
+ }
+ return false;
+ });
+
+ OS << "bool " << Target.getName()
+ << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
+ "&CoverageInfo) const {\n"
+ << " MachineFunction &MF = *I.getParent()->getParent();\n"
+ << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
+ << " // FIXME: This should be computed on a per-function basis rather "
+ "than per-insn.\n"
+ << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
+ "&MF);\n"
+ << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
+ << " NewMIVector OutMIs;\n"
+ << " State.MIs.clear();\n"
+ << " State.MIs.push_back(&I);\n\n"
+ << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
+ << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
+ << ", CoverageInfo)) {\n"
+ << " return true;\n"
+ << " }\n\n"
+ << " return false;\n"
+ << "}\n\n";
+
+ const MatchTable Table =
+ buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
+ OS << "const int64_t *" << Target.getName()
+ << "InstructionSelector::getMatchTable() const {\n";
+ Table.emitDeclaration(OS);
+ OS << " return ";
+ Table.emitUse(OS);
+ OS << ";\n}\n";
+ OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
+
+ OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
+ << "PredicateBitset AvailableModuleFeatures;\n"
+ << "mutable PredicateBitset AvailableFunctionFeatures;\n"
+ << "PredicateBitset getAvailableFeatures() const {\n"
+ << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
+ << "}\n"
+ << "PredicateBitset\n"
+ << "computeAvailableModuleFeatures(const " << Target.getName()
+ << "Subtarget *Subtarget) const;\n"
+ << "PredicateBitset\n"
+ << "computeAvailableFunctionFeatures(const " << Target.getName()
+ << "Subtarget *Subtarget,\n"
+ << " const MachineFunction *MF) const;\n"
+ << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
+
+ OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
+ << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
+ << "AvailableFunctionFeatures()\n"
+ << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
+}
+
+void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
+ if (SubtargetFeatures.count(Predicate) == 0)
+ SubtargetFeatures.emplace(
+ Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
+}
+
+void RuleMatcher::optimize() {
+ for (auto &Item : InsnVariableIDs) {
+ InstructionMatcher &InsnMatcher = *Item.first;
+ for (auto &OM : InsnMatcher.operands()) {
+ // Complex Patterns are usually expensive and they relatively rarely fail
+ // on their own: more often we end up throwing away all the work done by a
+ // matching part of a complex pattern because some other part of the
+ // enclosing pattern didn't match. All of this makes it beneficial to
+ // delay complex patterns until the very end of the rule matching,
+ // especially for targets having lots of complex patterns.
+ for (auto &OP : OM->predicates())
+ if (isa<ComplexPatternOperandMatcher>(OP))
+ EpilogueMatchers.emplace_back(std::move(OP));
+ OM->eraseNullPredicates();
+ }
+ InsnMatcher.optimize();
+ }
+ llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
+ const std::unique_ptr<PredicateMatcher> &R) {
+ return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
+ std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
+ });
+}
+
+bool RuleMatcher::hasFirstCondition() const {
+ if (insnmatchers_empty())
+ return false;
+ InstructionMatcher &Matcher = insnmatchers_front();
+ if (!Matcher.predicates_empty())
+ return true;
+ for (auto &OM : Matcher.operands())
+ for (auto &OP : OM->predicates())
+ if (!isa<InstructionOperandMatcher>(OP))
+ return true;
+ return false;
+}
+
+const PredicateMatcher &RuleMatcher::getFirstCondition() const {
+ assert(!insnmatchers_empty() &&
+ "Trying to get a condition from an empty RuleMatcher");
+
+ InstructionMatcher &Matcher = insnmatchers_front();
+ if (!Matcher.predicates_empty())
+ return **Matcher.predicates_begin();
+ // If there is no more predicate on the instruction itself, look at its
+ // operands.
+ for (auto &OM : Matcher.operands())
+ for (auto &OP : OM->predicates())
+ if (!isa<InstructionOperandMatcher>(OP))
+ return *OP;
+
+ llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
+ "no conditions");
+}
+
+std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
+ assert(!insnmatchers_empty() &&
+ "Trying to pop a condition from an empty RuleMatcher");
+
+ InstructionMatcher &Matcher = insnmatchers_front();
+ if (!Matcher.predicates_empty())
+ return Matcher.predicates_pop_front();
+ // If there is no more predicate on the instruction itself, look at its
+ // operands.
+ for (auto &OM : Matcher.operands())
+ for (auto &OP : OM->predicates())
+ if (!isa<InstructionOperandMatcher>(OP)) {
+ std::unique_ptr<PredicateMatcher> Result = std::move(OP);
+ OM->eraseNullPredicates();
+ return Result;
+ }
+
+ llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
+ "no conditions");
+}
+
+bool GroupMatcher::candidateConditionMatches(
+ const PredicateMatcher &Predicate) const {
+
+ if (empty()) {
+ // Sharing predicates for nested instructions is not supported yet as we
+ // currently don't hoist the GIM_RecordInsn's properly, therefore we can
+ // only work on the original root instruction (InsnVarID == 0):
+ if (Predicate.getInsnVarID() != 0)
+ return false;
+ // ... otherwise an empty group can handle any predicate with no specific
+ // requirements:
+ return true;
+ }
+
+ const Matcher &Representative = **Matchers.begin();
+ const auto &RepresentativeCondition = Representative.getFirstCondition();
+ // ... if not empty, the group can only accomodate matchers with the exact
+ // same first condition:
+ return Predicate.isIdentical(RepresentativeCondition);
+}
+
+bool GroupMatcher::addMatcher(Matcher &Candidate) {
+ if (!Candidate.hasFirstCondition())
+ return false;
+
+ const PredicateMatcher &Predicate = Candidate.getFirstCondition();
+ if (!candidateConditionMatches(Predicate))
+ return false;
+
+ Matchers.push_back(&Candidate);
+ return true;
+}
+
+void GroupMatcher::finalize() {
+ assert(Conditions.empty() && "Already finalized?");
+ if (empty())
+ return;
+
+ Matcher &FirstRule = **Matchers.begin();
+ for (;;) {
+ // All the checks are expected to succeed during the first iteration:
+ for (const auto &Rule : Matchers)
+ if (!Rule->hasFirstCondition())
+ return;
+ const auto &FirstCondition = FirstRule.getFirstCondition();
+ for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
+ if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
+ return;
+
+ Conditions.push_back(FirstRule.popFirstCondition());
+ for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
+ Matchers[I]->popFirstCondition();
+ }
+}
+
+void GroupMatcher::emit(MatchTable &Table) {
+ unsigned LabelID = ~0U;
+ if (!Conditions.empty()) {
+ LabelID = Table.allocateLabelID();
+ Table << MatchTable::Opcode("GIM_Try", +1)
+ << MatchTable::Comment("On fail goto")
+ << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
+ }
+ for (auto &Condition : Conditions)
+ Condition->emitPredicateOpcodes(
+ Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
+
+ for (const auto &M : Matchers)
+ M->emit(Table);
+
+ // Exit the group
+ if (!Conditions.empty())
+ Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
+ << MatchTable::Label(LabelID);
+}
+
+bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
+ return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
+}
+
+bool SwitchMatcher::candidateConditionMatches(
+ const PredicateMatcher &Predicate) const {
+
+ if (empty()) {
+ // Sharing predicates for nested instructions is not supported yet as we
+ // currently don't hoist the GIM_RecordInsn's properly, therefore we can
+ // only work on the original root instruction (InsnVarID == 0):
+ if (Predicate.getInsnVarID() != 0)
+ return false;
+ // ... while an attempt to add even a root matcher to an empty SwitchMatcher
+ // could fail as not all the types of conditions are supported:
+ if (!isSupportedPredicateType(Predicate))
+ return false;
+ // ... or the condition might not have a proper implementation of
+ // getValue() / isIdenticalDownToValue() yet:
+ if (!Predicate.hasValue())
+ return false;
+ // ... otherwise an empty Switch can accomodate the condition with no
+ // further requirements:
+ return true;
+ }
+
+ const Matcher &CaseRepresentative = **Matchers.begin();
+ const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
+ // Switch-cases must share the same kind of condition and path to the value it
+ // checks:
+ if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
+ return false;
+
+ const auto Value = Predicate.getValue();
+ // ... but be unique with respect to the actual value they check:
+ return Values.count(Value) == 0;
+}
+
+bool SwitchMatcher::addMatcher(Matcher &Candidate) {
+ if (!Candidate.hasFirstCondition())
+ return false;
+
+ const PredicateMatcher &Predicate = Candidate.getFirstCondition();
+ if (!candidateConditionMatches(Predicate))
+ return false;
+ const auto Value = Predicate.getValue();
+ Values.insert(Value);
+
+ Matchers.push_back(&Candidate);
+ return true;
+}
+
+void SwitchMatcher::finalize() {
+ assert(Condition == nullptr && "Already finalized");
+ assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
+ if (empty())
+ return;
+
+ std::stable_sort(Matchers.begin(), Matchers.end(),
+ [](const Matcher *L, const Matcher *R) {
+ return L->getFirstCondition().getValue() <
+ R->getFirstCondition().getValue();
+ });
+ Condition = Matchers[0]->popFirstCondition();
+ for (unsigned I = 1, E = Values.size(); I < E; ++I)
+ Matchers[I]->popFirstCondition();
+}
+
+void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
+ MatchTable &Table) {
+ assert(isSupportedPredicateType(P) && "Predicate type is not supported");
+
+ if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
+ Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
+ << MatchTable::IntValue(Condition->getInsnVarID());
+ return;
+ }
+ if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
+ Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
+ << MatchTable::IntValue(Condition->getInsnVarID())
+ << MatchTable::Comment("Op")
+ << MatchTable::IntValue(Condition->getOpIdx());
+ return;
+ }
+
+ llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
+ "predicate type that is claimed to be supported");
+}
+
+void SwitchMatcher::emit(MatchTable &Table) {
+ assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
+ if (empty())
+ return;
+ assert(Condition != nullptr &&
+ "Broken SwitchMatcher, hasn't been finalized?");
+
+ std::vector<unsigned> LabelIDs(Values.size());
+ std::generate(LabelIDs.begin(), LabelIDs.end(),
+ [&Table]() { return Table.allocateLabelID(); });
+ const unsigned Default = Table.allocateLabelID();
+
+ const int64_t LowerBound = Values.begin()->getRawValue();
+ const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
+
+ emitPredicateSpecificOpcodes(*Condition, Table);
+
+ Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
+ << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
+ << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
+
+ int64_t J = LowerBound;
+ auto VI = Values.begin();
+ for (unsigned I = 0, E = Values.size(); I < E; ++I) {
+ auto V = *VI++;
+ while (J++ < V.getRawValue())
+ Table << MatchTable::IntValue(0);
+ V.turnIntoComment();
+ Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
+ }
+ Table << MatchTable::LineBreak;
+
+ for (unsigned I = 0, E = Values.size(); I < E; ++I) {
+ Table << MatchTable::Label(LabelIDs[I]);
+ Matchers[I]->emit(Table);
+ Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
+ }
+ Table << MatchTable::Label(Default);
+}
+
+unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
+ GlobalISelEmitter(RK).run(OS);
+}
+} // End llvm namespace