summaryrefslogtreecommitdiff
path: root/ntpd/refclock_irig.c
diff options
context:
space:
mode:
Diffstat (limited to 'ntpd/refclock_irig.c')
-rw-r--r--ntpd/refclock_irig.c1049
1 files changed, 1049 insertions, 0 deletions
diff --git a/ntpd/refclock_irig.c b/ntpd/refclock_irig.c
new file mode 100644
index 000000000000..0b3536863d82
--- /dev/null
+++ b/ntpd/refclock_irig.c
@@ -0,0 +1,1049 @@
+/*
+ * refclock_irig - audio IRIG-B/E demodulator/decoder
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(REFCLOCK) && defined(CLOCK_IRIG)
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+
+#include <stdio.h>
+#include <ctype.h>
+#include <math.h>
+#ifdef HAVE_SYS_IOCTL_H
+#include <sys/ioctl.h>
+#endif /* HAVE_SYS_IOCTL_H */
+
+#include "audio.h"
+
+/*
+ * Audio IRIG-B/E demodulator/decoder
+ *
+ * This driver receives, demodulates and decodes IRIG-B/E signals when
+ * connected to the audio codec /dev/audio. The IRIG signal format is an
+ * amplitude-modulated carrier with pulse-width modulated data bits. For
+ * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for
+ * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The
+ * driver automatically recognizes which format is in use.
+ *
+ * The program processes 8000-Hz mu-law companded samples using separate
+ * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
+ * detector and automatic threshold corrector. Cycle crossings relative
+ * to the corrected slice level determine the width of each pulse and
+ * its value - zero, one or position identifier. The data encode 20 BCD
+ * digits which determine the second, minute, hour and day of the year
+ * and sometimes the year and synchronization condition. The comb filter
+ * exponentially averages the corresponding samples of successive baud
+ * intervals in order to reliably identify the reference carrier cycle.
+ * A type-II phase-lock loop (PLL) performs additional integration and
+ * interpolation to accurately determine the zero crossing of that
+ * cycle, which determines the reference timestamp. A pulse-width
+ * discriminator demodulates the data pulses, which are then encoded as
+ * the BCD digits of the timecode.
+ *
+ * The timecode and reference timestamp are updated once each second
+ * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
+ * saved for later processing. At poll intervals of 64 s, the saved
+ * samples are processed by a trimmed-mean filter and used to update the
+ * system clock.
+ *
+ * An automatic gain control feature provides protection against
+ * overdriven or underdriven input signal amplitudes. It is designed to
+ * maintain adequate demodulator signal amplitude while avoiding
+ * occasional noise spikes. In order to assure reliable capture, the
+ * decompanded input signal amplitude must be greater than 100 units and
+ * the codec sample frequency error less than 250 PPM (.025 percent).
+ *
+ * The program performs a number of error checks to protect against
+ * overdriven or underdriven input signal levels, incorrect signal
+ * format or improper hardware configuration. Specifically, if any of
+ * the following errors occur for a time measurement, the data are
+ * rejected.
+ *
+ * o The peak carrier amplitude is less than DRPOUT (100). This usually
+ * means dead IRIG signal source, broken cable or wrong input port.
+ *
+ * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This
+ * usually means broken codec hardware or wrong codec configuration.
+ *
+ * o The modulation index is less than MODMIN (0.5). This usually means
+ * overdriven IRIG signal or wrong IRIG format.
+ *
+ * o A frame synchronization error has occurred. This usually means
+ * wrong IRIG signal format or the IRIG signal source has lost
+ * synchronization (signature control).
+ *
+ * o A data decoding error has occurred. This usually means wrong IRIG
+ * signal format.
+ *
+ * o The current second of the day is not exactly one greater than the
+ * previous one. This usually means a very noisy IRIG signal or
+ * insufficient CPU resources.
+ *
+ * o An audio codec error (overrun) occurred. This usually means
+ * insufficient CPU resources, as sometimes happens with Sun SPARC
+ * IPCs when doing something useful.
+ *
+ * Note that additional checks are done elsewhere in the reference clock
+ * interface routines.
+ *
+ * Debugging aids
+ *
+ * The timecode format used for debugging and data recording includes
+ * data helpful in diagnosing problems with the IRIG signal and codec
+ * connections. With debugging enabled (-d on the ntpd command line),
+ * the driver produces one line for each timecode in the following
+ * format:
+ *
+ * 00 1 98 23 19:26:52 721 143 0.694 20 0.1 66.5 3094572411.00027
+ *
+ * The most recent line is also written to the clockstats file at 64-s
+ * intervals.
+ *
+ * The first field contains the error flags in hex, where the hex bits
+ * are interpreted as below. This is followed by the IRIG status
+ * indicator, year of century, day of year and time of day. The status
+ * indicator and year are not produced by some IRIG devices. Following
+ * these fields are the signal amplitude (0-8100), codec gain (0-255),
+ * modulation index (0-1), time constant (2-20), carrier phase error
+ * (us) and carrier frequency error (PPM). The last field is the on-time
+ * timestamp in NTP format.
+ *
+ * The fraction part of the on-time timestamp is a good indicator of how
+ * well the driver is doing. With an UltrSPARC 30 and Solaris 2.7, this
+ * thing can keep the clock within a few tens of microseconds relative
+ * to the IRIG-B signal. Accuracy with IRIG-E is about ten times worse.
+ * Unfortunately, Sun broke the 2.7 audio driver in 2.8, which has a
+ * 10-ms sawtooth modulation. The driver attempts to remove the
+ * modulation by some clever estimation techniques which mostly work.
+ * Your experience may vary.
+ *
+ * Unlike other drivers, which can have multiple instantiations, this
+ * one supports only one. It does not seem likely that more than one
+ * audio codec would be useful in a single machine. More than one would
+ * probably chew up too much CPU time anyway.
+ *
+ * Fudge factors
+ *
+ * Fudge flag4 causes the dubugging output described above to be
+ * recorded in the clockstats file. When the audio driver is compiled,
+ * fudge flag2 selects the audio input port, where 0 is the mike port
+ * (default) and 1 is the line-in port. It does not seem useful to
+ * select the compact disc player port. Fudge flag3 enables audio
+ * monitoring of the input signal. For this purpose, the monitor gain is
+ * set to a default value. Fudgetime2 is used as a frequency vernier for
+ * broken codec sample frequency.
+ */
+/*
+ * Interface definitions
+ */
+#define DEVICE_AUDIO "/dev/audio" /* audio device name */
+#define PRECISION (-17) /* precision assumed (about 10 us) */
+#define REFID "IRIG" /* reference ID */
+#define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
+#define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
+#define SECOND 8000 /* nominal sample rate (Hz) */
+#define BAUD 80 /* samples per baud interval */
+#define OFFSET 128 /* companded sample offset */
+#define SIZE 256 /* decompanding table size */
+#define CYCLE 8 /* samples per carrier cycle */
+#define SUBFLD 10 /* bits per subfield */
+#define FIELD 10 /* subfields per field */
+#define MINTC 2 /* min PLL time constant */
+#define MAXTC 20 /* max PLL time constant max */
+#define MAXSIG 6000. /* maximum signal level */
+#define MAXCLP 100 /* max clips above reference per s */
+#define DRPOUT 100. /* dropout signal level */
+#define MODMIN 0.5 /* minimum modulation index */
+#define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
+#define PI 3.1415926535 /* the real thing */
+#ifdef IRIG_SUCKS
+#define WIGGLE 11 /* wiggle filter length */
+#endif /* IRIG_SUCKS */
+
+/*
+ * Experimentally determined filter delays
+ */
+#define IRIG_B .0019 /* IRIG-B filter delay */
+#define IRIG_E .0019 /* IRIG-E filter delay */
+
+/*
+ * Data bit definitions
+ */
+#define BIT0 0 /* zero */
+#define BIT1 1 /* one */
+#define BITP 2 /* position identifier */
+
+/*
+ * Error flags (up->errflg)
+ */
+#define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
+#define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
+#define IRIG_ERR_MOD 0x04 /* low modulation index */
+#define IRIG_ERR_SYNCH 0x08 /* frame synch error */
+#define IRIG_ERR_DECODE 0x10 /* frame decoding error */
+#define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
+#define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
+#define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
+
+/*
+ * IRIG unit control structure
+ */
+struct irigunit {
+ u_char timecode[21]; /* timecode string */
+ l_fp timestamp; /* audio sample timestamp */
+ l_fp tick; /* audio sample increment */
+ double integ[BAUD]; /* baud integrator */
+ double phase, freq; /* logical clock phase and frequency */
+ double zxing; /* phase detector integrator */
+ double yxing; /* cycle phase */
+ double exing; /* envelope phase */
+ double modndx; /* modulation index */
+ double irig_b; /* IRIG-B signal amplitude */
+ double irig_e; /* IRIG-E signal amplitude */
+ int errflg; /* error flags */
+ /*
+ * Audio codec variables
+ */
+ double comp[SIZE]; /* decompanding table */
+ int port; /* codec port */
+ int gain; /* codec gain */
+ int mongain; /* codec monitor gain */
+ int clipcnt; /* sample clipped count */
+ int seccnt; /* second interval counter */
+
+ /*
+ * RF variables
+ */
+ double hpf[5]; /* IRIG-B filter shift register */
+ double lpf[5]; /* IRIG-E filter shift register */
+ double intmin, intmax; /* integrated envelope min and max */
+ double envmax; /* peak amplitude */
+ double envmin; /* noise amplitude */
+ double maxsignal; /* integrated peak amplitude */
+ double noise; /* integrated noise amplitude */
+ double lastenv[CYCLE]; /* last cycle amplitudes */
+ double lastint[CYCLE]; /* last integrated cycle amplitudes */
+ double lastsig; /* last carrier sample */
+ double fdelay; /* filter delay */
+ int decim; /* sample decimation factor */
+ int envphase; /* envelope phase */
+ int envptr; /* envelope phase pointer */
+ int carphase; /* carrier phase */
+ int envsw; /* envelope state */
+ int envxing; /* envelope slice crossing */
+ int tc; /* time constant */
+ int tcount; /* time constant counter */
+ int badcnt; /* decimation interval counter */
+
+ /*
+ * Decoder variables
+ */
+ int pulse; /* cycle counter */
+ int cycles; /* carrier cycles */
+ int dcycles; /* data cycles */
+ int xptr; /* translate table pointer */
+ int lastbit; /* last code element length */
+ int second; /* previous second */
+ int fieldcnt; /* subfield count in field */
+ int bits; /* demodulated bits */
+ int bitcnt; /* bit count in subfield */
+#ifdef IRIG_SUCKS
+ l_fp wigwag; /* wiggle accumulator */
+ int wp; /* wiggle filter pointer */
+ l_fp wiggle[WIGGLE]; /* wiggle filter */
+ l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/
+#endif /* IRIG_SUCKS */
+ l_fp wuggle;
+};
+
+/*
+ * Function prototypes
+ */
+static int irig_start P((int, struct peer *));
+static void irig_shutdown P((int, struct peer *));
+static void irig_receive P((struct recvbuf *));
+static void irig_poll P((int, struct peer *));
+
+/*
+ * More function prototypes
+ */
+static void irig_base P((struct peer *, double));
+static void irig_rf P((struct peer *, double));
+static void irig_decode P((struct peer *, int));
+static void irig_gain P((struct peer *));
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_irig = {
+ irig_start, /* start up driver */
+ irig_shutdown, /* shut down driver */
+ irig_poll, /* transmit poll message */
+ noentry, /* not used (old irig_control) */
+ noentry, /* initialize driver (not used) */
+ noentry, /* not used (old irig_buginfo) */
+ NOFLAGS /* not used */
+};
+
+/*
+ * Global variables
+ */
+static char hexchar[] = { /* really quick decoding table */
+ '0', '8', '4', 'c', /* 0000 0001 0010 0011 */
+ '2', 'a', '6', 'e', /* 0100 0101 0110 0111 */
+ '1', '9', '5', 'd', /* 1000 1001 1010 1011 */
+ '3', 'b', '7', 'f' /* 1100 1101 1110 1111 */
+};
+
+
+/*
+ * irig_start - open the devices and initialize data for processing
+ */
+static int
+irig_start(
+ int unit, /* instance number (used for PCM) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ int fd; /* file descriptor */
+ int i; /* index */
+ double step; /* codec adjustment */
+
+ /*
+ * Open audio device
+ */
+ fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
+ if (fd < 0)
+ return (0);
+#ifdef DEBUG
+ if (debug)
+ audio_show();
+#endif
+
+ /*
+ * Allocate and initialize unit structure
+ */
+ if (!(up = (struct irigunit *)
+ emalloc(sizeof(struct irigunit)))) {
+ (void) close(fd);
+ return (0);
+ }
+ memset((char *)up, 0, sizeof(struct irigunit));
+ pp = peer->procptr;
+ pp->unitptr = (caddr_t)up;
+ pp->io.clock_recv = irig_receive;
+ pp->io.srcclock = (caddr_t)peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ (void)close(fd);
+ free(up);
+ return (0);
+ }
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+ memcpy((char *)&pp->refid, REFID, 4);
+ up->tc = MINTC;
+ up->decim = 1;
+ up->fdelay = IRIG_B;
+ up->gain = 127;
+
+ /*
+ * The companded samples are encoded sign-magnitude. The table
+ * contains all the 256 values in the interest of speed.
+ */
+ up->comp[0] = up->comp[OFFSET] = 0.;
+ up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
+ step = 2.;
+ for (i = 3; i < OFFSET; i++) {
+ up->comp[i] = up->comp[i - 1] + step;
+ up->comp[OFFSET + i] = -up->comp[i];
+ if (i % 16 == 0)
+ step *= 2.;
+ }
+ DTOLFP(1. / SECOND, &up->tick);
+ return (1);
+}
+
+
+/*
+ * irig_shutdown - shut down the clock
+ */
+static void
+irig_shutdown(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+ io_closeclock(&pp->io);
+ free(up);
+}
+
+
+/*
+ * irig_receive - receive data from the audio device
+ *
+ * This routine reads input samples and adjusts the logical clock to
+ * track the irig clock by dropping or duplicating codec samples.
+ */
+static void
+irig_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct peer *peer;
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ double sample; /* codec sample */
+ u_char *dpt; /* buffer pointer */
+ int bufcnt; /* buffer counter */
+ l_fp ltemp; /* l_fp temp */
+
+ peer = (struct peer *)rbufp->recv_srcclock;
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+
+ /*
+ * Main loop - read until there ain't no more. Note codec
+ * samples are bit-inverted.
+ */
+ DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
+ L_SUB(&rbufp->recv_time, &ltemp);
+ up->timestamp = rbufp->recv_time;
+ dpt = rbufp->recv_buffer;
+ for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
+ sample = up->comp[~*dpt++ & 0xff];
+
+ /*
+ * Clip noise spikes greater than MAXSIG. If no clips,
+ * increase the gain a tad; if the clips are too high,
+ * decrease a tad.
+ */
+ if (sample > MAXSIG) {
+ sample = MAXSIG;
+ up->clipcnt++;
+ } else if (sample < -MAXSIG) {
+ sample = -MAXSIG;
+ up->clipcnt++;
+ }
+
+ /*
+ * Variable frequency oscillator. The codec oscillator
+ * runs at the nominal rate of 8000 samples per second,
+ * or 125 us per sample. A frequency change of one unit
+ * results in either duplicating or deleting one sample
+ * per second, which results in a frequency change of
+ * 125 PPM.
+ */
+ up->phase += up->freq / SECOND;
+ up->phase += pp->fudgetime2 / 1e6;
+ if (up->phase >= .5) {
+ up->phase -= 1.;
+ } else if (up->phase < -.5) {
+ up->phase += 1.;
+ irig_rf(peer, sample);
+ irig_rf(peer, sample);
+ } else {
+ irig_rf(peer, sample);
+ }
+ L_ADD(&up->timestamp, &up->tick);
+
+ /*
+ * Once each second, determine the IRIG format and gain.
+ */
+ up->seccnt = (up->seccnt + 1) % SECOND;
+ if (up->seccnt == 0) {
+ if (up->irig_b > up->irig_e) {
+ up->decim = 1;
+ up->fdelay = IRIG_B;
+ } else {
+ up->decim = 10;
+ up->fdelay = IRIG_E;
+ }
+ irig_gain(peer);
+ up->irig_b = up->irig_e = 0;
+ }
+ }
+
+ /*
+ * Set the input port and monitor gain for the next buffer.
+ */
+ if (pp->sloppyclockflag & CLK_FLAG2)
+ up->port = 2;
+ else
+ up->port = 1;
+ if (pp->sloppyclockflag & CLK_FLAG3)
+ up->mongain = MONGAIN;
+ else
+ up->mongain = 0;
+}
+
+/*
+ * irig_rf - RF processing
+ *
+ * This routine filters the RF signal using a highpass filter for IRIG-B
+ * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
+ * decimated by a factor of ten. The lowpass filter functions also as a
+ * decimation filter in this case. Note that the codec filters function
+ * as roofing filters to attenuate both the high and low ends of the
+ * passband. IIR filter coefficients were determined using Matlab Signal
+ * Processing Toolkit.
+ */
+static void
+irig_rf(
+ struct peer *peer, /* peer structure pointer */
+ double sample /* current signal sample */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ double irig_b, irig_e; /* irig filter outputs */
+
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+
+ /*
+ * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB
+ * passband ripple, -50 dB stopband ripple, phase delay .0022
+ * s)
+ */
+ irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01;
+ irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00;
+ irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00;
+ irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00;
+ up->hpf[0] = sample - irig_b;
+ irig_b = up->hpf[0] * 4.335855e-01
+ + up->hpf[1] * -1.695859e+00
+ + up->hpf[2] * 2.525004e+00
+ + up->hpf[3] * -1.695859e+00
+ + up->hpf[4] * 4.335855e-01;
+ up->irig_b += irig_b * irig_b;
+
+ /*
+ * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB
+ * passband ripple, -50 dB stopband ripple, phase delay .0219 s.
+ */
+ irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01;
+ irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00;
+ irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00;
+ irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00;
+ up->lpf[0] = sample - irig_e;
+ irig_e = up->lpf[0] * 3.215696e-03
+ + up->lpf[1] * -1.174951e-02
+ + up->lpf[2] * 1.712074e-02
+ + up->lpf[3] * -1.174951e-02
+ + up->lpf[4] * 3.215696e-03;
+ up->irig_e += irig_e * irig_e;
+
+ /*
+ * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
+ */
+ up->badcnt = (up->badcnt + 1) % up->decim;
+ if (up->badcnt == 0) {
+ if (up->decim == 1)
+ irig_base(peer, irig_b);
+ else
+ irig_base(peer, irig_e);
+ }
+}
+
+/*
+ * irig_base - baseband processing
+ *
+ * This routine processes the baseband signal and demodulates the AM
+ * carrier using a synchronous detector. It then synchronizes to the
+ * data frame at the baud rate and decodes the data pulses.
+ */
+static void
+irig_base(
+ struct peer *peer, /* peer structure pointer */
+ double sample /* current signal sample */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ /*
+ * Local variables
+ */
+ double xxing; /* phase detector interpolated output */
+ double lope; /* integrator output */
+ double env; /* envelope detector output */
+ double dtemp; /* double temp */
+
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+
+ /*
+ * Synchronous baud integrator. Corresponding samples of current
+ * and past baud intervals are integrated to refine the envelope
+ * amplitude and phase estimate. We keep one cycle of both the
+ * raw and integrated data for later use.
+ */
+ up->envphase = (up->envphase + 1) % BAUD;
+ up->carphase = (up->carphase + 1) % CYCLE;
+ up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
+ (5 * up->tc);
+ lope = up->integ[up->envphase];
+ up->lastenv[up->carphase] = sample;
+ up->lastint[up->carphase] = lope;
+
+ /*
+ * Phase detector. Sample amplitudes are integrated over the
+ * baud interval. Cycle phase is determined from these
+ * amplitudes using an eight-sample cyclic buffer. A phase
+ * change of 360 degrees produces an output change of one unit.
+ */
+ if (up->lastsig > 0 && lope <= 0) {
+ xxing = lope / (up->lastsig - lope);
+ up->zxing += (up->carphase - 4 + xxing) / CYCLE;
+ }
+ up->lastsig = lope;
+
+ /*
+ * Update signal/noise estimates and PLL phase/frequency.
+ */
+ if (up->envphase == 0) {
+
+ /*
+ * Update envelope signal and noise estimates and mess
+ * with error bits.
+ */
+ up->maxsignal = up->intmax;
+ up->noise = up->intmin;
+ if (up->maxsignal < DRPOUT)
+ up->errflg |= IRIG_ERR_AMP;
+ if (up->maxsignal > 0)
+ up->modndx = (up->intmax - up->intmin) /
+ up->intmax;
+ else
+ up->modndx = 0;
+ if (up->modndx < MODMIN)
+ up->errflg |= IRIG_ERR_MOD;
+ up->intmin = 1e6; up->intmax = 0;
+ if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
+ IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
+ up->tc = MINTC;
+ up->tcount = 0;
+ }
+
+ /*
+ * Update PLL phase and frequency. The PLL time constant
+ * is set initially to stabilize the frequency within a
+ * minute or two, then increases to the maximum. The
+ * frequency is clamped so that the PLL capture range
+ * cannot be exceeded.
+ */
+ dtemp = up->zxing * up->decim / BAUD;
+ up->yxing = dtemp;
+ up->zxing = 0.;
+ up->phase += dtemp / up->tc;
+ up->freq += dtemp / (4. * up->tc * up->tc);
+ if (up->freq > MAXFREQ) {
+ up->freq = MAXFREQ;
+ up->errflg |= IRIG_ERR_FREQ;
+ } else if (up->freq < -MAXFREQ) {
+ up->freq = -MAXFREQ;
+ up->errflg |= IRIG_ERR_FREQ;
+ }
+ }
+
+ /*
+ * Synchronous demodulator. There are eight samples in the cycle
+ * and ten cycles in the baud interval. The amplitude of each
+ * cycle is determined at the last sample in the cycle. The
+ * beginning of the data pulse is determined from the integrated
+ * samples, while the end of the pulse is determined from the
+ * raw samples. The raw data bits are demodulated relative to
+ * the slice level and left-shifted in the decoding register.
+ */
+ if (up->carphase != 7)
+ return;
+ env = (up->lastenv[2] - up->lastenv[6]) / 2.;
+ lope = (up->lastint[2] - up->lastint[6]) / 2.;
+ if (lope > up->intmax)
+ up->intmax = lope;
+ if (lope < up->intmin)
+ up->intmin = lope;
+
+ /*
+ * Pulse code demodulator and reference timestamp. The decoder
+ * looks for a sequence of ten bits; the first two bits must be
+ * one, the last two bits must be zero. Frame synch is asserted
+ * when three correct frames have been found.
+ */
+ up->pulse = (up->pulse + 1) % 10;
+ if (up->pulse == 1)
+ up->envmax = env;
+ else if (up->pulse == 9)
+ up->envmin = env;
+ up->dcycles <<= 1;
+ if (env >= (up->envmax + up->envmin) / 2.)
+ up->dcycles |= 1;
+ up->cycles <<= 1;
+ if (lope >= (up->maxsignal + up->noise) / 2.)
+ up->cycles |= 1;
+ if ((up->cycles & 0x303c0f03) == 0x300c0300) {
+ l_fp ltemp;
+ int bitz;
+
+ /*
+ * The PLL time constant starts out small, in order to
+ * sustain a frequency tolerance of 250 PPM. It
+ * gradually increases as the loop settles down. Note
+ * that small wiggles are not believed, unless they
+ * persist for lots of samples.
+ */
+ if (up->pulse != 9)
+ up->errflg |= IRIG_ERR_SYNCH;
+ up->pulse = 9;
+ up->exing = -up->yxing;
+ if (fabs(up->envxing - up->envphase) <= 1) {
+ up->tcount++;
+ if (up->tcount > 50 * up->tc) {
+ up->tc++;
+ if (up->tc > MAXTC)
+ up->tc = MAXTC;
+ up->tcount = 0;
+ up->envxing = up->envphase;
+ } else {
+ up->exing -= up->envxing - up->envphase;
+ }
+ } else {
+ up->tcount = 0;
+ up->envxing = up->envphase;
+ }
+
+ /*
+ * Determine a reference timestamp, accounting for the
+ * codec delay and filter delay. Note the timestamp is
+ * for the previous frame, so we have to backtrack for
+ * this plus the delay since the last carrier positive
+ * zero crossing.
+ */
+ dtemp = up->decim * ((up->exing + BAUD) / SECOND + 1.) +
+ up->fdelay;
+ DTOLFP(dtemp, &ltemp);
+ pp->lastrec = up->timestamp;
+ L_SUB(&pp->lastrec, &ltemp);
+
+ /*
+ * The data bits are collected in ten-bit frames. The
+ * first two and last two bits are determined by frame
+ * sync and ignored here; the resulting patterns
+ * represent zero (0-1 bits), one (2-4 bits) and
+ * position identifier (5-6 bits). The remaining
+ * patterns represent errors and are treated as zeros.
+ */
+ bitz = up->dcycles & 0xfc;
+ switch(bitz) {
+
+ case 0x00:
+ case 0x80:
+ irig_decode(peer, BIT0);
+ break;
+
+ case 0xc0:
+ case 0xe0:
+ case 0xf0:
+ irig_decode(peer, BIT1);
+ break;
+
+ case 0xf8:
+ case 0xfc:
+ irig_decode(peer, BITP);
+ break;
+
+ default:
+ irig_decode(peer, 0);
+ up->errflg |= IRIG_ERR_DECODE;
+ }
+ }
+}
+
+
+/*
+ * irig_decode - decode the data
+ *
+ * This routine assembles bits into digits, digits into subfields and
+ * subfields into the timecode field. Bits can have values of zero, one
+ * or position identifier. There are four bits per digit, two digits per
+ * subfield and ten subfields per field. The last bit in every subfield
+ * and the first bit in the first subfield are position identifiers.
+ */
+static void
+irig_decode(
+ struct peer *peer, /* peer structure pointer */
+ int bit /* data bit (0, 1 or 2) */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+#ifdef IRIG_SUCKS
+ int i;
+#endif /* IRIG_SUCKS */
+
+ /*
+ * Local variables
+ */
+ char syncchar; /* sync character (Spectracom) */
+ char sbs[6]; /* binary seconds since 0h */
+ char spare[2]; /* mulligan digits */
+
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+
+ /*
+ * Assemble subfield bits.
+ */
+ up->bits <<= 1;
+ if (bit == BIT1) {
+ up->bits |= 1;
+ } else if (bit == BITP && up->lastbit == BITP) {
+
+ /*
+ * Frame sync - two adjacent position identifiers.
+ * Monitor the reference timestamp and wiggle the
+ * clock, but only if no errors have occurred.
+ */
+ up->bitcnt = 1;
+ up->fieldcnt = 0;
+ up->lastbit = 0;
+ if (up->errflg == 0) {
+#ifdef IRIG_SUCKS
+ l_fp ltemp;
+
+ /*
+ * You really don't wanna know what comes down
+ * here. Leave it to say Solaris 2.8 broke the
+ * nice clean audio stream, apparently affected
+ * by a 5-ms sawtooth jitter. Sundown on
+ * Solaris. This leaves a little twilight.
+ *
+ * The scheme involves differentiation, forward
+ * learning and integration. The sawtooth has a
+ * period of 11 seconds. The timestamp
+ * differences are integrated and subtracted
+ * from the signal.
+ */
+ ltemp = pp->lastrec;
+ L_SUB(&ltemp, &pp->lastref);
+ if (ltemp.l_f < 0)
+ ltemp.l_i = -1;
+ else
+ ltemp.l_i = 0;
+ pp->lastref = pp->lastrec;
+ if (!L_ISNEG(&ltemp))
+ L_CLR(&up->wigwag);
+ else
+ L_ADD(&up->wigwag, &ltemp);
+ L_SUB(&pp->lastrec, &up->wigwag);
+ up->wiggle[up->wp] = ltemp;
+
+ /*
+ * Bottom fisher. To understand this, you have
+ * to know about velocity microphones and AM
+ * transmitters. No further explanation is
+ * offered, as this is truly a black art.
+ */
+ up->wigbot[up->wp] = pp->lastrec;
+ for (i = 0; i < WIGGLE; i++) {
+ if (i != up->wp)
+ up->wigbot[i].l_ui++;
+ L_SUB(&pp->lastrec, &up->wigbot[i]);
+ if (L_ISNEG(&pp->lastrec))
+ L_ADD(&pp->lastrec,
+ &up->wigbot[i]);
+ else
+ pp->lastrec = up->wigbot[i];
+ }
+ up->wp++;
+ up->wp %= WIGGLE;
+ up->wuggle = pp->lastrec;
+ refclock_process(pp);
+#else /* IRIG_SUCKS */
+ pp->lastref = pp->lastrec;
+ up->wuggle = pp->lastrec;
+ refclock_process(pp);
+#endif /* IRIG_SUCKS */
+ }
+ up->errflg = 0;
+ }
+ up->bitcnt = (up->bitcnt + 1) % SUBFLD;
+ if (up->bitcnt == 0) {
+
+ /*
+ * End of subfield. Encode two hexadecimal digits in
+ * little-endian timecode field.
+ */
+ if (up->fieldcnt == 0)
+ up->bits <<= 1;
+ if (up->xptr < 2)
+ up->xptr = 2 * FIELD;
+ up->timecode[--up->xptr] = hexchar[(up->bits >> 5) &
+ 0xf];
+ up->timecode[--up->xptr] = hexchar[up->bits & 0xf];
+ up->fieldcnt = (up->fieldcnt + 1) % FIELD;
+ if (up->fieldcnt == 0) {
+
+ /*
+ * End of field. Decode the timecode and wind
+ * the clock. Not all IRIG generators have the
+ * year; if so, it is nonzero after year 2000.
+ * Not all have the hardware status bit; if so,
+ * it is lit when the source is okay and dim
+ * when bad. We watch this only if the year is
+ * nonzero. Not all are configured for signature
+ * control. If so, all BCD digits are set to
+ * zero if the source is bad. In this case the
+ * refclock_process() will reject the timecode
+ * as invalid.
+ */
+ up->xptr = 2 * FIELD;
+ if (sscanf((char *)up->timecode,
+ "%6s%2d%c%2s%3d%2d%2d%2d", sbs, &pp->year,
+ &syncchar, spare, &pp->day, &pp->hour,
+ &pp->minute, &pp->second) != 8)
+ pp->leap = LEAP_NOTINSYNC;
+ else
+ pp->leap = LEAP_NOWARNING;
+ up->second = (up->second + up->decim) % 60;
+ if (pp->year > 0) {
+ pp->year += 2000;
+ if (syncchar == '0')
+ up->errflg |= IRIG_ERR_CHECK;
+ }
+ if (pp->second != up->second)
+ up->errflg |= IRIG_ERR_CHECK;
+ up->second = pp->second;
+ sprintf(pp->a_lastcode,
+ "%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.1f %6.1f %s",
+ up->errflg, syncchar, pp->year, pp->day,
+ pp->hour, pp->minute, pp->second,
+ up->maxsignal, up->gain, up->modndx,
+ up->tc, up->exing * 1e6 / SECOND, up->freq *
+ 1e6 / SECOND, ulfptoa(&up->wuggle, 6));
+ pp->lencode = strlen(pp->a_lastcode);
+ if (pp->sloppyclockflag & CLK_FLAG4) {
+ record_clock_stats(&peer->srcadr,
+ pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("irig: %s\n",
+ pp->a_lastcode);
+#endif /* DEBUG */
+ }
+ }
+ }
+ up->lastbit = bit;
+}
+
+
+/*
+ * irig_poll - called by the transmit procedure
+ *
+ * This routine sweeps up the timecode updates since the last poll. For
+ * IRIG-B there should be at least 60 updates; for IRIG-E there should
+ * be at least 6. If nothing is heard, a timeout event is declared and
+ * any orphaned timecode updates are sent to foster care.
+ */
+static void
+irig_poll(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+
+ if (pp->coderecv == pp->codeproc) {
+ refclock_report(peer, CEVNT_TIMEOUT);
+ return;
+ } else {
+ refclock_receive(peer);
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug)
+ printf("irig: %s\n", pp->a_lastcode);
+#endif /* DEBUG */
+ }
+ pp->polls++;
+
+}
+
+
+/*
+ * irig_gain - adjust codec gain
+ *
+ * This routine is called once each second. If the signal envelope
+ * amplitude is too low, the codec gain is bumped up by four units; if
+ * too high, it is bumped down. The decoder is relatively insensitive to
+ * amplitude, so this crudity works just fine. The input port is set and
+ * the error flag is cleared, mostly to be ornery.
+ */
+static void
+irig_gain(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct irigunit *up;
+
+ pp = peer->procptr;
+ up = (struct irigunit *)pp->unitptr;
+
+ /*
+ * Apparently, the codec uses only the high order bits of the
+ * gain control field. Thus, it may take awhile for changes to
+ * wiggle the hardware bits.
+ */
+ if (up->clipcnt == 0) {
+ up->gain += 4;
+ if (up->gain > MAXGAIN)
+ up->gain = MAXGAIN;
+ } else if (up->clipcnt > MAXCLP) {
+ up->gain -= 4;
+ if (up->gain < 0)
+ up->gain = 0;
+ }
+ audio_gain(up->gain, up->mongain, up->port);
+ up->clipcnt = 0;
+}
+
+#else
+int refclock_irig_bs;
+#endif /* REFCLOCK */