summaryrefslogtreecommitdiff
path: root/ssl/record/ssl3_record.c
diff options
context:
space:
mode:
Diffstat (limited to 'ssl/record/ssl3_record.c')
-rw-r--r--ssl/record/ssl3_record.c2032
1 files changed, 2032 insertions, 0 deletions
diff --git a/ssl/record/ssl3_record.c b/ssl/record/ssl3_record.c
new file mode 100644
index 000000000000..a616bf040932
--- /dev/null
+++ b/ssl/record/ssl3_record.c
@@ -0,0 +1,2032 @@
+/*
+ * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include "../ssl_locl.h"
+#include "internal/constant_time_locl.h"
+#include <openssl/rand.h>
+#include "record_locl.h"
+#include "internal/cryptlib.h"
+
+static const unsigned char ssl3_pad_1[48] = {
+ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
+ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
+ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
+ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
+ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
+ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
+};
+
+static const unsigned char ssl3_pad_2[48] = {
+ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
+ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
+ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
+ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
+ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
+ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
+};
+
+/*
+ * Clear the contents of an SSL3_RECORD but retain any memory allocated
+ */
+void SSL3_RECORD_clear(SSL3_RECORD *r, size_t num_recs)
+{
+ unsigned char *comp;
+ size_t i;
+
+ for (i = 0; i < num_recs; i++) {
+ comp = r[i].comp;
+
+ memset(&r[i], 0, sizeof(*r));
+ r[i].comp = comp;
+ }
+}
+
+void SSL3_RECORD_release(SSL3_RECORD *r, size_t num_recs)
+{
+ size_t i;
+
+ for (i = 0; i < num_recs; i++) {
+ OPENSSL_free(r[i].comp);
+ r[i].comp = NULL;
+ }
+}
+
+void SSL3_RECORD_set_seq_num(SSL3_RECORD *r, const unsigned char *seq_num)
+{
+ memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE);
+}
+
+/*
+ * Peeks ahead into "read_ahead" data to see if we have a whole record waiting
+ * for us in the buffer.
+ */
+static int ssl3_record_app_data_waiting(SSL *s)
+{
+ SSL3_BUFFER *rbuf;
+ size_t left, len;
+ unsigned char *p;
+
+ rbuf = RECORD_LAYER_get_rbuf(&s->rlayer);
+
+ p = SSL3_BUFFER_get_buf(rbuf);
+ if (p == NULL)
+ return 0;
+
+ left = SSL3_BUFFER_get_left(rbuf);
+
+ if (left < SSL3_RT_HEADER_LENGTH)
+ return 0;
+
+ p += SSL3_BUFFER_get_offset(rbuf);
+
+ /*
+ * We only check the type and record length, we will sanity check version
+ * etc later
+ */
+ if (*p != SSL3_RT_APPLICATION_DATA)
+ return 0;
+
+ p += 3;
+ n2s(p, len);
+
+ if (left < SSL3_RT_HEADER_LENGTH + len)
+ return 0;
+
+ return 1;
+}
+
+int early_data_count_ok(SSL *s, size_t length, size_t overhead, int send)
+{
+ uint32_t max_early_data;
+ SSL_SESSION *sess = s->session;
+
+ /*
+ * If we are a client then we always use the max_early_data from the
+ * session/psksession. Otherwise we go with the lowest out of the max early
+ * data set in the session and the configured max_early_data.
+ */
+ if (!s->server && sess->ext.max_early_data == 0) {
+ if (!ossl_assert(s->psksession != NULL
+ && s->psksession->ext.max_early_data > 0)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_EARLY_DATA_COUNT_OK,
+ ERR_R_INTERNAL_ERROR);
+ return 0;
+ }
+ sess = s->psksession;
+ }
+
+ if (!s->server)
+ max_early_data = sess->ext.max_early_data;
+ else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED)
+ max_early_data = s->recv_max_early_data;
+ else
+ max_early_data = s->recv_max_early_data < sess->ext.max_early_data
+ ? s->recv_max_early_data : sess->ext.max_early_data;
+
+ if (max_early_data == 0) {
+ SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
+ SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA);
+ return 0;
+ }
+
+ /* If we are dealing with ciphertext we need to allow for the overhead */
+ max_early_data += overhead;
+
+ if (s->early_data_count + length > max_early_data) {
+ SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE,
+ SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA);
+ return 0;
+ }
+ s->early_data_count += length;
+
+ return 1;
+}
+
+/*
+ * MAX_EMPTY_RECORDS defines the number of consecutive, empty records that
+ * will be processed per call to ssl3_get_record. Without this limit an
+ * attacker could send empty records at a faster rate than we can process and
+ * cause ssl3_get_record to loop forever.
+ */
+#define MAX_EMPTY_RECORDS 32
+
+#define SSL2_RT_HEADER_LENGTH 2
+/*-
+ * Call this to get new input records.
+ * It will return <= 0 if more data is needed, normally due to an error
+ * or non-blocking IO.
+ * When it finishes, |numrpipes| records have been decoded. For each record 'i':
+ * rr[i].type - is the type of record
+ * rr[i].data, - data
+ * rr[i].length, - number of bytes
+ * Multiple records will only be returned if the record types are all
+ * SSL3_RT_APPLICATION_DATA. The number of records returned will always be <=
+ * |max_pipelines|
+ */
+/* used only by ssl3_read_bytes */
+int ssl3_get_record(SSL *s)
+{
+ int enc_err, rret;
+ int i;
+ size_t more, n;
+ SSL3_RECORD *rr, *thisrr;
+ SSL3_BUFFER *rbuf;
+ SSL_SESSION *sess;
+ unsigned char *p;
+ unsigned char md[EVP_MAX_MD_SIZE];
+ unsigned int version;
+ size_t mac_size;
+ int imac_size;
+ size_t num_recs = 0, max_recs, j;
+ PACKET pkt, sslv2pkt;
+ size_t first_rec_len;
+
+ rr = RECORD_LAYER_get_rrec(&s->rlayer);
+ rbuf = RECORD_LAYER_get_rbuf(&s->rlayer);
+ max_recs = s->max_pipelines;
+ if (max_recs == 0)
+ max_recs = 1;
+ sess = s->session;
+
+ do {
+ thisrr = &rr[num_recs];
+
+ /* check if we have the header */
+ if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) ||
+ (RECORD_LAYER_get_packet_length(&s->rlayer)
+ < SSL3_RT_HEADER_LENGTH)) {
+ size_t sslv2len;
+ unsigned int type;
+
+ rret = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH,
+ SSL3_BUFFER_get_len(rbuf), 0,
+ num_recs == 0 ? 1 : 0, &n);
+ if (rret <= 0)
+ return rret; /* error or non-blocking */
+ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY);
+
+ p = RECORD_LAYER_get_packet(&s->rlayer);
+ if (!PACKET_buf_init(&pkt, RECORD_LAYER_get_packet(&s->rlayer),
+ RECORD_LAYER_get_packet_length(&s->rlayer))) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ sslv2pkt = pkt;
+ if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len)
+ || !PACKET_get_1(&sslv2pkt, &type)) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ /*
+ * The first record received by the server may be a V2ClientHello.
+ */
+ if (s->server && RECORD_LAYER_is_first_record(&s->rlayer)
+ && (sslv2len & 0x8000) != 0
+ && (type == SSL2_MT_CLIENT_HELLO)) {
+ /*
+ * SSLv2 style record
+ *
+ * |num_recs| here will actually always be 0 because
+ * |num_recs > 0| only ever occurs when we are processing
+ * multiple app data records - which we know isn't the case here
+ * because it is an SSLv2ClientHello. We keep it using
+ * |num_recs| for the sake of consistency
+ */
+ thisrr->type = SSL3_RT_HANDSHAKE;
+ thisrr->rec_version = SSL2_VERSION;
+
+ thisrr->length = sslv2len & 0x7fff;
+
+ if (thisrr->length > SSL3_BUFFER_get_len(rbuf)
+ - SSL2_RT_HEADER_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_PACKET_LENGTH_TOO_LONG);
+ return -1;
+ }
+
+ if (thisrr->length < MIN_SSL2_RECORD_LEN) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
+ SSL_R_LENGTH_TOO_SHORT);
+ return -1;
+ }
+ } else {
+ /* SSLv3+ style record */
+ if (s->msg_callback)
+ s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s,
+ s->msg_callback_arg);
+
+ /* Pull apart the header into the SSL3_RECORD */
+ if (!PACKET_get_1(&pkt, &type)
+ || !PACKET_get_net_2(&pkt, &version)
+ || !PACKET_get_net_2_len(&pkt, &thisrr->length)) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ thisrr->type = type;
+ thisrr->rec_version = version;
+
+ /*
+ * Lets check version. In TLSv1.3 we only check this field
+ * when encryption is occurring (see later check). For the
+ * ServerHello after an HRR we haven't actually selected TLSv1.3
+ * yet, but we still treat it as TLSv1.3, so we must check for
+ * that explicitly
+ */
+ if (!s->first_packet && !SSL_IS_TLS13(s)
+ && s->hello_retry_request != SSL_HRR_PENDING
+ && version != (unsigned int)s->version) {
+ if ((s->version & 0xFF00) == (version & 0xFF00)
+ && !s->enc_write_ctx && !s->write_hash) {
+ if (thisrr->type == SSL3_RT_ALERT) {
+ /*
+ * The record is using an incorrect version number,
+ * but what we've got appears to be an alert. We
+ * haven't read the body yet to check whether its a
+ * fatal or not - but chances are it is. We probably
+ * shouldn't send a fatal alert back. We'll just
+ * end.
+ */
+ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
+ SSL_R_WRONG_VERSION_NUMBER);
+ return -1;
+ }
+ /*
+ * Send back error using their minor version number :-)
+ */
+ s->version = (unsigned short)version;
+ }
+ SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD,
+ SSL_R_WRONG_VERSION_NUMBER);
+ return -1;
+ }
+
+ if ((version >> 8) != SSL3_VERSION_MAJOR) {
+ if (RECORD_LAYER_is_first_record(&s->rlayer)) {
+ /* Go back to start of packet, look at the five bytes
+ * that we have. */
+ p = RECORD_LAYER_get_packet(&s->rlayer);
+ if (strncmp((char *)p, "GET ", 4) == 0 ||
+ strncmp((char *)p, "POST ", 5) == 0 ||
+ strncmp((char *)p, "HEAD ", 5) == 0 ||
+ strncmp((char *)p, "PUT ", 4) == 0) {
+ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
+ SSL_R_HTTP_REQUEST);
+ return -1;
+ } else if (strncmp((char *)p, "CONNE", 5) == 0) {
+ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
+ SSL_R_HTTPS_PROXY_REQUEST);
+ return -1;
+ }
+
+ /* Doesn't look like TLS - don't send an alert */
+ SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD,
+ SSL_R_WRONG_VERSION_NUMBER);
+ return -1;
+ } else {
+ SSLfatal(s, SSL_AD_PROTOCOL_VERSION,
+ SSL_F_SSL3_GET_RECORD,
+ SSL_R_WRONG_VERSION_NUMBER);
+ return -1;
+ }
+ }
+
+ if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL) {
+ if (thisrr->type != SSL3_RT_APPLICATION_DATA
+ && (thisrr->type != SSL3_RT_CHANGE_CIPHER_SPEC
+ || !SSL_IS_FIRST_HANDSHAKE(s))
+ && (thisrr->type != SSL3_RT_ALERT
+ || s->statem.enc_read_state
+ != ENC_READ_STATE_ALLOW_PLAIN_ALERTS)) {
+ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE,
+ SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE);
+ return -1;
+ }
+ if (thisrr->rec_version != TLS1_2_VERSION) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
+ SSL_R_WRONG_VERSION_NUMBER);
+ return -1;
+ }
+ }
+
+ if (thisrr->length >
+ SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_PACKET_LENGTH_TOO_LONG);
+ return -1;
+ }
+ }
+
+ /* now s->rlayer.rstate == SSL_ST_READ_BODY */
+ }
+
+ if (SSL_IS_TLS13(s)) {
+ if (thisrr->length > SSL3_RT_MAX_TLS13_ENCRYPTED_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
+ return -1;
+ }
+ } else {
+ size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH;
+
+#ifndef OPENSSL_NO_COMP
+ /*
+ * If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH
+ * does not include the compression overhead anyway.
+ */
+ if (s->expand == NULL)
+ len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD;
+#endif
+
+ if (thisrr->length > len) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
+ return -1;
+ }
+ }
+
+ /*
+ * s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data.
+ * Calculate how much more data we need to read for the rest of the
+ * record
+ */
+ if (thisrr->rec_version == SSL2_VERSION) {
+ more = thisrr->length + SSL2_RT_HEADER_LENGTH
+ - SSL3_RT_HEADER_LENGTH;
+ } else {
+ more = thisrr->length;
+ }
+ if (more > 0) {
+ /* now s->packet_length == SSL3_RT_HEADER_LENGTH */
+
+ rret = ssl3_read_n(s, more, more, 1, 0, &n);
+ if (rret <= 0)
+ return rret; /* error or non-blocking io */
+ }
+
+ /* set state for later operations */
+ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER);
+
+ /*
+ * At this point, s->packet_length == SSL3_RT_HEADER_LENGTH
+ * + thisrr->length, or s->packet_length == SSL2_RT_HEADER_LENGTH
+ * + thisrr->length and we have that many bytes in s->packet
+ */
+ if (thisrr->rec_version == SSL2_VERSION) {
+ thisrr->input =
+ &(RECORD_LAYER_get_packet(&s->rlayer)[SSL2_RT_HEADER_LENGTH]);
+ } else {
+ thisrr->input =
+ &(RECORD_LAYER_get_packet(&s->rlayer)[SSL3_RT_HEADER_LENGTH]);
+ }
+
+ /*
+ * ok, we can now read from 's->packet' data into 'thisrr' thisrr->input
+ * points at thisrr->length bytes, which need to be copied into
+ * thisrr->data by either the decryption or by the decompression When
+ * the data is 'copied' into the thisrr->data buffer, thisrr->input will
+ * be pointed at the new buffer
+ */
+
+ /*
+ * We now have - encrypted [ MAC [ compressed [ plain ] ] ]
+ * thisrr->length bytes of encrypted compressed stuff.
+ */
+
+ /* decrypt in place in 'thisrr->input' */
+ thisrr->data = thisrr->input;
+ thisrr->orig_len = thisrr->length;
+
+ /* Mark this record as not read by upper layers yet */
+ thisrr->read = 0;
+
+ num_recs++;
+
+ /* we have pulled in a full packet so zero things */
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ RECORD_LAYER_clear_first_record(&s->rlayer);
+ } while (num_recs < max_recs
+ && thisrr->type == SSL3_RT_APPLICATION_DATA
+ && SSL_USE_EXPLICIT_IV(s)
+ && s->enc_read_ctx != NULL
+ && (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx))
+ & EVP_CIPH_FLAG_PIPELINE)
+ && ssl3_record_app_data_waiting(s));
+
+ if (num_recs == 1
+ && thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC
+ && (SSL_IS_TLS13(s) || s->hello_retry_request != SSL_HRR_NONE)
+ && SSL_IS_FIRST_HANDSHAKE(s)) {
+ /*
+ * CCS messages must be exactly 1 byte long, containing the value 0x01
+ */
+ if (thisrr->length != 1 || thisrr->data[0] != 0x01) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL3_GET_RECORD,
+ SSL_R_INVALID_CCS_MESSAGE);
+ return -1;
+ }
+ /*
+ * CCS messages are ignored in TLSv1.3. We treat it like an empty
+ * handshake record
+ */
+ thisrr->type = SSL3_RT_HANDSHAKE;
+ RECORD_LAYER_inc_empty_record_count(&s->rlayer);
+ if (RECORD_LAYER_get_empty_record_count(&s->rlayer)
+ > MAX_EMPTY_RECORDS) {
+ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
+ SSL_R_UNEXPECTED_CCS_MESSAGE);
+ return -1;
+ }
+ thisrr->read = 1;
+ RECORD_LAYER_set_numrpipes(&s->rlayer, 1);
+
+ return 1;
+ }
+
+ /*
+ * If in encrypt-then-mac mode calculate mac from encrypted record. All
+ * the details below are public so no timing details can leak.
+ */
+ if (SSL_READ_ETM(s) && s->read_hash) {
+ unsigned char *mac;
+ /* TODO(size_t): convert this to do size_t properly */
+ imac_size = EVP_MD_CTX_size(s->read_hash);
+ if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
+ ERR_LIB_EVP);
+ return -1;
+ }
+ mac_size = (size_t)imac_size;
+ for (j = 0; j < num_recs; j++) {
+ thisrr = &rr[j];
+
+ if (thisrr->length < mac_size) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
+ SSL_R_LENGTH_TOO_SHORT);
+ return -1;
+ }
+ thisrr->length -= mac_size;
+ mac = thisrr->data + thisrr->length;
+ i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ );
+ if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) {
+ SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD,
+ SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
+ return -1;
+ }
+ }
+ }
+
+ first_rec_len = rr[0].length;
+
+ enc_err = s->method->ssl3_enc->enc(s, rr, num_recs, 0);
+
+ /*-
+ * enc_err is:
+ * 0: (in non-constant time) if the record is publicly invalid.
+ * 1: if the padding is valid
+ * -1: if the padding is invalid
+ */
+ if (enc_err == 0) {
+ if (ossl_statem_in_error(s)) {
+ /* SSLfatal() already got called */
+ return -1;
+ }
+ if (num_recs == 1 && ossl_statem_skip_early_data(s)) {
+ /*
+ * Valid early_data that we cannot decrypt might fail here as
+ * publicly invalid. We treat it like an empty record.
+ */
+
+ thisrr = &rr[0];
+
+ if (!early_data_count_ok(s, thisrr->length,
+ EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
+ /* SSLfatal() already called */
+ return -1;
+ }
+
+ thisrr->length = 0;
+ thisrr->read = 1;
+ RECORD_LAYER_set_numrpipes(&s->rlayer, 1);
+ RECORD_LAYER_reset_read_sequence(&s->rlayer);
+ return 1;
+ }
+ SSLfatal(s, SSL_AD_DECRYPTION_FAILED, SSL_F_SSL3_GET_RECORD,
+ SSL_R_BLOCK_CIPHER_PAD_IS_WRONG);
+ return -1;
+ }
+#ifdef SSL_DEBUG
+ printf("dec %lu\n", (unsigned long)rr[0].length);
+ {
+ size_t z;
+ for (z = 0; z < rr[0].length; z++)
+ printf("%02X%c", rr[0].data[z], ((z + 1) % 16) ? ' ' : '\n');
+ }
+ printf("\n");
+#endif
+
+ /* r->length is now the compressed data plus mac */
+ if ((sess != NULL) &&
+ (s->enc_read_ctx != NULL) &&
+ (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL)) {
+ /* s->read_hash != NULL => mac_size != -1 */
+ unsigned char *mac = NULL;
+ unsigned char mac_tmp[EVP_MAX_MD_SIZE];
+
+ mac_size = EVP_MD_CTX_size(s->read_hash);
+ if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+
+ for (j = 0; j < num_recs; j++) {
+ thisrr = &rr[j];
+ /*
+ * orig_len is the length of the record before any padding was
+ * removed. This is public information, as is the MAC in use,
+ * therefore we can safely process the record in a different amount
+ * of time if it's too short to possibly contain a MAC.
+ */
+ if (thisrr->orig_len < mac_size ||
+ /* CBC records must have a padding length byte too. */
+ (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
+ thisrr->orig_len < mac_size + 1)) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD,
+ SSL_R_LENGTH_TOO_SHORT);
+ return -1;
+ }
+
+ if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) {
+ /*
+ * We update the length so that the TLS header bytes can be
+ * constructed correctly but we need to extract the MAC in
+ * constant time from within the record, without leaking the
+ * contents of the padding bytes.
+ */
+ mac = mac_tmp;
+ if (!ssl3_cbc_copy_mac(mac_tmp, thisrr, mac_size)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ thisrr->length -= mac_size;
+ } else {
+ /*
+ * In this case there's no padding, so |rec->orig_len| equals
+ * |rec->length| and we checked that there's enough bytes for
+ * |mac_size| above.
+ */
+ thisrr->length -= mac_size;
+ mac = &thisrr->data[thisrr->length];
+ }
+
+ i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ );
+ if (i == 0 || mac == NULL
+ || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0)
+ enc_err = -1;
+ if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
+ enc_err = -1;
+ }
+ }
+
+ if (enc_err < 0) {
+ if (ossl_statem_in_error(s)) {
+ /* We already called SSLfatal() */
+ return -1;
+ }
+ if (num_recs == 1 && ossl_statem_skip_early_data(s)) {
+ /*
+ * We assume this is unreadable early_data - we treat it like an
+ * empty record
+ */
+
+ /*
+ * The record length may have been modified by the mac check above
+ * so we use the previously saved value
+ */
+ if (!early_data_count_ok(s, first_rec_len,
+ EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) {
+ /* SSLfatal() already called */
+ return -1;
+ }
+
+ thisrr = &rr[0];
+ thisrr->length = 0;
+ thisrr->read = 1;
+ RECORD_LAYER_set_numrpipes(&s->rlayer, 1);
+ RECORD_LAYER_reset_read_sequence(&s->rlayer);
+ return 1;
+ }
+ /*
+ * A separate 'decryption_failed' alert was introduced with TLS 1.0,
+ * SSL 3.0 only has 'bad_record_mac'. But unless a decryption
+ * failure is directly visible from the ciphertext anyway, we should
+ * not reveal which kind of error occurred -- this might become
+ * visible to an attacker (e.g. via a logfile)
+ */
+ SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD,
+ SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
+ return -1;
+ }
+
+ for (j = 0; j < num_recs; j++) {
+ thisrr = &rr[j];
+
+ /* thisrr->length is now just compressed */
+ if (s->expand != NULL) {
+ if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_COMPRESSED_LENGTH_TOO_LONG);
+ return -1;
+ }
+ if (!ssl3_do_uncompress(s, thisrr)) {
+ SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_SSL3_GET_RECORD,
+ SSL_R_BAD_DECOMPRESSION);
+ return -1;
+ }
+ }
+
+ if (SSL_IS_TLS13(s)
+ && s->enc_read_ctx != NULL
+ && thisrr->type != SSL3_RT_ALERT) {
+ size_t end;
+
+ if (thisrr->length == 0
+ || thisrr->type != SSL3_RT_APPLICATION_DATA) {
+ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
+ SSL_R_BAD_RECORD_TYPE);
+ return -1;
+ }
+
+ /* Strip trailing padding */
+ for (end = thisrr->length - 1; end > 0 && thisrr->data[end] == 0;
+ end--)
+ continue;
+
+ thisrr->length = end;
+ thisrr->type = thisrr->data[end];
+ if (thisrr->type != SSL3_RT_APPLICATION_DATA
+ && thisrr->type != SSL3_RT_ALERT
+ && thisrr->type != SSL3_RT_HANDSHAKE) {
+ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
+ SSL_R_BAD_RECORD_TYPE);
+ return -1;
+ }
+ if (s->msg_callback)
+ s->msg_callback(0, s->version, SSL3_RT_INNER_CONTENT_TYPE,
+ &thisrr->data[end], 1, s, s->msg_callback_arg);
+ }
+
+ /*
+ * TLSv1.3 alert and handshake records are required to be non-zero in
+ * length.
+ */
+ if (SSL_IS_TLS13(s)
+ && (thisrr->type == SSL3_RT_HANDSHAKE
+ || thisrr->type == SSL3_RT_ALERT)
+ && thisrr->length == 0) {
+ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
+ SSL_R_BAD_LENGTH);
+ return -1;
+ }
+
+ if (thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_DATA_LENGTH_TOO_LONG);
+ return -1;
+ }
+
+ /* If received packet overflows current Max Fragment Length setting */
+ if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session)
+ && thisrr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD,
+ SSL_R_DATA_LENGTH_TOO_LONG);
+ return -1;
+ }
+
+ thisrr->off = 0;
+ /*-
+ * So at this point the following is true
+ * thisrr->type is the type of record
+ * thisrr->length == number of bytes in record
+ * thisrr->off == offset to first valid byte
+ * thisrr->data == where to take bytes from, increment after use :-).
+ */
+
+ /* just read a 0 length packet */
+ if (thisrr->length == 0) {
+ RECORD_LAYER_inc_empty_record_count(&s->rlayer);
+ if (RECORD_LAYER_get_empty_record_count(&s->rlayer)
+ > MAX_EMPTY_RECORDS) {
+ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD,
+ SSL_R_RECORD_TOO_SMALL);
+ return -1;
+ }
+ } else {
+ RECORD_LAYER_reset_empty_record_count(&s->rlayer);
+ }
+ }
+
+ if (s->early_data_state == SSL_EARLY_DATA_READING) {
+ thisrr = &rr[0];
+ if (thisrr->type == SSL3_RT_APPLICATION_DATA
+ && !early_data_count_ok(s, thisrr->length, 0, 0)) {
+ /* SSLfatal already called */
+ return -1;
+ }
+ }
+
+ RECORD_LAYER_set_numrpipes(&s->rlayer, num_recs);
+ return 1;
+}
+
+int ssl3_do_uncompress(SSL *ssl, SSL3_RECORD *rr)
+{
+#ifndef OPENSSL_NO_COMP
+ int i;
+
+ if (rr->comp == NULL) {
+ rr->comp = (unsigned char *)
+ OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
+ }
+ if (rr->comp == NULL)
+ return 0;
+
+ /* TODO(size_t): Convert this call */
+ i = COMP_expand_block(ssl->expand, rr->comp,
+ SSL3_RT_MAX_PLAIN_LENGTH, rr->data, (int)rr->length);
+ if (i < 0)
+ return 0;
+ else
+ rr->length = i;
+ rr->data = rr->comp;
+#endif
+ return 1;
+}
+
+int ssl3_do_compress(SSL *ssl, SSL3_RECORD *wr)
+{
+#ifndef OPENSSL_NO_COMP
+ int i;
+
+ /* TODO(size_t): Convert this call */
+ i = COMP_compress_block(ssl->compress, wr->data,
+ (int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD),
+ wr->input, (int)wr->length);
+ if (i < 0)
+ return 0;
+ else
+ wr->length = i;
+
+ wr->input = wr->data;
+#endif
+ return 1;
+}
+
+/*-
+ * ssl3_enc encrypts/decrypts |n_recs| records in |inrecs|. Will call
+ * SSLfatal() for internal errors, but not otherwise.
+ *
+ * Returns:
+ * 0: (in non-constant time) if the record is publically invalid (i.e. too
+ * short etc).
+ * 1: if the record's padding is valid / the encryption was successful.
+ * -1: if the record's padding is invalid or, if sending, an internal error
+ * occurred.
+ */
+int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, size_t n_recs, int sending)
+{
+ SSL3_RECORD *rec;
+ EVP_CIPHER_CTX *ds;
+ size_t l, i;
+ size_t bs, mac_size = 0;
+ int imac_size;
+ const EVP_CIPHER *enc;
+
+ rec = inrecs;
+ /*
+ * We shouldn't ever be called with more than one record in the SSLv3 case
+ */
+ if (n_recs != 1)
+ return 0;
+ if (sending) {
+ ds = s->enc_write_ctx;
+ if (s->enc_write_ctx == NULL)
+ enc = NULL;
+ else
+ enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
+ } else {
+ ds = s->enc_read_ctx;
+ if (s->enc_read_ctx == NULL)
+ enc = NULL;
+ else
+ enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
+ }
+
+ if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
+ memmove(rec->data, rec->input, rec->length);
+ rec->input = rec->data;
+ } else {
+ l = rec->length;
+ /* TODO(size_t): Convert this call */
+ bs = EVP_CIPHER_CTX_block_size(ds);
+
+ /* COMPRESS */
+
+ if ((bs != 1) && sending) {
+ i = bs - (l % bs);
+
+ /* we need to add 'i-1' padding bytes */
+ l += i;
+ /*
+ * the last of these zero bytes will be overwritten with the
+ * padding length.
+ */
+ memset(&rec->input[rec->length], 0, i);
+ rec->length += i;
+ rec->input[l - 1] = (unsigned char)(i - 1);
+ }
+
+ if (!sending) {
+ if (l == 0 || l % bs != 0)
+ return 0;
+ /* otherwise, rec->length >= bs */
+ }
+
+ /* TODO(size_t): Convert this call */
+ if (EVP_Cipher(ds, rec->data, rec->input, (unsigned int)l) < 1)
+ return -1;
+
+ if (EVP_MD_CTX_md(s->read_hash) != NULL) {
+ /* TODO(size_t): convert me */
+ imac_size = EVP_MD_CTX_size(s->read_hash);
+ if (imac_size < 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ mac_size = (size_t)imac_size;
+ }
+ if ((bs != 1) && !sending)
+ return ssl3_cbc_remove_padding(rec, bs, mac_size);
+ }
+ return 1;
+}
+
+#define MAX_PADDING 256
+/*-
+ * tls1_enc encrypts/decrypts |n_recs| in |recs|. Will call SSLfatal() for
+ * internal errors, but not otherwise.
+ *
+ * Returns:
+ * 0: (in non-constant time) if the record is publically invalid (i.e. too
+ * short etc).
+ * 1: if the record's padding is valid / the encryption was successful.
+ * -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
+ * an internal error occurred.
+ */
+int tls1_enc(SSL *s, SSL3_RECORD *recs, size_t n_recs, int sending)
+{
+ EVP_CIPHER_CTX *ds;
+ size_t reclen[SSL_MAX_PIPELINES];
+ unsigned char buf[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
+ int i, pad = 0, ret, tmpr;
+ size_t bs, mac_size = 0, ctr, padnum, loop;
+ unsigned char padval;
+ int imac_size;
+ const EVP_CIPHER *enc;
+
+ if (n_recs == 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return 0;
+ }
+
+ if (sending) {
+ if (EVP_MD_CTX_md(s->write_hash)) {
+ int n = EVP_MD_CTX_size(s->write_hash);
+ if (!ossl_assert(n >= 0)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ }
+ ds = s->enc_write_ctx;
+ if (s->enc_write_ctx == NULL)
+ enc = NULL;
+ else {
+ int ivlen;
+ enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
+ /* For TLSv1.1 and later explicit IV */
+ if (SSL_USE_EXPLICIT_IV(s)
+ && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
+ ivlen = EVP_CIPHER_iv_length(enc);
+ else
+ ivlen = 0;
+ if (ivlen > 1) {
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ if (recs[ctr].data != recs[ctr].input) {
+ /*
+ * we can't write into the input stream: Can this ever
+ * happen?? (steve)
+ */
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ } else if (RAND_bytes(recs[ctr].input, ivlen) <= 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ }
+ }
+ }
+ } else {
+ if (EVP_MD_CTX_md(s->read_hash)) {
+ int n = EVP_MD_CTX_size(s->read_hash);
+ if (!ossl_assert(n >= 0)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ }
+ ds = s->enc_read_ctx;
+ if (s->enc_read_ctx == NULL)
+ enc = NULL;
+ else
+ enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
+ }
+
+ if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ memmove(recs[ctr].data, recs[ctr].input, recs[ctr].length);
+ recs[ctr].input = recs[ctr].data;
+ }
+ ret = 1;
+ } else {
+ bs = EVP_CIPHER_block_size(EVP_CIPHER_CTX_cipher(ds));
+
+ if (n_recs > 1) {
+ if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds))
+ & EVP_CIPH_FLAG_PIPELINE)) {
+ /*
+ * We shouldn't have been called with pipeline data if the
+ * cipher doesn't support pipelining
+ */
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ SSL_R_PIPELINE_FAILURE);
+ return -1;
+ }
+ }
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ reclen[ctr] = recs[ctr].length;
+
+ if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds))
+ & EVP_CIPH_FLAG_AEAD_CIPHER) {
+ unsigned char *seq;
+
+ seq = sending ? RECORD_LAYER_get_write_sequence(&s->rlayer)
+ : RECORD_LAYER_get_read_sequence(&s->rlayer);
+
+ if (SSL_IS_DTLS(s)) {
+ /* DTLS does not support pipelining */
+ unsigned char dtlsseq[9], *p = dtlsseq;
+
+ s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) :
+ DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer), p);
+ memcpy(p, &seq[2], 6);
+ memcpy(buf[ctr], dtlsseq, 8);
+ } else {
+ memcpy(buf[ctr], seq, 8);
+ for (i = 7; i >= 0; i--) { /* increment */
+ ++seq[i];
+ if (seq[i] != 0)
+ break;
+ }
+ }
+
+ buf[ctr][8] = recs[ctr].type;
+ buf[ctr][9] = (unsigned char)(s->version >> 8);
+ buf[ctr][10] = (unsigned char)(s->version);
+ buf[ctr][11] = (unsigned char)(recs[ctr].length >> 8);
+ buf[ctr][12] = (unsigned char)(recs[ctr].length & 0xff);
+ pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD,
+ EVP_AEAD_TLS1_AAD_LEN, buf[ctr]);
+ if (pad <= 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+
+ if (sending) {
+ reclen[ctr] += pad;
+ recs[ctr].length += pad;
+ }
+
+ } else if ((bs != 1) && sending) {
+ padnum = bs - (reclen[ctr] % bs);
+
+ /* Add weird padding of upto 256 bytes */
+
+ if (padnum > MAX_PADDING) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ /* we need to add 'padnum' padding bytes of value padval */
+ padval = (unsigned char)(padnum - 1);
+ for (loop = reclen[ctr]; loop < reclen[ctr] + padnum; loop++)
+ recs[ctr].input[loop] = padval;
+ reclen[ctr] += padnum;
+ recs[ctr].length += padnum;
+ }
+
+ if (!sending) {
+ if (reclen[ctr] == 0 || reclen[ctr] % bs != 0)
+ return 0;
+ }
+ }
+ if (n_recs > 1) {
+ unsigned char *data[SSL_MAX_PIPELINES];
+
+ /* Set the output buffers */
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ data[ctr] = recs[ctr].data;
+ }
+ if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS,
+ (int)n_recs, data) <= 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ SSL_R_PIPELINE_FAILURE);
+ return -1;
+ }
+ /* Set the input buffers */
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ data[ctr] = recs[ctr].input;
+ }
+ if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_BUFS,
+ (int)n_recs, data) <= 0
+ || EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_LENS,
+ (int)n_recs, reclen) <= 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ SSL_R_PIPELINE_FAILURE);
+ return -1;
+ }
+ }
+
+ /* TODO(size_t): Convert this call */
+ tmpr = EVP_Cipher(ds, recs[0].data, recs[0].input,
+ (unsigned int)reclen[0]);
+ if ((EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds))
+ & EVP_CIPH_FLAG_CUSTOM_CIPHER)
+ ? (tmpr < 0)
+ : (tmpr == 0))
+ return -1; /* AEAD can fail to verify MAC */
+
+ if (sending == 0) {
+ if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE) {
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ recs[ctr].data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
+ recs[ctr].input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
+ recs[ctr].length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
+ }
+ } else if (EVP_CIPHER_mode(enc) == EVP_CIPH_CCM_MODE) {
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ recs[ctr].data += EVP_CCM_TLS_EXPLICIT_IV_LEN;
+ recs[ctr].input += EVP_CCM_TLS_EXPLICIT_IV_LEN;
+ recs[ctr].length -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
+ }
+ }
+ }
+
+ ret = 1;
+ if (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL) {
+ imac_size = EVP_MD_CTX_size(s->read_hash);
+ if (imac_size < 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC,
+ ERR_R_INTERNAL_ERROR);
+ return -1;
+ }
+ mac_size = (size_t)imac_size;
+ }
+ if ((bs != 1) && !sending) {
+ int tmpret;
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ tmpret = tls1_cbc_remove_padding(s, &recs[ctr], bs, mac_size);
+ /*
+ * If tmpret == 0 then this means publicly invalid so we can
+ * short circuit things here. Otherwise we must respect constant
+ * time behaviour.
+ */
+ if (tmpret == 0)
+ return 0;
+ ret = constant_time_select_int(constant_time_eq_int(tmpret, 1),
+ ret, -1);
+ }
+ }
+ if (pad && !sending) {
+ for (ctr = 0; ctr < n_recs; ctr++) {
+ recs[ctr].length -= pad;
+ }
+ }
+ }
+ return ret;
+}
+
+int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending)
+{
+ unsigned char *mac_sec, *seq;
+ const EVP_MD_CTX *hash;
+ unsigned char *p, rec_char;
+ size_t md_size;
+ size_t npad;
+ int t;
+
+ if (sending) {
+ mac_sec = &(ssl->s3->write_mac_secret[0]);
+ seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer);
+ hash = ssl->write_hash;
+ } else {
+ mac_sec = &(ssl->s3->read_mac_secret[0]);
+ seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer);
+ hash = ssl->read_hash;
+ }
+
+ t = EVP_MD_CTX_size(hash);
+ if (t < 0)
+ return 0;
+ md_size = t;
+ npad = (48 / md_size) * md_size;
+
+ if (!sending &&
+ EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
+ ssl3_cbc_record_digest_supported(hash)) {
+ /*
+ * This is a CBC-encrypted record. We must avoid leaking any
+ * timing-side channel information about how many blocks of data we
+ * are hashing because that gives an attacker a timing-oracle.
+ */
+
+ /*-
+ * npad is, at most, 48 bytes and that's with MD5:
+ * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75.
+ *
+ * With SHA-1 (the largest hash speced for SSLv3) the hash size
+ * goes up 4, but npad goes down by 8, resulting in a smaller
+ * total size.
+ */
+ unsigned char header[75];
+ size_t j = 0;
+ memcpy(header + j, mac_sec, md_size);
+ j += md_size;
+ memcpy(header + j, ssl3_pad_1, npad);
+ j += npad;
+ memcpy(header + j, seq, 8);
+ j += 8;
+ header[j++] = rec->type;
+ header[j++] = (unsigned char)(rec->length >> 8);
+ header[j++] = (unsigned char)(rec->length & 0xff);
+
+ /* Final param == is SSLv3 */
+ if (ssl3_cbc_digest_record(hash,
+ md, &md_size,
+ header, rec->input,
+ rec->length + md_size, rec->orig_len,
+ mac_sec, md_size, 1) <= 0)
+ return 0;
+ } else {
+ unsigned int md_size_u;
+ /* Chop the digest off the end :-) */
+ EVP_MD_CTX *md_ctx = EVP_MD_CTX_new();
+
+ if (md_ctx == NULL)
+ return 0;
+
+ rec_char = rec->type;
+ p = md;
+ s2n(rec->length, p);
+ if (EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0
+ || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0
+ || EVP_DigestUpdate(md_ctx, ssl3_pad_1, npad) <= 0
+ || EVP_DigestUpdate(md_ctx, seq, 8) <= 0
+ || EVP_DigestUpdate(md_ctx, &rec_char, 1) <= 0
+ || EVP_DigestUpdate(md_ctx, md, 2) <= 0
+ || EVP_DigestUpdate(md_ctx, rec->input, rec->length) <= 0
+ || EVP_DigestFinal_ex(md_ctx, md, NULL) <= 0
+ || EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0
+ || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0
+ || EVP_DigestUpdate(md_ctx, ssl3_pad_2, npad) <= 0
+ || EVP_DigestUpdate(md_ctx, md, md_size) <= 0
+ || EVP_DigestFinal_ex(md_ctx, md, &md_size_u) <= 0) {
+ EVP_MD_CTX_free(md_ctx);
+ return 0;
+ }
+
+ EVP_MD_CTX_free(md_ctx);
+ }
+
+ ssl3_record_sequence_update(seq);
+ return 1;
+}
+
+int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending)
+{
+ unsigned char *seq;
+ EVP_MD_CTX *hash;
+ size_t md_size;
+ int i;
+ EVP_MD_CTX *hmac = NULL, *mac_ctx;
+ unsigned char header[13];
+ int stream_mac = (sending ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM)
+ : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
+ int t;
+
+ if (sending) {
+ seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer);
+ hash = ssl->write_hash;
+ } else {
+ seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer);
+ hash = ssl->read_hash;
+ }
+
+ t = EVP_MD_CTX_size(hash);
+ if (!ossl_assert(t >= 0))
+ return 0;
+ md_size = t;
+
+ /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
+ if (stream_mac) {
+ mac_ctx = hash;
+ } else {
+ hmac = EVP_MD_CTX_new();
+ if (hmac == NULL || !EVP_MD_CTX_copy(hmac, hash)) {
+ EVP_MD_CTX_free(hmac);
+ return 0;
+ }
+ mac_ctx = hmac;
+ }
+
+ if (SSL_IS_DTLS(ssl)) {
+ unsigned char dtlsseq[8], *p = dtlsseq;
+
+ s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&ssl->rlayer) :
+ DTLS_RECORD_LAYER_get_r_epoch(&ssl->rlayer), p);
+ memcpy(p, &seq[2], 6);
+
+ memcpy(header, dtlsseq, 8);
+ } else
+ memcpy(header, seq, 8);
+
+ header[8] = rec->type;
+ header[9] = (unsigned char)(ssl->version >> 8);
+ header[10] = (unsigned char)(ssl->version);
+ header[11] = (unsigned char)(rec->length >> 8);
+ header[12] = (unsigned char)(rec->length & 0xff);
+
+ if (!sending && !SSL_READ_ETM(ssl) &&
+ EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
+ ssl3_cbc_record_digest_supported(mac_ctx)) {
+ /*
+ * This is a CBC-encrypted record. We must avoid leaking any
+ * timing-side channel information about how many blocks of data we
+ * are hashing because that gives an attacker a timing-oracle.
+ */
+ /* Final param == not SSLv3 */
+ if (ssl3_cbc_digest_record(mac_ctx,
+ md, &md_size,
+ header, rec->input,
+ rec->length + md_size, rec->orig_len,
+ ssl->s3->read_mac_secret,
+ ssl->s3->read_mac_secret_size, 0) <= 0) {
+ EVP_MD_CTX_free(hmac);
+ return 0;
+ }
+ } else {
+ /* TODO(size_t): Convert these calls */
+ if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0
+ || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0
+ || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) {
+ EVP_MD_CTX_free(hmac);
+ return 0;
+ }
+ }
+
+ EVP_MD_CTX_free(hmac);
+
+#ifdef SSL_DEBUG
+ fprintf(stderr, "seq=");
+ {
+ int z;
+ for (z = 0; z < 8; z++)
+ fprintf(stderr, "%02X ", seq[z]);
+ fprintf(stderr, "\n");
+ }
+ fprintf(stderr, "rec=");
+ {
+ size_t z;
+ for (z = 0; z < rec->length; z++)
+ fprintf(stderr, "%02X ", rec->data[z]);
+ fprintf(stderr, "\n");
+ }
+#endif
+
+ if (!SSL_IS_DTLS(ssl)) {
+ for (i = 7; i >= 0; i--) {
+ ++seq[i];
+ if (seq[i] != 0)
+ break;
+ }
+ }
+#ifdef SSL_DEBUG
+ {
+ unsigned int z;
+ for (z = 0; z < md_size; z++)
+ fprintf(stderr, "%02X ", md[z]);
+ fprintf(stderr, "\n");
+ }
+#endif
+ return 1;
+}
+
+/*-
+ * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
+ * record in |rec| by updating |rec->length| in constant time.
+ *
+ * block_size: the block size of the cipher used to encrypt the record.
+ * returns:
+ * 0: (in non-constant time) if the record is publicly invalid.
+ * 1: if the padding was valid
+ * -1: otherwise.
+ */
+int ssl3_cbc_remove_padding(SSL3_RECORD *rec,
+ size_t block_size, size_t mac_size)
+{
+ size_t padding_length;
+ size_t good;
+ const size_t overhead = 1 /* padding length byte */ + mac_size;
+
+ /*
+ * These lengths are all public so we can test them in non-constant time.
+ */
+ if (overhead > rec->length)
+ return 0;
+
+ padding_length = rec->data[rec->length - 1];
+ good = constant_time_ge_s(rec->length, padding_length + overhead);
+ /* SSLv3 requires that the padding is minimal. */
+ good &= constant_time_ge_s(block_size, padding_length + 1);
+ rec->length -= good & (padding_length + 1);
+ return constant_time_select_int_s(good, 1, -1);
+}
+
+/*-
+ * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
+ * record in |rec| in constant time and returns 1 if the padding is valid and
+ * -1 otherwise. It also removes any explicit IV from the start of the record
+ * without leaking any timing about whether there was enough space after the
+ * padding was removed.
+ *
+ * block_size: the block size of the cipher used to encrypt the record.
+ * returns:
+ * 0: (in non-constant time) if the record is publicly invalid.
+ * 1: if the padding was valid
+ * -1: otherwise.
+ */
+int tls1_cbc_remove_padding(const SSL *s,
+ SSL3_RECORD *rec,
+ size_t block_size, size_t mac_size)
+{
+ size_t good;
+ size_t padding_length, to_check, i;
+ const size_t overhead = 1 /* padding length byte */ + mac_size;
+ /* Check if version requires explicit IV */
+ if (SSL_USE_EXPLICIT_IV(s)) {
+ /*
+ * These lengths are all public so we can test them in non-constant
+ * time.
+ */
+ if (overhead + block_size > rec->length)
+ return 0;
+ /* We can now safely skip explicit IV */
+ rec->data += block_size;
+ rec->input += block_size;
+ rec->length -= block_size;
+ rec->orig_len -= block_size;
+ } else if (overhead > rec->length)
+ return 0;
+
+ padding_length = rec->data[rec->length - 1];
+
+ if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) &
+ EVP_CIPH_FLAG_AEAD_CIPHER) {
+ /* padding is already verified */
+ rec->length -= padding_length + 1;
+ return 1;
+ }
+
+ good = constant_time_ge_s(rec->length, overhead + padding_length);
+ /*
+ * The padding consists of a length byte at the end of the record and
+ * then that many bytes of padding, all with the same value as the length
+ * byte. Thus, with the length byte included, there are i+1 bytes of
+ * padding. We can't check just |padding_length+1| bytes because that
+ * leaks decrypted information. Therefore we always have to check the
+ * maximum amount of padding possible. (Again, the length of the record
+ * is public information so we can use it.)
+ */
+ to_check = 256; /* maximum amount of padding, inc length byte. */
+ if (to_check > rec->length)
+ to_check = rec->length;
+
+ for (i = 0; i < to_check; i++) {
+ unsigned char mask = constant_time_ge_8_s(padding_length, i);
+ unsigned char b = rec->data[rec->length - 1 - i];
+ /*
+ * The final |padding_length+1| bytes should all have the value
+ * |padding_length|. Therefore the XOR should be zero.
+ */
+ good &= ~(mask & (padding_length ^ b));
+ }
+
+ /*
+ * If any of the final |padding_length+1| bytes had the wrong value, one
+ * or more of the lower eight bits of |good| will be cleared.
+ */
+ good = constant_time_eq_s(0xff, good & 0xff);
+ rec->length -= good & (padding_length + 1);
+
+ return constant_time_select_int_s(good, 1, -1);
+}
+
+/*-
+ * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
+ * constant time (independent of the concrete value of rec->length, which may
+ * vary within a 256-byte window).
+ *
+ * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
+ * this function.
+ *
+ * On entry:
+ * rec->orig_len >= md_size
+ * md_size <= EVP_MAX_MD_SIZE
+ *
+ * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
+ * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
+ * a single or pair of cache-lines, then the variable memory accesses don't
+ * actually affect the timing. CPUs with smaller cache-lines [if any] are
+ * not multi-core and are not considered vulnerable to cache-timing attacks.
+ */
+#define CBC_MAC_ROTATE_IN_PLACE
+
+int ssl3_cbc_copy_mac(unsigned char *out,
+ const SSL3_RECORD *rec, size_t md_size)
+{
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
+ unsigned char *rotated_mac;
+#else
+ unsigned char rotated_mac[EVP_MAX_MD_SIZE];
+#endif
+
+ /*
+ * mac_end is the index of |rec->data| just after the end of the MAC.
+ */
+ size_t mac_end = rec->length;
+ size_t mac_start = mac_end - md_size;
+ size_t in_mac;
+ /*
+ * scan_start contains the number of bytes that we can ignore because the
+ * MAC's position can only vary by 255 bytes.
+ */
+ size_t scan_start = 0;
+ size_t i, j;
+ size_t rotate_offset;
+
+ if (!ossl_assert(rec->orig_len >= md_size
+ && md_size <= EVP_MAX_MD_SIZE))
+ return 0;
+
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
+#endif
+
+ /* This information is public so it's safe to branch based on it. */
+ if (rec->orig_len > md_size + 255 + 1)
+ scan_start = rec->orig_len - (md_size + 255 + 1);
+
+ in_mac = 0;
+ rotate_offset = 0;
+ memset(rotated_mac, 0, md_size);
+ for (i = scan_start, j = 0; i < rec->orig_len; i++) {
+ size_t mac_started = constant_time_eq_s(i, mac_start);
+ size_t mac_ended = constant_time_lt_s(i, mac_end);
+ unsigned char b = rec->data[i];
+
+ in_mac |= mac_started;
+ in_mac &= mac_ended;
+ rotate_offset |= j & mac_started;
+ rotated_mac[j++] |= b & in_mac;
+ j &= constant_time_lt_s(j, md_size);
+ }
+
+ /* Now rotate the MAC */
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ j = 0;
+ for (i = 0; i < md_size; i++) {
+ /* in case cache-line is 32 bytes, touch second line */
+ ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
+ out[j++] = rotated_mac[rotate_offset++];
+ rotate_offset &= constant_time_lt_s(rotate_offset, md_size);
+ }
+#else
+ memset(out, 0, md_size);
+ rotate_offset = md_size - rotate_offset;
+ rotate_offset &= constant_time_lt_s(rotate_offset, md_size);
+ for (i = 0; i < md_size; i++) {
+ for (j = 0; j < md_size; j++)
+ out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset);
+ rotate_offset++;
+ rotate_offset &= constant_time_lt_s(rotate_offset, md_size);
+ }
+#endif
+
+ return 1;
+}
+
+int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap)
+{
+ int i;
+ int enc_err;
+ SSL_SESSION *sess;
+ SSL3_RECORD *rr;
+ int imac_size;
+ size_t mac_size;
+ unsigned char md[EVP_MAX_MD_SIZE];
+
+ rr = RECORD_LAYER_get_rrec(&s->rlayer);
+ sess = s->session;
+
+ /*
+ * At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length,
+ * and we have that many bytes in s->packet
+ */
+ rr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[DTLS1_RT_HEADER_LENGTH]);
+
+ /*
+ * ok, we can now read from 's->packet' data into 'rr' rr->input points
+ * at rr->length bytes, which need to be copied into rr->data by either
+ * the decryption or by the decompression When the data is 'copied' into
+ * the rr->data buffer, rr->input will be pointed at the new buffer
+ */
+
+ /*
+ * We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length
+ * bytes of encrypted compressed stuff.
+ */
+
+ /* check is not needed I believe */
+ if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD,
+ SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
+ return 0;
+ }
+
+ /* decrypt in place in 'rr->input' */
+ rr->data = rr->input;
+ rr->orig_len = rr->length;
+
+ if (SSL_READ_ETM(s) && s->read_hash) {
+ unsigned char *mac;
+ mac_size = EVP_MD_CTX_size(s->read_hash);
+ if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return 0;
+ }
+ if (rr->orig_len < mac_size) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
+ SSL_R_LENGTH_TOO_SHORT);
+ return 0;
+ }
+ rr->length -= mac_size;
+ mac = rr->data + rr->length;
+ i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ );
+ if (i == 0 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) {
+ SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_DTLS1_PROCESS_RECORD,
+ SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
+ return 0;
+ }
+ }
+
+ enc_err = s->method->ssl3_enc->enc(s, rr, 1, 0);
+ /*-
+ * enc_err is:
+ * 0: (in non-constant time) if the record is publically invalid.
+ * 1: if the padding is valid
+ * -1: if the padding is invalid
+ */
+ if (enc_err == 0) {
+ if (ossl_statem_in_error(s)) {
+ /* SSLfatal() got called */
+ return 0;
+ }
+ /* For DTLS we simply ignore bad packets. */
+ rr->length = 0;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ return 0;
+ }
+#ifdef SSL_DEBUG
+ printf("dec %ld\n", rr->length);
+ {
+ size_t z;
+ for (z = 0; z < rr->length; z++)
+ printf("%02X%c", rr->data[z], ((z + 1) % 16) ? ' ' : '\n');
+ }
+ printf("\n");
+#endif
+
+ /* r->length is now the compressed data plus mac */
+ if ((sess != NULL) && !SSL_READ_ETM(s) &&
+ (s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) {
+ /* s->read_hash != NULL => mac_size != -1 */
+ unsigned char *mac = NULL;
+ unsigned char mac_tmp[EVP_MAX_MD_SIZE];
+
+ /* TODO(size_t): Convert this to do size_t properly */
+ imac_size = EVP_MD_CTX_size(s->read_hash);
+ if (imac_size < 0) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
+ ERR_LIB_EVP);
+ return 0;
+ }
+ mac_size = (size_t)imac_size;
+ if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return 0;
+ }
+
+ /*
+ * orig_len is the length of the record before any padding was
+ * removed. This is public information, as is the MAC in use,
+ * therefore we can safely process the record in a different amount
+ * of time if it's too short to possibly contain a MAC.
+ */
+ if (rr->orig_len < mac_size ||
+ /* CBC records must have a padding length byte too. */
+ (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
+ rr->orig_len < mac_size + 1)) {
+ SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
+ SSL_R_LENGTH_TOO_SHORT);
+ return 0;
+ }
+
+ if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) {
+ /*
+ * We update the length so that the TLS header bytes can be
+ * constructed correctly but we need to extract the MAC in
+ * constant time from within the record, without leaking the
+ * contents of the padding bytes.
+ */
+ mac = mac_tmp;
+ if (!ssl3_cbc_copy_mac(mac_tmp, rr, mac_size)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD,
+ ERR_R_INTERNAL_ERROR);
+ return 0;
+ }
+ rr->length -= mac_size;
+ } else {
+ /*
+ * In this case there's no padding, so |rec->orig_len| equals
+ * |rec->length| and we checked that there's enough bytes for
+ * |mac_size| above.
+ */
+ rr->length -= mac_size;
+ mac = &rr->data[rr->length];
+ }
+
+ i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ );
+ if (i == 0 || mac == NULL
+ || CRYPTO_memcmp(md, mac, mac_size) != 0)
+ enc_err = -1;
+ if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
+ enc_err = -1;
+ }
+
+ if (enc_err < 0) {
+ /* decryption failed, silently discard message */
+ rr->length = 0;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ return 0;
+ }
+
+ /* r->length is now just compressed */
+ if (s->expand != NULL) {
+ if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD,
+ SSL_R_COMPRESSED_LENGTH_TOO_LONG);
+ return 0;
+ }
+ if (!ssl3_do_uncompress(s, rr)) {
+ SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE,
+ SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION);
+ return 0;
+ }
+ }
+
+ if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) {
+ SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD,
+ SSL_R_DATA_LENGTH_TOO_LONG);
+ return 0;
+ }
+
+ rr->off = 0;
+ /*-
+ * So at this point the following is true
+ * ssl->s3->rrec.type is the type of record
+ * ssl->s3->rrec.length == number of bytes in record
+ * ssl->s3->rrec.off == offset to first valid byte
+ * ssl->s3->rrec.data == where to take bytes from, increment
+ * after use :-).
+ */
+
+ /* we have pulled in a full packet so zero things */
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+
+ /* Mark receipt of record. */
+ dtls1_record_bitmap_update(s, bitmap);
+
+ return 1;
+}
+
+/*
+ * Retrieve a buffered record that belongs to the current epoch, i.e. processed
+ */
+#define dtls1_get_processed_record(s) \
+ dtls1_retrieve_buffered_record((s), \
+ &(DTLS_RECORD_LAYER_get_processed_rcds(&s->rlayer)))
+
+/*-
+ * Call this to get a new input record.
+ * It will return <= 0 if more data is needed, normally due to an error
+ * or non-blocking IO.
+ * When it finishes, one packet has been decoded and can be found in
+ * ssl->s3->rrec.type - is the type of record
+ * ssl->s3->rrec.data, - data
+ * ssl->s3->rrec.length, - number of bytes
+ */
+/* used only by dtls1_read_bytes */
+int dtls1_get_record(SSL *s)
+{
+ int ssl_major, ssl_minor;
+ int rret;
+ size_t more, n;
+ SSL3_RECORD *rr;
+ unsigned char *p = NULL;
+ unsigned short version;
+ DTLS1_BITMAP *bitmap;
+ unsigned int is_next_epoch;
+
+ rr = RECORD_LAYER_get_rrec(&s->rlayer);
+
+ again:
+ /*
+ * The epoch may have changed. If so, process all the pending records.
+ * This is a non-blocking operation.
+ */
+ if (!dtls1_process_buffered_records(s)) {
+ /* SSLfatal() already called */
+ return -1;
+ }
+
+ /* if we're renegotiating, then there may be buffered records */
+ if (dtls1_get_processed_record(s))
+ return 1;
+
+ /* get something from the wire */
+
+ /* check if we have the header */
+ if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) ||
+ (RECORD_LAYER_get_packet_length(&s->rlayer) < DTLS1_RT_HEADER_LENGTH)) {
+ rret = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH,
+ SSL3_BUFFER_get_len(&s->rlayer.rbuf), 0, 1, &n);
+ /* read timeout is handled by dtls1_read_bytes */
+ if (rret <= 0) {
+ /* SSLfatal() already called if appropriate */
+ return rret; /* error or non-blocking */
+ }
+
+ /* this packet contained a partial record, dump it */
+ if (RECORD_LAYER_get_packet_length(&s->rlayer) !=
+ DTLS1_RT_HEADER_LENGTH) {
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+
+ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY);
+
+ p = RECORD_LAYER_get_packet(&s->rlayer);
+
+ if (s->msg_callback)
+ s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH,
+ s, s->msg_callback_arg);
+
+ /* Pull apart the header into the DTLS1_RECORD */
+ rr->type = *(p++);
+ ssl_major = *(p++);
+ ssl_minor = *(p++);
+ version = (ssl_major << 8) | ssl_minor;
+
+ /* sequence number is 64 bits, with top 2 bytes = epoch */
+ n2s(p, rr->epoch);
+
+ memcpy(&(RECORD_LAYER_get_read_sequence(&s->rlayer)[2]), p, 6);
+ p += 6;
+
+ n2s(p, rr->length);
+ rr->read = 0;
+
+ /*
+ * Lets check the version. We tolerate alerts that don't have the exact
+ * version number (e.g. because of protocol version errors)
+ */
+ if (!s->first_packet && rr->type != SSL3_RT_ALERT) {
+ if (version != s->version) {
+ /* unexpected version, silently discard */
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+ }
+
+ if ((version & 0xff00) != (s->version & 0xff00)) {
+ /* wrong version, silently discard record */
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+
+ if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
+ /* record too long, silently discard it */
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+
+ /* If received packet overflows own-client Max Fragment Length setting */
+ if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session)
+ && rr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) {
+ /* record too long, silently discard it */
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+
+ /* now s->rlayer.rstate == SSL_ST_READ_BODY */
+ }
+
+ /* s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data */
+
+ if (rr->length >
+ RECORD_LAYER_get_packet_length(&s->rlayer) - DTLS1_RT_HEADER_LENGTH) {
+ /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */
+ more = rr->length;
+ rret = ssl3_read_n(s, more, more, 1, 1, &n);
+ /* this packet contained a partial record, dump it */
+ if (rret <= 0 || n != more) {
+ if (ossl_statem_in_error(s)) {
+ /* ssl3_read_n() called SSLfatal() */
+ return -1;
+ }
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+
+ /*
+ * now n == rr->length, and s->packet_length ==
+ * DTLS1_RT_HEADER_LENGTH + rr->length
+ */
+ }
+ /* set state for later operations */
+ RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER);
+
+ /* match epochs. NULL means the packet is dropped on the floor */
+ bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch);
+ if (bitmap == NULL) {
+ rr->length = 0;
+ RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */
+ goto again; /* get another record */
+ }
+#ifndef OPENSSL_NO_SCTP
+ /* Only do replay check if no SCTP bio */
+ if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) {
+#endif
+ /* Check whether this is a repeat, or aged record. */
+ /*
+ * TODO: Does it make sense to have replay protection in epoch 0 where
+ * we have no integrity negotiated yet?
+ */
+ if (!dtls1_record_replay_check(s, bitmap)) {
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */
+ goto again; /* get another record */
+ }
+#ifndef OPENSSL_NO_SCTP
+ }
+#endif
+
+ /* just read a 0 length packet */
+ if (rr->length == 0) {
+ rr->read = 1;
+ goto again;
+ }
+
+ /*
+ * If this record is from the next epoch (either HM or ALERT), and a
+ * handshake is currently in progress, buffer it since it cannot be
+ * processed at this time.
+ */
+ if (is_next_epoch) {
+ if ((SSL_in_init(s) || ossl_statem_get_in_handshake(s))) {
+ if (dtls1_buffer_record (s,
+ &(DTLS_RECORD_LAYER_get_unprocessed_rcds(&s->rlayer)),
+ rr->seq_num) < 0) {
+ /* SSLfatal() already called */
+ return -1;
+ }
+ }
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer);
+ goto again;
+ }
+
+ if (!dtls1_process_record(s, bitmap)) {
+ if (ossl_statem_in_error(s)) {
+ /* dtls1_process_record() called SSLfatal */
+ return -1;
+ }
+ rr->length = 0;
+ rr->read = 1;
+ RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */
+ goto again; /* get another record */
+ }
+
+ return 1;
+
+}