summaryrefslogtreecommitdiff
path: root/sys/dev/advansys/adwlib.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/advansys/adwlib.c')
-rw-r--r--sys/dev/advansys/adwlib.c659
1 files changed, 486 insertions, 173 deletions
diff --git a/sys/dev/advansys/adwlib.c b/sys/dev/advansys/adwlib.c
index 1195f503cfe2..bbce9f9c389b 100644
--- a/sys/dev/advansys/adwlib.c
+++ b/sys/dev/advansys/adwlib.c
@@ -2,7 +2,7 @@
* Low level routines for Second Generation
* Advanced Systems Inc. SCSI controllers chips
*
- * Copyright (c) 1998 Justin Gibbs.
+ * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -10,7 +10,7 @@
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
- * without modification, immediately at the beginning of the file.
+ * without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
@@ -46,6 +46,7 @@
#include <sys/param.h>
#include <sys/systm.h>
+#include <sys/bus.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
@@ -57,57 +58,116 @@
#include <dev/advansys/adwlib.h>
-struct adw_eeprom adw_default_eeprom = {
- ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
- 0x0000, /* cfg_msw */
- 0xFFFF, /* disc_enable */
- 0xFFFF, /* wdtr_able */
- 0xFFFF, /* sdtr_able */
- 0xFFFF, /* start_motor */
- 0xFFFF, /* tagqng_able */
- 0xFFFF, /* bios_scan */
- 0, /* scam_tolerant */
- 7, /* adapter_scsi_id */
- 0, /* bios_boot_delay */
- 3, /* scsi_reset_delay */
- 0, /* bios_id_lun */
- 0, /* termination */
- 0, /* reserved1 */
- { /* Bios Ctrl */
- 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1,
+const struct adw_eeprom adw_asc3550_default_eeprom =
+{
+ ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
+ 0x0000, /* cfg_msw */
+ 0xFFFF, /* disc_enable */
+ 0xFFFF, /* wdtr_able */
+ { 0xFFFF }, /* sdtr_able */
+ 0xFFFF, /* start_motor */
+ 0xFFFF, /* tagqng_able */
+ 0xFFFF, /* bios_scan */
+ 0, /* scam_tolerant */
+ 7, /* adapter_scsi_id */
+ 0, /* bios_boot_delay */
+ 3, /* scsi_reset_delay */
+ 0, /* bios_id_lun */
+ 0, /* termination */
+ 0, /* reserved1 */
+ 0xFFE7, /* bios_ctrl */
+ { 0xFFFF }, /* ultra_able */
+ { 0 }, /* reserved2 */
+ ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
+ ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
+ 0, /* dvc_cntl */
+ { 0 }, /* bug_fix */
+ { 0, 0, 0 }, /* serial_number */
+ 0, /* check_sum */
+ { /* oem_name[16] */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0
},
- 0xFFFF, /* ultra_able */
- 0, /* reserved2 */
- ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
- ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
- 0, /* dvc_cntl */
- 0, /* bug_fix */
- { 0, 0, 0 }, /* serial_number */
- 0, /* check_sum */
- { /* oem_name[16] */
+ 0, /* dvc_err_code */
+ 0, /* adv_err_code */
+ 0, /* adv_err_addr */
+ 0, /* saved_dvc_err_code */
+ 0, /* saved_adv_err_code */
+ 0 /* saved_adv_err_addr */
+};
+
+const struct adw_eeprom adw_asc38C0800_default_eeprom =
+{
+ ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
+ 0x0000, /* 01 cfg_msw */
+ 0xFFFF, /* 02 disc_enable */
+ 0xFFFF, /* 03 wdtr_able */
+ { 0x4444 }, /* 04 sdtr_speed1 */
+ 0xFFFF, /* 05 start_motor */
+ 0xFFFF, /* 06 tagqng_able */
+ 0xFFFF, /* 07 bios_scan */
+ 0, /* 08 scam_tolerant */
+ 7, /* 09 adapter_scsi_id */
+ 0, /* bios_boot_delay */
+ 3, /* 10 scsi_reset_delay */
+ 0, /* bios_id_lun */
+ 0, /* 11 termination_se */
+ 0, /* termination_lvd */
+ 0xFFE7, /* 12 bios_ctrl */
+ { 0x4444 }, /* 13 sdtr_speed2 */
+ { 0x4444 }, /* 14 sdtr_speed3 */
+ ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
+ ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
+ 0, /* 16 dvc_cntl */
+ { 0x4444 } , /* 17 sdtr_speed4 */
+ { 0, 0, 0 }, /* 18-20 serial_number */
+ 0, /* 21 check_sum */
+ { /* 22-29 oem_name[16] */
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
},
- 0, /* dvc_err_code */
- 0, /* adv_err_code */
- 0, /* adv_err_addr */
- 0, /* saved_dvc_err_code */
- 0, /* saved_adv_err_code */
- 0, /* saved_adv_err_addr */
- 0 /* num_of_err */
+ 0, /* 30 dvc_err_code */
+ 0, /* 31 adv_err_code */
+ 0, /* 32 adv_err_addr */
+ 0, /* 33 saved_dvc_err_code */
+ 0, /* 34 saved_adv_err_code */
+ 0, /* 35 saved_adv_err_addr */
+ { /* 36 - 55 reserved */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ },
+ 0, /* 56 cisptr_lsw */
+ 0, /* 57 cisprt_msw */
+ /* 58-59 sub-id */
+ (PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
+};
+
+#define ADW_MC_SDTR_OFFSET_ULTRA2_DT 0
+#define ADW_MC_SDTR_OFFSET_ULTRA2 1
+#define ADW_MC_SDTR_OFFSET_ULTRA 2
+const struct adw_syncrate adw_syncrates[] =
+{
+ /* mc_sdtr period rate */
+ { ADW_MC_SDTR_80, 9, "80.0" },
+ { ADW_MC_SDTR_40, 10, "40.0" },
+ { ADW_MC_SDTR_20, 12, "20.0" },
+ { ADW_MC_SDTR_10, 25, "10.0" },
+ { ADW_MC_SDTR_5, 50, "5.0" },
+ { ADW_MC_SDTR_ASYNC, 0, "async" }
};
+const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
+
static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
u_int data);
static void adw_eeprom_wait(struct adw_softc *adw);
int
-adw_find_signature(bus_space_tag_t tag, bus_space_handle_t bsh)
+adw_find_signature(struct adw_softc *adw)
{
- if (bus_space_read_1(tag, bsh, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
- && bus_space_read_2(tag, bsh, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
+ if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
+ && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
return (1);
return (0);
}
@@ -119,24 +179,14 @@ void
adw_reset_chip(struct adw_softc *adw)
{
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
- DELAY(100);
+ DELAY(1000 * 100);
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
/*
* Initialize Chip registers.
*/
- adw_outb(adw, ADW_MEM_CFG,
- adw_inb(adw, ADW_MEM_CFG) | ADW_MEM_CFG_RAM_SZ_8KB);
-
adw_outw(adw, ADW_SCSI_CFG1,
adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
-
- /*
- * Setting the START_CTL_EM_FU 3:2 bits sets a FIFO threshold
- * of 128 bytes. This register is only accessible to the host.
- */
- adw_outb(adw, ADW_DMA_CFG0,
- ADW_DMA_CFG0_START_CTL_EM_FU|ADW_DMA_CFG0_READ_CMD_MRM);
}
/*
@@ -256,13 +306,17 @@ adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
int
adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
{
- u_int8_t biosmem[ADW_MC_BIOSLEN];
- u_int16_t *mcodebuf;
- u_int addr;
- u_int end_addr;
- u_int checksum;
- u_int scsicfg1;
- u_int i;
+ u_int8_t biosmem[ADW_MC_BIOSLEN];
+ const u_int16_t *word_table;
+ const u_int8_t *byte_codes;
+ const u_int8_t *byte_codes_end;
+ u_int bios_sig;
+ u_int bytes_downloaded;
+ u_int addr;
+ u_int end_addr;
+ u_int checksum;
+ u_int scsicfg1;
+ u_int tid;
/*
* Save the RISC memory BIOS region before writing the microcode.
@@ -273,19 +327,114 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
/*
- * Load the Microcode. Casting here was less work than
- * reformatting the supplied microcode into an array of
- * 16bit values...
+ * Save current per TID negotiated values if the BIOS has been
+ * loaded (BIOS signature is present). These will be used if
+ * we cannot get information from the EEPROM.
+ */
+ addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
+ bios_sig = biosmem[addr]
+ | (biosmem[addr + 1] << 8);
+ if (bios_sig == 0x55AA
+ && (adw->flags & ADW_EEPROM_FAILED) != 0) {
+ u_int major_ver;
+ u_int minor_ver;
+ u_int sdtr_able;
+
+ addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
+ minor_ver = biosmem[addr + 1] & 0xF;
+ major_ver = (biosmem[addr + 1] >> 4) & 0xF;
+ if ((adw->chip == ADW_CHIP_ASC3550)
+ && (major_ver <= 3
+ || (major_ver == 3 && minor_ver == 1))) {
+ /*
+ * BIOS 3.1 and earlier location of
+ * 'wdtr_able' variable.
+ */
+ adw->user_wdtr =
+ adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
+ } else {
+ adw->user_wdtr =
+ adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
+ }
+ sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
+ for (tid = 0; tid < ADW_MAX_TID; tid++) {
+ u_int tid_mask;
+ u_int mc_sdtr;
+
+ tid_mask = 0x1 << tid;
+ if ((sdtr_able & tid_mask) == 0)
+ mc_sdtr = ADW_MC_SDTR_ASYNC;
+ else if ((adw->features & ADW_DT) != 0)
+ mc_sdtr = ADW_MC_SDTR_80;
+ else if ((adw->features & ADW_ULTRA2) != 0)
+ mc_sdtr = ADW_MC_SDTR_40;
+ else
+ mc_sdtr = ADW_MC_SDTR_20;
+ adw_set_user_sdtr(adw, tid, mc_sdtr);
+ }
+ adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
+ }
+
+ /*
+ * Load the Microcode.
+ *
+ * Assume the following compressed format of the microcode buffer:
+ *
+ * 253 word (506 byte) table indexed by byte code followed
+ * by the following byte codes:
+ *
+ * 1-Byte Code:
+ * 00: Emit word 0 in table.
+ * 01: Emit word 1 in table.
+ * .
+ * FD: Emit word 253 in table.
+ *
+ * Multi-Byte Code:
+ * FD RESEVED
+ *
+ * FE WW WW: (3 byte code)
+ * Word to emit is the next word WW WW.
+ * FF BB WW WW: (4 byte code)
+ * Emit BB count times next word WW WW.
+ *
*/
- mcodebuf = (u_int16_t *)adw_mcode;
+ bytes_downloaded = 0;
+ word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
+ byte_codes = (const u_int8_t *)&word_table[253];
+ byte_codes_end = adw->mcode_data->mcode_buf
+ + adw->mcode_data->mcode_size;
adw_outw(adw, ADW_RAM_ADDR, 0);
- for (addr = 0; addr < adw_mcode_size/2; addr++)
- adw_outw(adw, ADW_RAM_DATA, mcodebuf[addr]);
+ while (byte_codes < byte_codes_end) {
+ if (*byte_codes == 0xFF) {
+ u_int16_t value;
+
+ value = byte_codes[2]
+ | byte_codes[3] << 8;
+ adw_set_multi_2(adw, ADW_RAM_DATA,
+ value, byte_codes[1]);
+ bytes_downloaded += byte_codes[1];
+ byte_codes += 4;
+ } else if (*byte_codes == 0xFE) {
+ u_int16_t value;
+
+ value = byte_codes[1]
+ | byte_codes[2] << 8;
+ adw_outw(adw, ADW_RAM_DATA, value);
+ bytes_downloaded++;
+ byte_codes += 3;
+ } else {
+ adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
+ bytes_downloaded++;
+ byte_codes++;
+ }
+ }
+ /* Convert from words to bytes */
+ bytes_downloaded *= 2;
/*
* Clear the rest of LRAM.
*/
- for (; addr < ADW_CONDOR_MEMSIZE/2; addr++)
+ for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
adw_outw(adw, ADW_RAM_DATA, 0);
/*
@@ -293,12 +442,12 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
*/
checksum = 0;
adw_outw(adw, ADW_RAM_ADDR, 0);
- for (addr = 0; addr < adw_mcode_size/2; addr++)
+ for (addr = 0; addr < bytes_downloaded; addr += 2)
checksum += adw_inw(adw, ADW_RAM_DATA);
- if (checksum != adw_mcode_chksum) {
+ if (checksum != adw->mcode_data->mcode_chksum) {
printf("%s: Firmware load failed!\n", adw_name(adw));
- return (-1);
+ return (EIO);
}
/*
@@ -311,27 +460,36 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
* Calculate and write the microcode code checksum to
* the microcode code checksum location.
*/
- addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR) / 2;
- end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR) / 2;
+ addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
+ end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
checksum = 0;
- for (; addr < end_addr; addr++)
- checksum += mcodebuf[addr];
+ adw_outw(adw, ADW_RAM_ADDR, addr);
+ for (; addr < end_addr; addr += 2)
+ checksum += adw_inw(adw, ADW_RAM_DATA);
adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
/*
- * Initialize microcode operating variables
+ * Tell the microcode what kind of chip it's running on.
*/
- adw_lram_write_16(adw, ADW_MC_ADAPTER_SCSI_ID, adw->initiator_id);
+ adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
/*
* Leave WDTR and SDTR negotiation disabled until the XPT has
- * informed us of device capabilities, but do set the ultra mask
- * in case we receive an SDTR request from the target before we
- * negotiate. We turn on tagged queuing at the microcode level
- * for all devices, and modulate this on a per command basis.
+ * informed us of device capabilities, but do set the desired
+ * user rates in case we receive an SDTR request from the target
+ * before we negotiate. We turn on tagged queuing at the microcode
+ * level for all devices, and modulate this on a per command basis.
*/
- adw_lram_write_16(adw, ADW_MC_ULTRA_ABLE, adw->user_ultra);
+ adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
+ adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
+ adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
+ adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
+ for (tid = 0; tid < ADW_MAX_TID; tid++) {
+ /* Cam limits the maximum number of commands for us */
+ adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
+ adw->max_acbs);
+ }
adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
/*
@@ -343,7 +501,14 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
-
+
+ /*
+ * Tell the MC about the memory size that
+ * was setup by the probe code.
+ */
+ adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
+ adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
+
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
@@ -353,17 +518,6 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
/*
- * If all three connectors are in use, return an error.
- */
- if ((scsicfg1 & ADW_SCSI_CFG1_ILLEGAL_CABLE_CONF_A_MASK) == 0
- || (scsicfg1 & ADW_SCSI_CFG1_ILLEGAL_CABLE_CONF_B_MASK) == 0) {
- printf("%s: Illegal Cable Config!\n", adw_name(adw));
- printf("%s: Only Two Ports may be used at a time!\n",
- adw_name(adw));
- return (-1);
- }
-
- /*
* If the internal narrow cable is reversed all of the SCSI_CTRL
* register signals will be set. Check for and return an error if
* this condition is found.
@@ -371,91 +525,168 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
printf("%s: Illegal Cable Config!\n", adw_name(adw));
printf("%s: Internal cable is reversed!\n", adw_name(adw));
- return (-1);
+ return (EIO);
}
/*
* If this is a differential board and a single-ended device
* is attached to one of the connectors, return an error.
*/
- if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
- && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
- printf("%s: A Single Ended Device is attached to our "
- "differential bus!\n", adw_name(adw));
- return (-1);
+ if ((adw->features & ADW_ULTRA) != 0) {
+ if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
+ && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
+ printf("%s: A Single Ended Device is attached to our "
+ "differential bus!\n", adw_name(adw));
+ return (EIO);
+ }
+ } else {
+ if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
+ printf("%s: A High Voltage Differential Device "
+ "is attached to this controller.\n",
+ adw_name(adw));
+ printf("%s: HVD devices are not supported.\n",
+ adw_name(adw));
+ return (EIO);
+ }
}
/*
* Perform automatic termination control if desired.
*/
- if (term_scsicfg1 == 0) {
- switch(scsicfg1 & ADW_SCSI_CFG1_CABLE_DETECT) {
- case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_INT8_MASK):
- case (ADW_SCSI_CFG1_INT16_MASK|
- ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT8_MASK):
- case (ADW_SCSI_CFG1_INT16_MASK|
- ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- case (ADW_SCSI_CFG1_INT16_MASK|
- ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- case (ADW_SCSI_CFG1_INT8_MASK|
- ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_INT8_MASK|
- ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- /* Two out of three cables missing. Both on. */
- term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L
- | ADW_SCSI_CFG1_TERM_CTL_H;
- break;
- case (ADW_SCSI_CFG1_INT16_MASK):
- case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_EXT8_MASK):
- case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- case (ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- case (ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
- /* No two 16bit cables present. High on. */
+ if ((adw->features & ADW_ULTRA2) != 0) {
+ u_int cable_det;
+
+ /*
+ * Ultra2 Chips require termination disabled to
+ * detect cable presence.
+ */
+ adw_outw(adw, ADW_SCSI_CFG1,
+ scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
+ cable_det = adw_inw(adw, ADW_SCSI_CFG1);
+ adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
+
+ /* SE Termination first if auto-term has been specified */
+ if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
+
+ /*
+ * For all SE cable configurations, high byte
+ * termination is enabled.
+ */
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
- break;
- case (ADW_SCSI_CFG1_INT8_MASK):
- case (ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT8_MASK):
- /* Wide -> Wide or Narrow -> Wide. Both off */
- break;
+ if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
+ || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
+ /*
+ * If either cable is not present, the
+ * low byte must be terminated as well.
+ */
+ term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
+ }
+ }
+
+ /* LVD auto-term */
+ if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
+ && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
+ /*
+ * If both cables are installed, termination
+ * is disabled. Otherwise it is enabled.
+ */
+ if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
+ || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
+
+ term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
+ }
+ }
+ term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
+ } else {
+ /* Ultra Controller Termination */
+ if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
+ int cable_count;
+ int wide_cable_count;
+
+ cable_count = 0;
+ wide_cable_count = 0;
+ if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
+ cable_count++;
+ wide_cable_count++;
+ }
+ if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
+ cable_count++;
+
+ /* There is only one external port */
+ if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
+ cable_count++;
+ wide_cable_count++;
+ } else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
+ cable_count++;
+
+ if (cable_count == 3) {
+ printf("%s: Illegal Cable Config!\n",
+ adw_name(adw));
+ printf("%s: Only Two Ports may be used at "
+ "a time!\n", adw_name(adw));
+ } else if (cable_count <= 1) {
+ /*
+ * At least two out of three cables missing.
+ * Terminate both bytes.
+ */
+ term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
+ | ADW_SCSI_CFG1_TERM_CTL_L;
+ } else if (wide_cable_count <= 1) {
+ /* No two 16bit cables present. High on. */
+ term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
+ }
}
}
/* Tell the user about our decission */
switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
case ADW_SCSI_CFG1_TERM_CTL_MASK:
- printf("High & Low Termination Enabled, ");
+ printf("High & Low SE Term Enabled, ");
break;
case ADW_SCSI_CFG1_TERM_CTL_H:
- printf("High Termination Enabled, ");
+ printf("High SE Termination Enabled, ");
break;
case ADW_SCSI_CFG1_TERM_CTL_L:
- printf("Low Termination Enabled, ");
+ printf("Low SE Term Enabled, ");
break;
default:
break;
}
+ if ((adw->features & ADW_ULTRA2) != 0
+ && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
+ printf("LVD Term Enabled, ");
+
/*
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
* set 'scsicfg1'. The TERM_POL bit does not need to be
* referenced, because the hardware internally inverts
* the Termination High and Low bits if TERM_POL is set.
*/
- term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
- scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
- scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
+ if ((adw->features & ADW_ULTRA2) != 0) {
+ term_scsicfg1 = ~term_scsicfg1;
+ term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
+ | ADW2_SCSI_CFG1_TERM_CTL_LVD;
+ scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
+ |ADW2_SCSI_CFG1_TERM_CTL_LVD
+ |ADW_SCSI_CFG1_BIG_ENDIAN
+ |ADW_SCSI_CFG1_TERM_POL
+ |ADW2_SCSI_CFG1_DEV_DETECT);
+ scsicfg1 |= term_scsicfg1;
+ } else {
+ term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
+ scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
+ scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
+ scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
+ }
/*
* Set SCSI_CFG1 Microcode Default Value
*
- * Set filter value and possibly modified termination control
- * bits in the Microcode SCSI_CFG1 Register Value.
- *
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
- adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1,
- scsicfg1 | ADW_SCSI_CFG1_FLTR_11_TO_20NS);
+ adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
/*
* Only accept selections on our initiator target id.
@@ -465,42 +696,24 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
(0x01 << adw->initiator_id));
/*
- * Link all the RISC Queue Lists together in a doubly-linked
- * NULL terminated list.
- *
- * Skip the NULL (0) queue which is not used.
- */
- for (i = 1, addr = ADW_MC_RISC_Q_LIST_BASE + ADW_MC_RISC_Q_LIST_SIZE;
- i < ADW_MC_RISC_Q_TOTAL_CNT;
- i++, addr += ADW_MC_RISC_Q_LIST_SIZE) {
-
- /*
- * Set the current RISC Queue List's
- * RQL_FWD and RQL_BWD pointers in a
- * one word write and set the state
- * (RQL_STATE) to free.
- */
- adw_lram_write_16(adw, addr, ((i + 1) | ((i - 1) << 8)));
- adw_lram_write_8(adw, addr + RQL_STATE, ADW_MC_QS_FREE);
- }
-
- /*
- * Set the Host and RISC Queue List pointers.
- *
- * Both sets of pointers are initialized with the same values:
- * ADW_MC_RISC_Q_FIRST(0x01) and ADW_MC_RISC_Q_LAST (0xFF).
+ * Tell the microcode where it can find our
+ * Initiator Command Queue (ICQ). It is
+ * currently empty hence the "stopper" address.
*/
- adw_lram_write_8(adw, ADW_MC_HOST_NEXT_READY, ADW_MC_RISC_Q_FIRST);
- adw_lram_write_8(adw, ADW_MC_HOST_NEXT_DONE, ADW_MC_RISC_Q_LAST);
-
- adw_lram_write_8(adw, ADW_MC_RISC_NEXT_READY, ADW_MC_RISC_Q_FIRST);
- adw_lram_write_8(adw, ADW_MC_RISC_NEXT_DONE, ADW_MC_RISC_Q_LAST);
+ adw->commandq = adw->free_carriers;
+ adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
+ adw->commandq->next_ba = ADW_CQ_STOPPER;
+ adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
/*
- * Set up the last RISC Queue List (255) with a NULL forward pointer.
+ * Tell the microcode where it can find our
+ * Initiator Response Queue (IRQ). It too
+ * is currently empty.
*/
- adw_lram_write_16(adw, addr, (ADW_MC_NULL_Q + ((i - 1) << 8)));
- adw_lram_write_8(adw, addr + RQL_STATE, ADW_MC_QS_FREE);
+ adw->responseq = adw->free_carriers;
+ adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
+ adw->responseq->next_ba = ADW_CQ_STOPPER;
+ adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
adw_outb(adw, ADW_INTR_ENABLES,
ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
@@ -510,6 +723,100 @@ adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
return (0);
}
+void
+adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
+{
+ adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
+ adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
+ mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
+}
+
+u_int
+adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
+{
+ u_int mc_sdtr;
+
+ mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
+ mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
+ mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
+ return (mc_sdtr);
+}
+
+void
+adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
+{
+ u_int mc_sdtr_offset;
+ u_int mc_sdtr;
+
+ mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
+ mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
+ mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
+ mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
+ mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
+ adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
+}
+
+u_int
+adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
+{
+ u_int mc_sdtr_offset;
+ u_int mc_sdtr;
+
+ mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
+ mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
+ mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
+ mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
+ mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
+ return (mc_sdtr);
+}
+
+u_int
+adw_find_sdtr(struct adw_softc *adw, u_int period)
+{
+ int i;
+
+ i = 0;
+ if ((adw->features & ADW_DT) == 0)
+ i = ADW_MC_SDTR_OFFSET_ULTRA2;
+ if ((adw->features & ADW_ULTRA2) == 0)
+ i = ADW_MC_SDTR_OFFSET_ULTRA;
+ if (period == 0)
+ return ADW_MC_SDTR_ASYNC;
+
+ for (; i < adw_num_syncrates; i++) {
+ if (period <= adw_syncrates[i].period)
+ return (adw_syncrates[i].mc_sdtr);
+ }
+ return ADW_MC_SDTR_ASYNC;
+}
+
+u_int
+adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
+{
+ int i;
+
+ for (i = 0; i < adw_num_syncrates; i++) {
+ if (mc_sdtr == adw_syncrates[i].mc_sdtr)
+ break;
+ }
+ return (adw_syncrates[i].period);
+}
+
+u_int
+adw_hshk_cfg_period_factor(u_int tinfo)
+{
+ tinfo &= ADW_HSHK_CFG_RATE_MASK;
+ tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
+ if (tinfo == 0x11)
+ /* 80MHz/DT */
+ return (9);
+ else if (tinfo == 0x10)
+ /* 40MHz */
+ return (10);
+ else
+ return (((tinfo * 25) + 50) / 4);
+}
+
/*
* Send an idle command to the chip and optionally wait for completion.
*/
@@ -534,8 +841,13 @@ adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
* followed, the microcode may process the idle command before the
* parameters have been written to LRAM.
*/
- adw_lram_write_16(adw, ADW_MC_IDLE_PARA_STAT, parameter);
+ adw_lram_write_16(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
+
+ /*
+ * Tickle the RISC to tell it to process the idle command.
+ */
+ adw_tickle_risc(adw, ADW_TICKLE_B);
splx(s);
}
@@ -550,15 +862,16 @@ adw_idle_cmd_wait(struct adw_softc *adw)
/* Wait for up to 10 seconds for the command to complete */
timeout = 10000;
while (--timeout) {
- if (adw->idle_command_cmp != 0)
+ s = splcam();
+ status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
+ splx(s);
+ if (status != 0)
break;
DELAY(1000);
}
if (timeout == 0)
panic("%s: Idle Command Timed Out!\n", adw_name(adw));
- s = splcam();
- status = adw_lram_read_16(adw, ADW_MC_IDLE_PARA_STAT);
- splx(s);
+ adw->idle_cmd = ADW_IDLE_CMD_COMPLETED;
return (status);
}