summaryrefslogtreecommitdiff
path: root/sys/netinet/tcp_syncache.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/netinet/tcp_syncache.c')
-rw-r--r--sys/netinet/tcp_syncache.c1553
1 files changed, 1553 insertions, 0 deletions
diff --git a/sys/netinet/tcp_syncache.c b/sys/netinet/tcp_syncache.c
new file mode 100644
index 000000000000..9e03f32db9e8
--- /dev/null
+++ b/sys/netinet/tcp_syncache.c
@@ -0,0 +1,1553 @@
+/*-
+ * Copyright (c) 2001 McAfee, Inc.
+ * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
+ * All rights reserved.
+ *
+ * This software was developed for the FreeBSD Project by Jonathan Lemon
+ * and McAfee Research, the Security Research Division of McAfee, Inc. under
+ * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
+ * DARPA CHATS research program.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#include "opt_inet.h"
+#include "opt_inet6.h"
+#include "opt_ipsec.h"
+#include "opt_mac.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/sysctl.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/malloc.h>
+#include <sys/mbuf.h>
+#include <sys/md5.h>
+#include <sys/proc.h> /* for proc0 declaration */
+#include <sys/random.h>
+#include <sys/socket.h>
+#include <sys/socketvar.h>
+#include <sys/syslog.h>
+
+#include <vm/uma.h>
+
+#include <net/if.h>
+#include <net/route.h>
+
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/ip.h>
+#include <netinet/in_var.h>
+#include <netinet/in_pcb.h>
+#include <netinet/ip_var.h>
+#include <netinet/ip_options.h>
+#ifdef INET6
+#include <netinet/ip6.h>
+#include <netinet/icmp6.h>
+#include <netinet6/nd6.h>
+#include <netinet6/ip6_var.h>
+#include <netinet6/in6_pcb.h>
+#endif
+#include <netinet/tcp.h>
+#include <netinet/tcp_fsm.h>
+#include <netinet/tcp_seq.h>
+#include <netinet/tcp_timer.h>
+#include <netinet/tcp_var.h>
+#ifdef INET6
+#include <netinet6/tcp6_var.h>
+#endif
+
+#ifdef FAST_IPSEC
+#include <netipsec/ipsec.h>
+#ifdef INET6
+#include <netipsec/ipsec6.h>
+#endif
+#include <netipsec/key.h>
+#endif /*FAST_IPSEC*/
+
+#include <machine/in_cksum.h>
+
+#include <security/mac/mac_framework.h>
+
+static int tcp_syncookies = 1;
+SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
+ &tcp_syncookies, 0,
+ "Use TCP SYN cookies if the syncache overflows");
+
+static int tcp_syncookiesonly = 0;
+SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
+ &tcp_syncookiesonly, 0,
+ "Use only TCP SYN cookies");
+
+#define SYNCOOKIE_SECRET_SIZE 8 /* dwords */
+#define SYNCOOKIE_LIFETIME 16 /* seconds */
+
+struct syncache {
+ TAILQ_ENTRY(syncache) sc_hash;
+ struct in_conninfo sc_inc; /* addresses */
+ u_long sc_rxttime; /* retransmit time */
+ u_int16_t sc_rxmits; /* retransmit counter */
+
+ u_int32_t sc_tsreflect; /* timestamp to reflect */
+ u_int32_t sc_ts; /* our timestamp to send */
+ u_int32_t sc_tsoff; /* ts offset w/ syncookies */
+ u_int32_t sc_flowlabel; /* IPv6 flowlabel */
+ tcp_seq sc_irs; /* seq from peer */
+ tcp_seq sc_iss; /* our ISS */
+ struct mbuf *sc_ipopts; /* source route */
+
+ u_int16_t sc_peer_mss; /* peer's MSS */
+ u_int16_t sc_wnd; /* advertised window */
+ u_int8_t sc_ip_ttl; /* IPv4 TTL */
+ u_int8_t sc_ip_tos; /* IPv4 TOS */
+ u_int8_t sc_requested_s_scale:4,
+ sc_requested_r_scale:4;
+ u_int8_t sc_flags;
+#define SCF_NOOPT 0x01 /* no TCP options */
+#define SCF_WINSCALE 0x02 /* negotiated window scaling */
+#define SCF_TIMESTAMP 0x04 /* negotiated timestamps */
+ /* MSS is implicit */
+#define SCF_UNREACH 0x10 /* icmp unreachable received */
+#define SCF_SIGNATURE 0x20 /* send MD5 digests */
+#define SCF_SACK 0x80 /* send SACK option */
+#ifdef MAC
+ struct label *sc_label; /* MAC label reference */
+#endif
+};
+
+struct syncache_head {
+ struct mtx sch_mtx;
+ TAILQ_HEAD(sch_head, syncache) sch_bucket;
+ struct callout sch_timer;
+ int sch_nextc;
+ u_int sch_length;
+ u_int sch_oddeven;
+ u_int32_t sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
+ u_int32_t sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
+ u_int sch_reseed; /* time_uptime, seconds */
+};
+
+static void syncache_drop(struct syncache *, struct syncache_head *);
+static void syncache_free(struct syncache *);
+static void syncache_insert(struct syncache *, struct syncache_head *);
+struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
+static int syncache_respond(struct syncache *);
+static struct socket *syncache_socket(struct syncache *, struct socket *,
+ struct mbuf *m);
+static void syncache_timer(void *);
+static void syncookie_generate(struct syncache_head *, struct syncache *,
+ u_int32_t *);
+static struct syncache
+ *syncookie_lookup(struct in_conninfo *, struct syncache_head *,
+ struct syncache *, struct tcpopt *, struct tcphdr *,
+ struct socket *);
+
+/*
+ * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
+ * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
+ * the odds are that the user has given up attempting to connect by then.
+ */
+#define SYNCACHE_MAXREXMTS 3
+
+/* Arbitrary values */
+#define TCP_SYNCACHE_HASHSIZE 512
+#define TCP_SYNCACHE_BUCKETLIMIT 30
+
+struct tcp_syncache {
+ struct syncache_head *hashbase;
+ uma_zone_t zone;
+ u_int hashsize;
+ u_int hashmask;
+ u_int bucket_limit;
+ u_int cache_count; /* XXX: unprotected */
+ u_int cache_limit;
+ u_int rexmt_limit;
+ u_int hash_secret;
+};
+static struct tcp_syncache tcp_syncache;
+
+SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
+
+SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
+ &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
+
+SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
+ &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
+
+SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
+ &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
+
+SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
+ &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
+
+SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
+ &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
+
+int tcp_sc_rst_sock_fail = 1;
+SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_RW,
+ &tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
+
+static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
+
+#define SYNCACHE_HASH(inc, mask) \
+ ((tcp_syncache.hash_secret ^ \
+ (inc)->inc_faddr.s_addr ^ \
+ ((inc)->inc_faddr.s_addr >> 16) ^ \
+ (inc)->inc_fport ^ (inc)->inc_lport) & mask)
+
+#define SYNCACHE_HASH6(inc, mask) \
+ ((tcp_syncache.hash_secret ^ \
+ (inc)->inc6_faddr.s6_addr32[0] ^ \
+ (inc)->inc6_faddr.s6_addr32[3] ^ \
+ (inc)->inc_fport ^ (inc)->inc_lport) & mask)
+
+#define ENDPTS_EQ(a, b) ( \
+ (a)->ie_fport == (b)->ie_fport && \
+ (a)->ie_lport == (b)->ie_lport && \
+ (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
+ (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
+)
+
+#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
+
+#define SYNCACHE_TIMEOUT(sc, sch, co) do { \
+ (sc)->sc_rxmits++; \
+ (sc)->sc_rxttime = ticks + \
+ TCPTV_RTOBASE * tcp_backoff[(sc)->sc_rxmits - 1]; \
+ if ((sch)->sch_nextc > (sc)->sc_rxttime) \
+ (sch)->sch_nextc = (sc)->sc_rxttime; \
+ if (!TAILQ_EMPTY(&(sch)->sch_bucket) && !(co)) \
+ callout_reset(&(sch)->sch_timer, \
+ (sch)->sch_nextc - ticks, \
+ syncache_timer, (void *)(sch)); \
+} while (0)
+
+#define SCH_LOCK(sch) mtx_lock(&(sch)->sch_mtx)
+#define SCH_UNLOCK(sch) mtx_unlock(&(sch)->sch_mtx)
+#define SCH_LOCK_ASSERT(sch) mtx_assert(&(sch)->sch_mtx, MA_OWNED)
+
+/*
+ * Requires the syncache entry to be already removed from the bucket list.
+ */
+static void
+syncache_free(struct syncache *sc)
+{
+ if (sc->sc_ipopts)
+ (void) m_free(sc->sc_ipopts);
+#ifdef MAC
+ mac_destroy_syncache(&sc->sc_label);
+#endif
+
+ uma_zfree(tcp_syncache.zone, sc);
+}
+
+void
+syncache_init(void)
+{
+ int i;
+
+ tcp_syncache.cache_count = 0;
+ tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
+ tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
+ tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
+ tcp_syncache.hash_secret = arc4random();
+
+ TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
+ &tcp_syncache.hashsize);
+ TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
+ &tcp_syncache.bucket_limit);
+ if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
+ printf("WARNING: syncache hash size is not a power of 2.\n");
+ tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
+ }
+ tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
+
+ /* Set limits. */
+ tcp_syncache.cache_limit =
+ tcp_syncache.hashsize * tcp_syncache.bucket_limit;
+ TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
+ &tcp_syncache.cache_limit);
+
+ /* Allocate the hash table. */
+ MALLOC(tcp_syncache.hashbase, struct syncache_head *,
+ tcp_syncache.hashsize * sizeof(struct syncache_head),
+ M_SYNCACHE, M_WAITOK | M_ZERO);
+
+ /* Initialize the hash buckets. */
+ for (i = 0; i < tcp_syncache.hashsize; i++) {
+ TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
+ mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
+ NULL, MTX_DEF);
+ callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
+ &tcp_syncache.hashbase[i].sch_mtx, 0);
+ tcp_syncache.hashbase[i].sch_length = 0;
+ }
+
+ /* Create the syncache entry zone. */
+ tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
+ NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
+ uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
+}
+
+/*
+ * Inserts a syncache entry into the specified bucket row.
+ * Locks and unlocks the syncache_head autonomously.
+ */
+static void
+syncache_insert(struct syncache *sc, struct syncache_head *sch)
+{
+ struct syncache *sc2;
+
+ SCH_LOCK(sch);
+
+ /*
+ * Make sure that we don't overflow the per-bucket limit.
+ * If the bucket is full, toss the oldest element.
+ */
+ if (sch->sch_length >= tcp_syncache.bucket_limit) {
+ KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
+ ("sch->sch_length incorrect"));
+ sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
+ syncache_drop(sc2, sch);
+ tcpstat.tcps_sc_bucketoverflow++;
+ }
+
+ /* Put it into the bucket. */
+ TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
+ sch->sch_length++;
+
+ /* Reinitialize the bucket row's timer. */
+ SYNCACHE_TIMEOUT(sc, sch, 1);
+
+ SCH_UNLOCK(sch);
+
+ tcp_syncache.cache_count++;
+ tcpstat.tcps_sc_added++;
+}
+
+/*
+ * Remove and free entry from syncache bucket row.
+ * Expects locked syncache head.
+ */
+static void
+syncache_drop(struct syncache *sc, struct syncache_head *sch)
+{
+
+ SCH_LOCK_ASSERT(sch);
+
+ TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
+ sch->sch_length--;
+
+ syncache_free(sc);
+ tcp_syncache.cache_count--;
+}
+
+/*
+ * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
+ * If we have retransmitted an entry the maximum number of times, expire it.
+ * One separate timer for each bucket row.
+ */
+static void
+syncache_timer(void *xsch)
+{
+ struct syncache_head *sch = (struct syncache_head *)xsch;
+ struct syncache *sc, *nsc;
+ int tick = ticks;
+ char *s;
+
+ /* NB: syncache_head has already been locked by the callout. */
+ SCH_LOCK_ASSERT(sch);
+
+ TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
+ /*
+ * We do not check if the listen socket still exists
+ * and accept the case where the listen socket may be
+ * gone by the time we resend the SYN/ACK. We do
+ * not expect this to happens often. If it does,
+ * then the RST will be sent by the time the remote
+ * host does the SYN/ACK->ACK.
+ */
+ if (sc->sc_rxttime >= tick) {
+ if (sc->sc_rxttime < sch->sch_nextc)
+ sch->sch_nextc = sc->sc_rxttime;
+ continue;
+ }
+
+ if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
+ if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
+ log(LOG_DEBUG, "%s; %s: Response timeout\n",
+ s, __func__);
+ free(s, M_TCPLOG);
+ }
+ syncache_drop(sc, sch);
+ tcpstat.tcps_sc_stale++;
+ continue;
+ }
+
+ (void) syncache_respond(sc);
+ tcpstat.tcps_sc_retransmitted++;
+ SYNCACHE_TIMEOUT(sc, sch, 0);
+ }
+ if (!TAILQ_EMPTY(&(sch)->sch_bucket))
+ callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
+ syncache_timer, (void *)(sch));
+}
+
+/*
+ * Find an entry in the syncache.
+ * Returns always with locked syncache_head plus a matching entry or NULL.
+ */
+struct syncache *
+syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
+{
+ struct syncache *sc;
+ struct syncache_head *sch;
+
+#ifdef INET6
+ if (inc->inc_isipv6) {
+ sch = &tcp_syncache.hashbase[
+ SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
+ *schp = sch;
+
+ SCH_LOCK(sch);
+
+ /* Circle through bucket row to find matching entry. */
+ TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
+ if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
+ return (sc);
+ }
+ } else
+#endif
+ {
+ sch = &tcp_syncache.hashbase[
+ SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
+ *schp = sch;
+
+ SCH_LOCK(sch);
+
+ /* Circle through bucket row to find matching entry. */
+ TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6)
+ continue;
+#endif
+ if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
+ return (sc);
+ }
+ }
+ SCH_LOCK_ASSERT(*schp);
+ return (NULL); /* always returns with locked sch */
+}
+
+/*
+ * This function is called when we get a RST for a
+ * non-existent connection, so that we can see if the
+ * connection is in the syn cache. If it is, zap it.
+ */
+void
+syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
+{
+ struct syncache *sc;
+ struct syncache_head *sch;
+
+ sc = syncache_lookup(inc, &sch); /* returns locked sch */
+ SCH_LOCK_ASSERT(sch);
+ if (sc == NULL)
+ goto done;
+
+ /*
+ * If the RST bit is set, check the sequence number to see
+ * if this is a valid reset segment.
+ * RFC 793 page 37:
+ * In all states except SYN-SENT, all reset (RST) segments
+ * are validated by checking their SEQ-fields. A reset is
+ * valid if its sequence number is in the window.
+ *
+ * The sequence number in the reset segment is normally an
+ * echo of our outgoing acknowlegement numbers, but some hosts
+ * send a reset with the sequence number at the rightmost edge
+ * of our receive window, and we have to handle this case.
+ */
+ if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
+ SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
+ syncache_drop(sc, sch);
+ tcpstat.tcps_sc_reset++;
+ }
+done:
+ SCH_UNLOCK(sch);
+}
+
+void
+syncache_badack(struct in_conninfo *inc)
+{
+ struct syncache *sc;
+ struct syncache_head *sch;
+
+ sc = syncache_lookup(inc, &sch); /* returns locked sch */
+ SCH_LOCK_ASSERT(sch);
+ if (sc != NULL) {
+ syncache_drop(sc, sch);
+ tcpstat.tcps_sc_badack++;
+ }
+ SCH_UNLOCK(sch);
+}
+
+void
+syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
+{
+ struct syncache *sc;
+ struct syncache_head *sch;
+
+ sc = syncache_lookup(inc, &sch); /* returns locked sch */
+ SCH_LOCK_ASSERT(sch);
+ if (sc == NULL)
+ goto done;
+
+ /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
+ if (ntohl(th->th_seq) != sc->sc_iss)
+ goto done;
+
+ /*
+ * If we've rertransmitted 3 times and this is our second error,
+ * we remove the entry. Otherwise, we allow it to continue on.
+ * This prevents us from incorrectly nuking an entry during a
+ * spurious network outage.
+ *
+ * See tcp_notify().
+ */
+ if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
+ sc->sc_flags |= SCF_UNREACH;
+ goto done;
+ }
+ syncache_drop(sc, sch);
+ tcpstat.tcps_sc_unreach++;
+done:
+ SCH_UNLOCK(sch);
+}
+
+/*
+ * Build a new TCP socket structure from a syncache entry.
+ */
+static struct socket *
+syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
+{
+ struct inpcb *inp = NULL;
+ struct socket *so;
+ struct tcpcb *tp;
+ char *s;
+
+ NET_ASSERT_GIANT();
+ INP_INFO_WLOCK_ASSERT(&tcbinfo);
+
+ /*
+ * Ok, create the full blown connection, and set things up
+ * as they would have been set up if we had created the
+ * connection when the SYN arrived. If we can't create
+ * the connection, abort it.
+ */
+ so = sonewconn(lso, SS_ISCONNECTED);
+ if (so == NULL) {
+ /*
+ * Drop the connection; we will either send a RST or
+ * have the peer retransmit its SYN again after its
+ * RTO and try again.
+ */
+ tcpstat.tcps_listendrop++;
+ if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
+ log(LOG_DEBUG, "%s; %s: Socket create failed "
+ "due to limits or memory shortage\n",
+ s, __func__);
+ free(s, M_TCPLOG);
+ }
+ goto abort2;
+ }
+#ifdef MAC
+ SOCK_LOCK(so);
+ mac_set_socket_peer_from_mbuf(m, so);
+ SOCK_UNLOCK(so);
+#endif
+
+ inp = sotoinpcb(so);
+ INP_LOCK(inp);
+
+ /* Insert new socket into PCB hash list. */
+ inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6) {
+ inp->in6p_laddr = sc->sc_inc.inc6_laddr;
+ } else {
+ inp->inp_vflag &= ~INP_IPV6;
+ inp->inp_vflag |= INP_IPV4;
+#endif
+ inp->inp_laddr = sc->sc_inc.inc_laddr;
+#ifdef INET6
+ }
+#endif
+ inp->inp_lport = sc->sc_inc.inc_lport;
+ if (in_pcbinshash(inp) != 0) {
+ /*
+ * Undo the assignments above if we failed to
+ * put the PCB on the hash lists.
+ */
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6)
+ inp->in6p_laddr = in6addr_any;
+ else
+#endif
+ inp->inp_laddr.s_addr = INADDR_ANY;
+ inp->inp_lport = 0;
+ goto abort;
+ }
+#ifdef FAST_IPSEC
+ /* Copy old policy into new socket's. */
+ if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
+ printf("syncache_socket: could not copy policy\n");
+#endif
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6) {
+ struct inpcb *oinp = sotoinpcb(lso);
+ struct in6_addr laddr6;
+ struct sockaddr_in6 sin6;
+ /*
+ * Inherit socket options from the listening socket.
+ * Note that in6p_inputopts are not (and should not be)
+ * copied, since it stores previously received options and is
+ * used to detect if each new option is different than the
+ * previous one and hence should be passed to a user.
+ * If we copied in6p_inputopts, a user would not be able to
+ * receive options just after calling the accept system call.
+ */
+ inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
+ if (oinp->in6p_outputopts)
+ inp->in6p_outputopts =
+ ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
+
+ sin6.sin6_family = AF_INET6;
+ sin6.sin6_len = sizeof(sin6);
+ sin6.sin6_addr = sc->sc_inc.inc6_faddr;
+ sin6.sin6_port = sc->sc_inc.inc_fport;
+ sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
+ laddr6 = inp->in6p_laddr;
+ if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
+ inp->in6p_laddr = sc->sc_inc.inc6_laddr;
+ if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
+ thread0.td_ucred)) {
+ inp->in6p_laddr = laddr6;
+ goto abort;
+ }
+ /* Override flowlabel from in6_pcbconnect. */
+ inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
+ inp->in6p_flowinfo |= sc->sc_flowlabel;
+ } else
+#endif
+ {
+ struct in_addr laddr;
+ struct sockaddr_in sin;
+
+ inp->inp_options = ip_srcroute(m);
+ if (inp->inp_options == NULL) {
+ inp->inp_options = sc->sc_ipopts;
+ sc->sc_ipopts = NULL;
+ }
+
+ sin.sin_family = AF_INET;
+ sin.sin_len = sizeof(sin);
+ sin.sin_addr = sc->sc_inc.inc_faddr;
+ sin.sin_port = sc->sc_inc.inc_fport;
+ bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
+ laddr = inp->inp_laddr;
+ if (inp->inp_laddr.s_addr == INADDR_ANY)
+ inp->inp_laddr = sc->sc_inc.inc_laddr;
+ if (in_pcbconnect(inp, (struct sockaddr *)&sin,
+ thread0.td_ucred)) {
+ inp->inp_laddr = laddr;
+ goto abort;
+ }
+ }
+ tp = intotcpcb(inp);
+ tp->t_state = TCPS_SYN_RECEIVED;
+ tp->iss = sc->sc_iss;
+ tp->irs = sc->sc_irs;
+ tcp_rcvseqinit(tp);
+ tcp_sendseqinit(tp);
+ tp->snd_wl1 = sc->sc_irs;
+ tp->snd_max = tp->iss + 1;
+ tp->snd_nxt = tp->iss + 1;
+ tp->rcv_up = sc->sc_irs + 1;
+ tp->rcv_wnd = sc->sc_wnd;
+ tp->rcv_adv += tp->rcv_wnd;
+ tp->last_ack_sent = tp->rcv_nxt;
+
+ tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
+ if (sc->sc_flags & SCF_NOOPT)
+ tp->t_flags |= TF_NOOPT;
+ else {
+ if (sc->sc_flags & SCF_WINSCALE) {
+ tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
+ tp->snd_scale = sc->sc_requested_s_scale;
+ tp->request_r_scale = sc->sc_requested_r_scale;
+ }
+ if (sc->sc_flags & SCF_TIMESTAMP) {
+ tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
+ tp->ts_recent = sc->sc_tsreflect;
+ tp->ts_recent_age = ticks;
+ tp->ts_offset = sc->sc_tsoff;
+ }
+#ifdef TCP_SIGNATURE
+ if (sc->sc_flags & SCF_SIGNATURE)
+ tp->t_flags |= TF_SIGNATURE;
+#endif
+ if (sc->sc_flags & SCF_SACK)
+ tp->t_flags |= TF_SACK_PERMIT;
+ }
+
+ /*
+ * Set up MSS and get cached values from tcp_hostcache.
+ * This might overwrite some of the defaults we just set.
+ */
+ tcp_mss(tp, sc->sc_peer_mss);
+
+ /*
+ * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
+ */
+ if (sc->sc_rxmits > 1)
+ tp->snd_cwnd = tp->t_maxseg;
+ tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
+
+ INP_UNLOCK(inp);
+
+ tcpstat.tcps_accepts++;
+ return (so);
+
+abort:
+ INP_UNLOCK(inp);
+abort2:
+ if (so != NULL)
+ soabort(so);
+ return (NULL);
+}
+
+/*
+ * This function gets called when we receive an ACK for a
+ * socket in the LISTEN state. We look up the connection
+ * in the syncache, and if its there, we pull it out of
+ * the cache and turn it into a full-blown connection in
+ * the SYN-RECEIVED state.
+ */
+int
+syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
+ struct socket **lsop, struct mbuf *m)
+{
+ struct syncache *sc;
+ struct syncache_head *sch;
+ struct syncache scs;
+ char *s;
+
+ /*
+ * Global TCP locks are held because we manipulate the PCB lists
+ * and create a new socket.
+ */
+ INP_INFO_WLOCK_ASSERT(&tcbinfo);
+ KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
+ ("%s: can handle only ACK", __func__));
+
+ sc = syncache_lookup(inc, &sch); /* returns locked sch */
+ SCH_LOCK_ASSERT(sch);
+ if (sc == NULL) {
+ /*
+ * There is no syncache entry, so see if this ACK is
+ * a returning syncookie. To do this, first:
+ * A. See if this socket has had a syncache entry dropped in
+ * the past. We don't want to accept a bogus syncookie
+ * if we've never received a SYN.
+ * B. check that the syncookie is valid. If it is, then
+ * cobble up a fake syncache entry, and return.
+ */
+ if (!tcp_syncookies) {
+ SCH_UNLOCK(sch);
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: Spurious ACK, "
+ "segment rejected (syncookies disabled)\n",
+ s, __func__);
+ goto failed;
+ }
+ bzero(&scs, sizeof(scs));
+ sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
+ SCH_UNLOCK(sch);
+ if (sc == NULL) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: Segment failed "
+ "SYNCOOKIE authentication, segment rejected "
+ "(probably spoofed)\n", s, __func__);
+ goto failed;
+ }
+ tcpstat.tcps_sc_recvcookie++;
+ } else {
+ /* Pull out the entry to unlock the bucket row. */
+ TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
+ sch->sch_length--;
+ tcp_syncache.cache_count--;
+ SCH_UNLOCK(sch);
+ }
+
+ /*
+ * Segment validation:
+ * ACK must match our initial sequence number + 1 (the SYN|ACK).
+ */
+ if (th->th_ack != sc->sc_iss + 1) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
+ "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
+ goto failed;
+ }
+ /*
+ * The SEQ must match the received initial receive sequence
+ * number + 1 (the SYN) because we didn't ACK any data that
+ * may have come with the SYN.
+ */
+ if (th->th_seq != sc->sc_irs + 1) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
+ "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
+ goto failed;
+ }
+ /*
+ * If timestamps were present in the SYN and we accepted
+ * them in our SYN|ACK we require them to be present from
+ * now on. And vice versa.
+ */
+ if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: Timestamp missing, "
+ "segment rejected\n", s, __func__);
+ goto failed;
+ }
+ if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
+ "segment rejected\n", s, __func__);
+ goto failed;
+ }
+ /*
+ * If timestamps were negotiated the reflected timestamp
+ * must be equal to what we actually sent in the SYN|ACK.
+ */
+ if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
+ if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
+ log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
+ "segment rejected\n",
+ s, __func__, to->to_tsecr, sc->sc_ts);
+ goto failed;
+ }
+
+ *lsop = syncache_socket(sc, *lsop, m);
+
+ if (*lsop == NULL)
+ tcpstat.tcps_sc_aborted++;
+ else
+ tcpstat.tcps_sc_completed++;
+
+ if (sc != &scs)
+ syncache_free(sc);
+ return (1);
+failed:
+ if (sc != NULL && sc != &scs)
+ syncache_free(sc);
+ if (s != NULL)
+ free(s, M_TCPLOG);
+ *lsop = NULL;
+ return (0);
+}
+
+/*
+ * Given a LISTEN socket and an inbound SYN request, add
+ * this to the syn cache, and send back a segment:
+ * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
+ * to the source.
+ *
+ * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
+ * Doing so would require that we hold onto the data and deliver it
+ * to the application. However, if we are the target of a SYN-flood
+ * DoS attack, an attacker could send data which would eventually
+ * consume all available buffer space if it were ACKed. By not ACKing
+ * the data, we avoid this DoS scenario.
+ */
+void
+syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
+ struct inpcb *inp, struct socket **lsop, struct mbuf *m)
+{
+ struct tcpcb *tp;
+ struct socket *so;
+ struct syncache *sc = NULL;
+ struct syncache_head *sch;
+ struct mbuf *ipopts = NULL;
+ u_int32_t flowtmp;
+ int win, sb_hiwat, ip_ttl, ip_tos, noopt;
+#ifdef INET6
+ int autoflowlabel = 0;
+#endif
+#ifdef MAC
+ struct label *maclabel;
+#endif
+ struct syncache scs;
+
+ INP_INFO_WLOCK_ASSERT(&tcbinfo);
+ INP_LOCK_ASSERT(inp); /* listen socket */
+
+ /*
+ * Combine all so/tp operations very early to drop the INP lock as
+ * soon as possible.
+ */
+ so = *lsop;
+ tp = sototcpcb(so);
+
+#ifdef INET6
+ if (inc->inc_isipv6 &&
+ (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
+ autoflowlabel = 1;
+#endif
+ ip_ttl = inp->inp_ip_ttl;
+ ip_tos = inp->inp_ip_tos;
+ win = sbspace(&so->so_rcv);
+ sb_hiwat = so->so_rcv.sb_hiwat;
+ noopt = (tp->t_flags & TF_NOOPT);
+
+ so = NULL;
+ tp = NULL;
+
+#ifdef MAC
+ if (mac_init_syncache(&maclabel) != 0) {
+ INP_UNLOCK(inp);
+ INP_INFO_WUNLOCK(&tcbinfo);
+ goto done;
+ } else
+ mac_init_syncache_from_inpcb(maclabel, inp);
+#endif
+ INP_UNLOCK(inp);
+ INP_INFO_WUNLOCK(&tcbinfo);
+
+ /*
+ * Remember the IP options, if any.
+ */
+#ifdef INET6
+ if (!inc->inc_isipv6)
+#endif
+ ipopts = ip_srcroute(m);
+
+ /*
+ * See if we already have an entry for this connection.
+ * If we do, resend the SYN,ACK, and reset the retransmit timer.
+ *
+ * XXX: should the syncache be re-initialized with the contents
+ * of the new SYN here (which may have different options?)
+ */
+ sc = syncache_lookup(inc, &sch); /* returns locked entry */
+ SCH_LOCK_ASSERT(sch);
+ if (sc != NULL) {
+ tcpstat.tcps_sc_dupsyn++;
+ if (ipopts) {
+ /*
+ * If we were remembering a previous source route,
+ * forget it and use the new one we've been given.
+ */
+ if (sc->sc_ipopts)
+ (void) m_free(sc->sc_ipopts);
+ sc->sc_ipopts = ipopts;
+ }
+ /*
+ * Update timestamp if present.
+ */
+ if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
+ sc->sc_tsreflect = to->to_tsval;
+ else
+ sc->sc_flags &= ~SCF_TIMESTAMP;
+#ifdef MAC
+ /*
+ * Since we have already unconditionally allocated label
+ * storage, free it up. The syncache entry will already
+ * have an initialized label we can use.
+ */
+ mac_destroy_syncache(&maclabel);
+ KASSERT(sc->sc_label != NULL,
+ ("%s: label not initialized", __func__));
+#endif
+ if (syncache_respond(sc) == 0) {
+ SYNCACHE_TIMEOUT(sc, sch, 1);
+ tcpstat.tcps_sndacks++;
+ tcpstat.tcps_sndtotal++;
+ }
+ SCH_UNLOCK(sch);
+ goto done;
+ }
+
+ sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
+ if (sc == NULL) {
+ /*
+ * The zone allocator couldn't provide more entries.
+ * Treat this as if the cache was full; drop the oldest
+ * entry and insert the new one.
+ */
+ tcpstat.tcps_sc_zonefail++;
+ if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
+ syncache_drop(sc, sch);
+ sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
+ if (sc == NULL) {
+ if (tcp_syncookies) {
+ bzero(&scs, sizeof(scs));
+ sc = &scs;
+ } else {
+ SCH_UNLOCK(sch);
+ if (ipopts)
+ (void) m_free(ipopts);
+ goto done;
+ }
+ }
+ }
+
+ /*
+ * Fill in the syncache values.
+ */
+#ifdef MAC
+ sc->sc_label = maclabel;
+#endif
+ sc->sc_ipopts = ipopts;
+ bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
+#ifdef INET6
+ if (!inc->inc_isipv6)
+#endif
+ {
+ sc->sc_ip_tos = ip_tos;
+ sc->sc_ip_ttl = ip_ttl;
+ }
+
+ sc->sc_irs = th->th_seq;
+ sc->sc_iss = arc4random();
+ sc->sc_flags = 0;
+ sc->sc_flowlabel = 0;
+
+ /*
+ * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
+ * win was derived from socket earlier in the function.
+ */
+ win = imax(win, 0);
+ win = imin(win, TCP_MAXWIN);
+ sc->sc_wnd = win;
+
+ if (tcp_do_rfc1323) {
+ /*
+ * A timestamp received in a SYN makes
+ * it ok to send timestamp requests and replies.
+ */
+ if (to->to_flags & TOF_TS) {
+ sc->sc_tsreflect = to->to_tsval;
+ sc->sc_ts = ticks;
+ sc->sc_flags |= SCF_TIMESTAMP;
+ }
+ if (to->to_flags & TOF_SCALE) {
+ int wscale = 0;
+
+ /*
+ * Compute proper scaling value from buffer space.
+ * Leave enough room for the socket buffer to grow
+ * with auto sizing. This allows us to scale the
+ * receive buffer over a wide range while not losing
+ * any efficiency or fine granularity.
+ *
+ * RFC1323: The Window field in a SYN (i.e., a <SYN>
+ * or <SYN,ACK>) segment itself is never scaled.
+ */
+ while (wscale < TCP_MAX_WINSHIFT &&
+ (0x1 << wscale) < tcp_minmss)
+ wscale++;
+ sc->sc_requested_r_scale = wscale;
+ sc->sc_requested_s_scale = to->to_wscale;
+ sc->sc_flags |= SCF_WINSCALE;
+ }
+ }
+#ifdef TCP_SIGNATURE
+ /*
+ * If listening socket requested TCP digests, and received SYN
+ * contains the option, flag this in the syncache so that
+ * syncache_respond() will do the right thing with the SYN+ACK.
+ * XXX: Currently we always record the option by default and will
+ * attempt to use it in syncache_respond().
+ */
+ if (to->to_flags & TOF_SIGNATURE)
+ sc->sc_flags |= SCF_SIGNATURE;
+#endif
+ if (to->to_flags & TOF_SACK)
+ sc->sc_flags |= SCF_SACK;
+ if (to->to_flags & TOF_MSS)
+ sc->sc_peer_mss = to->to_mss; /* peer mss may be zero */
+ if (noopt)
+ sc->sc_flags |= SCF_NOOPT;
+
+ if (tcp_syncookies) {
+ syncookie_generate(sch, sc, &flowtmp);
+#ifdef INET6
+ if (autoflowlabel)
+ sc->sc_flowlabel = flowtmp;
+#endif
+ } else {
+#ifdef INET6
+ if (autoflowlabel)
+ sc->sc_flowlabel =
+ (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
+#endif
+ }
+ SCH_UNLOCK(sch);
+
+ /*
+ * Do a standard 3-way handshake.
+ */
+ if (syncache_respond(sc) == 0) {
+ if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
+ syncache_free(sc);
+ else if (sc != &scs)
+ syncache_insert(sc, sch); /* locks and unlocks sch */
+ tcpstat.tcps_sndacks++;
+ tcpstat.tcps_sndtotal++;
+ } else {
+ if (sc != &scs)
+ syncache_free(sc);
+ tcpstat.tcps_sc_dropped++;
+ }
+
+done:
+#ifdef MAC
+ if (sc == &scs)
+ mac_destroy_syncache(&maclabel);
+#endif
+ *lsop = NULL;
+ m_freem(m);
+ return;
+}
+
+static int
+syncache_respond(struct syncache *sc)
+{
+ struct ip *ip = NULL;
+ struct mbuf *m;
+ struct tcphdr *th;
+ int optlen, error;
+ u_int16_t hlen, tlen, mssopt;
+ struct tcpopt to;
+#ifdef INET6
+ struct ip6_hdr *ip6 = NULL;
+#endif
+
+ hlen =
+#ifdef INET6
+ (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
+#endif
+ sizeof(struct ip);
+ tlen = hlen + sizeof(struct tcphdr);
+
+ /* Determine MSS we advertize to other end of connection. */
+ mssopt = tcp_mssopt(&sc->sc_inc);
+ if (sc->sc_peer_mss)
+ mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
+
+ /* XXX: Assume that the entire packet will fit in a header mbuf. */
+ KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
+ ("syncache: mbuf too small"));
+
+ /* Create the IP+TCP header from scratch. */
+ m = m_gethdr(M_DONTWAIT, MT_DATA);
+ if (m == NULL)
+ return (ENOBUFS);
+#ifdef MAC
+ mac_create_mbuf_from_syncache(sc->sc_label, m);
+#endif
+ m->m_data += max_linkhdr;
+ m->m_len = tlen;
+ m->m_pkthdr.len = tlen;
+ m->m_pkthdr.rcvif = NULL;
+
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6) {
+ ip6 = mtod(m, struct ip6_hdr *);
+ ip6->ip6_vfc = IPV6_VERSION;
+ ip6->ip6_nxt = IPPROTO_TCP;
+ ip6->ip6_src = sc->sc_inc.inc6_laddr;
+ ip6->ip6_dst = sc->sc_inc.inc6_faddr;
+ ip6->ip6_plen = htons(tlen - hlen);
+ /* ip6_hlim is set after checksum */
+ ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
+ ip6->ip6_flow |= sc->sc_flowlabel;
+
+ th = (struct tcphdr *)(ip6 + 1);
+ } else
+#endif
+ {
+ ip = mtod(m, struct ip *);
+ ip->ip_v = IPVERSION;
+ ip->ip_hl = sizeof(struct ip) >> 2;
+ ip->ip_len = tlen;
+ ip->ip_id = 0;
+ ip->ip_off = 0;
+ ip->ip_sum = 0;
+ ip->ip_p = IPPROTO_TCP;
+ ip->ip_src = sc->sc_inc.inc_laddr;
+ ip->ip_dst = sc->sc_inc.inc_faddr;
+ ip->ip_ttl = sc->sc_ip_ttl;
+ ip->ip_tos = sc->sc_ip_tos;
+
+ /*
+ * See if we should do MTU discovery. Route lookups are
+ * expensive, so we will only unset the DF bit if:
+ *
+ * 1) path_mtu_discovery is disabled
+ * 2) the SCF_UNREACH flag has been set
+ */
+ if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
+ ip->ip_off |= IP_DF;
+
+ th = (struct tcphdr *)(ip + 1);
+ }
+ th->th_sport = sc->sc_inc.inc_lport;
+ th->th_dport = sc->sc_inc.inc_fport;
+
+ th->th_seq = htonl(sc->sc_iss);
+ th->th_ack = htonl(sc->sc_irs + 1);
+ th->th_off = sizeof(struct tcphdr) >> 2;
+ th->th_x2 = 0;
+ th->th_flags = TH_SYN|TH_ACK;
+ th->th_win = htons(sc->sc_wnd);
+ th->th_urp = 0;
+
+ /* Tack on the TCP options. */
+ if ((sc->sc_flags & SCF_NOOPT) == 0) {
+ to.to_flags = 0;
+
+ to.to_mss = mssopt;
+ to.to_flags = TOF_MSS;
+ if (sc->sc_flags & SCF_WINSCALE) {
+ to.to_wscale = sc->sc_requested_r_scale;
+ to.to_flags |= TOF_SCALE;
+ }
+ if (sc->sc_flags & SCF_TIMESTAMP) {
+ /* Virgin timestamp or TCP cookie enhanced one. */
+ to.to_tsval = sc->sc_ts;
+ to.to_tsecr = sc->sc_tsreflect;
+ to.to_flags |= TOF_TS;
+ }
+ if (sc->sc_flags & SCF_SACK)
+ to.to_flags |= TOF_SACKPERM;
+#ifdef TCP_SIGNATURE
+ if (sc->sc_flags & SCF_SIGNATURE)
+ to.to_flags |= TOF_SIGNATURE;
+#endif
+ optlen = tcp_addoptions(&to, (u_char *)(th + 1));
+
+#ifdef TCP_SIGNATURE
+ tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
+ to.to_signature, IPSEC_DIR_OUTBOUND);
+#endif
+
+ /* Adjust headers by option size. */
+ th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
+ m->m_len += optlen;
+ m->m_pkthdr.len += optlen;
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6)
+ ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
+ else
+#endif
+ ip->ip_len += optlen;
+ } else
+ optlen = 0;
+
+#ifdef INET6
+ if (sc->sc_inc.inc_isipv6) {
+ th->th_sum = 0;
+ th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
+ tlen + optlen - hlen);
+ ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
+ error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
+ } else
+#endif
+ {
+ th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
+ htons(tlen + optlen - hlen + IPPROTO_TCP));
+ m->m_pkthdr.csum_flags = CSUM_TCP;
+ m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
+ error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
+ }
+ return (error);
+}
+
+/*
+ * The purpose of SYN cookies is to avoid keeping track of all SYN's we
+ * receive and to be able to handle SYN floods from bogus source addresses
+ * (where we will never receive any reply). SYN floods try to exhaust all
+ * our memory and available slots in the SYN cache table to cause a denial
+ * of service to legitimate users of the local host.
+ *
+ * The idea of SYN cookies is to encode and include all necessary information
+ * about the connection setup state within the SYN-ACK we send back and thus
+ * to get along without keeping any local state until the ACK to the SYN-ACK
+ * arrives (if ever). Everything we need to know should be available from
+ * the information we encoded in the SYN-ACK.
+ *
+ * More information about the theory behind SYN cookies and its first
+ * discussion and specification can be found at:
+ * http://cr.yp.to/syncookies.html (overview)
+ * http://cr.yp.to/syncookies/archive (gory details)
+ *
+ * This implementation extends the orginal idea and first implementation
+ * of FreeBSD by using not only the initial sequence number field to store
+ * information but also the timestamp field if present. This way we can
+ * keep track of the entire state we need to know to recreate the session in
+ * its original form. Almost all TCP speakers implement RFC1323 timestamps
+ * these days. For those that do not we still have to live with the known
+ * shortcomings of the ISN only SYN cookies.
+ *
+ * Cookie layers:
+ *
+ * Initial sequence number we send:
+ * 31|................................|0
+ * DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
+ * D = MD5 Digest (first dword)
+ * M = MSS index
+ * R = Rotation of secret
+ * P = Odd or Even secret
+ *
+ * The MD5 Digest is computed with over following parameters:
+ * a) randomly rotated secret
+ * b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
+ * c) the received initial sequence number from remote host
+ * d) the rotation offset and odd/even bit
+ *
+ * Timestamp we send:
+ * 31|................................|0
+ * DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
+ * D = MD5 Digest (third dword) (only as filler)
+ * S = Requested send window scale
+ * R = Requested receive window scale
+ * A = SACK allowed
+ * 5 = TCP-MD5 enabled (not implemented yet)
+ * XORed with MD5 Digest (forth dword)
+ *
+ * The timestamp isn't cryptographically secure and doesn't need to be.
+ * The double use of the MD5 digest dwords ties it to a specific remote/
+ * local host/port, remote initial sequence number and our local time
+ * limited secret. A received timestamp is reverted (XORed) and then
+ * the contained MD5 dword is compared to the computed one to ensure the
+ * timestamp belongs to the SYN-ACK we sent. The other parameters may
+ * have been tampered with but this isn't different from supplying bogus
+ * values in the SYN in the first place.
+ *
+ * Some problems with SYN cookies remain however:
+ * Consider the problem of a recreated (and retransmitted) cookie. If the
+ * original SYN was accepted, the connection is established. The second
+ * SYN is inflight, and if it arrives with an ISN that falls within the
+ * receive window, the connection is killed.
+ *
+ * Notes:
+ * A heuristic to determine when to accept syn cookies is not necessary.
+ * An ACK flood would cause the syncookie verification to be attempted,
+ * but a SYN flood causes syncookies to be generated. Both are of equal
+ * cost, so there's no point in trying to optimize the ACK flood case.
+ * Also, if you don't process certain ACKs for some reason, then all someone
+ * would have to do is launch a SYN and ACK flood at the same time, which
+ * would stop cookie verification and defeat the entire purpose of syncookies.
+ */
+static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
+
+static void
+syncookie_generate(struct syncache_head *sch, struct syncache *sc,
+ u_int32_t *flowlabel)
+{
+ MD5_CTX ctx;
+ u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
+ u_int32_t data;
+ u_int32_t *secbits;
+ u_int off, pmss, mss;
+ int i;
+
+ SCH_LOCK_ASSERT(sch);
+
+ /* Which of the two secrets to use. */
+ secbits = sch->sch_oddeven ?
+ sch->sch_secbits_odd : sch->sch_secbits_even;
+
+ /* Reseed secret if too old. */
+ if (sch->sch_reseed < time_uptime) {
+ sch->sch_oddeven = sch->sch_oddeven ? 0 : 1; /* toggle */
+ secbits = sch->sch_oddeven ?
+ sch->sch_secbits_odd : sch->sch_secbits_even;
+ for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
+ secbits[i] = arc4random();
+ sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
+ }
+
+ /* Secret rotation offset. */
+ off = sc->sc_iss & 0x7; /* iss was randomized before */
+
+ /* Maximum segment size calculation. */
+ pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
+ for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
+ if (tcp_sc_msstab[mss] <= pmss)
+ break;
+
+ /* Fold parameters and MD5 digest into the ISN we will send. */
+ data = sch->sch_oddeven;/* odd or even secret, 1 bit */
+ data |= off << 1; /* secret offset, derived from iss, 3 bits */
+ data |= mss << 4; /* mss, 3 bits */
+
+ MD5Init(&ctx);
+ MD5Update(&ctx, ((u_int8_t *)secbits) + off,
+ SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
+ MD5Update(&ctx, secbits, off);
+ MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
+ MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
+ MD5Update(&ctx, &data, sizeof(data));
+ MD5Final((u_int8_t *)&md5_buffer, &ctx);
+
+ data |= (md5_buffer[0] << 7);
+ sc->sc_iss = data;
+
+#ifdef INET6
+ *flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
+#endif
+
+ /* Additional parameters are stored in the timestamp if present. */
+ if (sc->sc_flags & SCF_TIMESTAMP) {
+ data = ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
+ data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
+ data |= sc->sc_requested_s_scale << 2; /* SWIN scale, 4 bits */
+ data |= sc->sc_requested_r_scale << 6; /* RWIN scale, 4 bits */
+ data |= md5_buffer[2] << 10; /* more digest bits */
+ data ^= md5_buffer[3];
+ sc->sc_ts = data;
+ sc->sc_tsoff = data - ticks; /* after XOR */
+ }
+
+ return;
+}
+
+static struct syncache *
+syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
+ struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
+ struct socket *so)
+{
+ MD5_CTX ctx;
+ u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
+ u_int32_t data = 0;
+ u_int32_t *secbits;
+ tcp_seq ack, seq;
+ int off, mss, wnd, flags;
+
+ SCH_LOCK_ASSERT(sch);
+
+ /*
+ * Pull information out of SYN-ACK/ACK and
+ * revert sequence number advances.
+ */
+ ack = th->th_ack - 1;
+ seq = th->th_seq - 1;
+ off = (ack >> 1) & 0x7;
+ mss = (ack >> 4) & 0x7;
+ flags = ack & 0x7f;
+
+ /* Which of the two secrets to use. */
+ secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
+
+ /*
+ * The secret wasn't updated for the lifetime of a syncookie,
+ * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
+ */
+ if (sch->sch_reseed < time_uptime) {
+ return (NULL);
+ }
+
+ /* Recompute the digest so we can compare it. */
+ MD5Init(&ctx);
+ MD5Update(&ctx, ((u_int8_t *)secbits) + off,
+ SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
+ MD5Update(&ctx, secbits, off);
+ MD5Update(&ctx, inc, sizeof(*inc));
+ MD5Update(&ctx, &seq, sizeof(seq));
+ MD5Update(&ctx, &flags, sizeof(flags));
+ MD5Final((u_int8_t *)&md5_buffer, &ctx);
+
+ /* Does the digest part of or ACK'ed ISS match? */
+ if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
+ return (NULL);
+
+ /* Does the digest part of our reflected timestamp match? */
+ if (to->to_flags & TOF_TS) {
+ data = md5_buffer[3] ^ to->to_tsecr;
+ if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
+ return (NULL);
+ }
+
+ /* Fill in the syncache values. */
+ bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
+ sc->sc_ipopts = NULL;
+
+ sc->sc_irs = seq;
+ sc->sc_iss = ack;
+
+#ifdef INET6
+ if (inc->inc_isipv6) {
+ if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
+ sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
+ } else
+#endif
+ {
+ sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
+ sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
+ }
+
+ /* Additional parameters that were encoded in the timestamp. */
+ if (data) {
+ sc->sc_flags |= SCF_TIMESTAMP;
+ sc->sc_tsreflect = to->to_tsval;
+ sc->sc_ts = to->to_tsecr;
+ sc->sc_tsoff = to->to_tsecr - ticks;
+ sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
+ sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
+ sc->sc_requested_s_scale = min((data >> 2) & 0xf,
+ TCP_MAX_WINSHIFT);
+ sc->sc_requested_r_scale = min((data >> 6) & 0xf,
+ TCP_MAX_WINSHIFT);
+ if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
+ sc->sc_flags |= SCF_WINSCALE;
+ } else
+ sc->sc_flags |= SCF_NOOPT;
+
+ wnd = sbspace(&so->so_rcv);
+ wnd = imax(wnd, 0);
+ wnd = imin(wnd, TCP_MAXWIN);
+ sc->sc_wnd = wnd;
+
+ sc->sc_rxmits = 0;
+ sc->sc_peer_mss = tcp_sc_msstab[mss];
+
+ return (sc);
+}