diff options
Diffstat (limited to 'uts/common/fs/zfs/zap_leaf.c')
| -rw-r--r-- | uts/common/fs/zfs/zap_leaf.c | 872 | 
1 files changed, 872 insertions, 0 deletions
diff --git a/uts/common/fs/zfs/zap_leaf.c b/uts/common/fs/zfs/zap_leaf.c new file mode 100644 index 000000000000..19a795db825b --- /dev/null +++ b/uts/common/fs/zfs/zap_leaf.c @@ -0,0 +1,872 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. + */ + +/* + * The 512-byte leaf is broken into 32 16-byte chunks. + * chunk number n means l_chunk[n], even though the header precedes it. + * the names are stored null-terminated. + */ + +#include <sys/zio.h> +#include <sys/spa.h> +#include <sys/dmu.h> +#include <sys/zfs_context.h> +#include <sys/fs/zfs.h> +#include <sys/zap.h> +#include <sys/zap_impl.h> +#include <sys/zap_leaf.h> +#include <sys/arc.h> + +static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); + +#define	CHAIN_END 0xffff /* end of the chunk chain */ + +/* half the (current) minimum block size */ +#define	MAX_ARRAY_BYTES (8<<10) + +#define	LEAF_HASH(l, h) \ +	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ +	((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) + +#define	LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) + + +static void +zap_memset(void *a, int c, size_t n) +{ +	char *cp = a; +	char *cpend = cp + n; + +	while (cp < cpend) +		*cp++ = c; +} + +static void +stv(int len, void *addr, uint64_t value) +{ +	switch (len) { +	case 1: +		*(uint8_t *)addr = value; +		return; +	case 2: +		*(uint16_t *)addr = value; +		return; +	case 4: +		*(uint32_t *)addr = value; +		return; +	case 8: +		*(uint64_t *)addr = value; +		return; +	} +	ASSERT(!"bad int len"); +} + +static uint64_t +ldv(int len, const void *addr) +{ +	switch (len) { +	case 1: +		return (*(uint8_t *)addr); +	case 2: +		return (*(uint16_t *)addr); +	case 4: +		return (*(uint32_t *)addr); +	case 8: +		return (*(uint64_t *)addr); +	} +	ASSERT(!"bad int len"); +	return (0xFEEDFACEDEADBEEFULL); +} + +void +zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) +{ +	int i; +	zap_leaf_t l; +	l.l_bs = highbit(size)-1; +	l.l_phys = buf; + +	buf->l_hdr.lh_block_type = 	BSWAP_64(buf->l_hdr.lh_block_type); +	buf->l_hdr.lh_prefix = 		BSWAP_64(buf->l_hdr.lh_prefix); +	buf->l_hdr.lh_magic = 		BSWAP_32(buf->l_hdr.lh_magic); +	buf->l_hdr.lh_nfree = 		BSWAP_16(buf->l_hdr.lh_nfree); +	buf->l_hdr.lh_nentries = 	BSWAP_16(buf->l_hdr.lh_nentries); +	buf->l_hdr.lh_prefix_len = 	BSWAP_16(buf->l_hdr.lh_prefix_len); +	buf->l_hdr.lh_freelist = 	BSWAP_16(buf->l_hdr.lh_freelist); + +	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) +		buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); + +	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { +		zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); +		struct zap_leaf_entry *le; + +		switch (lc->l_free.lf_type) { +		case ZAP_CHUNK_ENTRY: +			le = &lc->l_entry; + +			le->le_type =		BSWAP_8(le->le_type); +			le->le_value_intlen =	BSWAP_8(le->le_value_intlen); +			le->le_next =		BSWAP_16(le->le_next); +			le->le_name_chunk =	BSWAP_16(le->le_name_chunk); +			le->le_name_numints =	BSWAP_16(le->le_name_numints); +			le->le_value_chunk =	BSWAP_16(le->le_value_chunk); +			le->le_value_numints =	BSWAP_16(le->le_value_numints); +			le->le_cd =		BSWAP_32(le->le_cd); +			le->le_hash =		BSWAP_64(le->le_hash); +			break; +		case ZAP_CHUNK_FREE: +			lc->l_free.lf_type =	BSWAP_8(lc->l_free.lf_type); +			lc->l_free.lf_next =	BSWAP_16(lc->l_free.lf_next); +			break; +		case ZAP_CHUNK_ARRAY: +			lc->l_array.la_type =	BSWAP_8(lc->l_array.la_type); +			lc->l_array.la_next =	BSWAP_16(lc->l_array.la_next); +			/* la_array doesn't need swapping */ +			break; +		default: +			ASSERT(!"bad leaf type"); +		} +	} +} + +void +zap_leaf_init(zap_leaf_t *l, boolean_t sort) +{ +	int i; + +	l->l_bs = highbit(l->l_dbuf->db_size)-1; +	zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); +	zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); +	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { +		ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; +		ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; +	} +	ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; +	l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; +	l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; +	l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); +	if (sort) +		l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; +} + +/* + * Routines which manipulate leaf chunks (l_chunk[]). + */ + +static uint16_t +zap_leaf_chunk_alloc(zap_leaf_t *l) +{ +	int chunk; + +	ASSERT(l->l_phys->l_hdr.lh_nfree > 0); + +	chunk = l->l_phys->l_hdr.lh_freelist; +	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +	ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); + +	l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; + +	l->l_phys->l_hdr.lh_nfree--; + +	return (chunk); +} + +static void +zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) +{ +	struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; +	ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); +	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +	ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); + +	zlf->lf_type = ZAP_CHUNK_FREE; +	zlf->lf_next = l->l_phys->l_hdr.lh_freelist; +	bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ +	l->l_phys->l_hdr.lh_freelist = chunk; + +	l->l_phys->l_hdr.lh_nfree++; +} + +/* + * Routines which manipulate leaf arrays (zap_leaf_array type chunks). + */ + +static uint16_t +zap_leaf_array_create(zap_leaf_t *l, const char *buf, +    int integer_size, int num_integers) +{ +	uint16_t chunk_head; +	uint16_t *chunkp = &chunk_head; +	int byten = 0; +	uint64_t value; +	int shift = (integer_size-1)*8; +	int len = num_integers; + +	ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); + +	while (len > 0) { +		uint16_t chunk = zap_leaf_chunk_alloc(l); +		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; +		int i; + +		la->la_type = ZAP_CHUNK_ARRAY; +		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { +			if (byten == 0) +				value = ldv(integer_size, buf); +			la->la_array[i] = value >> shift; +			value <<= 8; +			if (++byten == integer_size) { +				byten = 0; +				buf += integer_size; +				if (--len == 0) +					break; +			} +		} + +		*chunkp = chunk; +		chunkp = &la->la_next; +	} +	*chunkp = CHAIN_END; + +	return (chunk_head); +} + +static void +zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) +{ +	uint16_t chunk = *chunkp; + +	*chunkp = CHAIN_END; + +	while (chunk != CHAIN_END) { +		int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; +		ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, +		    ZAP_CHUNK_ARRAY); +		zap_leaf_chunk_free(l, chunk); +		chunk = nextchunk; +	} +} + +/* array_len and buf_len are in integers, not bytes */ +static void +zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, +    int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, +    void *buf) +{ +	int len = MIN(array_len, buf_len); +	int byten = 0; +	uint64_t value = 0; +	char *p = buf; + +	ASSERT3U(array_int_len, <=, buf_int_len); + +	/* Fast path for one 8-byte integer */ +	if (array_int_len == 8 && buf_int_len == 8 && len == 1) { +		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; +		uint8_t *ip = la->la_array; +		uint64_t *buf64 = buf; + +		*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | +		    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | +		    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | +		    (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; +		return; +	} + +	/* Fast path for an array of 1-byte integers (eg. the entry name) */ +	if (array_int_len == 1 && buf_int_len == 1 && +	    buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { +		while (chunk != CHAIN_END) { +			struct zap_leaf_array *la = +			    &ZAP_LEAF_CHUNK(l, chunk).l_array; +			bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); +			p += ZAP_LEAF_ARRAY_BYTES; +			chunk = la->la_next; +		} +		return; +	} + +	while (len > 0) { +		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; +		int i; + +		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { +			value = (value << 8) | la->la_array[i]; +			byten++; +			if (byten == array_int_len) { +				stv(buf_int_len, p, value); +				byten = 0; +				len--; +				if (len == 0) +					return; +				p += buf_int_len; +			} +		} +		chunk = la->la_next; +	} +} + +static boolean_t +zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, +    int chunk, int array_numints) +{ +	int bseen = 0; + +	if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { +		uint64_t *thiskey; +		boolean_t match; + +		ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); +		thiskey = kmem_alloc(array_numints * sizeof (*thiskey), +		    KM_SLEEP); + +		zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, +		    sizeof (*thiskey), array_numints, thiskey); +		match = bcmp(thiskey, zn->zn_key_orig, +		    array_numints * sizeof (*thiskey)) == 0; +		kmem_free(thiskey, array_numints * sizeof (*thiskey)); +		return (match); +	} + +	ASSERT(zn->zn_key_intlen == 1); +	if (zn->zn_matchtype == MT_FIRST) { +		char *thisname = kmem_alloc(array_numints, KM_SLEEP); +		boolean_t match; + +		zap_leaf_array_read(l, chunk, sizeof (char), array_numints, +		    sizeof (char), array_numints, thisname); +		match = zap_match(zn, thisname); +		kmem_free(thisname, array_numints); +		return (match); +	} + +	/* +	 * Fast path for exact matching. +	 * First check that the lengths match, so that we don't read +	 * past the end of the zn_key_orig array. +	 */ +	if (array_numints != zn->zn_key_orig_numints) +		return (B_FALSE); +	while (bseen < array_numints) { +		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; +		int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); +		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +		if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) +			break; +		chunk = la->la_next; +		bseen += toread; +	} +	return (bseen == array_numints); +} + +/* + * Routines which manipulate leaf entries. + */ + +int +zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) +{ +	uint16_t *chunkp; +	struct zap_leaf_entry *le; + +	ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); + +again: +	for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); +	    *chunkp != CHAIN_END; chunkp = &le->le_next) { +		uint16_t chunk = *chunkp; +		le = ZAP_LEAF_ENTRY(l, chunk); + +		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +		ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + +		if (le->le_hash != zn->zn_hash) +			continue; + +		/* +		 * NB: the entry chain is always sorted by cd on +		 * normalized zap objects, so this will find the +		 * lowest-cd match for MT_FIRST. +		 */ +		ASSERT(zn->zn_matchtype == MT_EXACT || +		    (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); +		if (zap_leaf_array_match(l, zn, le->le_name_chunk, +		    le->le_name_numints)) { +			zeh->zeh_num_integers = le->le_value_numints; +			zeh->zeh_integer_size = le->le_value_intlen; +			zeh->zeh_cd = le->le_cd; +			zeh->zeh_hash = le->le_hash; +			zeh->zeh_chunkp = chunkp; +			zeh->zeh_leaf = l; +			return (0); +		} +	} + +	/* +	 * NB: we could of course do this in one pass, but that would be +	 * a pain.  We'll see if MT_BEST is even used much. +	 */ +	if (zn->zn_matchtype == MT_BEST) { +		zn->zn_matchtype = MT_FIRST; +		goto again; +	} + +	return (ENOENT); +} + +/* Return (h1,cd1 >= h2,cd2) */ +#define	HCD_GTEQ(h1, cd1, h2, cd2) \ +	((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) + +int +zap_leaf_lookup_closest(zap_leaf_t *l, +    uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) +{ +	uint16_t chunk; +	uint64_t besth = -1ULL; +	uint32_t bestcd = -1U; +	uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; +	uint16_t lh; +	struct zap_leaf_entry *le; + +	ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); + +	for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { +		for (chunk = l->l_phys->l_hash[lh]; +		    chunk != CHAIN_END; chunk = le->le_next) { +			le = ZAP_LEAF_ENTRY(l, chunk); + +			ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +			ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + +			if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && +			    HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { +				ASSERT3U(bestlh, >=, lh); +				bestlh = lh; +				besth = le->le_hash; +				bestcd = le->le_cd; + +				zeh->zeh_num_integers = le->le_value_numints; +				zeh->zeh_integer_size = le->le_value_intlen; +				zeh->zeh_cd = le->le_cd; +				zeh->zeh_hash = le->le_hash; +				zeh->zeh_fakechunk = chunk; +				zeh->zeh_chunkp = &zeh->zeh_fakechunk; +				zeh->zeh_leaf = l; +			} +		} +	} + +	return (bestcd == -1U ? ENOENT : 0); +} + +int +zap_entry_read(const zap_entry_handle_t *zeh, +    uint8_t integer_size, uint64_t num_integers, void *buf) +{ +	struct zap_leaf_entry *le = +	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); +	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + +	if (le->le_value_intlen > integer_size) +		return (EINVAL); + +	zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, +	    le->le_value_intlen, le->le_value_numints, +	    integer_size, num_integers, buf); + +	if (zeh->zeh_num_integers > num_integers) +		return (EOVERFLOW); +	return (0); + +} + +int +zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, +    char *buf) +{ +	struct zap_leaf_entry *le = +	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); +	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + +	if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { +		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, +		    le->le_name_numints, 8, buflen / 8, buf); +	} else { +		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, +		    le->le_name_numints, 1, buflen, buf); +	} +	if (le->le_name_numints > buflen) +		return (EOVERFLOW); +	return (0); +} + +int +zap_entry_update(zap_entry_handle_t *zeh, +	uint8_t integer_size, uint64_t num_integers, const void *buf) +{ +	int delta_chunks; +	zap_leaf_t *l = zeh->zeh_leaf; +	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); + +	delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - +	    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); + +	if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) +		return (EAGAIN); + +	zap_leaf_array_free(l, &le->le_value_chunk); +	le->le_value_chunk = +	    zap_leaf_array_create(l, buf, integer_size, num_integers); +	le->le_value_numints = num_integers; +	le->le_value_intlen = integer_size; +	return (0); +} + +void +zap_entry_remove(zap_entry_handle_t *zeh) +{ +	uint16_t entry_chunk; +	struct zap_leaf_entry *le; +	zap_leaf_t *l = zeh->zeh_leaf; + +	ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); + +	entry_chunk = *zeh->zeh_chunkp; +	le = ZAP_LEAF_ENTRY(l, entry_chunk); +	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + +	zap_leaf_array_free(l, &le->le_name_chunk); +	zap_leaf_array_free(l, &le->le_value_chunk); + +	*zeh->zeh_chunkp = le->le_next; +	zap_leaf_chunk_free(l, entry_chunk); + +	l->l_phys->l_hdr.lh_nentries--; +} + +int +zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, +    uint8_t integer_size, uint64_t num_integers, const void *buf, +    zap_entry_handle_t *zeh) +{ +	uint16_t chunk; +	uint16_t *chunkp; +	struct zap_leaf_entry *le; +	uint64_t valuelen; +	int numchunks; +	uint64_t h = zn->zn_hash; + +	valuelen = integer_size * num_integers; + +	numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * +	    zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); +	if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) +		return (E2BIG); + +	if (cd == ZAP_NEED_CD) { +		/* find the lowest unused cd */ +		if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { +			cd = 0; + +			for (chunk = *LEAF_HASH_ENTPTR(l, h); +			    chunk != CHAIN_END; chunk = le->le_next) { +				le = ZAP_LEAF_ENTRY(l, chunk); +				if (le->le_cd > cd) +					break; +				if (le->le_hash == h) { +					ASSERT3U(cd, ==, le->le_cd); +					cd++; +				} +			} +		} else { +			/* old unsorted format; do it the O(n^2) way */ +			for (cd = 0; ; cd++) { +				for (chunk = *LEAF_HASH_ENTPTR(l, h); +				    chunk != CHAIN_END; chunk = le->le_next) { +					le = ZAP_LEAF_ENTRY(l, chunk); +					if (le->le_hash == h && +					    le->le_cd == cd) { +						break; +					} +				} +				/* If this cd is not in use, we are good. */ +				if (chunk == CHAIN_END) +					break; +			} +		} +		/* +		 * We would run out of space in a block before we could +		 * store enough entries to run out of CD values. +		 */ +		ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); +	} + +	if (l->l_phys->l_hdr.lh_nfree < numchunks) +		return (EAGAIN); + +	/* make the entry */ +	chunk = zap_leaf_chunk_alloc(l); +	le = ZAP_LEAF_ENTRY(l, chunk); +	le->le_type = ZAP_CHUNK_ENTRY; +	le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, +	    zn->zn_key_intlen, zn->zn_key_orig_numints); +	le->le_name_numints = zn->zn_key_orig_numints; +	le->le_value_chunk = +	    zap_leaf_array_create(l, buf, integer_size, num_integers); +	le->le_value_numints = num_integers; +	le->le_value_intlen = integer_size; +	le->le_hash = h; +	le->le_cd = cd; + +	/* link it into the hash chain */ +	/* XXX if we did the search above, we could just use that */ +	chunkp = zap_leaf_rehash_entry(l, chunk); + +	l->l_phys->l_hdr.lh_nentries++; + +	zeh->zeh_leaf = l; +	zeh->zeh_num_integers = num_integers; +	zeh->zeh_integer_size = le->le_value_intlen; +	zeh->zeh_cd = le->le_cd; +	zeh->zeh_hash = le->le_hash; +	zeh->zeh_chunkp = chunkp; + +	return (0); +} + +/* + * Determine if there is another entry with the same normalized form. + * For performance purposes, either zn or name must be provided (the + * other can be NULL).  Note, there usually won't be any hash + * conflicts, in which case we don't need the concatenated/normalized + * form of the name.  But all callers have one of these on hand anyway, + * so might as well take advantage.  A cleaner but slower interface + * would accept neither argument, and compute the normalized name as + * needed (using zap_name_alloc(zap_entry_read_name(zeh))). + */ +boolean_t +zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, +    const char *name, zap_t *zap) +{ +	uint64_t chunk; +	struct zap_leaf_entry *le; +	boolean_t allocdzn = B_FALSE; + +	if (zap->zap_normflags == 0) +		return (B_FALSE); + +	for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); +	    chunk != CHAIN_END; chunk = le->le_next) { +		le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); +		if (le->le_hash != zeh->zeh_hash) +			continue; +		if (le->le_cd == zeh->zeh_cd) +			continue; + +		if (zn == NULL) { +			zn = zap_name_alloc(zap, name, MT_FIRST); +			allocdzn = B_TRUE; +		} +		if (zap_leaf_array_match(zeh->zeh_leaf, zn, +		    le->le_name_chunk, le->le_name_numints)) { +			if (allocdzn) +				zap_name_free(zn); +			return (B_TRUE); +		} +	} +	if (allocdzn) +		zap_name_free(zn); +	return (B_FALSE); +} + +/* + * Routines for transferring entries between leafs. + */ + +static uint16_t * +zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) +{ +	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); +	struct zap_leaf_entry *le2; +	uint16_t *chunkp; + +	/* +	 * keep the entry chain sorted by cd +	 * NB: this will not cause problems for unsorted leafs, though +	 * it is unnecessary there. +	 */ +	for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); +	    *chunkp != CHAIN_END; chunkp = &le2->le_next) { +		le2 = ZAP_LEAF_ENTRY(l, *chunkp); +		if (le2->le_cd > le->le_cd) +			break; +	} + +	le->le_next = *chunkp; +	*chunkp = entry; +	return (chunkp); +} + +static uint16_t +zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) +{ +	uint16_t new_chunk; +	uint16_t *nchunkp = &new_chunk; + +	while (chunk != CHAIN_END) { +		uint16_t nchunk = zap_leaf_chunk_alloc(nl); +		struct zap_leaf_array *nla = +		    &ZAP_LEAF_CHUNK(nl, nchunk).l_array; +		struct zap_leaf_array *la = +		    &ZAP_LEAF_CHUNK(l, chunk).l_array; +		int nextchunk = la->la_next; + +		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); +		ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); + +		*nla = *la; /* structure assignment */ + +		zap_leaf_chunk_free(l, chunk); +		chunk = nextchunk; +		*nchunkp = nchunk; +		nchunkp = &nla->la_next; +	} +	*nchunkp = CHAIN_END; +	return (new_chunk); +} + +static void +zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) +{ +	struct zap_leaf_entry *le, *nle; +	uint16_t chunk; + +	le = ZAP_LEAF_ENTRY(l, entry); +	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + +	chunk = zap_leaf_chunk_alloc(nl); +	nle = ZAP_LEAF_ENTRY(nl, chunk); +	*nle = *le; /* structure assignment */ + +	(void) zap_leaf_rehash_entry(nl, chunk); + +	nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); +	nle->le_value_chunk = +	    zap_leaf_transfer_array(l, le->le_value_chunk, nl); + +	zap_leaf_chunk_free(l, entry); + +	l->l_phys->l_hdr.lh_nentries--; +	nl->l_phys->l_hdr.lh_nentries++; +} + +/* + * Transfer the entries whose hash prefix ends in 1 to the new leaf. + */ +void +zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) +{ +	int i; +	int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; + +	/* set new prefix and prefix_len */ +	l->l_phys->l_hdr.lh_prefix <<= 1; +	l->l_phys->l_hdr.lh_prefix_len++; +	nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; +	nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; + +	/* break existing hash chains */ +	zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); + +	if (sort) +		l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; + +	/* +	 * Transfer entries whose hash bit 'bit' is set to nl; rehash +	 * the remaining entries +	 * +	 * NB: We could find entries via the hashtable instead. That +	 * would be O(hashents+numents) rather than O(numblks+numents), +	 * but this accesses memory more sequentially, and when we're +	 * called, the block is usually pretty full. +	 */ +	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { +		struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); +		if (le->le_type != ZAP_CHUNK_ENTRY) +			continue; + +		if (le->le_hash & (1ULL << bit)) +			zap_leaf_transfer_entry(l, i, nl); +		else +			(void) zap_leaf_rehash_entry(l, i); +	} +} + +void +zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) +{ +	int i, n; + +	n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - +	    l->l_phys->l_hdr.lh_prefix_len; +	n = MIN(n, ZAP_HISTOGRAM_SIZE-1); +	zs->zs_leafs_with_2n_pointers[n]++; + + +	n = l->l_phys->l_hdr.lh_nentries/5; +	n = MIN(n, ZAP_HISTOGRAM_SIZE-1); +	zs->zs_blocks_with_n5_entries[n]++; + +	n = ((1<<FZAP_BLOCK_SHIFT(zap)) - +	    l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / +	    (1<<FZAP_BLOCK_SHIFT(zap)); +	n = MIN(n, ZAP_HISTOGRAM_SIZE-1); +	zs->zs_blocks_n_tenths_full[n]++; + +	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { +		int nentries = 0; +		int chunk = l->l_phys->l_hash[i]; + +		while (chunk != CHAIN_END) { +			struct zap_leaf_entry *le = +			    ZAP_LEAF_ENTRY(l, chunk); + +			n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + +			    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * +			    le->le_value_intlen); +			n = MIN(n, ZAP_HISTOGRAM_SIZE-1); +			zs->zs_entries_using_n_chunks[n]++; + +			chunk = le->le_next; +			nentries++; +		} + +		n = nentries; +		n = MIN(n, ZAP_HISTOGRAM_SIZE-1); +		zs->zs_buckets_with_n_entries[n]++; +	} +}  | 
