diff options
Diffstat (limited to 'uts/common/fs/zfs/zio.c')
| -rw-r--r-- | uts/common/fs/zfs/zio.c | 3033 | 
1 files changed, 3033 insertions, 0 deletions
| diff --git a/uts/common/fs/zfs/zio.c b/uts/common/fs/zfs/zio.c new file mode 100644 index 000000000000..cfb5733f2bd7 --- /dev/null +++ b/uts/common/fs/zfs/zio.c @@ -0,0 +1,3033 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2012 by Delphix. All rights reserved. + * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. + */ + +#include <sys/zfs_context.h> +#include <sys/fm/fs/zfs.h> +#include <sys/spa.h> +#include <sys/txg.h> +#include <sys/spa_impl.h> +#include <sys/vdev_impl.h> +#include <sys/zio_impl.h> +#include <sys/zio_compress.h> +#include <sys/zio_checksum.h> +#include <sys/dmu_objset.h> +#include <sys/arc.h> +#include <sys/ddt.h> + +/* + * ========================================================================== + * I/O priority table + * ========================================================================== + */ +uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { +	0,	/* ZIO_PRIORITY_NOW		*/ +	0,	/* ZIO_PRIORITY_SYNC_READ	*/ +	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/ +	0,	/* ZIO_PRIORITY_LOG_WRITE	*/ +	1,	/* ZIO_PRIORITY_CACHE_FILL	*/ +	1,	/* ZIO_PRIORITY_AGG		*/ +	4,	/* ZIO_PRIORITY_FREE		*/ +	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/ +	6,	/* ZIO_PRIORITY_ASYNC_READ	*/ +	10,	/* ZIO_PRIORITY_RESILVER	*/ +	20,	/* ZIO_PRIORITY_SCRUB		*/ +	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/ +}; + +/* + * ========================================================================== + * I/O type descriptions + * ========================================================================== + */ +char *zio_type_name[ZIO_TYPES] = { +	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", +	"zio_ioctl" +}; + +/* + * ========================================================================== + * I/O kmem caches + * ========================================================================== + */ +kmem_cache_t *zio_cache; +kmem_cache_t *zio_link_cache; +kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; +kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; + +#ifdef _KERNEL +extern vmem_t *zio_alloc_arena; +#endif +extern int zfs_mg_alloc_failures; + +/* + * An allocating zio is one that either currently has the DVA allocate + * stage set or will have it later in its lifetime. + */ +#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) + +boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE; + +#ifdef ZFS_DEBUG +int zio_buf_debug_limit = 16384; +#else +int zio_buf_debug_limit = 0; +#endif + +void +zio_init(void) +{ +	size_t c; +	vmem_t *data_alloc_arena = NULL; + +#ifdef _KERNEL +	data_alloc_arena = zio_alloc_arena; +#endif +	zio_cache = kmem_cache_create("zio_cache", +	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); +	zio_link_cache = kmem_cache_create("zio_link_cache", +	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); + +	/* +	 * For small buffers, we want a cache for each multiple of +	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache +	 * for each quarter-power of 2.  For large buffers, we want +	 * a cache for each multiple of PAGESIZE. +	 */ +	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { +		size_t size = (c + 1) << SPA_MINBLOCKSHIFT; +		size_t p2 = size; +		size_t align = 0; +		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; + +		while (p2 & (p2 - 1)) +			p2 &= p2 - 1; + +		if (size <= 4 * SPA_MINBLOCKSIZE) { +			align = SPA_MINBLOCKSIZE; +		} else if (P2PHASE(size, PAGESIZE) == 0) { +			align = PAGESIZE; +		} else if (P2PHASE(size, p2 >> 2) == 0) { +			align = p2 >> 2; +		} + +		if (align != 0) { +			char name[36]; +			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size); +			zio_buf_cache[c] = kmem_cache_create(name, size, +			    align, NULL, NULL, NULL, NULL, NULL, cflags); + +			/* +			 * Since zio_data bufs do not appear in crash dumps, we +			 * pass KMC_NOTOUCH so that no allocator metadata is +			 * stored with the buffers. +			 */ +			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); +			zio_data_buf_cache[c] = kmem_cache_create(name, size, +			    align, NULL, NULL, NULL, NULL, data_alloc_arena, +			    cflags | KMC_NOTOUCH); +		} +	} + +	while (--c != 0) { +		ASSERT(zio_buf_cache[c] != NULL); +		if (zio_buf_cache[c - 1] == NULL) +			zio_buf_cache[c - 1] = zio_buf_cache[c]; + +		ASSERT(zio_data_buf_cache[c] != NULL); +		if (zio_data_buf_cache[c - 1] == NULL) +			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; +	} + +	/* +	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs +	 * to fail 3 times per txg or 8 failures, whichever is greater. +	 */ +	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8); + +	zio_inject_init(); +} + +void +zio_fini(void) +{ +	size_t c; +	kmem_cache_t *last_cache = NULL; +	kmem_cache_t *last_data_cache = NULL; + +	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { +		if (zio_buf_cache[c] != last_cache) { +			last_cache = zio_buf_cache[c]; +			kmem_cache_destroy(zio_buf_cache[c]); +		} +		zio_buf_cache[c] = NULL; + +		if (zio_data_buf_cache[c] != last_data_cache) { +			last_data_cache = zio_data_buf_cache[c]; +			kmem_cache_destroy(zio_data_buf_cache[c]); +		} +		zio_data_buf_cache[c] = NULL; +	} + +	kmem_cache_destroy(zio_link_cache); +	kmem_cache_destroy(zio_cache); + +	zio_inject_fini(); +} + +/* + * ========================================================================== + * Allocate and free I/O buffers + * ========================================================================== + */ + +/* + * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a + * crashdump if the kernel panics, so use it judiciously.  Obviously, it's + * useful to inspect ZFS metadata, but if possible, we should avoid keeping + * excess / transient data in-core during a crashdump. + */ +void * +zio_buf_alloc(size_t size) +{ +	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; + +	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); + +	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); +} + +/* + * Use zio_data_buf_alloc to allocate data.  The data will not appear in a + * crashdump if the kernel panics.  This exists so that we will limit the amount + * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount + * of kernel heap dumped to disk when the kernel panics) + */ +void * +zio_data_buf_alloc(size_t size) +{ +	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; + +	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); + +	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); +} + +void +zio_buf_free(void *buf, size_t size) +{ +	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; + +	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); + +	kmem_cache_free(zio_buf_cache[c], buf); +} + +void +zio_data_buf_free(void *buf, size_t size) +{ +	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; + +	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); + +	kmem_cache_free(zio_data_buf_cache[c], buf); +} + +/* + * ========================================================================== + * Push and pop I/O transform buffers + * ========================================================================== + */ +static void +zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, +	zio_transform_func_t *transform) +{ +	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); + +	zt->zt_orig_data = zio->io_data; +	zt->zt_orig_size = zio->io_size; +	zt->zt_bufsize = bufsize; +	zt->zt_transform = transform; + +	zt->zt_next = zio->io_transform_stack; +	zio->io_transform_stack = zt; + +	zio->io_data = data; +	zio->io_size = size; +} + +static void +zio_pop_transforms(zio_t *zio) +{ +	zio_transform_t *zt; + +	while ((zt = zio->io_transform_stack) != NULL) { +		if (zt->zt_transform != NULL) +			zt->zt_transform(zio, +			    zt->zt_orig_data, zt->zt_orig_size); + +		if (zt->zt_bufsize != 0) +			zio_buf_free(zio->io_data, zt->zt_bufsize); + +		zio->io_data = zt->zt_orig_data; +		zio->io_size = zt->zt_orig_size; +		zio->io_transform_stack = zt->zt_next; + +		kmem_free(zt, sizeof (zio_transform_t)); +	} +} + +/* + * ========================================================================== + * I/O transform callbacks for subblocks and decompression + * ========================================================================== + */ +static void +zio_subblock(zio_t *zio, void *data, uint64_t size) +{ +	ASSERT(zio->io_size > size); + +	if (zio->io_type == ZIO_TYPE_READ) +		bcopy(zio->io_data, data, size); +} + +static void +zio_decompress(zio_t *zio, void *data, uint64_t size) +{ +	if (zio->io_error == 0 && +	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), +	    zio->io_data, data, zio->io_size, size) != 0) +		zio->io_error = EIO; +} + +/* + * ========================================================================== + * I/O parent/child relationships and pipeline interlocks + * ========================================================================== + */ +/* + * NOTE - Callers to zio_walk_parents() and zio_walk_children must + *        continue calling these functions until they return NULL. + *        Otherwise, the next caller will pick up the list walk in + *        some indeterminate state.  (Otherwise every caller would + *        have to pass in a cookie to keep the state represented by + *        io_walk_link, which gets annoying.) + */ +zio_t * +zio_walk_parents(zio_t *cio) +{ +	zio_link_t *zl = cio->io_walk_link; +	list_t *pl = &cio->io_parent_list; + +	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); +	cio->io_walk_link = zl; + +	if (zl == NULL) +		return (NULL); + +	ASSERT(zl->zl_child == cio); +	return (zl->zl_parent); +} + +zio_t * +zio_walk_children(zio_t *pio) +{ +	zio_link_t *zl = pio->io_walk_link; +	list_t *cl = &pio->io_child_list; + +	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); +	pio->io_walk_link = zl; + +	if (zl == NULL) +		return (NULL); + +	ASSERT(zl->zl_parent == pio); +	return (zl->zl_child); +} + +zio_t * +zio_unique_parent(zio_t *cio) +{ +	zio_t *pio = zio_walk_parents(cio); + +	VERIFY(zio_walk_parents(cio) == NULL); +	return (pio); +} + +void +zio_add_child(zio_t *pio, zio_t *cio) +{ +	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); + +	/* +	 * Logical I/Os can have logical, gang, or vdev children. +	 * Gang I/Os can have gang or vdev children. +	 * Vdev I/Os can only have vdev children. +	 * The following ASSERT captures all of these constraints. +	 */ +	ASSERT(cio->io_child_type <= pio->io_child_type); + +	zl->zl_parent = pio; +	zl->zl_child = cio; + +	mutex_enter(&cio->io_lock); +	mutex_enter(&pio->io_lock); + +	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); + +	for (int w = 0; w < ZIO_WAIT_TYPES; w++) +		pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; + +	list_insert_head(&pio->io_child_list, zl); +	list_insert_head(&cio->io_parent_list, zl); + +	pio->io_child_count++; +	cio->io_parent_count++; + +	mutex_exit(&pio->io_lock); +	mutex_exit(&cio->io_lock); +} + +static void +zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) +{ +	ASSERT(zl->zl_parent == pio); +	ASSERT(zl->zl_child == cio); + +	mutex_enter(&cio->io_lock); +	mutex_enter(&pio->io_lock); + +	list_remove(&pio->io_child_list, zl); +	list_remove(&cio->io_parent_list, zl); + +	pio->io_child_count--; +	cio->io_parent_count--; + +	mutex_exit(&pio->io_lock); +	mutex_exit(&cio->io_lock); + +	kmem_cache_free(zio_link_cache, zl); +} + +static boolean_t +zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) +{ +	uint64_t *countp = &zio->io_children[child][wait]; +	boolean_t waiting = B_FALSE; + +	mutex_enter(&zio->io_lock); +	ASSERT(zio->io_stall == NULL); +	if (*countp != 0) { +		zio->io_stage >>= 1; +		zio->io_stall = countp; +		waiting = B_TRUE; +	} +	mutex_exit(&zio->io_lock); + +	return (waiting); +} + +static void +zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) +{ +	uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; +	int *errorp = &pio->io_child_error[zio->io_child_type]; + +	mutex_enter(&pio->io_lock); +	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) +		*errorp = zio_worst_error(*errorp, zio->io_error); +	pio->io_reexecute |= zio->io_reexecute; +	ASSERT3U(*countp, >, 0); +	if (--*countp == 0 && pio->io_stall == countp) { +		pio->io_stall = NULL; +		mutex_exit(&pio->io_lock); +		zio_execute(pio); +	} else { +		mutex_exit(&pio->io_lock); +	} +} + +static void +zio_inherit_child_errors(zio_t *zio, enum zio_child c) +{ +	if (zio->io_child_error[c] != 0 && zio->io_error == 0) +		zio->io_error = zio->io_child_error[c]; +} + +/* + * ========================================================================== + * Create the various types of I/O (read, write, free, etc) + * ========================================================================== + */ +static zio_t * +zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, +    void *data, uint64_t size, zio_done_func_t *done, void *private, +    zio_type_t type, int priority, enum zio_flag flags, +    vdev_t *vd, uint64_t offset, const zbookmark_t *zb, +    enum zio_stage stage, enum zio_stage pipeline) +{ +	zio_t *zio; + +	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); +	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); +	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); + +	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); +	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); +	ASSERT(vd || stage == ZIO_STAGE_OPEN); + +	zio = kmem_cache_alloc(zio_cache, KM_SLEEP); +	bzero(zio, sizeof (zio_t)); + +	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); +	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); + +	list_create(&zio->io_parent_list, sizeof (zio_link_t), +	    offsetof(zio_link_t, zl_parent_node)); +	list_create(&zio->io_child_list, sizeof (zio_link_t), +	    offsetof(zio_link_t, zl_child_node)); + +	if (vd != NULL) +		zio->io_child_type = ZIO_CHILD_VDEV; +	else if (flags & ZIO_FLAG_GANG_CHILD) +		zio->io_child_type = ZIO_CHILD_GANG; +	else if (flags & ZIO_FLAG_DDT_CHILD) +		zio->io_child_type = ZIO_CHILD_DDT; +	else +		zio->io_child_type = ZIO_CHILD_LOGICAL; + +	if (bp != NULL) { +		zio->io_bp = (blkptr_t *)bp; +		zio->io_bp_copy = *bp; +		zio->io_bp_orig = *bp; +		if (type != ZIO_TYPE_WRITE || +		    zio->io_child_type == ZIO_CHILD_DDT) +			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */ +		if (zio->io_child_type == ZIO_CHILD_LOGICAL) +			zio->io_logical = zio; +		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) +			pipeline |= ZIO_GANG_STAGES; +	} + +	zio->io_spa = spa; +	zio->io_txg = txg; +	zio->io_done = done; +	zio->io_private = private; +	zio->io_type = type; +	zio->io_priority = priority; +	zio->io_vd = vd; +	zio->io_offset = offset; +	zio->io_orig_data = zio->io_data = data; +	zio->io_orig_size = zio->io_size = size; +	zio->io_orig_flags = zio->io_flags = flags; +	zio->io_orig_stage = zio->io_stage = stage; +	zio->io_orig_pipeline = zio->io_pipeline = pipeline; + +	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); +	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); + +	if (zb != NULL) +		zio->io_bookmark = *zb; + +	if (pio != NULL) { +		if (zio->io_logical == NULL) +			zio->io_logical = pio->io_logical; +		if (zio->io_child_type == ZIO_CHILD_GANG) +			zio->io_gang_leader = pio->io_gang_leader; +		zio_add_child(pio, zio); +	} + +	return (zio); +} + +static void +zio_destroy(zio_t *zio) +{ +	list_destroy(&zio->io_parent_list); +	list_destroy(&zio->io_child_list); +	mutex_destroy(&zio->io_lock); +	cv_destroy(&zio->io_cv); +	kmem_cache_free(zio_cache, zio); +} + +zio_t * +zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, +    void *private, enum zio_flag flags) +{ +	zio_t *zio; + +	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, +	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, +	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); + +	return (zio); +} + +zio_t * +zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) +{ +	return (zio_null(NULL, spa, NULL, done, private, flags)); +} + +zio_t * +zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, +    void *data, uint64_t size, zio_done_func_t *done, void *private, +    int priority, enum zio_flag flags, const zbookmark_t *zb) +{ +	zio_t *zio; + +	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, +	    data, size, done, private, +	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb, +	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? +	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); + +	return (zio); +} + +zio_t * +zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, +    void *data, uint64_t size, const zio_prop_t *zp, +    zio_done_func_t *ready, zio_done_func_t *done, void *private, +    int priority, enum zio_flag flags, const zbookmark_t *zb) +{ +	zio_t *zio; + +	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && +	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && +	    zp->zp_compress >= ZIO_COMPRESS_OFF && +	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && +	    DMU_OT_IS_VALID(zp->zp_type) && +	    zp->zp_level < 32 && +	    zp->zp_copies > 0 && +	    zp->zp_copies <= spa_max_replication(spa) && +	    zp->zp_dedup <= 1 && +	    zp->zp_dedup_verify <= 1); + +	zio = zio_create(pio, spa, txg, bp, data, size, done, private, +	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, +	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? +	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); + +	zio->io_ready = ready; +	zio->io_prop = *zp; + +	return (zio); +} + +zio_t * +zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, +    uint64_t size, zio_done_func_t *done, void *private, int priority, +    enum zio_flag flags, zbookmark_t *zb) +{ +	zio_t *zio; + +	zio = zio_create(pio, spa, txg, bp, data, size, done, private, +	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, +	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); + +	return (zio); +} + +void +zio_write_override(zio_t *zio, blkptr_t *bp, int copies) +{ +	ASSERT(zio->io_type == ZIO_TYPE_WRITE); +	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); +	ASSERT(zio->io_stage == ZIO_STAGE_OPEN); +	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); + +	zio->io_prop.zp_copies = copies; +	zio->io_bp_override = bp; +} + +void +zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) +{ +	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); +} + +zio_t * +zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, +    enum zio_flag flags) +{ +	zio_t *zio; + +	dprintf_bp(bp, "freeing in txg %llu, pass %u", +	    (longlong_t)txg, spa->spa_sync_pass); + +	ASSERT(!BP_IS_HOLE(bp)); +	ASSERT(spa_syncing_txg(spa) == txg); +	ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE); + +	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), +	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, +	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); + +	return (zio); +} + +zio_t * +zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, +    zio_done_func_t *done, void *private, enum zio_flag flags) +{ +	zio_t *zio; + +	/* +	 * A claim is an allocation of a specific block.  Claims are needed +	 * to support immediate writes in the intent log.  The issue is that +	 * immediate writes contain committed data, but in a txg that was +	 * *not* committed.  Upon opening the pool after an unclean shutdown, +	 * the intent log claims all blocks that contain immediate write data +	 * so that the SPA knows they're in use. +	 * +	 * All claims *must* be resolved in the first txg -- before the SPA +	 * starts allocating blocks -- so that nothing is allocated twice. +	 * If txg == 0 we just verify that the block is claimable. +	 */ +	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); +	ASSERT(txg == spa_first_txg(spa) || txg == 0); +	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */ + +	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), +	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, +	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); + +	return (zio); +} + +zio_t * +zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, +    zio_done_func_t *done, void *private, int priority, enum zio_flag flags) +{ +	zio_t *zio; +	int c; + +	if (vd->vdev_children == 0) { +		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, +		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, +		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); + +		zio->io_cmd = cmd; +	} else { +		zio = zio_null(pio, spa, NULL, NULL, NULL, flags); + +		for (c = 0; c < vd->vdev_children; c++) +			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, +			    done, private, priority, flags)); +	} + +	return (zio); +} + +zio_t * +zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, +    void *data, int checksum, zio_done_func_t *done, void *private, +    int priority, enum zio_flag flags, boolean_t labels) +{ +	zio_t *zio; + +	ASSERT(vd->vdev_children == 0); +	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || +	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); +	ASSERT3U(offset + size, <=, vd->vdev_psize); + +	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, +	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL, +	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); + +	zio->io_prop.zp_checksum = checksum; + +	return (zio); +} + +zio_t * +zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, +    void *data, int checksum, zio_done_func_t *done, void *private, +    int priority, enum zio_flag flags, boolean_t labels) +{ +	zio_t *zio; + +	ASSERT(vd->vdev_children == 0); +	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || +	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); +	ASSERT3U(offset + size, <=, vd->vdev_psize); + +	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, +	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, +	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); + +	zio->io_prop.zp_checksum = checksum; + +	if (zio_checksum_table[checksum].ci_eck) { +		/* +		 * zec checksums are necessarily destructive -- they modify +		 * the end of the write buffer to hold the verifier/checksum. +		 * Therefore, we must make a local copy in case the data is +		 * being written to multiple places in parallel. +		 */ +		void *wbuf = zio_buf_alloc(size); +		bcopy(data, wbuf, size); +		zio_push_transform(zio, wbuf, size, size, NULL); +	} + +	return (zio); +} + +/* + * Create a child I/O to do some work for us. + */ +zio_t * +zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, +	void *data, uint64_t size, int type, int priority, enum zio_flag flags, +	zio_done_func_t *done, void *private) +{ +	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; +	zio_t *zio; + +	ASSERT(vd->vdev_parent == +	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); + +	if (type == ZIO_TYPE_READ && bp != NULL) { +		/* +		 * If we have the bp, then the child should perform the +		 * checksum and the parent need not.  This pushes error +		 * detection as close to the leaves as possible and +		 * eliminates redundant checksums in the interior nodes. +		 */ +		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; +		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; +	} + +	if (vd->vdev_children == 0) +		offset += VDEV_LABEL_START_SIZE; + +	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; + +	/* +	 * If we've decided to do a repair, the write is not speculative -- +	 * even if the original read was. +	 */ +	if (flags & ZIO_FLAG_IO_REPAIR) +		flags &= ~ZIO_FLAG_SPECULATIVE; + +	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, +	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark, +	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline); + +	return (zio); +} + +zio_t * +zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, +	int type, int priority, enum zio_flag flags, +	zio_done_func_t *done, void *private) +{ +	zio_t *zio; + +	ASSERT(vd->vdev_ops->vdev_op_leaf); + +	zio = zio_create(NULL, vd->vdev_spa, 0, NULL, +	    data, size, done, private, type, priority, +	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, +	    vd, offset, NULL, +	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); + +	return (zio); +} + +void +zio_flush(zio_t *zio, vdev_t *vd) +{ +	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, +	    NULL, NULL, ZIO_PRIORITY_NOW, +	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); +} + +void +zio_shrink(zio_t *zio, uint64_t size) +{ +	ASSERT(zio->io_executor == NULL); +	ASSERT(zio->io_orig_size == zio->io_size); +	ASSERT(size <= zio->io_size); + +	/* +	 * We don't shrink for raidz because of problems with the +	 * reconstruction when reading back less than the block size. +	 * Note, BP_IS_RAIDZ() assumes no compression. +	 */ +	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); +	if (!BP_IS_RAIDZ(zio->io_bp)) +		zio->io_orig_size = zio->io_size = size; +} + +/* + * ========================================================================== + * Prepare to read and write logical blocks + * ========================================================================== + */ + +static int +zio_read_bp_init(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; + +	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && +	    zio->io_child_type == ZIO_CHILD_LOGICAL && +	    !(zio->io_flags & ZIO_FLAG_RAW)) { +		uint64_t psize = BP_GET_PSIZE(bp); +		void *cbuf = zio_buf_alloc(psize); + +		zio_push_transform(zio, cbuf, psize, psize, zio_decompress); +	} + +	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) +		zio->io_flags |= ZIO_FLAG_DONT_CACHE; + +	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) +		zio->io_flags |= ZIO_FLAG_DONT_CACHE; + +	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) +		zio->io_pipeline = ZIO_DDT_READ_PIPELINE; + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_write_bp_init(zio_t *zio) +{ +	spa_t *spa = zio->io_spa; +	zio_prop_t *zp = &zio->io_prop; +	enum zio_compress compress = zp->zp_compress; +	blkptr_t *bp = zio->io_bp; +	uint64_t lsize = zio->io_size; +	uint64_t psize = lsize; +	int pass = 1; + +	/* +	 * If our children haven't all reached the ready stage, +	 * wait for them and then repeat this pipeline stage. +	 */ +	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || +	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) +		return (ZIO_PIPELINE_STOP); + +	if (!IO_IS_ALLOCATING(zio)) +		return (ZIO_PIPELINE_CONTINUE); + +	ASSERT(zio->io_child_type != ZIO_CHILD_DDT); + +	if (zio->io_bp_override) { +		ASSERT(bp->blk_birth != zio->io_txg); +		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); + +		*bp = *zio->io_bp_override; +		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + +		if (BP_IS_HOLE(bp) || !zp->zp_dedup) +			return (ZIO_PIPELINE_CONTINUE); + +		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup || +		    zp->zp_dedup_verify); + +		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { +			BP_SET_DEDUP(bp, 1); +			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; +			return (ZIO_PIPELINE_CONTINUE); +		} +		zio->io_bp_override = NULL; +		BP_ZERO(bp); +	} + +	if (bp->blk_birth == zio->io_txg) { +		/* +		 * We're rewriting an existing block, which means we're +		 * working on behalf of spa_sync().  For spa_sync() to +		 * converge, it must eventually be the case that we don't +		 * have to allocate new blocks.  But compression changes +		 * the blocksize, which forces a reallocate, and makes +		 * convergence take longer.  Therefore, after the first +		 * few passes, stop compressing to ensure convergence. +		 */ +		pass = spa_sync_pass(spa); + +		ASSERT(zio->io_txg == spa_syncing_txg(spa)); +		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); +		ASSERT(!BP_GET_DEDUP(bp)); + +		if (pass > SYNC_PASS_DONT_COMPRESS) +			compress = ZIO_COMPRESS_OFF; + +		/* Make sure someone doesn't change their mind on overwrites */ +		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp), +		    spa_max_replication(spa)) == BP_GET_NDVAS(bp)); +	} + +	if (compress != ZIO_COMPRESS_OFF) { +		void *cbuf = zio_buf_alloc(lsize); +		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); +		if (psize == 0 || psize == lsize) { +			compress = ZIO_COMPRESS_OFF; +			zio_buf_free(cbuf, lsize); +		} else { +			ASSERT(psize < lsize); +			zio_push_transform(zio, cbuf, psize, lsize, NULL); +		} +	} + +	/* +	 * The final pass of spa_sync() must be all rewrites, but the first +	 * few passes offer a trade-off: allocating blocks defers convergence, +	 * but newly allocated blocks are sequential, so they can be written +	 * to disk faster.  Therefore, we allow the first few passes of +	 * spa_sync() to allocate new blocks, but force rewrites after that. +	 * There should only be a handful of blocks after pass 1 in any case. +	 */ +	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && +	    pass > SYNC_PASS_REWRITE) { +		ASSERT(psize != 0); +		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; +		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; +		zio->io_flags |= ZIO_FLAG_IO_REWRITE; +	} else { +		BP_ZERO(bp); +		zio->io_pipeline = ZIO_WRITE_PIPELINE; +	} + +	if (psize == 0) { +		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; +	} else { +		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); +		BP_SET_LSIZE(bp, lsize); +		BP_SET_PSIZE(bp, psize); +		BP_SET_COMPRESS(bp, compress); +		BP_SET_CHECKSUM(bp, zp->zp_checksum); +		BP_SET_TYPE(bp, zp->zp_type); +		BP_SET_LEVEL(bp, zp->zp_level); +		BP_SET_DEDUP(bp, zp->zp_dedup); +		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); +		if (zp->zp_dedup) { +			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); +			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); +			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; +		} +	} + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_free_bp_init(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; + +	if (zio->io_child_type == ZIO_CHILD_LOGICAL) { +		if (BP_GET_DEDUP(bp)) +			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; +	} + +	return (ZIO_PIPELINE_CONTINUE); +} + +/* + * ========================================================================== + * Execute the I/O pipeline + * ========================================================================== + */ + +static void +zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline) +{ +	spa_t *spa = zio->io_spa; +	zio_type_t t = zio->io_type; +	int flags = (cutinline ? TQ_FRONT : 0); + +	/* +	 * If we're a config writer or a probe, the normal issue and +	 * interrupt threads may all be blocked waiting for the config lock. +	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. +	 */ +	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) +		t = ZIO_TYPE_NULL; + +	/* +	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. +	 */ +	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) +		t = ZIO_TYPE_NULL; + +	/* +	 * If this is a high priority I/O, then use the high priority taskq. +	 */ +	if (zio->io_priority == ZIO_PRIORITY_NOW && +	    spa->spa_zio_taskq[t][q + 1] != NULL) +		q++; + +	ASSERT3U(q, <, ZIO_TASKQ_TYPES); + +	/* +	 * NB: We are assuming that the zio can only be dispatched +	 * to a single taskq at a time.  It would be a grievous error +	 * to dispatch the zio to another taskq at the same time. +	 */ +	ASSERT(zio->io_tqent.tqent_next == NULL); +	taskq_dispatch_ent(spa->spa_zio_taskq[t][q], +	    (task_func_t *)zio_execute, zio, flags, &zio->io_tqent); +} + +static boolean_t +zio_taskq_member(zio_t *zio, enum zio_taskq_type q) +{ +	kthread_t *executor = zio->io_executor; +	spa_t *spa = zio->io_spa; + +	for (zio_type_t t = 0; t < ZIO_TYPES; t++) +		if (taskq_member(spa->spa_zio_taskq[t][q], executor)) +			return (B_TRUE); + +	return (B_FALSE); +} + +static int +zio_issue_async(zio_t *zio) +{ +	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); + +	return (ZIO_PIPELINE_STOP); +} + +void +zio_interrupt(zio_t *zio) +{ +	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); +} + +/* + * Execute the I/O pipeline until one of the following occurs: + * (1) the I/O completes; (2) the pipeline stalls waiting for + * dependent child I/Os; (3) the I/O issues, so we're waiting + * for an I/O completion interrupt; (4) the I/O is delegated by + * vdev-level caching or aggregation; (5) the I/O is deferred + * due to vdev-level queueing; (6) the I/O is handed off to + * another thread.  In all cases, the pipeline stops whenever + * there's no CPU work; it never burns a thread in cv_wait(). + * + * There's no locking on io_stage because there's no legitimate way + * for multiple threads to be attempting to process the same I/O. + */ +static zio_pipe_stage_t *zio_pipeline[]; + +void +zio_execute(zio_t *zio) +{ +	zio->io_executor = curthread; + +	while (zio->io_stage < ZIO_STAGE_DONE) { +		enum zio_stage pipeline = zio->io_pipeline; +		enum zio_stage stage = zio->io_stage; +		int rv; + +		ASSERT(!MUTEX_HELD(&zio->io_lock)); +		ASSERT(ISP2(stage)); +		ASSERT(zio->io_stall == NULL); + +		do { +			stage <<= 1; +		} while ((stage & pipeline) == 0); + +		ASSERT(stage <= ZIO_STAGE_DONE); + +		/* +		 * If we are in interrupt context and this pipeline stage +		 * will grab a config lock that is held across I/O, +		 * or may wait for an I/O that needs an interrupt thread +		 * to complete, issue async to avoid deadlock. +		 * +		 * For VDEV_IO_START, we cut in line so that the io will +		 * be sent to disk promptly. +		 */ +		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && +		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { +			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? +			    zio_requeue_io_start_cut_in_line : B_FALSE; +			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); +			return; +		} + +		zio->io_stage = stage; +		rv = zio_pipeline[highbit(stage) - 1](zio); + +		if (rv == ZIO_PIPELINE_STOP) +			return; + +		ASSERT(rv == ZIO_PIPELINE_CONTINUE); +	} +} + +/* + * ========================================================================== + * Initiate I/O, either sync or async + * ========================================================================== + */ +int +zio_wait(zio_t *zio) +{ +	int error; + +	ASSERT(zio->io_stage == ZIO_STAGE_OPEN); +	ASSERT(zio->io_executor == NULL); + +	zio->io_waiter = curthread; + +	zio_execute(zio); + +	mutex_enter(&zio->io_lock); +	while (zio->io_executor != NULL) +		cv_wait(&zio->io_cv, &zio->io_lock); +	mutex_exit(&zio->io_lock); + +	error = zio->io_error; +	zio_destroy(zio); + +	return (error); +} + +void +zio_nowait(zio_t *zio) +{ +	ASSERT(zio->io_executor == NULL); + +	if (zio->io_child_type == ZIO_CHILD_LOGICAL && +	    zio_unique_parent(zio) == NULL) { +		/* +		 * This is a logical async I/O with no parent to wait for it. +		 * We add it to the spa_async_root_zio "Godfather" I/O which +		 * will ensure they complete prior to unloading the pool. +		 */ +		spa_t *spa = zio->io_spa; + +		zio_add_child(spa->spa_async_zio_root, zio); +	} + +	zio_execute(zio); +} + +/* + * ========================================================================== + * Reexecute or suspend/resume failed I/O + * ========================================================================== + */ + +static void +zio_reexecute(zio_t *pio) +{ +	zio_t *cio, *cio_next; + +	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); +	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); +	ASSERT(pio->io_gang_leader == NULL); +	ASSERT(pio->io_gang_tree == NULL); + +	pio->io_flags = pio->io_orig_flags; +	pio->io_stage = pio->io_orig_stage; +	pio->io_pipeline = pio->io_orig_pipeline; +	pio->io_reexecute = 0; +	pio->io_error = 0; +	for (int w = 0; w < ZIO_WAIT_TYPES; w++) +		pio->io_state[w] = 0; +	for (int c = 0; c < ZIO_CHILD_TYPES; c++) +		pio->io_child_error[c] = 0; + +	if (IO_IS_ALLOCATING(pio)) +		BP_ZERO(pio->io_bp); + +	/* +	 * As we reexecute pio's children, new children could be created. +	 * New children go to the head of pio's io_child_list, however, +	 * so we will (correctly) not reexecute them.  The key is that +	 * the remainder of pio's io_child_list, from 'cio_next' onward, +	 * cannot be affected by any side effects of reexecuting 'cio'. +	 */ +	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { +		cio_next = zio_walk_children(pio); +		mutex_enter(&pio->io_lock); +		for (int w = 0; w < ZIO_WAIT_TYPES; w++) +			pio->io_children[cio->io_child_type][w]++; +		mutex_exit(&pio->io_lock); +		zio_reexecute(cio); +	} + +	/* +	 * Now that all children have been reexecuted, execute the parent. +	 * We don't reexecute "The Godfather" I/O here as it's the +	 * responsibility of the caller to wait on him. +	 */ +	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) +		zio_execute(pio); +} + +void +zio_suspend(spa_t *spa, zio_t *zio) +{ +	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) +		fm_panic("Pool '%s' has encountered an uncorrectable I/O " +		    "failure and the failure mode property for this pool " +		    "is set to panic.", spa_name(spa)); + +	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); + +	mutex_enter(&spa->spa_suspend_lock); + +	if (spa->spa_suspend_zio_root == NULL) +		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, +		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | +		    ZIO_FLAG_GODFATHER); + +	spa->spa_suspended = B_TRUE; + +	if (zio != NULL) { +		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); +		ASSERT(zio != spa->spa_suspend_zio_root); +		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); +		ASSERT(zio_unique_parent(zio) == NULL); +		ASSERT(zio->io_stage == ZIO_STAGE_DONE); +		zio_add_child(spa->spa_suspend_zio_root, zio); +	} + +	mutex_exit(&spa->spa_suspend_lock); +} + +int +zio_resume(spa_t *spa) +{ +	zio_t *pio; + +	/* +	 * Reexecute all previously suspended i/o. +	 */ +	mutex_enter(&spa->spa_suspend_lock); +	spa->spa_suspended = B_FALSE; +	cv_broadcast(&spa->spa_suspend_cv); +	pio = spa->spa_suspend_zio_root; +	spa->spa_suspend_zio_root = NULL; +	mutex_exit(&spa->spa_suspend_lock); + +	if (pio == NULL) +		return (0); + +	zio_reexecute(pio); +	return (zio_wait(pio)); +} + +void +zio_resume_wait(spa_t *spa) +{ +	mutex_enter(&spa->spa_suspend_lock); +	while (spa_suspended(spa)) +		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); +	mutex_exit(&spa->spa_suspend_lock); +} + +/* + * ========================================================================== + * Gang blocks. + * + * A gang block is a collection of small blocks that looks to the DMU + * like one large block.  When zio_dva_allocate() cannot find a block + * of the requested size, due to either severe fragmentation or the pool + * being nearly full, it calls zio_write_gang_block() to construct the + * block from smaller fragments. + * + * A gang block consists of a gang header (zio_gbh_phys_t) and up to + * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like + * an indirect block: it's an array of block pointers.  It consumes + * only one sector and hence is allocatable regardless of fragmentation. + * The gang header's bps point to its gang members, which hold the data. + * + * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> + * as the verifier to ensure uniqueness of the SHA256 checksum. + * Critically, the gang block bp's blk_cksum is the checksum of the data, + * not the gang header.  This ensures that data block signatures (needed for + * deduplication) are independent of how the block is physically stored. + * + * Gang blocks can be nested: a gang member may itself be a gang block. + * Thus every gang block is a tree in which root and all interior nodes are + * gang headers, and the leaves are normal blocks that contain user data. + * The root of the gang tree is called the gang leader. + * + * To perform any operation (read, rewrite, free, claim) on a gang block, + * zio_gang_assemble() first assembles the gang tree (minus data leaves) + * in the io_gang_tree field of the original logical i/o by recursively + * reading the gang leader and all gang headers below it.  This yields + * an in-core tree containing the contents of every gang header and the + * bps for every constituent of the gang block. + * + * With the gang tree now assembled, zio_gang_issue() just walks the gang tree + * and invokes a callback on each bp.  To free a gang block, zio_gang_issue() + * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. + * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). + * zio_read_gang() is a wrapper around zio_read() that omits reading gang + * headers, since we already have those in io_gang_tree.  zio_rewrite_gang() + * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() + * of the gang header plus zio_checksum_compute() of the data to update the + * gang header's blk_cksum as described above. + * + * The two-phase assemble/issue model solves the problem of partial failure -- + * what if you'd freed part of a gang block but then couldn't read the + * gang header for another part?  Assembling the entire gang tree first + * ensures that all the necessary gang header I/O has succeeded before + * starting the actual work of free, claim, or write.  Once the gang tree + * is assembled, free and claim are in-memory operations that cannot fail. + * + * In the event that a gang write fails, zio_dva_unallocate() walks the + * gang tree to immediately free (i.e. insert back into the space map) + * everything we've allocated.  This ensures that we don't get ENOSPC + * errors during repeated suspend/resume cycles due to a flaky device. + * + * Gang rewrites only happen during sync-to-convergence.  If we can't assemble + * the gang tree, we won't modify the block, so we can safely defer the free + * (knowing that the block is still intact).  If we *can* assemble the gang + * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free + * each constituent bp and we can allocate a new block on the next sync pass. + * + * In all cases, the gang tree allows complete recovery from partial failure. + * ========================================================================== + */ + +static zio_t * +zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) +{ +	if (gn != NULL) +		return (pio); + +	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), +	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), +	    &pio->io_bookmark)); +} + +zio_t * +zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) +{ +	zio_t *zio; + +	if (gn != NULL) { +		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, +		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, +		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); +		/* +		 * As we rewrite each gang header, the pipeline will compute +		 * a new gang block header checksum for it; but no one will +		 * compute a new data checksum, so we do that here.  The one +		 * exception is the gang leader: the pipeline already computed +		 * its data checksum because that stage precedes gang assembly. +		 * (Presently, nothing actually uses interior data checksums; +		 * this is just good hygiene.) +		 */ +		if (gn != pio->io_gang_leader->io_gang_tree) { +			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), +			    data, BP_GET_PSIZE(bp)); +		} +		/* +		 * If we are here to damage data for testing purposes, +		 * leave the GBH alone so that we can detect the damage. +		 */ +		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) +			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; +	} else { +		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, +		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, +		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); +	} + +	return (zio); +} + +/* ARGSUSED */ +zio_t * +zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) +{ +	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, +	    ZIO_GANG_CHILD_FLAGS(pio))); +} + +/* ARGSUSED */ +zio_t * +zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) +{ +	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, +	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); +} + +static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { +	NULL, +	zio_read_gang, +	zio_rewrite_gang, +	zio_free_gang, +	zio_claim_gang, +	NULL +}; + +static void zio_gang_tree_assemble_done(zio_t *zio); + +static zio_gang_node_t * +zio_gang_node_alloc(zio_gang_node_t **gnpp) +{ +	zio_gang_node_t *gn; + +	ASSERT(*gnpp == NULL); + +	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); +	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); +	*gnpp = gn; + +	return (gn); +} + +static void +zio_gang_node_free(zio_gang_node_t **gnpp) +{ +	zio_gang_node_t *gn = *gnpp; + +	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) +		ASSERT(gn->gn_child[g] == NULL); + +	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); +	kmem_free(gn, sizeof (*gn)); +	*gnpp = NULL; +} + +static void +zio_gang_tree_free(zio_gang_node_t **gnpp) +{ +	zio_gang_node_t *gn = *gnpp; + +	if (gn == NULL) +		return; + +	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) +		zio_gang_tree_free(&gn->gn_child[g]); + +	zio_gang_node_free(gnpp); +} + +static void +zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) +{ +	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); + +	ASSERT(gio->io_gang_leader == gio); +	ASSERT(BP_IS_GANG(bp)); + +	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, +	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, +	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); +} + +static void +zio_gang_tree_assemble_done(zio_t *zio) +{ +	zio_t *gio = zio->io_gang_leader; +	zio_gang_node_t *gn = zio->io_private; +	blkptr_t *bp = zio->io_bp; + +	ASSERT(gio == zio_unique_parent(zio)); +	ASSERT(zio->io_child_count == 0); + +	if (zio->io_error) +		return; + +	if (BP_SHOULD_BYTESWAP(bp)) +		byteswap_uint64_array(zio->io_data, zio->io_size); + +	ASSERT(zio->io_data == gn->gn_gbh); +	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); +	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); + +	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { +		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; +		if (!BP_IS_GANG(gbp)) +			continue; +		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); +	} +} + +static void +zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) +{ +	zio_t *gio = pio->io_gang_leader; +	zio_t *zio; + +	ASSERT(BP_IS_GANG(bp) == !!gn); +	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); +	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); + +	/* +	 * If you're a gang header, your data is in gn->gn_gbh. +	 * If you're a gang member, your data is in 'data' and gn == NULL. +	 */ +	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); + +	if (gn != NULL) { +		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); + +		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { +			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; +			if (BP_IS_HOLE(gbp)) +				continue; +			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); +			data = (char *)data + BP_GET_PSIZE(gbp); +		} +	} + +	if (gn == gio->io_gang_tree) +		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); + +	if (zio != pio) +		zio_nowait(zio); +} + +static int +zio_gang_assemble(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; + +	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); +	ASSERT(zio->io_child_type > ZIO_CHILD_GANG); + +	zio->io_gang_leader = zio; + +	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_gang_issue(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; + +	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) +		return (ZIO_PIPELINE_STOP); + +	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); +	ASSERT(zio->io_child_type > ZIO_CHILD_GANG); + +	if (zio->io_child_error[ZIO_CHILD_GANG] == 0) +		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); +	else +		zio_gang_tree_free(&zio->io_gang_tree); + +	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + +	return (ZIO_PIPELINE_CONTINUE); +} + +static void +zio_write_gang_member_ready(zio_t *zio) +{ +	zio_t *pio = zio_unique_parent(zio); +	zio_t *gio = zio->io_gang_leader; +	dva_t *cdva = zio->io_bp->blk_dva; +	dva_t *pdva = pio->io_bp->blk_dva; +	uint64_t asize; + +	if (BP_IS_HOLE(zio->io_bp)) +		return; + +	ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); + +	ASSERT(zio->io_child_type == ZIO_CHILD_GANG); +	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); +	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); +	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); +	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); + +	mutex_enter(&pio->io_lock); +	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { +		ASSERT(DVA_GET_GANG(&pdva[d])); +		asize = DVA_GET_ASIZE(&pdva[d]); +		asize += DVA_GET_ASIZE(&cdva[d]); +		DVA_SET_ASIZE(&pdva[d], asize); +	} +	mutex_exit(&pio->io_lock); +} + +static int +zio_write_gang_block(zio_t *pio) +{ +	spa_t *spa = pio->io_spa; +	blkptr_t *bp = pio->io_bp; +	zio_t *gio = pio->io_gang_leader; +	zio_t *zio; +	zio_gang_node_t *gn, **gnpp; +	zio_gbh_phys_t *gbh; +	uint64_t txg = pio->io_txg; +	uint64_t resid = pio->io_size; +	uint64_t lsize; +	int copies = gio->io_prop.zp_copies; +	int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); +	zio_prop_t zp; +	int error; + +	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, +	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, +	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); +	if (error) { +		pio->io_error = error; +		return (ZIO_PIPELINE_CONTINUE); +	} + +	if (pio == gio) { +		gnpp = &gio->io_gang_tree; +	} else { +		gnpp = pio->io_private; +		ASSERT(pio->io_ready == zio_write_gang_member_ready); +	} + +	gn = zio_gang_node_alloc(gnpp); +	gbh = gn->gn_gbh; +	bzero(gbh, SPA_GANGBLOCKSIZE); + +	/* +	 * Create the gang header. +	 */ +	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, +	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); + +	/* +	 * Create and nowait the gang children. +	 */ +	for (int g = 0; resid != 0; resid -= lsize, g++) { +		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), +		    SPA_MINBLOCKSIZE); +		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); + +		zp.zp_checksum = gio->io_prop.zp_checksum; +		zp.zp_compress = ZIO_COMPRESS_OFF; +		zp.zp_type = DMU_OT_NONE; +		zp.zp_level = 0; +		zp.zp_copies = gio->io_prop.zp_copies; +		zp.zp_dedup = 0; +		zp.zp_dedup_verify = 0; + +		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], +		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, +		    zio_write_gang_member_ready, NULL, &gn->gn_child[g], +		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), +		    &pio->io_bookmark)); +	} + +	/* +	 * Set pio's pipeline to just wait for zio to finish. +	 */ +	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + +	zio_nowait(zio); + +	return (ZIO_PIPELINE_CONTINUE); +} + +/* + * ========================================================================== + * Dedup + * ========================================================================== + */ +static void +zio_ddt_child_read_done(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; +	ddt_entry_t *dde = zio->io_private; +	ddt_phys_t *ddp; +	zio_t *pio = zio_unique_parent(zio); + +	mutex_enter(&pio->io_lock); +	ddp = ddt_phys_select(dde, bp); +	if (zio->io_error == 0) +		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */ +	if (zio->io_error == 0 && dde->dde_repair_data == NULL) +		dde->dde_repair_data = zio->io_data; +	else +		zio_buf_free(zio->io_data, zio->io_size); +	mutex_exit(&pio->io_lock); +} + +static int +zio_ddt_read_start(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; + +	ASSERT(BP_GET_DEDUP(bp)); +	ASSERT(BP_GET_PSIZE(bp) == zio->io_size); +	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); + +	if (zio->io_child_error[ZIO_CHILD_DDT]) { +		ddt_t *ddt = ddt_select(zio->io_spa, bp); +		ddt_entry_t *dde = ddt_repair_start(ddt, bp); +		ddt_phys_t *ddp = dde->dde_phys; +		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); +		blkptr_t blk; + +		ASSERT(zio->io_vsd == NULL); +		zio->io_vsd = dde; + +		if (ddp_self == NULL) +			return (ZIO_PIPELINE_CONTINUE); + +		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { +			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) +				continue; +			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, +			    &blk); +			zio_nowait(zio_read(zio, zio->io_spa, &blk, +			    zio_buf_alloc(zio->io_size), zio->io_size, +			    zio_ddt_child_read_done, dde, zio->io_priority, +			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, +			    &zio->io_bookmark)); +		} +		return (ZIO_PIPELINE_CONTINUE); +	} + +	zio_nowait(zio_read(zio, zio->io_spa, bp, +	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, +	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_ddt_read_done(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; + +	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) +		return (ZIO_PIPELINE_STOP); + +	ASSERT(BP_GET_DEDUP(bp)); +	ASSERT(BP_GET_PSIZE(bp) == zio->io_size); +	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); + +	if (zio->io_child_error[ZIO_CHILD_DDT]) { +		ddt_t *ddt = ddt_select(zio->io_spa, bp); +		ddt_entry_t *dde = zio->io_vsd; +		if (ddt == NULL) { +			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); +			return (ZIO_PIPELINE_CONTINUE); +		} +		if (dde == NULL) { +			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; +			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); +			return (ZIO_PIPELINE_STOP); +		} +		if (dde->dde_repair_data != NULL) { +			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); +			zio->io_child_error[ZIO_CHILD_DDT] = 0; +		} +		ddt_repair_done(ddt, dde); +		zio->io_vsd = NULL; +	} + +	ASSERT(zio->io_vsd == NULL); + +	return (ZIO_PIPELINE_CONTINUE); +} + +static boolean_t +zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) +{ +	spa_t *spa = zio->io_spa; + +	/* +	 * Note: we compare the original data, not the transformed data, +	 * because when zio->io_bp is an override bp, we will not have +	 * pushed the I/O transforms.  That's an important optimization +	 * because otherwise we'd compress/encrypt all dmu_sync() data twice. +	 */ +	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { +		zio_t *lio = dde->dde_lead_zio[p]; + +		if (lio != NULL) { +			return (lio->io_orig_size != zio->io_orig_size || +			    bcmp(zio->io_orig_data, lio->io_orig_data, +			    zio->io_orig_size) != 0); +		} +	} + +	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { +		ddt_phys_t *ddp = &dde->dde_phys[p]; + +		if (ddp->ddp_phys_birth != 0) { +			arc_buf_t *abuf = NULL; +			uint32_t aflags = ARC_WAIT; +			blkptr_t blk = *zio->io_bp; +			int error; + +			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); + +			ddt_exit(ddt); + +			error = arc_read_nolock(NULL, spa, &blk, +			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, +			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, +			    &aflags, &zio->io_bookmark); + +			if (error == 0) { +				if (arc_buf_size(abuf) != zio->io_orig_size || +				    bcmp(abuf->b_data, zio->io_orig_data, +				    zio->io_orig_size) != 0) +					error = EEXIST; +				VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); +			} + +			ddt_enter(ddt); +			return (error != 0); +		} +	} + +	return (B_FALSE); +} + +static void +zio_ddt_child_write_ready(zio_t *zio) +{ +	int p = zio->io_prop.zp_copies; +	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); +	ddt_entry_t *dde = zio->io_private; +	ddt_phys_t *ddp = &dde->dde_phys[p]; +	zio_t *pio; + +	if (zio->io_error) +		return; + +	ddt_enter(ddt); + +	ASSERT(dde->dde_lead_zio[p] == zio); + +	ddt_phys_fill(ddp, zio->io_bp); + +	while ((pio = zio_walk_parents(zio)) != NULL) +		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); + +	ddt_exit(ddt); +} + +static void +zio_ddt_child_write_done(zio_t *zio) +{ +	int p = zio->io_prop.zp_copies; +	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); +	ddt_entry_t *dde = zio->io_private; +	ddt_phys_t *ddp = &dde->dde_phys[p]; + +	ddt_enter(ddt); + +	ASSERT(ddp->ddp_refcnt == 0); +	ASSERT(dde->dde_lead_zio[p] == zio); +	dde->dde_lead_zio[p] = NULL; + +	if (zio->io_error == 0) { +		while (zio_walk_parents(zio) != NULL) +			ddt_phys_addref(ddp); +	} else { +		ddt_phys_clear(ddp); +	} + +	ddt_exit(ddt); +} + +static void +zio_ddt_ditto_write_done(zio_t *zio) +{ +	int p = DDT_PHYS_DITTO; +	zio_prop_t *zp = &zio->io_prop; +	blkptr_t *bp = zio->io_bp; +	ddt_t *ddt = ddt_select(zio->io_spa, bp); +	ddt_entry_t *dde = zio->io_private; +	ddt_phys_t *ddp = &dde->dde_phys[p]; +	ddt_key_t *ddk = &dde->dde_key; + +	ddt_enter(ddt); + +	ASSERT(ddp->ddp_refcnt == 0); +	ASSERT(dde->dde_lead_zio[p] == zio); +	dde->dde_lead_zio[p] = NULL; + +	if (zio->io_error == 0) { +		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); +		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); +		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); +		if (ddp->ddp_phys_birth != 0) +			ddt_phys_free(ddt, ddk, ddp, zio->io_txg); +		ddt_phys_fill(ddp, bp); +	} + +	ddt_exit(ddt); +} + +static int +zio_ddt_write(zio_t *zio) +{ +	spa_t *spa = zio->io_spa; +	blkptr_t *bp = zio->io_bp; +	uint64_t txg = zio->io_txg; +	zio_prop_t *zp = &zio->io_prop; +	int p = zp->zp_copies; +	int ditto_copies; +	zio_t *cio = NULL; +	zio_t *dio = NULL; +	ddt_t *ddt = ddt_select(spa, bp); +	ddt_entry_t *dde; +	ddt_phys_t *ddp; + +	ASSERT(BP_GET_DEDUP(bp)); +	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); +	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); + +	ddt_enter(ddt); +	dde = ddt_lookup(ddt, bp, B_TRUE); +	ddp = &dde->dde_phys[p]; + +	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { +		/* +		 * If we're using a weak checksum, upgrade to a strong checksum +		 * and try again.  If we're already using a strong checksum, +		 * we can't resolve it, so just convert to an ordinary write. +		 * (And automatically e-mail a paper to Nature?) +		 */ +		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) { +			zp->zp_checksum = spa_dedup_checksum(spa); +			zio_pop_transforms(zio); +			zio->io_stage = ZIO_STAGE_OPEN; +			BP_ZERO(bp); +		} else { +			zp->zp_dedup = 0; +		} +		zio->io_pipeline = ZIO_WRITE_PIPELINE; +		ddt_exit(ddt); +		return (ZIO_PIPELINE_CONTINUE); +	} + +	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); +	ASSERT(ditto_copies < SPA_DVAS_PER_BP); + +	if (ditto_copies > ddt_ditto_copies_present(dde) && +	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { +		zio_prop_t czp = *zp; + +		czp.zp_copies = ditto_copies; + +		/* +		 * If we arrived here with an override bp, we won't have run +		 * the transform stack, so we won't have the data we need to +		 * generate a child i/o.  So, toss the override bp and restart. +		 * This is safe, because using the override bp is just an +		 * optimization; and it's rare, so the cost doesn't matter. +		 */ +		if (zio->io_bp_override) { +			zio_pop_transforms(zio); +			zio->io_stage = ZIO_STAGE_OPEN; +			zio->io_pipeline = ZIO_WRITE_PIPELINE; +			zio->io_bp_override = NULL; +			BP_ZERO(bp); +			ddt_exit(ddt); +			return (ZIO_PIPELINE_CONTINUE); +		} + +		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, +		    zio->io_orig_size, &czp, NULL, +		    zio_ddt_ditto_write_done, dde, zio->io_priority, +		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); + +		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); +		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; +	} + +	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { +		if (ddp->ddp_phys_birth != 0) +			ddt_bp_fill(ddp, bp, txg); +		if (dde->dde_lead_zio[p] != NULL) +			zio_add_child(zio, dde->dde_lead_zio[p]); +		else +			ddt_phys_addref(ddp); +	} else if (zio->io_bp_override) { +		ASSERT(bp->blk_birth == txg); +		ASSERT(BP_EQUAL(bp, zio->io_bp_override)); +		ddt_phys_fill(ddp, bp); +		ddt_phys_addref(ddp); +	} else { +		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, +		    zio->io_orig_size, zp, zio_ddt_child_write_ready, +		    zio_ddt_child_write_done, dde, zio->io_priority, +		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); + +		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); +		dde->dde_lead_zio[p] = cio; +	} + +	ddt_exit(ddt); + +	if (cio) +		zio_nowait(cio); +	if (dio) +		zio_nowait(dio); + +	return (ZIO_PIPELINE_CONTINUE); +} + +ddt_entry_t *freedde; /* for debugging */ + +static int +zio_ddt_free(zio_t *zio) +{ +	spa_t *spa = zio->io_spa; +	blkptr_t *bp = zio->io_bp; +	ddt_t *ddt = ddt_select(spa, bp); +	ddt_entry_t *dde; +	ddt_phys_t *ddp; + +	ASSERT(BP_GET_DEDUP(bp)); +	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); + +	ddt_enter(ddt); +	freedde = dde = ddt_lookup(ddt, bp, B_TRUE); +	ddp = ddt_phys_select(dde, bp); +	ddt_phys_decref(ddp); +	ddt_exit(ddt); + +	return (ZIO_PIPELINE_CONTINUE); +} + +/* + * ========================================================================== + * Allocate and free blocks + * ========================================================================== + */ +static int +zio_dva_allocate(zio_t *zio) +{ +	spa_t *spa = zio->io_spa; +	metaslab_class_t *mc = spa_normal_class(spa); +	blkptr_t *bp = zio->io_bp; +	int error; +	int flags = 0; + +	if (zio->io_gang_leader == NULL) { +		ASSERT(zio->io_child_type > ZIO_CHILD_GANG); +		zio->io_gang_leader = zio; +	} + +	ASSERT(BP_IS_HOLE(bp)); +	ASSERT3U(BP_GET_NDVAS(bp), ==, 0); +	ASSERT3U(zio->io_prop.zp_copies, >, 0); +	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); +	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); + +	/* +	 * The dump device does not support gang blocks so allocation on +	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid +	 * the "fast" gang feature. +	 */ +	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; +	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? +	    METASLAB_GANG_CHILD : 0; +	error = metaslab_alloc(spa, mc, zio->io_size, bp, +	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags); + +	if (error) { +		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " +		    "size %llu, error %d", spa_name(spa), zio, zio->io_size, +		    error); +		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) +			return (zio_write_gang_block(zio)); +		zio->io_error = error; +	} + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_dva_free(zio_t *zio) +{ +	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_dva_claim(zio_t *zio) +{ +	int error; + +	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); +	if (error) +		zio->io_error = error; + +	return (ZIO_PIPELINE_CONTINUE); +} + +/* + * Undo an allocation.  This is used by zio_done() when an I/O fails + * and we want to give back the block we just allocated. + * This handles both normal blocks and gang blocks. + */ +static void +zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) +{ +	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); +	ASSERT(zio->io_bp_override == NULL); + +	if (!BP_IS_HOLE(bp)) +		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); + +	if (gn != NULL) { +		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { +			zio_dva_unallocate(zio, gn->gn_child[g], +			    &gn->gn_gbh->zg_blkptr[g]); +		} +	} +} + +/* + * Try to allocate an intent log block.  Return 0 on success, errno on failure. + */ +int +zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, +    uint64_t size, boolean_t use_slog) +{ +	int error = 1; + +	ASSERT(txg > spa_syncing_txg(spa)); + +	/* +	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we +	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" +	 * when allocating them. +	 */ +	if (use_slog) { +		error = metaslab_alloc(spa, spa_log_class(spa), size, +		    new_bp, 1, txg, old_bp, +		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); +	} + +	if (error) { +		error = metaslab_alloc(spa, spa_normal_class(spa), size, +		    new_bp, 1, txg, old_bp, +		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); +	} + +	if (error == 0) { +		BP_SET_LSIZE(new_bp, size); +		BP_SET_PSIZE(new_bp, size); +		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); +		BP_SET_CHECKSUM(new_bp, +		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL +		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); +		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); +		BP_SET_LEVEL(new_bp, 0); +		BP_SET_DEDUP(new_bp, 0); +		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); +	} + +	return (error); +} + +/* + * Free an intent log block. + */ +void +zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) +{ +	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); +	ASSERT(!BP_IS_GANG(bp)); + +	zio_free(spa, txg, bp); +} + +/* + * ========================================================================== + * Read and write to physical devices + * ========================================================================== + */ +static int +zio_vdev_io_start(zio_t *zio) +{ +	vdev_t *vd = zio->io_vd; +	uint64_t align; +	spa_t *spa = zio->io_spa; + +	ASSERT(zio->io_error == 0); +	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); + +	if (vd == NULL) { +		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) +			spa_config_enter(spa, SCL_ZIO, zio, RW_READER); + +		/* +		 * The mirror_ops handle multiple DVAs in a single BP. +		 */ +		return (vdev_mirror_ops.vdev_op_io_start(zio)); +	} + +	/* +	 * We keep track of time-sensitive I/Os so that the scan thread +	 * can quickly react to certain workloads.  In particular, we care +	 * about non-scrubbing, top-level reads and writes with the following +	 * characteristics: +	 * 	- synchronous writes of user data to non-slog devices +	 *	- any reads of user data +	 * When these conditions are met, adjust the timestamp of spa_last_io +	 * which allows the scan thread to adjust its workload accordingly. +	 */ +	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && +	    vd == vd->vdev_top && !vd->vdev_islog && +	    zio->io_bookmark.zb_objset != DMU_META_OBJSET && +	    zio->io_txg != spa_syncing_txg(spa)) { +		uint64_t old = spa->spa_last_io; +		uint64_t new = ddi_get_lbolt64(); +		if (old != new) +			(void) atomic_cas_64(&spa->spa_last_io, old, new); +	} + +	align = 1ULL << vd->vdev_top->vdev_ashift; + +	if (P2PHASE(zio->io_size, align) != 0) { +		uint64_t asize = P2ROUNDUP(zio->io_size, align); +		char *abuf = zio_buf_alloc(asize); +		ASSERT(vd == vd->vdev_top); +		if (zio->io_type == ZIO_TYPE_WRITE) { +			bcopy(zio->io_data, abuf, zio->io_size); +			bzero(abuf + zio->io_size, asize - zio->io_size); +		} +		zio_push_transform(zio, abuf, asize, asize, zio_subblock); +	} + +	ASSERT(P2PHASE(zio->io_offset, align) == 0); +	ASSERT(P2PHASE(zio->io_size, align) == 0); +	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); + +	/* +	 * If this is a repair I/O, and there's no self-healing involved -- +	 * that is, we're just resilvering what we expect to resilver -- +	 * then don't do the I/O unless zio's txg is actually in vd's DTL. +	 * This prevents spurious resilvering with nested replication. +	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only +	 * A is out of date, we'll read from C+D, then use the data to +	 * resilver A+B -- but we don't actually want to resilver B, just A. +	 * The top-level mirror has no way to know this, so instead we just +	 * discard unnecessary repairs as we work our way down the vdev tree. +	 * The same logic applies to any form of nested replication: +	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all. +	 */ +	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && +	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && +	    zio->io_txg != 0 &&	/* not a delegated i/o */ +	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { +		ASSERT(zio->io_type == ZIO_TYPE_WRITE); +		zio_vdev_io_bypass(zio); +		return (ZIO_PIPELINE_CONTINUE); +	} + +	if (vd->vdev_ops->vdev_op_leaf && +	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { + +		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) +			return (ZIO_PIPELINE_CONTINUE); + +		if ((zio = vdev_queue_io(zio)) == NULL) +			return (ZIO_PIPELINE_STOP); + +		if (!vdev_accessible(vd, zio)) { +			zio->io_error = ENXIO; +			zio_interrupt(zio); +			return (ZIO_PIPELINE_STOP); +		} +	} + +	return (vd->vdev_ops->vdev_op_io_start(zio)); +} + +static int +zio_vdev_io_done(zio_t *zio) +{ +	vdev_t *vd = zio->io_vd; +	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; +	boolean_t unexpected_error = B_FALSE; + +	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) +		return (ZIO_PIPELINE_STOP); + +	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); + +	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { + +		vdev_queue_io_done(zio); + +		if (zio->io_type == ZIO_TYPE_WRITE) +			vdev_cache_write(zio); + +		if (zio_injection_enabled && zio->io_error == 0) +			zio->io_error = zio_handle_device_injection(vd, +			    zio, EIO); + +		if (zio_injection_enabled && zio->io_error == 0) +			zio->io_error = zio_handle_label_injection(zio, EIO); + +		if (zio->io_error) { +			if (!vdev_accessible(vd, zio)) { +				zio->io_error = ENXIO; +			} else { +				unexpected_error = B_TRUE; +			} +		} +	} + +	ops->vdev_op_io_done(zio); + +	if (unexpected_error) +		VERIFY(vdev_probe(vd, zio) == NULL); + +	return (ZIO_PIPELINE_CONTINUE); +} + +/* + * For non-raidz ZIOs, we can just copy aside the bad data read from the + * disk, and use that to finish the checksum ereport later. + */ +static void +zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, +    const void *good_buf) +{ +	/* no processing needed */ +	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); +} + +/*ARGSUSED*/ +void +zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) +{ +	void *buf = zio_buf_alloc(zio->io_size); + +	bcopy(zio->io_data, buf, zio->io_size); + +	zcr->zcr_cbinfo = zio->io_size; +	zcr->zcr_cbdata = buf; +	zcr->zcr_finish = zio_vsd_default_cksum_finish; +	zcr->zcr_free = zio_buf_free; +} + +static int +zio_vdev_io_assess(zio_t *zio) +{ +	vdev_t *vd = zio->io_vd; + +	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) +		return (ZIO_PIPELINE_STOP); + +	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) +		spa_config_exit(zio->io_spa, SCL_ZIO, zio); + +	if (zio->io_vsd != NULL) { +		zio->io_vsd_ops->vsd_free(zio); +		zio->io_vsd = NULL; +	} + +	if (zio_injection_enabled && zio->io_error == 0) +		zio->io_error = zio_handle_fault_injection(zio, EIO); + +	/* +	 * If the I/O failed, determine whether we should attempt to retry it. +	 * +	 * On retry, we cut in line in the issue queue, since we don't want +	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. +	 */ +	if (zio->io_error && vd == NULL && +	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { +		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */ +		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */ +		zio->io_error = 0; +		zio->io_flags |= ZIO_FLAG_IO_RETRY | +		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; +		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; +		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, +		    zio_requeue_io_start_cut_in_line); +		return (ZIO_PIPELINE_STOP); +	} + +	/* +	 * If we got an error on a leaf device, convert it to ENXIO +	 * if the device is not accessible at all. +	 */ +	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && +	    !vdev_accessible(vd, zio)) +		zio->io_error = ENXIO; + +	/* +	 * If we can't write to an interior vdev (mirror or RAID-Z), +	 * set vdev_cant_write so that we stop trying to allocate from it. +	 */ +	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && +	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) +		vd->vdev_cant_write = B_TRUE; + +	if (zio->io_error) +		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + +	return (ZIO_PIPELINE_CONTINUE); +} + +void +zio_vdev_io_reissue(zio_t *zio) +{ +	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); +	ASSERT(zio->io_error == 0); + +	zio->io_stage >>= 1; +} + +void +zio_vdev_io_redone(zio_t *zio) +{ +	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); + +	zio->io_stage >>= 1; +} + +void +zio_vdev_io_bypass(zio_t *zio) +{ +	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); +	ASSERT(zio->io_error == 0); + +	zio->io_flags |= ZIO_FLAG_IO_BYPASS; +	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; +} + +/* + * ========================================================================== + * Generate and verify checksums + * ========================================================================== + */ +static int +zio_checksum_generate(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; +	enum zio_checksum checksum; + +	if (bp == NULL) { +		/* +		 * This is zio_write_phys(). +		 * We're either generating a label checksum, or none at all. +		 */ +		checksum = zio->io_prop.zp_checksum; + +		if (checksum == ZIO_CHECKSUM_OFF) +			return (ZIO_PIPELINE_CONTINUE); + +		ASSERT(checksum == ZIO_CHECKSUM_LABEL); +	} else { +		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { +			ASSERT(!IO_IS_ALLOCATING(zio)); +			checksum = ZIO_CHECKSUM_GANG_HEADER; +		} else { +			checksum = BP_GET_CHECKSUM(bp); +		} +	} + +	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_checksum_verify(zio_t *zio) +{ +	zio_bad_cksum_t info; +	blkptr_t *bp = zio->io_bp; +	int error; + +	ASSERT(zio->io_vd != NULL); + +	if (bp == NULL) { +		/* +		 * This is zio_read_phys(). +		 * We're either verifying a label checksum, or nothing at all. +		 */ +		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) +			return (ZIO_PIPELINE_CONTINUE); + +		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); +	} + +	if ((error = zio_checksum_error(zio, &info)) != 0) { +		zio->io_error = error; +		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { +			zfs_ereport_start_checksum(zio->io_spa, +			    zio->io_vd, zio, zio->io_offset, +			    zio->io_size, NULL, &info); +		} +	} + +	return (ZIO_PIPELINE_CONTINUE); +} + +/* + * Called by RAID-Z to ensure we don't compute the checksum twice. + */ +void +zio_checksum_verified(zio_t *zio) +{ +	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; +} + +/* + * ========================================================================== + * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. + * An error of 0 indictes success.  ENXIO indicates whole-device failure, + * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO + * indicate errors that are specific to one I/O, and most likely permanent. + * Any other error is presumed to be worse because we weren't expecting it. + * ========================================================================== + */ +int +zio_worst_error(int e1, int e2) +{ +	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; +	int r1, r2; + +	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) +		if (e1 == zio_error_rank[r1]) +			break; + +	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) +		if (e2 == zio_error_rank[r2]) +			break; + +	return (r1 > r2 ? e1 : e2); +} + +/* + * ========================================================================== + * I/O completion + * ========================================================================== + */ +static int +zio_ready(zio_t *zio) +{ +	blkptr_t *bp = zio->io_bp; +	zio_t *pio, *pio_next; + +	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || +	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) +		return (ZIO_PIPELINE_STOP); + +	if (zio->io_ready) { +		ASSERT(IO_IS_ALLOCATING(zio)); +		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); +		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); + +		zio->io_ready(zio); +	} + +	if (bp != NULL && bp != &zio->io_bp_copy) +		zio->io_bp_copy = *bp; + +	if (zio->io_error) +		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; + +	mutex_enter(&zio->io_lock); +	zio->io_state[ZIO_WAIT_READY] = 1; +	pio = zio_walk_parents(zio); +	mutex_exit(&zio->io_lock); + +	/* +	 * As we notify zio's parents, new parents could be added. +	 * New parents go to the head of zio's io_parent_list, however, +	 * so we will (correctly) not notify them.  The remainder of zio's +	 * io_parent_list, from 'pio_next' onward, cannot change because +	 * all parents must wait for us to be done before they can be done. +	 */ +	for (; pio != NULL; pio = pio_next) { +		pio_next = zio_walk_parents(zio); +		zio_notify_parent(pio, zio, ZIO_WAIT_READY); +	} + +	if (zio->io_flags & ZIO_FLAG_NODATA) { +		if (BP_IS_GANG(bp)) { +			zio->io_flags &= ~ZIO_FLAG_NODATA; +		} else { +			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); +			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; +		} +	} + +	if (zio_injection_enabled && +	    zio->io_spa->spa_syncing_txg == zio->io_txg) +		zio_handle_ignored_writes(zio); + +	return (ZIO_PIPELINE_CONTINUE); +} + +static int +zio_done(zio_t *zio) +{ +	spa_t *spa = zio->io_spa; +	zio_t *lio = zio->io_logical; +	blkptr_t *bp = zio->io_bp; +	vdev_t *vd = zio->io_vd; +	uint64_t psize = zio->io_size; +	zio_t *pio, *pio_next; + +	/* +	 * If our children haven't all completed, +	 * wait for them and then repeat this pipeline stage. +	 */ +	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || +	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || +	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || +	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) +		return (ZIO_PIPELINE_STOP); + +	for (int c = 0; c < ZIO_CHILD_TYPES; c++) +		for (int w = 0; w < ZIO_WAIT_TYPES; w++) +			ASSERT(zio->io_children[c][w] == 0); + +	if (bp != NULL) { +		ASSERT(bp->blk_pad[0] == 0); +		ASSERT(bp->blk_pad[1] == 0); +		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || +		    (bp == zio_unique_parent(zio)->io_bp)); +		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && +		    zio->io_bp_override == NULL && +		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { +			ASSERT(!BP_SHOULD_BYTESWAP(bp)); +			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); +			ASSERT(BP_COUNT_GANG(bp) == 0 || +			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); +		} +	} + +	/* +	 * If there were child vdev/gang/ddt errors, they apply to us now. +	 */ +	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); +	zio_inherit_child_errors(zio, ZIO_CHILD_GANG); +	zio_inherit_child_errors(zio, ZIO_CHILD_DDT); + +	/* +	 * If the I/O on the transformed data was successful, generate any +	 * checksum reports now while we still have the transformed data. +	 */ +	if (zio->io_error == 0) { +		while (zio->io_cksum_report != NULL) { +			zio_cksum_report_t *zcr = zio->io_cksum_report; +			uint64_t align = zcr->zcr_align; +			uint64_t asize = P2ROUNDUP(psize, align); +			char *abuf = zio->io_data; + +			if (asize != psize) { +				abuf = zio_buf_alloc(asize); +				bcopy(zio->io_data, abuf, psize); +				bzero(abuf + psize, asize - psize); +			} + +			zio->io_cksum_report = zcr->zcr_next; +			zcr->zcr_next = NULL; +			zcr->zcr_finish(zcr, abuf); +			zfs_ereport_free_checksum(zcr); + +			if (asize != psize) +				zio_buf_free(abuf, asize); +		} +	} + +	zio_pop_transforms(zio);	/* note: may set zio->io_error */ + +	vdev_stat_update(zio, psize); + +	if (zio->io_error) { +		/* +		 * If this I/O is attached to a particular vdev, +		 * generate an error message describing the I/O failure +		 * at the block level.  We ignore these errors if the +		 * device is currently unavailable. +		 */ +		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) +			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); + +		if ((zio->io_error == EIO || !(zio->io_flags & +		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && +		    zio == lio) { +			/* +			 * For logical I/O requests, tell the SPA to log the +			 * error and generate a logical data ereport. +			 */ +			spa_log_error(spa, zio); +			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, +			    0, 0); +		} +	} + +	if (zio->io_error && zio == lio) { +		/* +		 * Determine whether zio should be reexecuted.  This will +		 * propagate all the way to the root via zio_notify_parent(). +		 */ +		ASSERT(vd == NULL && bp != NULL); +		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); + +		if (IO_IS_ALLOCATING(zio) && +		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) { +			if (zio->io_error != ENOSPC) +				zio->io_reexecute |= ZIO_REEXECUTE_NOW; +			else +				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; +		} + +		if ((zio->io_type == ZIO_TYPE_READ || +		    zio->io_type == ZIO_TYPE_FREE) && +		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && +		    zio->io_error == ENXIO && +		    spa_load_state(spa) == SPA_LOAD_NONE && +		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) +			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; + +		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) +			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; + +		/* +		 * Here is a possibly good place to attempt to do +		 * either combinatorial reconstruction or error correction +		 * based on checksums.  It also might be a good place +		 * to send out preliminary ereports before we suspend +		 * processing. +		 */ +	} + +	/* +	 * If there were logical child errors, they apply to us now. +	 * We defer this until now to avoid conflating logical child +	 * errors with errors that happened to the zio itself when +	 * updating vdev stats and reporting FMA events above. +	 */ +	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); + +	if ((zio->io_error || zio->io_reexecute) && +	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && +	    !(zio->io_flags & ZIO_FLAG_IO_REWRITE)) +		zio_dva_unallocate(zio, zio->io_gang_tree, bp); + +	zio_gang_tree_free(&zio->io_gang_tree); + +	/* +	 * Godfather I/Os should never suspend. +	 */ +	if ((zio->io_flags & ZIO_FLAG_GODFATHER) && +	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) +		zio->io_reexecute = 0; + +	if (zio->io_reexecute) { +		/* +		 * This is a logical I/O that wants to reexecute. +		 * +		 * Reexecute is top-down.  When an i/o fails, if it's not +		 * the root, it simply notifies its parent and sticks around. +		 * The parent, seeing that it still has children in zio_done(), +		 * does the same.  This percolates all the way up to the root. +		 * The root i/o will reexecute or suspend the entire tree. +		 * +		 * This approach ensures that zio_reexecute() honors +		 * all the original i/o dependency relationships, e.g. +		 * parents not executing until children are ready. +		 */ +		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); + +		zio->io_gang_leader = NULL; + +		mutex_enter(&zio->io_lock); +		zio->io_state[ZIO_WAIT_DONE] = 1; +		mutex_exit(&zio->io_lock); + +		/* +		 * "The Godfather" I/O monitors its children but is +		 * not a true parent to them. It will track them through +		 * the pipeline but severs its ties whenever they get into +		 * trouble (e.g. suspended). This allows "The Godfather" +		 * I/O to return status without blocking. +		 */ +		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { +			zio_link_t *zl = zio->io_walk_link; +			pio_next = zio_walk_parents(zio); + +			if ((pio->io_flags & ZIO_FLAG_GODFATHER) && +			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { +				zio_remove_child(pio, zio, zl); +				zio_notify_parent(pio, zio, ZIO_WAIT_DONE); +			} +		} + +		if ((pio = zio_unique_parent(zio)) != NULL) { +			/* +			 * We're not a root i/o, so there's nothing to do +			 * but notify our parent.  Don't propagate errors +			 * upward since we haven't permanently failed yet. +			 */ +			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); +			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; +			zio_notify_parent(pio, zio, ZIO_WAIT_DONE); +		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { +			/* +			 * We'd fail again if we reexecuted now, so suspend +			 * until conditions improve (e.g. device comes online). +			 */ +			zio_suspend(spa, zio); +		} else { +			/* +			 * Reexecution is potentially a huge amount of work. +			 * Hand it off to the otherwise-unused claim taskq. +			 */ +			ASSERT(zio->io_tqent.tqent_next == NULL); +			(void) taskq_dispatch_ent( +			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], +			    (task_func_t *)zio_reexecute, zio, 0, +			    &zio->io_tqent); +		} +		return (ZIO_PIPELINE_STOP); +	} + +	ASSERT(zio->io_child_count == 0); +	ASSERT(zio->io_reexecute == 0); +	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); + +	/* +	 * Report any checksum errors, since the I/O is complete. +	 */ +	while (zio->io_cksum_report != NULL) { +		zio_cksum_report_t *zcr = zio->io_cksum_report; +		zio->io_cksum_report = zcr->zcr_next; +		zcr->zcr_next = NULL; +		zcr->zcr_finish(zcr, NULL); +		zfs_ereport_free_checksum(zcr); +	} + +	/* +	 * It is the responsibility of the done callback to ensure that this +	 * particular zio is no longer discoverable for adoption, and as +	 * such, cannot acquire any new parents. +	 */ +	if (zio->io_done) +		zio->io_done(zio); + +	mutex_enter(&zio->io_lock); +	zio->io_state[ZIO_WAIT_DONE] = 1; +	mutex_exit(&zio->io_lock); + +	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { +		zio_link_t *zl = zio->io_walk_link; +		pio_next = zio_walk_parents(zio); +		zio_remove_child(pio, zio, zl); +		zio_notify_parent(pio, zio, ZIO_WAIT_DONE); +	} + +	if (zio->io_waiter != NULL) { +		mutex_enter(&zio->io_lock); +		zio->io_executor = NULL; +		cv_broadcast(&zio->io_cv); +		mutex_exit(&zio->io_lock); +	} else { +		zio_destroy(zio); +	} + +	return (ZIO_PIPELINE_STOP); +} + +/* + * ========================================================================== + * I/O pipeline definition + * ========================================================================== + */ +static zio_pipe_stage_t *zio_pipeline[] = { +	NULL, +	zio_read_bp_init, +	zio_free_bp_init, +	zio_issue_async, +	zio_write_bp_init, +	zio_checksum_generate, +	zio_ddt_read_start, +	zio_ddt_read_done, +	zio_ddt_write, +	zio_ddt_free, +	zio_gang_assemble, +	zio_gang_issue, +	zio_dva_allocate, +	zio_dva_free, +	zio_dva_claim, +	zio_ready, +	zio_vdev_io_start, +	zio_vdev_io_done, +	zio_vdev_io_assess, +	zio_checksum_verify, +	zio_done +}; + +/* dnp is the dnode for zb1->zb_object */ +boolean_t +zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1, +    const zbookmark_t *zb2) +{ +	uint64_t zb1nextL0, zb2thisobj; + +	ASSERT(zb1->zb_objset == zb2->zb_objset); +	ASSERT(zb2->zb_level == 0); + +	/* +	 * A bookmark in the deadlist is considered to be after +	 * everything else. +	 */ +	if (zb2->zb_object == DMU_DEADLIST_OBJECT) +		return (B_TRUE); + +	/* The objset_phys_t isn't before anything. */ +	if (dnp == NULL) +		return (B_FALSE); + +	zb1nextL0 = (zb1->zb_blkid + 1) << +	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT)); + +	zb2thisobj = zb2->zb_object ? zb2->zb_object : +	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT); + +	if (zb1->zb_object == DMU_META_DNODE_OBJECT) { +		uint64_t nextobj = zb1nextL0 * +		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT; +		return (nextobj <= zb2thisobj); +	} + +	if (zb1->zb_object < zb2thisobj) +		return (B_TRUE); +	if (zb1->zb_object > zb2thisobj) +		return (B_FALSE); +	if (zb2->zb_object == DMU_META_DNODE_OBJECT) +		return (B_FALSE); +	return (zb1nextL0 <= zb2->zb_blkid); +} | 
