From c19e61b2f2e8481e4cadec910742432dc0959083 Mon Sep 17 00:00:00 2001 From: "David E. O'Brien" Date: Sat, 27 Nov 1999 23:32:35 +0000 Subject: New `sym' device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 PCI SCSI controllers. This driver also supports the following Symbios/LSI PCI SCSI chips: 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895. However, it does NOT support earlier chips as the following ones: 53C810, 53C815, 53C825. See README.sym for more details. Submitted-by: Gerard Roudier --- sys/dev/sym/README.sym | 200 + sys/dev/sym/sym_conf.h | 228 + sys/dev/sym/sym_defs.h | 928 ++++ sys/dev/sym/sym_hipd.c | 10921 +++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 12277 insertions(+) create mode 100644 sys/dev/sym/README.sym create mode 100644 sys/dev/sym/sym_conf.h create mode 100644 sys/dev/sym/sym_defs.h create mode 100644 sys/dev/sym/sym_hipd.c diff --git a/sys/dev/sym/README.sym b/sys/dev/sym/README.sym new file mode 100644 index 000000000000..8ce3c85e87f2 --- /dev/null +++ b/sys/dev/sym/README.sym @@ -0,0 +1,200 @@ +/* + * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 + * PCI-SCSI controllers. + * + * Copyright (C) 1999 Gerard Roudier + * + * This driver also supports the following Symbios/LSI PCI-SCSI chips: + * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895. + * + * but does not support earlier chips as the following ones: + * 53C810, 53C815, 53C825. + * + * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-1999 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier + * Stefan Esser + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * The initialisation code, and part of the code that addresses + * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM + * written by Justin T. Gibbs. + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham + * + *----------------------------------------------------------------------------- + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +Status: (switched back to EXPERIMENTAL due to some heavy changes) + EXPERIMENTAL + This driver is currently developped under the following O/S: + FreeBSD 4.0 SNAPSHOT July 5th 1999 + Starting with version 0.9.0, the driver contains conditionnal code + for using pre-4.0 BUS stuff for PCI. I have successfully tested driver + version 0.9.0 under: + FreeBSD 3.2 RELEASE + Given that the old bus stuff is still supported under FreeBSD, the driver + should also compile and work just fine under FreeBSD 3.3 RELEASE. + +Latest revision: + sym-0.9.0-19991024 + +Supported SCSI features: + - Initiator mode + - Wide 16 SCSI BUS + - FAST10 up to FAST80-DT synchronous data transfers (1) + (depends on controller capabilities) + - 64 luns per target + - 256 tags per lun + - MDP (2) + - BUS DEVICE RESET message + - ABORT, ABORT TAG message (2) + +Supported generic chip features: + - On chip RAM + - PCI optimized transactions. + +Supported features of 896/895A/1010: + - Full SCRIPTS in on-board RAM (8K) + - Phase mismatch handling from SCRIPTS. + +Others: + - SYMBIOS NVRAM layout using 24c16 EEPROM + - TEKRAM NVRAM layout using 24c16 EEPROM (2) + - TEKRAM NVRAM layout using 93c46 EEPROM (2) + - Transfer residuals + - 0(1) for both SCRIPTS and C code, allowing + 100% scalability. + +Notes: +(1) Only supported by the LSI53C1010 and not yet + tested due to lack of C1010 based controller. +(2) Not yet checked. May not work as expected. + +Files: + README.sym this file + sym_conf.h driver configuration + sym_defs.h driver definitions + sym_hipd.c driver code + sym_sys.patch kernel patch for FreeBSD 4 + sym_sys_3.patch kernel patch for FreeBSD 3 + +These patches apply a change to the ncr.c driver that forces it to +ignore SYM53C8XX chips that support LOAD/STORE. These devices will +be attached by the sym_hipd.c driver. + +Installation: + 1) Untar SYM-0.9.0-19991024.tar.gz + 2) Copy README.sym, sym_conf.h, sym_defs.h and sym_hipd.c to + /usr/src/sys/pci/ + 3) Change to /usr/src/sys/ directory + 4) If FreeBSD-4, apply the unified patch sym_sys.patch + (patch -p0 diff --git a/sys/dev/sym/sym_conf.h b/sys/dev/sym/sym_conf.h new file mode 100644 index 000000000000..a7ac649b9bc4 --- /dev/null +++ b/sys/dev/sym/sym_conf.h @@ -0,0 +1,228 @@ +/* + * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 + * PCI-SCSI controllers. + * + * Copyright (C) 1999 Gerard Roudier + * + * This driver also supports the following Symbios/LSI PCI-SCSI chips: + * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895. + * + * but does not support earlier chips as the following ones: + * 53C810, 53C815, 53C825. + * + * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-1999 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier + * Stefan Esser + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * The initialisation code, and part of the code that addresses + * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM + * written by Justin T. Gibbs. + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham + * + *----------------------------------------------------------------------------- + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ +#ifndef SYM_CONF_H +#define SYM_CONF_H + +/*------------------------------------------------------------------- + * Static configuration. + *------------------------------------------------------------------- + */ + +/* + * Support for earliest LSI53C1010 boards. + * Commercial chips will be fixed, and then the + * corresponding code will get useless. + */ +/* #define SYMCONF_BROKEN_U3EN_SUPPORT */ + +/* + * Use Normal IO instead of MMIO. + */ +/* #define SYMCONF_IOMAPPED */ + +/* + * Max tags for a device (logical unit) + * We use a power of 2, (7) means 2<<7=128 + * Maximum is 8 -> 256 tags + */ +#define SYMCONF_MAX_TAG_ORDER (6) + +/* + * Max number of scatter/gather entries for en IO. + * Each entry costs 8 bytes in the internal CCB data structure. + * For now 65 should suffice given the BSD O/Ses capabilities. + */ +#define SYMCONF_MAX_SG (33) + +/* + * Max number of targets. + * Maximum is 16 and you are advised not to change this value. + */ +#define SYMCONF_MAX_TARGET (16) + +/* + * Max number of logical units. + * SPI-2 allows up to 64 logical units, but in real life, target + * that implements more that 7 logical units are pretty rare. + * Anyway, the cost of accepting up to 64 logical unit is low in + * this driver, thus going with the maximum is acceptable. + */ +#define SYMCONF_MAX_LUN (8) + +/* + * Max number of IO control blocks queued to the controller. + * Each entry needs 8 bytes and the queues are allocated contiguously. + * Since we donnot want to allocate more than a page, the theorical + * maximum is PAGE_SIZE/8. For safety, we announce a bit less to the + * access method. :) + * When not supplied, as it is suggested, the driver compute some + * good value for this parameter. + */ +/* #define SYMCONF_MAX_START (PAGE_SIZE/8 - 16) */ + +/* + * Support for NVRAM. + */ +#define SYMCONF_NVRAM_SUPPORT +/* #define SYMCONF_DEBUG_SUPPORT */ + +/* + * Support for Immediate Arbitration. + * Not advised. + */ +/* #define SYMCONF_IARB_SUPPORT */ + +/* + * Not needed on FreeBSD, since the system allocator + * does provide naturally aligned addresses. + */ +#define SYMCONF_USE_INTERNAL_ALLOCATOR + +/*------------------------------------------------------------------- + * Configuration that could be dynamic if it was possible + * to pass arguments to the driver. + *------------------------------------------------------------------- + */ + +/* + * HOST default scsi id. + */ +#define SYMSETUP_HOST_ID 7 + +/* + * Max synchronous transfers. + */ +#define SYMSETUP_MIN_SYNC (9) + +/* + * Max wide order. + */ +#define SYMSETUP_MAX_WIDE (1) + +/* + * Max SCSI offset. + */ +#define SYMSETUP_MAX_OFFS (64) +/* + * Default number of tags. + */ +#define SYMSETUP_MAX_TAG (64) + +/* + * SYMBIOS NVRAM format support. + */ +#define SYMSETUP_SYMBIOS_NVRAM (1) + +/* + * TEKRAM NVRAM format support. + */ +#define SYMSETUP_TEKRAM_NVRAM (1) + +/* + * PCI parity checking. + */ +#define SYMSETUP_PCI_PARITY (1) + +/* + * SCSI parity checking. + */ +#define SYMSETUP_SCSI_PARITY (1) + +/* + * SCSI activity LED. + */ +#define SYMSETUP_SCSI_LED (0) + +/* + * SCSI differential. + */ +#define SYMSETUP_SCSI_DIFF (0) + +/* + * IRQ mode. + */ +#define SYMSETUP_IRQ_MODE (0) + +/* + * Check SCSI BUS signal on reset. + */ +#define SYMSETUP_SCSI_BUS_CHECK (1) + +/* + * Max burst for PCI (1< + * + * This driver also supports the following Symbios/LSI PCI-SCSI chips: + * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895. + * + * but does not support earlier chips as the following ones: + * 53C810, 53C815, 53C825. + * + * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-1999 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier + * Stefan Esser + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * The initialisation code, and part of the code that addresses + * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM + * written by Justin T. Gibbs. + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham + * + *----------------------------------------------------------------------------- + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ +#ifndef SYM_DEFS_H +#define SYM_DEFS_H + +/* + * Vendor. + */ +#define PCI_VENDOR_NCR 0x1000 + +/* + * PCI device identifier of SYMBIOS chips. + */ +#define PCI_ID_SYM53C810 1 +#define PCI_ID_SYM53C810AP 5 +#define PCI_ID_SYM53C815 4 +#define PCI_ID_SYM53C820 2 +#define PCI_ID_SYM53C825 3 +#define PCI_ID_SYM53C860 6 +#define PCI_ID_SYM53C875 0xf +#define PCI_ID_SYM53C875_2 0x8f +#define PCI_ID_SYM53C885 0xd +#define PCI_ID_SYM53C895 0xc +#define PCI_ID_SYM53C896 0xb +#define PCI_ID_SYM53C895A 0x12 +#define PCI_ID_LSI53C1010 0x20 +#define PCI_ID_LSI53C1510D 0xa + +/* + * SYM53C8XX device features descriptor. + */ +struct sym_pci_chip { + u_short device_id; + unsigned short revision_id; + char *name; + u_char burst_max; /* log-base-2 of max burst */ + u_char offset_max; + u_char nr_divisor; + u_int features; +#define FE_LED0 (1<<0) +#define FE_WIDE (1<<1) /* Wide data transfers */ +#define FE_ULTRA (1<<2) /* Ultra speed 20Mtrans/sec */ +#define FE_ULTRA2 (1<<3) /* Ultra 2 - 40 Mtrans/sec */ +#define FE_DBLR (1<<4) /* Clock doubler present */ +#define FE_QUAD (1<<5) /* Clock quadrupler present */ +#define FE_ERL (1<<6) /* Enable read line */ +#define FE_CLSE (1<<7) /* Cache line size enable */ +#define FE_WRIE (1<<8) /* Write & Invalidate enable */ +#define FE_ERMP (1<<9) /* Enable read multiple */ +#define FE_BOF (1<<10) /* Burst opcode fetch */ +#define FE_DFS (1<<11) /* DMA fifo size */ +#define FE_PFEN (1<<12) /* Prefetch enable */ +#define FE_LDSTR (1<<13) /* Load/Store supported */ +#define FE_RAM (1<<14) /* On chip RAM present */ +#define FE_CLK80 (1<<15) /* Board clock is 80 MHz */ +#define FE_RAM8K (1<<16) /* On chip RAM sized 8Kb */ +#define FE_64BIT (1<<17) /* Supports 64-bit addressing */ +#define FE_IO256 (1<<18) /* Requires full 256 bytes in PCI space */ +#define FE_NOPM (1<<19) /* Scripts handles phase mismatch */ +#define FE_LEDC (1<<20) /* Hardware control of LED */ +#define FE_ULTRA3 (1<<21) /* Ultra 3 - 80 Mtrans/sec DT */ +#define FE_PCI66 (1<<22) /* 66MHz PCI support */ +#define FE_CRC (1<<23) /* CRC support */ +#define FE_DIFF (1<<24) /* SCSI HVD support */ +#define FE_DFBC (1<<25) /* Have DFBC register */ +#define FE_LCKFRQ (1<<26) /* Have LCKFRQ */ +#define FE_C10 (1<<27) /* Various C10 core (mis)features */ +#define FE_U3EN (1<<28) /* U3EN bit usable */ + +#define FE_CACHE_SET (FE_ERL|FE_CLSE|FE_WRIE|FE_ERMP) +#define FE_CACHE0_SET (FE_CACHE_SET & ~FE_ERL) +#define FE_SPECIAL_SET (FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM) +}; + +/* + * Symbios NVRAM data format + */ +#define SYMBIOS_NVRAM_SIZE 368 +#define SYMBIOS_NVRAM_ADDRESS 0x100 + +struct Symbios_nvram { +/* Header 6 bytes */ + u_short type; /* 0x0000 */ + u_short byte_count; /* excluding header/trailer */ + u_short checksum; + +/* Controller set up 20 bytes */ + u_char v_major; /* 0x00 */ + u_char v_minor; /* 0x30 */ + u32 boot_crc; + u_short flags; +#define SYMBIOS_SCAM_ENABLE (1) +#define SYMBIOS_PARITY_ENABLE (1<<1) +#define SYMBIOS_VERBOSE_MSGS (1<<2) +#define SYMBIOS_CHS_MAPPING (1<<3) +#define SYMBIOS_NO_NVRAM (1<<3) /* ??? */ + u_short flags1; +#define SYMBIOS_SCAN_HI_LO (1) + u_short term_state; +#define SYMBIOS_TERM_CANT_PROGRAM (0) +#define SYMBIOS_TERM_ENABLED (1) +#define SYMBIOS_TERM_DISABLED (2) + u_short rmvbl_flags; +#define SYMBIOS_RMVBL_NO_SUPPORT (0) +#define SYMBIOS_RMVBL_BOOT_DEVICE (1) +#define SYMBIOS_RMVBL_MEDIA_INSTALLED (2) + u_char host_id; + u_char num_hba; /* 0x04 */ + u_char num_devices; /* 0x10 */ + u_char max_scam_devices; /* 0x04 */ + u_char num_valid_scam_devives; /* 0x00 */ + u_char rsvd; + +/* Boot order 14 bytes * 4 */ + struct Symbios_host{ + u_short type; /* 4:8xx / 0:nok */ + u_short device_id; /* PCI device id */ + u_short vendor_id; /* PCI vendor id */ + u_char bus_nr; /* PCI bus number */ + u_char device_fn; /* PCI device/function number << 3*/ + u_short word8; + u_short flags; +#define SYMBIOS_INIT_SCAN_AT_BOOT (1) + u_short io_port; /* PCI io_port address */ + } host[4]; + +/* Targets 8 bytes * 16 */ + struct Symbios_target { + u_char flags; +#define SYMBIOS_DISCONNECT_ENABLE (1) +#define SYMBIOS_SCAN_AT_BOOT_TIME (1<<1) +#define SYMBIOS_SCAN_LUNS (1<<2) +#define SYMBIOS_QUEUE_TAGS_ENABLED (1<<3) + u_char rsvd; + u_char bus_width; /* 0x08/0x10 */ + u_char sync_offset; + u_short sync_period; /* 4*period factor */ + u_short timeout; + } target[16]; +/* Scam table 8 bytes * 4 */ + struct Symbios_scam { + u_short id; + u_short method; +#define SYMBIOS_SCAM_DEFAULT_METHOD (0) +#define SYMBIOS_SCAM_DONT_ASSIGN (1) +#define SYMBIOS_SCAM_SET_SPECIFIC_ID (2) +#define SYMBIOS_SCAM_USE_ORDER_GIVEN (3) + u_short status; +#define SYMBIOS_SCAM_UNKNOWN (0) +#define SYMBIOS_SCAM_DEVICE_NOT_FOUND (1) +#define SYMBIOS_SCAM_ID_NOT_SET (2) +#define SYMBIOS_SCAM_ID_VALID (3) + u_char target_id; + u_char rsvd; + } scam[4]; + + u_char spare_devices[15*8]; + u_char trailer[6]; /* 0xfe 0xfe 0x00 0x00 0x00 0x00 */ +}; +typedef struct Symbios_nvram Symbios_nvram; +typedef struct Symbios_host Symbios_host; +typedef struct Symbios_target Symbios_target; +typedef struct Symbios_scam Symbios_scam; + +/* + * Tekram NvRAM data format. + */ +#define TEKRAM_NVRAM_SIZE 64 +#define TEKRAM_93C46_NVRAM_ADDRESS 0 +#define TEKRAM_24C16_NVRAM_ADDRESS 0x40 + +struct Tekram_nvram { + struct Tekram_target { + u_char flags; +#define TEKRAM_PARITY_CHECK (1) +#define TEKRAM_SYNC_NEGO (1<<1) +#define TEKRAM_DISCONNECT_ENABLE (1<<2) +#define TEKRAM_START_CMD (1<<3) +#define TEKRAM_TAGGED_COMMANDS (1<<4) +#define TEKRAM_WIDE_NEGO (1<<5) + u_char sync_index; + u_short word2; + } target[16]; + u_char host_id; + u_char flags; +#define TEKRAM_MORE_THAN_2_DRIVES (1) +#define TEKRAM_DRIVES_SUP_1GB (1<<1) +#define TEKRAM_RESET_ON_POWER_ON (1<<2) +#define TEKRAM_ACTIVE_NEGATION (1<<3) +#define TEKRAM_IMMEDIATE_SEEK (1<<4) +#define TEKRAM_SCAN_LUNS (1<<5) +#define TEKRAM_REMOVABLE_FLAGS (3<<6) /* 0: disable; 1: boot device; 2:all */ + u_char boot_delay_index; + u_char max_tags_index; + u_short flags1; +#define TEKRAM_F2_F6_ENABLED (1) + u_short spare[29]; +}; +typedef struct Tekram_nvram Tekram_nvram; +typedef struct Tekram_target Tekram_target; + +/* + * SYM53C8XX IO register data structure. + */ +struct sym_reg { +/*00*/ u8 nc_scntl0; /* full arb., ena parity, par->ATN */ + +/*01*/ u8 nc_scntl1; /* no reset */ + #define ISCON 0x10 /* connected to scsi */ + #define CRST 0x08 /* force reset */ + #define IARB 0x02 /* immediate arbitration */ + +/*02*/ u8 nc_scntl2; /* no disconnect expected */ + #define SDU 0x80 /* cmd: disconnect will raise error */ + #define CHM 0x40 /* sta: chained mode */ + #define WSS 0x08 /* sta: wide scsi send [W]*/ + #define WSR 0x01 /* sta: wide scsi received [W]*/ + +/*03*/ u8 nc_scntl3; /* cnf system clock dependent */ + #define EWS 0x08 /* cmd: enable wide scsi [W]*/ + #define ULTRA 0x80 /* cmd: ULTRA enable */ + /* bits 0-2, 7 rsvd for C1010 */ + +/*04*/ u8 nc_scid; /* cnf host adapter scsi address */ + #define RRE 0x40 /* r/w:e enable response to resel. */ + #define SRE 0x20 /* r/w:e enable response to select */ + +/*05*/ u8 nc_sxfer; /* ### Sync speed and count */ + /* bits 6-7 rsvd for C1010 */ + +/*06*/ u8 nc_sdid; /* ### Destination-ID */ + +/*07*/ u8 nc_gpreg; /* ??? IO-Pins */ + +/*08*/ u8 nc_sfbr; /* ### First byte received */ + +/*09*/ u8 nc_socl; + #define CREQ 0x80 /* r/w: SCSI-REQ */ + #define CACK 0x40 /* r/w: SCSI-ACK */ + #define CBSY 0x20 /* r/w: SCSI-BSY */ + #define CSEL 0x10 /* r/w: SCSI-SEL */ + #define CATN 0x08 /* r/w: SCSI-ATN */ + #define CMSG 0x04 /* r/w: SCSI-MSG */ + #define CC_D 0x02 /* r/w: SCSI-C_D */ + #define CI_O 0x01 /* r/w: SCSI-I_O */ + +/*0a*/ u8 nc_ssid; + +/*0b*/ u8 nc_sbcl; + +/*0c*/ u8 nc_dstat; + #define DFE 0x80 /* sta: dma fifo empty */ + #define MDPE 0x40 /* int: master data parity error */ + #define BF 0x20 /* int: script: bus fault */ + #define ABRT 0x10 /* int: script: command aborted */ + #define SSI 0x08 /* int: script: single step */ + #define SIR 0x04 /* int: script: interrupt instruct. */ + #define IID 0x01 /* int: script: illegal instruct. */ + +/*0d*/ u8 nc_sstat0; + #define ILF 0x80 /* sta: data in SIDL register lsb */ + #define ORF 0x40 /* sta: data in SODR register lsb */ + #define OLF 0x20 /* sta: data in SODL register lsb */ + #define AIP 0x10 /* sta: arbitration in progress */ + #define LOA 0x08 /* sta: arbitration lost */ + #define WOA 0x04 /* sta: arbitration won */ + #define IRST 0x02 /* sta: scsi reset signal */ + #define SDP 0x01 /* sta: scsi parity signal */ + +/*0e*/ u8 nc_sstat1; + #define FF3210 0xf0 /* sta: bytes in the scsi fifo */ + +/*0f*/ u8 nc_sstat2; + #define ILF1 0x80 /* sta: data in SIDL register msb[W]*/ + #define ORF1 0x40 /* sta: data in SODR register msb[W]*/ + #define OLF1 0x20 /* sta: data in SODL register msb[W]*/ + #define DM 0x04 /* sta: DIFFSENS mismatch (895/6 only) */ + #define LDSC 0x02 /* sta: disconnect & reconnect */ + +/*10*/ u8 nc_dsa; /* --> Base page */ +/*11*/ u8 nc_dsa1; +/*12*/ u8 nc_dsa2; +/*13*/ u8 nc_dsa3; + +/*14*/ u8 nc_istat; /* --> Main Command and status */ + #define CABRT 0x80 /* cmd: abort current operation */ + #define SRST 0x40 /* mod: reset chip */ + #define SIGP 0x20 /* r/w: message from host to script */ + #define SEM 0x10 /* r/w: message between host + script */ + #define CON 0x08 /* sta: connected to scsi */ + #define INTF 0x04 /* sta: int on the fly (reset by wr)*/ + #define SIP 0x02 /* sta: scsi-interrupt */ + #define DIP 0x01 /* sta: host/script interrupt */ + +/*15*/ u8 nc_istat1; /* 896 only */ +/*16*/ u8 nc_mbox0; /* 896 only */ +/*17*/ u8 nc_mbox1; /* 896 only */ + +/*18*/ u8 nc_ctest0; +/*19*/ u8 nc_ctest1; + +/*1a*/ u8 nc_ctest2; + #define CSIGP 0x40 + /* bits 0-2,7 rsvd for C1010 */ + +/*1b*/ u8 nc_ctest3; + #define FLF 0x08 /* cmd: flush dma fifo */ + #define CLF 0x04 /* cmd: clear dma fifo */ + #define FM 0x02 /* mod: fetch pin mode */ + #define WRIE 0x01 /* mod: write and invalidate enable */ + /* bits 4-7 rsvd for C1010 */ + +/*1c*/ u32 nc_temp; /* ### Temporary stack */ + +/*20*/ u8 nc_dfifo; +/*21*/ u8 nc_ctest4; + #define BDIS 0x80 /* mod: burst disable */ + #define MPEE 0x08 /* mod: master parity error enable */ + +/*22*/ u8 nc_ctest5; + #define DFS 0x20 /* mod: dma fifo size */ + /* bits 0-1, 3-7 rsvd for C1010 */ + +/*23*/ u8 nc_ctest6; + +/*24*/ u32 nc_dbc; /* ### Byte count and command */ +/*28*/ u32 nc_dnad; /* ### Next command register */ +/*2c*/ u32 nc_dsp; /* --> Script Pointer */ +/*30*/ u32 nc_dsps; /* --> Script pointer save/opcode#2 */ + +/*34*/ u8 nc_scratcha; /* Temporary register a */ +/*35*/ u8 nc_scratcha1; +/*36*/ u8 nc_scratcha2; +/*37*/ u8 nc_scratcha3; + +/*38*/ u8 nc_dmode; + #define BL_2 0x80 /* mod: burst length shift value +2 */ + #define BL_1 0x40 /* mod: burst length shift value +1 */ + #define ERL 0x08 /* mod: enable read line */ + #define ERMP 0x04 /* mod: enable read multiple */ + #define BOF 0x02 /* mod: burst op code fetch */ + +/*39*/ u8 nc_dien; +/*3a*/ u8 nc_sbr; + +/*3b*/ u8 nc_dcntl; /* --> Script execution control */ + #define CLSE 0x80 /* mod: cache line size enable */ + #define PFF 0x40 /* cmd: pre-fetch flush */ + #define PFEN 0x20 /* mod: pre-fetch enable */ + #define SSM 0x10 /* mod: single step mode */ + #define IRQM 0x08 /* mod: irq mode (1 = totem pole !) */ + #define STD 0x04 /* cmd: start dma mode */ + #define IRQD 0x02 /* mod: irq disable */ + #define NOCOM 0x01 /* cmd: protect sfbr while reselect */ + /* bits 0-1 rsvd for C1010 */ + +/*3c*/ u32 nc_adder; + +/*40*/ u16 nc_sien; /* -->: interrupt enable */ +/*42*/ u16 nc_sist; /* <--: interrupt status */ + #define SBMC 0x1000/* sta: SCSI Bus Mode Change (895/6 only) */ + #define STO 0x0400/* sta: timeout (select) */ + #define GEN 0x0200/* sta: timeout (general) */ + #define HTH 0x0100/* sta: timeout (handshake) */ + #define MA 0x80 /* sta: phase mismatch */ + #define CMP 0x40 /* sta: arbitration complete */ + #define SEL 0x20 /* sta: selected by another device */ + #define RSL 0x10 /* sta: reselected by another device*/ + #define SGE 0x08 /* sta: gross error (over/underflow)*/ + #define UDC 0x04 /* sta: unexpected disconnect */ + #define RST 0x02 /* sta: scsi bus reset detected */ + #define PAR 0x01 /* sta: scsi parity error */ + +/*44*/ u8 nc_slpar; +/*45*/ u8 nc_swide; +/*46*/ u8 nc_macntl; +/*47*/ u8 nc_gpcntl; +/*48*/ u8 nc_stime0; /* cmd: timeout for select&handshake*/ +/*49*/ u8 nc_stime1; /* cmd: timeout user defined */ +/*4a*/ u16 nc_respid; /* sta: Reselect-IDs */ + +/*4c*/ u8 nc_stest0; + +/*4d*/ u8 nc_stest1; + #define SCLK 0x80 /* Use the PCI clock as SCSI clock */ + #define DBLEN 0x08 /* clock doubler running */ + #define DBLSEL 0x04 /* clock doubler selected */ + + +/*4e*/ u8 nc_stest2; + #define ROF 0x40 /* reset scsi offset (after gross error!) */ + #define EXT 0x02 /* extended filtering */ + +/*4f*/ u8 nc_stest3; + #define TE 0x80 /* c: tolerAnt enable */ + #define HSC 0x20 /* c: Halt SCSI Clock */ + #define CSF 0x02 /* c: clear scsi fifo */ + +/*50*/ u16 nc_sidl; /* Lowlevel: latched from scsi data */ +/*52*/ u8 nc_stest4; + #define SMODE 0xc0 /* SCSI bus mode (895/6 only) */ + #define SMODE_HVD 0x40 /* High Voltage Differential */ + #define SMODE_SE 0x80 /* Single Ended */ + #define SMODE_LVD 0xc0 /* Low Voltage Differential */ + #define LCKFRQ 0x20 /* Frequency Lock (895/6 only) */ + /* bits 0-5 rsvd for C1010 */ + +/*53*/ u8 nc_53_; +/*54*/ u16 nc_sodl; /* Lowlevel: data out to scsi data */ +/*56*/ u8 nc_ccntl0; /* Chip Control 0 (896) */ + #define ENPMJ 0x80 /* Enable Phase Mismatch Jump */ + #define PMJCTL 0x40 /* Phase Mismatch Jump Control */ + #define ENNDJ 0x20 /* Enable Non Data PM Jump */ + #define DISFC 0x10 /* Disable Auto FIFO Clear */ + #define DILS 0x02 /* Disable Internal Load/Store */ + #define DPR 0x01 /* Disable Pipe Req */ + +/*57*/ u8 nc_ccntl1; /* Chip Control 1 (896) */ + #define ZMOD 0x80 /* High Impedance Mode */ + #define DDAC 0x08 /* Disable Dual Address Cycle */ + #define XTIMOD 0x04 /* 64-bit Table Ind. Indexing Mode */ + #define EXTIBMV 0x02 /* Enable 64-bit Table Ind. BMOV */ + #define EXDBMV 0x01 /* Enable 64-bit Direct BMOV */ + +/*58*/ u16 nc_sbdl; /* Lowlevel: data from scsi data */ +/*5a*/ u16 nc_5a_; + +/*5c*/ u8 nc_scr0; /* Working register B */ +/*5d*/ u8 nc_scr1; +/*5e*/ u8 nc_scr2; +/*5f*/ u8 nc_scr3; + +/*60*/ u8 nc_scrx[64]; /* Working register C-R */ +/*a0*/ u32 nc_mmrs; /* Memory Move Read Selector */ +/*a4*/ u32 nc_mmws; /* Memory Move Write Selector */ +/*a8*/ u32 nc_sfs; /* Script Fetch Selector */ +/*ac*/ u32 nc_drs; /* DSA Relative Selector */ +/*b0*/ u32 nc_sbms; /* Static Block Move Selector */ +/*b4*/ u32 nc_dbms; /* Dynamic Block Move Selector */ +/*b8*/ u32 nc_dnad64; /* DMA Next Address 64 */ +/*bc*/ u16 nc_scntl4; /* C1010 only */ + #define U3EN 0x80 /* Enable Ultra 3 */ + #define AIPEN 0x40 /* Allow check upper byte lanes */ + #define XCLKH_DT 0x08 /* Extra clock of data hold on DT edge */ + #define XCLKH_ST 0x04 /* Extra clock of data hold on ST edge */ + #define XCLKS_DT 0x02 /* Extra clock of data set on DT edge */ + #define XCLKS_ST 0x01 /* Extra clock of data set on ST edge */ +/*be*/ u16 nc_aipcntl; /* Epat Control 1 C1010 only */ +/*c0*/ u32 nc_pmjad1; /* Phase Mismatch Jump Address 1 */ +/*c4*/ u32 nc_pmjad2; /* Phase Mismatch Jump Address 2 */ +/*c8*/ u8 nc_rbc; /* Remaining Byte Count */ +/*c9*/ u8 nc_rbc1; +/*ca*/ u8 nc_rbc2; +/*cb*/ u8 nc_rbc3; + +/*cc*/ u8 nc_ua; /* Updated Address */ +/*cd*/ u8 nc_ua1; +/*ce*/ u8 nc_ua2; +/*cf*/ u8 nc_ua3; +/*d0*/ u32 nc_esa; /* Entry Storage Address */ +/*d4*/ u8 nc_ia; /* Instruction Address */ +/*d5*/ u8 nc_ia1; +/*d6*/ u8 nc_ia2; +/*d7*/ u8 nc_ia3; +/*d8*/ u32 nc_sbc; /* SCSI Byte Count (3 bytes only) */ +/*dc*/ u32 nc_csbc; /* Cumulative SCSI Byte Count */ + /* Following for C1010 only */ +/*e0*/ u16 nc_crcpad; /* CRC Value */ +/*e2*/ u8 nc_crccntl0; /* CRC control register */ + #define SNDCRC 0x10 /* Send CRC Request */ +/*e3*/ u8 nc_crccntl1; /* CRC control register */ +/*e4*/ u32 nc_crcdata; /* CRC data register */ +/*e8*/ u32 nc_e8_; +/*ec*/ u32 nc_ec_; +/*f0*/ u16 nc_dfbc; /* DMA FIFO byte count */ +}; + +/*----------------------------------------------------------- + * + * Utility macros for the script. + * + *----------------------------------------------------------- + */ + +#define REGJ(p,r) (offsetof(struct sym_reg, p ## r)) +#define REG(r) REGJ (nc_, r) + +typedef u32 symcmd; + +/*----------------------------------------------------------- + * + * SCSI phases + * + *----------------------------------------------------------- + */ + +#define SCR_DATA_OUT 0x00000000 +#define SCR_DATA_IN 0x01000000 +#define SCR_COMMAND 0x02000000 +#define SCR_STATUS 0x03000000 +#define SCR_DT_DATA_OUT 0x04000000 +#define SCR_DT_DATA_IN 0x05000000 +#define SCR_MSG_OUT 0x06000000 +#define SCR_MSG_IN 0x07000000 +/* DT phases are illegal for non Ultra3 mode */ +#define SCR_ILG_OUT 0x04000000 +#define SCR_ILG_IN 0x05000000 + +/*----------------------------------------------------------- + * + * Data transfer via SCSI. + * + *----------------------------------------------------------- + * + * MOVE_ABS (LEN) + * <> + * + * MOVE_IND (LEN) + * <> + * + * MOVE_TBL + * <> + * + *----------------------------------------------------------- + */ + +#define OPC_MOVE 0x08000000 + +#define SCR_MOVE_ABS(l) ((0x00000000 | OPC_MOVE) | (l)) +#define SCR_MOVE_IND(l) ((0x20000000 | OPC_MOVE) | (l)) +#define SCR_MOVE_TBL (0x10000000 | OPC_MOVE) + +#define SCR_CHMOV_ABS(l) ((0x00000000) | (l)) +#define SCR_CHMOV_IND(l) ((0x20000000) | (l)) +#define SCR_CHMOV_TBL (0x10000000) + +struct sym_tblmove { + u32 size; + u32 addr; +}; + +/*----------------------------------------------------------- + * + * Selection + * + *----------------------------------------------------------- + * + * SEL_ABS | SCR_ID (0..15) [ | REL_JMP] + * <> + * + * SEL_TBL | << dnad_offset>> [ | REL_JMP] + * <> + * + *----------------------------------------------------------- + */ + +#define SCR_SEL_ABS 0x40000000 +#define SCR_SEL_ABS_ATN 0x41000000 +#define SCR_SEL_TBL 0x42000000 +#define SCR_SEL_TBL_ATN 0x43000000 + +struct sym_tblsel { + u_char sel_scntl4; /* C1010 only */ + u_char sel_sxfer; + u_char sel_id; + u_char sel_scntl3; +}; + +#define SCR_JMP_REL 0x04000000 +#define SCR_ID(id) (((u32)(id)) << 16) + +/*----------------------------------------------------------- + * + * Waiting for Disconnect or Reselect + * + *----------------------------------------------------------- + * + * WAIT_DISC + * dummy: <> + * + * WAIT_RESEL + * <> + * + *----------------------------------------------------------- + */ + +#define SCR_WAIT_DISC 0x48000000 +#define SCR_WAIT_RESEL 0x50000000 + +/*----------------------------------------------------------- + * + * Bit Set / Reset + * + *----------------------------------------------------------- + * + * SET (flags {|.. }) + * + * CLR (flags {|.. }) + * + *----------------------------------------------------------- + */ + +#define SCR_SET(f) (0x58000000 | (f)) +#define SCR_CLR(f) (0x60000000 | (f)) + +#define SCR_CARRY 0x00000400 +#define SCR_TRG 0x00000200 +#define SCR_ACK 0x00000040 +#define SCR_ATN 0x00000008 + + +/*----------------------------------------------------------- + * + * Memory to memory move + * + *----------------------------------------------------------- + * + * COPY (bytecount) + * << source_address >> + * << destination_address >> + * + * SCR_COPY sets the NO FLUSH option by default. + * SCR_COPY_F does not set this option. + * + * For chips which do not support this option, + * sym_copy_and_bind() will remove this bit. + * + *----------------------------------------------------------- + */ + +#define SCR_NO_FLUSH 0x01000000 + +#define SCR_COPY(n) (0xc0000000 | SCR_NO_FLUSH | (n)) +#define SCR_COPY_F(n) (0xc0000000 | (n)) + +/*----------------------------------------------------------- + * + * Register move and binary operations + * + *----------------------------------------------------------- + * + * SFBR_REG (reg, op, data) reg = SFBR op data + * << 0 >> + * + * REG_SFBR (reg, op, data) SFBR = reg op data + * << 0 >> + * + * REG_REG (reg, op, data) reg = reg op data + * << 0 >> + * + *----------------------------------------------------------- + * + * On 825A, 875, 895 and 896 chips the content + * of SFBR register can be used as data (SCR_SFBR_DATA). + * The 896 has additionnal IO registers starting at + * offset 0x80. Bit 7 of register offset is stored in + * bit 7 of the SCRIPTS instruction first DWORD. + * + *----------------------------------------------------------- + */ + +#define SCR_REG_OFS(ofs) ((((ofs) & 0x7f) << 16ul) + ((ofs) & 0x80)) + +#define SCR_SFBR_REG(reg,op,data) \ + (0x68000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul)) + +#define SCR_REG_SFBR(reg,op,data) \ + (0x70000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul)) + +#define SCR_REG_REG(reg,op,data) \ + (0x78000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul)) + + +#define SCR_LOAD 0x00000000 +#define SCR_SHL 0x01000000 +#define SCR_OR 0x02000000 +#define SCR_XOR 0x03000000 +#define SCR_AND 0x04000000 +#define SCR_SHR 0x05000000 +#define SCR_ADD 0x06000000 +#define SCR_ADDC 0x07000000 + +#define SCR_SFBR_DATA (0x00800000>>8ul) /* Use SFBR as data */ + +/*----------------------------------------------------------- + * + * FROM_REG (reg) SFBR = reg + * << 0 >> + * + * TO_REG (reg) reg = SFBR + * << 0 >> + * + * LOAD_REG (reg, data) reg = + * << 0 >> + * + * LOAD_SFBR(data) SFBR = + * << 0 >> + * + *----------------------------------------------------------- + */ + +#define SCR_FROM_REG(reg) \ + SCR_REG_SFBR(reg,SCR_OR,0) + +#define SCR_TO_REG(reg) \ + SCR_SFBR_REG(reg,SCR_OR,0) + +#define SCR_LOAD_REG(reg,data) \ + SCR_REG_REG(reg,SCR_LOAD,data) + +#define SCR_LOAD_SFBR(data) \ + (SCR_REG_SFBR (gpreg, SCR_LOAD, data)) + +/*----------------------------------------------------------- + * + * LOAD from memory to register. + * STORE from register to memory. + * + * Only supported by 810A, 860, 825A, 875, 895 and 896. + * + *----------------------------------------------------------- + * + * LOAD_ABS (LEN) + * <> + * + * LOAD_REL (LEN) (DSA relative) + * <> + * + *----------------------------------------------------------- + */ + +#define SCR_REG_OFS2(ofs) (((ofs) & 0xff) << 16ul) +#define SCR_NO_FLUSH2 0x02000000 +#define SCR_DSA_REL2 0x10000000 + +#define SCR_LOAD_R(reg, how, n) \ + (0xe1000000 | how | (SCR_REG_OFS2(REG(reg))) | (n)) + +#define SCR_STORE_R(reg, how, n) \ + (0xe0000000 | how | (SCR_REG_OFS2(REG(reg))) | (n)) + +#define SCR_LOAD_ABS(reg, n) SCR_LOAD_R(reg, SCR_NO_FLUSH2, n) +#define SCR_LOAD_REL(reg, n) SCR_LOAD_R(reg, SCR_NO_FLUSH2|SCR_DSA_REL2, n) +#define SCR_LOAD_ABS_F(reg, n) SCR_LOAD_R(reg, 0, n) +#define SCR_LOAD_REL_F(reg, n) SCR_LOAD_R(reg, SCR_DSA_REL2, n) + +#define SCR_STORE_ABS(reg, n) SCR_STORE_R(reg, SCR_NO_FLUSH2, n) +#define SCR_STORE_REL(reg, n) SCR_STORE_R(reg, SCR_NO_FLUSH2|SCR_DSA_REL2,n) +#define SCR_STORE_ABS_F(reg, n) SCR_STORE_R(reg, 0, n) +#define SCR_STORE_REL_F(reg, n) SCR_STORE_R(reg, SCR_DSA_REL2, n) + + +/*----------------------------------------------------------- + * + * Waiting for Disconnect or Reselect + * + *----------------------------------------------------------- + * + * JUMP [ | IFTRUE/IFFALSE ( ... ) ] + * <
> + * + * JUMPR [ | IFTRUE/IFFALSE ( ... ) ] + * <> + * + * CALL [ | IFTRUE/IFFALSE ( ... ) ] + * <
> + * + * CALLR [ | IFTRUE/IFFALSE ( ... ) ] + * <> + * + * RETURN [ | IFTRUE/IFFALSE ( ... ) ] + * <> + * + * INT [ | IFTRUE/IFFALSE ( ... ) ] + * <> + * + * INT_FLY [ | IFTRUE/IFFALSE ( ... ) ] + * <> + * + * Conditions: + * WHEN (phase) + * IF (phase) + * CARRYSET + * DATA (data, mask) + * + *----------------------------------------------------------- + */ + +#define SCR_NO_OP 0x80000000 +#define SCR_JUMP 0x80080000 +#define SCR_JUMP64 0x80480000 +#define SCR_JUMPR 0x80880000 +#define SCR_CALL 0x88080000 +#define SCR_CALLR 0x88880000 +#define SCR_RETURN 0x90080000 +#define SCR_INT 0x98080000 +#define SCR_INT_FLY 0x98180000 + +#define IFFALSE(arg) (0x00080000 | (arg)) +#define IFTRUE(arg) (0x00000000 | (arg)) + +#define WHEN(phase) (0x00030000 | (phase)) +#define IF(phase) (0x00020000 | (phase)) + +#define DATA(D) (0x00040000 | ((D) & 0xff)) +#define MASK(D,M) (0x00040000 | (((M ^ 0xff) & 0xff) << 8ul)|((D) & 0xff)) + +#define CARRYSET (0x00200000) + +/*----------------------------------------------------------- + * + * SCSI constants. + * + *----------------------------------------------------------- + */ + +/* + * Messages + */ + +#define M_COMPLETE (0x00) +#define M_EXTENDED (0x01) +#define M_SAVE_DP (0x02) +#define M_RESTORE_DP (0x03) +#define M_DISCONNECT (0x04) +#define M_ID_ERROR (0x05) +#define M_ABORT (0x06) +#define M_REJECT (0x07) +#define M_NOOP (0x08) +#define M_PARITY (0x09) +#define M_LCOMPLETE (0x0a) +#define M_FCOMPLETE (0x0b) +#define M_RESET (0x0c) +#define M_ABORT_TAG (0x0d) +#define M_CLEAR_QUEUE (0x0e) +#define M_INIT_REC (0x0f) +#define M_REL_REC (0x10) +#define M_TERMINATE (0x11) +#define M_SIMPLE_TAG (0x20) +#define M_HEAD_TAG (0x21) +#define M_ORDERED_TAG (0x22) +#define M_IGN_RESIDUE (0x23) +#define M_IDENTIFY (0x80) + +#define M_X_MODIFY_DP (0x00) +#define M_X_SYNC_REQ (0x01) +#define M_X_WIDE_REQ (0x03) +#define M_X_PPR_REQ (0x04) + +/* + * PPR protocol options + */ +#define PPR_OPT_IU (0x01) +#define PPR_OPT_DT (0x02) +#define PPR_OPT_QAS (0x04) +#define PPR_OPT_MASK (0x07) + +/* + * Status + */ + +#define S_GOOD (0x00) +#define S_CHECK_COND (0x02) +#define S_COND_MET (0x04) +#define S_BUSY (0x08) +#define S_INT (0x10) +#define S_INT_COND_MET (0x14) +#define S_CONFLICT (0x18) +#define S_TERMINATED (0x20) +#define S_QUEUE_FULL (0x28) +#define S_ILLEGAL (0xff) + +#endif /* defined SYM_DEFS_H */ diff --git a/sys/dev/sym/sym_hipd.c b/sys/dev/sym/sym_hipd.c new file mode 100644 index 000000000000..14307d9978a6 --- /dev/null +++ b/sys/dev/sym/sym_hipd.c @@ -0,0 +1,10921 @@ +/* + * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 + * PCI-SCSI controllers. + * + * Copyright (C) 1999 Gerard Roudier + * + * This driver also supports the following Symbios/LSI PCI-SCSI chips: + * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895. + * + * but does not support earlier chips as the following ones: + * 53C810, 53C815, 53C825. + * + * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-1999 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier + * Stefan Esser + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * The initialisation code, and part of the code that addresses + * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM + * written by Justin T. Gibbs. + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham + * + *----------------------------------------------------------------------------- + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#define SYM_DRIVER_NAME "sym-0.9.0-19991024" + +#include +#include /* For offsetof */ + +#include +/* + * Only use the BUS stuff for PCI under FreeBSD 4 and later versions. + * Note that the old BUS stuff also works for FreeBSD 4 and spares + * about 1.5KB for the driver objet file. + */ +#if __FreeBSD_version >= 400000 +#define FreeBSD_4_Bus +#endif + +#include +#include +#include +#ifdef FreeBSD_4_Bus +#include +#include +#endif + +#include +#include + +#include +#include + +#include +#include +#include +#ifdef FreeBSD_4_Bus +#include +#include +#endif +#include + +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include + +#if 0 +#include +#include +#include +#endif + +/* Short and quite clear integer types */ +typedef int8_t s8; +typedef int16_t s16; +typedef int32_t s32; +typedef u_int8_t u8; +typedef u_int16_t u16; +typedef u_int32_t u32; + +/* Driver configuration and definitions */ +#include +#include + +/* + * On x86 architecture, write buffers management does not + * reorder writes to memory. So, preventing compiler from + * optimizing the code is enough to guarantee some ordering + * when the CPU is writing data accessed by the PCI chip. + * On Alpha architecture, explicit barriers are to be used. + * By the way, the *BSD semantic associates the barrier + * with some window on the BUS and the corresponding verbs + * are for now unused. What a strangeness. The driver must + * ensure that accesses from the CPU to the start and done + * queues are not reordered by either the compiler or the + * CPU and uses 'volatile' for this purpose. + * -> Only x86 architecture is supported, for now. + */ + +#define MEMORY_BARRIER() do { ; } while(0) + +/* + * A la VMS/CAM-3 queue management. + */ + +typedef struct sym_quehead { + struct sym_quehead *flink; /* Forward pointer */ + struct sym_quehead *blink; /* Backward pointer */ +} SYM_QUEHEAD; + +#define sym_que_init(ptr) do { \ + (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ +} while (0) + +static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head) +{ + return (head->flink == head) ? 0 : head->flink; +} + +static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head) +{ + return (head->blink == head) ? 0 : head->blink; +} + +static __inline void __sym_que_add(struct sym_quehead * new, + struct sym_quehead * blink, + struct sym_quehead * flink) +{ + flink->blink = new; + new->flink = flink; + new->blink = blink; + blink->flink = new; +} + +static __inline void __sym_que_del(struct sym_quehead * blink, + struct sym_quehead * flink) +{ + flink->blink = blink; + blink->flink = flink; +} + +static __inline int sym_que_empty(struct sym_quehead *head) +{ + return head->flink == head; +} + +static __inline void sym_que_splice(struct sym_quehead *list, + struct sym_quehead *head) +{ + struct sym_quehead *first = list->flink; + + if (first != list) { + struct sym_quehead *last = list->blink; + struct sym_quehead *at = head->flink; + + first->blink = head; + head->flink = first; + + last->flink = at; + at->blink = last; + } +} + +#define sym_que_entry(ptr, type, member) \ + ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) + + +#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) + +#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) + +#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) + +static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) +{ + struct sym_quehead *elem = head->flink; + + if (elem != head) + __sym_que_del(head, elem->flink); + else + elem = 0; + return elem; +} + +#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) + +static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) +{ + struct sym_quehead *elem = head->blink; + + if (elem != head) + __sym_que_del(elem->blink, head); + else + elem = 0; + return elem; +} + +/* + * This one may be usefull. + */ +#define FOR_EACH_QUEUED_ELEMENT(head, qp) \ + for (qp = (head)->flink; qp != (head); qp = qp->flink) +/* + * FreeBSD does not offer our kind of queue in the CAM CCB. + * So, we have to cast. + */ +#define sym_qptr(p) ((struct sym_quehead *) (p)) + +/* + * Simple bitmap operations. + */ +#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) +#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) +#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) + +/* + * Number of tasks per device we want to handle. + */ +#if SYMCONF_MAX_TAG_ORDER > 8 +#error "more than 256 tags per logical unit not allowed." +#endif +#define SYMCONF_MAX_TASK (1< SYMCONF_MAX_TASK +#undef SYMCONF_MAX_TAG +#define SYMCONF_MAX_TAG SYMCONF_MAX_TASK +#endif + +/* + * This one means 'NO TAG for this job' + */ +#define NO_TAG (256) + +/* + * Number of SCSI targets. + */ +#if SYMCONF_MAX_TARGET > 16 +#error "more than 16 targets not allowed." +#endif + +/* + * Number of logical units per target. + */ +#if SYMCONF_MAX_LUN > 64 +#error "more than 64 logical units per target not allowed." +#endif + +/* + * Asynchronous pre-scaler (ns). Shall be 40 for + * the SCSI timings to be compliant. + */ +#define SYMCONF_MIN_ASYNC (40) + +/* + * Number of entries in the START and DONE queues. + * + * We limit to 1 PAGE in order to succeed allocation of + * these queues. Each entry is 8 bytes long (2 DWORDS). + */ +#ifdef SYMCONF_MAX_START +#define SYMCONF_MAX_QUEUE (SYMCONF_MAX_START+2) +#else +#define SYMCONF_MAX_QUEUE (7*SYMCONF_MAX_TASK+2) +#define SYMCONF_MAX_START (SYMCONF_MAX_QUEUE-2) +#endif + +#if SYMCONF_MAX_QUEUE > PAGE_SIZE/8 +#undef SYMCONF_MAX_QUEUE +#define SYMCONF_MAX_QUEUE PAGE_SIZE/8 +#undef SYMCONF_MAX_START +#define SYMCONF_MAX_START (SYMCONF_MAX_QUEUE-2) +#endif + +/* + * For this one, we want a short name :-) + */ +#define MAX_QUEUE SYMCONF_MAX_QUEUE + +/* + * This one should have been already defined. + */ +#ifndef offsetof +#define offsetof(t, m) ((size_t) (&((t *)0)->m)) +#endif + +/* + * Active debugging tags and verbosity. + */ +#define DEBUG_ALLOC (0x0001) +#define DEBUG_PHASE (0x0002) +#define DEBUG_POLL (0x0004) +#define DEBUG_QUEUE (0x0008) +#define DEBUG_RESULT (0x0010) +#define DEBUG_SCATTER (0x0020) +#define DEBUG_SCRIPT (0x0040) +#define DEBUG_TINY (0x0080) +#define DEBUG_TIMING (0x0100) +#define DEBUG_NEGO (0x0200) +#define DEBUG_TAGS (0x0400) +#define DEBUG_POINTER (0x0800) + +#if 0 +static int sym_debug = 0; + #define DEBUG_FLAGS sym_debug +#else +/* #define DEBUG_FLAGS (0x0631) */ + #define DEBUG_FLAGS (0x0) +#endif +#define sym_verbose (np->verbose) + +/* + * Virtual to bus address translation. + * Only x86 supported. + */ +#define vtobus(p) vtophys(p) + +/* + * Copy from main memory to PCI memory space. + */ +#define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n)) + +/* + * Insert a delay in micro-seconds and milli-seconds. + */ +static void UDELAY(long us) { DELAY(us); } +static void MDELAY(long ms) { while (ms--) UDELAY(1000); } + +/* + * Memory allocation/allocator. + * We assume allocations are naturally aligned and if it is + * not guaranteed, we may use our internal allocator. + */ +#ifdef SYMCONF_USE_INTERNAL_ALLOCATOR +/* + * Simple power of two buddy-like allocator. + * + * This simple code is not intended to be fast, but to + * provide power of 2 aligned memory allocations. + * Since the SCRIPTS processor only supplies 8 bit arithmetic, + * this allocator allows simple and fast address calculations + * from the SCRIPTS code. In addition, cache line alignment + * is guaranteed for power of 2 cache line size. + * + * This allocator has been developped for the Linux sym53c8xx + * driver, since this O/S does not provide naturally aligned + * allocations. + * It has the vertue to allow the driver to use private pages + * of memory that will be useful if we ever need to deal with + * IO MMU for PCI. + */ + +#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ +#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum (for now (ever?) */ +typedef unsigned long addr; /* Enough bits to bit-hack addresses */ + +#if 0 +#define MEMO_FREE_UNUSED /* Free unused pages immediately */ +#endif + +struct m_link { + struct m_link *next; /* Simple links are enough */ +}; + +#ifndef M_DMA_32BIT +#define M_DMA_32BIT 0 /* Will this flag ever exist */ +#endif + +#define get_pages() \ + malloc(PAGE_SIZE< (PAGE_SIZE << MEMO_PAGE_ORDER)) + return 0; + + while (size > s) { + s <<= 1; + ++i; + } + + j = i; + while (!h[j].next) { + if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { + h[j].next = (struct m_link *)get_pages(); + if (h[j].next) + h[j].next->next = 0; + break; + } + ++j; + s <<= 1; + } + a = (addr) h[j].next; + if (a) { + h[j].next = h[j].next->next; + while (j > i) { + j -= 1; + s >>= 1; + h[j].next = (struct m_link *) (a+s); + h[j].next->next = 0; + } + } +#ifdef DEBUG + printf("__sym_malloc(%d) = %p\n", size, (void *) a); +#endif + return (void *) a; +} + +/* + * Free a memory area allocated using sym_malloc(). + * Coalesce buddies. + * Free pages that become unused if MEMO_FREE_UNUSED is + * defined. + */ +static void __sym_mfree(void *ptr, int size) +{ + int i = 0; + int s = (1 << MEMO_SHIFT); + struct m_link *q; + addr a, b; + +#ifdef DEBUG + printf("sym_mfree(%p, %d)\n", ptr, size); +#endif + + if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) + return; + + while (size > s) { + s <<= 1; + ++i; + } + + a = (addr) ptr; + + while (1) { +#ifdef MEMO_FREE_UNUSED + if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { + free_pages(a); + break; + } +#endif + b = a ^ s; + q = &h[i]; + while (q->next && q->next != (struct m_link *) b) { + q = q->next; + } + if (!q->next) { + ((struct m_link *) a)->next = h[i].next; + h[i].next = (struct m_link *) a; + break; + } + q->next = q->next->next; + a = a & b; + s <<= 1; + ++i; + } +} + +#else /* !defined SYSCONF_USE_INTERNAL_ALLOCATOR */ + +/* + * Using directly the system memory allocator. + */ + +#define __sym_mfree(ptr, size) free((ptr), M_DEVBUF) +#define __sym_malloc(size) malloc((size), M_DEVBUF, M_NOWAIT) + +#endif /* SYMCONF_USE_INTERNAL_ALLOCATOR */ + +#define MEMO_WARN 1 + +static void *sym_calloc2(int size, char *name, int uflags) +{ + void *p; + + p = __sym_malloc(size); + + if (DEBUG_FLAGS & DEBUG_ALLOC) + printf ("new %-10s[%4d] @%p.\n", name, size, p); + + if (p) + bzero(p, size); + else if (uflags & MEMO_WARN) + printf ("sym_calloc: failed to allocate %s[%d]\n", name, size); + + return p; +} + +#define sym_calloc(s, n) sym_calloc2(s, n, MEMO_WARN) + +static void sym_mfree(void *ptr, int size, char *name) +{ + if (DEBUG_FLAGS & DEBUG_ALLOC) + printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); + + __sym_mfree(ptr, size); +} + +/* + * Print a buffer in hexadecimal format. + */ +static void sym_printb_hex (u_char *p, int n) +{ + while (n-- > 0) + printf (" %x", *p++); +} + +/* + * Same with a label at beginning and .\n at end. + */ +static void sym_printl_hex (char *label, u_char *p, int n) +{ + printf ("%s", label); + sym_printb_hex (p, n); + printf (".\n"); +} + +/* + * Some poor sync table that refers to Tekram NVRAM layout. + */ +#ifdef SYMCONF_NVRAM_SUPPORT +static u_char Tekram_sync[16] = + {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; +#endif + +/* + * Union of supported NVRAM formats. + */ +struct sym_nvram { + int type; +#define SYM_SYMBIOS_NVRAM (1) +#define SYM_TEKRAM_NVRAM (2) +#ifdef SYMCONF_NVRAM_SUPPORT + union { + Symbios_nvram Symbios; + Tekram_nvram Tekram; + } data; +#endif +}; + +/* + * This one is hopefully useless, but actually useful. :-) + */ +#ifndef assert +#define assert(expression) { \ + if (!(expression)) { \ + (void)panic( \ + "assertion \"%s\" failed: file \"%s\", line %d\n", \ + #expression, \ + __FILE__, __LINE__); \ + } \ +} +#endif + +/* + * Some provision for a possible big endian support. + * By the way some Symbios chips also may support some kind + * of big endian byte ordering. + * For now, this stuff does not deserve any comments. :) + */ + +#define sym_offb(o) (o) +#define sym_offw(o) (o) + +#define cpu_to_scr(dw) (dw) +#define scr_to_cpu(dw) (dw) + +/* + * Access to the controller chip. + * + * If SYMCONF_IOMAPPED is defined, the driver will use + * normal IOs instead of the MEMORY MAPPED IO method + * recommended by PCI specifications. + * For now, we only support flat memory model that should + * limited support to x86 architecture. + */ + +/* + * Define some understable verbs so we will not suffer of + * having to deal with the stupid PC tokens for IO. + */ +#define io_read8(p) scr_to_cpu(inb((p))) +#define io_read16(p) scr_to_cpu(inw((p))) +#define io_read32(p) scr_to_cpu(inl((p))) +#define io_write8(p, v) outb((p), cpu_to_scr(v)) +#define io_write16(p, v) outw((p), cpu_to_scr(v)) +#define io_write32(p, v) outl((p), cpu_to_scr(v)) + +#define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a))) +#define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a))) +#define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a))) + +#define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b) +#define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b) +#define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b) + +/* + * Normal IO + */ +#if defined(SYMCONF_IOMAPPED) + +#define INB_OFF(o) io_read8(np->io_port + sym_offb(o)) +#define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v)) + +#define INW_OFF(o) io_read16(np->io_port + sym_offw(o)) +#define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v)) + +#define INL_OFF(o) io_read32(np->io_port + (o)) +#define OUTL_OFF(o, v) io_write32(np->base_io + (o), (v)) + +#else /* Memory mapped IO */ + +#define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o)) +#define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v)) + +#define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o)) +#define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v)) + +#define INL_OFF(o) mmio_read32(np->mmio_va + (o)) +#define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v)) + +#endif + +/* + * Common to both normal IO and MMIO. + */ +#define INB(r) INB_OFF(offsetof(struct sym_reg,r)) +#define INW(r) INW_OFF(offsetof(struct sym_reg,r)) +#define INL(r) INL_OFF(offsetof(struct sym_reg,r)) + +#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v)) +#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v)) +#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v)) + +#define OUTONB(r, m) OUTB(r, INB(r) | (m)) +#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) +#define OUTONW(r, m) OUTW(r, INW(r) | (m)) +#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) +#define OUTONL(r, m) OUTL(r, INL(r) | (m)) +#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) + +/* + * Command control block states. + */ +#define HS_IDLE (0) +#define HS_BUSY (1) +#define HS_NEGOTIATE (2) /* sync/wide data transfer*/ +#define HS_DISCONNECT (3) /* Disconnected by target */ + +#define HS_DONEMASK (0x80) +#define HS_COMPLETE (4|HS_DONEMASK) +#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ +#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ +#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ + +/* + * Software Interrupt Codes + */ +#define SIR_BAD_SCSI_STATUS (1) +#define SIR_SEL_ATN_NO_MSG_OUT (2) +#define SIR_MSG_RECEIVED (3) +#define SIR_MSG_WEIRD (4) +#define SIR_NEGO_FAILED (5) +#define SIR_NEGO_PROTO (6) +#define SIR_SCRIPT_STOPPED (7) +#define SIR_REJECT_TO_SEND (8) +#define SIR_SWIDE_OVERRUN (9) +#define SIR_SODL_UNDERRUN (10) +#define SIR_RESEL_NO_MSG_IN (11) +#define SIR_RESEL_NO_IDENTIFY (12) +#define SIR_RESEL_BAD_LUN (13) +#define SIR_TARGET_SELECTED (14) +#define SIR_RESEL_BAD_I_T_L (15) +#define SIR_RESEL_BAD_I_T_L_Q (16) +#define SIR_ABORT_SENT (17) +#define SIR_RESEL_ABORTED (18) +#define SIR_MSG_OUT_DONE (19) +#define SIR_COMPLETE_ERROR (20) +#define SIR_MAX (20) + +/* + * Extended error bit codes. + * xerr_status field of struct sym_ccb. + */ +#define XE_EXTRA_DATA (1) /* unexpected data phase */ +#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ +#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ +#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ +#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ + +/* + * Negotiation status. + * nego_status field of struct sym_ccb. + */ +#define NS_SYNC (1) +#define NS_WIDE (2) +#define NS_PPR (3) + +/* + * A CCB hashed table is used to retrieve CCB address + * from DSA value. + */ +#define CCB_HASH_SHIFT 8 +#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) +#define CCB_HASH_MASK (CCB_HASH_SIZE-1) +#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) + +/* + * Device flags. + */ +#define SYM_DISC_ENABLED (1) +#define SYM_TAGS_ENABLED (1<<1) +#define SYM_SCAN_BOOT_DISABLED (1<<2) +#define SYM_SCAN_LUNS_DISABLED (1<<3) + +/* + * Device quirks. + * Some devices, for example the CHEETAH 2 LVD, disconnects without + * saving the DATA POINTER then reconnect and terminates the IO. + * On reselection, the automatic RESTORE DATA POINTER makes the + * CURRENT DATA POINTER not point at the end of the IO. + * This behaviour just breaks our calculation of the residual. + * For now, we just force an AUTO SAVE on disconnection and will + * fix that in a further driver version. + */ +#define SYM_QUIRK_AUTOSAVE 1 + +/* + * Misc. + */ +#define SYM_SNOOP_TIMEOUT (10000000) +#define SYM_PCI_IO PCIR_MAPS +#define SYM_PCI_MMIO (PCIR_MAPS + 4) +#define SYM_PCI_RAM (PCIR_MAPS + 8) +#define SYM_PCI_RAM64 (PCIR_MAPS + 12) + +/* + * Back-pointer from the CAM CCB to our data structures. + */ +#define sym_hcb_ptr spriv_ptr0 +/* #define sym_ccb_ptr spriv_ptr1 */ + +/* + * We mostly have to deal with pointers. + * Thus these typedef's. + */ +typedef struct sym_tcb *tcb_p; +typedef struct sym_lcb *lcb_p; +typedef struct sym_ccb *ccb_p; +typedef struct sym_hcb *hcb_p; +typedef struct sym_scr *script_p; +typedef struct sym_scrh *scripth_p; + +/* + * Gather negotiable parameters value + */ +struct sym_trans { + u8 period; + u8 offset; + u8 width; + u8 options; /* PPR options */ +}; + +struct sym_tinfo { + struct sym_trans current; + struct sym_trans goal; + struct sym_trans user; +}; + +#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT +#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT + +/* + * Target Control Block + */ +struct sym_tcb { + /* + * LUN table used by the SCRIPTS processor. + * An array of bus addresses is used on reselection. + * LUN #0 is a special case, since multi-lun devices are rare, + * and we we want to speed-up the general case and not waste + * resources. + */ + u32 *luntbl; /* LCBs bus address table */ + u32 luntbl_sa; /* bus address of this table */ + u32 lun0_sa; /* bus address of LCB #0 */ + + /* + * LUN table used by the C code. + */ + lcb_p lun0p; /* LCB of LUN #0 (usual case) */ +#if SYMCONF_MAX_LUN > 1 + lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */ +#endif + + /* + * Bitmap that tells about LUNs that succeeded at least + * 1 IO and therefore assumed to be a real device. + * Avoid useless allocation of the LCB structure. + */ + u32 lun_map[(SYMCONF_MAX_LUN+31)/32]; + + /* + * Bitmap that tells about LUNs that haven't yet an LCB + * allocated (not discovered or LCB allocation failed). + */ + u32 busy0_map[(SYMCONF_MAX_LUN+31)/32]; + + /* + * Actual SYNC/WIDE IO registers value for this target. + * 'sval', 'wval' and 'uval' are read from SCRIPTS and + * so have alignment constraints. + */ +/*0*/ u_char uval; /* -> SCNTL4 register */ +/*1*/ u_char sval; /* -> SXFER io register */ +/*2*/ u_char filler1; +/*3*/ u_char wval; /* -> SCNTL3 io register */ + + /* + * Transfer capabilities (SIP) + */ + struct sym_tinfo tinfo; + + /* + * Keep track of the CCB used for the negotiation in order + * to ensure that only 1 negotiation is queued at a time. + */ + ccb_p nego_cp; /* CCB used for the nego */ + + /* + * Set when we want to reset the device. + */ + u_char to_reset; + + /* + * Other user settable limits and options. + * These limits are read from the NVRAM if present. + */ + u_char usrflags; + u_short usrtags; +}; + +/* + * Logical Unit Control Block + */ +struct sym_lcb { + /* + * SCRIPTS address jumped by SCRIPTS on reselection. + * For not probed logical units, this address points to + * SCRIPTS that deal with bad LU handling (must be at + * offset zero for that reason). + */ +/*0*/ u32 resel_sa; + + /* + * Task (bus address of a CCB) read from SCRIPTS that points + * to the unique ITL nexus allowed to be disconnected. + */ + u32 itl_task_sa; + + /* + * Task table read from SCRIPTS that contains pointers to + * ITLQ nexuses (bus addresses read from SCRIPTS). + */ + u32 *itlq_tbl; /* Kernel virtual address */ + u32 itlq_tbl_sa; /* Bus address used by SCRIPTS */ + + /* + * Busy CCBs management. + */ + u_short busy_itlq; /* Number of busy tagged CCBs */ + u_short busy_itl; /* Number of busy untagged CCBs */ + + /* + * Circular tag allocation buffer. + */ + u_short ia_tag; /* Tag allocation index */ + u_short if_tag; /* Tag release index */ + u_char *cb_tags; /* Circular tags buffer */ + + /* + * Set when we want to clear all tasks. + */ + u_char to_clear; + + /* + * Capabilities. + */ + u_char user_flags; + u_char current_flags; +}; + +/* + * Action from SCRIPTS on a task. + * Is part of the CCB, but is also used separately to plug + * error handling action to perform from SCRIPTS. + */ +struct sym_actscr { + u32 start; /* Jumped by SCRIPTS after selection */ + u32 restart; /* Jumped by SCRIPTS on relection */ +}; + +/* + * Phase mismatch context. + * + * It is part of the CCB and is used as parameters for the + * DATA pointer. We need two contexts to handle correctly the + * SAVED DATA POINTER. + */ +struct sym_pmc { + struct sym_tblmove sg; /* Updated interrupted SG block */ + u32 ret; /* SCRIPT return address */ +}; + +/* + * LUN control block lookup. + * We use a direct pointer for LUN #0, and a table of + * pointers which is only allocated for devices that support + * LUN(s) > 0. + */ +#if SYMCONF_MAX_LUN <= 1 +#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0 +#else +#define sym_lp(np, tp, lun) \ + (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0 +#endif + +/* + * Status are used by the host and the script processor. + * + * The last four bytes (status[4]) are copied to the + * scratchb register (declared as scr0..scr3) just after the + * select/reselect, and copied back just after disconnecting. + * Inside the script the XX_REG are used. + * + * The first four bytes (scr_st[4]) are used inside the + * script by "LOAD/STORE" commands. + * Because source and destination must have the same alignment + * in a DWORD, the fields HAVE to be at the choosen offsets. + * xerr_st 0 (0x34) scratcha + * nego_st 2 + */ + +/* + * Last four bytes (script) + */ +#define QU_REG scr0 +#define HS_REG scr1 +#define HS_PRT nc_scr1 +#define SS_REG scr2 +#define SS_PRT nc_scr2 +#define HF_REG scr3 +#define HF_PRT nc_scr3 + +/* + * Last four bytes (host) + */ +#define actualquirks phys.status[0] +#define host_status phys.status[1] +#define ssss_status phys.status[2] +#define host_flags phys.status[3] + +/* + * Host flags + */ +#define HF_IN_PM0 1u +#define HF_IN_PM1 (1u<<1) +#define HF_ACT_PM (1u<<2) +#define HF_DP_SAVED (1u<<3) +#define HF_SENSE (1u<<4) +#define HF_EXT_ERR (1u<<5) +#ifdef SYMCONF_IARB_SUPPORT +#define HF_HINT_IARB (1u<<7) +#endif + +/* + * First four bytes (script) + */ +#define xerr_st scr_st[0] +#define nego_st scr_st[2] + +/* + * First four bytes (host) + */ +#define xerr_status phys.xerr_st +#define nego_status phys.nego_st + +/* + * Data Structure Block + * + * During execution of a ccb by the script processor, the + * DSA (data structure address) register points to this + * substructure of the ccb. + */ +struct dsb { + /* + * Start and restart SCRIPTS addresses (must be at 0). + */ +/*0*/ struct sym_actscr go; + + /* + * SCRIPTS jump address that deal with data pointers. + * 'savep' points to the position in the script responsible + * for the actual transfer of data. + * It's written on reception of a SAVE_DATA_POINTER message. + */ + u32 savep; /* Jump address to saved data pointer */ + u32 lastp; /* SCRIPTS address at end of data */ + u32 goalp; /* Not used for now */ + + /* + * Status fields. + */ + u8 scr_st[4]; /* script status */ + u8 status[4]; /* host status */ + + /* + * Table data for Script + */ + struct sym_tblsel select; + struct sym_tblmove smsg; + struct sym_tblmove smsg_ext; + struct sym_tblmove cmd; + struct sym_tblmove sense; + struct sym_tblmove data [SYMCONF_MAX_SG]; + + /* + * Phase mismatch contexts. + * We need two to handle correctly the SAVED DATA POINTER. + */ + struct sym_pmc pm0; + struct sym_pmc pm1; + + /* + * Extra bytes count transferred in case of data overrun. + */ + u32 extra_bytes; +}; + +/* + * Our Command Control Block + */ +struct sym_ccb { + /* + * This is the data structure which is pointed by the DSA + * register when it is executed by the script processor. + * It must be the first entry. + */ + struct dsb phys; + + /* + * Pointer to CAM ccb and related stuff. + */ + union ccb *cam_ccb; /* CAM scsiio ccb */ + int data_len; /* Total data length */ + int segments; /* Number of SG segments */ + + /* + * Message areas. + * We prepare a message to be sent after selection. + * We may use a second one if the command is rescheduled + * due to CHECK_CONDITION or COMMAND TERMINATED. + * Contents are IDENTIFY and SIMPLE_TAG. + * While negotiating sync or wide transfer, + * a SDTR or WDTR message is appended. + */ + u_char scsi_smsg [12]; + u_char scsi_smsg2[12]; + + /* + * Auto request sense related fields. + */ + u_char sensecmd[6]; /* Request Sense command */ + u_char sv_scsi_status; /* Saved SCSI status */ + u_char sv_xerr_status; /* Saved extended status */ + int sv_resid; /* Saved residual */ + + /* + * Other fields. + */ + u_long ccb_ba; /* BUS address of this CCB */ + u_short tag; /* Tag for this transfer */ + /* NO_TAG means no tag */ + u_char target; + u_char lun; + ccb_p link_ccb; /* Host adapter CCB chain */ + ccb_p link_ccbh; /* Host adapter CCB hash chain */ + SYM_QUEHEAD + link_ccbq; /* Link to free/busy CCB queue */ + u32 startp; /* Initial data pointer */ + int ext_sg; /* Extreme data pointer, used */ + int ext_ofs; /* to calculate the residual. */ + u_char to_abort; /* Want this IO to be aborted */ +}; + +#define CCB_PHYS(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl)) + +/* + * Host Control Block + */ +struct sym_hcb { + /* + * Idle task and invalid task actions and + * their bus addresses. + */ + struct sym_actscr idletask, notask, bad_itl, bad_itlq; + vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; + + /* + * Dummy lun table to protect us against target + * returning bad lun number on reselection. + */ + u32 *badluntbl; /* Table physical address */ + u32 badlun_sa; /* SCRIPT handler BUS address */ + + /* + * Bit 32-63 of the on-chip RAM bus address in LE format. + * The START_RAM64 script loads the MMRS and MMWS from this + * field. + */ + u32 scr_ram_seg; + + /* + * Chip and controller indentification. + */ +#ifdef FreeBSD_4_Bus + device_t device; +#else + pcici_t pci_tag; +#endif + int unit; + char inst_name[8]; + + /* + * Initial value of some IO register bits. + * These values are assumed to have been set by BIOS, and may + * be used to probe adapter implementation differences. + */ + u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, + sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4; + + /* + * Actual initial value of IO register bits used by the + * driver. They are loaded at initialisation according to + * features that are to be enabled/disabled. + */ + u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, + rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; + + /* + * Target data used by the CPU. + */ + struct sym_tcb target[SYMCONF_MAX_TARGET]; + + /* + * Target control block bus address array used by the SCRIPT + * on reselection. + */ + u32 *targtbl; + + /* + * CAM SIM information for this instance. + */ + struct cam_sim *sim; + struct cam_path *path; + + /* + * Allocated hardware resources. + */ +#ifdef FreeBSD_4_Bus + struct resource *irq_res; + struct resource *io_res; + struct resource *mmio_res; + struct resource *ram_res; + int ram_id; + void *intr; +#endif + + /* + * Bus stuff. + * + * My understanding of PCI is that all agents must share the + * same addressing range and model. + * But some hardware architecture guys provide complex and + * brain-deaded stuff that makes shit. + * This driver only support PCI compliant implementations and + * deals with part of the BUS stuff complexity only to fit O/S + * requirements. + */ +#ifdef FreeBSD_4_Bus + bus_space_handle_t io_bsh; + bus_space_tag_t io_tag; + bus_space_handle_t mmio_bsh; + bus_space_tag_t mmio_tag; + bus_space_handle_t ram_bsh; + bus_space_tag_t ram_tag; +#endif + + /* + * Virtual and physical bus addresses of the chip. + */ + vm_offset_t mmio_va; /* MMIO kernel virtual address */ + vm_offset_t mmio_pa; /* MMIO CPU physical address */ + vm_offset_t mmio_ba; /* MMIO BUS address */ + int mmio_ws; /* MMIO Window size */ + + vm_offset_t ram_va; /* RAM kernel virtual address */ + vm_offset_t ram_pa; /* RAM CPU physical address */ + vm_offset_t ram_ba; /* RAM BUS address */ + int ram_ws; /* RAM window size */ + u32 io_port; /* IO port address */ + + /* + * SCRIPTS virtual and physical bus addresses. + * 'script' is loaded in the on-chip RAM if present. + * 'scripth' stays in main memory for all chips except the + * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. + */ + struct sym_scr *script0; /* Copies of script and scripth */ + struct sym_scrh *scripth0; /* relocated for this host. */ + vm_offset_t script_ba; /* Actual script and scripth */ + vm_offset_t scripth_ba; /* bus addresses. */ + vm_offset_t scripth0_ba; + + /* + * General controller parameters and configuration. + */ + u_short device_id; /* PCI device id */ + u_char revision_id; /* PCI device revision id */ + u_int features; /* Chip features map */ + u_char myaddr; /* SCSI id of the adapter */ + u_char maxburst; /* log base 2 of dwords burst */ + u_char maxwide; /* Maximum transfer width */ + u_char minsync; /* Min sync period factor (ST) */ + u_char maxsync; /* Max sync period factor (ST) */ + u_char minsync_dt; /* Min sync period factor (DT) */ + u_char maxsync_dt; /* Max sync period factor (DT) */ + u_char maxoffs; /* Max scsi offset */ + u_char multiplier; /* Clock multiplier (1,2,4) */ + u_char clock_divn; /* Number of clock divisors */ + u_long clock_khz; /* SCSI clock frequency in KHz */ + + /* + * Start queue management. + * It is filled up by the host processor and accessed by the + * SCRIPTS processor in order to start SCSI commands. + */ + volatile /* Prevent code optimizations */ + u32 *squeue; /* Start queue */ + u_short squeueput; /* Next free slot of the queue */ + u_short actccbs; /* Number of allocated CCBs */ + + /* + * Command completion queue. + * It is the same size as the start queue to avoid overflow. + */ + u_short dqueueget; /* Next position to scan */ + volatile /* Prevent code optimizations */ + u32 *dqueue; /* Completion (done) queue */ + + /* + * Miscellaneous buffers accessed by the scripts-processor. + * They shall be DWORD aligned, because they may be read or + * written with a script command. + */ + u_char msgout[8]; /* Buffer for MESSAGE OUT */ + u_char msgin [8]; /* Buffer for MESSAGE IN */ + u32 lastmsg; /* Last SCSI message sent */ + u_char scratch; /* Scratch for SCSI receive */ + + /* + * Miscellaneous configuration and status parameters. + */ + u_char scsi_mode; /* Current SCSI BUS mode */ + u_char verbose; /* Verbosity for this controller*/ + u32 cache; /* Used for cache test at init. */ + + /* + * CCB lists and queue. + */ + ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ + ccb_p ccbc; /* CCB chain */ + SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ + SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ + + /* + * During error handling and/or recovery, + * active CCBs that are to be completed with + * error or requeued are moved from the busy_ccbq + * to the comp_ccbq prior to completion. + */ + SYM_QUEHEAD comp_ccbq; + + /* + * CAM CCB pending queue. + */ + SYM_QUEHEAD cam_ccbq; + + /* + * IMMEDIATE ARBITRATION (IARB) control. + * + * We keep track in 'last_cp' of the last CCB that has been + * queued to the SCRIPTS processor and clear 'last_cp' when + * this CCB completes. If last_cp is not zero at the moment + * we queue a new CCB, we set a flag in 'last_cp' that is + * used by the SCRIPTS as a hint for setting IARB. + * We donnot set more than 'iarb_max' consecutive hints for + * IARB in order to leave devices a chance to reselect. + * By the way, any non zero value of 'iarb_max' is unfair. :) + */ +#ifdef SYMCONF_IARB_SUPPORT + u_short iarb_max; /* Max. # consecutive IARB hints*/ + u_short iarb_count; /* Actual # of these hints */ + ccb_p last_cp; +#endif + + /* + * Command abort handling. + * We need to synchronize tightly with the SCRIPTS + * processor in order to handle things correctly. + */ + u_char abrt_msg[4]; /* Message to send buffer */ + struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ + struct sym_tblsel abrt_sel; /* Sync params for selection */ + u_char istat_sem; /* Tells the chip to stop (SEM) */ +}; + +#define SCRIPT_BA(np,lbl) (np->script_ba + offsetof(struct sym_scr, lbl)) +#define SCRIPTH_BA(np,lbl) (np->scripth_ba + offsetof(struct sym_scrh,lbl)) +#define SCRIPTH0_BA(np,lbl) (np->scripth0_ba + offsetof(struct sym_scrh,lbl)) + +/* + * Scripts for SYMBIOS-Processor + * + * Use sym_fill_scripts() to create the variable parts. + * Use sym_bind_script() to make a copy and bind to + * physical bus addresses. + * We have to know the offsets of all labels before we reach + * them (for forward jumps). Therefore we declare a struct + * here. If you make changes inside the script, + * + * DONT FORGET TO CHANGE THE LENGTHS HERE! + */ + +/* + * Script fragments which are loaded into the on-chip RAM + * of 825A, 875, 876, 895, 895A, 896 and 1010 chips. + * Must not exceed 4K bytes. + */ +struct sym_scr { + u32 start [ 14]; + u32 getjob_begin [ 4]; + u32 getjob_end [ 4]; + u32 select [ 8]; + u32 wf_sel_done [ 2]; + u32 send_ident [ 2]; +#ifdef SYMCONF_IARB_SUPPORT + u32 select2 [ 8]; +#else + u32 select2 [ 2]; +#endif + u32 command [ 2]; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + u32 dispatch [ 18]; +#else + u32 dispatch [ 30]; +#endif + u32 sel_no_cmd [ 10]; + u32 init [ 6]; + u32 clrack [ 4]; + u32 disp_msg_in [ 2]; + u32 disp_status [ 4]; + u32 datai_done [ 16]; + u32 datao_done [ 10]; + u32 ign_i_w_r_msg [ 4]; + u32 dataphase [ 2]; + u32 msg_in [ 2]; + u32 msg_in2 [ 10]; +#ifdef SYMCONF_IARB_SUPPORT + u32 status [ 14]; +#else + u32 status [ 10]; +#endif + u32 complete [ 8]; + u32 complete2 [ 12]; + u32 complete_error [ 4]; + u32 done [ 14]; + u32 done_end [ 2]; + u32 save_dp [ 8]; + u32 restore_dp [ 4]; + u32 disconnect [ 20]; +#ifdef SYMCONF_IARB_SUPPORT + u32 idle [ 4]; +#else + u32 idle [ 2]; +#endif +#ifdef SYMCONF_IARB_SUPPORT + u32 ungetjob [ 6]; +#else + u32 ungetjob [ 4]; +#endif + u32 reselect [ 4]; + u32 reselected [ 20]; + u32 resel_scntl4 [ 28]; +#if SYMCONF_MAX_TASK*4 > 512 + u32 resel_tag [ 24]; +#elif SYMCONF_MAX_TASK*4 > 256 + u32 resel_tag [ 18]; +#else + u32 resel_tag [ 14]; +#endif + u32 resel_dsa [ 2]; + u32 resel_dsa1 [ 6]; + u32 resel_no_tag [ 8]; + u32 data_in [SYMCONF_MAX_SG * 2]; + u32 data_in2 [ 4]; + u32 data_out [SYMCONF_MAX_SG * 2]; + u32 data_out2 [ 4]; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + u32 pm0_data [ 28]; + u32 pm1_data [ 28]; +#else + u32 pm0_data [ 16]; + u32 pm1_data [ 16]; +#endif +}; + +/* + * Script fragments which stay in main memory for all chips + * except for chips that support 8K on-chip RAM. + */ +struct sym_scrh { + u32 start64 [ 2]; + u32 sel_for_abort [ 18]; + u32 sel_for_abort_1 [ 2]; + u32 select_no_atn [ 8]; + u32 wf_sel_done_no_atn [ 4]; + + u32 msg_in_etc [ 14]; + u32 msg_received [ 4]; + u32 msg_weird_seen [ 4]; + u32 msg_extended [ 20]; + u32 msg_bad [ 6]; + u32 msg_weird [ 4]; + u32 msg_weird1 [ 8]; + + u32 wdtr_resp [ 6]; + u32 send_wdtr [ 4]; + u32 sdtr_resp [ 6]; + u32 send_sdtr [ 4]; + u32 ppr_resp [ 6]; + u32 send_ppr [ 4]; + u32 nego_bad_phase [ 4]; + u32 msg_out [ 4]; + u32 msg_out_done [ 4]; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + u32 no_data [ 36]; +#else + u32 no_data [ 28]; +#endif + u32 abort_resel [ 16]; + u32 resend_ident [ 4]; + u32 ident_break [ 4]; + u32 ident_break_atn [ 4]; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + u32 sdata_in [ 12]; +#else + u32 sdata_in [ 6]; +#endif + u32 resel_bad_lun [ 4]; + u32 bad_i_t_l [ 4]; + u32 bad_i_t_l_q [ 4]; + u32 bad_status [ 6]; + u32 pm_handle [ 20]; + u32 pm_handle1 [ 4]; + u32 pm_save [ 4]; + u32 pm0_save [ 14]; + u32 pm1_save [ 14]; + + /* SWIDE handling */ + u32 swide_ma_32 [ 4]; + u32 swide_ma_64 [ 6]; + u32 swide_scr_64 [ 26]; + u32 swide_scr_64_1 [ 12]; + u32 swide_com_64 [ 6]; + u32 swide_common [ 10]; + u32 swide_fin_32 [ 24]; + +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + u32 dt_data_in [SYMCONF_MAX_SG * 2]; + u32 dt_data_in2 [ 4]; + u32 dt_data_out [SYMCONF_MAX_SG * 2]; + u32 dt_data_out2 [ 4]; +#endif + + /* Data area */ + u32 zero [ 1]; + u32 scratch [ 1]; + u32 scratch1 [ 1]; + u32 pm0_data_addr [ 1]; + u32 pm1_data_addr [ 1]; + u32 saved_dsa [ 1]; + u32 saved_drs [ 1]; + u32 done_pos [ 1]; + u32 startpos [ 1]; + u32 targtbl [ 1]; + /* End of data area */ + + u32 snooptest [ 6]; + u32 snoopend [ 2]; +}; + +/* + * Function prototypes. + */ +static void sym_fill_scripts (script_p scr, scripth_p scrh); +static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len); +static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram); +static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr); +static void sym_put_start_queue (hcb_p np, ccb_p cp); +static void sym_soft_reset (hcb_p np); +static void sym_start_reset (hcb_p np); +static int sym_reset_scsi_bus (hcb_p np, int enab_int); +static int sym_wakeup_done (hcb_p np); +static void sym_flush_busy_queue (hcb_p np, int cam_status); +static void sym_flush_comp_queue (hcb_p np, int cam_status); +static void sym_init (hcb_p np, int reset, char *msg); +static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, + u_char *fakp); +static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per, + u_char div, u_char fak); +static void sym_setwide (hcb_p np, ccb_p cp, u_char wide); +static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak); +static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak); +static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat); +static void sym_intr (void *arg); +static void sym_poll (struct cam_sim *sim); +static void sym_recover_scsi_int (hcb_p np, u_char hsts); +static void sym_int_sto (hcb_p np); +static void sym_int_udc (hcb_p np); +static void sym_int_sbmc (hcb_p np); +static void sym_int_par (hcb_p np, u_short sist); +static void sym_int_ma (hcb_p np); +static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, + int task); +static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp); +static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task); +static void sym_sir_task_recovery (hcb_p np, int num); +static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs); +static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs); +static int sym_compute_residual (hcb_p np, ccb_p cp); +static int sym_show_msg (u_char * msg); +static void sym_print_msg (ccb_p cp, char *label, u_char *msg); +static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp); +static void sym_int_sir (hcb_p np); +static void sym_free_ccb (hcb_p np, ccb_p cp); +static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order); +static ccb_p sym_alloc_ccb (hcb_p np); +static ccb_p sym_ccb_from_dsa (hcb_p np, u_long dsa); +static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln); +static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln); +static int sym_snooptest (hcb_p np); +static void sym_selectclock(hcb_p np, u_char scntl3); +static void sym_getclock (hcb_p np, int mult); +static int sym_getpciclock (hcb_p np); +static void sym_complete_ok (hcb_p np, ccb_p cp); +static void sym_complete_error (hcb_p np, ccb_p cp); +static void sym_timeout (void *arg); +static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out); +static void sym_reset_dev (hcb_p np, union ccb *ccb); +static void sym_action (struct cam_sim *sim, union ccb *ccb); +static void sym_action1 (struct cam_sim *sim, union ccb *ccb); +static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp); +static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp); +static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr, + vm_size_t len); +static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t vaddr, + vm_size_t len); +static void sym_action2 (struct cam_sim *sim, union ccb *ccb); +static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip, + struct ccb_trans_settings *cts); +static void sym_update_dflags(hcb_p np, u_char *flags, + struct ccb_trans_settings *cts); + +#ifdef FreeBSD_4_Bus +static struct sym_pci_chip *sym_find_pci_chip (device_t dev); +static int sym_pci_probe (device_t dev); +static int sym_pci_attach (device_t dev); +#else +static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag); +static const char *sym_pci_probe (pcici_t tag, pcidi_t type); +static void sym_pci_attach (pcici_t tag, int unit); +static int sym_pci_attach2 (pcici_t tag, int unit); +#endif + +static void sym_pci_free (hcb_p np); +static int sym_cam_attach (hcb_p np); +static void sym_cam_free (hcb_p np); + +static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram); +static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp); +static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp); + +/* + * Return the name of the controller. + */ +static __inline char *sym_name(hcb_p np) +{ + return np->inst_name; +} + +/* + * Scripts for SYMBIOS-Processor + * + * Use sym_bind_script for binding to physical addresses. + * + * NADDR generates a reference to a field of the controller data. + * PADDR generates a reference to another part of the script. + * RADDR generates a reference to a script processor register. + * FADDR generates a reference to a script processor register + * with offset. + * + */ +#define RELOC_SOFTC 0x40000000 +#define RELOC_LABEL 0x50000000 +#define RELOC_REGISTER 0x60000000 +#if 0 +#define RELOC_KVAR 0x70000000 +#endif +#define RELOC_LABELH 0x80000000 +#define RELOC_MASK 0xf0000000 + +#define NADDR(label) (RELOC_SOFTC | offsetof(struct sym_hcb, label)) +#define PADDR(label) (RELOC_LABEL | offsetof(struct sym_scr, label)) +#define PADDRH(label) (RELOC_LABELH | offsetof(struct sym_scrh, label)) +#define RADDR(label) (RELOC_REGISTER | REG(label)) +#define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) +#define KVAR(which) (RELOC_KVAR | (which)) + +#define SCR_DATA_ZERO 0xf00ff00f + +#ifdef RELOC_KVAR +#define SCRIPT_KVAR_JIFFIES (0) +#define SCRIPT_KVAR_FIRST SCRIPT_KVAR_XXXXXXX +#define SCRIPT_KVAR_LAST SCRIPT_KVAR_XXXXXXX +/* + * Kernel variables referenced in the scripts. + * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. + */ +static void *script_kvars[] = + { (void *)&xxxxxxx }; +#endif + +static struct sym_scr script0 = { +/*--------------------------< START >-----------------------*/ { + /* + * This NOP will be patched with LED ON + * SCR_REG_REG (gpreg, SCR_AND, 0xfe) + */ + SCR_NO_OP, + 0, + /* + * Clear SIGP. + */ + SCR_FROM_REG (ctest2), + 0, + /* + * Stop here if the C code wants to perform + * some error recovery procedure manually. + * (Indicate this by setting SEM in ISTAT) + */ + SCR_FROM_REG (istat), + 0, + /* + * Report to the C code the next position in + * the start queue the SCRIPTS will schedule. + * The C code must not change SCRATCHA. + */ + SCR_LOAD_ABS (scratcha, 4), + PADDRH (startpos), + SCR_INT ^ IFTRUE (MASK (SEM, SEM)), + SIR_SCRIPT_STOPPED, + /* + * Start the next job. + * + * @DSA = start point for this job. + * SCRATCHA = address of this job in the start queue. + * + * We will restore startpos with SCRATCHA if we fails the + * arbitration or if it is the idle job. + * + * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS + * is a critical path. If it is partially executed, it then + * may happen that the job address is not yet in the DSA + * and the the next queue position points to the next JOB. + */ + SCR_LOAD_ABS (dsa, 4), + PADDRH (startpos), + SCR_LOAD_REL (temp, 4), + 4, +}/*-------------------------< GETJOB_BEGIN >------------------*/,{ + SCR_STORE_ABS (temp, 4), + PADDRH (startpos), + SCR_LOAD_REL (dsa, 4), + 0, +}/*-------------------------< GETJOB_END >--------------------*/,{ + SCR_LOAD_REL (temp, 4), + 0, + SCR_RETURN, + 0, +}/*-------------------------< SELECT >----------------------*/,{ + /* + * DSA contains the address of a scheduled + * data structure. + * + * SCRATCHA contains the address of the start queue + * entry which points to the next job. + * + * Set Initiator mode. + * + * (Target mode is left as an exercise for the reader) + */ + SCR_CLR (SCR_TRG), + 0, + /* + * And try to select this target. + */ + SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), + PADDR (ungetjob), + /* + * Now there are 4 possibilities: + * + * (1) The chip looses arbitration. + * This is ok, because it will try again, + * when the bus becomes idle. + * (But beware of the timeout function!) + * + * (2) The chip is reselected. + * Then the script processor takes the jump + * to the RESELECT label. + * + * (3) The chip wins arbitration. + * Then it will execute SCRIPTS instruction until + * the next instruction that checks SCSI phase. + * Then will stop and wait for selection to be + * complete or selection time-out to occur. + * + * After having won arbitration, the SCRIPTS + * processor is able to execute instructions while + * the SCSI core is performing SCSI selection. + */ + /* + * load the savep (saved data pointer) into + * the actual data pointer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.savep), + /* + * Initialize the status registers + */ + SCR_LOAD_REL (scr0, 4), + offsetof (struct sym_ccb, phys.status), +}/*-------------------------< WF_SEL_DONE >----------------------*/,{ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), + SIR_SEL_ATN_NO_MSG_OUT, +}/*-------------------------< SEND_IDENT >----------------------*/,{ + /* + * Selection complete. + * Send the IDENTIFY and possibly the TAG message + * and negotiation message if present. + */ + SCR_MOVE_TBL ^ SCR_MSG_OUT, + offsetof (struct dsb, smsg), +}/*-------------------------< SELECT2 >----------------------*/,{ +#ifdef SYMCONF_IARB_SUPPORT + /* + * Set IMMEDIATE ARBITRATION if we have been given + * a hint to do so. (Some job to do after this one). + */ + SCR_FROM_REG (HF_REG), + 0, + SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), + 8, + SCR_REG_REG (scntl1, SCR_OR, IARB), + 0, +#endif + /* + * Anticipate the COMMAND phase. + * This is the PHASE we expect at this point. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), + PADDR (sel_no_cmd), +}/*-------------------------< COMMAND >--------------------*/,{ + /* + * ... and send the command + */ + SCR_MOVE_TBL ^ SCR_COMMAND, + offsetof (struct dsb, cmd), +}/*-----------------------< DISPATCH >----------------------*/,{ + /* + * MSG_IN is the only phase that shall be + * entered at least once for each (re)selection. + * So we test it first. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR (msg_in), + SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), + PADDR (dataphase), + SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), + PADDR (dataphase), + SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), + PADDR (status), + SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), + PADDR (command), + SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), + PADDRH (msg_out), + +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + SCR_JUMP ^ IFTRUE (IF (SCR_DT_DATA_OUT)), + PADDR (dataphase), + SCR_JUMP ^ IFTRUE (IF (SCR_DT_DATA_IN)), + PADDR (dataphase), +#else + /* + * Set the extended error flag. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR), + 0, + /* + * Discard one illegal phase byte, if required. + */ + SCR_LOAD_REL (scratcha, 1), + offsetof (struct sym_ccb, xerr_status), + SCR_REG_REG (scratcha, SCR_OR, XE_BAD_PHASE), + 0, + SCR_STORE_REL (scratcha, 1), + offsetof (struct sym_ccb, xerr_status), + SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), + 8, + SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, + NADDR (scratch), + SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), + 8, + SCR_MOVE_ABS (1) ^ SCR_ILG_IN, + NADDR (scratch), +#endif /* SYMCONF_BROKEN_U3EN_SUPPORT */ + + SCR_JUMP, + PADDR (dispatch), +}/*---------------------< SEL_NO_CMD >----------------------*/,{ + /* + * The target does not switch to command + * phase after IDENTIFY has been sent. + * + * If it stays in MSG OUT phase send it + * the IDENTIFY again. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), + PADDRH (resend_ident), + /* + * If target does not switch to MSG IN phase + * and we sent a negotiation, assert the + * failure immediately. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR (dispatch), + SCR_FROM_REG (HS_REG), + 0, + SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), + SIR_NEGO_FAILED, + /* + * Jump to dispatcher. + */ + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< INIT >------------------------*/,{ + /* + * Wait for the SCSI RESET signal to be + * inactive before restarting operations, + * since the chip may hang on SEL_ATN + * if SCSI RESET is active. + */ + SCR_FROM_REG (sstat0), + 0, + SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), + -16, + SCR_JUMP, + PADDR (start), +}/*-------------------------< CLRACK >----------------------*/,{ + /* + * Terminate possible pending message phase. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< DISP_MSG_IN >----------------------*/,{ + /* + * Anticipate MSG_IN phase then STATUS phase. + * + * May spare 2 SCRIPTS instructions when we have + * completed the OUTPUT of the data and the device + * goes directly to STATUS phase. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR (msg_in), +}/*-------------------------< DISP_STATUS >----------------------*/,{ + /* + * Anticipate STATUS phase. + * + * Does spare 3 SCRIPTS instructions when we have + * completed the INPUT of the data. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), + PADDR (status), + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< DATAI_DONE >-------------------*/,{ + /* + * If the SWIDE is not full, jump to dispatcher. + * We anticipate a STATUS phase. + * If we get later an IGNORE WIDE RESIDUE, we + * will alias it as a MODIFY DP (-1). + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)), + PADDR (disp_status), + /* + * The SWIDE is full. + * Clear this condition. + */ + SCR_REG_REG (scntl2, SCR_OR, WSR), + 0, + /* + * Since the device is required to send any + * IGNORE WIDE RESIDUE message prior to any + * other information, we just snoop the SCSI + * BUS to check for such a message. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), + 16, + SCR_FROM_REG (sbdl), + 0, + SCR_JUMP ^ IFTRUE (DATA (M_IGN_RESIDUE)), + PADDR (disp_msg_in), + /* + * We have been ODD at the end of the transfer, + * but the device hasn't be so. + * Signal a DATA OVERRUN condition to the C code. + */ + SCR_INT, + SIR_SWIDE_OVERRUN, + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< DATAO_DONE >-------------------*/,{ + /* + * If the SODL is not full jump to dispatcher. + * We anticipate a MSG IN phase or a STATUS phase. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)), + PADDR (disp_status), + /* + * The SODL is full, clear this condition. + */ + SCR_REG_REG (scntl2, SCR_OR, WSS), + 0, + /* + * And signal a DATA UNDERRUN condition + * to the C code. + */ + SCR_INT, + SIR_SODL_UNDERRUN, + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< IGN_I_W_R_MSG >--------------*/,{ + /* + * We jump here from the phase mismatch interrupt, + * When we have a SWIDE and the device has presented + * a IGNORE WIDE RESIDUE message on the BUS. + * We just have to throw away this message and then + * to jump to dispatcher. + */ + SCR_MOVE_ABS (2) ^ SCR_MSG_IN, + NADDR (scratch), + /* + * Clear ACK and jump to dispatcher. + */ + SCR_JUMP, + PADDR (clrack), +}/*-------------------------< DATAPHASE >------------------*/,{ + SCR_RETURN, + 0, +}/*-------------------------< MSG_IN >--------------------*/,{ + /* + * Get the first byte of the message. + * + * The script processor doesn't negate the + * ACK signal after this transfer. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + NADDR (msgin[0]), +}/*-------------------------< MSG_IN2 >--------------------*/,{ + /* + * Check first against 1 byte messages + * that we handle from SCRIPTS. + */ + SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), + PADDR (complete), + SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), + PADDR (disconnect), + SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), + PADDR (save_dp), + SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), + PADDR (restore_dp), + /* + * We handle all other messages from the + * C code, so no need to waste on-chip RAM + * for those ones. + */ + SCR_JUMP, + PADDRH (msg_in_etc), +}/*-------------------------< STATUS >--------------------*/,{ + /* + * get the status + */ + SCR_MOVE_ABS (1) ^ SCR_STATUS, + NADDR (scratch), +#ifdef SYMCONF_IARB_SUPPORT + /* + * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, + * since we may have to tamper the start queue from + * the C code. + */ + SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), + 8, + SCR_REG_REG (scntl1, SCR_AND, ~IARB), + 0, +#endif + /* + * save status to scsi_status. + * mark as complete. + */ + SCR_TO_REG (SS_REG), + 0, + SCR_LOAD_REG (HS_REG, HS_COMPLETE), + 0, + /* + * Anticipate the MESSAGE PHASE for + * the TASK COMPLETE message. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR (msg_in), + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< COMPLETE >-----------------*/,{ + /* + * Complete message. + * + * Copy the data pointer to LASTP. + */ + SCR_STORE_REL (temp, 4), + offsetof (struct sym_ccb, phys.lastp), + /* + * When we terminate the cycle by clearing ACK, + * the target may disconnect immediately. + * + * We don't want to be told of an "unexpected disconnect", + * so we disable this feature. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + /* + * Terminate cycle ... + */ + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + /* + * ... and wait for the disconnect. + */ + SCR_WAIT_DISC, + 0, +}/*-------------------------< COMPLETE2 >-----------------*/,{ + /* + * Save host status. + */ + SCR_STORE_REL (scr0, 4), + offsetof (struct sym_ccb, phys.status), + /* + * Some bridges may reorder DMA writes to memory. + * We donnot want the CPU to deal with completions + * without all the posted write having been flushed + * to memory. This DUMMY READ should flush posted + * buffers prior to the CPU having to deal with + * completions. + */ + SCR_LOAD_REL (scr0, 4), /* DUMMY READ */ + offsetof (struct sym_ccb, phys.status), + + /* + * If command resulted in not GOOD status, + * call the C code if needed. + */ + SCR_FROM_REG (SS_REG), + 0, + SCR_CALL ^ IFFALSE (DATA (S_GOOD)), + PADDRH (bad_status), + /* + * If we performed an auto-sense, call + * the C code to synchronyze task aborts + * with UNIT ATTENTION conditions. + */ + SCR_FROM_REG (HF_REG), + 0, + SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))), + 16, +}/*-------------------------< COMPLETE_ERROR >-----------------*/,{ + SCR_LOAD_ABS (scratcha, 4), + PADDRH (startpos), + SCR_INT, + SIR_COMPLETE_ERROR, +}/*------------------------< DONE >-----------------*/,{ + /* + * Copy the DSA to the DONE QUEUE and + * signal completion to the host. + * If we are interrupted between DONE + * and DONE_END, we must reset, otherwise + * the completed CCB may be lost. + */ + SCR_STORE_ABS (dsa, 4), + PADDRH (saved_dsa), + SCR_LOAD_ABS (dsa, 4), + PADDRH (done_pos), + SCR_LOAD_ABS (scratcha, 4), + PADDRH (saved_dsa), + SCR_STORE_REL (scratcha, 4), + 0, + /* + * The instruction below reads the DONE QUEUE next + * free position from memory. + * In addition it ensures that all PCI posted writes + * are flushed and so the DSA value of the done + * CCB is visible by the CPU before INTFLY is raised. + */ + SCR_LOAD_REL (temp, 4), + 4, + SCR_INT_FLY, + 0, + SCR_STORE_ABS (temp, 4), + PADDRH (done_pos), +}/*------------------------< DONE_END >-----------------*/,{ + SCR_JUMP, + PADDR (start), +}/*-------------------------< SAVE_DP >------------------*/,{ + /* + * Clear ACK immediately. + * No need to delay it. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * Keep track we received a SAVE DP, so + * we will switch to the other PM context + * on the next PM since the DP may point + * to the current PM context. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), + 0, + /* + * SAVE_DP message: + * Copy the data pointer to SAVEP. + */ + SCR_STORE_REL (temp, 4), + offsetof (struct sym_ccb, phys.savep), + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< RESTORE_DP >---------------*/,{ + /* + * RESTORE_DP message: + * Copy SAVEP to actual data pointer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.savep), + SCR_JUMP, + PADDR (clrack), +}/*-------------------------< DISCONNECT >---------------*/,{ + /* + * DISCONNECTing ... + * + * disable the "unexpected disconnect" feature, + * and remove the ACK signal. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + /* + * Wait for the disconnect. + */ + SCR_WAIT_DISC, + 0, + /* + * Status is: DISCONNECTED. + */ + SCR_LOAD_REG (HS_REG, HS_DISCONNECT), + 0, + /* + * Save host status. + */ + SCR_STORE_REL (scr0, 4), + offsetof (struct sym_ccb, phys.status), + /* + * If QUIRK_AUTOSAVE is set, + * do an "save pointer" operation. + */ + SCR_FROM_REG (QU_REG), + 0, + SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)), + PADDR (start), + /* + * like SAVE_DP message: + * Remember we saved the data pointer. + * Copy data pointer to SAVEP. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), + 0, + SCR_STORE_REL (temp, 4), + offsetof (struct sym_ccb, phys.savep), + SCR_JUMP, + PADDR (start), +}/*-------------------------< IDLE >------------------------*/,{ + /* + * Nothing to do? + * Wait for reselect. + * This NOP will be patched with LED OFF + * SCR_REG_REG (gpreg, SCR_OR, 0x01) + */ + SCR_NO_OP, + 0, +#ifdef SYMCONF_IARB_SUPPORT + SCR_JUMPR, + 8, +#endif +}/*-------------------------< UNGETJOB >-----------------*/,{ +#ifdef SYMCONF_IARB_SUPPORT + /* + * Set IMMEDIATE ARBITRATION, for the next time. + * This will give us better chance to win arbitration + * for the job we just wanted to do. + */ + SCR_REG_REG (scntl1, SCR_OR, IARB), + 0, +#endif + /* + * We are not able to restart the SCRIPTS if we are + * interrupted and these instruction haven't been + * all executed. BTW, this is very unlikely to + * happen, but we check that from the C code. + */ + SCR_LOAD_REG (dsa, 0xff), + 0, + SCR_STORE_ABS (scratcha, 4), + PADDRH (startpos), +}/*-------------------------< RESELECT >--------------------*/,{ + /* + * Make sure we are in initiator mode. + */ + SCR_CLR (SCR_TRG), + 0, + /* + * Sleep waiting for a reselection. + */ + SCR_WAIT_RESEL, + PADDR(start), +}/*-------------------------< RESELECTED >------------------*/,{ + /* + * This NOP will be patched with LED ON + * SCR_REG_REG (gpreg, SCR_AND, 0xfe) + */ + SCR_NO_OP, + 0, + /* + * load the target id into the sdid + */ + SCR_REG_SFBR (ssid, SCR_AND, 0x8F), + 0, + SCR_TO_REG (sdid), + 0, + /* + * Load the target control block address + */ + SCR_LOAD_ABS (dsa, 4), + PADDRH (targtbl), + SCR_SFBR_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_AND, 0x3c), + 0, + SCR_LOAD_REL (dsa, 4), + 0, + /* + * Load the legacy synchronous transfer registers. + */ + SCR_LOAD_REL (scntl3, 1), + offsetof(struct sym_tcb, wval), + SCR_LOAD_REL (sxfer, 1), + offsetof(struct sym_tcb, sval), +}/*-------------------------< RESEL_SCNTL4 >------------------*/,{ + /* + * If C1010, patched with the load of SCNTL4 that + * allows a new synchronous timing scheme. + * + * SCR_LOAD_REL (scntl4, 1), + * offsetof(struct tcb, uval), + */ + SCR_NO_OP, + 0, + /* + * If MESSAGE IN phase as expected, + * Read the data directly from the BUS DATA lines. + * This helps to support very old SCSI devices that + * may reselect without sending an IDENTIFY. + */ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), + SIR_RESEL_NO_MSG_IN, + SCR_FROM_REG (sbdl), + 0, + /* + * If message phase but not an IDENTIFY, + * get some help from the C code. + * Old SCSI device may behave so. + */ + SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), + SIR_RESEL_NO_IDENTIFY, + /* + * It is an IDENTIFY message, + * Load the LUN control block address. + * If LUN 0, avoid a PCI BUS ownership by loading + * directly 'lun0_sa' from the TCB. + */ + SCR_JUMPR ^ IFTRUE (MASK (0x0, 0x3f)), + 48, + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_tcb, luntbl_sa), + SCR_SFBR_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_AND, 0xfc), + 0, + SCR_LOAD_REL (dsa, 4), + 0, + SCR_JUMPR, + 8, + /* + * LUN 0 special case (but usual one :)) + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_tcb, lun0_sa), + /* + * Jump indirectly to the reselect action for this LUN. + */ + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_lcb, resel_sa), + SCR_RETURN, + 0, + /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */ +}/*-------------------------< RESEL_TAG >-------------------*/,{ + /* + * It shall be a tagged command. + * Read IDENTIFY+SIMPLE+TAG. + * The C code will deal with errors. + * Agressive optimization, is'nt it? :) + */ + SCR_MOVE_ABS (3) ^ SCR_MSG_IN, + NADDR (msgin), + /* + * Load the pointer to the tagged task + * table for this LUN. + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_lcb, itlq_tbl_sa), + /* + * The SIDL still contains the TAG value. + * Agressive optimization, isn't it? :):) + */ + SCR_REG_SFBR (sidl, SCR_SHL, 0), + 0, +#if SYMCONF_MAX_TASK*4 > 512 + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 2), + 0, + SCR_REG_REG (sfbr, SCR_SHL, 0), + 0, + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 1), + 0, +#elif SYMCONF_MAX_TASK*4 > 256 + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 1), + 0, +#endif + /* + * Retrieve the DSA of this task. + * JUMP indirectly to the restart point of the CCB. + */ + SCR_SFBR_REG (dsa, SCR_AND, 0xfc), + 0, + SCR_LOAD_REL (dsa, 4), + 0, + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_ccb, phys.go.restart), + SCR_RETURN, + 0, + /* In normal situations we branch to RESEL_DSA */ +}/*-------------------------< RESEL_DSA >-------------------*/,{ + /* + * ACK the IDENTIFY or TAG previously received. + */ + SCR_CLR (SCR_ACK), + 0, +}/*-------------------------< RESEL_DSA1 >------------------*/,{ + /* + * load the savep (saved pointer) into + * the actual data pointer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.savep), + /* + * Initialize the status registers + */ + SCR_LOAD_REL (scr0, 4), + offsetof (struct sym_ccb, phys.status), + /* + * Jump to dispatcher. + */ + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< RESEL_NO_TAG >-------------------*/,{ + /* + * Throw away the IDENTIFY. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + NADDR (msgin), + /* + * Load the DSA with the unique ITL task. + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_lcb, itl_task_sa), + /* + * JUMP indirectly to the restart point of the CCB. + */ + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_ccb, phys.go.restart), + SCR_RETURN, + 0, + /* In normal situations we branch to RESEL_DSA */ +}/*-------------------------< DATA_IN >--------------------*/,{ +/* + * Because the size depends on the + * #define SYMCONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i========= + * || SCR_CHMOV_TBL ^ SCR_DATA_IN, + * || offsetof (struct dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DATA_IN2 >-------------------*/,{ + SCR_CALL, + PADDR (datai_done), + SCR_JUMP, + PADDRH (no_data), +}/*-------------------------< DATA_OUT >--------------------*/,{ +/* + * Because the size depends on the + * #define SYMCONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i========= + * || SCR_CHMOV_TBL ^ SCR_DATA_OUT, + * || offsetof (struct dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DATA_OUT2 >-------------------*/,{ + SCR_CALL, + PADDR (datao_done), + SCR_JUMP, + PADDRH (no_data), +}/*-------------------------< PM0_DATA >--------------------*/,{ + /* + * Keep track we are executing the PM0 DATA + * mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), + 0, + /* + * MOVE the data according to the actual + * DATA direction. + */ +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm0.sg), + SCR_JUMPR, + 56, + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm0.sg), + SCR_JUMPR, + 32, + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DT_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, + offsetof (struct sym_ccb, phys.pm0.sg), + SCR_JUMPR, + 8, + SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT, + offsetof (struct sym_ccb, phys.pm0.sg), +#else + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm0.sg), + SCR_JUMPR, + 8, + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm0.sg), +#endif + /* + * Clear the flag that told we were in + * the PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), + 0, + /* + * Return to the previous DATA script which + * is guaranteed by design (if no bug) to be + * the main DATA script for this transfer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.pm0.ret), + SCR_RETURN, + 0, +}/*-------------------------< PM1_DATA >--------------------*/,{ + /* + * Keep track we are executing the PM1 DATA + * mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), + 0, + /* + * MOVE the data according to the actual + * DATA direction. + */ +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm1.sg), + SCR_JUMPR, + 56, + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm1.sg), + SCR_JUMPR, + 32, + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DT_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, + offsetof (struct sym_ccb, phys.pm1.sg), + SCR_JUMPR, + 8, + SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT, + offsetof (struct sym_ccb, phys.pm1.sg), +#else + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm1.sg), + SCR_JUMPR, + 8, + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm1.sg), +#endif + /* + * Clear the flag that told we were in + * the PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), + 0, + /* + * Return to the previous DATA script which + * is guaranteed by design (if no bug) to be + * the main DATA script for this transfer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.pm1.ret), + SCR_RETURN, + 0, +}/*---------------------------------------------------------*/ +}; + +static struct sym_scrh scripth0 = { +/*------------------------< START64 >-----------------------*/{ + /* + * SCRIPT entry point for the 895A, 896 and 1010. + * For now, there is no specific stuff for those + * chips at this point, but this may come. + */ + SCR_JUMP, + PADDR (init), +}/*-----------------------< SEL_FOR_ABORT >------------------*/,{ + /* + * We are jumped here by the C code, if we have + * some target to reset or some disconnected + * job to abort. Since error recovery is a serious + * busyness, we will really reset the SCSI BUS, if + * case of a SCSI interrupt occuring in this path. + */ + + /* + * Set initiator mode. + */ + SCR_CLR (SCR_TRG), + 0, + /* + * And try to select this target. + */ + SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel), + PADDR (reselect), + /* + * Wait for the selection to complete or + * the selection to time out. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), + -8, + /* + * Call the C code. + */ + SCR_INT, + SIR_TARGET_SELECTED, + /* + * The C code should let us continue here. + * Send the 'kiss of death' message. + * We expect an immediate disconnect once + * the target has eaten the message. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_MOVE_TBL ^ SCR_MSG_OUT, + offsetof (struct sym_hcb, abrt_tbl), + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + SCR_WAIT_DISC, + 0, + /* + * Tell the C code that we are done. + */ + SCR_INT, + SIR_ABORT_SENT, +}/*-----------------------< SEL_FOR_ABORT_1 >--------------*/,{ + /* + * Jump at scheduler. + */ + SCR_JUMP, + PADDR (start), + +}/*------------------------< SELECT_NO_ATN >-----------------*/,{ + /* + * Set Initiator mode. + * And try to select this target without ATN. + */ + SCR_CLR (SCR_TRG), + 0, + SCR_SEL_TBL ^ offsetof (struct dsb, select), + PADDR (ungetjob), + /* + * load the savep (saved pointer) into + * the actual data pointer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.savep), + /* + * Initialize the status registers + */ + SCR_LOAD_REL (scr0, 4), + offsetof (struct sym_ccb, phys.status), +}/*------------------------< WF_SEL_DONE_NO_ATN >-----------------*/,{ + /* + * Wait immediately for the next phase or + * the selection to complete or time-out. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), + 0, + SCR_JUMP, + PADDR (select2), +}/*-------------------------< MSG_IN_ETC >--------------------*/,{ + /* + * If it is an EXTENDED (variable size message) + * Handle it. + */ + SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), + PADDRH (msg_extended), + /* + * Let the C code handle any other + * 1 byte message. + */ + SCR_INT ^ IFTRUE (MASK (0x00, 0xf0)), + SIR_MSG_RECEIVED, + SCR_INT ^ IFTRUE (MASK (0x10, 0xf0)), + SIR_MSG_RECEIVED, + /* + * We donnot handle 2 bytes messages from SCRIPTS. + * So, let the C code deal with these ones too. + */ + SCR_INT ^ IFFALSE (MASK (0x20, 0xf0)), + SIR_MSG_WEIRD, + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + NADDR (msgin[1]), + SCR_INT, + SIR_MSG_RECEIVED, + +}/*-------------------------< MSG_RECEIVED >--------------------*/,{ + SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ + 0, + SCR_INT, + SIR_MSG_RECEIVED, + +}/*-------------------------< MSG_WEIRD_SEEN >------------------*/,{ + SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ + 0, + SCR_INT, + SIR_MSG_WEIRD, + +}/*-------------------------< MSG_EXTENDED >--------------------*/,{ + /* + * Clear ACK and get the next byte + * assumed to be the message length. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + NADDR (msgin[1]), + /* + * Try to catch some unlikely situations as 0 length + * or too large the length. + */ + SCR_JUMP ^ IFTRUE (DATA (0)), + PADDRH (msg_weird_seen), + SCR_TO_REG (scratcha), + 0, + SCR_REG_REG (sfbr, SCR_ADD, (256-8)), + 0, + SCR_JUMP ^ IFTRUE (CARRYSET), + PADDRH (msg_weird_seen), + /* + * We donnot handle extended messages from SCRIPTS. + * Read the amount of data correponding to the + * message length and call the C code. + */ + SCR_STORE_REL (scratcha, 1), + offsetof (struct dsb, smsg_ext.size), + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_TBL ^ SCR_MSG_IN, + offsetof (struct dsb, smsg_ext), + SCR_JUMP, + PADDRH (msg_received), + +}/*-------------------------< MSG_BAD >------------------*/,{ + /* + * unimplemented message - reject it. + */ + SCR_INT, + SIR_REJECT_TO_SEND, + SCR_SET (SCR_ATN), + 0, + SCR_JUMP, + PADDR (clrack), +}/*-------------------------< MSG_WEIRD >--------------------*/,{ + /* + * weird message received + * ignore all MSG IN phases and reject it. + */ + SCR_INT, + SIR_REJECT_TO_SEND, + SCR_SET (SCR_ATN), + 0, +}/*-------------------------< MSG_WEIRD1 >--------------------*/,{ + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), + PADDR (dispatch), + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + NADDR (scratch), + SCR_JUMP, + PADDRH (msg_weird1), +}/*-------------------------< WDTR_RESP >----------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDRH (nego_bad_phase), +}/*-------------------------< SEND_WDTR >----------------*/,{ + /* + * Send the M_X_WIDE_REQ + */ + SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, + NADDR (msgout), + SCR_JUMP, + PADDRH (msg_out_done), +}/*-------------------------< SDTR_RESP >-------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDRH (nego_bad_phase), +}/*-------------------------< SEND_SDTR >-------------*/,{ + /* + * Send the M_X_SYNC_REQ + */ + SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, + NADDR (msgout), + SCR_JUMP, + PADDRH (msg_out_done), +}/*-------------------------< PPR_RESP >-------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDRH (nego_bad_phase), +}/*-------------------------< SEND_PPR >-------------*/,{ + /* + * Send the M_X_PPR_REQ + */ + SCR_MOVE_ABS (8) ^ SCR_MSG_OUT, + NADDR (msgout), + SCR_JUMP, + PADDRH (msg_out_done), +}/*-------------------------< NEGO_BAD_PHASE >------------*/,{ + SCR_INT, + SIR_NEGO_PROTO, + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< MSG_OUT >-------------------*/,{ + /* + * The target requests a message. + * We donnot send messages that may + * require the device to go to bus free. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, + NADDR (msgout), + /* + * ... wait for the next phase + * if it's a message out, send it again, ... + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), + PADDRH (msg_out), +}/*-------------------------< MSG_OUT_DONE >--------------*/,{ + /* + * Let the C code be aware of the + * sent message and clear the message. + */ + SCR_INT, + SIR_MSG_OUT_DONE, + /* + * ... and process the next phase + */ + SCR_JUMP, + PADDR (dispatch), + +}/*-------------------------< NO_DATA >--------------------*/,{ + /* + * The target wants to tranfer too much data + * or in the wrong direction. + * Discard one data byte, if required. + * Count all discarded bytes. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), + 8, + SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, + NADDR (scratch), + SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), + 8, + SCR_MOVE_ABS (1) ^ SCR_DATA_IN, + NADDR (scratch), +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + SCR_JUMPR ^ IFFALSE (IF (SCR_DT_DATA_OUT)), + 8, + SCR_MOVE_ABS (1) ^ SCR_DT_DATA_OUT, + NADDR (scratch), + SCR_JUMPR ^ IFFALSE (IF (SCR_DT_DATA_IN)), + 8, + SCR_MOVE_ABS (1) ^ SCR_DT_DATA_IN, + NADDR (scratch), +#endif + /* + * Set the extended error flag. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_EXT_ERR), + 0, + SCR_LOAD_REL (scratcha, 1), + offsetof (struct sym_ccb, xerr_status), + SCR_REG_REG (scratcha, SCR_OR, XE_EXTRA_DATA), + 0, + /* + * Count this byte. + * This will allow to return a positive + * residual to user. + */ + SCR_LOAD_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.extra_bytes), + SCR_REG_REG (scratcha, SCR_ADD, 0x01), + 0, + SCR_REG_REG (scratcha1, SCR_ADDC, 0), + 0, + SCR_REG_REG (scratcha2, SCR_ADDC, 0), + 0, + SCR_STORE_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.extra_bytes), + /* + * .. and repeat as required. + */ + SCR_CALL, + PADDR (dispatch), + SCR_JUMP, + PADDRH (no_data), + +}/*-------------------------< ABORT_RESEL >----------------*/,{ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + /* + * send the abort/abortag/reset message + * we expect an immediate disconnect + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, + NADDR (msgout), + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + SCR_WAIT_DISC, + 0, + SCR_INT, + SIR_RESEL_ABORTED, + SCR_JUMP, + PADDR (start), +}/*-------------------------< RESEND_IDENT >-------------------*/,{ + /* + * The target stays in MSG OUT phase after having acked + * Identify [+ Tag [+ Extended message ]]. Targets shall + * behave this way on parity error. + * We must send it again all the messages. + */ + SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ + 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */ + SCR_JUMP, + PADDR (send_ident), +}/*-------------------------< IDENT_BREAK >-------------------*/,{ + SCR_CLR (SCR_ATN), + 0, + SCR_JUMP, + PADDR (select2), +}/*-------------------------< IDENT_BREAK_ATN >----------------*/,{ + SCR_SET (SCR_ATN), + 0, + SCR_JUMP, + PADDR (select2), +}/*-------------------------< SDATA_IN >-------------------*/,{ +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), + 16, + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct dsb, sense), + SCR_JUMPR, + 8, + SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, + offsetof (struct dsb, sense), +#else + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct dsb, sense), +#endif + SCR_CALL, + PADDR (dispatch), + SCR_JUMP, + PADDRH (no_data), + +}/*-------------------------< RESEL_BAD_LUN >---------------*/,{ + /* + * Message is an IDENTIFY, but lun is unknown. + * Signal problem to C code for logging the event. + * Send a M_ABORT to clear all pending tasks. + */ + SCR_INT, + SIR_RESEL_BAD_LUN, + SCR_JUMP, + PADDRH (abort_resel), +}/*-------------------------< BAD_I_T_L >------------------*/,{ + /* + * We donnot have a task for that I_T_L. + * Signal problem to C code for logging the event. + * Send a M_ABORT message. + */ + SCR_INT, + SIR_RESEL_BAD_I_T_L, + SCR_JUMP, + PADDRH (abort_resel), +}/*-------------------------< BAD_I_T_L_Q >----------------*/,{ + /* + * We donnot have a task that matches the tag. + * Signal problem to C code for logging the event. + * Send a M_ABORTTAG message. + */ + SCR_INT, + SIR_RESEL_BAD_I_T_L_Q, + SCR_JUMP, + PADDRH (abort_resel), +}/*-------------------------< BAD_STATUS >-----------------*/,{ + /* + * Anything different from INTERMEDIATE + * CONDITION MET should be a bad SCSI status, + * given that GOOD status has already been tested. + * Call the C code. + */ + SCR_LOAD_ABS (scratcha, 4), + PADDRH (startpos), + SCR_INT ^ IFFALSE (DATA (S_COND_MET)), + SIR_BAD_SCSI_STATUS, + SCR_RETURN, + 0, + +}/*-------------------------< PM_HANDLE >------------------*/,{ + /* + * Phase mismatch handling. + * + * Since we have to deal with 2 SCSI data pointers + * (current and saved), we need at least 2 contexts. + * Each context (pm0 and pm1) has a saved area, a + * SAVE mini-script and a DATA phase mini-script. + */ + /* + * Get the PM handling flags. + */ + SCR_FROM_REG (HF_REG), + 0, + /* + * If no flags (1rst PM for example), avoid + * all the below heavy flags testing. + * This makes the normal case a bit faster. + */ + SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))), + PADDRH (pm_handle1), + /* + * If we received a SAVE DP, switch to the + * other PM context since the savep may point + * to the current PM context. + */ + SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)), + 8, + SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM), + 0, + /* + * If we have been interrupt in a PM DATA mini-script, + * we take the return address from the corresponding + * saved area. + * This ensure the return address always points to the + * main DATA script for this transfer. + */ + SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))), + PADDRH (pm_handle1), + SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)), + 16, + SCR_LOAD_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm0.ret), + SCR_JUMP, + PADDRH (pm_save), + SCR_LOAD_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm1.ret), + SCR_JUMP, + PADDRH (pm_save), +}/*-------------------------< PM_HANDLE1 >-----------------*/,{ + /* + * Normal case. + * Update the return address so that it + * will point after the interrupted MOVE. + */ + SCR_REG_REG (ia, SCR_ADD, 8), + 0, + SCR_REG_REG (ia1, SCR_ADDC, 0), + 0, +}/*-------------------------< PM_SAVE >--------------------*/,{ + /* + * Clear all the flags that told us if we were + * interrupted in a PM DATA mini-script and/or + * we received a SAVE DP. + */ + SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))), + 0, + /* + * Choose the current PM context. + */ + SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)), + PADDRH (pm1_save), +}/*-------------------------< PM0_SAVE >-------------------*/,{ + SCR_STORE_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm0.ret), + /* + * If WSR bit is set, either UA and RBC may + * have to be changed whether the device wants + * to ignore this residue ot not. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), + PADDRH (swide_scr_64), + /* + * Save the remaining byte count, the updated + * address and the return address. + */ + SCR_STORE_REL (rbc, 4), + offsetof(struct sym_ccb, phys.pm0.sg.size), + SCR_STORE_REL (ua, 4), + offsetof(struct sym_ccb, phys.pm0.sg.addr), + /* + * Set the current pointer at the PM0 DATA mini-script. + */ + SCR_LOAD_ABS (temp, 4), + PADDRH (pm0_data_addr), + SCR_JUMP, + PADDR (dispatch), +}/*-------------------------< PM1_SAVE >-------------------*/,{ + SCR_STORE_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm1.ret), + /* + * If WSR bit is set, either UA and RBC may + * have been changed whether the device wants + * to ignore this residue or not. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), + PADDRH (swide_scr_64), + /* + * Save the remaining byte count, the updated + * address and the return address. + */ + SCR_STORE_REL (rbc, 4), + offsetof(struct sym_ccb, phys.pm1.sg.size), + SCR_STORE_REL (ua, 4), + offsetof(struct sym_ccb, phys.pm1.sg.addr), + /* + * Set the current pointer at the PM1 DATA mini-script. + */ + SCR_LOAD_ABS (temp, 4), + PADDRH (pm1_data_addr), + SCR_JUMP, + PADDR (dispatch), +}/*--------------------------< SWIDE_MA_32 >-----------------------*/,{ + /* + * Handling of the SWIDE for 32 bit chips. + * + * We jump here from the C code with SCRATCHA + * containing the address to write the SWIDE. + * - Save 32 bit address in . + */ + SCR_STORE_ABS (scratcha, 4), + PADDRH (scratch), + SCR_JUMP, + PADDRH (swide_common), +}/*--------------------------< SWIDE_MA_64 >-----------------------*/,{ + /* + * Handling of the SWIDE for 64 bit chips when the + * hardware handling of phase mismatch is disabled. + * + * We jump here from the C code with SCRATCHA + * containing the address to write the SWIDE and + * SBR containing bit 32..39 of this address. + * - Save 32 bit address in . + * - Move address bit 32..39 to SFBR. + */ + SCR_STORE_ABS (scratcha, 4), + PADDRH (scratch), + SCR_FROM_REG (sbr), + 0, + SCR_JUMP, + PADDRH (swide_com_64), +}/*--------------------------< SWIDE_SCR_64 >-----------------------*/,{ + /* + * Handling of the SWIDE for 64 bit chips when + * hardware phase mismatch is enabled. + * We are entered with a SCR_CALL from PMO_SAVE + * and PM1_SAVE sub-scripts. + * + * Snoop the SCSI BUS in case of the device + * willing to ignore this residue. + * If it does, we must only increment the RBC, + * since this register does reflect all bytes + * received from the SCSI BUS including the SWIDE. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), + PADDRH (swide_scr_64_1), + SCR_FROM_REG (sbdl), + 0, + SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), + PADDRH (swide_scr_64_1), + SCR_REG_REG (rbc, SCR_ADD, 1), + 0, + SCR_REG_REG (rbc1, SCR_ADDC, 0), + 0, + SCR_REG_REG (rbc2, SCR_ADDC, 0), + 0, + /* + * Save UA and RBC, since the PM0/1_SAVE + * sub-scripts haven't moved them to the + * context yet and the below MOV may just + * change their value. + */ + SCR_STORE_ABS (ua, 4), + PADDRH (scratch), + SCR_STORE_ABS (rbc, 4), + PADDRH (scratch1), + /* + * Throw away the IGNORE WIDE RESIDUE message. + * since we just did take care of it. + */ + SCR_MOVE_ABS (2) ^ SCR_MSG_IN, + NADDR (scratch), + SCR_CLR (SCR_ACK), + 0, + /* + * Restore UA and RBC registers and return. + */ + SCR_LOAD_ABS (ua, 4), + PADDRH (scratch), + SCR_LOAD_ABS (rbc, 4), + PADDRH (scratch1), + SCR_RETURN, + 0, +}/*--------------------------< SWIDE_SCR_64_1 >---------------------*/,{ + /* + * We must grab the SWIDE and move it to + * memory. + * + * - Save UA (32 bit address) in . + * - Move address bit 32..39 to SFBR. + * - Increment UA (updated address). + */ + SCR_STORE_ABS (ua, 4), + PADDRH (scratch), + SCR_FROM_REG (rbc3), + 0, + SCR_REG_REG (ua, SCR_ADD, 1), + 0, + SCR_REG_REG (ua1, SCR_ADDC, 0), + 0, + SCR_REG_REG (ua2, SCR_ADDC, 0), + 0, + SCR_REG_REG (ua3, SCR_ADDC, 0), + 0, +}/*--------------------------< SWIDE_COM_64 >-----------------------*/,{ + /* + * - Save DRS. + * - Load DRS with address bit 32..39 of the + * location to write the SWIDE. + * SFBR has been loaded with these bits. + * (Look above). + */ + SCR_STORE_ABS (drs, 4), + PADDRH (saved_drs), + SCR_LOAD_ABS (drs, 4), + PADDRH (zero), + SCR_TO_REG (drs), + 0, +}/*--------------------------< SWIDE_COMMON >-----------------------*/,{ + /* + * - Save current DSA + * - Load DSA with bit 0..31 of the memory + * location to write the SWIDE. + */ + SCR_STORE_ABS (dsa, 4), + PADDRH (saved_dsa), + SCR_LOAD_ABS (dsa, 4), + PADDRH (scratch), + /* + * Move the SWIDE to memory. + * Clear the WSR bit. + */ + SCR_STORE_REL (swide, 1), + 0, + SCR_REG_REG (scntl2, SCR_OR, WSR), + 0, + /* + * Restore the original DSA. + */ + SCR_LOAD_ABS (dsa, 4), + PADDRH (saved_dsa), +}/*--------------------------< SWIDE_FIN_32 >-----------------------*/,{ + /* + * For 32 bit chip, the following SCRIPTS + * instruction is patched with a JUMP to dispatcher. + * (Look into the C code). + */ + SCR_LOAD_ABS (drs, 4), + PADDRH (saved_drs), + /* + * 64 bit chip only. + * If PM handling from SCRIPTS, we are just + * a helper for the C code, so jump to + * dispatcher now. + */ + SCR_FROM_REG (ccntl0), + 0, + SCR_JUMP ^ IFFALSE (MASK (ENPMJ, ENPMJ)), + PADDR (dispatch), + /* + * 64 bit chip with hardware PM handling enabled. + * + * Since we are paranoid:), we donnot want + * a SWIDE followed by a CHMOV(1) to lead to + * a CHMOV(0) in our PM context. + * We check against such a condition. + * Also does the C code. + */ + SCR_FROM_REG (rbc), + 0, + SCR_RETURN ^ IFFALSE (DATA (0)), + 0, + SCR_FROM_REG (rbc1), + 0, + SCR_RETURN ^ IFFALSE (DATA (0)), + 0, + SCR_FROM_REG (rbc2), + 0, + SCR_RETURN ^ IFFALSE (DATA (0)), + 0, + /* + * If we are there, RBC(0..23) is zero, + * and we just have to load the current + * DATA SCRIPTS address (register TEMP) + * with the IA and go to dispatch. + * No PM context is needed. + */ + SCR_STORE_ABS (ia, 4), + PADDRH (scratch), + SCR_LOAD_ABS (temp, 4), + PADDRH (scratch), + SCR_JUMP, + PADDR (dispatch), +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT +}/*-------------------------< DT_DATA_IN >--------------------*/,{ +/* + * Because the size depends on the + * #define SYMCONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i========= + * || SCR_CHMOV_TBL ^ SCR_DT_DATA_IN, + * || offsetof (struct dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DT_DATA_IN2 >-------------------*/,{ + SCR_CALL, + PADDR (datai_done), + SCR_JUMP, + PADDRH (no_data), +}/*-------------------------< DT_DATA_OUT >--------------------*/,{ +/* + * Because the size depends on the + * #define SYMCONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i========= + * || SCR_CHMOV_TBL ^ SCR_DT_DATA_OUT, + * || offsetof (struct dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DT_DATA_OUT2 >-------------------*/,{ + SCR_CALL, + PADDR (datao_done), + SCR_JUMP, + PADDRH (no_data), + +#endif /* SYMCONF_BROKEN_U3EN_SUPPORT */ + +}/*-------------------------< ZERO >------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< SCRATCH >---------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< SCRATCH1 >--------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< PM0_DATA_ADDR >---------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< PM1_DATA_ADDR >---------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< SAVED_DSA >-------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< SAVED_DRS >-------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< DONE_POS >--------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< STARTPOS >--------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< TARGTBL >---------------------*/,{ + SCR_DATA_ZERO, + +}/*-------------------------< SNOOPTEST >-------------------*/,{ + /* + * Read the variable. + */ + SCR_LOAD_REL (scratcha, 4), + offsetof(struct sym_hcb, cache), + SCR_STORE_REL (temp, 4), + offsetof(struct sym_hcb, cache), + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_hcb, cache), +}/*-------------------------< SNOOPEND >-------------------*/,{ + /* + * And stop. + */ + SCR_INT, + 99, +}/*--------------------------------------------------------*/ +}; + +/* + * Fill in #define dependent parts of the scripts + */ +static void sym_fill_scripts (script_p scr, scripth_p scrh) +{ + int i; + u32 *p; + + p = scr->data_in; + for (i=0; idata_in + sizeof (scr->data_in)); + + p = scr->data_out; + for (i=0; idata_out + sizeof (scr->data_out)); + +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + p = scrh->dt_data_in; + for (i=0; idt_data_in + sizeof (scrh->dt_data_in)); + + p = scrh->dt_data_out; + for (i=0; idt_data_out + sizeof (scrh->dt_data_out)); +#endif +} + +/* + * Copy and bind a script. + */ +static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len) +{ + u32 opcode, new, old, tmp1, tmp2; + u32 *start, *end; + int relocs; + int opchanged = 0; + + start = src; + end = src + len/4; + + while (src < end) { + + opcode = *src++; + *dst++ = cpu_to_scr(opcode); + + /* + * If we forget to change the length + * in scripts, a field will be + * padded with 0. This is an illegal + * command. + */ + if (opcode == 0) { + printf ("%s: ERROR0 IN SCRIPT at %d.\n", + sym_name(np), (int) (src-start-1)); + MDELAY (10000); + continue; + }; + + /* + * We use the bogus value 0xf00ff00f ;-) + * to reserve data area in SCRIPTS. + */ + if (opcode == SCR_DATA_ZERO) { + dst[-1] = 0; + continue; + } + + if (DEBUG_FLAGS & DEBUG_SCRIPT) + printf ("%p: <%x>\n", (src-1), (unsigned)opcode); + + /* + * We don't have to decode ALL commands + */ + switch (opcode >> 28) { + case 0xf: + /* + * LOAD / STORE DSA relative, don't relocate. + */ + relocs = 0; + break; + case 0xe: + /* + * LOAD / STORE absolute. + */ + relocs = 1; + break; + case 0xc: + /* + * COPY has TWO arguments. + */ + relocs = 2; + tmp1 = src[0]; + tmp2 = src[1]; +#ifdef RELOC_KVAR + if ((tmp1 & RELOC_MASK) == RELOC_KVAR) + tmp1 = 0; + if ((tmp2 & RELOC_MASK) == RELOC_KVAR) + tmp2 = 0; +#endif + if ((tmp1 ^ tmp2) & 3) { + printf ("%s: ERROR1 IN SCRIPT at %d.\n", + sym_name(np), (int) (src-start-1)); + MDELAY (1000); + } + /* + * If PREFETCH feature not enabled, remove + * the NO FLUSH bit if present. + */ + if ((opcode & SCR_NO_FLUSH) && + !(np->features & FE_PFEN)) { + dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); + ++opchanged; + } + break; + case 0x0: + /* + * MOVE/CHMOV (absolute address) + */ + if (!(np->features & FE_WIDE)) + dst[-1] = cpu_to_scr(opcode | OPC_MOVE); + relocs = 1; + break; + case 0x1: + /* + * MOVE/CHMOV (table indirect) + */ + if (!(np->features & FE_WIDE)) + dst[-1] = cpu_to_scr(opcode | OPC_MOVE); + relocs = 0; + break; + case 0x8: + /* + * JUMP / CALL + * dont't relocate if relative :-) + */ + if (opcode & 0x00800000) + relocs = 0; + else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ + relocs = 2; + else + relocs = 1; + break; + case 0x4: + case 0x5: + case 0x6: + case 0x7: + relocs = 1; + break; + default: + relocs = 0; + break; + }; + + if (!relocs) { + *dst++ = cpu_to_scr(*src++); + continue; + } + while (relocs--) { + old = *src++; + + switch (old & RELOC_MASK) { + case RELOC_REGISTER: + new = (old & ~RELOC_MASK) + np->mmio_ba; + break; + case RELOC_LABEL: + new = (old & ~RELOC_MASK) + np->script_ba; + break; + case RELOC_LABELH: + new = (old & ~RELOC_MASK) + np->scripth_ba; + break; + case RELOC_SOFTC: + new = (old & ~RELOC_MASK) + vtobus(np); + break; +#ifdef RELOC_KVAR + case RELOC_KVAR: + if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) || + ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST)) + panic("KVAR out of range"); + new = vtobus(script_kvars[old & ~RELOC_MASK]); +#endif + break; + case 0: + /* Don't relocate a 0 address. */ + if (old == 0) { + new = old; + break; + } + /* fall through */ + default: + new = 0; /* For 'cc' not to complain */ + panic("sym_bind_script: " + "weird relocation %x\n", old); + break; + } + + *dst++ = cpu_to_scr(new); + } + }; +} + +/* + * Print something which allows to retrieve the controler type, + * unit, target, lun concerned by a kernel message. + */ +static void PRINT_TARGET (hcb_p np, int target) +{ + printf ("%s:%d:", sym_name(np), target); +} + +static void PRINT_LUN(hcb_p np, int target, int lun) +{ + printf ("%s:%d:%d:", sym_name(np), target, lun); +} + +static void PRINT_ADDR (ccb_p cp) +{ + if (cp && cp->cam_ccb) + xpt_print_path(cp->cam_ccb->ccb_h.path); +} + +/* + * Take into account this ccb in the freeze count. + * The flag that tells user about avoids doing that + * more than once for a ccb. + */ +static void sym_freeze_cam_ccb(union ccb *ccb) +{ + if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) { + if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) { + ccb->ccb_h.status |= CAM_DEV_QFRZN; + xpt_freeze_devq(ccb->ccb_h.path, 1); + } + } +} + +/* + * Set the status field of a CAM CCB. + */ +static __inline void sym_set_cam_status(union ccb *ccb, cam_status status) +{ + ccb->ccb_h.status &= ~CAM_STATUS_MASK; + ccb->ccb_h.status |= status; +} + +/* + * Get the status field of a CAM CCB. + */ +static __inline int sym_get_cam_status(union ccb *ccb) +{ + return ccb->ccb_h.status & CAM_STATUS_MASK; +} + +/* + * Enqueue a CAM CCB. + */ +static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb) +{ + assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED)); + ccb->ccb_h.status = CAM_REQ_INPROG; + + ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, + ccb->ccb_h.timeout*hz/1000); + ccb->ccb_h.status |= CAM_SIM_QUEUED; + ccb->ccb_h.sym_hcb_ptr = np; + + sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq); +} + +/* + * Complete a pending CAM CCB. + */ +static void sym_xpt_done(hcb_p np, union ccb *ccb) +{ + if (ccb->ccb_h.status & CAM_SIM_QUEUED) { + untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch); + sym_remque(sym_qptr(&ccb->ccb_h.sim_links)); + ccb->ccb_h.status &= ~CAM_SIM_QUEUED; + ccb->ccb_h.sym_hcb_ptr = 0; + } + if (ccb->ccb_h.flags & CAM_DEV_QFREEZE) + sym_freeze_cam_ccb(ccb); + xpt_done(ccb); +} + +static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status) +{ + sym_set_cam_status(ccb, cam_status); + sym_xpt_done(np, ccb); +} + +/* + * SYMBIOS chip clock divisor table. + * + * Divisors are multiplied by 10,000,000 in order to make + * calculations more simple. + */ +#define _5M 5000000 +static u_long div_10M[] = + {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; + +/* + * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, + * 128 transfers. All chips support at least 16 transfers + * bursts. The 825A, 875 and 895 chips support bursts of up + * to 128 transfers and the 895A and 896 support bursts of up + * to 64 transfers. All other chips support up to 16 + * transfers bursts. + * + * For PCI 32 bit data transfers each transfer is a DWORD. + * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. + * Only the 896 is able to perform 64 bit data transfers. + * + * We use log base 2 (burst length) as internal code, with + * value 0 meaning "burst disabled". + */ + +/* + * Burst length from burst code. + */ +#define burst_length(bc) (!(bc))? 0 : 1 << (bc) + +/* + * Burst code from io register bits. + */ +#define burst_code(dmode, ctest4, ctest5) \ + (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 + +/* + * Set initial io register bits from burst code. + */ +static __inline void sym_init_burst(hcb_p np, u_char bc) +{ + np->rv_ctest4 &= ~0x80; + np->rv_dmode &= ~(0x3 << 6); + np->rv_ctest5 &= ~0x4; + + if (!bc) { + np->rv_ctest4 |= 0x80; + } + else { + --bc; + np->rv_dmode |= ((bc & 0x3) << 6); + np->rv_ctest5 |= (bc & 0x4); + } +} + + +/* + * Print out the list of targets that have some flag disabled by user. + */ +static void sym_print_targets_flag(hcb_p np, int mask, char *msg) +{ + int cnt; + int i; + + for (cnt = 0, i = 0 ; i < SYMCONF_MAX_TARGET ; i++) { + if (i == np->myaddr) + continue; + if (np->target[i].usrflags & mask) { + if (!cnt++) + printf("%s: %s disabled for targets", + sym_name(np), msg); + printf(" %d", i); + } + } + if (cnt) + printf(".\n"); +} + +/* + * Prepare io register values used by sym_init() according + * to selected and supported features. + */ +static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram) +{ + u_char burst_max; + u_long period; + int i; + + /* + * Save assumed BIOS setting + */ + np->sv_scntl0 = INB(nc_scntl0) & 0x0a; + np->sv_scntl3 = INB(nc_scntl3) & 0x07; + np->sv_dmode = INB(nc_dmode) & 0xce; + np->sv_dcntl = INB(nc_dcntl) & 0xa8; + np->sv_ctest3 = INB(nc_ctest3) & 0x01; + np->sv_ctest4 = INB(nc_ctest4) & 0x80; + np->sv_gpcntl = INB(nc_gpcntl); + np->sv_stest2 = INB(nc_stest2) & 0x20; + np->sv_stest4 = INB(nc_stest4); + if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ + np->sv_scntl4 = INB(nc_scntl4); + np->sv_ctest5 = INB(nc_ctest5) & 0x04; + } + else + np->sv_ctest5 = INB(nc_ctest5) & 0x24; + /* + * Wide ? + */ + np->maxwide = (np->features & FE_WIDE)? 1 : 0; + + /* + * Get the frequency of the chip's clock. + */ + if (np->features & FE_QUAD) + np->multiplier = 4; + else if (np->features & FE_DBLR) + np->multiplier = 2; + else + np->multiplier = 1; + + np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; + np->clock_khz *= np->multiplier; + + if (np->clock_khz != 40000) + sym_getclock(np, np->multiplier); + + /* + * Divisor to be used for async (timer pre-scaler). + */ + i = np->clock_divn - 1; + while (--i >= 0) { + if (10ul * SYMCONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { + ++i; + break; + } + } + np->rv_scntl3 = i+1; + + /* + * The C1010 uses hardwired divisors for async. + * So, we just throw away, the async. divisor.:-) + */ + if (np->features & FE_C10) + np->rv_scntl3 = 0; + + /* + * Minimum synchronous period factor supported by the chip. + * Btw, 'period' is in tenths of nanoseconds. + */ + period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; + if (period <= 250) np->minsync = 10; + else if (period <= 303) np->minsync = 11; + else if (period <= 500) np->minsync = 12; + else np->minsync = (period + 40 - 1) / 40; + + /* + * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). + */ + if (np->minsync < 25 && + !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) + np->minsync = 25; + else if (np->minsync < 12 && + !(np->features & (FE_ULTRA2|FE_ULTRA3))) + np->minsync = 12; + + /* + * Maximum synchronous period factor supported by the chip. + */ + period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); + np->maxsync = period > 2540 ? 254 : period / 10; + + /* + * If chip is a C1010, guess the sync limits in DT mode. + */ + if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { + if (np->clock_khz == 160000) { + np->minsync_dt = 9; + np->maxsync_dt = 50; + } + } + + /* + * 64 bit (53C895A or 53C896) ? + */ + if (np->features & FE_64BIT) +#if BITS_PER_LONG > 32 + np->rv_ccntl1 |= (XTIMOD | EXTIBMV); +#else + np->rv_ccntl1 |= (DDAC); +#endif + + /* + * Phase mismatch handled by SCRIPTS (895A/896/1010) ? + */ + if (np->features & FE_NOPM) + np->rv_ccntl0 |= (ENPMJ); + + /* + * C1010 Errata. + * In dual channel mode, contention occurs if internal cycles + * are used. Disable internal cycles. + */ + if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45) + np->rv_ccntl0 |= DILS; + + /* + * Prepare initial value of other IO registers + */ +#if defined SYMCONF_TRUST_BIOS_SETTING + np->rv_scntl0 = np->sv_scntl0; + np->rv_dmode = np->sv_dmode; + np->rv_dcntl = np->sv_dcntl; + np->rv_ctest3 = np->sv_ctest3; + np->rv_ctest4 = np->sv_ctest4; + np->rv_ctest5 = np->sv_ctest5; + burst_max = burst_code(np->sv_dmode, np->sv_ctest4,np->sv_ctest5); +#else + /* + * Select burst length (dwords) + */ + burst_max = SYMSETUP_BURST_ORDER; + if (burst_max == 255) + burst_max = burst_code(np->sv_dmode, np->sv_ctest4, + np->sv_ctest5); + if (burst_max > 7) + burst_max = 7; + if (burst_max > np->maxburst) + burst_max = np->maxburst; + + /* + * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. + * This chip and the 860 Rev 1 may wrongly use PCI cache line + * based transactions on LOAD/STORE instructions. So we have + * to prevent these chips from using such PCI transactions in + * this driver. The generic ncr driver that does not use + * LOAD/STORE instructions does not need this work-around. + */ + if ((np->device_id == PCI_ID_SYM53C810 && + np->revision_id >= 0x10 && np->revision_id <= 0x11) || + (np->device_id == PCI_ID_SYM53C860 && + np->revision_id <= 0x1)) + np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); + + /* + * Select all supported special features. + * If we are using on-board RAM for scripts, prefetch (PFEN) + * does not help, but burst op fetch (BOF) does. + * Disabling PFEN makes sure BOF will be used. + */ + if (np->features & FE_ERL) + np->rv_dmode |= ERL; /* Enable Read Line */ + if (np->features & FE_BOF) + np->rv_dmode |= BOF; /* Burst Opcode Fetch */ + if (np->features & FE_ERMP) + np->rv_dmode |= ERMP; /* Enable Read Multiple */ +#if 1 + if ((np->features & FE_PFEN) && !np->ram_ba) +#else + if (np->features & FE_PFEN) +#endif + np->rv_dcntl |= PFEN; /* Prefetch Enable */ + if (np->features & FE_CLSE) + np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ + if (np->features & FE_WRIE) + np->rv_ctest3 |= WRIE; /* Write and Invalidate */ + if (np->features & FE_DFS) + np->rv_ctest5 |= DFS; /* Dma Fifo Size */ + + /* + * Select some other + */ + if (SYMSETUP_PCI_PARITY) + np->rv_ctest4 |= MPEE; /* Master parity checking */ + if (SYMSETUP_SCSI_PARITY) + np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ + + /* + * Get parity checking, host ID and verbose mode from NVRAM + */ + np->myaddr = 255; + sym_nvram_setup_host (np, nvram); + + /* + * Get SCSI addr of host adapter (set by bios?). + */ + if (np->myaddr == 255) { + np->myaddr = INB(nc_scid) & 0x07; + if (!np->myaddr) + np->myaddr = SYMSETUP_HOST_ID; + } + +#endif /* SYMCONF_TRUST_BIOS_SETTING */ + + /* + * Prepare initial io register bits for burst length + */ + sym_init_burst(np, burst_max); + + /* + * Set SCSI BUS mode. + * - LVD capable chips (895/895A/896/1010) report the + * current BUS mode through the STEST4 IO register. + * - For previous generation chips (825/825A/875), + * user has to tell us how to check against HVD, + * since a 100% safe algorithm is not possible. + */ + np->scsi_mode = SMODE_SE; + if (np->features & (FE_ULTRA2|FE_ULTRA3)) + np->scsi_mode = (np->sv_stest4 & SMODE); + else if (np->features & FE_DIFF) { + if (SYMSETUP_SCSI_DIFF == 1) { + if (np->sv_scntl3) { + if (np->sv_stest2 & 0x20) + np->scsi_mode = SMODE_HVD; + } + else if (nvram->type == SYM_SYMBIOS_NVRAM) { + if (INB(nc_gpreg) & 0x08) + np->scsi_mode = SMODE_HVD; + } + } + else if (SYMSETUP_SCSI_DIFF == 2) + np->scsi_mode = SMODE_HVD; + } + if (np->scsi_mode == SMODE_HVD) + np->rv_stest2 |= 0x20; + + /* + * Set LED support from SCRIPTS. + * Ignore this feature for boards known to use a + * specific GPIO wiring and for the 895A or 896 + * that drive the LED directly. + */ + if ((SYMSETUP_SCSI_LED || nvram->type == SYM_SYMBIOS_NVRAM) && + !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) + np->features |= FE_LED0; + + /* + * Set irq mode. + */ + switch(SYMSETUP_IRQ_MODE & 3) { + case 2: + np->rv_dcntl |= IRQM; + break; + case 1: + np->rv_dcntl |= (np->sv_dcntl & IRQM); + break; + default: + break; + } + + /* + * Configure targets according to driver setup. + * If NVRAM present get targets setup from NVRAM. + */ + for (i = 0 ; i < SYMCONF_MAX_TARGET ; i++) { + tcb_p tp = &np->target[i]; + + tp->tinfo.user.period = np->minsync; + tp->tinfo.user.offset = np->maxoffs; + tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT; + tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + tp->usrtags = SYMSETUP_MAX_TAG; + + sym_nvram_setup_target (np, i, nvram); + + if (!tp->usrtags) + tp->usrflags &= ~SYM_TAGS_ENABLED; + } + + /* + * Let user know about the settings. + */ + i = nvram->type; + printf("%s: %s NVRAM, ID %d, Fast-%d, %s%s\n", sym_name(np), + i == SYM_SYMBIOS_NVRAM ? "Symbios" : + (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"), + np->myaddr, + np->minsync < 10 ? 80 : (np->minsync < 12 ? 40 : + (np->minsync < 25 ? 20 : 10)), + (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity", + np->scsi_mode == SMODE_HVD ? ", HVD" : ""); + /* + * Tell him more on demand. + */ + if (sym_verbose) + printf("%s: %s IRQ line driver%s\n", + sym_name(np), + np->rv_dcntl & IRQM ? "totem pole" : "open drain", + np->ram_ba ? ", using on-chip SRAM" : ""); + /* + * And still more. + */ + if (sym_verbose > 1) { + printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, + np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); + + printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, + np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); + } + /* + * Let user be aware of targets that have some disable flags set. + */ + sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT"); + if (sym_verbose) + sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED, + "SCAN FOR LUNS"); + + return 0; +} + +/* + * Prepare the next negotiation message if needed. + * + * Fill in the part of message buffer that contains the + * negotiation and the nego_status field of the CCB. + * Returns the size of the message in bytes. + */ + +static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr) +{ + tcb_p tp = &np->target[cp->target]; + int msglen = 0; + +#if 1 + /* + * For now, only use PPR with DT option if period factor = 9. + */ + if (tp->tinfo.goal.period == 9) { + nego = NS_PPR; + tp->tinfo.goal.options = PPR_OPT_DT; + } +#endif + +#ifndef SYMCONF_BROKEN_U3EN_SUPPORT + if (!(np->features & FE_U3EN)) + tp->tinfo.goal.options = 0; +#endif + /* + * negotiate using PPR ? + */ + if (tp->tinfo.goal.options & PPR_OPT_MASK) + nego = NS_PPR; + /* + * negotiate wide transfers ? + */ + else if (tp->tinfo.current.width != tp->tinfo.goal.width) + nego = NS_WIDE; + /* + * negotiate synchronous transfers? + */ + else if (tp->tinfo.current.period != tp->tinfo.goal.period || + tp->tinfo.current.offset != tp->tinfo.goal.offset) + nego = NS_SYNC; + + switch (nego) { + case NS_SYNC: + msgptr[msglen++] = M_EXTENDED; + msgptr[msglen++] = 3; + msgptr[msglen++] = M_X_SYNC_REQ; + msgptr[msglen++] = tp->tinfo.goal.period; + msgptr[msglen++] = tp->tinfo.goal.offset; + break; + case NS_WIDE: + msgptr[msglen++] = M_EXTENDED; + msgptr[msglen++] = 2; + msgptr[msglen++] = M_X_WIDE_REQ; + msgptr[msglen++] = tp->tinfo.goal.width; + break; + case NS_PPR: + msgptr[msglen++] = M_EXTENDED; + msgptr[msglen++] = 6; + msgptr[msglen++] = M_X_PPR_REQ; + msgptr[msglen++] = tp->tinfo.goal.period; + msgptr[msglen++] = 0; + msgptr[msglen++] = tp->tinfo.goal.offset; + msgptr[msglen++] = tp->tinfo.goal.width; + msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT; + break; + }; + + cp->nego_status = nego; + + if (nego) { + tp->nego_cp = cp; /* Keep track a nego will be performed */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "nego msgout:", msgptr); + }; + }; + + return msglen; +} + +/* + * Insert a job into the start queue. + */ +static void sym_put_start_queue(hcb_p np, ccb_p cp) +{ + u_short qidx; + +#ifdef SYMCONF_IARB_SUPPORT + /* + * If the previously queued CCB is not yet done, + * set the IARB hint. The SCRIPTS will go with IARB + * for this job when starting the previous one. + * We leave devices a chance to win arbitration by + * not using more than 'iarb_max' consecutive + * immediate arbitrations. + */ + if (np->last_cp && np->iarb_count < np->iarb_max) { + np->last_cp->host_flags |= HF_HINT_IARB; + ++np->iarb_count; + } + else + np->iarb_count = 0; + np->last_cp = cp; +#endif + + /* + * Insert first the idle task and then our job. + * The MB should ensure proper ordering. + */ + qidx = np->squeueput + 2; + if (qidx >= MAX_QUEUE*2) qidx = 0; + + np->squeue [qidx] = cpu_to_scr(np->idletask_ba); + MEMORY_BARRIER(); + np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); + + np->squeueput = qidx; + + if (DEBUG_FLAGS & DEBUG_QUEUE) + printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); + + /* + * Script processor may be waiting for reselect. + * Wake it up. + */ + MEMORY_BARRIER(); + OUTB (nc_istat, SIGP|np->istat_sem); +} + + +/* + * Soft reset the chip. + * + * Some 896 and 876 chip revisions may hang-up if we set + * the SRST (soft reset) bit at the wrong time when SCRIPTS + * are running. + * So, we need to abort the current operation prior to + * soft resetting the chip. + */ +static void sym_soft_reset (hcb_p np) +{ + u_char istat; + int i; + + OUTB (nc_istat, CABRT); + for (i = 1000000 ; i ; --i) { + istat = INB (nc_istat); + if (istat & SIP) { + INW (nc_sist); + continue; + } + if (istat & DIP) { + OUTB (nc_istat, 0); + INB (nc_dstat); + break; + } + } + if (!i) + printf("%s: unable to abort current chip operation.\n", + sym_name(np)); + OUTB (nc_istat, SRST); + UDELAY(10); + OUTB (nc_istat, 0); +} + +/* + * Start reset process. + * + * The interrupt handler will reinitialize the chip. + */ +static void sym_start_reset(hcb_p np) +{ + (void) sym_reset_scsi_bus(np, 1); +} + +static int sym_reset_scsi_bus(hcb_p np, int enab_int) +{ + u32 term; + int retv = 0; + + sym_soft_reset(np); /* Soft reset the chip */ + UDELAY (2000); /* The 895/6 need time for the bus mode to settle */ + if (enab_int) + OUTW (nc_sien, RST); + /* + * Enable Tolerant, reset IRQD if present and + * properly set IRQ mode, prior to resetting the bus. + */ + OUTB (nc_stest3, TE); + OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); + OUTB (nc_scntl1, CRST); + UDELAY (200); + + if (!SYMSETUP_SCSI_BUS_CHECK) + goto out; + /* + * Check for no terminators or SCSI bus shorts to ground. + * Read SCSI data bus, data parity bits and control signals. + * We are expecting RESET to be TRUE and other signals to be + * FALSE. + */ + term = INB(nc_sstat0); /* rst, sdp0 */ + term = ((term & 2) << 7) + ((term & 1) << 16); + term |= ((INB(nc_sstat2) & 0x01) << 25) | /* sdp1 */ + (INW(nc_sbdl) << 9) | /* d15-0 */ + INB(nc_sbcl); /* req, ack, bsy, sel, atn, msg, cd, io */ + + if (!(np->features & FE_WIDE)) + term &= 0x3ffff; + + if (term != (2<<7)) { + printf("%s: suspicious SCSI data while resetting the BUS.\n", + sym_name(np)); + printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " + "0x%lx, expecting 0x%lx\n", + sym_name(np), + (np->features & FE_WIDE) ? "dp1,d15-8," : "", + (u_long)term, (u_long)(2<<7)); + if (SYMSETUP_SCSI_BUS_CHECK == 1) + retv = 1; + } +out: + OUTB (nc_scntl1, 0); + /* MDELAY(100); */ + return retv; +} + +/* + * The chip may have completed jobs. Look at the DONE QUEUE. + */ +static int sym_wakeup_done (hcb_p np) +{ + ccb_p cp; + int i, n; + u_long dsa; + + n = 0; + i = np->dqueueget; + while (1) { + dsa = scr_to_cpu(np->dqueue[i]); + if (!dsa) + break; + np->dqueue[i] = 0; + if ((i = i+2) >= MAX_QUEUE*2) + i = 0; + + cp = sym_ccb_from_dsa(np, dsa); + if (cp) { + sym_complete_ok (np, cp); + ++n; + } + else + printf ("%s: bad DSA (%lx) in done queue.\n", + sym_name(np), dsa); + } + np->dqueueget = i; + + return n; +} + +/* + * Complete all active CCBs with error. + * Used on CHIP/SCSI RESET. + */ +static void sym_flush_busy_queue (hcb_p np, int cam_status) +{ + /* + * Move all active CCBs to the COMP queue + * and flush this queue. + */ + sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); + sym_que_init(&np->busy_ccbq); + sym_flush_comp_queue(np, cam_status); +} + +/* + * Start chip. + */ +static void sym_init (hcb_p np, int reset, char *msg) +{ + int i; + u_long phys; + + /* + * Reset chip if asked, otherwise just clear fifos. + */ + if (reset) + sym_soft_reset(np); + else { + OUTB (nc_stest3, TE|CSF); + OUTONB (nc_ctest3, CLF); + } + + /* + * Message. + */ + if (msg) printf ("%s: restart (%s).\n", sym_name (np), msg); + + /* + * Clear Start Queue + */ + phys = vtobus(np->squeue); + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->squeue[i] = cpu_to_scr(np->idletask_ba); + np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->squeueput = 0; + np->scripth0->startpos[0] = cpu_to_scr(phys); + + /* + * Clear Done Queue + */ + phys = vtobus(np->dqueue); + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->dqueue[i] = 0; + np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->scripth0->done_pos[0] = cpu_to_scr(phys); + np->dqueueget = 0; + + /* + * Wakeup all pending jobs. + */ + sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET); + + /* + * Init chip. + */ + OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ + UDELAY (2000); /* The 895 needs time for the bus mode to settle */ + + OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); + /* full arb., ena parity, par->ATN */ + OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ + + sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ + + OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ + OUTW (nc_respid, 1ul<myaddr); /* Id to respond to */ + OUTB (nc_istat , SIGP ); /* Signal Process */ + OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ + OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ + + OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ + OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ + OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ + + /* Extended Sreq/Sack filtering not supported on the C10 */ + if (np->features & FE_C10) + OUTB (nc_stest2, np->rv_stest2); + else + OUTB (nc_stest2, EXT|np->rv_stest2); + + OUTB (nc_stest3, TE); /* TolerANT enable */ + OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ + + /* + * C10101 Errata. + * Errant SGE's when in narrow. Write bits 4 & 5 of + * STEST1 register to disable SGE. We probably should do + * that from SCRIPTS for each selection/reselection, but + * I just don't want. :) + */ + if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45) + OUTB (nc_stest1, INB(nc_stest1) | 0x30); + + /* + * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. + * Disable overlapped arbitration for some dual function devices, + * regardless revision id (kind of post-chip-design feature. ;-)) + */ + if (np->device_id == PCI_ID_SYM53C875) + OUTB (nc_ctest0, (1<<5)); + else if (np->device_id == PCI_ID_SYM53C896) + np->rv_ccntl0 |= DPR; + + /* + * If 64 bit (895A/896/1010) write CCNTL1 to enable 40 bit + * address table indirect addressing for MOVE. + * Also write CCNTL0 if 64 bit chip, since this register seems + * to only be used by 64 bit cores. + */ + if (np->features & FE_64BIT) { + OUTB (nc_ccntl0, np->rv_ccntl0); + OUTB (nc_ccntl1, np->rv_ccntl1); + } + + /* + * If phase mismatch handled by scripts (895A/896/1010), + * set PM jump addresses. + */ + if (np->features & FE_NOPM) { + if (sym_verbose) + printf("%s: handling phase mismatch from SCRIPTS.\n", + sym_name(np)); + OUTL (nc_pmjad1, SCRIPTH_BA (np, pm_handle)); + OUTL (nc_pmjad2, SCRIPTH_BA (np, pm_handle)); + } + + /* + * Enable GPIO0 pin for writing if LED support from SCRIPTS. + * Also set GPIO5 and clear GPIO6 if hardware LED control. + */ + if (np->features & FE_LED0) + OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); + else if (np->features & FE_LEDC) + OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); + + /* + * enable ints + */ + OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); + OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); + + /* + * For 895/6 enable SBMC interrupt and save current SCSI bus mode. + */ + if (np->features & (FE_ULTRA2|FE_ULTRA3)) { + OUTONW (nc_sien, SBMC); + np->scsi_mode = INB (nc_stest4) & SMODE; + } + + /* + * Fill in target structure. + * Reinitialize usrsync. + * Reinitialize usrwide. + * Prepare sync negotiation according to actual SCSI bus mode. + */ + for (i=0;itarget[i]; + + tp->to_reset = 0; + tp->sval = 0; + tp->wval = np->rv_scntl3; + tp->uval = 0; + + tp->tinfo.current.period = 0; + tp->tinfo.current.offset = 0; + tp->tinfo.current.width = BUS_8_BIT; + tp->tinfo.current.options = 0; + } + + /* + * Download SCSI SCRIPTS to on-chip RAM if present, + * and start script processor. + */ + if (np->ram_ba) { + if (sym_verbose) + printf ("%s: Downloading SCSI SCRIPTS.\n", + sym_name(np)); + if (np->ram_ws == 8192) { + memcpy_to_pci(np->ram_va + 4096, + np->scripth0, sizeof(struct sym_scrh)); + OUTL (nc_mmws, np->scr_ram_seg); + OUTL (nc_mmrs, np->scr_ram_seg); + OUTL (nc_sfs, np->scr_ram_seg); + phys = SCRIPTH_BA (np, start64); + } + else + phys = SCRIPT_BA (np, init); + memcpy_to_pci(np->ram_va,np->script0,sizeof(struct sym_scr)); + } + else + phys = SCRIPT_BA (np, init); + + np->istat_sem = 0; + + MEMORY_BARRIER(); + OUTL (nc_dsa, vtobus(np)); + OUTL (nc_dsp, phys); + + /* + * Notify the XPT of the event. + */ + xpt_async(AC_BUS_RESET, np->path, NULL); +} + +/* + * Get clock factor and sync divisor for a given + * synchronous factor period. + */ +static int +sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) +{ + u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ + int div = np->clock_divn; /* Number of divisors supported */ + u32 fak; /* Sync factor in sxfer */ + u32 per; /* Period in tenths of ns */ + u32 kpc; /* (per * clk) */ + int ret; + + /* + * Compute the synchronous period in tenths of nano-seconds + */ + if (dt && sfac <= 9) per = 125; + else if (sfac <= 10) per = 250; + else if (sfac == 11) per = 303; + else if (sfac == 12) per = 500; + else per = 40 * sfac; + ret = per; + + kpc = per * clk; + if (dt) + kpc <<= 1; + + /* + * For earliest C10, the extra clocks does not apply + * to CRC cycles, so it may be safe not to use them. + * Note that this limits the lowest sync data transfer + * to 5 Mega-transfers per second and may result in + * using higher clock divisors. + */ +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { + /* + * Look for the lowest clock divisor that allows an + * output speed not faster than the period. + */ + while (--div >= 0) { + if (kpc > (div_10M[div] << 2)) { + ++div; + break; + } + } + fak = 0; /* No extra clocks */ + if (div == np->clock_divn) { /* Are we too fast ? */ + ret = -1; + } + *divp = div; + *fakp = fak; + + return ret; + } +#endif + + /* + * Look for the greatest clock divisor that allows an + * input speed faster than the period. + */ + while (--div >= 0) + if (kpc >= (div_10M[div] << 2)) break; + + /* + * Calculate the lowest clock factor that allows an output + * speed not faster than the period, and the max output speed. + * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. + * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. + */ + if (dt) { + fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; + /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ + } + else { + fak = (kpc - 1) / div_10M[div] + 1 - 4; + /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ + } + + /* + * Check against our hardware limits, or bugs :). + */ + if (fak < 0) {fak = 0; ret = -1;} + if (fak > 2) {fak = 2; ret = -1;} + + /* + * Compute and return sync parameters. + */ + *divp = div; + *fakp = fak; + + return ret; +} + +/* + * We received a WDTR. + * Let everything be aware of the changes. + */ +static void sym_setwide(hcb_p np, ccb_p cp, u_char wide) +{ + struct ccb_trans_settings neg; + union ccb *ccb = cp->cam_ccb; + tcb_p tp = &np->target[cp->target]; + + sym_settrans(np, cp, 0, 0, 0, wide, 0, 0); + + /* + * Tell the SCSI layer about the new transfer parameters. + */ + tp->tinfo.goal.width = tp->tinfo.current.width = wide; + neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT; + neg.sync_period = 0; + neg.sync_offset = 0; + neg.valid = CCB_TRANS_BUS_WIDTH_VALID + | CCB_TRANS_SYNC_RATE_VALID + | CCB_TRANS_SYNC_OFFSET_VALID; + xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); + xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); +} + +/* + * We received a SDTR. + * Let everything be aware of the changes. + */ +static void +sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak) +{ + struct ccb_trans_settings neg; + union ccb *ccb = cp->cam_ccb; + tcb_p tp = &np->target[cp->target]; + u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0; + + sym_settrans(np, cp, 0, ofs, per, wide, div, fak); + + /* + * Tell the SCSI layer about the new transfer parameters. + */ + tp->tinfo.goal.period = tp->tinfo.current.period = per; + tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; + tp->tinfo.goal.options = tp->tinfo.current.options = 0; + neg.sync_period = tp->tinfo.current.period; + neg.sync_offset = tp->tinfo.current.offset; + neg.valid = CCB_TRANS_SYNC_RATE_VALID + | CCB_TRANS_SYNC_OFFSET_VALID; + xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); + xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); +} + +/* + * We received a PPR. + * Let everything be aware of the changes. + */ +static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + struct ccb_trans_settings neg; + union ccb *ccb = cp->cam_ccb; + tcb_p tp = &np->target[cp->target]; + + sym_settrans(np, cp, dt, ofs, per, wide, div, fak); + + /* + * Tell the SCSI layer about the new transfer parameters. + */ + tp->tinfo.goal.width = tp->tinfo.current.width = wide; + tp->tinfo.goal.period = tp->tinfo.current.period = per; + tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; + tp->tinfo.current.offset= dt ? PPR_OPT_DT : 0; + tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs; + neg.sync_period = tp->tinfo.current.period; + neg.sync_offset = tp->tinfo.current.offset; + neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT; + neg.valid = CCB_TRANS_BUS_WIDTH_VALID + | CCB_TRANS_SYNC_RATE_VALID + | CCB_TRANS_SYNC_OFFSET_VALID; + xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1); + xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg); +} + +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT +/* + * Patch a script address if it points to a data script to + * the same position within another data script. + * Accept up to endp + 8, due to the SCR_CALL + * after end data script that moves to goalp. + */ +static u32 sym_chgp(u32 scrp, u32 old_endp, u32 new_endp) +{ + scrp = scr_to_cpu(scrp); + if (old_endp != new_endp && + old_endp + 8 - scrp <= SYMCONF_MAX_SG*8 + 8) + scrp = new_endp + 8 - (old_endp + 8 - scrp); + return cpu_to_scr(scrp); +} + +/* + * Called on negotiation, since the device may have + * changed mind about DT versus ST data transfers. + * Patches all data scripts address for a CCB, to fit + * the new data script, if needed. + */ +static u32 sym_chg_ccb_scrp(hcb_p np, u_char dt, ccb_p cp, u32 scrp) +{ + u32 old_endp = scr_to_cpu(cp->phys.goalp) - 8; + u32 new_endp = 0; + + /* + * Locate the data script we have to move to: + * Given the end data script pointer value (old) + * and the new type of transfert (DT/ST) deduce + * the new end data script pointer(s). + */ + if (dt) { + if (old_endp == SCRIPT_BA(np, data_in2)) + new_endp = SCRIPTH_BA(np, dt_data_in2); + else if (old_endp == SCRIPT_BA(np, data_out2)) + new_endp = SCRIPTH_BA(np, dt_data_out2); + } + else { + if (old_endp == SCRIPTH_BA(np, dt_data_in2)) + new_endp = SCRIPT_BA(np, data_in2); + else if (old_endp == SCRIPTH_BA(np, dt_data_out2)) + new_endp = SCRIPT_BA(np, data_out2); + } + /* + * If the end data script pointer was not + * inside a data script or if we must stay + * in the same data script, we are done. + */ + if (!new_endp || new_endp == old_endp) + goto out; + + /* + * Move to new data script all data script pointers + * that point inside the previous data script. + */ + cp->phys.savep = sym_chgp(cp->phys.savep, old_endp, new_endp); + cp->phys.lastp = sym_chgp(cp->phys.lastp, old_endp, new_endp); + cp->phys.goalp = sym_chgp(cp->phys.goalp, old_endp, new_endp); + cp->phys.pm0.ret = sym_chgp(cp->phys.pm0.ret, old_endp, new_endp); + cp->phys.pm1.ret = sym_chgp(cp->phys.pm1.ret, old_endp, new_endp); + cp->startp = sym_chgp(cp->startp, old_endp, new_endp); + + /* + * Also move an additionnal script pointer + * if passed by user. For the current CCB, + * this is useful to know the new value for + * TEMP register (current data script address). + */ + if (scrp) + scrp = scr_to_cpu(sym_chgp(scrp, old_endp, new_endp)); +out: + return scrp; +} +#endif /* SYMCONF_BROKEN_U3EN_SUPPORT */ + +/* + * Switch trans mode for current job and it's target. + */ +static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + union ccb *ccb; + tcb_p tp; + u_char target = INB (nc_sdid) & 0x0f; + u_char sval, wval, uval; + + assert (cp); + if (!cp) return; + ccb = cp->cam_ccb; + assert (ccb); + if (!ccb) return; + assert (target == (cp->target & 0xf)); + tp = &np->target[target]; + + sval = tp->sval; + wval = tp->wval; + uval = tp->uval; +#if 0 + printf("XXXXX sval=%x wval=%x uval=%x (%x)\n", + sval, wval, uval, np->rv_scntl3); +#endif + /* + * Set the offset. + */ + if (!(np->features & FE_C10)) + sval = (sval & ~0x1f) | ofs; + else + sval = (sval & ~0x3f) | ofs; + + /* + * Set the sync divisor and extra clock factor. + */ + if (ofs != 0) { + wval = (wval & ~0x70) | ((div+1) << 4); + if (!(np->features & FE_C10)) + sval = (sval & ~0xe0) | (fak << 5); + else { + uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); + if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); + if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); + } + } + + /* + * Set the bus width. + */ + wval = wval & ~EWS; + if (wide != 0) + wval |= EWS; + + /* + * Set misc. ultra enable bits. + */ + if (np->features & FE_C10) { + uval = uval & ~U3EN; + if (dt) { +#ifndef SYMCONF_BROKEN_U3EN_SUPPORT + assert(np->features & FE_U3EN); +#else + uval |= U3EN; +#endif + } + } + else { + wval = wval & ~ULTRA; + if (per <= 12) wval |= ULTRA; + } + + /* + * Stop there if sync parameters are unchanged. + */ + if (tp->sval == sval && tp->wval == wval && tp->uval == uval) return; + tp->sval = sval; + tp->wval = wval; + tp->uval = uval; + + /* + * Disable extended Sreq/Sack filtering if per < 50. + * Not supported on the C1010. + */ + if (per < 50 && !(np->features & FE_C10)) + OUTOFFB (nc_stest2, EXT); + + /* + * set actual value and sync_status + */ + OUTB (nc_sxfer, tp->sval); + OUTB (nc_scntl3, tp->wval); + + if (np->features & FE_C10) { +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + if (!(np->features & FE_U3EN)) { + u32 temp = INL (nc_temp); + temp = sym_chg_ccb_scrp(np, dt, cp, temp); + OUTL (nc_temp, temp); + } +#endif + OUTB (nc_scntl4, tp->uval); + } + + /* + * patch ALL ccbs of this target. + */ + for (cp = np->ccbc; cp; cp = cp->link_ccb) { + if (cp->host_status == HS_IDLE) + continue; + if (cp->target != target) + continue; + cp->phys.select.sel_scntl3 = tp->wval; + cp->phys.select.sel_sxfer = tp->sval; + if (np->features & FE_C10) { + cp->phys.select.sel_scntl4 = tp->uval; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + if (!(np->features & FE_U3EN)) + (void) sym_chg_ccb_scrp(np, dt, cp, 0); +#endif + } + } +} + +/* + * log message for real hard errors + * + * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc). + * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. + * + * exception register: + * ds: dstat + * si: sist + * + * SCSI bus lines: + * so: control lines as driven by chip. + * si: control lines as seen by chip. + * sd: scsi data lines as seen by chip. + * + * wide/fastmode: + * sxfer: (see the manual) + * scntl3: (see the manual) + * + * current script command: + * dsp: script adress (relative to start of script). + * dbc: first word of script command. + * + * First 24 register of the chip: + * r0..rf + */ +static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat) +{ + u32 dsp; + int script_ofs; + int script_size; + char *script_name; + u_char *script_base; + int i; + + dsp = INL (nc_dsp); + + if (dsp > np->script_ba && + dsp <= np->script_ba + sizeof(struct sym_scr)) { + script_ofs = dsp - np->script_ba; + script_size = sizeof(struct sym_scr); + script_base = (u_char *) np->script0; + script_name = "script"; + } + else if (np->scripth_ba < dsp && + dsp <= np->scripth_ba + sizeof(struct sym_scrh)) { + script_ofs = dsp - np->scripth_ba; + script_size = sizeof(struct sym_scrh); + script_base = (u_char *) np->scripth0; + script_name = "scripth"; + } else { + script_ofs = dsp; + script_size = 0; + script_base = 0; + script_name = "mem"; + } + + printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", + sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, + (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), + (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer), + (unsigned)INB (nc_scntl3), script_name, script_ofs, + (unsigned)INL (nc_dbc)); + + if (((script_ofs & 3) == 0) && + (unsigned)script_ofs < script_size) { + printf ("%s: script cmd = %08x\n", sym_name(np), + scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); + } + + printf ("%s: regdump:", sym_name(np)); + for (i=0; i<24;i++) + printf (" %02x", (unsigned)INB_OFF(i)); + printf (".\n"); + + /* + * PCI BUS error, read the PCI ststus register. + */ + if (dstat & (MDPE|BF)) { + u_short pci_sts; +#ifdef FreeBSD_4_Bus + pci_sts = pci_read_config(np->device, PCIR_STATUS, 2); +#else + pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2); +#endif + if (pci_sts & 0xf900) { +#ifdef FreeBSD_4_Bus + pci_write_config(np->device, PCIR_STATUS, pci_sts, 2); +#else + pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2); +#endif + printf("%s: PCI STATUS = 0x%04x\n", + sym_name(np), pci_sts & 0xf900); + } + } +} + +/* + * chip interrupt handler + * + * In normal situations, interrupt conditions occur one at + * a time. But when something bad happens on the SCSI BUS, + * the chip may raise several interrupt flags before + * stopping and interrupting the CPU. The additionnal + * interrupt flags are stacked in some extra registers + * after the SIP and/or DIP flag has been raised in the + * ISTAT. After the CPU has read the interrupt condition + * flag from SIST or DSTAT, the chip unstacks the other + * interrupt flags and sets the corresponding bits in + * SIST or DSTAT. Since the chip starts stacking once the + * SIP or DIP flag is set, there is a small window of time + * where the stacking does not occur. + * + * Typically, multiple interrupt conditions may happen in + * the following situations: + * + * - SCSI parity error + Phase mismatch (PAR|MA) + * When an parity error is detected in input phase + * and the device switches to msg-in phase inside a + * block MOV. + * - SCSI parity error + Unexpected disconnect (PAR|UDC) + * When a stupid device does not want to handle the + * recovery of an SCSI parity error. + * - Some combinations of STO, PAR, UDC, ... + * When using non compliant SCSI stuff, when user is + * doing non compliant hot tampering on the BUS, when + * something really bad happens to a device, etc ... + * + * The heuristic suggested by SYMBIOS to handle + * multiple interrupts is to try unstacking all + * interrupts conditions and to handle them on some + * priority based on error severity. + * This will work when the unstacking has been + * successful, but we cannot be 100 % sure of that, + * since the CPU may have been faster to unstack than + * the chip is able to stack. Hmmm ... But it seems that + * such a situation is very unlikely to happen. + * + * If this happen, for example STO caught by the CPU + * then UDC happenning before the CPU have restarted + * the SCRIPTS, the driver may wrongly complete the + * same command on UDC, since the SCRIPTS didn't restart + * and the DSA still points to the same command. + * We avoid this situation by setting the DSA to an + * invalid value when the CCB is completed and before + * restarting the SCRIPTS. + * + * Another issue is that we need some section of our + * recovery procedures to be somehow uninterruptible but + * the SCRIPTS processor does not provides such a + * feature. For this reason, we handle recovery preferently + * from the C code and check against some SCRIPTS critical + * sections from the C code. + * + * Hopefully, the interrupt handling of the driver is now + * able to resist to weird BUS error conditions, but donnot + * ask me for any guarantee that it will never fail. :-) + * Use at your own decision and risk. + */ + +static void sym_intr1 (hcb_p np) +{ + u_char istat, istatc; + u_char dstat; + u_short sist; + + /* + * interrupt on the fly ? + */ + istat = INB (nc_istat); + if (istat & INTF) { + OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); +#if 1 + istat = INB (nc_istat); /* DUMMY READ */ +#endif + if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); + (void)sym_wakeup_done (np); + }; + + if (!(istat & (SIP|DIP))) + return; + +#if 0 /* We should never get this one */ + if (istat & CABRT) + OUTB (nc_istat, CABRT); +#endif + + /* + * PAR and MA interrupts may occur at the same time, + * and we need to know of both in order to handle + * this situation properly. We try to unstack SCSI + * interrupts for that reason. BTW, I dislike a LOT + * such a loop inside the interrupt routine. + * Even if DMA interrupt stacking is very unlikely to + * happen, we also try unstacking these ones, since + * this has no performance impact. + */ + sist = 0; + dstat = 0; + istatc = istat; + do { + if (istatc & SIP) + sist |= INW (nc_sist); + if (istatc & DIP) + dstat |= INB (nc_dstat); + istatc = INB (nc_istat); + istat |= istatc; + } while (istatc & (SIP|DIP)); + + if (DEBUG_FLAGS & DEBUG_TINY) + printf ("<%d|%x:%x|%x:%x>", + (int)INB(nc_scr0), + dstat,sist, + (unsigned)INL(nc_dsp), + (unsigned)INL(nc_dbc)); + /* + * First, interrupts we want to service cleanly. + * + * Phase mismatch (MA) is the most frequent interrupt + * for chip earlier than the 896 and so we have to service + * it as quickly as possible. + * A SCSI parity error (PAR) may be combined with a phase + * mismatch condition (MA). + * Programmed interrupts (SIR) are used to call the C code + * from SCRIPTS. + * The single step interrupt (SSI) is not used in this + * driver. + */ + if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & PAR) sym_int_par (np, sist); + else if (sist & MA) sym_int_ma (np); + else if (dstat & SIR) sym_int_sir (np); + else if (dstat & SSI) OUTONB (nc_dcntl, (STD|NOCOM)); + else goto unknown_int; + return; + }; + + /* + * Now, interrupts that donnot happen in normal + * situations and that we may need to recover from. + * + * On SCSI RESET (RST), we reset everything. + * On SCSI BUS MODE CHANGE (SBMC), we complete all + * active CCBs with RESET status, prepare all devices + * for negotiating again and restart the SCRIPTS. + * On STO and UDC, we complete the CCB with the corres- + * ponding status and restart the SCRIPTS. + */ + if (sist & RST) { + sym_init (np, 1, sym_verbose ? "scsi reset" : NULL); + return; + }; + + OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ + + if (!(sist & (GEN|HTH|SGE)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & SBMC) sym_int_sbmc (np); + else if (sist & STO) sym_int_sto (np); + else if (sist & UDC) sym_int_udc (np); + else goto unknown_int; + return; + }; + + /* + * Now, interrupts we are not able to recover cleanly. + * + * Log message for hard errors. + * Reset everything. + */ + + sym_log_hard_error(np, sist, dstat); + + if ((sist & (GEN|HTH|SGE)) || + (dstat & (MDPE|BF|ABRT|IID))) { + sym_start_reset(np); + return; + }; + +unknown_int: + /* + * We just miss the cause of the interrupt. :( + * Print a message. The timeout will do the real work. + */ + printf( "%s: unknown interrupt(s) ignored, " + "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", + sym_name(np), istat, dstat, sist); +} + +static void sym_intr(void *arg) +{ + if (DEBUG_FLAGS & DEBUG_TINY) printf ("["); + sym_intr1((hcb_p) arg); + if (DEBUG_FLAGS & DEBUG_TINY) printf ("]"); + return; +} + +static void sym_poll(struct cam_sim *sim) +{ + int s = splcam(); + sym_intr(cam_sim_softc(sim)); + splx(s); +} + + +/* + * generic recovery from scsi interrupt + * + * The doc says that when the chip gets an SCSI interrupt, + * it tries to stop in an orderly fashion, by completing + * an instruction fetch that had started or by flushing + * the DMA fifo for a write to memory that was executing. + * Such a fashion is not enough to know if the instruction + * that was just before the current DSP value has been + * executed or not. + * + * There are some small SCRIPTS sections that deal with + * the start queue and the done queue that may break any + * assomption from the C code if we are interrupted + * inside, so we reset if this happens. Btw, since these + * SCRIPTS sections are executed while the SCRIPTS hasn't + * started SCSI operations, it is very unlikely to happen. + * + * All the driver data structures are supposed to be + * allocated from the same 4 GB memory window, so there + * is a 1 to 1 relationship between DSA and driver data + * structures. Since we are careful :) to invalidate the + * DSA when we complete a command or when the SCRIPTS + * pushes a DSA into a queue, we can trust it when it + * points to a CCB. + */ +static void sym_recover_scsi_int (hcb_p np, u_char hsts) +{ + u32 dsp = INL (nc_dsp); + u32 dsa = INL (nc_dsa); + ccb_p cp = sym_ccb_from_dsa(np, dsa); + + /* + * If we haven't been interrupted inside the SCRIPTS + * critical pathes, we can safely restart the SCRIPTS + * and trust the DSA value if it matches a CCB. + */ + if ((!(dsp > SCRIPT_BA (np, getjob_begin) && + dsp < SCRIPT_BA (np, getjob_end) + 1)) && + (!(dsp > SCRIPT_BA (np, ungetjob) && + dsp < SCRIPT_BA (np, reselect) + 1)) && + (!(dsp > SCRIPTH_BA (np, sel_for_abort) && + dsp < SCRIPTH_BA (np, sel_for_abort_1) + 1)) && + (!(dsp > SCRIPT_BA (np, done) && + dsp < SCRIPT_BA (np, done_end) + 1))) { + OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ + /* + * If we have a CCB, let the SCRIPTS call us back for + * the handling of the error with SCRATCHA filled with + * STARTPOS. This way, we will be able to freeze the + * device queue and requeue awaiting IOs. + */ + if (cp) { + cp->host_status = hsts; + OUTL (nc_dsp, SCRIPT_BA (np, complete_error)); + } + /* + * Otherwise just restart the SCRIPTS. + */ + else { + OUTL (nc_dsa, 0xffffff); + OUTL (nc_dsp, SCRIPT_BA (np, start)); + } + } + else + goto reset_all; + + return; + +reset_all: + sym_start_reset(np); +} + +/* + * chip exception handler for selection timeout + */ +void sym_int_sto (hcb_p np) +{ + u32 dsp = INL (nc_dsp); + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); + + if (dsp == SCRIPT_BA (np, wf_sel_done) + 8) + sym_recover_scsi_int(np, HS_SEL_TIMEOUT); + else + sym_start_reset(np); +} + +/* + * chip exception handler for unexpected disconnect + */ +void sym_int_udc (hcb_p np) +{ + printf ("%s: unexpected disconnect\n", sym_name(np)); + sym_recover_scsi_int(np, HS_UNEXPECTED); +} + +/* + * chip exception handler for SCSI bus mode change + * + * spi2-r12 11.2.3 says a transceiver mode change must + * generate a reset event and a device that detects a reset + * event shall initiate a hard reset. It says also that a + * device that detects a mode change shall set data transfer + * mode to eight bit asynchronous, etc... + * So, just reinitializing all except chip should be enough. + */ +static void sym_int_sbmc (hcb_p np) +{ + u_char scsi_mode = INB (nc_stest4) & SMODE; + + printf("%s: SCSI bus mode change from %x to %x.\n", + sym_name(np), np->scsi_mode, scsi_mode); + + np->scsi_mode = scsi_mode; + + + /* + * Should suspend command processing for 1 second and + * reinitialize all except the chip. + */ + sym_init (np, 0, sym_verbose ? "scsi mode change" : NULL); +} + +/* + * chip exception handler for SCSI parity error. + * + * When the chip detects a SCSI parity error and is + * currently executing a (CH)MOV instruction, it does + * not interrupt immediately, but tries to finish the + * transfer of the current scatter entry before + * interrupting. The following situations may occur: + * + * - The complete scatter entry has been transferred + * without the device having changed phase. + * The chip will then interrupt with the DSP pointing + * to the instruction that follows the MOV. + * + * - A phase mismatch occurs before the MOV finished + * and phase errors are to be handled by the C code. + * The chip will then interrupt with both PAR and MA + * conditions set. + * + * - A phase mismatch occurs before the MOV finished and + * phase errors are to be handled by SCRIPTS. + * The chip will load the DSP with the phase mismatch + * JUMP address and interrupt the host processor. + */ +static void sym_int_par (hcb_p np, u_short sist) +{ + u_char hsts = INB (HS_PRT); + u32 dsp = INL (nc_dsp); + u32 dbc = INL (nc_dbc); + u32 dsa = INL (nc_dsa); + u_char sbcl = INB (nc_sbcl); + u_char cmd = dbc >> 24; + int phase = cmd & 7; + ccb_p cp = sym_ccb_from_dsa(np, dsa); + + printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", + sym_name(np), hsts, dbc, sbcl); + + /* + * Check that the chip is connected to the SCSI BUS. + */ + if (!(INB (nc_scntl1) & ISCON)) { + sym_recover_scsi_int(np, HS_UNEXPECTED); + return; + } + + /* + * If the nexus is not clearly identified, reset the bus. + * We will try to do better later. + */ + if (!cp) + goto reset_all; + + /* + * Check instruction was a MOV, direction was INPUT and + * ATN is asserted. + */ + if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) + goto reset_all; + + /* + * Keep track of the parity error. + */ + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_PARITY_ERR; + + /* + * Prepare the message to send to the device. + */ + np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; + + /* + * If the old phase was DATA IN phase, we have to deal with + * the 3 situations described above. + * For other input phases (MSG IN and STATUS), the device + * must resend the whole thing that failed parity checking + * or signal error. So, jumping to dispatcher should be OK. + */ + if (phase == 1) { + /* Phase mismatch handled by SCRIPTS */ + if (dsp == SCRIPTH_BA (np, pm_handle)) + OUTL (nc_dsp, dsp); + /* Phase mismatch handled by the C code */ + else if (sist & MA) + sym_int_ma (np); + /* No phase mismatch occurred */ + else { + OUTL (nc_temp, dsp); + OUTL (nc_dsp, SCRIPT_BA (np, dispatch)); + } + } + else + OUTL (nc_dsp, SCRIPT_BA (np, clrack)); + return; + +reset_all: + sym_start_reset(np); + return; +} + +/* + * chip exception handler for phase errors. + * + * We have to construct a new transfer descriptor, + * to transfer the rest of the current block. + */ +static void sym_int_ma (hcb_p np) +{ + u32 dbc; + u32 rest; + u32 dsp; + u32 dsa; + u32 nxtdsp; + u32 *vdsp; + u32 oadr, olen; + u32 *tblp; + u32 newcmd; + u_int delta; + u_char cmd; + u_char hflags, hflags0; + struct sym_pmc *pm; + ccb_p cp; + + dsp = INL (nc_dsp); + dbc = INL (nc_dbc); + dsa = INL (nc_dsa); + + cmd = dbc >> 24; + rest = dbc & 0xffffff; + delta = 0; + + /* + * locate matching cp if any. + */ + cp = sym_ccb_from_dsa(np, dsa); + + /* + * Donnot take into account dma fifo and various buffers in + * INPUT phase since the chip flushes everything before + * raising the MA interrupt for interrupted INPUT phases. + * For DATA IN phase, we will check for the SWIDE later. + */ + if ((cmd & 7) != 1) { + u_char ss0, ss2; + + if (np->features & FE_DFBC) + delta = INW (nc_dfbc); + else { + u32 dfifo; + + /* + * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. + */ + dfifo = INL(nc_dfifo); + + /* + * Calculate remaining bytes in DMA fifo. + * (CTEST5 = dfifo >> 16) + */ + if (dfifo & (DFS << 16)) + delta = ((((dfifo >> 8) & 0x300) | + (dfifo & 0xff)) - rest) & 0x3ff; + else + delta = ((dfifo & 0xff) - rest) & 0x7f; + } + + /* + * The data in the dma fifo has not been transfered to + * the target -> add the amount to the rest + * and clear the data. + * Check the sstat2 register in case of wide transfer. + */ + rest += delta; + ss0 = INB (nc_sstat0); + if (ss0 & OLF) rest++; + if (!(np->features & FE_C10)) + if (ss0 & ORF) rest++; + if (cp && (cp->phys.select.sel_scntl3 & EWS)) { + ss2 = INB (nc_sstat2); + if (ss2 & OLF1) rest++; + if (!(np->features & FE_C10)) + if (ss2 & ORF1) rest++; + }; + + /* + * Clear fifos. + */ + OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ + OUTB (nc_stest3, TE|CSF); /* scsi fifo */ + } + + /* + * log the information + */ + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) + printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, + (unsigned) rest, (unsigned) delta); + + /* + * try to find the interrupted script command, + * and the address at which to continue. + */ + vdsp = 0; + nxtdsp = 0; + if (dsp > np->script_ba && + dsp <= np->script_ba + sizeof(struct sym_scr)) { + vdsp = (u32 *)((char*)np->script0 + (dsp-np->script_ba-8)); + nxtdsp = dsp; + } + else if (dsp > np->scripth_ba && + dsp <= np->scripth_ba + sizeof(struct sym_scrh)) { + vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->scripth_ba-8)); + nxtdsp = dsp; + } + + /* + * log the information + */ + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", + cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); + }; + + if (!vdsp) { + printf ("%s: interrupted SCRIPT address not found.\n", + sym_name (np)); + goto reset_all; + } + + if (!cp) { + printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", + sym_name (np)); + goto reset_all; + } + + /* + * get old startaddress and old length. + */ + oadr = scr_to_cpu(vdsp[1]); + + if (cmd & 0x10) { /* Table indirect */ + tblp = (u32 *) ((char*) &cp->phys + oadr); + olen = scr_to_cpu(tblp[0]); + oadr = scr_to_cpu(tblp[1]); + } else { + tblp = (u32 *) 0; + olen = scr_to_cpu(vdsp[0]) & 0xffffff; + }; + + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", + (unsigned) (scr_to_cpu(vdsp[0]) >> 24), + tblp, + (unsigned) olen, + (unsigned) oadr); + }; + + /* + * check cmd against assumed interrupted script command. + */ + if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { + PRINT_ADDR(cp); + printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", + (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); + + goto reset_all; + }; + + /* + * if old phase not dataphase, leave here. + */ + if ((cmd & 5) != (cmd & 7)) { + PRINT_ADDR(cp); + printf ("phase change %x-%x %d@%08x resid=%d.\n", + cmd&7, INB(nc_sbcl)&7, (unsigned)olen, + (unsigned)oadr, (unsigned)rest); + goto unexpected_phase; + }; + + /* + * Choose the correct PM save area. + * + * Look at the PM_SAVE SCRIPT if you want to understand + * this stuff. The equivalent code is implemented in + * SCRIPTS for the 895A and 896 that are able to handle + * PM from the SCRIPTS processor. + */ + hflags0 = INB (HF_PRT); + hflags = hflags0; + + if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { + if (hflags & HF_IN_PM0) + nxtdsp = scr_to_cpu(cp->phys.pm0.ret); + else if (hflags & HF_IN_PM1) + nxtdsp = scr_to_cpu(cp->phys.pm1.ret); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + } + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + newcmd = SCRIPT_BA(np, pm0_data); + } + else { + pm = &cp->phys.pm1; + newcmd = SCRIPT_BA(np, pm1_data); + } + + hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); + if (hflags != hflags0) + OUTB (HF_PRT, hflags); + + /* + * fillin the phase mismatch context + */ + pm->sg.addr = cpu_to_scr(oadr + olen - rest); + pm->sg.size = cpu_to_scr(rest); + pm->ret = cpu_to_scr(nxtdsp); + + /* + * If we have a SWIDE, + * - prepare the address to write the SWIDE from SCRIPTS, + * - compute the SCRIPTS address to restart from, + * - move current data pointer context by one byte. + */ + nxtdsp = SCRIPT_BA (np, dispatch); + if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && + (INB (nc_scntl2) & WSR)) { + /* + * Hmmm... The device may want to also ignore + * this residue but it must send immediately the + * appropriate message. We snoop the SCSI BUS + * and will just throw away this message from + * SCRIPTS if the SWIDE is to be ignored. + */ + if ((INB (nc_sbcl) & 7) == 7 && + INB (nc_sbdl) == M_IGN_RESIDUE) { + nxtdsp = SCRIPT_BA (np, ign_i_w_r_msg); + } + /* + * We must grab the SWIDE. + * We will use some complex SCRIPTS for that. + */ + else { + OUTL (nc_scratcha, pm->sg.addr); + nxtdsp = SCRIPTH_BA (np, swide_ma_32); + if (np->features & FE_64BIT) { + OUTB (nc_sbr, (pm->sg.size >> 24)); + nxtdsp = SCRIPTH_BA (np, swide_ma_64); + } + /* + * Adjust our data pointer context. + */ + ++pm->sg.addr; + --pm->sg.size; + /* + * Hmmm... Could it be possible that a SWIDE that + * is followed by a 1 byte CHMOV would lead to + * a CHMOV(0). Anyway, we handle it by just + * skipping context that would attempt a CHMOV(0). + */ + if (!pm->sg.size) + newcmd = pm->ret; + } + } + + if (DEBUG_FLAGS & DEBUG_PHASE) { + PRINT_ADDR(cp); + printf ("PM %x %x %x / %x %x %x.\n", + hflags0, hflags, newcmd, + (unsigned)scr_to_cpu(pm->sg.addr), + (unsigned)scr_to_cpu(pm->sg.size), + (unsigned)scr_to_cpu(pm->ret)); + } + + /* + * Restart the SCRIPTS processor. + */ + OUTL (nc_temp, newcmd); + OUTL (nc_dsp, nxtdsp); + return; + + /* + * Unexpected phase changes that occurs when the current phase + * is not a DATA IN or DATA OUT phase are due to error conditions. + * Such event may only happen when the SCRIPTS is using a + * multibyte SCSI MOVE. + * + * Phase change Some possible cause + * + * COMMAND --> MSG IN SCSI parity error detected by target. + * COMMAND --> STATUS Bad command or refused by target. + * MSG OUT --> MSG IN Message rejected by target. + * MSG OUT --> COMMAND Bogus target that discards extended + * negotiation messages. + * + * The code below does not care of the new phase and so + * trusts the target. Why to annoy it ? + * If the interrupted phase is COMMAND phase, we restart at + * dispatcher. + * If a target does not get all the messages after selection, + * the code assumes blindly that the target discards extended + * messages and clears the negotiation status. + * If the target does not want all our response to negotiation, + * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids + * bloat for such a should_not_happen situation). + * In all other situation, we reset the BUS. + * Are these assumptions reasonnable ? (Wait and see ...) + */ +unexpected_phase: + dsp -= 8; + nxtdsp = 0; + + switch (cmd & 7) { + case 2: /* COMMAND phase */ + nxtdsp = SCRIPT_BA (np, dispatch); + break; +#if 0 + case 3: /* STATUS phase */ + nxtdsp = SCRIPT_BA (np, dispatch); + break; +#endif + case 6: /* MSG OUT phase */ + /* + * If the device may want to use untagged when we want + * tagged, we prepare an IDENTIFY without disc. granted, + * since we will not be able to handle reselect. + * Otherwise, we just don't care. + */ + if (dsp == SCRIPT_BA (np, send_ident)) { + if (cp->tag != NO_TAG && olen - rest <= 3) { + cp->host_status = HS_BUSY; + np->msgout[0] = M_IDENTIFY | cp->lun; + nxtdsp = SCRIPTH_BA (np, ident_break_atn); + } + else + nxtdsp = SCRIPTH_BA (np, ident_break); + } + else if (dsp == SCRIPTH_BA (np, send_wdtr) || + dsp == SCRIPTH_BA (np, send_sdtr) || + dsp == SCRIPTH_BA (np, send_ppr)) { + nxtdsp = SCRIPTH_BA (np, nego_bad_phase); + } + break; +#if 0 + case 7: /* MSG IN phase */ + nxtdsp = SCRIPT_BA (np, clrack); + break; +#endif + } + + if (nxtdsp) { + OUTL (nc_dsp, nxtdsp); + return; + } + +reset_all: + sym_start_reset(np); +} + +/* + * Dequeue from the START queue all CCBs that match + * a given target/lun/task condition (-1 means all), + * and move them from the BUSY queue to the COMP queue + * with CAM_REQUEUE_REQ status condition. + * This function is used during error handling/recovery. + * It is called with SCRIPTS not running. + */ +static int +sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task) +{ + int j; + ccb_p cp; + + /* + * Make sure the starting index is within range. + */ + assert((i >= 0) && (i < 2*MAX_QUEUE)); + + /* + * Walk until end of START queue and dequeue every job + * that matches the target/lun/task condition. + */ + j = i; + while (i != np->squeueput) { + cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); + assert(cp); +#ifdef SYMCONF_IARB_SUPPORT + /* Forget hints for IARB, they may be no longer relevant */ + cp->host_flags &= ~HF_HINT_IARB; +#endif + if ((target == -1 || cp->target == target) && + (lun == -1 || cp->lun == lun) && + (task == -1 || cp->tag == task)) { + sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ); + sym_remque(&cp->link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + } + else { + if (i != j) + np->squeue[j] = np->squeue[i]; + if ((j += 2) >= MAX_QUEUE*2) j = 0; + } + if ((i += 2) >= MAX_QUEUE*2) i = 0; + } + if (i != j) /* Copy back the idle task if needed */ + np->squeue[j] = np->squeue[i]; + np->squeueput = j; /* Update our current start queue pointer */ + + return (i - j) / 2; +} + +/* + * Complete all CCBs queued to the COMP queue. + * + * These CCBs are assumed: + * - Not to be referenced either by devices or + * SCRIPTS-related queues and datas. + * - To have to be completed with an error condition + * or requeued. + * + * The device queue freeze count is incremented + * for each CCB that does not prevent this. + * This function is called when all CCBs involved + * in error handling/recovery have been reaped. + */ +static void +sym_flush_comp_queue(hcb_p np, int cam_status) +{ + SYM_QUEHEAD *qp; + ccb_p cp; + + while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { + union ccb *ccb; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + ccb = cp->cam_ccb; + if (cam_status) + sym_set_cam_status(ccb, cam_status); + sym_free_ccb(np, cp); + sym_freeze_cam_ccb(ccb); + sym_xpt_done(np, ccb); + } +} + +/* + * chip handler for bad SCSI status condition + * + * In case of bad SCSI status, we unqueue all the tasks + * currently queued to the controller but not yet started + * and then restart the SCRIPTS processor immediately. + * + * QUEUE FULL and BUSY conditions are handled the same way. + * Basically all the not yet started tasks are requeued in + * device queue and the queue is frozen until a completion. + * + * For CHECK CONDITION and COMMAND TERMINATED status, we use + * the CCB of the failed command to prepare a REQUEST SENSE + * SCSI command and queue it to the controller queue. + * + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp) +{ + tcb_p tp = &np->target[cp->target]; + u32 startp; + u_char s_status = cp->ssss_status; + u_char h_flags = cp->host_flags; + int msglen; + int nego; + int i; + + /* + * Compute the index of the next job to start from SCRIPTS. + */ + i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; + + /* + * The last CCB queued used for IARB hint may be + * no longer relevant. Forget it. + */ +#ifdef SYMCONF_IARB_SUPPORT + if (np->last_cp) + np->last_cp = 0; +#endif + + /* + * Now deal with the SCSI status. + */ + switch(s_status) { + case S_BUSY: + case S_QUEUE_FULL: + if (sym_verbose >= 2) { + PRINT_ADDR(cp); + printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); + } + default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ + sym_complete_error (np, cp); + break; + case S_TERMINATED: + case S_CHECK_COND: + /* + * If we get an SCSI error when requesting sense, give up. + */ + if (h_flags & HF_SENSE) { + sym_complete_error (np, cp); + break; + } + + /* + * Dequeue all queued CCBs for that device not yet started, + * and restart the SCRIPTS processor immediately. + */ + (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + OUTL (nc_dsp, SCRIPT_BA (np, start)); + + /* + * Save some info of the actual IO. + * Compute the data residual. + */ + cp->sv_scsi_status = cp->ssss_status; + cp->sv_xerr_status = cp->xerr_status; + cp->sv_resid = sym_compute_residual(np, cp); + + /* + * Prepare all needed data structures for + * requesting sense data. + */ + + /* + * identify message + */ + cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; + msglen = 1; + + /* + * If we are currently using anything different from + * async. 8 bit data transfers with that target, + * start a negotiation, since the device may want + * to report us a UNIT ATTENTION condition due to + * a cause we currently ignore, and we donnot want + * to be stuck with WIDE and/or SYNC data transfer. + * + * cp->nego_status is filled by sym_prepare_nego(). + */ + cp->nego_status = 0; + nego = 0; + if (tp->tinfo.current.options & PPR_OPT_MASK) + nego = NS_PPR; + else if (tp->tinfo.current.width != BUS_8_BIT) + nego = NS_WIDE; + else if (tp->tinfo.current.offset != 0) + nego = NS_SYNC; + if (nego) + msglen += + sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]); + /* + * Message table indirect structure. + */ + cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * sense command + */ + cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); + cp->phys.cmd.size = cpu_to_scr(6); + + /* + * patch requested size into sense command + */ + cp->sensecmd[0] = 0x03; + cp->sensecmd[1] = cp->lun << 5; + cp->sensecmd[4] = cp->cam_ccb->csio.sense_len; + cp->data_len = cp->cam_ccb->csio.sense_len; + + /* + * sense data + */ + cp->phys.sense.addr = + cpu_to_scr(vtobus(&cp->cam_ccb->csio.sense_data)); + cp->phys.sense.size = + cpu_to_scr(cp->cam_ccb->csio.sense_len); + + /* + * requeue the command. + */ + startp = SCRIPTH_BA (np, sdata_in); + + cp->phys.savep = cpu_to_scr(startp); +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + cp->phys.goalp = cpu_to_scr(startp + 40); +#else + cp->phys.goalp = cpu_to_scr(startp + 16); +#endif + cp->phys.lastp = cpu_to_scr(startp); + cp->startp = cpu_to_scr(startp); + + cp->actualquirks = SYM_QUIRK_AUTOSAVE; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->host_flags = HF_SENSE; + cp->xerr_status = 0; + cp->phys.extra_bytes = 0; + + cp->phys.go.start = + cpu_to_scr(SCRIPT_BA (np, select)); + + /* + * Requeue the command. + */ + sym_put_start_queue(np, cp); + + /* + * Give back to upper layer everything we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + } +} + +/* + * After a device has accepted some management message + * as BUS DEVICE RESET, ABORT TASK, etc ..., or when + * a device signals a UNIT ATTENTION condition, some + * tasks are thrown away by the device. We are required + * to reflect that on our tasks list since the device + * will never complete these tasks. + * + * This function move from the BUSY queue to the COMP + * queue all disconnected CCBs for a given target that + * match the following criteria: + * - lun=-1 means any logical UNIT otherwise a given one. + * - task=-1 means any task, otherwise a given one. + */ +static int +sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task) +{ + SYM_QUEHEAD qtmp, *qp; + int i = 0; + ccb_p cp; + + /* + * Move the entire BUSY queue to our temporary queue. + */ + sym_que_init(&qtmp); + sym_que_splice(&np->busy_ccbq, &qtmp); + sym_que_init(&np->busy_ccbq); + + /* + * Put all CCBs that matches our criteria into + * the COMP queue and put back other ones into + * the BUSY queue. + */ + while ((qp = sym_remque_head(&qtmp)) != 0) { + union ccb *ccb; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + ccb = cp->cam_ccb; + if (cp->host_status != HS_DISCONNECT || + cp->target != target || + (lun != -1 && cp->lun != lun) || + (task != -1 && + (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + continue; + } + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + + /* Preserve the software timeout condition */ + if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT) + sym_set_cam_status(ccb, cam_status); + ++i; +#if 0 +printf("XXXXX TASK @%p CLEARED\n", cp); +#endif + } + return i; +} + +/* + * chip handler for TASKS recovery + * + * We cannot safely abort a command, while the SCRIPTS + * processor is running, since we just would be in race + * with it. + * + * As long as we have tasks to abort, we keep the SEM + * bit set in the ISTAT. When this bit is set, the + * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) + * each time it enters the scheduler. + * + * If we have to reset a target, clear tasks of a unit, + * or to perform the abort of a disconnected job, we + * restart the SCRIPTS for selecting the target. Once + * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). + * If it loses arbitration, the SCRIPTS will interrupt again + * the next time it will enter its scheduler, and so on ... + * + * On SIR_TARGET_SELECTED, we scan for the more + * appropriate thing to do: + * + * - If nothing, we just sent a M_ABORT message to the + * target to get rid of the useless SCSI bus ownership. + * According to the specs, no tasks shall be affected. + * - If the target is to be reset, we send it a M_RESET + * message. + * - If a logical UNIT is to be cleared , we send the + * IDENTIFY(lun) + M_ABORT. + * - If an untagged task is to be aborted, we send the + * IDENTIFY(lun) + M_ABORT. + * - If a tagged task is to be aborted, we send the + * IDENTIFY(lun) + task attributes + M_ABORT_TAG. + * + * Once our 'kiss of death' :) message has been accepted + * by the target, the SCRIPTS interrupts again + * (SIR_ABORT_SENT). On this interrupt, we complete + * all the CCBs that should have been aborted by the + * target according to our message. + */ +static void sym_sir_task_recovery(hcb_p np, int num) +{ + SYM_QUEHEAD *qp; + ccb_p cp; + tcb_p tp; + int target=-1, lun=-1, task; + int i, k; + + switch(num) { + /* + * The SCRIPTS processor stopped before starting + * the next command in order to allow us to perform + * some task recovery. + */ + case SIR_SCRIPT_STOPPED: + /* + * Do we have any target to reset or unit to clear ? + */ + for (i = 0 ; i < SYMCONF_MAX_TARGET ; i++) { + tp = &np->target[i]; + if (tp->to_reset || + (tp->lun0p && tp->lun0p->to_clear)) { + target = i; + break; + } + if (!tp->lunmp) + continue; + for (k = 1 ; k < SYMCONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + target = i; + break; + } + } + if (target != -1) + break; + } + + /* + * If not, walk the busy queue for any + * disconnected CCB to be aborted. + */ + if (target == -1) { + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->to_abort) { + target = cp->target; + break; + } + } + } + + /* + * If some target is to be selected, + * prepare and start the selection. + */ + if (target != -1) { + tp = &np->target[target]; + np->abrt_sel.sel_id = target; + np->abrt_sel.sel_scntl3 = tp->wval; + np->abrt_sel.sel_sxfer = tp->sval; + OUTL(nc_dsa, vtobus(np)); + OUTL (nc_dsp, SCRIPTH_BA (np, sel_for_abort)); + return; + } + + /* + * Now look for a CCB to abort that haven't started yet. + * Btw, the SCRIPTS processor is still stopped, so + * we are not in race. + */ + i = 0; + cp = 0; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_BUSY && + cp->host_status != HS_NEGOTIATE) + continue; + if (!cp->to_abort) + continue; +#ifdef SYMCONF_IARB_SUPPORT + /* + * If we are using IMMEDIATE ARBITRATION, we donnot + * want to cancel the last queued CCB, since the + * SCRIPTS may have anticipated the selection. + */ + if (cp == np->last_cp) { + cp->to_abort = 0; + continue; + } +#endif + i = 1; /* Means we have found some */ + break; + } + if (!i) { + /* + * We are done, so we donnot need + * to synchronize with the SCRIPTS anylonger. + * Remove the SEM flag from the ISTAT. + */ + np->istat_sem = 0; + OUTB (nc_istat, SIGP); + break; + } + /* + * Compute index of next position in the start + * queue the SCRIPTS intends to start and dequeue + * all CCBs for that device that haven't been started. + */ + i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; + i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + + /* + * Make sure at least our IO to abort has been dequeued. + */ + assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ); + + /* + * Keep track in cam status of the reason of the abort. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); + else + sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED); + + /* + * Complete with error everything that we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + /* + * The SCRIPTS processor has selected a target + * we may have some manual recovery to perform for. + */ + case SIR_TARGET_SELECTED: + target = (INB (nc_sdid) & 0xf); + tp = &np->target[target]; + + np->abrt_tbl.addr = vtobus(np->abrt_msg); + + /* + * If the target is to be reset, prepare a + * M_RESET message and clear the to_reset flag + * since we donnot expect this operation to fail. + */ + if (tp->to_reset) { + np->abrt_msg[0] = M_RESET; + np->abrt_tbl.size = 1; + tp->to_reset = 0; + break; + } + + /* + * Otherwise, look for some logical unit to be cleared. + */ + if (tp->lun0p && tp->lun0p->to_clear) + lun = 0; + else if (tp->lunmp) { + for (k = 1 ; k < SYMCONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + lun = k; + break; + } + } + } + + /* + * If a logical unit is to be cleared, prepare + * an IDENTIFY(lun) + ABORT MESSAGE. + */ + if (lun != -1) { + lcb_p lp = sym_lp(np, tp, lun); + lp->to_clear = 0; /* We donnot expect to fail here */ + np->abrt_msg[0] = M_IDENTIFY | lun; + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + break; + } + + /* + * Otherwise, look for some disconnected job to + * abort for this target. + */ + i = 0; + cp = 0; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->target != target) + continue; + if (!cp->to_abort) + continue; + i = 1; /* Means we have some */ + break; + } + + /* + * If we have none, probably since the device has + * completed the command before we won abitration, + * send a M_ABORT message without IDENTIFY. + * According to the specs, the device must just + * disconnect the BUS and not abort any task. + */ + if (!i) { + np->abrt_msg[0] = M_ABORT; + np->abrt_tbl.size = 1; + break; + } + + /* + * We have some task to abort. + * Set the IDENTIFY(lun) + */ + np->abrt_msg[0] = M_IDENTIFY | cp->lun; + + /* + * If we want to abort an untagged command, we + * will send a IDENTIFY + M_ABORT. + * Otherwise (tagged command), we will send + * a IDENTITFY + task attributes + ABORT TAG. + */ + if (cp->tag == NO_TAG) { + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + } + else { + np->abrt_msg[1] = cp->scsi_smsg[1]; + np->abrt_msg[2] = cp->scsi_smsg[2]; + np->abrt_msg[3] = M_ABORT_TAG; + np->abrt_tbl.size = 4; + } + /* + * Keep track of software timeout condition, since the + * peripheral driver may not count retries on abort + * conditions not due to timeout. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT); + cp->to_abort = 0; /* We donnot expect to fail here */ + break; + + /* + * The target has accepted our message and switched + * to BUS FREE phase as we expected. + */ + case SIR_ABORT_SENT: + target = (INB (nc_sdid) & 0xf); + tp = &np->target[target]; + + /* + ** If we didn't abort anything, leave here. + */ + if (np->abrt_msg[0] == M_ABORT) + break; + + /* + * If we sent a M_RESET, then a hardware reset has + * been performed by the target. + * - Reset everything to async 8 bit + * - Tell ourself to negotiate next time :-) + * - Prepare to clear all disconnected CCBs for + * this target from our task list (lun=task=-1) + */ + lun = -1; + task = -1; + if (np->abrt_msg[0] == M_RESET) { + tp->sval = 0; + tp->wval = np->rv_scntl3; + tp->uval = 0; + tp->tinfo.current.period = 0; + tp->tinfo.current.offset = 0; + tp->tinfo.current.width = BUS_8_BIT; + tp->tinfo.current.options = 0; + } + + /* + * Otherwise, check for the LUN and TASK(s) + * concerned by the cancelation. + * If it is not ABORT_TAG then it is CLEAR_QUEUE + * or an ABORT message :-) + */ + else { + lun = np->abrt_msg[0] & 0x3f; + if (np->abrt_msg[1] == M_ABORT_TAG) + task = np->abrt_msg[2]; + } + + /* + * Complete all the CCBs the device should have + * aborted due to our 'kiss of death' message. + */ + i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; + (void) sym_dequeue_from_squeue(np, i, target, lun, -1); + (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task); + sym_flush_comp_queue(np, 0); + + /* + * If we sent a BDR, make uper layer aware of that. + */ + if (np->abrt_msg[0] == M_RESET) + xpt_async(AC_SENT_BDR, np->path, NULL); + break; + } + + /* + * Print to the log the message we intend to send. + */ + if (num == SIR_TARGET_SELECTED) { + PRINT_TARGET(np, target); + sym_printl_hex("control msgout:", np->abrt_msg, + np->abrt_tbl.size); + np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); + } + + /* + * Let the SCRIPTS processor continue. + */ + OUTONB (nc_dcntl, (STD|NOCOM)); +} + +/* + * Gerard's alchemy:) that deals with with the data + * pointer for both MDP and the residual calculation. + * + * I didn't want to bloat the code by more than 200 + * lignes for the handling of both MDP and the residual. + * This has been achieved by using a data pointer + * representation consisting in an index in the data + * array (dp_sg) and a negative offset (dp_ofs) that + * have the following meaning: + * + * - dp_sg = SYMCONF_MAX_SG + * we are at the end of the data script. + * - dp_sg < SYMCONF_MAX_SG + * dp_sg points to the next entry of the scatter array + * we want to transfer. + * - dp_ofs < 0 + * dp_ofs represents the residual of bytes of the + * previous entry scatter entry we will send first. + * - dp_ofs = 0 + * no residual to send first. + * + * The function sym_evaluate_dp() accepts an arbitray + * offset (basically from the MDP message) and returns + * the corresponding values of dp_sg and dp_ofs. + */ + +static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs) +{ + u32 dp_scr; + int dp_ofs, dp_sg, dp_sgmin; + int tmp; + struct sym_pmc *pm; + + /* + * Compute the resulted data pointer in term of a script + * address within some DATA script and a signed byte offset. + */ + dp_scr = scr; + dp_ofs = *ofs; + if (dp_scr == SCRIPT_BA (np, pm0_data)) + pm = &cp->phys.pm0; + else if (dp_scr == SCRIPT_BA (np, pm1_data)) + pm = &cp->phys.pm1; + else + pm = 0; + + if (pm) { + dp_scr = scr_to_cpu(pm->ret); + dp_ofs -= scr_to_cpu(pm->sg.size); + } + + /* + * If we are auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + *ofs = dp_ofs; + return 0; + } + + /* + * Deduce the index of the sg entry. + * Keep track of the index of the first valid entry. + * If result is dp_sg = SYMCONF_MAX_SG, then we are at the + * end of the data. + */ + tmp = scr_to_cpu(cp->phys.goalp); + dp_sg = SYMCONF_MAX_SG - (tmp - 8 - (int)dp_scr) / (2*4); + dp_sgmin = SYMCONF_MAX_SG - cp->segments; + + /* + * Move to the sg entry the data pointer belongs to. + * + * If we are inside the data area, we expect result to be: + * + * Either, + * dp_ofs = 0 and dp_sg is the index of the sg entry + * the data pointer belongs to (or the end of the data) + * Or, + * dp_ofs < 0 and dp_sg is the index of the sg entry + * the data pointer belongs to + 1. + */ + if (dp_ofs < 0) { + int n; + while (dp_sg > dp_sgmin) { + --dp_sg; + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + n = dp_ofs + (tmp & 0xffffff); + if (n > 0) { + ++dp_sg; + break; + } + dp_ofs = n; + } + } + else if (dp_ofs > 0) { + while (dp_sg < SYMCONF_MAX_SG) { + ++dp_sg; + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + dp_ofs -= (tmp & 0xffffff); + if (dp_ofs <= 0) + break; + } + } + + /* + * Make sure the data pointer is inside the data area. + * If not, return some error. + */ + if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) + goto out_err; + else if (dp_sg > SYMCONF_MAX_SG || + (dp_sg == SYMCONF_MAX_SG && dp_ofs > 0)) + goto out_err; + + /* + * Save the extreme pointer if needed. + */ + if (dp_sg > cp->ext_sg || + (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { + cp->ext_sg = dp_sg; + cp->ext_ofs = dp_ofs; + } + + /* + * Return data. + */ + *ofs = dp_ofs; + return dp_sg; + +out_err: + return -1; +} + +/* + * chip handler for MODIFY DATA POINTER MESSAGE + * + * We also call this function on IGNORE WIDE RESIDUE + * messages that do not match a SWIDE full condition. + * Btw, we assume in that situation that such a message + * is equivalent to a MODIFY DATA POINTER (offset=-1). + */ + +static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs) +{ + int dp_ofs = ofs; + u32 dp_scr = INL (nc_temp); + u32 dp_ret; + u_char hflags; + int dp_sg; + struct sym_pmc *pm; + + /* + * Not supported for auto-sense. + */ + if (cp->host_flags & HF_SENSE) + goto out_reject; + + /* + * Apply our alchemy:) (see comments in sym_evaluate_dp()), + * to the resulted data pointer. + */ + dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); + if (dp_sg < 0) + goto out_reject; + + /* + * And our alchemy:) allows to easily calculate the data + * script address we want to return for the next data phase. + */ + dp_ret = cpu_to_scr(cp->phys.goalp); + dp_ret = dp_ret - 8 - (SYMCONF_MAX_SG - dp_sg) * (2*4); + + /* + * If offset / scatter entry is zero we donnot need + * a context for the new current data pointer. + */ + if (dp_ofs == 0) { + dp_scr = dp_ret; + goto out_ok; + } + + /* + * Get a context for the new current data pointer. + */ + hflags = INB (HF_PRT); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + dp_scr = SCRIPT_BA (np, pm0_data); + } + else { + pm = &cp->phys.pm1; + dp_scr = SCRIPT_BA (np, pm1_data); + } + + hflags &= ~(HF_DP_SAVED); + + OUTB (HF_PRT, hflags); + + /* + * Set up the new current data pointer. + * ofs < 0 there, and for the next data phase, we + * want to transfer part of the data of the sg entry + * corresponding to index dp_sg-1 prior to returning + * to the main data script. + */ + pm->ret = cpu_to_scr(dp_ret); + pm->sg.addr = cp->phys.data[dp_sg-1].addr + dp_ofs; + pm->sg.size = cp->phys.data[dp_sg-1].size - dp_ofs; + +out_ok: + OUTL (nc_temp, dp_scr); + OUTL (nc_dsp, SCRIPT_BA (np, clrack)); + return; + +out_reject: + OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); +} + + +/* + * chip calculation of the data residual. + * + * As I used to say, the requirement of data residual + * in SCSI is broken, useless and cannot be achieved + * without huge complexity. + * But most OSes and even the official CAM require it. + * When stupidity happens to be so widely spread inside + * a community, it gets hard to convince. + * + * Anyway, I don't care, since I am not going to use + * any software that considers this data residual as + * a relevant information. :) + */ + +static int sym_compute_residual(hcb_p np, ccb_p cp) +{ + int dp_sg, dp_sgmin, resid; + int dp_ofs = 0; + + /* + * Check for some data lost or just thrown away. + * We are not required to be quite accurate in this + * situation. Btw, if we are odd for output and the + * device claims some more data, it may well happen + * than our residual be zero. :-) + */ + if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { + resid = 0; + if (cp->xerr_status & XE_EXTRA_DATA) + resid -= scr_to_cpu(cp->phys.extra_bytes); + if (cp->xerr_status & XE_SODL_UNRUN) + ++resid; + if (cp->xerr_status & XE_SWIDE_OVRUN) + --resid; + } + + /* + * If all data has been transferred, + * there is no residual. + */ + if (cp->phys.lastp == cp->phys.goalp) + return 0; + + /* + * If no data transfer occurs, or if the data + * pointer is weird, return full residual. + */ + if (cp->startp == cp->phys.lastp || + sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.lastp), &dp_ofs) < 0) { + return cp->data_len; + } + + /* + * If we were auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + return -dp_ofs; + } + + /* + * We are now full comfortable in the computation + * of the data residual (2's complement). + */ + dp_sgmin = SYMCONF_MAX_SG - cp->segments; + resid = -cp->ext_ofs; + for (dp_sg = cp->ext_sg; dp_sg < SYMCONF_MAX_SG; ++dp_sg) { + u_long tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + resid += (tmp & 0xffffff); + } + + /* + * Hopefully, the result is not too wrong. + */ + return resid; +} + +/* + * Print out the containt of a SCSI message. + */ + +static int sym_show_msg (u_char * msg) +{ + u_char i; + printf ("%x",*msg); + if (*msg==M_EXTENDED) { + for (i=1;i<8;i++) { + if (i-1>msg[1]) break; + printf ("-%x",msg[i]); + }; + return (i+1); + } else if ((*msg & 0xf0) == 0x20) { + printf ("-%x",msg[1]); + return (2); + }; + return (1); +} + +static void sym_print_msg (ccb_p cp, char *label, u_char *msg) +{ + PRINT_ADDR(cp); + if (label) + printf ("%s: ", label); + + (void) sym_show_msg (msg); + printf (".\n"); +} + +/* + * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. + * + * We try to negotiate sync and wide transfer only after + * a successfull inquire command. We look at byte 7 of the + * inquire data to determine the capabilities of the target. + * + * When we try to negotiate, we append the negotiation message + * to the identify and (maybe) simple tag message. + * The host status field is set to HS_NEGOTIATE to mark this + * situation. + * + * If the target doesn't answer this message immediately + * (as required by the standard), the SIR_NEGO_FAILED interrupt + * will be raised eventually. + * The handler removes the HS_NEGOTIATE status, and sets the + * negotiated value to the default (async / nowide). + * + * If we receive a matching answer immediately, we check it + * for validity, and set the values. + * + * If we receive a Reject message immediately, we assume the + * negotiation has failed, and fall back to standard values. + * + * If we receive a negotiation message while not in HS_NEGOTIATE + * state, it's a target initiated negotiation. We prepare a + * (hopefully) valid answer, set our parameters, and send back + * this answer to the target. + * + * If the target doesn't fetch the answer (no message out phase), + * we assume the negotiation has failed, and fall back to default + * settings (SIR_NEGO_PROTO interrupt). + * + * When we set the values, we adjust them in all ccbs belonging + * to this target, in the controller's register, and in the "phys" + * field of the controller's struct sym_hcb. + */ + +/* + * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. + */ +static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp) +{ + u_char chg, ofs, per, fak, div; + int req = 1; + + /* + * Synchronous request message received. + */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msg in", np->msgin); + }; + + /* + * request or answer ? + */ + if (INB (HS_PRT) == HS_NEGOTIATE) { + OUTB (HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_SYNC) + goto reject_it; + req = 0; + } + + /* + * get requested values. + */ + chg = 0; + per = np->msgin[3]; + ofs = np->msgin[4]; + + /* + * check values against our limits. + */ + if (ofs) { + if (ofs > np->maxoffs) + {chg = 1; ofs = np->maxoffs;} + if (req) { + if (ofs > tp->tinfo.user.offset) + {chg = 1; ofs = tp->tinfo.user.offset;} + } + } + + if (ofs) { + if (per < np->minsync) + {chg = 1; per = np->minsync;} + if (req) { + if (per < tp->tinfo.user.period) + {chg = 1; per = tp->tinfo.user.period;} + } + } + + div = fak = 0; + if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) + goto reject_it; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + PRINT_ADDR(cp); + printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", + ofs, per, div, fak, chg); + } + + /* + * This was an answer message + */ + if (req == 0) { + if (chg) /* Answer wasn't acceptable. */ + goto reject_it; + sym_setsync (np, cp, ofs, per, div, fak); + OUTL (nc_dsp, SCRIPT_BA (np, clrack)); + return; + } + + /* + * It was a request. Set value and + * prepare an answer message + */ + sym_setsync (np, cp, ofs, per, div, fak); + + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 3; + np->msgout[2] = M_X_SYNC_REQ; + np->msgout[3] = per; + np->msgout[4] = ofs; + + cp->nego_status = NS_SYNC; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + OUTL (nc_dsp, SCRIPTH_BA (np, sdtr_resp)); + return; +reject_it: + sym_setsync (np, cp, 0, 0, 0, 0); + OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); +} + +/* + * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. + */ +static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp) +{ + u_char chg, ofs, per, fak, dt, div, wide; + int req = 1; + + /* + * Synchronous request message received. + */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msg in", np->msgin); + }; + + /* + * request or answer ? + */ + if (INB (HS_PRT) == HS_NEGOTIATE) { + OUTB (HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_PPR) + goto reject_it; + req = 0; + } + + /* + * get requested values. + */ + chg = 0; + per = np->msgin[3]; + ofs = np->msgin[5]; + wide = np->msgin[6]; + dt = np->msgin[7] & PPR_OPT_DT; + + /* + * check values against our limits. + */ + if (wide > np->maxwide) + {chg = 1; wide = np->maxwide;} + if (!wide || !(np->features & FE_ULTRA3)) + dt &= ~PPR_OPT_DT; + if (req) { + if (wide > tp->tinfo.user.width) + {chg = 1; wide = tp->tinfo.user.width;} + } +#ifndef SYMCONF_BROKEN_U3EN_SUPPORT + if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */ + dt &= ~PPR_OPT_DT; +#endif + if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1; + + if (ofs) { + if (ofs > np->maxoffs) + {chg = 1; ofs = np->maxoffs;} + if (req) { + if (ofs > tp->tinfo.user.offset) + {chg = 1; ofs = tp->tinfo.user.offset;} + } + } + + if (ofs) { + if (dt && per < np->minsync_dt) + {chg = 1; per = np->minsync_dt;} + else if (per < np->minsync) + {chg = 1; per = np->minsync;} + if (req) { + if (per < tp->tinfo.user.period) + {chg = 1; per = tp->tinfo.user.period;} + } + } + + div = fak = 0; + if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) + goto reject_it; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + PRINT_ADDR(cp); + printf ("ppr: " + "dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n", + dt, ofs, per, wide, div, fak, chg); + } + + /* + * It was an answer. + */ + if (req == 0) { + if (chg) /* Answer wasn't acceptable */ + goto reject_it; + sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); + OUTL (nc_dsp, SCRIPT_BA (np, clrack)); + return; + } + + /* + * It was a request. Set value and + * prepare an answer message + */ + sym_setpprot (np, cp, dt, ofs, per, wide, div, fak); + + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 6; + np->msgout[2] = M_X_PPR_REQ; + np->msgout[3] = per; + np->msgout[4] = 0; + np->msgout[5] = ofs; + np->msgout[6] = wide; + np->msgout[7] = dt; + + cp->nego_status = NS_PPR; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "sync msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + OUTL (nc_dsp, SCRIPTH_BA (np, ppr_resp)); + return; +reject_it: + sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); + OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); +} + +/* + * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. + */ +static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp) +{ + u_char chg, wide; + int req = 1; + + /* + * Wide request message received. + */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "wide msgin", np->msgin); + }; + + /* + * Is it an request from the device? + */ + if (INB (HS_PRT) == HS_NEGOTIATE) { + OUTB (HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_WIDE) + goto reject_it; + req = 0; + } + + /* + * get requested values. + */ + chg = 0; + wide = np->msgin[3]; + + /* + * check values against driver limits. + */ + if (wide > np->maxoffs) + {chg = 1; wide = np->maxoffs;} + if (req) { + if (wide > tp->tinfo.user.width) + {chg = 1; wide = tp->tinfo.user.width;} + } + + if (DEBUG_FLAGS & DEBUG_NEGO) { + PRINT_ADDR(cp); + printf ("wdtr: wide=%d chg=%d.\n", wide, chg); + } + + /* + * This was an answer message + */ + if (req == 0) { + if (chg) /* Answer wasn't acceptable. */ + goto reject_it; + sym_setwide (np, cp, wide); + OUTL (nc_dsp, SCRIPT_BA (np, clrack)); + return; + }; + + /* + * It was a request, set value and + * prepare an answer message + */ + sym_setwide (np, cp, wide); + + np->msgout[0] = M_EXTENDED; + np->msgout[1] = 2; + np->msgout[2] = M_X_WIDE_REQ; + np->msgout[3] = wide; + + np->msgin [0] = M_NOOP; + + cp->nego_status = NS_WIDE; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_msg(cp, "wide msgout", np->msgout); + } + + OUTL (nc_dsp, SCRIPTH_BA (np, wdtr_resp)); + return; +reject_it: + OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); +} + +/* + * Reset SYNC or WIDE to default settings. + * + * Called when a negotiation does not succeed either + * on rejection or on protocol error. + */ +static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp) +{ + /* + * any error in negotiation: + * fall back to default mode. + */ + switch (cp->nego_status) { + case NS_PPR: + sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0); + break; + case NS_SYNC: + sym_setsync (np, cp, 0, 0, 0, 0); + break; + case NS_WIDE: + sym_setwide (np, cp, 0); + break; + }; + np->msgin [0] = M_NOOP; + np->msgout[0] = M_NOOP; + cp->nego_status = 0; +} + +/* + * chip handler for MESSAGE REJECT received in response to + * a WIDE or SYNCHRONOUS negotiation. + */ +static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp) +{ + sym_nego_default(np, tp, cp); + OUTB (HS_PRT, HS_BUSY); +} + +/* + * chip exception handler for programmed interrupts. + */ +void sym_int_sir (hcb_p np) +{ + u_char num = INB (nc_dsps); + u_long dsa = INL (nc_dsa); + ccb_p cp = sym_ccb_from_dsa(np, dsa); + u_char target = INB (nc_sdid) & 0x0f; + tcb_p tp = &np->target[target]; + int tmp; + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); + + switch (num) { + /* + * Command has been completed with error condition + * or has been auto-sensed. + */ + case SIR_COMPLETE_ERROR: + sym_complete_error(np, cp); + return; + /* + * The C code is currently trying to recover from something. + * Typically, user want to abort some command. + */ + case SIR_SCRIPT_STOPPED: + case SIR_TARGET_SELECTED: + case SIR_ABORT_SENT: + sym_sir_task_recovery(np, num); + return; + /* + * The device didn't go to MSG OUT phase after having + * been selected with ATN. We donnot want to handle + * that. + */ + case SIR_SEL_ATN_NO_MSG_OUT: + printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", + sym_name (np), target); + goto out_stuck; + /* + * The device didn't switch to MSG IN phase after + * having reseleted the initiator. + */ + case SIR_RESEL_NO_MSG_IN: + /* + * After reselection, the device sent a message that wasn't + * an IDENTIFY. + */ + case SIR_RESEL_NO_IDENTIFY: + /* + * If devices reselecting without sending an IDENTIFY + * message still exist, this should help. + * We just assume lun=0, 1 CCB, no tag. + */ + if (tp->lun0p) { + OUTL (nc_dsa, scr_to_cpu(tp->lun0p->itl_task_sa)); + OUTL (nc_dsp, SCRIPT_BA (np, resel_dsa1)); + return; + } + /* + * The device reselected a LUN we donnot know about. + */ + case SIR_RESEL_BAD_LUN: + np->msgout[0] = M_RESET; + goto out; + /* + * The device reselected for an untagged nexus and we + * haven't any. + */ + case SIR_RESEL_BAD_I_T_L: + np->msgout[0] = M_ABORT; + goto out; + /* + * The device reselected for a tagged nexus that we donnot + * have. + */ + case SIR_RESEL_BAD_I_T_L_Q: + np->msgout[0] = M_ABORT_TAG; + goto out; + /* + * The SCRIPTS let us know that the device has grabbed + * our message and will abort the job. + */ + case SIR_RESEL_ABORTED: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + printf ("%s:%d: message %x sent on bad reselection.\n", + sym_name (np), target, np->lastmsg); + goto out; + /* + * The SCRIPTS let us know that a message has been + * successfully sent to the device. + */ + case SIR_MSG_OUT_DONE: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + /* Should we really care of that */ + if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { + if (cp) { + cp->xerr_status &= ~XE_PARITY_ERR; + if (!cp->xerr_status) + OUTOFFB (HF_PRT, HF_EXT_ERR); + } + } + goto out; + /* + * The device didn't send a GOOD SCSI status. + * We may have some work to do prior to allow + * the SCRIPTS processor to continue. + */ + case SIR_BAD_SCSI_STATUS: + if (!cp) + goto out; + sym_sir_bad_scsi_status(np, num, cp); + return; + /* + * We are asked by the SCRIPTS to prepare a + * REJECT message. + */ + case SIR_REJECT_TO_SEND: + sym_print_msg(cp, "M_REJECT to send for ", np->msgin); + np->msgout[0] = M_REJECT; + goto out; + /* + * We have been ODD at the end of a DATA IN + * transfer and the device didn't send a + * IGNORE WIDE RESIDUE message. + * It is a data overrun condition. + */ + case SIR_SWIDE_OVERRUN: + if (cp) { + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SWIDE_OVRUN; + } + goto out; + /* + * We have been ODD at the end of a DATA OUT + * transfer. + * It is a data underrun condition. + */ + case SIR_SODL_UNDERRUN: + if (cp) { + OUTONB (HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SODL_UNRUN; + } + goto out; + /* + * We received a message. + */ + case SIR_MSG_RECEIVED: + if (!cp) + goto out_stuck; + switch (np->msgin [0]) { + /* + * We received an extended message. + * We handle MODIFY DATA POINTER, SDTR, WDTR + * and reject all other extended messages. + */ + case M_EXTENDED: + switch (np->msgin [2]) { + case M_X_MODIFY_DP: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp,"modify DP",np->msgin); + tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + + (np->msgin[5]<<8) + (np->msgin[6]); + sym_modify_dp(np, tp, cp, tmp); + return; + case M_X_SYNC_REQ: + sym_sync_nego(np, tp, cp); + return; + case M_X_PPR_REQ: + sym_ppr_nego(np, tp, cp); + return; + case M_X_WIDE_REQ: + sym_wide_nego(np, tp, cp); + return; + default: + goto out_reject; + } + break; + /* + * We received a 1/2 byte message not handled from SCRIPTS. + * We are only expecting MESSAGE REJECT and IGNORE WIDE + * RESIDUE messages that haven't been anticipated by + * SCRIPTS on SWIDE full condition. Unanticipated IGNORE + * WIDE RESIDUE messages are aliased as MODIFY DP (-1). + */ + case M_IGN_RESIDUE: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp,"ign wide residue", np->msgin); + sym_modify_dp(np, tp, cp, -1); + return; + case M_REJECT: + if (INB (HS_PRT) == HS_NEGOTIATE) + sym_nego_rejected(np, tp, cp); + else { + PRINT_ADDR(cp); + printf ("M_REJECT received (%x:%x).\n", + scr_to_cpu(np->lastmsg), np->msgout[0]); + } + goto out_clrack; + break; + default: + goto out_reject; + } + break; + /* + * We received an unknown message. + * Ignore all MSG IN phases and reject it. + */ + case SIR_MSG_WEIRD: + sym_print_msg(cp, "WEIRD message received", np->msgin); + OUTL (nc_dsp, SCRIPTH_BA (np, msg_weird)); + return; + /* + * Negotiation failed. + * Target does not send us the reply. + * Remove the HS_NEGOTIATE status. + */ + case SIR_NEGO_FAILED: + OUTB (HS_PRT, HS_BUSY); + /* + * Negotiation failed. + * Target does not want answer message. + */ + case SIR_NEGO_PROTO: + sym_nego_default(np, tp, cp); + goto out; + }; + +out: + OUTONB (nc_dcntl, (STD|NOCOM)); + return; +out_reject: + OUTL (nc_dsp, SCRIPTH_BA (np, msg_bad)); + return; +out_clrack: + OUTL (nc_dsp, SCRIPT_BA (np, clrack)); + return; +out_stuck: +} + +/* + * Acquire a control block + */ +static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order) +{ + tcb_p tp = &np->target[tn]; + lcb_p lp = sym_lp(np, tp, ln); + u_short tag = NO_TAG; + SYM_QUEHEAD *qp; + ccb_p cp = (ccb_p) 0; + + /* + * Look for a free CCB + */ + if (sym_que_empty(&np->free_ccbq)) + (void) sym_alloc_ccb(np); + qp = sym_remque_head(&np->free_ccbq); + if (!qp) + goto out; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + + /* + * If the LCB is not yet available and the LUN + * has been probed ok, try to allocate the LCB. + */ + if (!lp && sym_is_bit(tp->lun_map, ln)) { + lp = sym_alloc_lcb(np, tn, ln); + if (!lp) + goto out_free; + } + + /* + * If the LCB is not available here, then the + * logical unit is not yet discovered. For those + * ones only accept 1 SCSI IO per logical unit, + * since we cannot allow disconnections. + */ + if (!lp) { + if (!sym_is_bit(tp->busy0_map, ln)) + sym_set_bit(tp->busy0_map, ln); + else + goto out_free; + } else { + /* + * If we have been asked for a tagged command. + */ + if (tag_order) { + /* + * Debugging purpose. + */ + assert(lp->busy_itl == 0); + /* + * Allocate resources for tags if not yet. + */ + if (!lp->cb_tags) { + sym_alloc_lcb_tags(np, tn, ln); + if (!lp->cb_tags) + goto out_free; + } + /* + * Get a tag for this SCSI IO and set up + * the CCB bus address for reselection, + * and count it for this LUN. + * Toggle reselect patch to tagged. + */ + if (lp->busy_itlq < SYMCONF_MAX_TASK) { + tag = lp->cb_tags[lp->ia_tag]; + if (++lp->ia_tag == SYMCONF_MAX_TASK) + lp->ia_tag = 0; + lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); + ++lp->busy_itlq; + lp->resel_sa = + cpu_to_scr(SCRIPT_BA (np, resel_tag)); + } + else + goto out_free; + } + /* + * This command will not be tagged. + * If we already have either a tagged or untagged + * one, refuse to overlap this untagged one. + */ + else { + /* + * Debugging purpose. + */ + assert(lp->busy_itl == 0 && lp->busy_itlq == 0); + /* + * Count this nexus for this LUN. + * Set up the CCB bus address for reselection. + * Toggle reselect path to untagged. + */ + if (++lp->busy_itl == 1) { + lp->itl_task_sa = cpu_to_scr(cp->ccb_ba); + lp->resel_sa = + cpu_to_scr(SCRIPT_BA (np,resel_no_tag)); + } + else + goto out_free; + } + } + /* + * Put the CCB into the busy queue. + */ + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + + /* + * Remember all informations needed to free this CCB. + */ + cp->to_abort = 0; + cp->tag = tag; + cp->target = tn; + cp->lun = ln; + + if (DEBUG_FLAGS & DEBUG_TAGS) { + PRINT_LUN(np, tn, ln); + printf ("ccb @%p using tag %d.\n", cp, tag); + } + +out: + return cp; +out_free: + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + return (ccb_p) 0; +} + +/* + * Release one control block + */ +static void sym_free_ccb (hcb_p np, ccb_p cp) +{ + tcb_p tp = &np->target[cp->target]; + lcb_p lp = sym_lp(np, tp, cp->lun); + + if (DEBUG_FLAGS & DEBUG_TAGS) { + PRINT_LUN(np, cp->target, cp->lun); + printf ("ccb @%p freeing tag %d.\n", cp, cp->tag); + } + + /* + * If LCB available, + */ + if (lp) { + /* + * If tagged, release the tag, set the relect path + */ + if (cp->tag != NO_TAG) { + /* + * Free the tag value. + */ + lp->cb_tags[lp->if_tag] = cp->tag; + if (++lp->if_tag == SYMCONF_MAX_TASK) + lp->if_tag = 0; + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); + --lp->busy_itlq; + } else { /* Untagged */ + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba); + --lp->busy_itl; + } + /* + * If no JOB active, make the LUN reselect path invalid. + */ + if (lp->busy_itlq == 0 && lp->busy_itl == 0) + lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np,resel_bad_lun)); + } + /* + * Otherwise, we only accept 1 IO per LUN. + * Clear the bit that keeps track of this IO. + */ + else + sym_clr_bit(tp->busy0_map, cp->lun); + + /* + * We donnot queue more than 1 ccb per target + * with negotiation at any time. If this ccb was + * used for negotiation, clear this info in the tcb. + */ + if (cp == tp->nego_cp) + tp->nego_cp = 0; + +#ifdef SYMCONF_IARB_SUPPORT + /* + * If we just complete the last queued CCB, + * clear this info that is no longer relevant. + */ + if (cp == np->last_cp) + np->last_cp = 0; +#endif + /* + * Make this CCB available. + */ + cp->cam_ccb = 0; + cp->host_status = HS_IDLE; + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); +} + +/* + * Allocate a CCB from memory and initialize its fixed part. + */ +static ccb_p sym_alloc_ccb(hcb_p np) +{ + ccb_p cp = 0; + int hcode; + + /* + * Prevent from allocating more CCBs than we can + * queue to the controller. + */ + if (np->actccbs >= SYMCONF_MAX_START) + return 0; + + /* + * Allocate memory for this CCB. + */ + cp = sym_calloc(sizeof(struct sym_ccb), "CCB"); + if (!cp) + return 0; + + /* + * Count it. + */ + np->actccbs++; + + /* + * Compute the bus address of this ccb. + */ + cp->ccb_ba = vtobus(cp); + + /* + * Insert this ccb into the hashed list. + */ + hcode = CCB_HASH_CODE(cp->ccb_ba); + cp->link_ccbh = np->ccbh[hcode]; + np->ccbh[hcode] = cp; + + /* + * Initialyze the start and restart actions. + */ + cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, idle)); + cp->phys.go.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); + + /* + * Initilialyze some other fields. + */ + cp->phys.smsg_ext.addr = cpu_to_scr(vtobus(&np->msgin[2])); + + /* + * Chain into wakeup list and into free ccb queue. + */ + cp->link_ccb = np->ccbc; + np->ccbc = cp; + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + + return cp; +} + +/* + * Look up a CCB from a DSA value. + */ +static ccb_p sym_ccb_from_dsa(hcb_p np, u_long dsa) +{ + int hcode; + ccb_p cp; + + hcode = CCB_HASH_CODE(dsa); + cp = np->ccbh[hcode]; + while (cp) { + if (cp->ccb_ba == dsa) + break; + cp = cp->link_ccbh; + } + + return cp; +} + +/* + * Target control block initialisation. + * Nothing important to do at the moment. + */ +static void sym_init_tcb (hcb_p np, u_char tn) +{ + /* + * Check some alignments required by the chip. + */ + assert (((offsetof(struct sym_reg, nc_sxfer) ^ + offsetof(struct sym_tcb, sval)) &3) == 0); + assert (((offsetof(struct sym_reg, nc_scntl3) ^ + offsetof(struct sym_tcb, wval)) &3) == 0); +} + +/* + * Lun control block allocation and initialization. + */ +static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln) +{ + tcb_p tp = &np->target[tn]; + lcb_p lp = sym_lp(np, tp, ln); + + /* + * Already done, just return. + */ + if (lp) + return lp; + /* + * Check against some race. + */ + assert(!sym_is_bit(tp->busy0_map, ln)); + + /* + * Initialize the target control block if not yet. + */ + sym_init_tcb (np, tn); + + /* + * Allocate the LCB bus address array. + * Compute the bus address of this table. + */ + if (ln && !tp->luntbl) { + int i; + + tp->luntbl = sym_calloc(256, "LUNTBL"); + if (!tp->luntbl) + goto fail; + for (i = 0 ; i < 64 ; i++) + tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); + tp->luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); + } + + /* + * Allocate the table of pointers for LUN(s) > 0, if needed. + */ + if (ln && !tp->lunmp) { + tp->lunmp = sym_calloc(SYMCONF_MAX_LUN * sizeof(lcb_p), + "LUNMP"); + if (!tp->lunmp) + goto fail; + } + + /* + * Allocate the lcb. + * Make it available to the chip. + */ + lp = sym_calloc(sizeof(struct sym_lcb), "LCB"); + if (!lp) + goto fail; + if (ln) { + tp->lunmp[ln] = lp; + tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); + } + else { + tp->lun0p = lp; + tp->lun0_sa = cpu_to_scr(vtobus(lp)); + } + + /* + * Let the itl task point to error handling. + */ + lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba); + + /* + * Set the reselect pattern to our default. :) + */ + lp->resel_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun)); + + /* + * Set user capabilities. + */ + lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + +fail: + return lp; +} + +/* + * Allocate LCB resources for tagged command queuing. + */ +static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln) +{ + tcb_p tp = &np->target[tn]; + lcb_p lp = sym_lp(np, tp, ln); + int i; + + /* + * If LCB not available, try to allocate it. + */ + if (!lp && !(lp = sym_alloc_lcb(np, tn, ln))) + goto fail; + + /* + * Allocate the task table and and the tag allocation + * circular buffer. We want both or none. + */ + lp->itlq_tbl = sym_calloc(SYMCONF_MAX_TASK*4, "ITLQ_TBL"); + if (!lp->itlq_tbl) + goto fail; + lp->cb_tags = sym_calloc(SYMCONF_MAX_TASK, "CB_TAGS"); + if (!lp->cb_tags) { + sym_mfree(lp->itlq_tbl, SYMCONF_MAX_TASK*4, "ITLQ_TBL"); + lp->itlq_tbl = 0; + goto fail; + } + + /* + * Initialize the task table with invalid entries. + */ + for (i = 0 ; i < SYMCONF_MAX_TASK ; i++) + lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); + + /* + * Fill up the tag buffer with tag numbers. + */ + for (i = 0 ; i < SYMCONF_MAX_TASK ; i++) + lp->cb_tags[i] = i; + + /* + * Make the task table available to SCRIPTS, + * And accept tagged commands now. + */ + lp->itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); + + return; +fail: +} + +/* + * Test the pci bus snoop logic :-( + * + * Has to be called with interrupts disabled. + */ +#ifndef SYMCONF_IOMAPPED +static int sym_regtest (hcb_p np) +{ + register volatile u32 data; + /* + * chip registers may NOT be cached. + * write 0xffffffff to a read only register area, + * and try to read it back. + */ + data = 0xffffffff; + OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data); + data = INL_OFF(offsetof(struct sym_reg, nc_dstat)); +#if 1 + if (data == 0xffffffff) { +#else + if ((data & 0xe2f0fffd) != 0x02000080) { +#endif + printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", + (unsigned) data); + return (0x10); + }; + return (0); +} +#endif + +static int sym_snooptest (hcb_p np) +{ + u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc; + int i, err=0; +#ifndef SYMCONF_IOMAPPED + err |= sym_regtest (np); + if (err) return (err); +#endif + /* + * init + */ + pc = SCRIPTH0_BA (np, snooptest); + host_wr = 1; + sym_wr = 2; + /* + * Set memory and register. + */ + np->cache = cpu_to_scr(host_wr); + OUTL (nc_temp, sym_wr); + /* + * Start script (exchange values) + */ + OUTL (nc_dsa, vtobus(np)); + OUTL (nc_dsp, pc); + /* + * Wait 'til done (with timeout) + */ + for (i=0; icache); + sym_rd = INL (nc_scratcha); + sym_bk = INL (nc_temp); + + /* + * check for timeout + */ + if (i>=SYM_SNOOP_TIMEOUT) { + printf ("CACHE TEST FAILED: timeout.\n"); + return (0x20); + }; + /* + * Check termination position. + */ + if (pc != SCRIPTH0_BA (np, snoopend)+8) { + printf ("CACHE TEST FAILED: script execution failed.\n"); + printf ("start=%08lx, pc=%08lx, end=%08lx\n", + (u_long) SCRIPTH0_BA (np, snooptest), (u_long) pc, + (u_long) SCRIPTH0_BA (np, snoopend) +8); + return (0x40); + }; + /* + * Show results. + */ + if (host_wr != sym_rd) { + printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", + (int) host_wr, (int) sym_rd); + err |= 1; + }; + if (host_rd != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", + (int) sym_wr, (int) host_rd); + err |= 2; + }; + if (sym_bk != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", + (int) sym_wr, (int) sym_bk); + err |= 4; + }; + return (err); +} + +/* + * Determine the chip's clock frequency. + * + * This is essential for the negotiation of the synchronous + * transfer rate. + * + * Note: we have to return the correct value. + * THERE IS NO SAFE DEFAULT VALUE. + * + * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. + * 53C860 and 53C875 rev. 1 support fast20 transfers but + * do not have a clock doubler and so are provided with a + * 80 MHz clock. All other fast20 boards incorporate a doubler + * and so should be delivered with a 40 MHz clock. + * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base + * clock and provide a clock quadrupler (160 Mhz). + */ + +/* + * Select SCSI clock frequency + */ +static void sym_selectclock(hcb_p np, u_char scntl3) +{ + /* + * If multiplier not present or not selected, leave here. + */ + if (np->multiplier <= 1) { + OUTB(nc_scntl3, scntl3); + return; + } + + if (sym_verbose >= 2) + printf ("%s: enabling clock multiplier\n", sym_name(np)); + + OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ + /* + * Wait for the LCKFRQ bit to be set if supported by the chip. + * Otherwise wait 20 micro-seconds. + */ + if (np->features & FE_LCKFRQ) { + int i = 20; + while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) + UDELAY (20); + if (!i) + printf("%s: the chip cannot lock the frequency\n", + sym_name(np)); + } else + UDELAY (20); + OUTB(nc_stest3, HSC); /* Halt the scsi clock */ + OUTB(nc_scntl3, scntl3); + OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ + OUTB(nc_stest3, 0x00); /* Restart scsi clock */ +} + +/* + * calculate SCSI clock frequency (in KHz) + */ +static unsigned getfreq (hcb_p np, int gen) +{ + unsigned int ms = 0; + unsigned int f; + + /* + * Measure GEN timer delay in order + * to calculate SCSI clock frequency + * + * This code will never execute too + * many loop iterations (if DELAY is + * reasonably correct). It could get + * too low a delay (too high a freq.) + * if the CPU is slow executing the + * loop for some reason (an NMI, for + * example). For this reason we will + * if multiple measurements are to be + * performed trust the higher delay + * (lower frequency returned). + */ + OUTW (nc_sien , 0); /* mask all scsi interrupts */ + (void) INW (nc_sist); /* clear pending scsi interrupt */ + OUTB (nc_dien , 0); /* mask all dma interrupts */ + (void) INW (nc_sist); /* another one, just to be sure :) */ + OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ + OUTB (nc_stime1, 0); /* disable general purpose timer */ + OUTB (nc_stime1, gen); /* set to nominal delay of 1<= 2) + printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", + sym_name(np), gen, ms, f); + + return f; +} + +static unsigned sym_getfreq (hcb_p np) +{ + u_int f1, f2; + int gen = 11; + + (void) getfreq (np, gen); /* throw away first result */ + f1 = getfreq (np, gen); + f2 = getfreq (np, gen); + if (f1 > f2) f1 = f2; /* trust lower result */ + return f1; +} + +/* + * Get/probe chip SCSI clock frequency + */ +static void sym_getclock (hcb_p np, int mult) +{ + unsigned char scntl3 = INB(nc_scntl3); + unsigned char stest1 = INB(nc_stest1); + unsigned f1; + + /* + * For the C10 core, assume 40 MHz. + */ + if (np->features & FE_C10) { + np->multiplier = mult; + np->clock_khz = 40000 * mult; + return; + } + + np->multiplier = 1; + f1 = 40000; + /* + * True with 875/895/896/895A with clock multiplier selected + */ + if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier found\n", sym_name(np)); + np->multiplier = mult; + } + + /* + * If multiplier not found or scntl3 not 7,5,3, + * reset chip and get frequency from general purpose timer. + * Otherwise trust scntl3 BIOS setting. + */ + if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { + OUTB (nc_stest1, 0); /* make sure doubler is OFF */ + f1 = sym_getfreq (np); + + if (sym_verbose) + printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); + + if (f1 < 45000) f1 = 40000; + else if (f1 < 55000) f1 = 50000; + else f1 = 80000; + + if (f1 < 80000 && mult > 1) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier assumed\n", + sym_name(np)); + np->multiplier = mult; + } + } else { + if ((scntl3 & 7) == 3) f1 = 40000; + else if ((scntl3 & 7) == 5) f1 = 80000; + else f1 = 160000; + + f1 /= np->multiplier; + } + + /* + * Compute controller synchronous parameters. + */ + f1 *= np->multiplier; + np->clock_khz = f1; +} + +/* + * Get/probe PCI clock frequency + */ +static int sym_getpciclock (hcb_p np) +{ + static int f = 0; + + /* For the C10, this will not work */ + if (!f && !(np->features & FE_C10)) { + OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ + f = (int) sym_getfreq (np); + OUTB (nc_stest1, 0); + } + return f; +} + +/*============= DRIVER ACTION/COMPLETION ====================*/ + +/* + * Print something that tells about extended errors. + */ +static void sym_print_xerr(ccb_p cp, int x_status) +{ + if (x_status & XE_PARITY_ERR) { + PRINT_ADDR(cp); + printf ("unrecovered SCSI parity error.\n"); + } + if (x_status & XE_EXTRA_DATA) { + PRINT_ADDR(cp); + printf ("extraneous data discarded.\n"); + } + if (x_status & XE_BAD_PHASE) { + PRINT_ADDR(cp); + printf ("illegal scsi phase (4/5).\n"); + } + if (x_status & XE_SODL_UNRUN) { + PRINT_ADDR(cp); + printf ("ODD transfer in DATA OUT phase.\n"); + } + if (x_status & XE_SWIDE_OVRUN) { + PRINT_ADDR(cp); + printf ("ODD transfer in DATA IN phase.\n"); + } +} + +/* + * Choose the more appropriate CAM status if + * the IO encountered an extended error. + */ +static int sym_xerr_cam_status(int cam_status, int x_status) +{ + if (x_status) { + if (x_status & XE_PARITY_ERR) + cam_status = CAM_UNCOR_PARITY; + else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) + cam_status = CAM_DATA_RUN_ERR; + else if (x_status & XE_BAD_PHASE) + cam_status = CAM_REQ_CMP_ERR; + else + cam_status = CAM_REQ_CMP_ERR; + } + return cam_status; +} + +/* + * Complete execution of a SCSI command with extented + * error, SCSI status error, or having been auto-sensed. + * + * The SCRIPTS processor is not running there, so we + * can safely access IO registers and remove JOBs from + * the START queue. + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +static void sym_complete_error (hcb_p np, ccb_p cp) +{ + struct ccb_scsiio *csio; + u_int cam_status; + int i; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cam_ccb) + return; + + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { + printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp, + cp->host_status, cp->ssss_status, cp->host_flags, + cp->target, cp->lun); + MDELAY(100); + } + + /* + * Get command, target and lun pointers. + */ + csio = &cp->cam_ccb->csio; + + /* + * Check for extended errors. + */ + if (cp->xerr_status) { + if (sym_verbose) + sym_print_xerr(cp, cp->xerr_status); + if (cp->host_status == HS_COMPLETE) + cp->host_status = HS_COMP_ERR; + } + + /* + * Calculate the residual. + */ + csio->sense_resid = 0; + csio->resid = sym_compute_residual(np, cp); + + if (!SYMCONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */ + csio->resid = 0; /* throw them away. :) */ + cp->sv_resid = 0; + } + + if (cp->host_flags & HF_SENSE) { /* Auto sense */ + csio->scsi_status = cp->sv_scsi_status; /* Restore status */ + csio->sense_resid = csio->resid; /* Swap residuals */ + csio->resid = cp->sv_resid; + cp->sv_resid = 0; + if (sym_verbose && cp->sv_xerr_status) + sym_print_xerr(cp, cp->sv_xerr_status); + if (cp->host_status == HS_COMPLETE && + cp->ssss_status == S_GOOD && + cp->xerr_status == 0) { + cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR, + cp->sv_xerr_status); + cam_status |= CAM_AUTOSNS_VALID; +#if 0 + /* + * If the device reports a UNIT ATTENTION condition + * due to a RESET condition, we should consider all + * disconnect CCBs for this unit as aborted. + */ + if (1) { + u_char *p; + p = (u_char *) &cp->cam_ccb->csio.sense_data; + if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) + sym_clear_tasks(np, CAM_REQ_ABORTED, + cp->target,cp->lun, -1); + } +#endif + } + else + cam_status = CAM_AUTOSENSE_FAIL; + } + else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */ + csio->scsi_status = cp->ssss_status; + cam_status = CAM_SCSI_STATUS_ERROR; + } + else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ + cam_status = CAM_SEL_TIMEOUT; + else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ + cam_status = CAM_UNEXP_BUSFREE; + else { /* Extended error */ + if (sym_verbose) { + PRINT_ADDR(cp); + printf ("COMMAND FAILED (%x %x %x).\n", + cp->host_status, cp->ssss_status, + cp->xerr_status); + } + csio->scsi_status = cp->ssss_status; + /* + * Set the most appropriate value for CAM status. + */ + cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR, + cp->xerr_status); + } + + /* + * Dequeue all queued CCBs for that device + * not yet started by SCRIPTS. + */ + i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; + (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + + /* + * Restart the SCRIPTS processor. + */ + OUTL (nc_dsp, SCRIPT_BA (np, start)); + + /* + * Add this one to the COMP queue. + * Complete all those commands with either error + * or requeue condition. + */ + sym_set_cam_status((union ccb *) csio, cam_status); + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); + sym_flush_comp_queue(np, 0); +} + +/* + * Complete execution of a successful SCSI command. + * + * Only successful commands go to the DONE queue, + * since we need to have the SCRIPTS processor + * stopped on any error condition. + * The SCRIPTS processor is running while we are + * completing successful commands. + */ +static void sym_complete_ok (hcb_p np, ccb_p cp) +{ + struct ccb_scsiio *csio; + tcb_p tp; + lcb_p lp; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cam_ccb) + return; + assert (cp->host_status == HS_COMPLETE); + + /* + * Get command, target and lun pointers. + */ + csio = &cp->cam_ccb->csio; + tp = &np->target[cp->target]; + lp = sym_lp(np, tp, cp->lun); + + /* + * Assume device discovered on first success. + */ + if (!lp) + sym_set_bit(tp->lun_map, cp->lun); + + /* + * If all data have been transferred, given than no + * extended error did occur, there is no residual. + */ + csio->resid = 0; + if (cp->phys.lastp != cp->phys.goalp) + csio->resid = sym_compute_residual(np, cp); + + /* + * Wrong transfer residuals may be worse than just always + * returning zero. User can disable this feature from + * sym_conf.h. Residual support is enabled by default. + */ + if (!SYMCONF_RESIDUAL_SUPPORT) + csio->resid = 0; + + /* + * Set status and complete the command. + */ + csio->scsi_status = cp->ssss_status; + sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP); + sym_free_ccb (np, cp); + sym_xpt_done(np, (union ccb *) csio); +} + +/* + * Our timeout handler. + */ +static void sym_timeout1(void *arg) +{ + union ccb *ccb = (union ccb *) arg; + hcb_p np = ccb->ccb_h.sym_hcb_ptr; + + /* + * Check that the CAM CCB is still queued. + */ + if (!np) + return; + + switch(ccb->ccb_h.func_code) { + case XPT_SCSI_IO: + (void) sym_abort_scsiio(np, ccb, 1); + break; + default: + break; + } +} + +static void sym_timeout(void *arg) +{ + int s = splcam(); + sym_timeout1(arg); + splx(s); +} + +/* + * Abort an SCSI IO. + */ +static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out) +{ + ccb_p cp; + + /* + * Look up our CCB control block. + */ + for (cp=np->ccbc; cp; cp=cp->link_ccb) { + if (cp->host_status != HS_IDLE && cp->cam_ccb == ccb) + break; + } + if (!cp) + return -1; + + /* + * If a previous abort didn't succeed in time, + * perform a BUS reset. + */ + if (cp->to_abort) { + sym_reset_scsi_bus(np, 1); + return 0; + } + + /* + * Mark the CCB for abort and allow time for. + */ + cp->to_abort = timed_out ? 2 : 1; + ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz); + + /* + * Tell the SCRIPTS processor to stop and synchronize with us. + */ + np->istat_sem = SEM; + OUTB (nc_istat, SIGP|SEM); + return 0; +} + +/* + * Reset a SCSI device (all LUNs of a target). + */ +static void sym_reset_dev(hcb_p np, union ccb *ccb) +{ + tcb_p tp; + struct ccb_hdr *ccb_h = &ccb->ccb_h; + + if (ccb_h->target_id == np->myaddr || + ccb_h->target_id >= SYMCONF_MAX_TARGET || + ccb_h->target_lun >= SYMCONF_MAX_LUN) { + sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); + return; + } + + tp = &np->target[ccb_h->target_id]; + + tp->to_reset = 1; + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + + np->istat_sem = SEM; + OUTB (nc_istat, SIGP|SEM); + return; +} + +/* + * SIM action entry point. + */ +static void sym_action(struct cam_sim *sim, union ccb *ccb) +{ + int s = splcam(); + sym_action1(sim, ccb); + splx(s); +} + +static void sym_action1(struct cam_sim *sim, union ccb *ccb) +{ + hcb_p np; + tcb_p tp; + lcb_p lp; + ccb_p cp; + int tmp; + u_char idmsg, *msgptr; + u_int msglen; + struct ccb_scsiio *csio; + struct ccb_hdr *ccb_h; + + CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n")); + + /* + * Retrieve our controller data structure. + */ + np = (hcb_p) cam_sim_softc(sim); + + /* + * The common case is SCSI IO. + * We deal with other ones elsewhere. + */ + if (ccb->ccb_h.func_code != XPT_SCSI_IO) { + sym_action2(sim, ccb); + return; + } + csio = &ccb->csio; + ccb_h = &csio->ccb_h; + + /* + * Work around races. + */ + if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { + xpt_done(ccb); + return; + } + + /* + * Minimal checkings, so that we will not + * go outside our tables. + */ + if (ccb_h->target_id == np->myaddr || + ccb_h->target_id >= SYMCONF_MAX_TARGET || + ccb_h->target_lun >= SYMCONF_MAX_LUN) { + sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); + return; + } + + /* + * Retreive the target and lun descriptors. + */ + tp = &np->target[ccb_h->target_id]; + lp = sym_lp(np, tp, ccb_h->target_lun); + + /* + * Complete the 1st INQUIRY command with error + * condition if the device is flagged NOSCAN + * at BOOT in the NVRAM. This may speed up + * the boot and maintain coherency with BIOS + * device numbering. Clearing the flag allows + * user to rescan skipped devices later. + * We also return error for devices not flagged + * for SCAN LUNS in the NVRAM since some mono-lun + * devices behave badly when asked for some non + * zero LUN. Btw, this is an absolute hack.:-) + */ + if (!(ccb_h->flags & CAM_CDB_PHYS) && + (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ? + csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) { + if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || + ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && + ccb_h->target_lun != 0)) { + tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; + sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); + return; + } + } + + /* + * Get a control block for this IO. + */ + tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0); + cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp); + if (!cp) { + sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL); + return; + } + + /* + * Enqueue this IO in our pending queue. + */ + cp->cam_ccb = ccb; + sym_enqueue_cam_ccb(np, ccb); + + /* + * Build the IDENTIFY message. + */ + idmsg = M_IDENTIFY | cp->lun; + if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED))) + idmsg |= 0x40; + + msgptr = cp->scsi_smsg; + msglen = 0; + msgptr[msglen++] = idmsg; + + /* + * Build the tag message if present. + */ + if (cp->tag != NO_TAG) { + u_char order = csio->tag_action; + + switch(order) { + case M_ORDERED_TAG: + break; + case M_HEAD_TAG: + break; + default: + order = M_SIMPLE_TAG; + } + msgptr[msglen++] = order; + + /* + * For less than 128 tags, actual tags are numbered + * 1,3,5,..2*MAXTAGS+1,since we may have to deal + * with devices that have problems with #TAG 0 or too + * great #TAG numbers. For more tags (up to 256), + * we use directly our tag number. + */ +#if SYMCONF_MAX_TASK > (512/4) + msgptr[msglen++] = cp->tag; +#else + msgptr[msglen++] = (cp->tag << 1) + 1; +#endif + } + + /* + * Build a negotiation message if needed. + * (nego_status is filled by sym_prepare_nego()) + */ + cp->nego_status = 0; + if (tp->tinfo.current.width != tp->tinfo.goal.width || + tp->tinfo.current.period != tp->tinfo.goal.period || + tp->tinfo.current.offset != tp->tinfo.goal.offset || +#if 0 /* For now only renegotiate, based on width, period and offset */ + tp->tinfo.current.options != tp->tinfo.goal.options) { +#else + 0) { +#endif + if (!tp->nego_cp && lp) + msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen); + } + + /* + * Fill in our ccb + */ + + /* + * Startqueue + */ + cp->phys.go.start = cpu_to_scr(SCRIPT_BA (np, select)); + cp->phys.go.restart = cpu_to_scr(SCRIPT_BA (np, resel_dsa)); + + /* + * select + */ + cp->phys.select.sel_id = cp->target; + cp->phys.select.sel_scntl3 = tp->wval; + cp->phys.select.sel_sxfer = tp->sval; + cp->phys.select.sel_scntl4 = tp->uval; + + /* + * message + */ + cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * command + */ + if (sym_setup_cdb(np, csio, cp) < 0) { + sym_free_ccb(np, cp); + sym_xpt_done(np, ccb); + return; + } + + /* + * status + */ +#if 0 /* Provision */ + cp->actualquirks = tp->quirks; +#endif + cp->actualquirks = SYM_QUIRK_AUTOSAVE; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->xerr_status = 0; + cp->host_flags = 0; + cp->phys.extra_bytes = 0; + + /* + * extreme data pointer. + * shall be positive, so -1 is lower than lowest.:) + */ + cp->ext_sg = -1; + cp->ext_ofs = 0; + + /* + * Build the data descriptor block + * and start the IO. + */ + if (sym_setup_data(np, csio, cp) < 0) { + sym_free_ccb(np, cp); + sym_xpt_done(np, ccb); + return; + } +} + +/* + * How complex it gets to deal with the CDB in CAM. + * I bet, physical CDBs will never be used on the planet. + */ +static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) +{ + struct ccb_hdr *ccb_h; + u32 cmd_ba; + int cmd_len; + + ccb_h = &csio->ccb_h; + + /* + * CDB is 16 bytes max. + */ + if (csio->cdb_len > 16) { + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + return -1; + } + cmd_len = csio->cdb_len; + + if (ccb_h->flags & CAM_CDB_POINTER) { + /* CDB is a pointer */ + if (!(ccb_h->flags & CAM_CDB_PHYS)) { + /* CDB pointer is virtual */ + cmd_ba = vtobus(csio->cdb_io.cdb_ptr); + } else { + /* CDB pointer is physical */ +#if 0 + cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff; +#else + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + return -1; +#endif + } + } else { + /* CDB is in the ccb (buffer) */ + cmd_ba = vtobus(csio->cdb_io.cdb_bytes); + } + + cp->phys.cmd.addr = cpu_to_scr(cmd_ba); + cp->phys.cmd.size = cpu_to_scr(cmd_len); + + return 0; +} + +/* + * How complex it gets to deal with the data in CAM. + * I bet physical data will never be used in our galaxy. + */ +static int sym_setup_data(hcb_p np, struct ccb_scsiio *csio, ccb_p cp) +{ + struct ccb_hdr *ccb_h; + int dir, retv; + u32 lastp, goalp; + + ccb_h = &csio->ccb_h; + + /* + * Now deal with the data. + */ + cp->data_len = 0; + cp->segments = 0; + + /* + * No direction means no data. + */ + dir = (ccb_h->flags & CAM_DIR_MASK); + if (dir == CAM_DIR_NONE) + goto end_scatter; + + if (!(ccb_h->flags & CAM_SCATTER_VALID)) { + /* Single buffer */ + if (!(ccb_h->flags & CAM_DATA_PHYS)) { + /* Buffer is virtual */ + retv = sym_scatter_virtual(np, cp, + (vm_offset_t) csio->data_ptr, + (vm_size_t) csio->dxfer_len); + } else { + /* Buffer is physical */ + retv = sym_scatter_physical(np, cp, + (vm_offset_t) csio->data_ptr, + (vm_size_t) csio->dxfer_len); + } + if (retv < 0) + goto too_big; + } else { + /* Scatter/gather list */ + int i; + struct bus_dma_segment *segs; + segs = (struct bus_dma_segment *)csio->data_ptr; + + if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) { + /* The SG list pointer is physical */ + sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); + return -1; + } + retv = 0; + if (!(ccb_h->flags & CAM_DATA_PHYS)) { + /* SG buffer pointers are virtual */ + for (i = csio->sglist_cnt - 1 ; i >= 0 ; --i) { + retv = sym_scatter_virtual(np, cp, + segs[i].ds_addr, + segs[i].ds_len); + if (retv < 0) + break; + } + } else { + /* SG buffer pointers are physical */ + for (i = csio->sglist_cnt - 1 ; i >= 0 ; --i) { + retv = sym_scatter_physical(np, cp, + segs[i].ds_addr, + segs[i].ds_len); + if (retv < 0) + break; + } + } + if (retv < 0) + goto too_big; + } + +end_scatter: + /* + * No segments means no data. + */ + if (!cp->segments) + dir = CAM_DIR_NONE; + + /* + * Set the data pointer. + */ + switch(dir) { + case CAM_DIR_OUT: + goalp = SCRIPT_BA (np, data_out2) + 8; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { + tcb_p tp = &np->target[cp->target]; + if (tp->tinfo.current.options & PPR_OPT_DT) + goalp = SCRIPTH_BA (np, dt_data_out2) + 8; + } +#endif + lastp = goalp - 8 - (cp->segments * (2*4)); + break; + case CAM_DIR_IN: + goalp = SCRIPT_BA (np, data_in2) + 8; +#ifdef SYMCONF_BROKEN_U3EN_SUPPORT + if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { + tcb_p tp = &np->target[cp->target]; + if (tp->tinfo.current.options & PPR_OPT_DT) + goalp = SCRIPTH_BA (np, dt_data_in2) + 8; + } +#endif + lastp = goalp - 8 - (cp->segments * (2*4)); + break; + case CAM_DIR_NONE: + default: + lastp = goalp = SCRIPTH_BA (np, no_data); + break; + } + + cp->phys.lastp = cpu_to_scr(lastp); + cp->phys.goalp = cpu_to_scr(goalp); + cp->phys.savep = cpu_to_scr(lastp); + cp->startp = cp->phys.savep; + + /* + * Activate this job. + * If we have awaiting commands for that unit, 2 max + * at a time is enough to flush the CCB wait queue. + */ + sym_put_start_queue(np, cp); + + /* + * Command is successfully queued. + */ + return 0; +too_big: + sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG); + return -1; +} + +/* + * Scatter a virtual buffer into bus addressable chunks. + */ +static int +sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) +{ + u_long pe, pn; + u_long n, k; + int s; + + cp->data_len += len; + + pe = vaddr + len; + n = len; + s = SYMCONF_MAX_SG - 1 - cp->segments; + + while (n && s >= 0) { + pn = (pe - 1) & ~PAGE_MASK; + k = pe - pn; + if (k > n) { + k = n; + pn = pe - n; + } + if (DEBUG_FLAGS & DEBUG_SCATTER) { + printf ("%s scatter: va=%lx pa=%lx siz=%lx\n", + sym_name(np), pn, (u_long) vtobus(pn), k); + } + cp->phys.data[s].addr = cpu_to_scr(vtobus(pn)); + cp->phys.data[s].size = cpu_to_scr(k); + pe = pn; + n -= k; + --s; + } + cp->segments = SYMCONF_MAX_SG - 1 - s; + + return n ? -1 : 0; +} + +/* + * Will stay so forever, in my opinion. + */ +static int +sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len) +{ + return -1; +} + +/* + * SIM action for non performance critical stuff. + */ +static void sym_action2(struct cam_sim *sim, union ccb *ccb) +{ + hcb_p np; + tcb_p tp; + lcb_p lp; + struct ccb_hdr *ccb_h; + + /* + * Retrieve our controller data structure. + */ + np = (hcb_p) cam_sim_softc(sim); + + ccb_h = &ccb->ccb_h; + + switch (ccb_h->func_code) { + case XPT_SET_TRAN_SETTINGS: + { + struct ccb_trans_settings *cts; + + cts = &ccb->cts; + tp = &np->target[ccb_h->target_id]; + + /* + * Update user transfer settings if asked by user. + */ + if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) + sym_update_trans(np, tp, &tp->tinfo.user, cts); + + /* + * Update current wished settings if asked by user. + * Force negotiations if something has changed. + */ + if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) + sym_update_trans(np, tp, &tp->tinfo.goal, cts); + + /* + * The guys that have implemented this CAM seem to + * have made the common mistake about the CmdQue flag. + * This feature is a device feature and so must be + * handled per logical unit. + */ + lp = sym_lp(np, tp, ccb_h->target_lun); + if (lp) { + if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) + sym_update_dflags(np, &lp->user_flags, cts); + if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) + sym_update_dflags(np, &lp->current_flags, cts); + } + + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_GET_TRAN_SETTINGS: + { + struct ccb_trans_settings *cts; + struct sym_trans *tip; + u_char dflags; + + cts = &ccb->cts; + tp = &np->target[ccb_h->target_id]; + lp = sym_lp(np, tp, ccb_h->target_lun); + + if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) { + tip = &tp->tinfo.current; + dflags = lp ? lp->current_flags : 0; + } + else { + tip = &tp->tinfo.user; + dflags = lp ? lp->user_flags : tp->usrflags; + } + + cts->sync_period = tip->period; + cts->sync_offset = tip->offset; + cts->bus_width = tip->width; + + cts->valid = CCB_TRANS_SYNC_RATE_VALID + | CCB_TRANS_SYNC_OFFSET_VALID + | CCB_TRANS_BUS_WIDTH_VALID; + + if (lp) { + cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB); + + if (dflags & SYM_DISC_ENABLED) + cts->flags |= CCB_TRANS_DISC_ENB; + + if (dflags & SYM_TAGS_ENABLED) + cts->flags |= CCB_TRANS_TAG_ENB; + + cts->valid |= CCB_TRANS_DISC_VALID; + cts->valid |= CCB_TRANS_TQ_VALID; + } + + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_CALC_GEOMETRY: + { + struct ccb_calc_geometry *ccg; + u32 size_mb; + u32 secs_per_cylinder; + int extended; + + /* + * Silly DOS geometry. + */ + ccg = &ccb->ccg; + size_mb = ccg->volume_size + / ((1024L * 1024L) / ccg->block_size); + extended = 1; + + if (size_mb > 1024 && extended) { + ccg->heads = 255; + ccg->secs_per_track = 63; + } else { + ccg->heads = 64; + ccg->secs_per_track = 32; + } + secs_per_cylinder = ccg->heads * ccg->secs_per_track; + ccg->cylinders = ccg->volume_size / secs_per_cylinder; + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_PATH_INQ: + { + struct ccb_pathinq *cpi = &ccb->cpi; + cpi->version_num = 1; + cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE; + if ((np->features & FE_WIDE) != 0) + cpi->hba_inquiry |= PI_WIDE_16; + cpi->target_sprt = 0; + cpi->hba_misc = 0; + cpi->hba_eng_cnt = 0; + cpi->max_target = (np->features & FE_WIDE) ? 15 : 7; + /* Semantic problem:)LUN number max = max number of LUNs - 1 */ + cpi->max_lun = SYMCONF_MAX_LUN-1; + cpi->bus_id = cam_sim_bus(sim); + cpi->initiator_id = np->myaddr; + cpi->base_transfer_speed = 3300; + strncpy(cpi->sim_vid, "Gerard Roudier", SIM_IDLEN); + strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN); + strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); + cpi->unit_number = cam_sim_unit(sim); + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_ABORT: + { + union ccb *abort_ccb = ccb->cab.abort_ccb; + switch(abort_ccb->ccb_h.func_code) { + case XPT_SCSI_IO: + if (sym_abort_scsiio(np, abort_ccb, 0) == 0) { + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + default: + sym_xpt_done2(np, ccb, CAM_UA_ABORT); + break; + } + break; + } + case XPT_RESET_DEV: + { + sym_reset_dev(np, ccb); + break; + } + case XPT_RESET_BUS: + { + sym_reset_scsi_bus(np, 0); + sym_init (np, 1, NULL); + if (sym_verbose) { + xpt_print_path(np->path); + printf("SCSI bus reset delivered.\n"); + } + sym_xpt_done2(np, ccb, CAM_REQ_CMP); + break; + } + case XPT_ACCEPT_TARGET_IO: + case XPT_CONT_TARGET_IO: + case XPT_EN_LUN: + case XPT_NOTIFY_ACK: + case XPT_IMMED_NOTIFY: + case XPT_TERM_IO: + default: + sym_xpt_done2(np, ccb, CAM_REQ_INVALID); + break; + } +} + +/* + * Update transfer settings of a target. + */ +static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip, + struct ccb_trans_settings *cts) +{ + /* + * Update the infos. + */ + if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) + tip->width = cts->bus_width; + if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) + tip->offset = cts->sync_offset; + if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) + tip->period = cts->sync_period; + + /* + * Scale against out limits. + */ + if (tip->width > SYMSETUP_MAX_WIDE) tip->width = np->maxwide; + if (tip->width > np->maxwide) tip->width = np->maxwide; + if (tip->offset > SYMSETUP_MAX_OFFS) tip->offset = np->maxoffs; + if (tip->offset > np->maxoffs) tip->offset = np->maxoffs; + if (tip->period) { + if (tip->period < SYMSETUP_MIN_SYNC) + tip->period = SYMSETUP_MIN_SYNC; + if (np->features & FE_ULTRA3) { + if (tip->period < np->minsync_dt) + tip->period = np->minsync_dt; + } + else { + if (tip->period < np->minsync) + tip->period = np->minsync; + } + if (tip->period > np->maxsync) + tip->period = np->maxsync; + } +} + +/* + * Update flags for a device (logical unit). + */ +static void +sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts) +{ + if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) { + if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) + *flags |= SYM_DISC_ENABLED; + else + *flags &= ~SYM_DISC_ENABLED; + } + + if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { + if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) + *flags |= SYM_TAGS_ENABLED; + else + *flags &= ~SYM_TAGS_ENABLED; + } +} + + +/*============= DRIVER INITIALISATION ==================*/ + +#ifdef FreeBSD_4_Bus + +static device_method_t sym_pci_methods[] = { + DEVMETHOD(device_probe, sym_pci_probe), + DEVMETHOD(device_attach, sym_pci_attach), + { 0, 0 } +}; + +static driver_t sym_pci_driver = { + "sym", + sym_pci_methods, + sizeof(struct sym_hcb) +}; + +static devclass_t sym_devclass; + +DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0); + +#else /* Pre-FreeBSD_4_Bus */ + +static u_long sym_unit; + +static struct pci_device sym_pci_driver = { + "sym", + sym_pci_probe, + sym_pci_attach, + &sym_unit, + NULL +}; + +DATA_SET (pcidevice_set, sym_pci_driver); + +#endif /* FreeBSD_4_Bus */ + +static struct sym_pci_chip sym_pci_dev_table[] = { + {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, + FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} + , + {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, + FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, + FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} + , + {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, + FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C875_2,0xff, "875_2", 6, 16, 5, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF} + , + {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_LCKFRQ} + , + {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_ID_LSI53C1010, 0x45, "1010", 6, 62, 7, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC| + FE_C10} + , + {PCI_ID_LSI53C1010, 0xff, "1010", 6, 62, 7, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_ID_LSI53C1510D, 0xff, "1510D", 6, 31, 7, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_IO256|FE_LEDC} +}; + +#define sym_pci_num_devs \ + (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0])) + +/* + * Look up the chip table. + * + * Return a pointer to the chip entry if found, + * zero otherwise. + */ +static struct sym_pci_chip * +#ifdef FreeBSD_4_Bus +sym_find_pci_chip(device_t dev) +#else +sym_find_pci_chip(pcici_t pci_tag) +#endif +{ + struct sym_pci_chip *chip; + int i; + u_short device_id; + u_char revision; + +#ifdef FreeBSD_4_Bus + if (pci_get_vendor(dev) != PCI_VENDOR_NCR) + return 0; + + device_id = pci_get_device(dev); + revision = pci_get_revid(dev); +#else + if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR) + return 0; + + device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); + revision = pci_cfgread(pci_tag, PCIR_REVID, 1); +#endif + + for (i = 0; i < sym_pci_num_devs; i++) { + chip = &sym_pci_dev_table[i]; + if (device_id != chip->device_id) + continue; + if (revision > chip->revision_id) + continue; + if (FE_LDSTR & chip->features) + return chip; + } + + return 0; +} + +/* + * Tell upper layer if the chip is supported. + */ +#ifdef FreeBSD_4_Bus +static int +sym_pci_probe(device_t dev) +{ + struct sym_pci_chip *chip; + + chip = sym_find_pci_chip(dev); + if (chip) { + device_set_desc(dev, chip->name); + return 0; + } + return ENXIO; +} +#else /* Pre-FreeBSD_4_Bus */ +static const char * +sym_pci_probe(pcici_t pci_tag, pcidi_t type) +{ + struct sym_pci_chip *chip; + + chip = sym_find_pci_chip(pci_tag); + if (chip) + return chip->name; + return 0; +} +#endif + +/* + * Attach a sym53c8xx device. + */ +#ifdef FreeBSD_4_Bus +static int +sym_pci_attach(device_t dev) +#else +static void +sym_pci_attach(pcici_t pci_tag, int unit) +{ + int err = sym_pci_attach2(pci_tag, unit); + if (err) + printf("sym: failed to attach unit %d - err=%d.\n", unit, err); +} +static int +sym_pci_attach2(pcici_t pci_tag, int unit) +#endif +{ + struct sym_pci_chip *chip; + u_short command; + u_char cachelnsz; + struct sym_hcb *np = 0; + struct sym_nvram nvram; + int i; + + /* + * Only probed devices should be attached. + * We just enjoy being paranoid. :) + */ +#ifdef FreeBSD_4_Bus + chip = sym_find_pci_chip(dev); +#else + chip = sym_find_pci_chip(pci_tag); +#endif + if (chip == NULL) + return (ENXIO); + + /* + * Allocate immediately the host control block, + * since we are only expecting to succeed. :) + * We keep track in the HCB of all the resources that + * are to be released on error. + */ + np = sym_calloc(sizeof(*np), "HCB"); + if (!np) + goto attach_failed; + + /* + * Copy some useful infos to the HCB. + */ + np->verbose = bootverbose; +#ifdef FreeBSD_4_Bus + np->device = dev; + np->unit = device_get_unit(dev); + np->device_id = pci_get_device(dev); + np->revision_id = pci_get_revid(dev); +#else + np->pci_tag = pci_tag; + np->unit = unit; + np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2); + np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1); +#endif + np->features = chip->features; + np->clock_divn = chip->nr_divisor; + np->maxoffs = chip->offset_max; + np->maxburst = chip->burst_max; + + /* + * Edit its name. + */ + snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit); + + /* + * Read and apply some fix-ups to the PCI COMMAND + * register. We want the chip to be enabled for: + * - BUS mastering + * - PCI parity checking (reporting would also be fine) + * - Write And Invalidate. + */ +#ifdef FreeBSD_4_Bus + command = pci_read_config(dev, PCIR_COMMAND, 2); +#else + command = pci_cfgread(pci_tag, PCIR_COMMAND, 2); +#endif + command |= PCIM_CMD_BUSMASTEREN; + command |= PCIM_CMD_PERRESPEN; + command |= /* PCIM_CMD_MWIEN */ 0x0010; +#ifdef FreeBSD_4_Bus + pci_write_config(dev, PCIR_COMMAND, command, 2); +#else + pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2); +#endif + + /* + * Let the device know about the cache line size, + * if it doesn't yet. + */ +#ifdef FreeBSD_4_Bus + cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); +#else + cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1); +#endif + if (!cachelnsz) { + cachelnsz = 8; +#ifdef FreeBSD_4_Bus + pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1); +#else + pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1); +#endif + } + + /* + * Alloc/get/map/retrieve everything that deals with MMIO. + */ +#ifdef FreeBSD_4_Bus + if ((command & PCIM_CMD_MEMEN) != 0) { + int regs_id = SYM_PCI_MMIO; + np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, + 0, ~0, 1, RF_ACTIVE); + } + if (!np->mmio_res) { + device_printf(dev, "failed to allocate MMIO resources\n"); + goto attach_failed; + } + np->mmio_bsh = rman_get_bushandle(np->mmio_res); + np->mmio_tag = rman_get_bustag(np->mmio_res); + np->mmio_pa = rman_get_start(np->mmio_res); + np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res); + np->mmio_ba = np->mmio_pa; +#else + if ((command & PCIM_CMD_MEMEN) != 0) { + vm_offset_t vaddr, paddr; + if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) { + printf("%s: failed to map MMIO window\n", sym_name(np)); + goto attach_failed; + } + np->mmio_va = vaddr; + np->mmio_pa = paddr; + np->mmio_ba = paddr; + } +#endif + + /* + * Allocate the IRQ. + */ +#ifdef FreeBSD_4_Bus + i = 0; + np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i, + 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); + if (!np->irq_res) { + device_printf(dev, "failed to allocate IRQ resource\n"); + goto attach_failed; + } +#endif + +#ifdef SYMCONF_IOMAPPED + /* + * User want us to use normal IO with PCI. + * Alloc/get/map/retrieve everything that deals with IO. + */ +#ifdef FreeBSD_4_Bus + if ((command & PCI_COMMAND_IO_ENABLE) != 0) { + int regs_id = SYM_PCI_IO; + np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id, + 0, ~0, 1, RF_ACTIVE); + } + if (!np->io_res) { + device_printf(dev, "failed to allocate IO resources\n"); + goto attach_failed; + } + np->io_bsh = rman_get_bushandle(np->io_res); + np->io_tag = rman_get_bustag(np->io_res); + np->io_port = rman_get_start(np->io_res); +#else + if ((command & PCI_COMMAND_IO_ENABLE) != 0) { + pci_port_t io_port; + if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) + printf("%s: failed to map IO window\n", sym_name(np)); + goto attach_failed; + } + np->io_port = io_port; + } +#endif + +#endif /* SYMCONF_IOMAPPED */ + + /* + * If the chip has RAM. + * Alloc/get/map/retrieve the corresponding resources. + */ + if ((np->features & (FE_RAM|FE_RAM8K)) && + (command & PCIM_CMD_MEMEN) != 0) { +#ifdef FreeBSD_4_Bus + int regs_id = SYM_PCI_RAM; + if (np->features & FE_64BIT) + regs_id = SYM_PCI_RAM64; + np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id, + 0, ~0, 1, RF_ACTIVE); + if (!np->ram_res) { + device_printf(dev,"failed to allocate RAM resources\n"); + goto attach_failed; + } + np->ram_id = regs_id; + np->ram_bsh = rman_get_bushandle(np->ram_res); + np->ram_tag = rman_get_bustag(np->ram_res); + np->ram_pa = rman_get_start(np->ram_res); + np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res); + np->ram_ba = np->ram_pa; +#else + vm_offset_t vaddr, paddr; + int regs_id = SYM_PCI_RAM; + if (np->features & FE_64BIT) + regs_id = SYM_PCI_RAM64; + if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) { + printf("%s: failed to map RAM window\n", sym_name(np)); + goto attach_failed; + } + np->ram_va = vaddr; + np->ram_pa = paddr; + np->ram_ba = paddr; +#endif + } + + /* + * Try to read the user set-up. + */ + (void) sym_read_nvram(np, &nvram); + + /* + * Prepare controller and devices settings, according + * to chip features, user set-up and driver set-up. + */ + (void) sym_prepare_setting(np, &nvram); + + /* + * Check the PCI clock frequency. + * Must be performed after prepare_setting since it destroys + * STEST1 that is used to probe for the clock doubler. + */ + i = sym_getpciclock(np); + if (i > 37000) +#ifdef FreeBSD_4_Bus + device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i); +#else + printf("%s: PCI BUS clock seems too high: %u KHz.\n", + sym_name(np), i); +#endif + + /* + * Allocate the start queue. + */ + np->squeue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); + if (!np->squeue) + goto attach_failed; + + /* + * Allocate the done queue. + */ + np->dqueue = (u32 *) sym_calloc(sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); + if (!np->dqueue) + goto attach_failed; + + /* + * Allocate the target bus address array. + */ + np->targtbl = (u32 *) sym_calloc(256, "TARGTBL"); + if (!np->targtbl) + goto attach_failed; + + /* + * Allocate SCRIPTS areas. + */ + np->script0 = (struct sym_scr *) + sym_calloc(sizeof(struct sym_scr), "SCRIPT0"); + np->scripth0 = (struct sym_scrh *) + sym_calloc(sizeof(struct sym_scrh), "SCRIPTH0"); + if (!np->script0 || !np->scripth0) + goto attach_failed; + + /* + * Initialyze the CCB free and busy queues. + * Allocate some CCB. We need at least ONE. + */ + sym_que_init(&np->free_ccbq); + sym_que_init(&np->busy_ccbq); + sym_que_init(&np->comp_ccbq); + if (!sym_alloc_ccb(np)) + goto attach_failed; + + /* + * Initialyze the CAM CCB pending queue. + */ + sym_que_init(&np->cam_ccbq); + + /* + * Fill-up variable-size parts of the SCRIPTS. + */ + sym_fill_scripts(&script0, &scripth0); + + /* + * Calculate BUS addresses where we are going + * to load the SCRIPTS. + */ + np->script_ba = vtobus(np->script0); + np->scripth_ba = vtobus(np->scripth0); + np->scripth0_ba = np->scripth_ba; + + if (np->ram_ba) { + np->script_ba = np->ram_ba; + if (np->features & FE_RAM8K) { + np->ram_ws = 8192; + np->scripth_ba = np->script_ba + 4096; +#if BITS_PER_LONG > 32 + np->scr_ram_seg = cpu_to_scr(np->script_ba >> 32); +#endif + } + else + np->ram_ws = 4096; + } + + /* + * Bind SCRIPTS with physical addresses usable by the + * SCRIPTS processor (as seen from the BUS = BUS addresses). + */ + sym_bind_script(np, (u32 *) &script0, + (u32 *) np->script0, sizeof(struct sym_scr)); + sym_bind_script(np, (u32 *) &scripth0, + (u32 *) np->scripth0, sizeof(struct sym_scrh)); + + /* + * If not 64 bit chip, patch some places in SCRIPTS. + */ + if (!(np->features & FE_64BIT)) { + np->scripth0->swide_fin_32[0] = cpu_to_scr(SCR_JUMP); + np->scripth0->swide_fin_32[1] = + cpu_to_scr(SCRIPT_BA(np, dispatch)); + } + + /* + * Patch some variables in SCRIPTS. + * These ones are loaded by the SCRIPTS processor. + */ + np->scripth0->pm0_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm0_data)); + np->scripth0->pm1_data_addr[0] = cpu_to_scr(SCRIPT_BA(np,pm1_data)); + +#ifdef SYM_OPT_LED0 + /* + * Still some for LED support. + */ + if (np->features & FE_LED0) { + np->script0->idle[0] = + cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); + np->script0->reselected[0] = + cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); + np->script0->start[0] = + cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); + } +#endif + /* + * Load SCNTL4 on reselection for the C10. + */ + if (np->features & FE_C10) { + np->script0->resel_scntl4[0] = + cpu_to_scr(SCR_LOAD_REL (scntl4, 1)); + np->script0->resel_scntl4[1] = + cpu_to_scr(offsetof(struct sym_tcb, uval)); + } + +#ifdef SYMCONF_IARB_SUPPORT + /* + * If user does not want to use IMMEDIATE ARBITRATION + * when we are reselected while attempting to arbitrate, + * patch the SCRIPTS accordingly with a SCRIPT NO_OP. + */ + if (!SYMCONF_SET_IARB_ON_ARB_LOST) + np->script0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); + + /* + * If user wants IARB to be set when we win arbitration + * and have other jobs, compute the max number of consecutive + * settings of IARB hints before we leave devices a chance to + * arbitrate for reselection. + */ +#ifdef SYMSETUP_IARB_MAX + np->iarb_max = SYMSETUP_IARB_MAX; +#else + np->iarb_max = 4; +#endif +#endif + + /* + * Prepare the idle and invalid task actions. + */ + np->idletask.start = cpu_to_scr(SCRIPT_BA(np, idle)); + np->idletask.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); + np->idletask_ba = vtobus(&np->idletask); + + np->notask.start = cpu_to_scr(SCRIPT_BA(np, idle)); + np->notask.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); + np->notask_ba = vtobus(&np->notask); + + np->bad_itl.start = cpu_to_scr(SCRIPT_BA(np, idle)); + np->bad_itl.restart = cpu_to_scr(SCRIPTH_BA(np, bad_i_t_l)); + np->bad_itl_ba = vtobus(&np->bad_itl); + + np->bad_itlq.start = cpu_to_scr(SCRIPT_BA(np, idle)); + np->bad_itlq.restart = cpu_to_scr(SCRIPTH_BA (np,bad_i_t_l_q)); + np->bad_itlq_ba = vtobus(&np->bad_itlq); + + /* + * Allocate and prepare the lun JUMP table that is used + * for a target prior the probing of devices (bad lun table). + * A private table will be allocated for the target on the + * first INQUIRY response received. + */ + np->badluntbl = sym_calloc(256, "BADLUNTBL"); + if (!np->badluntbl) + goto attach_failed; + + np->badlun_sa = cpu_to_scr(SCRIPTH_BA(np, resel_bad_lun)); + for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ + np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); + + /* + * Prepare the bus address array that contains the bus + * address of each target control bloc. + * For now, assume all logical unit are wrong. :) + */ + np->scripth0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl)); + for (i = 0 ; i < SYMCONF_MAX_TARGET ; i++) { + np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); + np->target[i].luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); + np->target[i].lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); + } + + /* + * Reset the chip. + * We should use sym_soft_reset(), but we donnot want to do + * so, since we may not be safe if ABRT interrupt occurs due + * to the BIOS or previous O/S having enable this interrupt. + */ + OUTB (nc_istat, SRST); + UDELAY(10); + OUTB (nc_istat, 0); + + /* + * Now check the cache handling of the pci chipset. + */ + if (sym_snooptest (np)) { +#ifdef FreeBSD_4_Bus + device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n"); +#else + printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); +#endif + goto attach_failed; + }; + + /* + * Now deal with CAM. + * Hopefully, we will succeed with that one.:) + */ + if (!sym_cam_attach(np)) + goto attach_failed; + + /* + * Sigh! we are done. + */ + return 0; + + /* + * We have failed. + * We will try to free all the resources we have + * allocated, but if we are a boot device, this + * will not help that much.;) + */ +attach_failed: + if (np) + sym_pci_free(np); + return ENXIO; +} + +/* + * Free everything that have been allocated for this device. + */ +static void sym_pci_free(hcb_p np) +{ + ccb_p cp; + tcb_p tp; + lcb_p lp; + int target, lun; + int s; + + /* + * First free CAM resources. + */ + s = splcam(); + sym_cam_free(np); + splx(s); + + /* + * Now every should be quiet for us to + * free other resources. + */ +#ifdef FreeBSD_4_Bus + if (np->ram_res) + bus_release_resource(np->device, SYS_RES_MEMORY, + np->ram_id, np->ram_res); + if (np->mmio_res) + bus_release_resource(np->device, SYS_RES_MEMORY, + SYM_PCI_MMIO, np->mmio_res); + if (np->io_res) + bus_release_resource(np->device, SYS_RES_IOPORT, + SYM_PCI_IO, np->io_res); + if (np->irq_res) + bus_release_resource(np->device, SYS_RES_IRQ, + 0, np->irq_res); +#else + /* + * YEAH!!! + * It seems there is no means to free MMIO resources. + */ +#endif + + if (np->scripth0) + sym_mfree(np->scripth0, sizeof(struct sym_scrh), "SCRIPTH0"); + if (np->script0) + sym_mfree(np->script0, sizeof(struct sym_scr), "SCRIPT0"); + if (np->squeue) + sym_mfree(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); + if (np->dqueue) + sym_mfree(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); + + while ((cp = np->ccbc) != NULL) { + np->ccbc = cp->link_ccb; + sym_mfree(cp, sizeof(*cp), "CCB"); + } + + if (np->badluntbl) + sym_mfree(np->badluntbl, 256,"BADLUNTBL"); + + for (target = 0; target < SYMCONF_MAX_TARGET ; target++) { + tp = &np->target[target]; + for (lun = 0 ; lun < SYMCONF_MAX_LUN ; lun++) { + lp = sym_lp(np, tp, lun); + if (!lp) + continue; + if (lp->itlq_tbl) + sym_mfree(lp->itlq_tbl, SYMCONF_MAX_TASK*4, + "ITLQ_TBL"); + if (lp->cb_tags) + sym_mfree(lp->cb_tags, SYMCONF_MAX_TASK, + "CB_TAGS"); + sym_mfree(lp, sizeof(*lp), "LCB"); + } +#if SYMCONF_MAX_LUN > 1 + if (tp->lunmp) + sym_mfree(tp->lunmp, SYMCONF_MAX_LUN*sizeof(lcb_p), + "LUNMP"); +#endif + } + + sym_mfree(np, sizeof(*np), "HCB"); +} + +/* + * Allocate CAM resources and register a bus to CAM. + */ +int sym_cam_attach(hcb_p np) +{ + struct cam_devq *devq = 0; + struct cam_sim *sim = 0; + struct cam_path *path = 0; + int err, s; + + s = splcam(); + + /* + * Establish our interrupt handler. + */ +#ifdef FreeBSD_4_Bus + err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM, + sym_intr, np, &np->intr); + if (err) { + device_printf(np->device, "bus_setup_intr() failed: %d\n", + err); + goto fail; + } +#else + if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) { + printf("%s: failed to map interrupt\n", sym_name(np)); + goto fail; + } +#endif + + /* + * Create the device queue for our sym SIM. + */ + devq = cam_simq_alloc(SYMCONF_MAX_START); + if (!devq) + goto fail; + + /* + * Construct our SIM entry. + */ + sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit, + 1, SYMSETUP_MAX_TAG, devq); + if (!sim) + goto fail; + devq = 0; + + if (xpt_bus_register(sim, 0) != CAM_SUCCESS) + goto fail; + np->sim = sim; + sim = 0; + + if (xpt_create_path(&path, 0, + cam_sim_path(np->sim), CAM_TARGET_WILDCARD, + CAM_LUN_WILDCARD) != CAM_REQ_CMP) { + goto fail; + } + np->path = path; + +#if 0 + /* + * Establish our async notification handler. + */ + { + struct ccb_setasync csa; + xpt_setup_ccb(&csa.ccb_h, np->path, 5); + csa.ccb_h.func_code = XPT_SASYNC_CB; + csa.event_enable = AC_LOST_DEVICE; + csa.callback = sym_async; + csa.callback_arg = np->sim; + xpt_action((union ccb *)&csa); + } +#endif + + splx(s); + return 1; +fail: + if (sim) + cam_sim_free(sim, FALSE); + if (devq) + cam_simq_free(devq); + + sym_cam_free(np); + + splx(s); + return 0; +} + +/* + * Free everything that deals with CAM. + */ +void sym_cam_free(hcb_p np) +{ +#ifdef FreeBSD_4_Bus + if (np->intr) + bus_teardown_intr(np->device, np->irq_res, np->intr); +#else + /* pci_unmap_int(np->pci_tag); */ /* Does nothing */ +#endif + + if (np->sim) { + xpt_bus_deregister(cam_sim_path(np->sim)); + cam_sim_free(np->sim, /*free_devq*/ TRUE); + } + if (np->path) + xpt_free_path(np->path); +} + +/*============ OPTIONNAL NVRAM SUPPORT =================*/ + +/* + * Get host setup from NVRAM. + */ +static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram) +{ +#ifdef SYMCONF_NVRAM_SUPPORT + /* + * Get parity checking, host ID and verbose mode from NVRAM + */ + switch(nvram->type) { + case SYM_SYMBIOS_NVRAM: + if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) + np->rv_scntl0 &= ~0x0a; + np->myaddr = nvram->data.Symbios.host_id & 0x0f; + if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) + np->verbose += 1; + break; + case SYM_TEKRAM_NVRAM: + np->myaddr = nvram->data.Tekram.host_id & 0x0f; + break; + default: + break; + } +#endif +} + +/* + * Get target setup from NVRAM. + */ +#ifdef SYMCONF_NVRAM_SUPPORT +static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram); +static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram); +#endif + +static void +sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp) +{ +#ifdef SYMCONF_NVRAM_SUPPORT + switch(nvp->type) { + case SYM_SYMBIOS_NVRAM: + sym_Symbios_setup_target (np, target, &nvp->data.Symbios); + break; + case SYM_TEKRAM_NVRAM: + sym_Tekram_setup_target (np, target, &nvp->data.Tekram); + break; + default: + break; + } +#endif +} + +#ifdef SYMCONF_NVRAM_SUPPORT +/* + * Get target set-up from Symbios format NVRAM. + */ +static void +sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram) +{ + tcb_p tp = &np->target[target]; + Symbios_target *tn = &nvram->target[target]; + + tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0; + tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT; + tp->usrtags = + (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYMSETUP_MAX_TAG : 0; + + if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) + tp->usrflags &= ~SYM_DISC_ENABLED; + if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) + tp->usrflags |= SYM_SCAN_BOOT_DISABLED; + if (!(tn->flags & SYMBIOS_SCAN_LUNS)) + tp->usrflags |= SYM_SCAN_LUNS_DISABLED; +} + +/* + * Get target set-up from Tekram format NVRAM. + */ +static void +sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram) +{ + tcb_p tp = &np->target[target]; + struct Tekram_target *tn = &nvram->target[target]; + int i; + + if (tn->flags & TEKRAM_SYNC_NEGO) { + i = tn->sync_index & 0xf; + tp->tinfo.user.period = Tekram_sync[i]; + } + + tp->tinfo.user.width = + (tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT; + + if (tn->flags & TEKRAM_TAGGED_COMMANDS) { + tp->usrtags = 2 << nvram->max_tags_index; + } + + if (tn->flags & TEKRAM_DISCONNECT_ENABLE) + tp->usrflags |= SYM_DISC_ENABLED; + + /* If any device does not support parity, we will not use this option */ + if (!(tn->flags & TEKRAM_PARITY_CHECK)) + np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ +} + +#ifdef SYMCONF_DEBUG_NVRAM +/* + * Dump Symbios format NVRAM for debugging purpose. + */ +void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram) +{ + int i; + + /* display Symbios nvram host data */ + printf("%s: HOST ID=%d%s%s%s%s%s\n", + sym_name(np), nvram->host_id & 0x0f, + (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", + (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", + (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", + (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", + (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); + + /* display Symbios nvram drive data */ + for (i = 0 ; i < 15 ; i++) { + struct Symbios_target *tn = &nvram->target[i]; + printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", + sym_name(np), i, + (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", + (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", + (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", + (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", + tn->bus_width, + tn->sync_period / 4, + tn->timeout); + } +} + +/* + * Dump TEKRAM format NVRAM for debugging purpose. + */ +static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120}; +void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram) +{ + int i, tags, boot_delay; + char *rem; + + /* display Tekram nvram host data */ + tags = 2 << nvram->max_tags_index; + boot_delay = 0; + if (nvram->boot_delay_index < 6) + boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; + switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { + default: + case 0: rem = ""; break; + case 1: rem = " REMOVABLE=boot device"; break; + case 2: rem = " REMOVABLE=all"; break; + } + + printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", + sym_name(np), nvram->host_id & 0x0f, + (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", + (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", + (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", + (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", + (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", + (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", + (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", + (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", + rem, boot_delay, tags); + + /* display Tekram nvram drive data */ + for (i = 0; i <= 15; i++) { + int sync, j; + struct Tekram_target *tn = &nvram->target[i]; + j = tn->sync_index & 0xf; + sync = Tekram_sync[j]; + printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", + sym_name(np), i, + (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", + (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", + (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", + (tn->flags & TEKRAM_START_CMD) ? " START" : "", + (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", + (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", + sync); + } +} +#endif /* SYMCONF_DEBUG_NVRAM */ +#endif /* SYMCONF_NVRAM_SUPPORT */ + + +/* + * Try reading Symbios or Tekram NVRAM + */ +#ifdef SYMCONF_NVRAM_SUPPORT +static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram); +static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram); +#endif + +int sym_read_nvram(hcb_p np, struct sym_nvram *nvp) +{ +#ifdef SYMCONF_NVRAM_SUPPORT + /* + * Try to read SYMBIOS nvram. + * Try to read TEKRAM nvram if Symbios nvram not found. + */ + if (SYMSETUP_SYMBIOS_NVRAM && + !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) + nvp->type = SYM_SYMBIOS_NVRAM; + else if (SYMSETUP_TEKRAM_NVRAM && + !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) + nvp->type = SYM_TEKRAM_NVRAM; + else + nvp->type = 0; +#else + nvp->type = 0; +#endif + return nvp->type; +} + + +#ifdef SYMCONF_NVRAM_SUPPORT +/* + * 24C16 EEPROM reading. + * + * GPOI0 - data in/data out + * GPIO1 - clock + * Symbios NVRAM wiring now also used by Tekram. + */ + +#define SET_BIT 0 +#define CLR_BIT 1 +#define SET_CLK 2 +#define CLR_CLK 3 + +/* + * Set/clear data/clock bit in GPIO0 + */ +static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg, + int bit_mode) +{ + UDELAY (5); + switch (bit_mode){ + case SET_BIT: + *gpreg |= write_bit; + break; + case CLR_BIT: + *gpreg &= 0xfe; + break; + case SET_CLK: + *gpreg |= 0x02; + break; + case CLR_CLK: + *gpreg &= 0xfd; + break; + + } + OUTB (nc_gpreg, *gpreg); + UDELAY (5); +} + +/* + * Send START condition to NVRAM to wake it up. + */ +static void S24C16_start(hcb_p np, u_char *gpreg) +{ + S24C16_set_bit(np, 1, gpreg, SET_BIT); + S24C16_set_bit(np, 0, gpreg, SET_CLK); + S24C16_set_bit(np, 0, gpreg, CLR_BIT); + S24C16_set_bit(np, 0, gpreg, CLR_CLK); +} + +/* + * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! + */ +static void S24C16_stop(hcb_p np, u_char *gpreg) +{ + S24C16_set_bit(np, 0, gpreg, SET_CLK); + S24C16_set_bit(np, 1, gpreg, SET_BIT); +} + +/* + * Read or write a bit to the NVRAM, + * read if GPIO0 input else write if GPIO0 output + */ +static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit, + u_char *gpreg) +{ + S24C16_set_bit(np, write_bit, gpreg, SET_BIT); + S24C16_set_bit(np, 0, gpreg, SET_CLK); + if (read_bit) + *read_bit = INB (nc_gpreg); + S24C16_set_bit(np, 0, gpreg, CLR_CLK); + S24C16_set_bit(np, 0, gpreg, CLR_BIT); +} + +/* + * Output an ACK to the NVRAM after reading, + * change GPIO0 to output and when done back to an input + */ +static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg, + u_char *gpcntl) +{ + OUTB (nc_gpcntl, *gpcntl & 0xfe); + S24C16_do_bit(np, 0, write_bit, gpreg); + OUTB (nc_gpcntl, *gpcntl); +} + +/* + * Input an ACK from NVRAM after writing, + * change GPIO0 to input and when done back to an output + */ +static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg, + u_char *gpcntl) +{ + OUTB (nc_gpcntl, *gpcntl | 0x01); + S24C16_do_bit(np, read_bit, 1, gpreg); + OUTB (nc_gpcntl, *gpcntl); +} + +/* + * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, + * GPIO0 must already be set as an output + */ +static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data, + u_char *gpreg, u_char *gpcntl) +{ + int x; + + for (x = 0; x < 8; x++) + S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); + + S24C16_read_ack(np, ack_data, gpreg, gpcntl); +} + +/* + * READ a byte from the NVRAM and then send an ACK to say we have got it, + * GPIO0 must already be set as an input + */ +static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data, + u_char *gpreg, u_char *gpcntl) +{ + int x; + u_char read_bit; + + *read_data = 0; + for (x = 0; x < 8; x++) { + S24C16_do_bit(np, &read_bit, 1, gpreg); + *read_data |= ((read_bit & 0x01) << (7 - x)); + } + + S24C16_write_ack(np, ack_data, gpreg, gpcntl); +} + +/* + * Read 'len' bytes starting at 'offset'. + */ +static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + u_char ack_data; + int retv = 1; + int x; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB (nc_gpreg); + old_gpcntl = INB (nc_gpcntl); + gpcntl = old_gpcntl & 0xfc; + + /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ + OUTB (nc_gpreg, old_gpreg); + OUTB (nc_gpcntl, gpcntl); + + /* this is to set NVRAM into a known state with GPIO0/1 both low */ + gpreg = old_gpreg; + S24C16_set_bit(np, 0, &gpreg, CLR_CLK); + S24C16_set_bit(np, 0, &gpreg, CLR_BIT); + + /* now set NVRAM inactive with GPIO0/1 both high */ + S24C16_stop(np, &gpreg); + + /* activate NVRAM */ + S24C16_start(np, &gpreg); + + /* write device code and random address MSB */ + S24C16_write_byte(np, &ack_data, + 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* write random address LSB */ + S24C16_write_byte(np, &ack_data, + (offset & 0x7f) << 1, &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* regenerate START state to set up for reading */ + S24C16_start(np, &gpreg); + + /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ + S24C16_write_byte(np, &ack_data, + 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* now set up GPIO0 for inputting data */ + gpcntl |= 0x01; + OUTB (nc_gpcntl, gpcntl); + + /* input all requested data - only part of total NVRAM */ + for (x = 0; x < len; x++) + S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); + + /* finally put NVRAM back in inactive mode */ + gpcntl &= 0xfe; + OUTB (nc_gpcntl, gpcntl); + S24C16_stop(np, &gpreg); + retv = 0; +out: + /* return GPIO0/1 to original states after having accessed NVRAM */ + OUTB (nc_gpcntl, old_gpcntl); + OUTB (nc_gpreg, old_gpreg); + + return retv; +} + +#undef SET_BIT 0 +#undef CLR_BIT 1 +#undef SET_CLK 2 +#undef CLR_CLK 3 + +/* + * Try reading Symbios NVRAM. + * Return 0 if OK. + */ +static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram) +{ + static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; + u_char *data = (u_char *) nvram; + int len = sizeof(*nvram); + u_short csum; + int x; + + /* probe the 24c16 and read the SYMBIOS 24c16 area */ + if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) + return 1; + + /* check valid NVRAM signature, verify byte count and checksum */ + if (nvram->type != 0 || + memcmp(nvram->trailer, Symbios_trailer, 6) || + nvram->byte_count != len - 12) + return 1; + + /* verify checksum */ + for (x = 6, csum = 0; x < len - 6; x++) + csum += data[x]; + if (csum != nvram->checksum) + return 1; + + return 0; +} + +/* + * 93C46 EEPROM reading. + * + * GPOI0 - data in + * GPIO1 - data out + * GPIO2 - clock + * GPIO4 - chip select + * + * Used by Tekram. + */ + +/* + * Pulse clock bit in GPIO0 + */ +static void T93C46_Clk(hcb_p np, u_char *gpreg) +{ + OUTB (nc_gpreg, *gpreg | 0x04); + UDELAY (2); + OUTB (nc_gpreg, *gpreg); +} + +/* + * Read bit from NVRAM + */ +static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg) +{ + UDELAY (2); + T93C46_Clk(np, gpreg); + *read_bit = INB (nc_gpreg); +} + +/* + * Write bit to GPIO0 + */ +static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg) +{ + if (write_bit & 0x01) + *gpreg |= 0x02; + else + *gpreg &= 0xfd; + + *gpreg |= 0x10; + + OUTB (nc_gpreg, *gpreg); + UDELAY (2); + + T93C46_Clk(np, gpreg); +} + +/* + * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! + */ +static void T93C46_Stop(hcb_p np, u_char *gpreg) +{ + *gpreg &= 0xef; + OUTB (nc_gpreg, *gpreg); + UDELAY (2); + + T93C46_Clk(np, gpreg); +} + +/* + * Send read command and address to NVRAM + */ +static void T93C46_Send_Command(hcb_p np, u_short write_data, + u_char *read_bit, u_char *gpreg) +{ + int x; + + /* send 9 bits, start bit (1), command (2), address (6) */ + for (x = 0; x < 9; x++) + T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); + + *read_bit = INB (nc_gpreg); +} + +/* + * READ 2 bytes from the NVRAM + */ +static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg) +{ + int x; + u_char read_bit; + + *nvram_data = 0; + for (x = 0; x < 16; x++) { + T93C46_Read_Bit(np, &read_bit, gpreg); + + if (read_bit & 0x01) + *nvram_data |= (0x01 << (15 - x)); + else + *nvram_data &= ~(0x01 << (15 - x)); + } +} + +/* + * Read Tekram NvRAM data. + */ +static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg) +{ + u_char read_bit; + int x; + + for (x = 0; x < len; x++) { + + /* output read command and address */ + T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); + if (read_bit & 0x01) + return 1; /* Bad */ + T93C46_Read_Word(np, &data[x], gpreg); + T93C46_Stop(np, gpreg); + } + + return 0; +} + +/* + * Try reading 93C46 Tekram NVRAM. + */ +static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + int retv = 1; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB (nc_gpreg); + old_gpcntl = INB (nc_gpcntl); + + /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, + 1/2/4 out */ + gpreg = old_gpreg & 0xe9; + OUTB (nc_gpreg, gpreg); + gpcntl = (old_gpcntl & 0xe9) | 0x09; + OUTB (nc_gpcntl, gpcntl); + + /* input all of NVRAM, 64 words */ + retv = T93C46_Read_Data(np, (u_short *) nvram, + sizeof(*nvram) / sizeof(short), &gpreg); + + /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ + OUTB (nc_gpcntl, old_gpcntl); + OUTB (nc_gpreg, old_gpreg); + + return retv; +} + +/* + * Try reading Tekram NVRAM. + * Return 0 if OK. + */ +static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram) +{ + u_char *data = (u_char *) nvram; + int len = sizeof(*nvram); + u_short csum; + int x; + + switch (np->device_id) { + case PCI_ID_SYM53C885: + case PCI_ID_SYM53C895: + case PCI_ID_SYM53C896: + x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, + data, len); + break; + case PCI_ID_SYM53C875: + x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, + data, len); + if (!x) + break; + default: + x = sym_read_T93C46_nvram(np, nvram); + break; + } + if (x) + return 1; + + /* verify checksum */ + for (x = 0, csum = 0; x < len - 1; x += 2) + csum += data[x] + (data[x+1] << 8); + if (csum != 0x1234) + return 1; + + return 0; +} + +#endif /* SYMCONF_NVRAM_SUPPORT */ -- cgit v1.2.3