//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RecursiveASTVisitor interface, which recursively // traverses the entire AST. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_RECURSIVEASTVISITOR_H #define LLVM_CLANG_AST_RECURSIVEASTVISITOR_H #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" // The following three macros are used for meta programming. The code // using them is responsible for defining macro OPERATOR(). // All unary operators. #define UNARYOP_LIST() \ OPERATOR(PostInc) OPERATOR(PostDec) \ OPERATOR(PreInc) OPERATOR(PreDec) \ OPERATOR(AddrOf) OPERATOR(Deref) \ OPERATOR(Plus) OPERATOR(Minus) \ OPERATOR(Not) OPERATOR(LNot) \ OPERATOR(Real) OPERATOR(Imag) \ OPERATOR(Extension) // All binary operators (excluding compound assign operators). #define BINOP_LIST() \ OPERATOR(PtrMemD) OPERATOR(PtrMemI) \ OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \ OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \ OPERATOR(Shr) \ \ OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \ OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \ OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \ OPERATOR(LAnd) OPERATOR(LOr) \ \ OPERATOR(Assign) \ OPERATOR(Comma) // All compound assign operators. #define CAO_LIST() \ OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \ OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor) namespace clang { // A helper macro to implement short-circuiting when recursing. It // invokes CALL_EXPR, which must be a method call, on the derived // object (s.t. a user of RecursiveASTVisitor can override the method // in CALL_EXPR). #define TRY_TO(CALL_EXPR) \ do { if (!getDerived().CALL_EXPR) return false; } while (0) /// \brief A class that does preorder depth-first traversal on the /// entire Clang AST and visits each node. /// /// This class performs three distinct tasks: /// 1. traverse the AST (i.e. go to each node); /// 2. at a given node, walk up the class hierarchy, starting from /// the node's dynamic type, until the top-most class (e.g. Stmt, /// Decl, or Type) is reached. /// 3. given a (node, class) combination, where 'class' is some base /// class of the dynamic type of 'node', call a user-overridable /// function to actually visit the node. /// /// These tasks are done by three groups of methods, respectively: /// 1. TraverseDecl(Decl *x) does task #1. It is the entry point /// for traversing an AST rooted at x. This method simply /// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo /// is the dynamic type of *x, which calls WalkUpFromFoo(x) and /// then recursively visits the child nodes of x. /// TraverseStmt(Stmt *x) and TraverseType(QualType x) work /// similarly. /// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit /// any child node of x. Instead, it first calls WalkUpFromBar(x) /// where Bar is the direct parent class of Foo (unless Foo has /// no parent), and then calls VisitFoo(x) (see the next list item). /// 3. VisitFoo(Foo *x) does task #3. /// /// These three method groups are tiered (Traverse* > WalkUpFrom* > /// Visit*). A method (e.g. Traverse*) may call methods from the same /// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*). /// It may not call methods from a higher tier. /// /// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar /// is Foo's super class) before calling VisitFoo(), the result is /// that the Visit*() methods for a given node are called in the /// top-down order (e.g. for a node of type NamedDecl, the order will /// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()). /// /// This scheme guarantees that all Visit*() calls for the same AST /// node are grouped together. In other words, Visit*() methods for /// different nodes are never interleaved. /// /// Clients of this visitor should subclass the visitor (providing /// themselves as the template argument, using the curiously recurring /// template pattern) and override any of the Traverse*, WalkUpFrom*, /// and Visit* methods for declarations, types, statements, /// expressions, or other AST nodes where the visitor should customize /// behavior. Most users only need to override Visit*. Advanced /// users may override Traverse* and WalkUpFrom* to implement custom /// traversal strategies. Returning false from one of these overridden /// functions will abort the entire traversal. /// /// By default, this visitor tries to visit every part of the explicit /// source code exactly once. The default policy towards templates /// is to descend into the 'pattern' class or function body, not any /// explicit or implicit instantiations. Explicit specializations /// are still visited, and the patterns of partial specializations /// are visited separately. This behavior can be changed by /// overriding shouldVisitTemplateInstantiations() in the derived class /// to return true, in which case all known implicit and explicit /// instantiations will be visited at the same time as the pattern /// from which they were produced. template class RecursiveASTVisitor { public: /// \brief Return a reference to the derived class. Derived &getDerived() { return *static_cast(this); } /// \brief Return whether this visitor should recurse into /// template instantiations. bool shouldVisitTemplateInstantiations() const { return false; } /// \brief Return whether this visitor should recurse into the types of /// TypeLocs. bool shouldWalkTypesOfTypeLocs() const { return true; } /// \brief Return whether this visitor should recurse into implicit /// code, e.g., implicit constructors and destructors. bool shouldVisitImplicitCode() const { return false; } /// \brief Return whether \param S should be traversed using data recursion /// to avoid a stack overflow with extreme cases. bool shouldUseDataRecursionFor(Stmt *S) const { return isa(S) || isa(S) || isa(S) || isa(S); } /// \brief Recursively visit a statement or expression, by /// dispatching to Traverse*() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is NULL). bool TraverseStmt(Stmt *S); /// \brief Recursively visit a type, by dispatching to /// Traverse*Type() based on the argument's getTypeClass() property. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type). bool TraverseType(QualType T); /// \brief Recursively visit a type with location, by dispatching to /// Traverse*TypeLoc() based on the argument type's getTypeClass() property. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is a Null type location). bool TraverseTypeLoc(TypeLoc TL); /// \brief Recursively visit a declaration, by dispatching to /// Traverse*Decl() based on the argument's dynamic type. /// /// \returns false if the visitation was terminated early, true /// otherwise (including when the argument is NULL). bool TraverseDecl(Decl *D); /// \brief Recursively visit a C++ nested-name-specifier. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); /// \brief Recursively visit a C++ nested-name-specifier with location /// information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); /// \brief Recursively visit a name with its location information. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo); /// \brief Recursively visit a template name and dispatch to the /// appropriate method. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseTemplateName(TemplateName Template); /// \brief Recursively visit a template argument and dispatch to the /// appropriate method for the argument type. /// /// \returns false if the visitation was terminated early, true otherwise. // FIXME: migrate callers to TemplateArgumentLoc instead. bool TraverseTemplateArgument(const TemplateArgument &Arg); /// \brief Recursively visit a template argument location and dispatch to the /// appropriate method for the argument type. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc); /// \brief Recursively visit a set of template arguments. /// This can be overridden by a subclass, but it's not expected that /// will be needed -- this visitor always dispatches to another. /// /// \returns false if the visitation was terminated early, true otherwise. // FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead. bool TraverseTemplateArguments(const TemplateArgument *Args, unsigned NumArgs); /// \brief Recursively visit a constructor initializer. This /// automatically dispatches to another visitor for the initializer /// expression, but not for the name of the initializer, so may /// be overridden for clients that need access to the name. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseConstructorInitializer(CXXCtorInitializer *Init); /// \brief Recursively visit a lambda capture. /// /// \returns false if the visitation was terminated early, true otherwise. bool TraverseLambdaCapture(LambdaExpr::Capture C); // ---- Methods on Stmts ---- // Declare Traverse*() for all concrete Stmt classes. #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ bool Traverse##CLASS(CLASS *S); #include "clang/AST/StmtNodes.inc" // The above header #undefs ABSTRACT_STMT and STMT upon exit. // Define WalkUpFrom*() and empty Visit*() for all Stmt classes. bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); } bool VisitStmt(Stmt *S) { return true; } #define STMT(CLASS, PARENT) \ bool WalkUpFrom##CLASS(CLASS *S) { \ TRY_TO(WalkUpFrom##PARENT(S)); \ TRY_TO(Visit##CLASS(S)); \ return true; \ } \ bool Visit##CLASS(CLASS *S) { return true; } #include "clang/AST/StmtNodes.inc" // Define Traverse*(), WalkUpFrom*(), and Visit*() for unary // operator methods. Unary operators are not classes in themselves // (they're all opcodes in UnaryOperator) but do have visitors. #define OPERATOR(NAME) \ bool TraverseUnary##NAME(UnaryOperator *S) { \ TRY_TO(WalkUpFromUnary##NAME(S)); \ TRY_TO(TraverseStmt(S->getSubExpr())); \ return true; \ } \ bool WalkUpFromUnary##NAME(UnaryOperator *S) { \ TRY_TO(WalkUpFromUnaryOperator(S)); \ TRY_TO(VisitUnary##NAME(S)); \ return true; \ } \ bool VisitUnary##NAME(UnaryOperator *S) { return true; } UNARYOP_LIST() #undef OPERATOR // Define Traverse*(), WalkUpFrom*(), and Visit*() for binary // operator methods. Binary operators are not classes in themselves // (they're all opcodes in BinaryOperator) but do have visitors. #define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \ bool TraverseBin##NAME(BINOP_TYPE *S) { \ TRY_TO(WalkUpFromBin##NAME(S)); \ TRY_TO(TraverseStmt(S->getLHS())); \ TRY_TO(TraverseStmt(S->getRHS())); \ return true; \ } \ bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \ TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \ TRY_TO(VisitBin##NAME(S)); \ return true; \ } \ bool VisitBin##NAME(BINOP_TYPE *S) { return true; } #define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator) BINOP_LIST() #undef OPERATOR // Define Traverse*(), WalkUpFrom*(), and Visit*() for compound // assignment methods. Compound assignment operators are not // classes in themselves (they're all opcodes in // CompoundAssignOperator) but do have visitors. #define OPERATOR(NAME) \ GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator) CAO_LIST() #undef OPERATOR #undef GENERAL_BINOP_FALLBACK // ---- Methods on Types ---- // FIXME: revamp to take TypeLoc's rather than Types. // Declare Traverse*() for all concrete Type classes. #define ABSTRACT_TYPE(CLASS, BASE) #define TYPE(CLASS, BASE) \ bool Traverse##CLASS##Type(CLASS##Type *T); #include "clang/AST/TypeNodes.def" // The above header #undefs ABSTRACT_TYPE and TYPE upon exit. // Define WalkUpFrom*() and empty Visit*() for all Type classes. bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); } bool VisitType(Type *T) { return true; } #define TYPE(CLASS, BASE) \ bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \ TRY_TO(WalkUpFrom##BASE(T)); \ TRY_TO(Visit##CLASS##Type(T)); \ return true; \ } \ bool Visit##CLASS##Type(CLASS##Type *T) { return true; } #include "clang/AST/TypeNodes.def" // ---- Methods on TypeLocs ---- // FIXME: this currently just calls the matching Type methods // Declare Traverse*() for all concrete Type classes. #define ABSTRACT_TYPELOC(CLASS, BASE) #define TYPELOC(CLASS, BASE) \ bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL); #include "clang/AST/TypeLocNodes.def" // The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit. // Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes. bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); } bool VisitTypeLoc(TypeLoc TL) { return true; } // QualifiedTypeLoc and UnqualTypeLoc are not declared in // TypeNodes.def and thus need to be handled specially. bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) { return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); } bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; } bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) { return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); } bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; } // Note that BASE includes trailing 'Type' which CLASS doesn't. #define TYPE(CLASS, BASE) \ bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \ TRY_TO(WalkUpFrom##BASE##Loc(TL)); \ TRY_TO(Visit##CLASS##TypeLoc(TL)); \ return true; \ } \ bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; } #include "clang/AST/TypeNodes.def" // ---- Methods on Decls ---- // Declare Traverse*() for all concrete Decl classes. #define ABSTRACT_DECL(DECL) #define DECL(CLASS, BASE) \ bool Traverse##CLASS##Decl(CLASS##Decl *D); #include "clang/AST/DeclNodes.inc" // The above header #undefs ABSTRACT_DECL and DECL upon exit. // Define WalkUpFrom*() and empty Visit*() for all Decl classes. bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); } bool VisitDecl(Decl *D) { return true; } #define DECL(CLASS, BASE) \ bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \ TRY_TO(WalkUpFrom##BASE(D)); \ TRY_TO(Visit##CLASS##Decl(D)); \ return true; \ } \ bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; } #include "clang/AST/DeclNodes.inc" private: // These are helper methods used by more than one Traverse* method. bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL); bool TraverseClassInstantiations(ClassTemplateDecl *D); bool TraverseFunctionInstantiations(FunctionTemplateDecl *D) ; bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL, unsigned Count); bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL); bool TraverseRecordHelper(RecordDecl *D); bool TraverseCXXRecordHelper(CXXRecordDecl *D); bool TraverseDeclaratorHelper(DeclaratorDecl *D); bool TraverseDeclContextHelper(DeclContext *DC); bool TraverseFunctionHelper(FunctionDecl *D); bool TraverseVarHelper(VarDecl *D); struct EnqueueJob { Stmt *S; Stmt::child_iterator StmtIt; EnqueueJob(Stmt *S) : S(S), StmtIt() {} }; bool dataTraverse(Stmt *S); bool dataTraverseNode(Stmt *S, bool &EnqueueChildren); }; template bool RecursiveASTVisitor::dataTraverse(Stmt *S) { SmallVector Queue; Queue.push_back(S); while (!Queue.empty()) { EnqueueJob &job = Queue.back(); Stmt *CurrS = job.S; if (!CurrS) { Queue.pop_back(); continue; } if (getDerived().shouldUseDataRecursionFor(CurrS)) { if (job.StmtIt == Stmt::child_iterator()) { bool EnqueueChildren = true; if (!dataTraverseNode(CurrS, EnqueueChildren)) return false; if (!EnqueueChildren) { Queue.pop_back(); continue; } job.StmtIt = CurrS->child_begin(); } else { ++job.StmtIt; } if (job.StmtIt != CurrS->child_end()) Queue.push_back(*job.StmtIt); else Queue.pop_back(); continue; } Queue.pop_back(); TRY_TO(TraverseStmt(CurrS)); } return true; } template bool RecursiveASTVisitor::dataTraverseNode(Stmt *S, bool &EnqueueChildren) { // The cast for DISPATCH_WALK is needed for older versions of g++, but causes // problems for MSVC. So we'll skip the cast entirely for MSVC. #if defined(_MSC_VER) #define GCC_CAST(CLASS) #else #define GCC_CAST(CLASS) (bool (RecursiveASTVisitor::*)(CLASS*)) #endif // Dispatch to the corresponding WalkUpFrom* function only if the derived // class didn't override Traverse* (and thus the traversal is trivial). #define DISPATCH_WALK(NAME, CLASS, VAR) \ if (&RecursiveASTVisitor::Traverse##NAME == \ GCC_CAST(CLASS)&Derived::Traverse##NAME) \ return getDerived().WalkUpFrom##NAME(static_cast(VAR)); \ EnqueueChildren = false; \ return getDerived().Traverse##NAME(static_cast(VAR)); if (BinaryOperator *BinOp = dyn_cast(S)) { switch (BinOp->getOpcode()) { #define OPERATOR(NAME) \ case BO_##NAME: DISPATCH_WALK(Bin##NAME, BinaryOperator, S); BINOP_LIST() #undef OPERATOR #define OPERATOR(NAME) \ case BO_##NAME##Assign: \ DISPATCH_WALK(Bin##NAME##Assign, CompoundAssignOperator, S); CAO_LIST() #undef OPERATOR } } else if (UnaryOperator *UnOp = dyn_cast(S)) { switch (UnOp->getOpcode()) { #define OPERATOR(NAME) \ case UO_##NAME: DISPATCH_WALK(Unary##NAME, UnaryOperator, S); UNARYOP_LIST() #undef OPERATOR } } // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ case Stmt::CLASS##Class: DISPATCH_WALK(CLASS, CLASS, S); #include "clang/AST/StmtNodes.inc" } #undef DISPATCH_WALK #undef GCC_CAST return true; } #define DISPATCH(NAME, CLASS, VAR) \ return getDerived().Traverse##NAME(static_cast(VAR)) template bool RecursiveASTVisitor::TraverseStmt(Stmt *S) { if (!S) return true; if (getDerived().shouldUseDataRecursionFor(S)) return dataTraverse(S); // If we have a binary expr, dispatch to the subcode of the binop. A smart // optimizer (e.g. LLVM) will fold this comparison into the switch stmt // below. if (BinaryOperator *BinOp = dyn_cast(S)) { switch (BinOp->getOpcode()) { #define OPERATOR(NAME) \ case BO_##NAME: DISPATCH(Bin##NAME, BinaryOperator, S); BINOP_LIST() #undef OPERATOR #undef BINOP_LIST #define OPERATOR(NAME) \ case BO_##NAME##Assign: \ DISPATCH(Bin##NAME##Assign, CompoundAssignOperator, S); CAO_LIST() #undef OPERATOR #undef CAO_LIST } } else if (UnaryOperator *UnOp = dyn_cast(S)) { switch (UnOp->getOpcode()) { #define OPERATOR(NAME) \ case UO_##NAME: DISPATCH(Unary##NAME, UnaryOperator, S); UNARYOP_LIST() #undef OPERATOR #undef UNARYOP_LIST } } // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ case Stmt::CLASS##Class: DISPATCH(CLASS, CLASS, S); #include "clang/AST/StmtNodes.inc" } return true; } template bool RecursiveASTVisitor::TraverseType(QualType T) { if (T.isNull()) return true; switch (T->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, BASE) #define TYPE(CLASS, BASE) \ case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \ const_cast(T.getTypePtr())); #include "clang/AST/TypeNodes.def" } return true; } template bool RecursiveASTVisitor::TraverseTypeLoc(TypeLoc TL) { if (TL.isNull()) return true; switch (TL.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, BASE) #define TYPELOC(CLASS, BASE) \ case TypeLoc::CLASS: \ return getDerived().Traverse##CLASS##TypeLoc(*cast(&TL)); #include "clang/AST/TypeLocNodes.def" } return true; } template bool RecursiveASTVisitor::TraverseDecl(Decl *D) { if (!D) return true; // As a syntax visitor, by default we want to ignore declarations for // implicit declarations (ones not typed explicitly by the user). if (!getDerived().shouldVisitImplicitCode() && D->isImplicit()) return true; switch (D->getKind()) { #define ABSTRACT_DECL(DECL) #define DECL(CLASS, BASE) \ case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D); #include "clang/AST/DeclNodes.inc" } return true; } #undef DISPATCH template bool RecursiveASTVisitor::TraverseNestedNameSpecifier( NestedNameSpecifier *NNS) { if (!NNS) return true; if (NNS->getPrefix()) TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix())); switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: case NestedNameSpecifier::Global: return true; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: TRY_TO(TraverseType(QualType(NNS->getAsType(), 0))); } return true; } template bool RecursiveASTVisitor::TraverseNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS) { if (!NNS) return true; if (NestedNameSpecifierLoc Prefix = NNS.getPrefix()) TRY_TO(TraverseNestedNameSpecifierLoc(Prefix)); switch (NNS.getNestedNameSpecifier()->getKind()) { case NestedNameSpecifier::Identifier: case NestedNameSpecifier::Namespace: case NestedNameSpecifier::NamespaceAlias: case NestedNameSpecifier::Global: return true; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: TRY_TO(TraverseTypeLoc(NNS.getTypeLoc())); break; } return true; } template bool RecursiveASTVisitor::TraverseDeclarationNameInfo( DeclarationNameInfo NameInfo) { switch (NameInfo.getName().getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo()) TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc())); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXOperatorName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: break; } return true; } template bool RecursiveASTVisitor::TraverseTemplateName(TemplateName Template) { if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier())); else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier())); return true; } template bool RecursiveASTVisitor::TraverseTemplateArgument( const TemplateArgument &Arg) { switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::NullPtr: return true; case TemplateArgument::Type: return getDerived().TraverseType(Arg.getAsType()); case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: return getDerived().TraverseTemplateName( Arg.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return getDerived().TraverseStmt(Arg.getAsExpr()); case TemplateArgument::Pack: return getDerived().TraverseTemplateArguments(Arg.pack_begin(), Arg.pack_size()); } return true; } // FIXME: no template name location? // FIXME: no source locations for a template argument pack? template bool RecursiveASTVisitor::TraverseTemplateArgumentLoc( const TemplateArgumentLoc &ArgLoc) { const TemplateArgument &Arg = ArgLoc.getArgument(); switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::NullPtr: return true; case TemplateArgument::Type: { // FIXME: how can TSI ever be NULL? if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo()) return getDerived().TraverseTypeLoc(TSI->getTypeLoc()); else return getDerived().TraverseType(Arg.getAsType()); } case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (ArgLoc.getTemplateQualifierLoc()) TRY_TO(getDerived().TraverseNestedNameSpecifierLoc( ArgLoc.getTemplateQualifierLoc())); return getDerived().TraverseTemplateName( Arg.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return getDerived().TraverseStmt(ArgLoc.getSourceExpression()); case TemplateArgument::Pack: return getDerived().TraverseTemplateArguments(Arg.pack_begin(), Arg.pack_size()); } return true; } template bool RecursiveASTVisitor::TraverseTemplateArguments( const TemplateArgument *Args, unsigned NumArgs) { for (unsigned I = 0; I != NumArgs; ++I) { TRY_TO(TraverseTemplateArgument(Args[I])); } return true; } template bool RecursiveASTVisitor::TraverseConstructorInitializer( CXXCtorInitializer *Init) { if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); if (Init->isWritten() || getDerived().shouldVisitImplicitCode()) TRY_TO(TraverseStmt(Init->getInit())); return true; } template bool RecursiveASTVisitor::TraverseLambdaCapture(LambdaExpr::Capture C){ return true; } // ----------------- Type traversal ----------------- // This macro makes available a variable T, the passed-in type. #define DEF_TRAVERSE_TYPE(TYPE, CODE) \ template \ bool RecursiveASTVisitor::Traverse##TYPE (TYPE *T) { \ TRY_TO(WalkUpFrom##TYPE (T)); \ { CODE; } \ return true; \ } DEF_TRAVERSE_TYPE(BuiltinType, { }) DEF_TRAVERSE_TYPE(ComplexType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(PointerType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(BlockPointerType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(LValueReferenceType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(RValueReferenceType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(MemberPointerType, { TRY_TO(TraverseType(QualType(T->getClass(), 0))); TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(ConstantArrayType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(IncompleteArrayType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(VariableArrayType, { TRY_TO(TraverseType(T->getElementType())); TRY_TO(TraverseStmt(T->getSizeExpr())); }) DEF_TRAVERSE_TYPE(DependentSizedArrayType, { TRY_TO(TraverseType(T->getElementType())); if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); }) DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, { if (T->getSizeExpr()) TRY_TO(TraverseStmt(T->getSizeExpr())); TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(VectorType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(ExtVectorType, { TRY_TO(TraverseType(T->getElementType())); }) DEF_TRAVERSE_TYPE(FunctionNoProtoType, { TRY_TO(TraverseType(T->getResultType())); }) DEF_TRAVERSE_TYPE(FunctionProtoType, { TRY_TO(TraverseType(T->getResultType())); for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), AEnd = T->arg_type_end(); A != AEnd; ++A) { TRY_TO(TraverseType(*A)); } for (FunctionProtoType::exception_iterator E = T->exception_begin(), EEnd = T->exception_end(); E != EEnd; ++E) { TRY_TO(TraverseType(*E)); } }) DEF_TRAVERSE_TYPE(UnresolvedUsingType, { }) DEF_TRAVERSE_TYPE(TypedefType, { }) DEF_TRAVERSE_TYPE(TypeOfExprType, { TRY_TO(TraverseStmt(T->getUnderlyingExpr())); }) DEF_TRAVERSE_TYPE(TypeOfType, { TRY_TO(TraverseType(T->getUnderlyingType())); }) DEF_TRAVERSE_TYPE(DecltypeType, { TRY_TO(TraverseStmt(T->getUnderlyingExpr())); }) DEF_TRAVERSE_TYPE(UnaryTransformType, { TRY_TO(TraverseType(T->getBaseType())); TRY_TO(TraverseType(T->getUnderlyingType())); }) DEF_TRAVERSE_TYPE(AutoType, { TRY_TO(TraverseType(T->getDeducedType())); }) DEF_TRAVERSE_TYPE(RecordType, { }) DEF_TRAVERSE_TYPE(EnumType, { }) DEF_TRAVERSE_TYPE(TemplateTypeParmType, { }) DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { }) DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { }) DEF_TRAVERSE_TYPE(TemplateSpecializationType, { TRY_TO(TraverseTemplateName(T->getTemplateName())); TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); }) DEF_TRAVERSE_TYPE(InjectedClassNameType, { }) DEF_TRAVERSE_TYPE(AttributedType, { TRY_TO(TraverseType(T->getModifiedType())); }) DEF_TRAVERSE_TYPE(ParenType, { TRY_TO(TraverseType(T->getInnerType())); }) DEF_TRAVERSE_TYPE(ElaboratedType, { if (T->getQualifier()) { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); } TRY_TO(TraverseType(T->getNamedType())); }) DEF_TRAVERSE_TYPE(DependentNameType, { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); }) DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, { TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); }) DEF_TRAVERSE_TYPE(PackExpansionType, { TRY_TO(TraverseType(T->getPattern())); }) DEF_TRAVERSE_TYPE(ObjCInterfaceType, { }) DEF_TRAVERSE_TYPE(ObjCObjectType, { // We have to watch out here because an ObjCInterfaceType's base // type is itself. if (T->getBaseType().getTypePtr() != T) TRY_TO(TraverseType(T->getBaseType())); }) DEF_TRAVERSE_TYPE(ObjCObjectPointerType, { TRY_TO(TraverseType(T->getPointeeType())); }) DEF_TRAVERSE_TYPE(AtomicType, { TRY_TO(TraverseType(T->getValueType())); }) #undef DEF_TRAVERSE_TYPE // ----------------- TypeLoc traversal ----------------- // This macro makes available a variable TL, the passed-in TypeLoc. // If requested, it calls WalkUpFrom* for the Type in the given TypeLoc, // in addition to WalkUpFrom* for the TypeLoc itself, such that existing // clients that override the WalkUpFrom*Type() and/or Visit*Type() methods // continue to work. #define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \ template \ bool RecursiveASTVisitor::Traverse##TYPE##Loc(TYPE##Loc TL) { \ if (getDerived().shouldWalkTypesOfTypeLocs()) \ TRY_TO(WalkUpFrom##TYPE(const_cast(TL.getTypePtr()))); \ TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \ { CODE; } \ return true; \ } template bool RecursiveASTVisitor::TraverseQualifiedTypeLoc( QualifiedTypeLoc TL) { // Move this over to the 'main' typeloc tree. Note that this is a // move -- we pretend that we were really looking at the unqualified // typeloc all along -- rather than a recursion, so we don't follow // the normal CRTP plan of going through // getDerived().TraverseTypeLoc. If we did, we'd be traversing // twice for the same type (once as a QualifiedTypeLoc version of // the type, once as an UnqualifiedTypeLoc version of the type), // which in effect means we'd call VisitTypeLoc twice with the // 'same' type. This solves that problem, at the cost of never // seeing the qualified version of the type (unless the client // subclasses TraverseQualifiedTypeLoc themselves). It's not a // perfect solution. A perfect solution probably requires making // QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a // wrapper around Type* -- rather than being its own class in the // type hierarchy. return TraverseTypeLoc(TL.getUnqualifiedLoc()); } DEF_TRAVERSE_TYPELOC(BuiltinType, { }) // FIXME: ComplexTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(ComplexType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) DEF_TRAVERSE_TYPELOC(PointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(BlockPointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(LValueReferenceType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(RValueReferenceType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) // FIXME: location of base class? // We traverse this in the type case as well, but how is it not reached through // the pointee type? DEF_TRAVERSE_TYPELOC(MemberPointerType, { TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0))); TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) template bool RecursiveASTVisitor::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) { // This isn't available for ArrayType, but is for the ArrayTypeLoc. TRY_TO(TraverseStmt(TL.getSizeExpr())); return true; } DEF_TRAVERSE_TYPELOC(ConstantArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) DEF_TRAVERSE_TYPELOC(IncompleteArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) DEF_TRAVERSE_TYPELOC(VariableArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, { TRY_TO(TraverseTypeLoc(TL.getElementLoc())); return TraverseArrayTypeLocHelper(TL); }) // FIXME: order? why not size expr first? // FIXME: base VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, { if (TL.getTypePtr()->getSizeExpr()) TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr())); TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) // FIXME: VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(VectorType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) // FIXME: size and attributes // FIXME: base VectorTypeLoc is unfinished DEF_TRAVERSE_TYPELOC(ExtVectorType, { TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); }) DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, { TRY_TO(TraverseTypeLoc(TL.getResultLoc())); }) // FIXME: location of exception specifications (attributes?) DEF_TRAVERSE_TYPELOC(FunctionProtoType, { TRY_TO(TraverseTypeLoc(TL.getResultLoc())); const FunctionProtoType *T = TL.getTypePtr(); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { if (TL.getArg(I)) { TRY_TO(TraverseDecl(TL.getArg(I))); } else if (I < T->getNumArgs()) { TRY_TO(TraverseType(T->getArgType(I))); } } for (FunctionProtoType::exception_iterator E = T->exception_begin(), EEnd = T->exception_end(); E != EEnd; ++E) { TRY_TO(TraverseType(*E)); } }) DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { }) DEF_TRAVERSE_TYPELOC(TypedefType, { }) DEF_TRAVERSE_TYPELOC(TypeOfExprType, { TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); }) DEF_TRAVERSE_TYPELOC(TypeOfType, { TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); }) // FIXME: location of underlying expr DEF_TRAVERSE_TYPELOC(DecltypeType, { TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr())); }) DEF_TRAVERSE_TYPELOC(UnaryTransformType, { TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); }) DEF_TRAVERSE_TYPELOC(AutoType, { TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType())); }) DEF_TRAVERSE_TYPELOC(RecordType, { }) DEF_TRAVERSE_TYPELOC(EnumType, { }) DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { }) DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { }) DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { }) // FIXME: use the loc for the template name? DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, { TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName())); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); } }) DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { }) DEF_TRAVERSE_TYPELOC(ParenType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); }) DEF_TRAVERSE_TYPELOC(AttributedType, { TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); }) DEF_TRAVERSE_TYPELOC(ElaboratedType, { if (TL.getQualifierLoc()) { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); } TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc())); }) DEF_TRAVERSE_TYPELOC(DependentNameType, { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); }) DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, { if (TL.getQualifierLoc()) { TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); } for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); } }) DEF_TRAVERSE_TYPELOC(PackExpansionType, { TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); }) DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { }) DEF_TRAVERSE_TYPELOC(ObjCObjectType, { // We have to watch out here because an ObjCInterfaceType's base // type is itself. if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr()) TRY_TO(TraverseTypeLoc(TL.getBaseLoc())); }) DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, { TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); }) DEF_TRAVERSE_TYPELOC(AtomicType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); }) #undef DEF_TRAVERSE_TYPELOC // ----------------- Decl traversal ----------------- // // For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing // the children that come from the DeclContext associated with it. // Therefore each Traverse* only needs to worry about children other // than those. template bool RecursiveASTVisitor::TraverseDeclContextHelper(DeclContext *DC) { if (!DC) return true; for (DeclContext::decl_iterator Child = DC->decls_begin(), ChildEnd = DC->decls_end(); Child != ChildEnd; ++Child) { // BlockDecls are traversed through BlockExprs. if (!isa(*Child)) TRY_TO(TraverseDecl(*Child)); } return true; } // This macro makes available a variable D, the passed-in decl. #define DEF_TRAVERSE_DECL(DECL, CODE) \ template \ bool RecursiveASTVisitor::Traverse##DECL (DECL *D) { \ TRY_TO(WalkUpFrom##DECL (D)); \ { CODE; } \ TRY_TO(TraverseDeclContextHelper(dyn_cast(D))); \ return true; \ } DEF_TRAVERSE_DECL(AccessSpecDecl, { }) DEF_TRAVERSE_DECL(BlockDecl, { if (TypeSourceInfo *TInfo = D->getSignatureAsWritten()) TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); TRY_TO(TraverseStmt(D->getBody())); // This return statement makes sure the traversal of nodes in // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) // is skipped - don't remove it. return true; }) DEF_TRAVERSE_DECL(FileScopeAsmDecl, { TRY_TO(TraverseStmt(D->getAsmString())); }) DEF_TRAVERSE_DECL(ImportDecl, { }) DEF_TRAVERSE_DECL(FriendDecl, { // Friend is either decl or a type. if (D->getFriendType()) TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); else TRY_TO(TraverseDecl(D->getFriendDecl())); }) DEF_TRAVERSE_DECL(FriendTemplateDecl, { if (D->getFriendType()) TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); else TRY_TO(TraverseDecl(D->getFriendDecl())); for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) { TemplateParameterList *TPL = D->getTemplateParameterList(I); for (TemplateParameterList::iterator ITPL = TPL->begin(), ETPL = TPL->end(); ITPL != ETPL; ++ITPL) { TRY_TO(TraverseDecl(*ITPL)); } } }) DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, { TRY_TO(TraverseDecl(D->getSpecialization())); if (D->hasExplicitTemplateArgs()) { const TemplateArgumentListInfo& args = D->templateArgs(); TRY_TO(TraverseTemplateArgumentLocsHelper( args.getArgumentArray(), args.size())); } }) DEF_TRAVERSE_DECL(LinkageSpecDecl, { }) DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, { // FIXME: implement this }) DEF_TRAVERSE_DECL(StaticAssertDecl, { TRY_TO(TraverseStmt(D->getAssertExpr())); TRY_TO(TraverseStmt(D->getMessage())); }) DEF_TRAVERSE_DECL(TranslationUnitDecl, { // Code in an unnamed namespace shows up automatically in // decls_begin()/decls_end(). Thus we don't need to recurse on // D->getAnonymousNamespace(). }) DEF_TRAVERSE_DECL(NamespaceAliasDecl, { // We shouldn't traverse an aliased namespace, since it will be // defined (and, therefore, traversed) somewhere else. // // This return statement makes sure the traversal of nodes in // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) // is skipped - don't remove it. return true; }) DEF_TRAVERSE_DECL(LabelDecl, { // There is no code in a LabelDecl. }) DEF_TRAVERSE_DECL(NamespaceDecl, { // Code in an unnamed namespace shows up automatically in // decls_begin()/decls_end(). Thus we don't need to recurse on // D->getAnonymousNamespace(). }) DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCCategoryDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCImplementationDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCInterfaceDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCProtocolDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(ObjCMethodDecl, { if (D->getResultTypeSourceInfo()) { TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc())); } for (ObjCMethodDecl::param_iterator I = D->param_begin(), E = D->param_end(); I != E; ++I) { TRY_TO(TraverseDecl(*I)); } if (D->isThisDeclarationADefinition()) { TRY_TO(TraverseStmt(D->getBody())); } return true; }) DEF_TRAVERSE_DECL(ObjCPropertyDecl, { // FIXME: implement }) DEF_TRAVERSE_DECL(UsingDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); }) DEF_TRAVERSE_DECL(UsingDirectiveDecl, { TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); }) DEF_TRAVERSE_DECL(UsingShadowDecl, { }) // A helper method for TemplateDecl's children. template bool RecursiveASTVisitor::TraverseTemplateParameterListHelper( TemplateParameterList *TPL) { if (TPL) { for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); I != E; ++I) { TRY_TO(TraverseDecl(*I)); } } return true; } // A helper method for traversing the implicit instantiations of a // class template. template bool RecursiveASTVisitor::TraverseClassInstantiations( ClassTemplateDecl *D) { ClassTemplateDecl::spec_iterator end = D->spec_end(); for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) { ClassTemplateSpecializationDecl* SD = *it; switch (SD->getSpecializationKind()) { // Visit the implicit instantiations with the requested pattern. case TSK_Undeclared: case TSK_ImplicitInstantiation: TRY_TO(TraverseDecl(SD)); break; // We don't need to do anything on an explicit instantiation // or explicit specialization because there will be an explicit // node for it elsewhere. case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitSpecialization: break; } } return true; } DEF_TRAVERSE_DECL(ClassTemplateDecl, { CXXRecordDecl* TempDecl = D->getTemplatedDecl(); TRY_TO(TraverseDecl(TempDecl)); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); // By default, we do not traverse the instantiations of // class templates since they do not appear in the user code. The // following code optionally traverses them. // // We only traverse the class instantiations when we see the canonical // declaration of the template, to ensure we only visit them once. if (getDerived().shouldVisitTemplateInstantiations() && D == D->getCanonicalDecl()) TRY_TO(TraverseClassInstantiations(D)); // Note that getInstantiatedFromMemberTemplate() is just a link // from a template instantiation back to the template from which // it was instantiated, and thus should not be traversed. }) // A helper method for traversing the instantiations of a // function while skipping its specializations. template bool RecursiveASTVisitor::TraverseFunctionInstantiations( FunctionTemplateDecl *D) { FunctionTemplateDecl::spec_iterator end = D->spec_end(); for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) { FunctionDecl* FD = *it; switch (FD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ImplicitInstantiation: // We don't know what kind of FunctionDecl this is. TRY_TO(TraverseDecl(FD)); break; // FIXME: For now traverse explicit instantiations here. Change that // once they are represented as dedicated nodes in the AST. case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: TRY_TO(TraverseDecl(FD)); break; case TSK_ExplicitSpecialization: break; } } return true; } DEF_TRAVERSE_DECL(FunctionTemplateDecl, { TRY_TO(TraverseDecl(D->getTemplatedDecl())); TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); // By default, we do not traverse the instantiations of // function templates since they do not appear in the user code. The // following code optionally traverses them. // // We only traverse the function instantiations when we see the canonical // declaration of the template, to ensure we only visit them once. if (getDerived().shouldVisitTemplateInstantiations() && D == D->getCanonicalDecl()) TRY_TO(TraverseFunctionInstantiations(D)); }) DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, { // D is the "T" in something like // template