//===- lld/Core/Parallel.h - Parallel utilities ---------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLD_CORE_PARALLEL_H #define LLD_CORE_PARALLEL_H #include "lld/Core/LLVM.h" #include "lld/Core/TaskGroup.h" #include "llvm/Support/MathExtras.h" #include "llvm/Config/llvm-config.h" #include #if defined(_MSC_VER) && LLVM_ENABLE_THREADS #include #include #endif namespace lld { #if !LLVM_ENABLE_THREADS template void parallel_sort( RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp = std::less< typename std::iterator_traits::value_type>()) { std::sort(Start, End, Comp); } #elif defined(_MSC_VER) // Use ppl parallel_sort on Windows. template void parallel_sort( RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp = std::less< typename std::iterator_traits::value_type>()) { concurrency::parallel_sort(Start, End, Comp); } #else namespace detail { const ptrdiff_t MinParallelSize = 1024; /// \brief Inclusive median. template RandomAccessIterator medianOf3(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp) { RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2); return Comp(*Start, *(End - 1)) ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start) : End - 1) : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1) : Start); } template void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp, TaskGroup &TG, size_t Depth) { // Do a sequential sort for small inputs. if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) { std::sort(Start, End, Comp); return; } // Partition. auto Pivot = medianOf3(Start, End, Comp); // Move Pivot to End. std::swap(*(End - 1), *Pivot); Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) { return Comp(V, *(End - 1)); }); // Move Pivot to middle of partition. std::swap(*Pivot, *(End - 1)); // Recurse. TG.spawn([=, &Comp, &TG] { parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1); }); parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1); } } template void parallel_sort( RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp = std::less< typename std::iterator_traits::value_type>()) { TaskGroup TG; detail::parallel_quick_sort(Start, End, Comp, TG, llvm::Log2_64(std::distance(Start, End)) + 1); } #endif template void parallel_sort(T *Start, T *End) { parallel_sort(Start, End, std::less()); } #if !LLVM_ENABLE_THREADS template void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) { std::for_each(Begin, End, Fn); } template void parallel_for(IndexTy Begin, IndexTy End, FuncTy Fn) { for (IndexTy I = Begin; I != End; ++I) Fn(I); } #elif defined(_MSC_VER) // Use ppl parallel_for_each on Windows. template void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) { concurrency::parallel_for_each(Begin, End, Fn); } template void parallel_for(IndexTy Begin, IndexTy End, FuncTy Fn) { concurrency::parallel_for(Begin, End, Fn); } #else template void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) { // TaskGroup has a relatively high overhead, so we want to reduce // the number of spawn() calls. We'll create up to 1024 tasks here. // (Note that 1024 is an arbitrary number. This code probably needs // improving to take the number of available cores into account.) ptrdiff_t TaskSize = std::distance(Begin, End) / 1024; if (TaskSize == 0) TaskSize = 1; TaskGroup TG; while (TaskSize <= std::distance(Begin, End)) { TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); }); Begin += TaskSize; } TG.spawn([=, &Fn] { std::for_each(Begin, End, Fn); }); } template void parallel_for(IndexTy Begin, IndexTy End, FuncTy Fn) { ptrdiff_t TaskSize = (End - Begin) / 1024; if (TaskSize == 0) TaskSize = 1; TaskGroup TG; IndexTy I = Begin; for (; I + TaskSize < End; I += TaskSize) { TG.spawn([=, &Fn] { for (IndexTy J = I, E = I + TaskSize; J != E; ++J) Fn(J); }); } TG.spawn([=, &Fn] { for (IndexTy J = I; J < End; ++J) Fn(J); }); } #endif } // End namespace lld #endif // LLD_CORE_PARALLEL_H