//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Support/Format.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/MathExtras.h" #include using namespace clang; namespace { /// BaseSubobjectInfo - Represents a single base subobject in a complete class. /// For a class hierarchy like /// /// class A { }; /// class B : A { }; /// class C : A, B { }; /// /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo /// instances, one for B and two for A. /// /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. struct BaseSubobjectInfo { /// Class - The class for this base info. const CXXRecordDecl *Class; /// IsVirtual - Whether the BaseInfo represents a virtual base or not. bool IsVirtual; /// Bases - Information about the base subobjects. llvm::SmallVector Bases; /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base /// of this base info (if one exists). BaseSubobjectInfo *PrimaryVirtualBaseInfo; // FIXME: Document. const BaseSubobjectInfo *Derived; }; /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different /// offsets while laying out a C++ class. class EmptySubobjectMap { ASTContext &Context; /// Class - The class whose empty entries we're keeping track of. const CXXRecordDecl *Class; /// EmptyClassOffsets - A map from offsets to empty record decls. typedef llvm::SmallVector ClassVectorTy; typedef llvm::DenseMap EmptyClassOffsetsMapTy; EmptyClassOffsetsMapTy EmptyClassOffsets; /// MaxEmptyClassOffset - The highest offset known to contain an empty /// base subobject. uint64_t MaxEmptyClassOffset; /// ComputeEmptySubobjectSizes - Compute the size of the largest base or /// member subobject that is empty. void ComputeEmptySubobjectSizes(); bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, uint64_t Offset) const; void AddSubobjectAtOffset(const CXXRecordDecl *RD, uint64_t Offset); bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, uint64_t Offset); void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, uint64_t Offset, bool PlacingEmptyBase); bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, const CXXRecordDecl *Class, uint64_t Offset) const; bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, uint64_t Offset) const; void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, const CXXRecordDecl *Class, uint64_t Offset); void UpdateEmptyFieldSubobjects(const FieldDecl *FD, uint64_t Offset); /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty /// subobjects beyond the given offset. bool AnyEmptySubobjectsBeyondOffset(uint64_t Offset) const { return Offset <= MaxEmptyClassOffset; } public: /// This holds the size of the largest empty subobject (either a base /// or a member). Will be zero if the record being built doesn't contain /// any empty classes. uint64_t SizeOfLargestEmptySubobject; EmptySubobjectMap(ASTContext &Context, const CXXRecordDecl *Class) : Context(Context), Class(Class), MaxEmptyClassOffset(0), SizeOfLargestEmptySubobject(0) { ComputeEmptySubobjectSizes(); } /// CanPlaceBaseAtOffset - Return whether the given base class can be placed /// at the given offset. /// Returns false if placing the record will result in two components /// (direct or indirect) of the same type having the same offset. bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, uint64_t Offset); /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given /// offset. bool CanPlaceFieldAtOffset(const FieldDecl *FD, uint64_t Offset); }; void EmptySubobjectMap::ComputeEmptySubobjectSizes() { // Check the bases. for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(), E = Class->bases_end(); I != E; ++I) { const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); uint64_t EmptySize = 0; const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); if (BaseDecl->isEmpty()) { // If the class decl is empty, get its size. EmptySize = Layout.getSize(); } else { // Otherwise, we get the largest empty subobject for the decl. EmptySize = Layout.getSizeOfLargestEmptySubobject(); } SizeOfLargestEmptySubobject = std::max(SizeOfLargestEmptySubobject, EmptySize); } // Check the fields. for (CXXRecordDecl::field_iterator I = Class->field_begin(), E = Class->field_end(); I != E; ++I) { const FieldDecl *FD = *I; const RecordType *RT = Context.getBaseElementType(FD->getType())->getAs(); // We only care about record types. if (!RT) continue; uint64_t EmptySize = 0; const CXXRecordDecl *MemberDecl = cast(RT->getDecl()); const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); if (MemberDecl->isEmpty()) { // If the class decl is empty, get its size. EmptySize = Layout.getSize(); } else { // Otherwise, we get the largest empty subobject for the decl. EmptySize = Layout.getSizeOfLargestEmptySubobject(); } SizeOfLargestEmptySubobject = std::max(SizeOfLargestEmptySubobject, EmptySize); } } bool EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, uint64_t Offset) const { // We only need to check empty bases. if (!RD->isEmpty()) return true; EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); if (I == EmptyClassOffsets.end()) return true; const ClassVectorTy& Classes = I->second; if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end()) return true; // There is already an empty class of the same type at this offset. return false; } void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, uint64_t Offset) { // We only care about empty bases. if (!RD->isEmpty()) return; ClassVectorTy& Classes = EmptyClassOffsets[Offset]; assert(std::find(Classes.begin(), Classes.end(), RD) == Classes.end() && "Duplicate empty class detected!"); Classes.push_back(RD); // Update the empty class offset. MaxEmptyClassOffset = std::max(MaxEmptyClassOffset, Offset); } bool EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, uint64_t Offset) { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(Offset)) return true; if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) return false; // Traverse all non-virtual bases. const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) { BaseSubobjectInfo* Base = Info->Bases[I]; if (Base->IsVirtual) continue; uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) return false; } if (Info->PrimaryVirtualBaseInfo) { BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; if (Info == PrimaryVirtualBaseInfo->Derived) { if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) return false; } } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { const FieldDecl *FD = *I; uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo); if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset)) return false; } return true; } void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, uint64_t Offset, bool PlacingEmptyBase) { if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { // We know that the only empty subobjects that can conflict with empty // subobject of non-empty bases, are empty bases that can be placed at // offset zero. Because of this, we only need to keep track of empty base // subobjects with offsets less than the size of the largest empty // subobject for our class. return; } AddSubobjectAtOffset(Info->Class, Offset); // Traverse all non-virtual bases. const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) { BaseSubobjectInfo* Base = Info->Bases[I]; if (Base->IsVirtual) continue; uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); } if (Info->PrimaryVirtualBaseInfo) { BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; if (Info == PrimaryVirtualBaseInfo->Derived) UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, PlacingEmptyBase); } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { const FieldDecl *FD = *I; uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo); UpdateEmptyFieldSubobjects(FD, FieldOffset); } } bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, uint64_t Offset) { // If we know this class doesn't have any empty subobjects we don't need to // bother checking. if (!SizeOfLargestEmptySubobject) return true; if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) return false; // We are able to place the base at this offset. Make sure to update the // empty base subobject map. UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); return true; } bool EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, const CXXRecordDecl *Class, uint64_t Offset) const { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(Offset)) return true; if (!CanPlaceSubobjectAtOffset(RD, Offset)) return false; const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // Traverse all non-virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) return false; } if (RD == Class) { // This is the most derived class, traverse virtual bases as well. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *VBaseDecl = cast(I->getType()->getAs()->getDecl()); uint64_t VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) return false; } } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { const FieldDecl *FD = *I; uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo); if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset)) return false; } return true; } bool EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, uint64_t Offset) const { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(Offset)) return true; QualType T = FD->getType(); if (const RecordType *RT = T->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); } // If we have an array type we need to look at every element. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { QualType ElemTy = Context.getBaseElementType(AT); const RecordType *RT = ElemTy->getAs(); if (!RT) return true; const CXXRecordDecl *RD = cast(RT->getDecl()); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); uint64_t NumElements = Context.getConstantArrayElementCount(AT); uint64_t ElementOffset = Offset; for (uint64_t I = 0; I != NumElements; ++I) { // We don't have to keep looking past the maximum offset that's known to // contain an empty class. if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) return true; if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) return false; ElementOffset += Layout.getSize(); } } return true; } bool EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, uint64_t Offset) { if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) return false; // We are able to place the member variable at this offset. // Make sure to update the empty base subobject map. UpdateEmptyFieldSubobjects(FD, Offset); return true; } void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, const CXXRecordDecl *Class, uint64_t Offset) { // We know that the only empty subobjects that can conflict with empty // field subobjects are subobjects of empty bases that can be placed at offset // zero. Because of this, we only need to keep track of empty field // subobjects with offsets less than the size of the largest empty // subobject for our class. if (Offset >= SizeOfLargestEmptySubobject) return; AddSubobjectAtOffset(RD, Offset); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // Traverse all non-virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset); } if (RD == Class) { // This is the most derived class, traverse virtual bases as well. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *VBaseDecl = cast(I->getType()->getAs()->getDecl()); uint64_t VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset); } } // Traverse all member variables. unsigned FieldNo = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { const FieldDecl *FD = *I; uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo); UpdateEmptyFieldSubobjects(FD, FieldOffset); } } void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD, uint64_t Offset) { QualType T = FD->getType(); if (const RecordType *RT = T->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); UpdateEmptyFieldSubobjects(RD, RD, Offset); return; } // If we have an array type we need to update every element. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { QualType ElemTy = Context.getBaseElementType(AT); const RecordType *RT = ElemTy->getAs(); if (!RT) return; const CXXRecordDecl *RD = cast(RT->getDecl()); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); uint64_t NumElements = Context.getConstantArrayElementCount(AT); uint64_t ElementOffset = Offset; for (uint64_t I = 0; I != NumElements; ++I) { // We know that the only empty subobjects that can conflict with empty // field subobjects are subobjects of empty bases that can be placed at // offset zero. Because of this, we only need to keep track of empty field // subobjects with offsets less than the size of the largest empty // subobject for our class. if (ElementOffset >= SizeOfLargestEmptySubobject) return; UpdateEmptyFieldSubobjects(RD, RD, ElementOffset); ElementOffset += Layout.getSize(); } } } class RecordLayoutBuilder { // FIXME: Remove this and make the appropriate fields public. friend class clang::ASTContext; ASTContext &Context; EmptySubobjectMap *EmptySubobjects; /// Size - The current size of the record layout. uint64_t Size; /// Alignment - The current alignment of the record layout. unsigned Alignment; llvm::SmallVector FieldOffsets; /// Packed - Whether the record is packed or not. unsigned Packed : 1; unsigned IsUnion : 1; unsigned IsMac68kAlign : 1; /// UnfilledBitsInLastByte - If the last field laid out was a bitfield, /// this contains the number of bits in the last byte that can be used for /// an adjacent bitfield if necessary. unsigned char UnfilledBitsInLastByte; /// MaxFieldAlignment - The maximum allowed field alignment. This is set by /// #pragma pack. unsigned MaxFieldAlignment; /// DataSize - The data size of the record being laid out. uint64_t DataSize; uint64_t NonVirtualSize; unsigned NonVirtualAlignment; /// PrimaryBase - the primary base class (if one exists) of the class /// we're laying out. const CXXRecordDecl *PrimaryBase; /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying /// out is virtual. bool PrimaryBaseIsVirtual; typedef llvm::DenseMap BaseOffsetsMapTy; /// Bases - base classes and their offsets in the record. BaseOffsetsMapTy Bases; // VBases - virtual base classes and their offsets in the record. BaseOffsetsMapTy VBases; /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are /// primary base classes for some other direct or indirect base class. llvm::SmallSet IndirectPrimaryBases; /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in /// inheritance graph order. Used for determining the primary base class. const CXXRecordDecl *FirstNearlyEmptyVBase; /// VisitedVirtualBases - A set of all the visited virtual bases, used to /// avoid visiting virtual bases more than once. llvm::SmallPtrSet VisitedVirtualBases; RecordLayoutBuilder(ASTContext &Context, EmptySubobjectMap *EmptySubobjects) : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), Alignment(8), Packed(false), IsUnion(false), IsMac68kAlign(false), UnfilledBitsInLastByte(0), MaxFieldAlignment(0), DataSize(0), NonVirtualSize(0), NonVirtualAlignment(8), PrimaryBase(0), PrimaryBaseIsVirtual(false), FirstNearlyEmptyVBase(0) { } void Layout(const RecordDecl *D); void Layout(const CXXRecordDecl *D); void Layout(const ObjCInterfaceDecl *D); void LayoutFields(const RecordDecl *D); void LayoutField(const FieldDecl *D); void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize); void LayoutBitField(const FieldDecl *D); /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. llvm::SpecificBumpPtrAllocator BaseSubobjectInfoAllocator; typedef llvm::DenseMap BaseSubobjectInfoMapTy; /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases /// of the class we're laying out to their base subobject info. BaseSubobjectInfoMapTy VirtualBaseInfo; /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the /// class we're laying out to their base subobject info. BaseSubobjectInfoMapTy NonVirtualBaseInfo; /// ComputeBaseSubobjectInfo - Compute the base subobject information for the /// bases of the given class. void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); /// ComputeBaseSubobjectInfo - Compute the base subobject information for a /// single class and all of its base classes. BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived); /// DeterminePrimaryBase - Determine the primary base of the given class. void DeterminePrimaryBase(const CXXRecordDecl *RD); void SelectPrimaryVBase(const CXXRecordDecl *RD); /// IdentifyPrimaryBases - Identify all virtual base classes, direct or /// indirect, that are primary base classes for some other direct or indirect /// base class. void IdentifyPrimaryBases(const CXXRecordDecl *RD); bool IsNearlyEmpty(const CXXRecordDecl *RD) const; /// LayoutNonVirtualBases - Determines the primary base class (if any) and /// lays it out. Will then proceed to lay out all non-virtual base clasess. void LayoutNonVirtualBases(const CXXRecordDecl *RD); /// LayoutNonVirtualBase - Lays out a single non-virtual base. void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, uint64_t Offset); /// LayoutVirtualBases - Lays out all the virtual bases. void LayoutVirtualBases(const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass); /// LayoutVirtualBase - Lays out a single virtual base. void LayoutVirtualBase(const BaseSubobjectInfo *Base); /// LayoutBase - Will lay out a base and return the offset where it was /// placed, in bits. uint64_t LayoutBase(const BaseSubobjectInfo *Base); /// InitializeLayout - Initialize record layout for the given record decl. void InitializeLayout(const Decl *D); /// FinishLayout - Finalize record layout. Adjust record size based on the /// alignment. void FinishLayout(); void UpdateAlignment(unsigned NewAlignment); RecordLayoutBuilder(const RecordLayoutBuilder&); // DO NOT IMPLEMENT void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT public: static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD); }; } // end anonymous namespace /// IsNearlyEmpty - Indicates when a class has a vtable pointer, but /// no other data. bool RecordLayoutBuilder::IsNearlyEmpty(const CXXRecordDecl *RD) const { // FIXME: Audit the corners if (!RD->isDynamicClass()) return false; const ASTRecordLayout &BaseInfo = Context.getASTRecordLayout(RD); if (BaseInfo.getNonVirtualSize() == Context.Target.getPointerWidth(0)) return true; return false; } void RecordLayoutBuilder::IdentifyPrimaryBases(const CXXRecordDecl *RD) { const ASTRecordLayout::PrimaryBaseInfo &BaseInfo = Context.getASTRecordLayout(RD).getPrimaryBaseInfo(); // If the record has a primary base class that is virtual, add it to the set // of primary bases. if (BaseInfo.isVirtual()) IndirectPrimaryBases.insert(BaseInfo.getBase()); // Now traverse all bases and find primary bases for them. for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { assert(!i->getType()->isDependentType() && "Cannot layout class with dependent bases."); const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); // Only bases with virtual bases participate in computing the // indirect primary virtual base classes. if (Base->getNumVBases()) IdentifyPrimaryBases(Base); } } void RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->getType()->isDependentType() && "Cannot layout class with dependent bases."); const CXXRecordDecl *Base = cast(I->getType()->getAs()->getDecl()); // Check if this is a nearly empty virtual base. if (I->isVirtual() && IsNearlyEmpty(Base)) { // If it's not an indirect primary base, then we've found our primary // base. if (!IndirectPrimaryBases.count(Base)) { PrimaryBase = Base; PrimaryBaseIsVirtual = true; return; } // Is this the first nearly empty virtual base? if (!FirstNearlyEmptyVBase) FirstNearlyEmptyVBase = Base; } SelectPrimaryVBase(Base); if (PrimaryBase) return; } } /// DeterminePrimaryBase - Determine the primary base of the given class. void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { // If the class isn't dynamic, it won't have a primary base. if (!RD->isDynamicClass()) return; // Compute all the primary virtual bases for all of our direct and // indirect bases, and record all their primary virtual base classes. for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { assert(!i->getType()->isDependentType() && "Cannot lay out class with dependent bases."); const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); IdentifyPrimaryBases(Base); } // If the record has a dynamic base class, attempt to choose a primary base // class. It is the first (in direct base class order) non-virtual dynamic // base class, if one exists. for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { // Ignore virtual bases. if (i->isVirtual()) continue; const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (Base->isDynamicClass()) { // We found it. PrimaryBase = Base; PrimaryBaseIsVirtual = false; return; } } // Otherwise, it is the first nearly empty virtual base that is not an // indirect primary virtual base class, if one exists. if (RD->getNumVBases() != 0) { SelectPrimaryVBase(RD); if (PrimaryBase) return; } // Otherwise, it is the first nearly empty virtual base that is not an // indirect primary virtual base class, if one exists. if (FirstNearlyEmptyVBase) { PrimaryBase = FirstNearlyEmptyVBase; PrimaryBaseIsVirtual = true; return; } // Otherwise there is no primary base class. assert(!PrimaryBase && "Should not get here with a primary base!"); // Allocate the virtual table pointer at offset zero. assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); // Update the size. Size += Context.Target.getPointerWidth(0); DataSize = Size; // Update the alignment. UpdateAlignment(Context.Target.getPointerAlign(0)); } BaseSubobjectInfo * RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { BaseSubobjectInfo *Info; if (IsVirtual) { // Check if we already have info about this virtual base. BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; if (InfoSlot) { assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); return InfoSlot; } // We don't, create it. InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; Info = InfoSlot; } else { Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; } Info->Class = RD; Info->IsVirtual = IsVirtual; Info->Derived = 0; Info->PrimaryVirtualBaseInfo = 0; const CXXRecordDecl *PrimaryVirtualBase = 0; BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0; // Check if this base has a primary virtual base. if (RD->getNumVBases()) { const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); if (Layout.getPrimaryBaseWasVirtual()) { // This base does have a primary virtual base. PrimaryVirtualBase = Layout.getPrimaryBase(); assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); // Now check if we have base subobject info about this primary base. PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); if (PrimaryVirtualBaseInfo) { if (PrimaryVirtualBaseInfo->Derived) { // We did have info about this primary base, and it turns out that it // has already been claimed as a primary virtual base for another // base. PrimaryVirtualBase = 0; } else { // We can claim this base as our primary base. Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; PrimaryVirtualBaseInfo->Derived = Info; } } } } // Now go through all direct bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { bool IsVirtual = I->isVirtual(); const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); } if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { // Traversing the bases must have created the base info for our primary // virtual base. PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); assert(PrimaryVirtualBaseInfo && "Did not create a primary virtual base!"); // Claim the primary virtual base as our primary virtual base. Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; PrimaryVirtualBaseInfo->Derived = Info; } return Info; } void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) { for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { bool IsVirtual = I->isVirtual(); const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); // Compute the base subobject info for this base. BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0); if (IsVirtual) { // ComputeBaseInfo has already added this base for us. assert(VirtualBaseInfo.count(BaseDecl) && "Did not add virtual base!"); } else { // Add the base info to the map of non-virtual bases. assert(!NonVirtualBaseInfo.count(BaseDecl) && "Non-virtual base already exists!"); NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); } } } void RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) { // Then, determine the primary base class. DeterminePrimaryBase(RD); // Compute base subobject info. ComputeBaseSubobjectInfo(RD); // If we have a primary base class, lay it out. if (PrimaryBase) { if (PrimaryBaseIsVirtual) { // If the primary virtual base was a primary virtual base of some other // base class we'll have to steal it. BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); PrimaryBaseInfo->Derived = 0; // We have a virtual primary base, insert it as an indirect primary base. IndirectPrimaryBases.insert(PrimaryBase); assert(!VisitedVirtualBases.count(PrimaryBase) && "vbase already visited!"); VisitedVirtualBases.insert(PrimaryBase); LayoutVirtualBase(PrimaryBaseInfo); } else { BaseSubobjectInfo *PrimaryBaseInfo = NonVirtualBaseInfo.lookup(PrimaryBase); assert(PrimaryBaseInfo && "Did not find base info for non-virtual primary base!"); LayoutNonVirtualBase(PrimaryBaseInfo); } } // Now lay out the non-virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { // Ignore virtual bases. if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); // Skip the primary base. if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) continue; // Lay out the base. BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); assert(BaseInfo && "Did not find base info for non-virtual base!"); LayoutNonVirtualBase(BaseInfo); } } void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) { // Layout the base. uint64_t Offset = LayoutBase(Base); // Add its base class offset. assert(!Bases.count(Base->Class) && "base offset already exists!"); Bases.insert(std::make_pair(Base->Class, Offset)); AddPrimaryVirtualBaseOffsets(Base, Offset); } void RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, uint64_t Offset) { // This base isn't interesting, it has no virtual bases. if (!Info->Class->getNumVBases()) return; // First, check if we have a virtual primary base to add offsets for. if (Info->PrimaryVirtualBaseInfo) { assert(Info->PrimaryVirtualBaseInfo->IsVirtual && "Primary virtual base is not virtual!"); if (Info->PrimaryVirtualBaseInfo->Derived == Info) { // Add the offset. assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && "primary vbase offset already exists!"); VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, Offset)); // Traverse the primary virtual base. AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); } } // Now go through all direct non-virtual bases. const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) { const BaseSubobjectInfo *Base = Info->Bases[I]; if (Base->IsVirtual) continue; uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); AddPrimaryVirtualBaseOffsets(Base, BaseOffset); } } void RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { const CXXRecordDecl *PrimaryBase; bool PrimaryBaseIsVirtual; if (MostDerivedClass == RD) { PrimaryBase = this->PrimaryBase; PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; } else { const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); PrimaryBase = Layout.getPrimaryBase(); PrimaryBaseIsVirtual = Layout.getPrimaryBaseWasVirtual(); } for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->getType()->isDependentType() && "Cannot layout class with dependent bases."); const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); if (I->isVirtual()) { if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); // Only lay out the virtual base if it's not an indirect primary base. if (!IndirectPrimaryBase) { // Only visit virtual bases once. if (!VisitedVirtualBases.insert(BaseDecl)) continue; const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); assert(BaseInfo && "Did not find virtual base info!"); LayoutVirtualBase(BaseInfo); } } } if (!BaseDecl->getNumVBases()) { // This base isn't interesting since it doesn't have any virtual bases. continue; } LayoutVirtualBases(BaseDecl, MostDerivedClass); } } void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) { assert(!Base->Derived && "Trying to lay out a primary virtual base!"); // Layout the base. uint64_t Offset = LayoutBase(Base); // Add its base class offset. assert(!VBases.count(Base->Class) && "vbase offset already exists!"); VBases.insert(std::make_pair(Base->Class, Offset)); AddPrimaryVirtualBaseOffsets(Base, Offset); } uint64_t RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); // If we have an empty base class, try to place it at offset 0. if (Base->Class->isEmpty() && EmptySubobjects->CanPlaceBaseAtOffset(Base, 0)) { Size = std::max(Size, Layout.getSize()); return 0; } unsigned BaseAlign = Layout.getNonVirtualAlign(); // Round up the current record size to the base's alignment boundary. uint64_t Offset = llvm::RoundUpToAlignment(DataSize, BaseAlign); // Try to place the base. while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) Offset += BaseAlign; if (!Base->Class->isEmpty()) { // Update the data size. DataSize = Offset + Layout.getNonVirtualSize(); Size = std::max(Size, DataSize); } else Size = std::max(Size, Offset + Layout.getSize()); // Remember max struct/class alignment. UpdateAlignment(BaseAlign); return Offset; } void RecordLayoutBuilder::InitializeLayout(const Decl *D) { if (const RecordDecl *RD = dyn_cast(D)) IsUnion = RD->isUnion(); Packed = D->hasAttr(); // mac68k alignment supersedes maximum field alignment and attribute aligned, // and forces all structures to have 2-byte alignment. The IBM docs on it // allude to additional (more complicated) semantics, especially with regard // to bit-fields, but gcc appears not to follow that. if (D->hasAttr()) { IsMac68kAlign = true; MaxFieldAlignment = 2 * 8; Alignment = 2 * 8; } else { if (const MaxFieldAlignmentAttr *MFAA = D->getAttr()) MaxFieldAlignment = MFAA->getAlignment(); if (const AlignedAttr *AA = D->getAttr()) UpdateAlignment(AA->getMaxAlignment()); } } void RecordLayoutBuilder::Layout(const RecordDecl *D) { InitializeLayout(D); LayoutFields(D); // Finally, round the size of the total struct up to the alignment of the // struct itself. FinishLayout(); } void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { InitializeLayout(RD); // Lay out the vtable and the non-virtual bases. LayoutNonVirtualBases(RD); LayoutFields(RD); NonVirtualSize = Size; NonVirtualAlignment = Alignment; // Lay out the virtual bases and add the primary virtual base offsets. LayoutVirtualBases(RD, RD); VisitedVirtualBases.clear(); // Finally, round the size of the total struct up to the alignment of the // struct itself. FinishLayout(); #ifndef NDEBUG // Check that we have base offsets for all bases. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) continue; const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); assert(Bases.count(BaseDecl) && "Did not find base offset!"); } // And all virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); assert(VBases.count(BaseDecl) && "Did not find base offset!"); } #endif } void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { if (ObjCInterfaceDecl *SD = D->getSuperClass()) { const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); UpdateAlignment(SL.getAlignment()); // We start laying out ivars not at the end of the superclass // structure, but at the next byte following the last field. Size = llvm::RoundUpToAlignment(SL.getDataSize(), 8); DataSize = Size; } InitializeLayout(D); // Layout each ivar sequentially. llvm::SmallVector Ivars; Context.ShallowCollectObjCIvars(D, Ivars); for (unsigned i = 0, e = Ivars.size(); i != e; ++i) LayoutField(Ivars[i]); // Finally, round the size of the total struct up to the alignment of the // struct itself. FinishLayout(); } void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) { // Layout each field, for now, just sequentially, respecting alignment. In // the future, this will need to be tweakable by targets. for (RecordDecl::field_iterator Field = D->field_begin(), FieldEnd = D->field_end(); Field != FieldEnd; ++Field) LayoutField(*Field); } void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize) { assert(Context.getLangOptions().CPlusPlus && "Can only have wide bit-fields in C++!"); // Itanium C++ ABI 2.4: // If sizeof(T)*8 < n, let T' be the largest integral POD type with // sizeof(T')*8 <= n. QualType IntegralPODTypes[] = { Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy }; QualType Type; for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes); I != E; ++I) { uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]); if (Size > FieldSize) break; Type = IntegralPODTypes[I]; } assert(!Type.isNull() && "Did not find a type!"); unsigned TypeAlign = Context.getTypeAlign(Type); // We're not going to use any of the unfilled bits in the last byte. UnfilledBitsInLastByte = 0; uint64_t FieldOffset; if (IsUnion) { DataSize = std::max(DataSize, FieldSize); FieldOffset = 0; } else { // The bitfield is allocated starting at the next offset aligned appropriately // for T', with length n bits. FieldOffset = llvm::RoundUpToAlignment(DataSize, TypeAlign); uint64_t NewSizeInBits = FieldOffset + FieldSize; DataSize = llvm::RoundUpToAlignment(NewSizeInBits, 8); UnfilledBitsInLastByte = DataSize - NewSizeInBits; } // Place this field at the current location. FieldOffsets.push_back(FieldOffset); // Update the size. Size = std::max(Size, DataSize); // Remember max struct/class alignment. UpdateAlignment(TypeAlign); } void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { bool FieldPacked = Packed || D->hasAttr(); uint64_t FieldOffset = IsUnion ? 0 : (DataSize - UnfilledBitsInLastByte); uint64_t FieldSize = D->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); std::pair FieldInfo = Context.getTypeInfo(D->getType()); uint64_t TypeSize = FieldInfo.first; unsigned FieldAlign = FieldInfo.second; if (FieldSize > TypeSize) { LayoutWideBitField(FieldSize, TypeSize); return; } if (FieldPacked || !Context.Target.useBitFieldTypeAlignment()) FieldAlign = 1; if (const AlignedAttr *AA = D->getAttr()) FieldAlign = std::max(FieldAlign, AA->getMaxAlignment()); // The maximum field alignment overrides the aligned attribute. if (MaxFieldAlignment) FieldAlign = std::min(FieldAlign, MaxFieldAlignment); // Check if we need to add padding to give the field the correct alignment. if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize) FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign); // Padding members don't affect overall alignment. if (!D->getIdentifier()) FieldAlign = 1; // Place this field at the current location. FieldOffsets.push_back(FieldOffset); // Update DataSize to include the last byte containing (part of) the bitfield. if (IsUnion) { // FIXME: I think FieldSize should be TypeSize here. DataSize = std::max(DataSize, FieldSize); } else { uint64_t NewSizeInBits = FieldOffset + FieldSize; DataSize = llvm::RoundUpToAlignment(NewSizeInBits, 8); UnfilledBitsInLastByte = DataSize - NewSizeInBits; } // Update the size. Size = std::max(Size, DataSize); // Remember max struct/class alignment. UpdateAlignment(FieldAlign); } void RecordLayoutBuilder::LayoutField(const FieldDecl *D) { if (D->isBitField()) { LayoutBitField(D); return; } // Reset the unfilled bits. UnfilledBitsInLastByte = 0; bool FieldPacked = Packed || D->hasAttr(); uint64_t FieldOffset = IsUnion ? 0 : DataSize; uint64_t FieldSize; unsigned FieldAlign; if (D->getType()->isIncompleteArrayType()) { // This is a flexible array member; we can't directly // query getTypeInfo about these, so we figure it out here. // Flexible array members don't have any size, but they // have to be aligned appropriately for their element type. FieldSize = 0; const ArrayType* ATy = Context.getAsArrayType(D->getType()); FieldAlign = Context.getTypeAlign(ATy->getElementType()); } else if (const ReferenceType *RT = D->getType()->getAs()) { unsigned AS = RT->getPointeeType().getAddressSpace(); FieldSize = Context.Target.getPointerWidth(AS); FieldAlign = Context.Target.getPointerAlign(AS); } else { std::pair FieldInfo = Context.getTypeInfo(D->getType()); FieldSize = FieldInfo.first; FieldAlign = FieldInfo.second; } if (FieldPacked) FieldAlign = 8; if (const AlignedAttr *AA = D->getAttr()) FieldAlign = std::max(FieldAlign, AA->getMaxAlignment()); // The maximum field alignment overrides the aligned attribute. if (MaxFieldAlignment) FieldAlign = std::min(FieldAlign, MaxFieldAlignment); // Round up the current record size to the field's alignment boundary. FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign); if (!IsUnion && EmptySubobjects) { // Check if we can place the field at this offset. while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { // We couldn't place the field at the offset. Try again at a new offset. FieldOffset += FieldAlign; } } // Place this field at the current location. FieldOffsets.push_back(FieldOffset); // Reserve space for this field. if (IsUnion) Size = std::max(Size, FieldSize); else Size = FieldOffset + FieldSize; // Update the data size. DataSize = Size; // Remember max struct/class alignment. UpdateAlignment(FieldAlign); } void RecordLayoutBuilder::FinishLayout() { // In C++, records cannot be of size 0. if (Context.getLangOptions().CPlusPlus && Size == 0) Size = 8; // Finally, round the size of the record up to the alignment of the // record itself. Size = llvm::RoundUpToAlignment(Size, Alignment); } void RecordLayoutBuilder::UpdateAlignment(unsigned NewAlignment) { // The alignment is not modified when using 'mac68k' alignment. if (IsMac68kAlign) return; if (NewAlignment <= Alignment) return; assert(llvm::isPowerOf2_32(NewAlignment && "Alignment not a power of 2")); Alignment = NewAlignment; } const CXXMethodDecl * RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) { // If a class isn't polymorphic it doesn't have a key function. if (!RD->isPolymorphic()) return 0; // A class inside an anonymous namespace doesn't have a key function. (Or // at least, there's no point to assigning a key function to such a class; // this doesn't affect the ABI.) if (RD->isInAnonymousNamespace()) return 0; for (CXXRecordDecl::method_iterator I = RD->method_begin(), E = RD->method_end(); I != E; ++I) { const CXXMethodDecl *MD = *I; if (!MD->isVirtual()) continue; if (MD->isPure()) continue; // Ignore implicit member functions, they are always marked as inline, but // they don't have a body until they're defined. if (MD->isImplicit()) continue; if (MD->isInlineSpecified()) continue; if (MD->hasInlineBody()) continue; // We found it. return MD; } return 0; } /// getASTRecordLayout - Get or compute information about the layout of the /// specified record (struct/union/class), which indicates its size and field /// position information. const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) { D = D->getDefinition(); assert(D && "Cannot get layout of forward declarations!"); // Look up this layout, if already laid out, return what we have. // Note that we can't save a reference to the entry because this function // is recursive. const ASTRecordLayout *Entry = ASTRecordLayouts[D]; if (Entry) return *Entry; const ASTRecordLayout *NewEntry; if (const CXXRecordDecl *RD = dyn_cast(D)) { EmptySubobjectMap EmptySubobjects(*this, RD); RecordLayoutBuilder Builder(*this, &EmptySubobjects); Builder.Layout(RD); // FIXME: This is not always correct. See the part about bitfields at // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info. // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout. bool IsPODForThePurposeOfLayout = cast(D)->isPOD(); // FIXME: This should be done in FinalizeLayout. uint64_t DataSize = IsPODForThePurposeOfLayout ? Builder.Size : Builder.DataSize; uint64_t NonVirtualSize = IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize; NewEntry = new (*this) ASTRecordLayout(*this, Builder.Size, Builder.Alignment, DataSize, Builder.FieldOffsets.data(), Builder.FieldOffsets.size(), NonVirtualSize, Builder.NonVirtualAlignment, EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, Builder.PrimaryBaseIsVirtual, Builder.Bases, Builder.VBases); } else { RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0); Builder.Layout(D); NewEntry = new (*this) ASTRecordLayout(*this, Builder.Size, Builder.Alignment, Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size()); } ASTRecordLayouts[D] = NewEntry; if (getLangOptions().DumpRecordLayouts) { llvm::errs() << "\n*** Dumping AST Record Layout\n"; DumpRecordLayout(D, llvm::errs()); } return *NewEntry; } const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) { RD = cast(RD->getDefinition()); assert(RD && "Cannot get key function for forward declarations!"); const CXXMethodDecl *&Entry = KeyFunctions[RD]; if (!Entry) Entry = RecordLayoutBuilder::ComputeKeyFunction(RD); else assert(Entry == RecordLayoutBuilder::ComputeKeyFunction(RD) && "Key function changed!"); return Entry; } /// getInterfaceLayoutImpl - Get or compute information about the /// layout of the given interface. /// /// \param Impl - If given, also include the layout of the interface's /// implementation. This may differ by including synthesized ivars. const ASTRecordLayout & ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, const ObjCImplementationDecl *Impl) { assert(!D->isForwardDecl() && "Invalid interface decl!"); // Look up this layout, if already laid out, return what we have. ObjCContainerDecl *Key = Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D; if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) return *Entry; // Add in synthesized ivar count if laying out an implementation. if (Impl) { unsigned SynthCount = CountNonClassIvars(D); // If there aren't any sythesized ivars then reuse the interface // entry. Note we can't cache this because we simply free all // entries later; however we shouldn't look up implementations // frequently. if (SynthCount == 0) return getObjCLayout(D, 0); } RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0); Builder.Layout(D); const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(*this, Builder.Size, Builder.Alignment, Builder.DataSize, Builder.FieldOffsets.data(), Builder.FieldOffsets.size()); ObjCLayouts[Key] = NewEntry; return *NewEntry; } static void PrintOffset(llvm::raw_ostream &OS, uint64_t Offset, unsigned IndentLevel) { OS << llvm::format("%4d | ", Offset); OS.indent(IndentLevel * 2); } static void DumpCXXRecordLayout(llvm::raw_ostream &OS, const CXXRecordDecl *RD, ASTContext &C, uint64_t Offset, unsigned IndentLevel, const char* Description, bool IncludeVirtualBases) { const ASTRecordLayout &Info = C.getASTRecordLayout(RD); PrintOffset(OS, Offset, IndentLevel); OS << C.getTypeDeclType(const_cast(RD)).getAsString(); if (Description) OS << ' ' << Description; if (RD->isEmpty()) OS << " (empty)"; OS << '\n'; IndentLevel++; const CXXRecordDecl *PrimaryBase = Info.getPrimaryBase(); // Vtable pointer. if (RD->isDynamicClass() && !PrimaryBase) { PrintOffset(OS, Offset, IndentLevel); OS << '(' << RD << " vtable pointer)\n"; } // Dump (non-virtual) bases for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { assert(!I->getType()->isDependentType() && "Cannot layout class with dependent bases."); if (I->isVirtual()) continue; const CXXRecordDecl *Base = cast(I->getType()->getAs()->getDecl()); uint64_t BaseOffset = Offset + Info.getBaseClassOffset(Base) / 8; DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel, Base == PrimaryBase ? "(primary base)" : "(base)", /*IncludeVirtualBases=*/false); } // Dump fields. uint64_t FieldNo = 0; for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { const FieldDecl *Field = *I; uint64_t FieldOffset = Offset + Info.getFieldOffset(FieldNo) / 8; if (const RecordType *RT = Field->getType()->getAs()) { if (const CXXRecordDecl *D = dyn_cast(RT->getDecl())) { DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel, Field->getNameAsCString(), /*IncludeVirtualBases=*/true); continue; } } PrintOffset(OS, FieldOffset, IndentLevel); OS << Field->getType().getAsString() << ' ' << Field << '\n'; } if (!IncludeVirtualBases) return; // Dump virtual bases. for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) { assert(I->isVirtual() && "Found non-virtual class!"); const CXXRecordDecl *VBase = cast(I->getType()->getAs()->getDecl()); uint64_t VBaseOffset = Offset + Info.getVBaseClassOffset(VBase) / 8; DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, VBase == PrimaryBase ? "(primary virtual base)" : "(virtual base)", /*IncludeVirtualBases=*/false); } OS << " sizeof=" << Info.getSize() / 8; OS << ", dsize=" << Info.getDataSize() / 8; OS << ", align=" << Info.getAlignment() / 8 << '\n'; OS << " nvsize=" << Info.getNonVirtualSize() / 8; OS << ", nvalign=" << Info.getNonVirtualAlign() / 8 << '\n'; OS << '\n'; } void ASTContext::DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS) { const ASTRecordLayout &Info = getASTRecordLayout(RD); if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) return DumpCXXRecordLayout(OS, CXXRD, *this, 0, 0, 0, /*IncludeVirtualBases=*/true); OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n"; OS << "Record: "; RD->dump(); OS << "\nLayout: "; OS << "\n"; }