//===- lib/ReaderWriter/ELF/SectionChunks.h -------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLD_READER_WRITER_ELF_SECTION_CHUNKS_H #define LLD_READER_WRITER_ELF_SECTION_CHUNKS_H #include "Chunk.h" #include "Layout.h" #include "TargetHandler.h" #include "Writer.h" #include "lld/Core/DefinedAtom.h" #include "lld/Core/Parallel.h" #include "lld/Core/range.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileOutputBuffer.h" #include #include namespace lld { namespace elf { template class OutputSection; using namespace llvm::ELF; template class Segment; /// \brief An ELF section. template class Section : public Chunk { public: Section(const ELFLinkingContext &context, StringRef sectionName, StringRef chunkName, typename Chunk::Kind k = Chunk::Kind::ELFSection) : Chunk(chunkName, k, context), _outputSection(nullptr), _flags(0), _entSize(0), _type(0), _link(0), _info(0), _isFirstSectionInOutputSection(false), _segmentType(SHT_NULL), _inputSectionName(sectionName), _outputSectionName(sectionName) {} /// \brief Modify the section contents before assigning virtual addresses // or assigning file offsets void doPreFlight() override {} /// \brief Finalize the section contents before writing void finalize() override {} /// \brief Does this section have an output segment. virtual bool hasOutputSegment() { return false; } /// Return if the section is a loadable section that occupies memory virtual bool isLoadableSection() const { return false; } /// \brief Assign file offsets starting at offset. virtual void assignFileOffsets(uint64_t offset) {} /// \brief Assign virtual addresses starting at addr. virtual void assignVirtualAddress(uint64_t addr) {} uint64_t getFlags() const { return _flags; } uint64_t getEntSize() const { return _entSize; } uint32_t getType() const { return _type; } uint32_t getLink() const { return _link; } uint32_t getInfo() const { return _info; } Layout::SegmentType getSegmentType() const { return _segmentType; } /// \brief Return the type of content that the section contains virtual int getContentType() const override { if (_flags & llvm::ELF::SHF_EXECINSTR) return Chunk::ContentType::Code; else if (_flags & llvm::ELF::SHF_WRITE) return Chunk::ContentType::Data; else if (_flags & llvm::ELF::SHF_ALLOC) return Chunk::ContentType::Code; else return Chunk::ContentType::Unknown; } /// \brief convert the segment type to a String for diagnostics and printing /// purposes StringRef segmentKindToStr() const; /// \brief Records the segmentType, that this section belongs to void setSegmentType(const Layout::SegmentType segmentType) { this->_segmentType = segmentType; } virtual const AtomLayout *findAtomLayoutByName(StringRef) const { return nullptr; } void setOutputSection(OutputSection *os, bool isFirst = false) { _outputSection = os; _isFirstSectionInOutputSection = isFirst; } static bool classof(const Chunk *c) { return c->kind() == Chunk::Kind::ELFSection || c->kind() == Chunk::Kind::AtomSection; } uint64_t alignment() const override { return _isFirstSectionInOutputSection ? _outputSection->alignment() : this->_alignment; } virtual StringRef inputSectionName() const { return _inputSectionName; } virtual StringRef outputSectionName() const { return _outputSectionName; } virtual void setOutputSectionName(StringRef outputSectionName) { _outputSectionName = outputSectionName; } void setArchiveNameOrPath(StringRef name) { _archivePath = name; } void setMemberNameOrPath(StringRef name) { _memberPath = name; } StringRef archivePath() { return _archivePath; } StringRef memberPath() { return _memberPath; } protected: /// \brief OutputSection this Section is a member of, or nullptr. OutputSection *_outputSection; /// \brief ELF SHF_* flags. uint64_t _flags; /// \brief The size of each entity. uint64_t _entSize; /// \brief ELF SHT_* type. uint32_t _type; /// \brief sh_link field. uint32_t _link; /// \brief the sh_info field. uint32_t _info; /// \brief Is this the first section in the output section. bool _isFirstSectionInOutputSection; /// \brief the output ELF segment type of this section. Layout::SegmentType _segmentType; /// \brief Input section name. StringRef _inputSectionName; /// \brief Output section name. StringRef _outputSectionName; StringRef _archivePath; StringRef _memberPath; }; /// \brief A section containing atoms. template class AtomSection : public Section { public: AtomSection(const ELFLinkingContext &context, StringRef sectionName, int32_t contentType, int32_t permissions, int32_t order) : Section(context, sectionName, "AtomSection", Chunk::Kind::AtomSection), _contentType(contentType), _contentPermissions(permissions), _isLoadedInMemory(true) { this->setOrder(order); switch (contentType) { case DefinedAtom::typeCode: case DefinedAtom::typeDataFast: case DefinedAtom::typeData: case DefinedAtom::typeConstant: case DefinedAtom::typeGOT: case DefinedAtom::typeStub: case DefinedAtom::typeResolver: case DefinedAtom::typeThreadData: this->_type = SHT_PROGBITS; break; case DefinedAtom::typeThreadZeroFill: case DefinedAtom::typeZeroFillFast: case DefinedAtom::typeZeroFill: this->_type = SHT_NOBITS; break; case DefinedAtom::typeRONote: case DefinedAtom::typeRWNote: this->_type = SHT_NOTE; break; case DefinedAtom::typeNoAlloc: this->_type = SHT_PROGBITS; this->_isLoadedInMemory = false; break; } switch (permissions) { case DefinedAtom::permR__: this->_flags = SHF_ALLOC; break; case DefinedAtom::permR_X: this->_flags = SHF_ALLOC | SHF_EXECINSTR; break; case DefinedAtom::permRW_: case DefinedAtom::permRW_L: this->_flags = SHF_ALLOC | SHF_WRITE; if (_contentType == DefinedAtom::typeThreadData || _contentType == DefinedAtom::typeThreadZeroFill) this->_flags |= SHF_TLS; break; case DefinedAtom::permRWX: this->_flags = SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR; break; case DefinedAtom::perm___: this->_flags = 0; break; } } /// Align the offset to the required modulus defined by the atom alignment uint64_t alignOffset(uint64_t offset, DefinedAtom::Alignment &atomAlign); /// Return if the section is a loadable section that occupies memory bool isLoadableSection() const override { return _isLoadedInMemory; } // \brief Append an atom to a Section. The atom gets pushed into a vector // contains the atom, the atom file offset, the atom virtual address // the atom file offset is aligned appropriately as set by the Reader virtual const lld::AtomLayout *appendAtom(const Atom *atom); /// \brief Set the virtual address of each Atom in the Section. This /// routine gets called after the linker fixes up the virtual address /// of the section virtual void assignVirtualAddress(uint64_t addr) override { parallel_for_each(_atoms.begin(), _atoms.end(), [&](AtomLayout *ai) { ai->_virtualAddr = addr + ai->_fileOffset; }); } /// \brief Set the file offset of each Atom in the section. This routine /// gets called after the linker fixes up the section offset void assignFileOffsets(uint64_t offset) override { parallel_for_each(_atoms.begin(), _atoms.end(), [&](AtomLayout *ai) { ai->_fileOffset = offset + ai->_fileOffset; }); } /// \brief Find the Atom address given a name, this is needed to properly /// apply relocation. The section class calls this to find the atom address /// to fix the relocation const AtomLayout *findAtomLayoutByName(StringRef name) const override { for (auto ai : _atoms) if (ai->_atom->name() == name) return ai; return nullptr; } /// \brief Return the raw flags, we need this to sort segments int64_t atomflags() const { return _contentPermissions; } /// Atom Iterators typedef typename std::vector::iterator atom_iter; range atoms() { return _atoms; } void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override; static bool classof(const Chunk *c) { return c->kind() == Chunk::Kind::AtomSection; } protected: llvm::BumpPtrAllocator _alloc; int32_t _contentType; int32_t _contentPermissions; bool _isLoadedInMemory; std::vector _atoms; mutable std::mutex _outputMutex; void printError(const std::string &errorStr, const AtomLayout &atom, const Reference &ref) const { StringRef kindValStr; if (!this->_context.registry().referenceKindToString(ref.kindNamespace(), ref.kindArch(), ref.kindValue(), kindValStr)) { kindValStr = "unknown"; } std::string errStr = (Twine(errorStr) + " in file " + atom._atom->file().path() + ": reference from " + atom._atom->name() + "+" + Twine(ref.offsetInAtom()) + " to " + ref.target()->name() + "+" + Twine(ref.addend()) + " of type " + Twine(ref.kindValue()) + " (" + kindValStr + ")\n").str(); // Take the lock to prevent output getting interleaved between threads std::lock_guard lock(_outputMutex); llvm::errs() << errStr; } }; /// Align the offset to the required modulus defined by the atom alignment template uint64_t AtomSection::alignOffset(uint64_t offset, DefinedAtom::Alignment &atomAlign) { uint64_t requiredModulus = atomAlign.modulus; uint64_t alignment = 1u << atomAlign.powerOf2; uint64_t currentModulus = (offset % alignment); uint64_t retOffset = offset; if (currentModulus != requiredModulus) { if (requiredModulus > currentModulus) retOffset += requiredModulus - currentModulus; else retOffset += alignment + requiredModulus - currentModulus; } return retOffset; } // \brief Append an atom to a Section. The atom gets pushed into a vector // contains the atom, the atom file offset, the atom virtual address // the atom file offset is aligned appropriately as set by the Reader template const lld::AtomLayout *AtomSection::appendAtom(const Atom *atom) { const DefinedAtom *definedAtom = cast(atom); DefinedAtom::Alignment atomAlign = definedAtom->alignment(); uint64_t alignment = 1u << atomAlign.powerOf2; // Align the atom to the required modulus/ align the file offset and the // memory offset separately this is required so that BSS symbols are handled // properly as the BSS symbols only occupy memory size and not file size uint64_t fOffset = alignOffset(this->fileSize(), atomAlign); uint64_t mOffset = alignOffset(this->memSize(), atomAlign); switch(definedAtom->contentType()) { case DefinedAtom::typeCode: case DefinedAtom::typeConstant: case DefinedAtom::typeData: case DefinedAtom::typeDataFast: case DefinedAtom::typeZeroFillFast: case DefinedAtom::typeGOT: case DefinedAtom::typeStub: case DefinedAtom::typeResolver: case DefinedAtom::typeThreadData: case DefinedAtom::typeRONote: case DefinedAtom::typeRWNote: _atoms.push_back(new (_alloc) lld::AtomLayout(atom, fOffset, 0)); this->_fsize = fOffset + definedAtom->size(); this->_msize = mOffset + definedAtom->size(); DEBUG_WITH_TYPE("Section", llvm::dbgs() << "[" << this->name() << " " << this << "] " << "Adding atom: " << atom->name() << "@" << fOffset << "\n"); break; case DefinedAtom::typeNoAlloc: _atoms.push_back(new (_alloc) lld::AtomLayout(atom, fOffset, 0)); this->_fsize = fOffset + definedAtom->size(); DEBUG_WITH_TYPE("Section", llvm::dbgs() << "[" << this->name() << " " << this << "] " << "Adding atom: " << atom->name() << "@" << fOffset << "\n"); break; case DefinedAtom::typeThreadZeroFill: case DefinedAtom::typeZeroFill: _atoms.push_back(new (_alloc) lld::AtomLayout(atom, mOffset, 0)); this->_msize = mOffset + definedAtom->size(); break; default: llvm::dbgs() << definedAtom->contentType() << "\n"; llvm_unreachable("Uexpected content type."); } // Set the section alignment to the largest alignment // std::max doesn't support uint64_t if (this->_alignment < alignment) this->_alignment = alignment; if (_atoms.size()) return _atoms.back(); return nullptr; } /// \brief convert the segment type to a String for diagnostics /// and printing purposes template StringRef Section::segmentKindToStr() const { switch(_segmentType) { case llvm::ELF::PT_DYNAMIC: return "DYNAMIC"; case llvm::ELF::PT_INTERP: return "INTERP"; case llvm::ELF::PT_LOAD: return "LOAD"; case llvm::ELF::PT_GNU_EH_FRAME: return "EH_FRAME"; case llvm::ELF::PT_GNU_RELRO: return "GNU_RELRO"; case llvm::ELF::PT_NOTE: return "NOTE"; case llvm::ELF::PT_NULL: return "NULL"; case llvm::ELF::PT_TLS: return "TLS"; default: return "UNKNOWN"; } } /// \brief Write the section and the atom contents to the buffer template void AtomSection::write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) { uint8_t *chunkBuffer = buffer.getBufferStart(); bool success = true; parallel_for_each(_atoms.begin(), _atoms.end(), [&](lld::AtomLayout * ai) { DEBUG_WITH_TYPE("Section", llvm::dbgs() << "Writing atom: " << ai->_atom->name() << " | " << ai->_fileOffset << "\n"); const DefinedAtom *definedAtom = cast(ai->_atom); if (!definedAtom->occupiesDiskSpace()) return; // Copy raw content of atom to file buffer. ArrayRef content = definedAtom->rawContent(); uint64_t contentSize = content.size(); if (contentSize == 0) return; uint8_t *atomContent = chunkBuffer + ai->_fileOffset; std::memcpy(atomContent, content.data(), contentSize); const TargetRelocationHandler &relHandler = this->_context.template getTargetHandler().getRelocationHandler(); for (const auto ref : *definedAtom) { if (std::error_code ec = relHandler.applyRelocation(*writer, buffer, *ai, *ref)) { printError(ec.message(), *ai, *ref); success = false; } } }); if (!success) llvm::report_fatal_error("relocating output"); } /// \brief A OutputSection represents a set of sections grouped by the same /// name. The output file that gets written by the linker has sections grouped /// by similar names template class OutputSection { public: // Iterators typedef typename std::vector *>::iterator ChunkIter; OutputSection(StringRef name); // Appends a section into the list of sections that are part of this Output // Section void appendSection(Chunk *c); // Set the OutputSection is associated with a segment void setHasSegment() { _hasSegment = true; } /// Sets the ordinal void setOrdinal(uint64_t ordinal) { _ordinal = ordinal; } /// Sets the Memory size void setMemSize(uint64_t memsz) { _memSize = memsz; } /// Sets the size fo the output Section. void setSize(uint64_t fsiz) { _size = fsiz; } // The offset of the first section contained in the output section is // contained here. void setFileOffset(uint64_t foffset) { _fileOffset = foffset; } // Sets the starting address of the section void setAddr(uint64_t addr) { _virtualAddr = addr; } // Is the section loadable? bool isLoadableSection() const { return _isLoadableSection; } // Set section Loadable void setLoadableSection(bool isLoadable) { _isLoadableSection = isLoadable; } void setLink(uint64_t link) { _link = link; } void setInfo(uint64_t info) { _shInfo = info; } void setFlag(uint64_t flags) { _flags = flags; } void setType(int16_t type) { _type = type; } range sections() { return _sections; } // The below functions returns the properties of the OutputSection. bool hasSegment() const { return _hasSegment; } StringRef name() const { return _name; } int64_t shinfo() const { return _shInfo; } uint64_t alignment() const { return _alignment; } int64_t link() const { return _link; } int64_t type() const { return _type; } uint64_t virtualAddr() const { return _virtualAddr; } int64_t ordinal() const { return _ordinal; } int64_t kind() const { return _kind; } uint64_t fileSize() const { return _size; } int64_t entsize() const { return _entSize; } uint64_t fileOffset() const { return _fileOffset; } int64_t flags() const { return _flags; } uint64_t memSize() { return _memSize; } private: StringRef _name; bool _hasSegment; uint64_t _ordinal; uint64_t _flags; uint64_t _size; uint64_t _memSize; uint64_t _fileOffset; uint64_t _virtualAddr; int64_t _shInfo; int64_t _entSize; int64_t _link; uint64_t _alignment; int64_t _kind; int64_t _type; bool _isLoadableSection; std::vector *> _sections; }; /// OutputSection template OutputSection::OutputSection(StringRef name) : _name(name), _hasSegment(false), _ordinal(0), _flags(0), _size(0), _memSize(0), _fileOffset(0), _virtualAddr(0), _shInfo(0), _entSize(0), _link(0), _alignment(0), _kind(0), _type(0), _isLoadableSection(false) {} template void OutputSection::appendSection(Chunk *c) { if (c->alignment() > _alignment) _alignment = c->alignment(); if (const auto section = dyn_cast>(c)) { assert(!_link && "Section already has a link!"); _link = section->getLink(); _shInfo = section->getInfo(); _entSize = section->getEntSize(); _type = section->getType(); if (_flags < section->getFlags()) _flags = section->getFlags(); section->setOutputSection(this, (_sections.size() == 0)); } _kind = c->kind(); _sections.push_back(c); } /// \brief The class represents the ELF String Table template class StringTable : public Section { public: StringTable(const ELFLinkingContext &, const char *str, int32_t order, bool dynamic = false); uint64_t addString(StringRef symname); void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override; void setNumEntries(int64_t numEntries) { _stringMap.resize(numEntries); } private: std::vector _strings; struct StringRefMappingInfo { static StringRef getEmptyKey() { return StringRef(); } static StringRef getTombstoneKey() { return StringRef(" ", 1); } static unsigned getHashValue(StringRef const val) { return llvm::HashString(val); } static bool isEqual(StringRef const lhs, StringRef const rhs) { return lhs.equals(rhs); } }; typedef typename llvm::DenseMap StringMapT; typedef typename StringMapT::iterator StringMapTIter; StringMapT _stringMap; }; template StringTable::StringTable(const ELFLinkingContext &context, const char *str, int32_t order, bool dynamic) : Section(context, str, "StringTable") { // the string table has a NULL entry for which // add an empty string _strings.push_back(""); this->_fsize = 1; this->_alignment = 1; this->setOrder(order); this->_type = SHT_STRTAB; if (dynamic) { this->_flags = SHF_ALLOC; this->_msize = this->_fsize; } } template uint64_t StringTable::addString(StringRef symname) { if (symname.empty()) return 0; StringMapTIter stringIter = _stringMap.find(symname); if (stringIter == _stringMap.end()) { _strings.push_back(symname); uint64_t offset = this->_fsize; this->_fsize += symname.size() + 1; if (this->_flags & SHF_ALLOC) this->_msize = this->_fsize; _stringMap[symname] = offset; return offset; } return stringIter->second; } template void StringTable::write(ELFWriter *writer, TargetLayout &, llvm::FileOutputBuffer &buffer) { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); for (auto si : _strings) { memcpy(dest, si.data(), si.size()); dest += si.size(); memcpy(dest, "", 1); dest += 1; } } /// \brief The SymbolTable class represents the symbol table in a ELF file template class SymbolTable : public Section { typedef typename llvm::object::ELFDataTypeTypedefHelper::Elf_Addr Elf_Addr; public: typedef llvm::object::Elf_Sym_Impl Elf_Sym; SymbolTable(const ELFLinkingContext &context, const char *str, int32_t order); /// \brief set the number of entries that would exist in the symbol /// table for the current link void setNumEntries(int64_t numEntries) const { if (_stringSection) _stringSection->setNumEntries(numEntries); } /// \brief return number of entries std::size_t size() const { return _symbolTable.size(); } void addSymbol(const Atom *atom, int32_t sectionIndex, uint64_t addr = 0, const lld::AtomLayout *layout = nullptr); /// \brief Get the symbol table index for an Atom. If it's not in the symbol /// table, return STN_UNDEF. uint32_t getSymbolTableIndex(const Atom *a) const { for (size_t i = 0, e = _symbolTable.size(); i < e; ++i) if (_symbolTable[i]._atom == a) return i; return STN_UNDEF; } void finalize() override { finalize(true); } virtual void sortSymbols() { std::stable_sort(_symbolTable.begin(), _symbolTable.end(), [](const SymbolEntry & A, const SymbolEntry & B) { return A._symbol.getBinding() < B._symbol.getBinding(); }); } virtual void addAbsoluteAtom(Elf_Sym &sym, const AbsoluteAtom *aa, int64_t addr); virtual void addDefinedAtom(Elf_Sym &sym, const DefinedAtom *da, int64_t addr); virtual void addUndefinedAtom(Elf_Sym &sym, const UndefinedAtom *ua); virtual void addSharedLibAtom(Elf_Sym &sym, const SharedLibraryAtom *sla); virtual void finalize(bool sort); void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override; void setStringSection(StringTable *s) { _stringSection = s; } StringTable *getStringTable() const { return _stringSection; } protected: struct SymbolEntry { SymbolEntry(const Atom *a, const Elf_Sym &sym, const lld::AtomLayout *layout) : _atom(a), _atomLayout(layout), _symbol(sym) {} const Atom *_atom; const lld::AtomLayout *_atomLayout; Elf_Sym _symbol; }; llvm::BumpPtrAllocator _symbolAllocate; StringTable *_stringSection; std::vector _symbolTable; }; /// ELF Symbol Table template SymbolTable::SymbolTable(const ELFLinkingContext &context, const char *str, int32_t order) : Section(context, str, "SymbolTable") { this->setOrder(order); Elf_Sym symbol; std::memset(&symbol, 0, sizeof(Elf_Sym)); _symbolTable.push_back(SymbolEntry(nullptr, symbol, nullptr)); this->_entSize = sizeof(Elf_Sym); this->_fsize = sizeof(Elf_Sym); this->_alignment = sizeof(Elf_Addr); this->_type = SHT_SYMTAB; } template void SymbolTable::addDefinedAtom(Elf_Sym &sym, const DefinedAtom *da, int64_t addr) { unsigned char binding = 0, type = 0; sym.st_size = da->size(); DefinedAtom::ContentType ct; switch (ct = da->contentType()) { case DefinedAtom::typeCode: case DefinedAtom::typeStub: sym.st_value = addr; type = llvm::ELF::STT_FUNC; break; case DefinedAtom::typeResolver: sym.st_value = addr; type = llvm::ELF::STT_GNU_IFUNC; break; case DefinedAtom::typeDataFast: case DefinedAtom::typeData: case DefinedAtom::typeConstant: sym.st_value = addr; type = llvm::ELF::STT_OBJECT; break; case DefinedAtom::typeGOT: sym.st_value = addr; type = llvm::ELF::STT_NOTYPE; break; case DefinedAtom::typeZeroFill: case DefinedAtom::typeZeroFillFast: type = llvm::ELF::STT_OBJECT; sym.st_value = addr; break; case DefinedAtom::typeThreadData: case DefinedAtom::typeThreadZeroFill: type = llvm::ELF::STT_TLS; sym.st_value = addr; break; default: type = llvm::ELF::STT_NOTYPE; } if (da->customSectionName() == da->name()) type = llvm::ELF::STT_SECTION; if (da->scope() == DefinedAtom::scopeTranslationUnit) binding = llvm::ELF::STB_LOCAL; else binding = llvm::ELF::STB_GLOBAL; sym.setBindingAndType(binding, type); } template void SymbolTable::addAbsoluteAtom(Elf_Sym &sym, const AbsoluteAtom *aa, int64_t addr) { unsigned char binding = 0, type = 0; type = llvm::ELF::STT_OBJECT; sym.st_shndx = llvm::ELF::SHN_ABS; switch (aa->scope()) { case AbsoluteAtom::scopeLinkageUnit: sym.setVisibility(llvm::ELF::STV_HIDDEN); binding = llvm::ELF::STB_LOCAL; break; case AbsoluteAtom::scopeTranslationUnit: binding = llvm::ELF::STB_LOCAL; break; case AbsoluteAtom::scopeGlobal: binding = llvm::ELF::STB_GLOBAL; break; } sym.st_value = addr; sym.setBindingAndType(binding, type); } template void SymbolTable::addSharedLibAtom(Elf_Sym &sym, const SharedLibraryAtom *aa) { unsigned char binding = 0, type = 0; if (aa->type() == SharedLibraryAtom::Type::Data) { type = llvm::ELF::STT_OBJECT; sym.st_size = aa->size(); } else type = llvm::ELF::STT_FUNC; sym.st_shndx = llvm::ELF::SHN_UNDEF; binding = llvm::ELF::STB_GLOBAL; sym.setBindingAndType(binding, type); } template void SymbolTable::addUndefinedAtom(Elf_Sym &sym, const UndefinedAtom *ua) { unsigned char binding = 0, type = 0; sym.st_value = 0; type = llvm::ELF::STT_NOTYPE; if (ua->canBeNull()) binding = llvm::ELF::STB_WEAK; else binding = llvm::ELF::STB_GLOBAL; sym.setBindingAndType(binding, type); } /// Add a symbol to the symbol Table, definedAtoms which get added to the symbol /// section don't have their virtual addresses set at the time of adding the /// symbol to the symbol table(Example: dynamic symbols), the addresses needs /// to be updated in the table before writing the dynamic symbol table /// information template void SymbolTable::addSymbol(const Atom *atom, int32_t sectionIndex, uint64_t addr, const lld::AtomLayout *atomLayout) { Elf_Sym symbol; if (atom->name().empty()) return; symbol.st_name = _stringSection->addString(atom->name()); symbol.st_size = 0; symbol.st_shndx = sectionIndex; symbol.st_value = 0; symbol.st_other = 0; symbol.setVisibility(llvm::ELF::STV_DEFAULT); // Add all the atoms if (const DefinedAtom *da = dyn_cast(atom)) addDefinedAtom(symbol, da, addr); else if (const AbsoluteAtom *aa = dyn_cast(atom)) addAbsoluteAtom(symbol, aa, addr); else if (isa(atom)) addSharedLibAtom(symbol, dyn_cast(atom)); else addUndefinedAtom(symbol, dyn_cast(atom)); _symbolTable.push_back(SymbolEntry(atom, symbol, atomLayout)); this->_fsize += sizeof(Elf_Sym); if (this->_flags & SHF_ALLOC) this->_msize = this->_fsize; } template void SymbolTable::finalize(bool sort) { // sh_info should be one greater than last symbol with STB_LOCAL binding // we sort the symbol table to keep all local symbols at the beginning if (sort) sortSymbols(); uint16_t shInfo = 0; for (const auto &i : _symbolTable) { if (i._symbol.getBinding() != llvm::ELF::STB_LOCAL) break; shInfo++; } this->_info = shInfo; this->_link = _stringSection->ordinal(); if (this->_outputSection) { this->_outputSection->setInfo(this->_info); this->_outputSection->setLink(this->_link); } } template void SymbolTable::write(ELFWriter *writer, TargetLayout &, llvm::FileOutputBuffer &buffer) { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); for (const auto &sti : _symbolTable) { memcpy(dest, &sti._symbol, sizeof(Elf_Sym)); dest += sizeof(Elf_Sym); } } template class HashSection; template class DynamicSymbolTable : public SymbolTable { public: DynamicSymbolTable(const ELFLinkingContext &context, TargetLayout &layout, const char *str, int32_t order) : SymbolTable(context, str, order), _hashTable(nullptr), _layout(layout) { this->_type = SHT_DYNSYM; this->_flags = SHF_ALLOC; this->_msize = this->_fsize; } // Set the dynamic hash table for symbols to be added into void setHashTable(HashSection *hashTable) { _hashTable = hashTable; } // Add all the dynamic symbos to the hash table void addSymbolsToHashTable() { int index = 0; for (auto &ste : this->_symbolTable) { if (!ste._atom) _hashTable->addSymbol("", index); else _hashTable->addSymbol(ste._atom->name(), index); ++index; } } void finalize() override { // Defined symbols which have been added into the dynamic symbol table // don't have their addresses known until addresses have been assigned // so let's update the symbol values after they have got assigned for (auto &ste: this->_symbolTable) { const lld::AtomLayout *atomLayout = ste._atomLayout; if (!atomLayout) continue; ste._symbol.st_value = atomLayout->_virtualAddr; } // Don't sort the symbols SymbolTable::finalize(false); } protected: HashSection *_hashTable; TargetLayout &_layout; }; template class RelocationTable : public Section { public: typedef llvm::object::Elf_Rel_Impl Elf_Rel; typedef llvm::object::Elf_Rel_Impl Elf_Rela; RelocationTable(const ELFLinkingContext &context, StringRef str, int32_t order) : Section(context, str, "RelocationTable"), _symbolTable(nullptr) { this->setOrder(order); this->_flags = SHF_ALLOC; // Set the alignment properly depending on the target architecture this->_alignment = ELFT::Is64Bits ? 8 : 4; if (context.isRelaOutputFormat()) { this->_entSize = sizeof(Elf_Rela); this->_type = SHT_RELA; } else { this->_entSize = sizeof(Elf_Rel); this->_type = SHT_REL; } } /// \returns the index of the relocation added. uint32_t addRelocation(const DefinedAtom &da, const Reference &r) { _relocs.emplace_back(&da, &r); this->_fsize = _relocs.size() * this->_entSize; this->_msize = this->_fsize; return _relocs.size() - 1; } bool getRelocationIndex(const Reference &r, uint32_t &res) { auto rel = std::find_if( _relocs.begin(), _relocs.end(), [&](const std::pair &p) { if (p.second == &r) return true; return false; }); if (rel == _relocs.end()) return false; res = std::distance(_relocs.begin(), rel); return true; } void setSymbolTable(const DynamicSymbolTable *symbolTable) { _symbolTable = symbolTable; } /// \brief Check if any relocation modifies a read-only section. bool canModifyReadonlySection() const { for (const auto &rel : _relocs) { const DefinedAtom *atom = rel.first; if ((atom->permissions() & DefinedAtom::permRW_) != DefinedAtom::permRW_) return true; } return false; } void finalize() override { this->_link = _symbolTable ? _symbolTable->ordinal() : 0; if (this->_outputSection) this->_outputSection->setLink(this->_link); } void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); for (const auto &rel : _relocs) { if (this->_context.isRelaOutputFormat()) { auto &r = *reinterpret_cast(dest); writeRela(writer, r, *rel.first, *rel.second); DEBUG_WITH_TYPE("ELFRelocationTable", llvm::dbgs() << rel.second->kindValue() << " relocation at " << rel.first->name() << "@" << r.r_offset << " to " << rel.second->target()->name() << "@" << r.r_addend << "\n";); } else { auto &r = *reinterpret_cast(dest); writeRel(writer, r, *rel.first, *rel.second); DEBUG_WITH_TYPE("ELFRelocationTable", llvm::dbgs() << rel.second->kindValue() << " relocation at " << rel.first->name() << "@" << r.r_offset << " to " << rel.second->target()->name() << "\n";); } dest += this->_entSize; } } protected: const DynamicSymbolTable *_symbolTable; virtual void writeRela(ELFWriter *writer, Elf_Rela &r, const DefinedAtom &atom, const Reference &ref) { r.setSymbolAndType(getSymbolIndex(ref.target()), ref.kindValue(), false); r.r_offset = writer->addressOfAtom(&atom) + ref.offsetInAtom(); // The addend is used only by relative relocations if (this->_context.isRelativeReloc(ref)) r.r_addend = writer->addressOfAtom(ref.target()) + ref.addend(); else r.r_addend = 0; } virtual void writeRel(ELFWriter *writer, Elf_Rel &r, const DefinedAtom &atom, const Reference &ref) { r.setSymbolAndType(getSymbolIndex(ref.target()), ref.kindValue(), false); r.r_offset = writer->addressOfAtom(&atom) + ref.offsetInAtom(); } uint32_t getSymbolIndex(const Atom *a) { return _symbolTable ? _symbolTable->getSymbolTableIndex(a) : (uint32_t)STN_UNDEF; } private: std::vector > _relocs; }; template class HashSection; template class DynamicTable : public Section { public: typedef llvm::object::Elf_Dyn_Impl Elf_Dyn; typedef std::vector EntriesT; DynamicTable(const ELFLinkingContext &context, TargetLayout &layout, StringRef str, int32_t order) : Section(context, str, "DynamicSection"), _layout(layout) { this->setOrder(order); this->_entSize = sizeof(Elf_Dyn); this->_alignment = ELFT::Is64Bits ? 8 : 4; // Reserve space for the DT_NULL entry. this->_fsize = sizeof(Elf_Dyn); this->_msize = sizeof(Elf_Dyn); this->_type = SHT_DYNAMIC; this->_flags = SHF_ALLOC; } range entries() { return _entries; } /// \returns the index of the entry. std::size_t addEntry(Elf_Dyn e) { _entries.push_back(e); this->_fsize = (_entries.size() * sizeof(Elf_Dyn)) + sizeof(Elf_Dyn); this->_msize = this->_fsize; return _entries.size() - 1; } void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); // Add the null entry. Elf_Dyn d; d.d_tag = 0; d.d_un.d_val = 0; _entries.push_back(d); std::memcpy(dest, _entries.data(), this->_fsize); } virtual void createDefaultEntries() { bool isRela = this->_context.isRelaOutputFormat(); Elf_Dyn dyn; dyn.d_un.d_val = 0; dyn.d_tag = DT_HASH; _dt_hash = addEntry(dyn); dyn.d_tag = DT_STRTAB; _dt_strtab = addEntry(dyn); dyn.d_tag = DT_SYMTAB; _dt_symtab = addEntry(dyn); dyn.d_tag = DT_STRSZ; _dt_strsz = addEntry(dyn); dyn.d_tag = DT_SYMENT; _dt_syment = addEntry(dyn); if (_layout.hasDynamicRelocationTable()) { dyn.d_tag = isRela ? DT_RELA : DT_REL; _dt_rela = addEntry(dyn); dyn.d_tag = isRela ? DT_RELASZ : DT_RELSZ; _dt_relasz = addEntry(dyn); dyn.d_tag = isRela ? DT_RELAENT : DT_RELENT; _dt_relaent = addEntry(dyn); if (_layout.getDynamicRelocationTable()->canModifyReadonlySection()) { dyn.d_tag = DT_TEXTREL; _dt_textrel = addEntry(dyn); } } if (_layout.hasPLTRelocationTable()) { dyn.d_tag = DT_PLTRELSZ; _dt_pltrelsz = addEntry(dyn); dyn.d_tag = getGotPltTag(); _dt_pltgot = addEntry(dyn); dyn.d_tag = DT_PLTREL; dyn.d_un.d_val = isRela ? DT_RELA : DT_REL; _dt_pltrel = addEntry(dyn); dyn.d_un.d_val = 0; dyn.d_tag = DT_JMPREL; _dt_jmprel = addEntry(dyn); } } void doPreFlight() override { Elf_Dyn dyn; dyn.d_un.d_val = 0; auto initArray = _layout.findOutputSection(".init_array"); auto finiArray = _layout.findOutputSection(".fini_array"); if (initArray) { dyn.d_tag = DT_INIT_ARRAY; _dt_init_array = addEntry(dyn); dyn.d_tag = DT_INIT_ARRAYSZ; _dt_init_arraysz = addEntry(dyn); } if (finiArray) { dyn.d_tag = DT_FINI_ARRAY; _dt_fini_array = addEntry(dyn); dyn.d_tag = DT_FINI_ARRAYSZ; _dt_fini_arraysz = addEntry(dyn); } if (getInitAtomLayout()) { dyn.d_tag = DT_INIT; _dt_init = addEntry(dyn); } if (getFiniAtomLayout()) { dyn.d_tag = DT_FINI; _dt_fini = addEntry(dyn); } } /// \brief Dynamic table tag for .got.plt section referencing. /// Usually but not always targets use DT_PLTGOT for that. virtual int64_t getGotPltTag() { return DT_PLTGOT; } void finalize() override { StringTable *dynamicStringTable = _dynamicSymbolTable->getStringTable(); this->_link = dynamicStringTable->ordinal(); if (this->_outputSection) { this->_outputSection->setType(this->_type); this->_outputSection->setInfo(this->_info); this->_outputSection->setLink(this->_link); } } void setSymbolTable(DynamicSymbolTable *dynsym) { _dynamicSymbolTable = dynsym; } const DynamicSymbolTable *getSymbolTable() const { return _dynamicSymbolTable; } void setHashTable(HashSection *hsh) { _hashTable = hsh; } virtual void updateDynamicTable() { StringTable *dynamicStringTable = _dynamicSymbolTable->getStringTable(); _entries[_dt_hash].d_un.d_val = _hashTable->virtualAddr(); _entries[_dt_strtab].d_un.d_val = dynamicStringTable->virtualAddr(); _entries[_dt_symtab].d_un.d_val = _dynamicSymbolTable->virtualAddr(); _entries[_dt_strsz].d_un.d_val = dynamicStringTable->memSize(); _entries[_dt_syment].d_un.d_val = _dynamicSymbolTable->getEntSize(); auto initArray = _layout.findOutputSection(".init_array"); if (initArray) { _entries[_dt_init_array].d_un.d_val = initArray->virtualAddr(); _entries[_dt_init_arraysz].d_un.d_val = initArray->memSize(); } auto finiArray = _layout.findOutputSection(".fini_array"); if (finiArray) { _entries[_dt_fini_array].d_un.d_val = finiArray->virtualAddr(); _entries[_dt_fini_arraysz].d_un.d_val = finiArray->memSize(); } if (const auto *al = getInitAtomLayout()) _entries[_dt_init].d_un.d_val = getAtomVirtualAddress(al); if (const auto *al = getFiniAtomLayout()) _entries[_dt_fini].d_un.d_val = getAtomVirtualAddress(al); if (_layout.hasDynamicRelocationTable()) { auto relaTbl = _layout.getDynamicRelocationTable(); _entries[_dt_rela].d_un.d_val = relaTbl->virtualAddr(); _entries[_dt_relasz].d_un.d_val = relaTbl->memSize(); _entries[_dt_relaent].d_un.d_val = relaTbl->getEntSize(); } if (_layout.hasPLTRelocationTable()) { auto relaTbl = _layout.getPLTRelocationTable(); _entries[_dt_jmprel].d_un.d_val = relaTbl->virtualAddr(); _entries[_dt_pltrelsz].d_un.d_val = relaTbl->memSize(); auto gotplt = _layout.findOutputSection(".got.plt"); _entries[_dt_pltgot].d_un.d_val = gotplt->virtualAddr(); } } protected: EntriesT _entries; /// \brief Return a virtual address (maybe adjusted) for the atom layout /// Some targets like microMIPS and ARM Thumb use the last bit /// of a symbol's value to mark 'compressed' code. This function allows /// to adjust a virtal address before using it in the dynamic table tag. virtual uint64_t getAtomVirtualAddress(const AtomLayout *al) const { return al->_virtualAddr; } private: std::size_t _dt_hash; std::size_t _dt_strtab; std::size_t _dt_symtab; std::size_t _dt_rela; std::size_t _dt_relasz; std::size_t _dt_relaent; std::size_t _dt_strsz; std::size_t _dt_syment; std::size_t _dt_pltrelsz; std::size_t _dt_pltgot; std::size_t _dt_pltrel; std::size_t _dt_jmprel; std::size_t _dt_init_array; std::size_t _dt_init_arraysz; std::size_t _dt_fini_array; std::size_t _dt_fini_arraysz; std::size_t _dt_textrel; std::size_t _dt_init; std::size_t _dt_fini; TargetLayout &_layout; DynamicSymbolTable *_dynamicSymbolTable; HashSection *_hashTable; const AtomLayout *getInitAtomLayout() { auto al = _layout.findAtomLayoutByName(this->_context.initFunction()); if (al && isa(al->_atom)) return al; return nullptr; } const AtomLayout *getFiniAtomLayout() { auto al = _layout.findAtomLayoutByName(this->_context.finiFunction()); if (al && isa(al->_atom)) return al; return nullptr; } }; template class InterpSection : public Section { public: InterpSection(const ELFLinkingContext &context, StringRef str, int32_t order, StringRef interp) : Section(context, str, "Dynamic:Interp"), _interp(interp) { this->setOrder(order); this->_alignment = 1; // + 1 for null term. this->_fsize = interp.size() + 1; this->_msize = this->_fsize; this->_type = SHT_PROGBITS; this->_flags = SHF_ALLOC; } void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); std::memcpy(dest, _interp.data(), _interp.size()); } private: StringRef _interp; }; /// The hash table in the dynamic linker is organized into /// /// [ nbuckets ] /// [ nchains ] /// [ buckets[0] ] /// ......................... /// [ buckets[nbuckets-1] ] /// [ chains[0] ] /// ......................... /// [ chains[nchains - 1] ] /// /// nbuckets - total number of hash buckets /// nchains is equal to the number of dynamic symbols. /// /// The symbol is searched by the dynamic linker using the below approach. /// * Calculate the hash of the symbol that needs to be searched /// * Take the value from the buckets[hash % nbuckets] as the index of symbol /// * Compare the symbol's name, if true return, if false, look through the /// * array since there was a collision template class HashSection : public Section { struct SymbolTableEntry { StringRef _name; uint32_t _index; }; public: HashSection(const ELFLinkingContext &context, StringRef name, int32_t order) : Section(context, name, "Dynamic:Hash"), _symbolTable(nullptr) { this->setOrder(order); this->_entSize = 4; this->_type = SHT_HASH; this->_flags = SHF_ALLOC; this->_alignment = ELFT::Is64Bits ? 8 : 4; this->_fsize = 0; this->_msize = 0; } /// \brief add the dynamic symbol into the table so that the /// hash could be calculated void addSymbol(StringRef name, uint32_t index) { SymbolTableEntry ste; ste._name = name; ste._index = index; _entries.push_back(ste); } /// \brief Set the dynamic symbol table void setSymbolTable(const DynamicSymbolTable *symbolTable) { _symbolTable = symbolTable; } // The size of the section has to be determined so that fileoffsets // may be properly assigned. Let's calculate the buckets and the chains // and fill the chains and the buckets hash table used by the dynamic // linker and update the filesize and memory size accordingly void doPreFlight() override { // The number of buckets to use for a certain number of symbols. // If there are less than 3 symbols, 1 bucket will be used. If // there are less than 17 symbols, 3 buckets will be used, and so // forth. The bucket numbers are defined by GNU ld. We use the // same rules here so we generate hash sections with the same // size as those generated by GNU ld. uint32_t hashBuckets[] = { 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147 }; int hashBucketsCount = sizeof(hashBuckets) / sizeof(uint32_t); unsigned int bucketsCount = 0; unsigned int dynSymCount = _entries.size(); // Get the number of buckes that we want to use for (int i = 0; i < hashBucketsCount; ++i) { if (dynSymCount < hashBuckets[i]) break; bucketsCount = hashBuckets[i]; } _buckets.resize(bucketsCount); _chains.resize(_entries.size()); // Create the hash table for the dynamic linker for (auto ai : _entries) { unsigned int dynsymIndex = ai._index; unsigned int bucketpos = llvm::object::elf_hash(ai._name) % bucketsCount; _chains[dynsymIndex] = _buckets[bucketpos]; _buckets[bucketpos] = dynsymIndex; } this->_fsize = (2 + _chains.size() + _buckets.size()) * sizeof(uint32_t); this->_msize = this->_fsize; } void finalize() override { this->_link = _symbolTable ? _symbolTable->ordinal() : 0; if (this->_outputSection) this->_outputSection->setLink(this->_link); } void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); uint32_t bucketChainCounts[2]; bucketChainCounts[0] = _buckets.size(); bucketChainCounts[1] = _chains.size(); std::memcpy(dest, (char *)bucketChainCounts, sizeof(bucketChainCounts)); dest += sizeof(bucketChainCounts); // write bucket values for (auto bi : _buckets) { uint32_t val = (bi); std::memcpy(dest, &val, sizeof(uint32_t)); dest += sizeof(uint32_t); } // write chain values for (auto ci : _chains) { uint32_t val = (ci); std::memcpy(dest, &val, sizeof(uint32_t)); dest += sizeof(uint32_t); } } private: std::vector _entries; std::vector _buckets; std::vector _chains; const DynamicSymbolTable *_symbolTable; }; template class EHFrameHeader : public Section { public: EHFrameHeader(const ELFLinkingContext &context, StringRef name, TargetLayout &layout, int32_t order) : Section(context, name, "EHFrameHeader"), _ehFrameOffset(0), _layout(layout) { this->setOrder(order); this->_entSize = 0; this->_type = SHT_PROGBITS; this->_flags = SHF_ALLOC; this->_alignment = ELFT::Is64Bits ? 8 : 4; // Minimum size for empty .eh_frame_hdr. this->_fsize = 1 + 1 + 1 + 1 + 4; this->_msize = this->_fsize; } void doPreFlight() override { // TODO: Generate a proper binary search table. } void finalize() override { OutputSection *s = _layout.findOutputSection(".eh_frame"); OutputSection *h = _layout.findOutputSection(".eh_frame_hdr"); if (s && h) _ehFrameOffset = s->virtualAddr() - (h->virtualAddr() + 4); } void write(ELFWriter *writer, TargetLayout &layout, llvm::FileOutputBuffer &buffer) override { uint8_t *chunkBuffer = buffer.getBufferStart(); uint8_t *dest = chunkBuffer + this->fileOffset(); int pos = 0; dest[pos++] = 1; // version dest[pos++] = llvm::dwarf::DW_EH_PE_pcrel | llvm::dwarf::DW_EH_PE_sdata4; // eh_frame_ptr_enc dest[pos++] = llvm::dwarf::DW_EH_PE_omit; // fde_count_enc dest[pos++] = llvm::dwarf::DW_EH_PE_omit; // table_enc *reinterpret_cast::Elf_Sword *>( dest + pos) = _ehFrameOffset; } private: int32_t _ehFrameOffset; TargetLayout &_layout; }; } // end namespace elf } // end namespace lld #endif