//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the actions class which performs semantic analysis and // builds an AST out of a parse stream. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/DelayedDiagnostic.h" #include "TargetAttributesSema.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/APFloat.h" #include "clang/Sema/CXXFieldCollector.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtCXX.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/TargetInfo.h" using namespace clang; using namespace sema; FunctionScopeInfo::~FunctionScopeInfo() { } void FunctionScopeInfo::Clear() { HasBranchProtectedScope = false; HasBranchIntoScope = false; HasIndirectGoto = false; SwitchStack.clear(); Returns.clear(); ErrorTrap.reset(); } BlockScopeInfo::~BlockScopeInfo() { } void Sema::ActOnTranslationUnitScope(Scope *S) { TUScope = S; PushDeclContext(S, Context.getTranslationUnitDecl()); VAListTagName = PP.getIdentifierInfo("__va_list_tag"); if (!Context.isInt128Installed() && // May be set by ASTReader. PP.getTargetInfo().getPointerWidth(0) >= 64) { TypeSourceInfo *TInfo; // Install [u]int128_t for 64-bit targets. TInfo = Context.getTrivialTypeSourceInfo(Context.Int128Ty); PushOnScopeChains(TypedefDecl::Create(Context, CurContext, SourceLocation(), &Context.Idents.get("__int128_t"), TInfo), TUScope); TInfo = Context.getTrivialTypeSourceInfo(Context.UnsignedInt128Ty); PushOnScopeChains(TypedefDecl::Create(Context, CurContext, SourceLocation(), &Context.Idents.get("__uint128_t"), TInfo), TUScope); Context.setInt128Installed(); } if (!PP.getLangOptions().ObjC1) return; // Built-in ObjC types may already be set by ASTReader (hence isNull checks). if (Context.getObjCSelType().isNull()) { // Create the built-in typedef for 'SEL'. QualType SelT = Context.getPointerType(Context.ObjCBuiltinSelTy); TypeSourceInfo *SelInfo = Context.getTrivialTypeSourceInfo(SelT); TypedefDecl *SelTypedef = TypedefDecl::Create(Context, CurContext, SourceLocation(), &Context.Idents.get("SEL"), SelInfo); PushOnScopeChains(SelTypedef, TUScope); Context.setObjCSelType(Context.getTypeDeclType(SelTypedef)); Context.ObjCSelRedefinitionType = Context.getObjCSelType(); } // Synthesize "@class Protocol; if (Context.getObjCProtoType().isNull()) { ObjCInterfaceDecl *ProtocolDecl = ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(), &Context.Idents.get("Protocol"), SourceLocation(), true); Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl)); PushOnScopeChains(ProtocolDecl, TUScope, false); } // Create the built-in typedef for 'id'. if (Context.getObjCIdType().isNull()) { QualType T = Context.getObjCObjectType(Context.ObjCBuiltinIdTy, 0, 0); T = Context.getObjCObjectPointerType(T); TypeSourceInfo *IdInfo = Context.getTrivialTypeSourceInfo(T); TypedefDecl *IdTypedef = TypedefDecl::Create(Context, CurContext, SourceLocation(), &Context.Idents.get("id"), IdInfo); PushOnScopeChains(IdTypedef, TUScope); Context.setObjCIdType(Context.getTypeDeclType(IdTypedef)); Context.ObjCIdRedefinitionType = Context.getObjCIdType(); } // Create the built-in typedef for 'Class'. if (Context.getObjCClassType().isNull()) { QualType T = Context.getObjCObjectType(Context.ObjCBuiltinClassTy, 0, 0); T = Context.getObjCObjectPointerType(T); TypeSourceInfo *ClassInfo = Context.getTrivialTypeSourceInfo(T); TypedefDecl *ClassTypedef = TypedefDecl::Create(Context, CurContext, SourceLocation(), &Context.Idents.get("Class"), ClassInfo); PushOnScopeChains(ClassTypedef, TUScope); Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef)); Context.ObjCClassRedefinitionType = Context.getObjCClassType(); } } Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, bool CompleteTranslationUnit, CodeCompleteConsumer *CodeCompleter) : TheTargetAttributesSema(0), FPFeatures(pp.getLangOptions()), LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()), ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0), PackContext(0), VisContext(0), IdResolver(pp.getLangOptions()), CXXTypeInfoDecl(0), MSVCGuidDecl(0), GlobalNewDeleteDeclared(false), CompleteTranslationUnit(CompleteTranslationUnit), NumSFINAEErrors(0), SuppressAccessChecking(false), AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1), CurrentInstantiationScope(0), TyposCorrected(0), AnalysisWarnings(*this) { TUScope = 0; if (getLangOptions().CPlusPlus) FieldCollector.reset(new CXXFieldCollector()); // Tell diagnostics how to render things from the AST library. PP.getDiagnostics().SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context); ExprEvalContexts.push_back( ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0)); FunctionScopes.push_back(new FunctionScopeInfo(Diags)); } void Sema::Initialize() { // Tell the AST consumer about this Sema object. Consumer.Initialize(Context); // FIXME: Isn't this redundant with the initialization above? if (SemaConsumer *SC = dyn_cast(&Consumer)) SC->InitializeSema(*this); // Tell the external Sema source about this Sema object. if (ExternalSemaSource *ExternalSema = dyn_cast_or_null(Context.getExternalSource())) ExternalSema->InitializeSema(*this); } Sema::~Sema() { if (PackContext) FreePackedContext(); if (VisContext) FreeVisContext(); delete TheTargetAttributesSema; // Kill all the active scopes. for (unsigned I = 1, E = FunctionScopes.size(); I != E; ++I) delete FunctionScopes[I]; if (FunctionScopes.size() == 1) delete FunctionScopes[0]; // Tell the SemaConsumer to forget about us; we're going out of scope. if (SemaConsumer *SC = dyn_cast(&Consumer)) SC->ForgetSema(); // Detach from the external Sema source. if (ExternalSemaSource *ExternalSema = dyn_cast_or_null(Context.getExternalSource())) ExternalSema->ForgetSema(); } /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. /// If there is already an implicit cast, merge into the existing one. /// The result is of the given category. void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty, CastKind Kind, ExprValueKind VK, const CXXCastPath *BasePath) { QualType ExprTy = Context.getCanonicalType(Expr->getType()); QualType TypeTy = Context.getCanonicalType(Ty); if (ExprTy == TypeTy) return; // If this is a derived-to-base cast to a through a virtual base, we // need a vtable. if (Kind == CK_DerivedToBase && BasePathInvolvesVirtualBase(*BasePath)) { QualType T = Expr->getType(); if (const PointerType *Pointer = T->getAs()) T = Pointer->getPointeeType(); if (const RecordType *RecordTy = T->getAs()) MarkVTableUsed(Expr->getLocStart(), cast(RecordTy->getDecl())); } if (ImplicitCastExpr *ImpCast = dyn_cast(Expr)) { if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) { ImpCast->setType(Ty); ImpCast->setValueKind(VK); return; } } Expr = ImplicitCastExpr::Create(Context, Ty, Kind, Expr, BasePath, VK); } ExprValueKind Sema::CastCategory(Expr *E) { Expr::Classification Classification = E->Classify(Context); return Classification.isRValue() ? VK_RValue : (Classification.isLValue() ? VK_LValue : VK_XValue); } /// \brief Used to prune the decls of Sema's UnusedFileScopedDecls vector. static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) { if (D->isUsed()) return true; if (const FunctionDecl *FD = dyn_cast(D)) { // UnusedFileScopedDecls stores the first declaration. // The declaration may have become definition so check again. const FunctionDecl *DeclToCheck; if (FD->hasBody(DeclToCheck)) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); // Later redecls may add new information resulting in not having to warn, // so check again. DeclToCheck = FD->getMostRecentDeclaration(); if (DeclToCheck != FD) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); } if (const VarDecl *VD = dyn_cast(D)) { // UnusedFileScopedDecls stores the first declaration. // The declaration may have become definition so check again. const VarDecl *DeclToCheck = VD->getDefinition(); if (DeclToCheck) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); // Later redecls may add new information resulting in not having to warn, // so check again. DeclToCheck = VD->getMostRecentDeclaration(); if (DeclToCheck != VD) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); } return false; } namespace { struct UndefinedInternal { NamedDecl *decl; FullSourceLoc useLoc; UndefinedInternal(NamedDecl *decl, FullSourceLoc useLoc) : decl(decl), useLoc(useLoc) {} }; bool operator<(const UndefinedInternal &l, const UndefinedInternal &r) { return l.useLoc.isBeforeInTranslationUnitThan(r.useLoc); } } /// checkUndefinedInternals - Check for undefined objects with internal linkage. static void checkUndefinedInternals(Sema &S) { if (S.UndefinedInternals.empty()) return; // Collect all the still-undefined entities with internal linkage. llvm::SmallVector undefined; for (llvm::DenseMap::iterator i = S.UndefinedInternals.begin(), e = S.UndefinedInternals.end(); i != e; ++i) { NamedDecl *decl = i->first; // Ignore attributes that have become invalid. if (decl->isInvalidDecl()) continue; // __attribute__((weakref)) is basically a definition. if (decl->hasAttr()) continue; if (FunctionDecl *fn = dyn_cast(decl)) { if (fn->isPure() || fn->hasBody()) continue; } else { if (cast(decl)->hasDefinition() != VarDecl::DeclarationOnly) continue; } // We build a FullSourceLoc so that we can sort with array_pod_sort. FullSourceLoc loc(i->second, S.Context.getSourceManager()); undefined.push_back(UndefinedInternal(decl, loc)); } if (undefined.empty()) return; // Sort (in order of use site) so that we're not (as) dependent on // the iteration order through an llvm::DenseMap. llvm::array_pod_sort(undefined.begin(), undefined.end()); for (llvm::SmallVectorImpl::iterator i = undefined.begin(), e = undefined.end(); i != e; ++i) { NamedDecl *decl = i->decl; S.Diag(decl->getLocation(), diag::warn_undefined_internal) << isa(decl) << decl; S.Diag(i->useLoc, diag::note_used_here); } } /// ActOnEndOfTranslationUnit - This is called at the very end of the /// translation unit when EOF is reached and all but the top-level scope is /// popped. void Sema::ActOnEndOfTranslationUnit() { // At PCH writing, implicit instantiations and VTable handling info are // stored and performed when the PCH is included. if (CompleteTranslationUnit) { // If any dynamic classes have their key function defined within // this translation unit, then those vtables are considered "used" and must // be emitted. for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) { assert(!DynamicClasses[I]->isDependentType() && "Should not see dependent types here!"); if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(DynamicClasses[I])) { const FunctionDecl *Definition = 0; if (KeyFunction->hasBody(Definition)) MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true); } } // If DefinedUsedVTables ends up marking any virtual member functions it // might lead to more pending template instantiations, which we then need // to instantiate. DefineUsedVTables(); // C++: Perform implicit template instantiations. // // FIXME: When we perform these implicit instantiations, we do not // carefully keep track of the point of instantiation (C++ [temp.point]). // This means that name lookup that occurs within the template // instantiation will always happen at the end of the translation unit, // so it will find some names that should not be found. Although this is // common behavior for C++ compilers, it is technically wrong. In the // future, we either need to be able to filter the results of name lookup // or we need to perform template instantiations earlier. PerformPendingInstantiations(); } // Remove file scoped decls that turned out to be used. UnusedFileScopedDecls.erase(std::remove_if(UnusedFileScopedDecls.begin(), UnusedFileScopedDecls.end(), std::bind1st(std::ptr_fun(ShouldRemoveFromUnused), this)), UnusedFileScopedDecls.end()); if (!CompleteTranslationUnit) { TUScope = 0; return; } // Check for #pragma weak identifiers that were never declared // FIXME: This will cause diagnostics to be emitted in a non-determinstic // order! Iterating over a densemap like this is bad. for (llvm::DenseMap::iterator I = WeakUndeclaredIdentifiers.begin(), E = WeakUndeclaredIdentifiers.end(); I != E; ++I) { if (I->second.getUsed()) continue; Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared) << I->first; } // C99 6.9.2p2: // A declaration of an identifier for an object that has file // scope without an initializer, and without a storage-class // specifier or with the storage-class specifier static, // constitutes a tentative definition. If a translation unit // contains one or more tentative definitions for an identifier, // and the translation unit contains no external definition for // that identifier, then the behavior is exactly as if the // translation unit contains a file scope declaration of that // identifier, with the composite type as of the end of the // translation unit, with an initializer equal to 0. llvm::SmallSet Seen; for (unsigned i = 0, e = TentativeDefinitions.size(); i != e; ++i) { VarDecl *VD = TentativeDefinitions[i]->getActingDefinition(); // If the tentative definition was completed, getActingDefinition() returns // null. If we've already seen this variable before, insert()'s second // return value is false. if (VD == 0 || VD->isInvalidDecl() || !Seen.insert(VD)) continue; if (const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(VD->getType())) { if (RequireCompleteType(VD->getLocation(), ArrayT->getElementType(), diag::err_tentative_def_incomplete_type_arr)) { VD->setInvalidDecl(); continue; } // Set the length of the array to 1 (C99 6.9.2p5). Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); QualType T = Context.getConstantArrayType(ArrayT->getElementType(), One, ArrayType::Normal, 0); VD->setType(T); } else if (RequireCompleteType(VD->getLocation(), VD->getType(), diag::err_tentative_def_incomplete_type)) VD->setInvalidDecl(); // Notify the consumer that we've completed a tentative definition. if (!VD->isInvalidDecl()) Consumer.CompleteTentativeDefinition(VD); } // If there were errors, disable 'unused' warnings since they will mostly be // noise. if (!Diags.hasErrorOccurred()) { // Output warning for unused file scoped decls. for (llvm::SmallVectorImpl::iterator I = UnusedFileScopedDecls.begin(), E = UnusedFileScopedDecls.end(); I != E; ++I) { if (const FunctionDecl *FD = dyn_cast(*I)) { const FunctionDecl *DiagD; if (!FD->hasBody(DiagD)) DiagD = FD; Diag(DiagD->getLocation(), isa(DiagD) ? diag::warn_unused_member_function : diag::warn_unused_function) << DiagD->getDeclName(); } else { const VarDecl *DiagD = cast(*I)->getDefinition(); if (!DiagD) DiagD = cast(*I); Diag(DiagD->getLocation(), diag::warn_unused_variable) << DiagD->getDeclName(); } } checkUndefinedInternals(*this); } TUScope = 0; } //===----------------------------------------------------------------------===// // Helper functions. //===----------------------------------------------------------------------===// DeclContext *Sema::getFunctionLevelDeclContext() { DeclContext *DC = CurContext; while (isa(DC) || isa(DC)) DC = DC->getParent(); return DC; } /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *Sema::getCurFunctionDecl() { DeclContext *DC = getFunctionLevelDeclContext(); return dyn_cast(DC); } ObjCMethodDecl *Sema::getCurMethodDecl() { DeclContext *DC = getFunctionLevelDeclContext(); return dyn_cast(DC); } NamedDecl *Sema::getCurFunctionOrMethodDecl() { DeclContext *DC = getFunctionLevelDeclContext(); if (isa(DC) || isa(DC)) return cast(DC); return 0; } Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() { if (!isActive()) return; if (llvm::Optional Info = SemaRef.isSFINAEContext()) { switch (DiagnosticIDs::getDiagnosticSFINAEResponse(getDiagID())) { case DiagnosticIDs::SFINAE_Report: // Fall through; we'll report the diagnostic below. break; case DiagnosticIDs::SFINAE_AccessControl: // Unless access checking is specifically called out as a SFINAE // error, report this diagnostic. if (!SemaRef.AccessCheckingSFINAE) break; case DiagnosticIDs::SFINAE_SubstitutionFailure: // Count this failure so that we know that template argument deduction // has failed. ++SemaRef.NumSFINAEErrors; SemaRef.Diags.setLastDiagnosticIgnored(); SemaRef.Diags.Clear(); Clear(); return; case DiagnosticIDs::SFINAE_Suppress: // Make a copy of this suppressed diagnostic and store it with the // template-deduction information; FlushCounts(); DiagnosticInfo DiagInfo(&SemaRef.Diags); if (*Info) (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(), PartialDiagnostic(DiagInfo, SemaRef.Context.getDiagAllocator())); // Suppress this diagnostic. SemaRef.Diags.setLastDiagnosticIgnored(); SemaRef.Diags.Clear(); Clear(); return; } } // Emit the diagnostic. if (!this->Emit()) return; // If this is not a note, and we're in a template instantiation // that is different from the last template instantiation where // we emitted an error, print a template instantiation // backtrace. if (!DiagnosticIDs::isBuiltinNote(DiagID) && !SemaRef.ActiveTemplateInstantiations.empty() && SemaRef.ActiveTemplateInstantiations.back() != SemaRef.LastTemplateInstantiationErrorContext) { SemaRef.PrintInstantiationStack(); SemaRef.LastTemplateInstantiationErrorContext = SemaRef.ActiveTemplateInstantiations.back(); } } Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, unsigned DiagID) { DiagnosticBuilder DB = Diags.Report(Loc, DiagID); return SemaDiagnosticBuilder(DB, *this, DiagID); } Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) { SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID())); PD.Emit(Builder); return Builder; } /// \brief Determines the active Scope associated with the given declaration /// context. /// /// This routine maps a declaration context to the active Scope object that /// represents that declaration context in the parser. It is typically used /// from "scope-less" code (e.g., template instantiation, lazy creation of /// declarations) that injects a name for name-lookup purposes and, therefore, /// must update the Scope. /// /// \returns The scope corresponding to the given declaraion context, or NULL /// if no such scope is open. Scope *Sema::getScopeForContext(DeclContext *Ctx) { if (!Ctx) return 0; Ctx = Ctx->getPrimaryContext(); for (Scope *S = getCurScope(); S; S = S->getParent()) { // Ignore scopes that cannot have declarations. This is important for // out-of-line definitions of static class members. if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) if (DeclContext *Entity = static_cast (S->getEntity())) if (Ctx == Entity->getPrimaryContext()) return S; } return 0; } /// \brief Enter a new function scope void Sema::PushFunctionScope() { if (FunctionScopes.size() == 1) { // Use the "top" function scope rather than having to allocate // memory for a new scope. FunctionScopes.back()->Clear(); FunctionScopes.push_back(FunctionScopes.back()); return; } FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics())); } void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) { FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(), BlockScope, Block)); } void Sema::PopFunctionOrBlockScope() { FunctionScopeInfo *Scope = FunctionScopes.pop_back_val(); assert(!FunctionScopes.empty() && "mismatched push/pop!"); if (FunctionScopes.back() != Scope) delete Scope; } /// \brief Determine whether any errors occurred within this function/method/ /// block. bool Sema::hasAnyErrorsInThisFunction() const { return getCurFunction()->ErrorTrap.hasErrorOccurred(); } BlockScopeInfo *Sema::getCurBlock() { if (FunctionScopes.empty()) return 0; return dyn_cast(FunctionScopes.back()); } // Pin this vtable to this file. ExternalSemaSource::~ExternalSemaSource() {} std::pair ExternalSemaSource::ReadMethodPool(Selector Sel) { return std::pair(); } void PrettyDeclStackTraceEntry::print(llvm::raw_ostream &OS) const { SourceLocation Loc = this->Loc; if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); if (Loc.isValid()) { Loc.print(OS, S.getSourceManager()); OS << ": "; } OS << Message; if (TheDecl && isa(TheDecl)) { std::string Name = cast(TheDecl)->getNameAsString(); if (!Name.empty()) OS << " '" << Name << '\''; } OS << '\n'; }