//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for ARM. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "ARMLegalizerInfo.h" #include "ARMCallLowering.h" #include "ARMSubtarget.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include "llvm/Target/TargetOpcodes.h" using namespace llvm; #ifndef LLVM_BUILD_GLOBAL_ISEL #error "You shouldn't build this" #endif ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) { using namespace TargetOpcode; const LLT p0 = LLT::pointer(0, 32); const LLT s1 = LLT::scalar(1); const LLT s8 = LLT::scalar(8); const LLT s16 = LLT::scalar(16); const LLT s32 = LLT::scalar(32); const LLT s64 = LLT::scalar(64); setAction({G_FRAME_INDEX, p0}, Legal); for (unsigned Op : {G_LOAD, G_STORE}) { for (auto Ty : {s1, s8, s16, s32, p0}) setAction({Op, Ty}, Legal); setAction({Op, 1, p0}, Legal); } for (unsigned Op : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) { for (auto Ty : {s1, s8, s16}) setAction({Op, Ty}, WidenScalar); setAction({Op, s32}, Legal); } for (unsigned Op : {G_SDIV, G_UDIV}) { for (auto Ty : {s8, s16}) // FIXME: We need WidenScalar here, but in the case of targets with // software division we'll also need Libcall afterwards. Treat as Custom // until we have better support for chaining legalization actions. setAction({Op, Ty}, Custom); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } // FIXME: Support s8 and s16 as well for (unsigned Op : {G_SREM, G_UREM}) if (ST.hasDivideInARMMode()) setAction({Op, s32}, Lower); else if (ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI()) setAction({Op, s32}, Custom); else setAction({Op, s32}, Libcall); for (unsigned Op : {G_SEXT, G_ZEXT}) { setAction({Op, s32}, Legal); for (auto Ty : {s1, s8, s16}) setAction({Op, 1, Ty}, Legal); } setAction({G_GEP, p0}, Legal); setAction({G_GEP, 1, s32}, Legal); setAction({G_CONSTANT, s32}, Legal); setAction({G_ICMP, s1}, Legal); for (auto Ty : {s8, s16}) setAction({G_ICMP, 1, Ty}, WidenScalar); for (auto Ty : {s32, p0}) setAction({G_ICMP, 1, Ty}, Legal); if (!ST.useSoftFloat() && ST.hasVFP2()) { setAction({G_FADD, s32}, Legal); setAction({G_FADD, s64}, Legal); setAction({G_LOAD, s64}, Legal); setAction({G_STORE, s64}, Legal); } else { for (auto Ty : {s32, s64}) setAction({G_FADD, Ty}, Libcall); } for (unsigned Op : {G_FREM, G_FPOW}) for (auto Ty : {s32, s64}) setAction({Op, Ty}, Libcall); computeTables(); } bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { using namespace TargetOpcode; switch (MI.getOpcode()) { default: return false; case G_SDIV: case G_UDIV: { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (Ty != LLT::scalar(16) && Ty != LLT::scalar(8)) return false; // We need to widen to 32 bits and then maybe, if the target requires, // transform into a libcall. LegalizerHelper Helper(MIRBuilder.getMF()); MachineInstr *NewMI = nullptr; Helper.MIRBuilder.recordInsertions([&](MachineInstr *MI) { // Store the new, 32-bit div instruction. if (MI->getOpcode() == G_SDIV || MI->getOpcode() == G_UDIV) NewMI = MI; }); auto Result = Helper.widenScalar(MI, 0, LLT::scalar(32)); Helper.MIRBuilder.stopRecordingInsertions(); if (Result == LegalizerHelper::UnableToLegalize) { return false; } assert(NewMI && "Couldn't find widened instruction"); assert((NewMI->getOpcode() == G_SDIV || NewMI->getOpcode() == G_UDIV) && "Unexpected widened instruction"); assert(MRI.getType(NewMI->getOperand(0).getReg()).getSizeInBits() == 32 && "Unexpected type for the widened instruction"); Result = Helper.legalizeInstrStep(*NewMI); if (Result == LegalizerHelper::UnableToLegalize) { return false; } return true; } case G_SREM: case G_UREM: { unsigned OriginalResult = MI.getOperand(0).getReg(); auto Size = MRI.getType(OriginalResult).getSizeInBits(); if (Size != 32) return false; auto Libcall = MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; // Our divmod libcalls return a struct containing the quotient and the // remainder. We need to create a virtual register for it. auto &Ctx = MIRBuilder.getMF().getFunction()->getContext(); Type *ArgTy = Type::getInt32Ty(Ctx); StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true); auto RetVal = MRI.createGenericVirtualRegister( getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout())); auto Status = replaceWithLibcall(MI, MIRBuilder, Libcall, {RetVal, RetTy}, {{MI.getOperand(1).getReg(), ArgTy}, {MI.getOperand(2).getReg(), ArgTy}}); if (Status != LegalizerHelper::Legalized) return false; // The remainder is the second result of divmod. Split the return value into // a new, unused register for the quotient and the destination of the // original instruction for the remainder. MIRBuilder.buildUnmerge( {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult}, RetVal); return LegalizerHelper::Legalized; } } }