//===-- ABISysV_ppc64.cpp --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ABISysV_ppc64.h" #include "lldb/Core/ConstString.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/Error.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Value.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectRegister.h" #include "lldb/Core/ValueObjectMemory.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Target.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Thread.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Triple.h" using namespace lldb; using namespace lldb_private; enum dwarf_regnums { dwarf_r0 = 0, dwarf_r1, dwarf_r2, dwarf_r3, dwarf_r4, dwarf_r5, dwarf_r6, dwarf_r7, dwarf_r8, dwarf_r9, dwarf_r10, dwarf_r11, dwarf_r12, dwarf_r13, dwarf_r14, dwarf_r15, dwarf_r16, dwarf_r17, dwarf_r18, dwarf_r19, dwarf_r20, dwarf_r21, dwarf_r22, dwarf_r23, dwarf_r24, dwarf_r25, dwarf_r26, dwarf_r27, dwarf_r28, dwarf_r29, dwarf_r30, dwarf_r31, dwarf_f0, dwarf_f1, dwarf_f2, dwarf_f3, dwarf_f4, dwarf_f5, dwarf_f6, dwarf_f7, dwarf_f8, dwarf_f9, dwarf_f10, dwarf_f11, dwarf_f12, dwarf_f13, dwarf_f14, dwarf_f15, dwarf_f16, dwarf_f17, dwarf_f18, dwarf_f19, dwarf_f20, dwarf_f21, dwarf_f22, dwarf_f23, dwarf_f24, dwarf_f25, dwarf_f26, dwarf_f27, dwarf_f28, dwarf_f29, dwarf_f30, dwarf_f31, dwarf_cr, dwarf_fpscr, dwarf_xer = 101, dwarf_lr = 108, dwarf_ctr, dwarf_pc, dwarf_cfa, }; // Note that the size and offset will be updated by platform-specific classes. #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \ { #reg, alt, 8, 0, eEncodingUint, \ eFormatHex, { kind1, kind2, kind3, kind4}, NULL, NULL } static const RegisterInfo g_register_infos[] = { // General purpose registers. eh_frame, DWARF, Generic, Process Plugin DEFINE_GPR(r0, NULL, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM), DEFINE_GPR(r2, NULL, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r3, "arg1",dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM), DEFINE_GPR(r4, "arg2",dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2 ,LLDB_INVALID_REGNUM), DEFINE_GPR(r5, "arg3",dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM), DEFINE_GPR(r6, "arg4",dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM), DEFINE_GPR(r7, "arg5",dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5, LLDB_INVALID_REGNUM), DEFINE_GPR(r8, "arg6",dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6, LLDB_INVALID_REGNUM), DEFINE_GPR(r9, "arg7",dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7, LLDB_INVALID_REGNUM), DEFINE_GPR(r10, "arg8",dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8, LLDB_INVALID_REGNUM), DEFINE_GPR(r11, NULL, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r12, NULL, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r13, NULL, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r14, NULL, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r15, NULL, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r16, NULL, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r17, NULL, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r18, NULL, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r19, NULL, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r20, NULL, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r21, NULL, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r22, NULL, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r23, NULL, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r24, NULL, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r25, NULL, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r26, NULL, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r27, NULL, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r28, NULL, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r29, NULL, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r30, NULL, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(r31, NULL, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM), DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM), DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM), DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM), { NULL, NULL, 8, 0, eEncodingUint, eFormatHex, { dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM}, NULL, NULL}, }; static const uint32_t k_num_register_infos = llvm::array_lengthof(g_register_infos); const lldb_private::RegisterInfo * ABISysV_ppc64::GetRegisterInfoArray (uint32_t &count) { count = k_num_register_infos; return g_register_infos; } size_t ABISysV_ppc64::GetRedZoneSize () const { return 224; } //------------------------------------------------------------------ // Static Functions //------------------------------------------------------------------ ABISP ABISysV_ppc64::CreateInstance (const ArchSpec &arch) { static ABISP g_abi_sp; if (arch.GetTriple().getArch() == llvm::Triple::ppc64) { if (!g_abi_sp) g_abi_sp.reset (new ABISysV_ppc64); return g_abi_sp; } return ABISP(); } bool ABISysV_ppc64::PrepareTrivialCall (Thread &thread, addr_t sp, addr_t func_addr, addr_t return_addr, llvm::ArrayRef args) const { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); if (log) { StreamString s; s.Printf("ABISysV_ppc64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64, thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, (uint64_t)return_addr); for (size_t i = 0; i < args.size(); ++i) s.Printf (", arg%" PRIu64 " = 0x%" PRIx64, static_cast(i + 1), args[i]); s.PutCString (")"); log->PutCString(s.GetString().c_str()); } RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; const RegisterInfo *reg_info = NULL; if (args.size() > 8) // TODO handle more than 8 arguments return false; for (size_t i = 0; i < args.size(); ++i) { reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i); if (log) log->Printf("About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s", static_cast(i + 1), args[i], reg_info->name); if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i])) return false; } // First, align the SP if (log) log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull)); sp &= ~(0xfull); // 16-byte alignment sp -= 8; Error error; const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo *sp_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); ProcessSP process_sp (thread.GetProcess()); RegisterValue reg_value; #if 0 // This code adds an extra frame so that we don't lose the function that we came from // by pushing the PC and the FP and then writing the current FP to point to the FP value // we just pushed. It is disabled for now until the stack backtracing code can be debugged. // Save current PC const RegisterInfo *fp_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FP); if (reg_ctx->ReadRegister(pc_reg_info, reg_value)) { if (log) log->Printf("Pushing the current PC onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, reg_value.GetAsUInt64()); if (!process_sp->WritePointerToMemory(sp, reg_value.GetAsUInt64(), error)) return false; sp -= 8; // Save current FP if (reg_ctx->ReadRegister(fp_reg_info, reg_value)) { if (log) log->Printf("Pushing the current FP onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, reg_value.GetAsUInt64()); if (!process_sp->WritePointerToMemory(sp, reg_value.GetAsUInt64(), error)) return false; } // Setup FP backchain reg_value.SetUInt64 (sp); if (log) log->Printf("Writing FP: 0x%" PRIx64 " (for FP backchain)", reg_value.GetAsUInt64()); if (!reg_ctx->WriteRegister(fp_reg_info, reg_value)) { return false; } sp -= 8; } #endif if (log) log->Printf("Pushing the return address onto the stack: 0x%" PRIx64 ": 0x%" PRIx64, (uint64_t)sp, (uint64_t)return_addr); // Save return address onto the stack if (!process_sp->WritePointerToMemory(sp, return_addr, error)) return false; // %r1 is set to the actual stack value. if (log) log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp); if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_info, sp)) return false; // %pc is set to the address of the called function. if (log) log->Printf("Writing IP: 0x%" PRIx64, (uint64_t)func_addr); if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_info, func_addr)) return false; return true; } static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Thread &thread, uint32_t *argument_register_ids, unsigned int ¤t_argument_register, addr_t ¤t_stack_argument) { if (bit_width > 64) return false; // Scalar can't hold large integer arguments if (current_argument_register < 6) { scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(argument_register_ids[current_argument_register], 0); current_argument_register++; if (is_signed) scalar.SignExtend (bit_width); } else { uint32_t byte_size = (bit_width + (8-1))/8; Error error; if (thread.GetProcess()->ReadScalarIntegerFromMemory(current_stack_argument, byte_size, is_signed, scalar, error)) { current_stack_argument += byte_size; return true; } return false; } return true; } bool ABISysV_ppc64::GetArgumentValues (Thread &thread, ValueList &values) const { unsigned int num_values = values.GetSize(); unsigned int value_index; // Extract the register context so we can read arguments from registers RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; // Get the pointer to the first stack argument so we have a place to start // when reading data addr_t sp = reg_ctx->GetSP(0); if (!sp) return false; addr_t current_stack_argument = sp + 48; // jump over return address uint32_t argument_register_ids[8]; argument_register_ids[0] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)->kinds[eRegisterKindLLDB]; argument_register_ids[1] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)->kinds[eRegisterKindLLDB]; argument_register_ids[2] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)->kinds[eRegisterKindLLDB]; argument_register_ids[3] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)->kinds[eRegisterKindLLDB]; argument_register_ids[4] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)->kinds[eRegisterKindLLDB]; argument_register_ids[5] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)->kinds[eRegisterKindLLDB]; argument_register_ids[6] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)->kinds[eRegisterKindLLDB]; argument_register_ids[7] = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)->kinds[eRegisterKindLLDB]; unsigned int current_argument_register = 0; for (value_index = 0; value_index < num_values; ++value_index) { Value *value = values.GetValueAtIndex(value_index); if (!value) return false; // We currently only support extracting values with Clang QualTypes. // Do we care about others? CompilerType compiler_type = value->GetCompilerType(); if (!compiler_type) return false; bool is_signed; if (compiler_type.IsIntegerType (is_signed)) { ReadIntegerArgument(value->GetScalar(), compiler_type.GetBitSize(&thread), is_signed, thread, argument_register_ids, current_argument_register, current_stack_argument); } else if (compiler_type.IsPointerType ()) { ReadIntegerArgument(value->GetScalar(), compiler_type.GetBitSize(&thread), false, thread, argument_register_ids, current_argument_register, current_stack_argument); } } return true; } Error ABISysV_ppc64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp) { Error error; if (!new_value_sp) { error.SetErrorString("Empty value object for return value."); return error; } CompilerType compiler_type = new_value_sp->GetCompilerType(); if (!compiler_type) { error.SetErrorString ("Null clang type for return value."); return error; } Thread *thread = frame_sp->GetThread().get(); bool is_signed; uint32_t count; bool is_complex; RegisterContext *reg_ctx = thread->GetRegisterContext().get(); bool set_it_simple = false; if (compiler_type.IsIntegerType (is_signed) || compiler_type.IsPointerType()) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0); DataExtractor data; Error data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } lldb::offset_t offset = 0; if (num_bytes <= 8) { uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); if (reg_ctx->WriteRegisterFromUnsigned (reg_info, raw_value)) set_it_simple = true; } else { error.SetErrorString("We don't support returning longer than 64 bit integer values at present."); } } else if (compiler_type.IsFloatingPointType (count, is_complex)) { if (is_complex) error.SetErrorString ("We don't support returning complex values at present"); else { size_t bit_width = compiler_type.GetBitSize(frame_sp.get()); if (bit_width <= 64) { DataExtractor data; Error data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } unsigned char buffer[16]; ByteOrder byte_order = data.GetByteOrder(); data.CopyByteOrderedData (0, num_bytes, buffer, 16, byte_order); set_it_simple = true; } else { // FIXME - don't know how to do 80 bit long doubles yet. error.SetErrorString ("We don't support returning float values > 64 bits at present"); } } } if (!set_it_simple) { // Okay we've got a structure or something that doesn't fit in a simple register. // We should figure out where it really goes, but we don't support this yet. error.SetErrorString ("We only support setting simple integer and float return types at present."); } return error; } ValueObjectSP ABISysV_ppc64::GetReturnValueObjectSimple (Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; Value value; if (!return_compiler_type) return return_valobj_sp; //value.SetContext (Value::eContextTypeClangType, return_value_type); value.SetCompilerType (return_compiler_type); RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return return_valobj_sp; const uint32_t type_flags = return_compiler_type.GetTypeInfo (); if (type_flags & eTypeIsScalar) { value.SetValueType(Value::eValueTypeScalar); bool success = false; if (type_flags & eTypeIsInteger) { // Extract the register context so we can read arguments from registers const size_t byte_size = return_compiler_type.GetByteSize(nullptr); uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("r3", 0), 0); const bool is_signed = (type_flags & eTypeIsSigned) != 0; switch (byte_size) { default: break; case sizeof(uint64_t): if (is_signed) value.GetScalar() = (int64_t)(raw_value); else value.GetScalar() = (uint64_t)(raw_value); success = true; break; case sizeof(uint32_t): if (is_signed) value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); else value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); success = true; break; case sizeof(uint16_t): if (is_signed) value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); else value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); success = true; break; case sizeof(uint8_t): if (is_signed) value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); else value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); success = true; break; } } else if (type_flags & eTypeIsFloat) { if (type_flags & eTypeIsComplex) { // Don't handle complex yet. } else { const size_t byte_size = return_compiler_type.GetByteSize(nullptr); if (byte_size <= sizeof(long double)) { const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0); RegisterValue f1_value; if (reg_ctx->ReadRegister (f1_info, f1_value)) { DataExtractor data; if (f1_value.GetData(data)) { lldb::offset_t offset = 0; if (byte_size == sizeof(float)) { value.GetScalar() = (float) data.GetFloat(&offset); success = true; } else if (byte_size == sizeof(double)) { value.GetScalar() = (double) data.GetDouble(&offset); success = true; } } } } } } if (success) return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsPointer) { unsigned r3_id = reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB]; value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0); value.SetValueType(Value::eValueTypeScalar); return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsVector) { const size_t byte_size = return_compiler_type.GetByteSize(nullptr); if (byte_size > 0) { const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0); if (altivec_reg) { if (byte_size <= altivec_reg->byte_size) { ProcessSP process_sp (thread.GetProcess()); if (process_sp) { std::unique_ptr heap_data_ap (new DataBufferHeap(byte_size, 0)); const ByteOrder byte_order = process_sp->GetByteOrder(); RegisterValue reg_value; if (reg_ctx->ReadRegister(altivec_reg, reg_value)) { Error error; if (reg_value.GetAsMemoryData (altivec_reg, heap_data_ap->GetBytes(), heap_data_ap->GetByteSize(), byte_order, error)) { DataExtractor data (DataBufferSP (heap_data_ap.release()), byte_order, process_sp->GetTarget().GetArchitecture().GetAddressByteSize()); return_valobj_sp = ValueObjectConstResult::Create (&thread, return_compiler_type, ConstString(""), data); } } } } } } } return return_valobj_sp; } ValueObjectSP ABISysV_ppc64::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; if (!return_compiler_type) return return_valobj_sp; ExecutionContext exe_ctx (thread.shared_from_this()); return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type); if (return_valobj_sp) return return_valobj_sp; RegisterContextSP reg_ctx_sp = thread.GetRegisterContext(); if (!reg_ctx_sp) return return_valobj_sp; const size_t bit_width = return_compiler_type.GetBitSize(&thread); if (return_compiler_type.IsAggregateType()) { Target *target = exe_ctx.GetTargetPtr(); bool is_memory = true; if (bit_width <= 128) { ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder(); DataBufferSP data_sp (new DataBufferHeap(16, 0)); DataExtractor return_ext (data_sp, target_byte_order, target->GetArchitecture().GetAddressByteSize()); const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0); const RegisterInfo *rdx_info = reg_ctx_sp->GetRegisterInfoByName("rdx", 0); RegisterValue r3_value, rdx_value; reg_ctx_sp->ReadRegister (r3_info, r3_value); reg_ctx_sp->ReadRegister (rdx_info, rdx_value); DataExtractor r3_data, rdx_data; r3_value.GetData(r3_data); rdx_value.GetData(rdx_data); uint32_t fp_bytes = 0; // Tracks how much of the xmm registers we've consumed so far uint32_t integer_bytes = 0; // Tracks how much of the r3/rds registers we've consumed so far const uint32_t num_children = return_compiler_type.GetNumFields (); // Since we are in the small struct regime, assume we are not in memory. is_memory = false; for (uint32_t idx = 0; idx < num_children; idx++) { std::string name; uint64_t field_bit_offset = 0; bool is_signed; bool is_complex; uint32_t count; CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex (idx, name, &field_bit_offset, NULL, NULL); const size_t field_bit_width = field_compiler_type.GetBitSize(&thread); // If there are any unaligned fields, this is stored in memory. if (field_bit_offset % field_bit_width != 0) { is_memory = true; break; } uint32_t field_byte_width = field_bit_width/8; uint32_t field_byte_offset = field_bit_offset/8; DataExtractor *copy_from_extractor = NULL; uint32_t copy_from_offset = 0; if (field_compiler_type.IsIntegerType (is_signed) || field_compiler_type.IsPointerType ()) { if (integer_bytes < 8) { if (integer_bytes + field_byte_width <= 8) { // This is in RAX, copy from register to our result structure: copy_from_extractor = &r3_data; copy_from_offset = integer_bytes; integer_bytes += field_byte_width; } else { // The next field wouldn't fit in the remaining space, so we pushed it to rdx. copy_from_extractor = &rdx_data; copy_from_offset = 0; integer_bytes = 8 + field_byte_width; } } else if (integer_bytes + field_byte_width <= 16) { copy_from_extractor = &rdx_data; copy_from_offset = integer_bytes - 8; integer_bytes += field_byte_width; } else { // The last field didn't fit. I can't see how that would happen w/o the overall size being // greater than 16 bytes. For now, return a NULL return value object. return return_valobj_sp; } } else if (field_compiler_type.IsFloatingPointType (count, is_complex)) { // Structs with long doubles are always passed in memory. if (field_bit_width == 128) { is_memory = true; break; } else if (field_bit_width == 64) { copy_from_offset = 0; fp_bytes += field_byte_width; } else if (field_bit_width == 32) { // This one is kind of complicated. If we are in an "eightbyte" with another float, we'll // be stuffed into an xmm register with it. If we are in an "eightbyte" with one or more ints, // then we will be stuffed into the appropriate GPR with them. bool in_gpr; if (field_byte_offset % 8 == 0) { // We are at the beginning of one of the eightbytes, so check the next element (if any) if (idx == num_children - 1) in_gpr = false; else { uint64_t next_field_bit_offset = 0; CompilerType next_field_compiler_type = return_compiler_type.GetFieldAtIndex (idx + 1, name, &next_field_bit_offset, NULL, NULL); if (next_field_compiler_type.IsIntegerType (is_signed)) in_gpr = true; else { copy_from_offset = 0; in_gpr = false; } } } else if (field_byte_offset % 4 == 0) { // We are inside of an eightbyte, so see if the field before us is floating point: // This could happen if somebody put padding in the structure. if (idx == 0) in_gpr = false; else { uint64_t prev_field_bit_offset = 0; CompilerType prev_field_compiler_type = return_compiler_type.GetFieldAtIndex (idx - 1, name, &prev_field_bit_offset, NULL, NULL); if (prev_field_compiler_type.IsIntegerType (is_signed)) in_gpr = true; else { copy_from_offset = 4; in_gpr = false; } } } else { is_memory = true; continue; } // Okay, we've figured out whether we are in GPR or XMM, now figure out which one. if (in_gpr) { if (integer_bytes < 8) { // This is in RAX, copy from register to our result structure: copy_from_extractor = &r3_data; copy_from_offset = integer_bytes; integer_bytes += field_byte_width; } else { copy_from_extractor = &rdx_data; copy_from_offset = integer_bytes - 8; integer_bytes += field_byte_width; } } else { fp_bytes += field_byte_width; } } } // These two tests are just sanity checks. If I somehow get the // type calculation wrong above it is better to just return nothing // than to assert or crash. if (!copy_from_extractor) return return_valobj_sp; if (copy_from_offset + field_byte_width > copy_from_extractor->GetByteSize()) return return_valobj_sp; copy_from_extractor->CopyByteOrderedData (copy_from_offset, field_byte_width, data_sp->GetBytes() + field_byte_offset, field_byte_width, target_byte_order); } if (!is_memory) { // The result is in our data buffer. Let's make a variable object out of it: return_valobj_sp = ValueObjectConstResult::Create (&thread, return_compiler_type, ConstString(""), return_ext); } } // FIXME: This is just taking a guess, r3 may very well no longer hold the return storage location. // If we are going to do this right, when we make a new frame we should check to see if it uses a memory // return, and if we are at the first instruction and if so stash away the return location. Then we would // only return the memory return value if we know it is valid. if (is_memory) { unsigned r3_id = reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB]; lldb::addr_t storage_addr = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0); return_valobj_sp = ValueObjectMemory::Create (&thread, "", Address (storage_addr, NULL), return_compiler_type); } } return return_valobj_sp; } bool ABISysV_ppc64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind (eRegisterKindDWARF); uint32_t lr_reg_num = dwarf_lr; uint32_t sp_reg_num = dwarf_r1; uint32_t pc_reg_num = dwarf_pc; UnwindPlan::RowSP row(new UnwindPlan::Row); // Our Call Frame Address is the stack pointer value row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0); // The previous PC is in the LR row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true); unwind_plan.AppendRow (row); // All other registers are the same. unwind_plan.SetSourceName ("ppc64 at-func-entry default"); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); return true; } bool ABISysV_ppc64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind (eRegisterKindDWARF); uint32_t sp_reg_num = dwarf_r1; uint32_t pc_reg_num = dwarf_lr; UnwindPlan::RowSP row(new UnwindPlan::Row); const int32_t ptr_size = 8; row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num); row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 2, true); row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true); row->SetRegisterLocationToAtCFAPlusOffset(dwarf_cr, ptr_size, true); unwind_plan.AppendRow (row); unwind_plan.SetSourceName ("ppc64 default unwind plan"); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo); unwind_plan.SetReturnAddressRegister(dwarf_lr); return true; } bool ABISysV_ppc64::RegisterIsVolatile (const RegisterInfo *reg_info) { return !RegisterIsCalleeSaved (reg_info); } // See "Register Usage" in the // "System V Application Binary Interface" // "64-bit PowerPC ELF Application Binary Interface Supplement" // current version is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.pdf bool ABISysV_ppc64::RegisterIsCalleeSaved (const RegisterInfo *reg_info) { if (reg_info) { // Preserved registers are : // r1,r2,r13-r31 // cr2-cr4 (partially preserved) // f14-f31 (not yet) // v20-v31 (not yet) // vrsave (not yet) const char *name = reg_info->name; if (name[0] == 'r') { if ((name[1] == '1' || name[1] == '2') && name[2] == '\0') return true; if (name[1] == '1' && name[2] > '2') return true; if ((name[1] == '2' || name[1] == '3') && name[2] != '\0') return true; } if (name[0] == 'f' && name[1] >= '0' && name[2] <= '9') { if (name[2] == '\0') return false; if (name[1] == '1' && name[2] >= '4') return true; if ((name[1] == '2' || name[1] == '3') && name[2] != '\0') return true; } if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp return true; if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp return true; if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc return true; } return false; } void ABISysV_ppc64::Initialize() { PluginManager::RegisterPlugin (GetPluginNameStatic(), "System V ABI for ppc64 targets", CreateInstance); } void ABISysV_ppc64::Terminate() { PluginManager::UnregisterPlugin (CreateInstance); } lldb_private::ConstString ABISysV_ppc64::GetPluginNameStatic() { static ConstString g_name("sysv-ppc64"); return g_name; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString ABISysV_ppc64::GetPluginName() { return GetPluginNameStatic(); } uint32_t ABISysV_ppc64::GetPluginVersion() { return 1; }