/* * Mach Operating System * Copyright (c) 1991,1990 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 db_varfcn_t db_dr0; db_varfcn_t db_dr1; db_varfcn_t db_dr2; db_varfcn_t db_dr3; db_varfcn_t db_dr4; db_varfcn_t db_dr5; db_varfcn_t db_dr6; db_varfcn_t db_dr7; #endif /* * Machine register set. */ struct db_variable db_regs[] = { { "cs", &ddb_regs.tf_cs, FCN_NULL }, #if 0 { "ds", &ddb_regs.tf_ds, FCN_NULL }, { "es", &ddb_regs.tf_es, FCN_NULL }, { "fs", &ddb_regs.tf_fs, FCN_NULL }, { "gs", &ddb_regs.tf_gs, FCN_NULL }, #endif { "ss", &ddb_regs.tf_ss, FCN_NULL }, { "rax", &ddb_regs.tf_rax, FCN_NULL }, { "rcx", &ddb_regs.tf_rcx, FCN_NULL }, { "rdx", &ddb_regs.tf_rdx, FCN_NULL }, { "rbx", &ddb_regs.tf_rbx, FCN_NULL }, { "rsp", &ddb_regs.tf_rsp, FCN_NULL }, { "rbp", &ddb_regs.tf_rbp, FCN_NULL }, { "rsi", &ddb_regs.tf_rsi, FCN_NULL }, { "rdi", &ddb_regs.tf_rdi, FCN_NULL }, { "r8", &ddb_regs.tf_r8, FCN_NULL }, { "r9", &ddb_regs.tf_r9, FCN_NULL }, { "r10", &ddb_regs.tf_r10, FCN_NULL }, { "r11", &ddb_regs.tf_r11, FCN_NULL }, { "r12", &ddb_regs.tf_r12, FCN_NULL }, { "r13", &ddb_regs.tf_r13, FCN_NULL }, { "r14", &ddb_regs.tf_r14, FCN_NULL }, { "r15", &ddb_regs.tf_r15, FCN_NULL }, { "rip", &ddb_regs.tf_rip, FCN_NULL }, { "rflags", &ddb_regs.tf_rflags, FCN_NULL }, #if 0 { "dr0", NULL, db_dr0 }, { "dr1", NULL, db_dr1 }, { "dr2", NULL, db_dr2 }, { "dr3", NULL, db_dr3 }, { "dr4", NULL, db_dr4 }, { "dr5", NULL, db_dr5 }, { "dr6", NULL, db_dr6 }, { "dr7", NULL, db_dr7 }, #endif }; struct db_variable *db_eregs = db_regs + sizeof(db_regs)/sizeof(db_regs[0]); /* * Stack trace. */ #define INKERNEL(va) (((vm_offset_t)(va)) >= USRSTACK) struct amd64_frame { struct amd64_frame *f_frame; long f_retaddr; long f_arg0; }; #define NORMAL 0 #define TRAP 1 #define INTERRUPT 2 #define SYSCALL 3 static void db_nextframe(struct amd64_frame **, db_addr_t *, struct proc *); static int db_numargs(struct amd64_frame *); static void db_print_stack_entry(const char *, int, char **, long *, db_addr_t); static void decode_syscall(int, struct proc *); static void db_trace_one_stack(int count, boolean_t have_addr, struct proc *p, struct amd64_frame *frame, db_addr_t callpc); #if 0 static char * watchtype_str(int type); int amd64_set_watch(int watchnum, unsigned int watchaddr, int size, int access, struct dbreg * d); int amd64_clr_watch(int watchnum, struct dbreg * d); #endif int db_md_set_watchpoint(db_expr_t addr, db_expr_t size); int db_md_clr_watchpoint(db_expr_t addr, db_expr_t size); void db_md_list_watchpoints(void); /* * Figure out how many arguments were passed into the frame at "fp". */ static int db_numargs(fp) struct amd64_frame *fp; { #if 1 return (0); /* regparm, needs dwarf2 info */ #else long *argp; int inst; int args; argp = (long *)db_get_value((long)&fp->f_retaddr, 8, FALSE); /* * XXX etext is wrong for LKMs. We should attempt to interpret * the instruction at the return address in all cases. This * may require better fault handling. */ if (argp < (long *)btext || argp >= (long *)etext) { args = 5; } else { inst = db_get_value((long)argp, 4, FALSE); if ((inst & 0xff) == 0x59) /* popl %ecx */ args = 1; else if ((inst & 0xffff) == 0xc483) /* addl $Ibs, %esp */ args = ((inst >> 16) & 0xff) / 4; else args = 5; } return (args); #endif } static void db_print_stack_entry(name, narg, argnp, argp, callpc) const char *name; int narg; char **argnp; long *argp; db_addr_t callpc; { db_printf("%s(", name); #if 0 while (narg) { if (argnp) db_printf("%s=", *argnp++); db_printf("%lr", (long)db_get_value((long)argp, 8, FALSE)); argp++; if (--narg != 0) db_printf(","); } #endif db_printf(") at "); db_printsym(callpc, DB_STGY_PROC); db_printf("\n"); } static void decode_syscall(number, p) int number; struct proc *p; { c_db_sym_t sym; db_expr_t diff; sy_call_t *f; const char *symname; db_printf(" (%d", number); if (p != NULL && 0 <= number && number < p->p_sysent->sv_size) { f = p->p_sysent->sv_table[number].sy_call; sym = db_search_symbol((db_addr_t)f, DB_STGY_ANY, &diff); if (sym != DB_SYM_NULL && diff == 0) { db_symbol_values(sym, &symname, NULL); db_printf(", %s, %s", p->p_sysent->sv_name, symname); } } db_printf(")"); } /* * Figure out the next frame up in the call stack. */ static void db_nextframe(fp, ip, p) struct amd64_frame **fp; /* in/out */ db_addr_t *ip; /* out */ struct proc *p; /* in */ { struct trapframe *tf; int frame_type; long rip, rsp, rbp; db_expr_t offset; c_db_sym_t sym; const char *name; rip = db_get_value((long) &(*fp)->f_retaddr, 8, FALSE); rbp = db_get_value((long) &(*fp)->f_frame, 8, FALSE); /* * Figure out frame type. */ frame_type = NORMAL; sym = db_search_symbol(rip, DB_STGY_ANY, &offset); db_symbol_values(sym, &name, NULL); if (name != NULL) { if (strcmp(name, "calltrap") == 0 || strcmp(name, "fork_trampoline") == 0) frame_type = TRAP; else if (strncmp(name, "Xintr", 5) == 0 || strncmp(name, "Xfastintr", 9) == 0) frame_type = INTERRUPT; else if (strcmp(name, "Xfast_syscall") == 0) frame_type = SYSCALL; } /* * Normal frames need no special processing. */ if (frame_type == NORMAL) { *ip = (db_addr_t) rip; *fp = (struct amd64_frame *) rbp; return; } db_print_stack_entry(name, 0, 0, 0, rip); /* * Point to base of trapframe which is just above the * current frame. */ tf = (struct trapframe *)((long)*fp + 16); if (INKERNEL((long) tf)) { rsp = (ISPL(tf->tf_cs) == SEL_UPL) ? tf->tf_rsp : (long)&tf->tf_rsp; rip = tf->tf_rip; rbp = tf->tf_rbp; switch (frame_type) { case TRAP: db_printf("--- trap %#lr", tf->tf_trapno); break; case SYSCALL: db_printf("--- syscall"); decode_syscall(tf->tf_rax, p); break; case INTERRUPT: db_printf("--- interrupt"); break; default: panic("The moon has moved again."); } db_printf(", rip = %#lr, rsp = %#lr, rbp = %#lr ---\n", rip, rsp, rbp); } *ip = (db_addr_t) rip; *fp = (struct amd64_frame *) rbp; } void db_stack_trace_cmd(addr, have_addr, count, modif) db_expr_t addr; boolean_t have_addr; db_expr_t count; char *modif; { struct amd64_frame *frame; struct proc *p; struct pcb *pcb; struct thread *td; db_addr_t callpc; pid_t pid; if (count == -1) count = 1024; if (!have_addr) { td = curthread; p = td->td_proc; frame = (struct amd64_frame *)ddb_regs.tf_rbp; if (frame == NULL) frame = (struct amd64_frame *)(ddb_regs.tf_rsp - 8); callpc = (db_addr_t)ddb_regs.tf_rip; } else if (!INKERNEL(addr)) { pid = (addr % 16) + ((addr >> 4) % 16) * 10 + ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 + ((addr >> 16) % 16) * 10000; /* * The pcb for curproc is not valid at this point, * so fall back to the default case. */ if (pid == curthread->td_proc->p_pid) { td = curthread; p = td->td_proc; frame = (struct amd64_frame *)ddb_regs.tf_rbp; if (frame == NULL) frame = (struct amd64_frame *) (ddb_regs.tf_rsp - 8); callpc = (db_addr_t)ddb_regs.tf_rip; } else { /* sx_slock(&allproc_lock); */ LIST_FOREACH(p, &allproc, p_list) { if (p->p_pid == pid) break; } /* sx_sunlock(&allproc_lock); */ if (p == NULL) { db_printf("pid %d not found\n", pid); return; } if ((p->p_sflag & PS_INMEM) == 0) { db_printf("pid %d swapped out\n", pid); return; } pcb = FIRST_THREAD_IN_PROC(p)->td_pcb; /* XXXKSE */ frame = (struct amd64_frame *)pcb->pcb_rbp; if (frame == NULL) frame = (struct amd64_frame *) (pcb->pcb_rsp - 8); callpc = (db_addr_t)pcb->pcb_rip; } } else { p = NULL; frame = (struct amd64_frame *)addr; callpc = (db_addr_t)db_get_value((long)&frame->f_retaddr, 8, FALSE); frame = frame->f_frame; } db_trace_one_stack(count, have_addr, p, frame, callpc); } void db_stack_thread(db_expr_t addr, boolean_t have_addr, db_expr_t count, char *modif) { struct amd64_frame *frame; struct thread *td; struct proc *p; struct pcb *pcb; db_addr_t callpc; if (!have_addr) return; if (!INKERNEL(addr)) { printf("bad thread address"); return; } td = (struct thread *)addr; /* quick sanity check */ if ((p = td->td_proc) != td->td_ksegrp->kg_proc) return; if (TD_IS_SWAPPED(td)) { db_printf("thread at %p swapped out\n", td); return; } if (td == curthread) { frame = (struct amd64_frame *)ddb_regs.tf_rbp; if (frame == NULL) frame = (struct amd64_frame *)(ddb_regs.tf_rsp - 8); callpc = (db_addr_t)ddb_regs.tf_rip; } else { pcb = td->td_pcb; frame = (struct amd64_frame *)pcb->pcb_rbp; if (frame == NULL) frame = (struct amd64_frame *) (pcb->pcb_rsp - 8); callpc = (db_addr_t)pcb->pcb_rip; } db_trace_one_stack(count, have_addr, p, frame, callpc); } static void db_trace_one_stack(int count, boolean_t have_addr, struct proc *p, struct amd64_frame *frame, db_addr_t callpc) { long *argp; boolean_t first; first = TRUE; while (count--) { struct amd64_frame *actframe; int narg; const char * name; db_expr_t offset; c_db_sym_t sym; #define MAXNARG 16 char *argnames[MAXNARG], **argnp = NULL; sym = db_search_symbol(callpc, DB_STGY_ANY, &offset); db_symbol_values(sym, &name, NULL); /* * Attempt to determine a (possibly fake) frame that gives * the caller's pc. It may differ from `frame' if the * current function never sets up a standard frame or hasn't * set one up yet or has just discarded one. The last two * cases can be guessed fairly reliably for code generated * by gcc. The first case is too much trouble to handle in * general because the amount of junk on the stack depends * on the pc (the special handling of "calltrap", etc. in * db_nextframe() works because the `next' pc is special). */ actframe = frame; if (first) { if (!have_addr) { int instr; instr = db_get_value(callpc, 4, FALSE); if ((instr & 0xffffffff) == 0xe5894855) { /* pushq %rbp; movq %rsp, %rbp */ actframe = (struct amd64_frame *) (ddb_regs.tf_rsp - 8); } else if ((instr & 0x00ffffff) == 0x00e58948) { /* movq %rsp, %rbp */ actframe = (struct amd64_frame *) ddb_regs.tf_rsp; if (ddb_regs.tf_rbp == 0) { /* Fake caller's frame better. */ frame = actframe; } } else if ((instr & 0x000000ff) == 0x000000c3) { /* ret */ actframe = (struct amd64_frame *) (ddb_regs.tf_rsp - 8); } else if (offset == 0) { /* Probably a symbol in assembler code. */ actframe = (struct amd64_frame *) (ddb_regs.tf_rsp - 8); } } else if (strcmp(name, "fork_trampoline") == 0) { /* * Don't try to walk back on a stack for a * process that hasn't actually been run yet. */ db_print_stack_entry(name, 0, 0, 0, callpc); break; } first = FALSE; } argp = &actframe->f_arg0; narg = MAXNARG; if (sym != NULL && db_sym_numargs(sym, &narg, argnames)) { argnp = argnames; } else { narg = db_numargs(frame); } db_print_stack_entry(name, narg, argnp, argp, callpc); if (actframe != frame) { /* `frame' belongs to caller. */ callpc = (db_addr_t) db_get_value((long)&actframe->f_retaddr, 8, FALSE); continue; } db_nextframe(&frame, &callpc, p); if (INKERNEL((long) callpc) && !INKERNEL((long) frame)) { sym = db_search_symbol(callpc, DB_STGY_ANY, &offset); db_symbol_values(sym, &name, NULL); db_print_stack_entry(name, 0, 0, 0, callpc); break; } if (!INKERNEL((long) frame)) { break; } } } void db_print_backtrace(void) { register_t ebp; __asm __volatile("movq %%rbp,%0" : "=r" (ebp)); db_stack_trace_cmd(ebp, 1, -1, NULL); } #if 0 #define DB_DRX_FUNC(reg) \ int \ db_ ## reg (vp, valuep, op) \ struct db_variable *vp; \ db_expr_t * valuep; \ int op; \ { \ if (op == DB_VAR_GET) \ *valuep = r ## reg (); \ else \ load_ ## reg (*valuep); \ return (0); \ } DB_DRX_FUNC(dr0) DB_DRX_FUNC(dr1) DB_DRX_FUNC(dr2) DB_DRX_FUNC(dr3) DB_DRX_FUNC(dr4) DB_DRX_FUNC(dr5) DB_DRX_FUNC(dr6) DB_DRX_FUNC(dr7) int amd64_set_watch(watchnum, watchaddr, size, access, d) int watchnum; unsigned int watchaddr; int size; int access; struct dbreg * d; { int i; unsigned int mask; if (watchnum == -1) { for (i = 0, mask = 0x3; i < 4; i++, mask <<= 2) if ((d->dr[7] & mask) == 0) break; if (i < 4) watchnum = i; else return (-1); } switch (access) { case DBREG_DR7_EXEC: size = 1; /* size must be 1 for an execution breakpoint */ /* fall through */ case DBREG_DR7_WRONLY: case DBREG_DR7_RDWR: break; default : return (-1); } /* * we can watch a 1, 2, or 4 byte sized location */ switch (size) { case 1 : mask = 0x00; break; case 2 : mask = 0x01 << 2; break; case 4 : mask = 0x03 << 2; break; default : return (-1); } mask |= access; /* clear the bits we are about to affect */ d->dr[7] &= ~((0x3 << (watchnum*2)) | (0x0f << (watchnum*4+16))); /* set drN register to the address, N=watchnum */ DBREG_DRX(d,watchnum) = watchaddr; /* enable the watchpoint */ d->dr[7] |= (0x2 << (watchnum*2)) | (mask << (watchnum*4+16)); return (watchnum); } int amd64_clr_watch(watchnum, d) int watchnum; struct dbreg * d; { if (watchnum < 0 || watchnum >= 4) return (-1); d->dr[7] = d->dr[7] & ~((0x3 << (watchnum*2)) | (0x0f << (watchnum*4+16))); DBREG_DRX(d,watchnum) = 0; return (0); } int db_md_set_watchpoint(addr, size) db_expr_t addr; db_expr_t size; { int avail, wsize; int i; struct dbreg d; fill_dbregs(NULL, &d); avail = 0; for(i=0; i<4; i++) { if ((d.dr[7] & (3 << (i*2))) == 0) avail++; } if (avail*4 < size) return (-1); for (i=0; i<4 && (size != 0); i++) { if ((d.dr[7] & (3<<(i*2))) == 0) { if (size > 4) wsize = 4; else wsize = size; if (wsize == 3) wsize++; amd64_set_watch(i, addr, wsize, DBREG_DR7_WRONLY, &d); addr += wsize; size -= wsize; } } set_dbregs(NULL, &d); return(0); } int db_md_clr_watchpoint(addr, size) db_expr_t addr; db_expr_t size; { int i; struct dbreg d; fill_dbregs(NULL, &d); for(i=0; i<4; i++) { if (d.dr[7] & (3 << (i*2))) { if ((DBREG_DRX((&d), i) >= addr) && (DBREG_DRX((&d), i) < addr+size)) amd64_clr_watch(i, &d); } } set_dbregs(NULL, &d); return(0); } static char * watchtype_str(type) int type; { switch (type) { case DBREG_DR7_EXEC : return "execute"; break; case DBREG_DR7_RDWR : return "read/write"; break; case DBREG_DR7_WRONLY : return "write"; break; default : return "invalid"; break; } } void db_md_list_watchpoints() { int i; struct dbreg d; fill_dbregs(NULL, &d); db_printf("\nhardware watchpoints:\n"); db_printf(" watch status type len address\n"); db_printf(" ----- -------- ---------- --- ----------\n"); for (i=0; i<4; i++) { if (d.dr[7] & (0x03 << (i*2))) { unsigned type, len; type = (d.dr[7] >> (16+(i*4))) & 3; len = (d.dr[7] >> (16+(i*4)+2)) & 3; db_printf(" %-5d %-8s %10s %3d 0x%08x\n", i, "enabled", watchtype_str(type), len+1, DBREG_DRX((&d),i)); } else { db_printf(" %-5d disabled\n", i); } } db_printf("\ndebug register values:\n"); for (i=0; i<8; i++) { db_printf(" dr%d 0x%08x\n", i, DBREG_DRX((&d),i)); } db_printf("\n"); } #else int db_md_set_watchpoint(addr, size) db_expr_t addr; db_expr_t size; { return (-1); } int db_md_clr_watchpoint(addr, size) db_expr_t addr; db_expr_t size; { return (-1); } void db_md_list_watchpoints() { } #endif