/* * Copyright (c) 1983, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char sccsid[] = "@(#)tables.c 8.1 (Berkeley) 6/5/93"; #endif /* not lint */ #ident "$Revision: 1.2 $" #include "defs.h" struct radix_node_head *rhead; /* root of the radix tree */ int need_flash = 1; /* flash update needed * start =1 to suppress the 1st */ struct timeval age_timer; /* next check of old routes */ struct timeval need_kern = { /* need to update kernel table */ EPOCH+MIN_WAITTIME-1 }; int stopint; naddr age_bad_gate; /* It is desirable to "aggregate" routes, to combine differing routes of * the same metric and next hop into a common route with a smaller netmask * or to suppress redundant routes, routes that add no information to * routes with smaller netmasks. * * A route is redundant if and only if any and all routes with smaller * but matching netmasks and nets are the same. Since routes are * kept sorted in the radix tree, redundant routes always come second. * * There are two kinds of aggregations. First, two routes of the same bit * mask and differing only in the least significant bit of the network * number can be combined into a single route with a coarser mask. * * Second, a route can be suppressed in favor of another route with a more * coarse mask provided no incompatible routes with intermediate masks * are present. The second kind of aggregation involves suppressing routes. * A route must not be suppressed if an incompatible route exists with * an intermediate mask, since the suppressed route would be covered * by the intermediate. * * This code relies on the radix tree walk encountering routes * sorted first by address, with the smallest address first. */ struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest; /* #define DEBUG_AG */ #ifdef DEBUG_AG #define CHECK_AG() {int acnt = 0; struct ag_info *cag; \ for (cag = ag_avail; cag != 0; cag = cag->ag_fine) \ acnt++; \ for (cag = ag_corsest; cag != 0; cag = cag->ag_fine) \ acnt++; \ if (acnt != NUM_AG_SLOTS) { \ (void)fflush(stderr); \ abort(); \ } \ } #else #define CHECK_AG() #endif /* Output the contents of an aggregation table slot. * This function must always be immediately followed with the deletion * of the target slot. */ static void ag_out(struct ag_info *ag, void (*out)(struct ag_info *)) { struct ag_info *ag_cors; naddr bit; /* If we have both the even and odd twins, then the immediate parent, * if it is present is redundant, unless it manages to aggregate * something. On successive calls, this code detects the * even and odd twins, and marks the parent. * * Note that the order in which the radix tree code emits routes * ensures that the twins are seen before the parent is emitted. */ ag_cors = ag->ag_cors; if (ag_cors != 0 && ag_cors->ag_mask == ag->ag_mask<<1 && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) { ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h) ? AGS_REDUN0 : AGS_REDUN1); } /* Skip it if this route is itself redundant. * * It is ok to change the contents of the slot here, since it is * always deleted next. */ if (ag->ag_state & AGS_REDUN0) { if (ag->ag_state & AGS_REDUN1) return; bit = (-ag->ag_mask) >> 1; ag->ag_dst_h |= bit; ag->ag_mask |= bit; } else if (ag->ag_state & AGS_REDUN1) { bit = (-ag->ag_mask) >> 1; ag->ag_mask |= bit; } out(ag); } static void ag_del(struct ag_info *ag) { CHECK_AG(); if (ag->ag_cors == 0) ag_corsest = ag->ag_fine; else ag->ag_cors->ag_fine = ag->ag_fine; if (ag->ag_fine == 0) ag_finest = ag->ag_cors; else ag->ag_fine->ag_cors = ag->ag_cors; ag->ag_fine = ag_avail; ag_avail = ag; CHECK_AG(); } /* Flush routes waiting for aggretation. * This must not suppress a route unless it is known that among all * routes with coarser masks that match it, the one with the longest * mask is appropriate. This is ensured by scanning the routes * in lexical order, and with the most restritive mask first * among routes to the same destination. */ void ag_flush(naddr lim_dst_h, /* flush routes to here */ naddr lim_mask, /* matching this mask */ void (*out)(struct ag_info *)) { struct ag_info *ag, *ag_cors; naddr dst_h; for (ag = ag_finest; ag != 0 && ag->ag_mask >= lim_mask; ag = ag_cors) { ag_cors = ag->ag_cors; /* work on only the specified routes */ dst_h = ag->ag_dst_h; if ((dst_h & lim_mask) != lim_dst_h) continue; if (!(ag->ag_state & AGS_SUPPRESS)) ag_out(ag, out); else for ( ; ; ag_cors = ag_cors->ag_cors) { /* Look for a route that can suppress the * current route */ if (ag_cors == 0) { /* failed, so output it and look for * another route to work on */ ag_out(ag, out); break; } if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) { /* We found a route with a coarser mask that * aggregates the current target. * * If it has a different next hop, it * cannot replace the target, so output * the target. */ if (ag->ag_gate != ag_cors->ag_gate && !(ag->ag_state & AGS_DEAD) && !(ag_cors->ag_state & AGS_RDISC)) { ag_out(ag, out); break; } /* If it has a good enough metric, it replaces * the target. */ if (ag_cors->ag_pref <= ag->ag_pref) { if (ag_cors->ag_seqno > ag->ag_seqno) ag_cors->ag_seqno = ag->ag_seqno; if (AG_IS_REDUN(ag->ag_state) && ag_cors->ag_mask==ag->ag_mask<<1) { if (ag_cors->ag_dst_h == dst_h) ag_cors->ag_state |= AGS_REDUN0; else ag_cors->ag_state |= AGS_REDUN1; } break; } } } /* That route has either been output or suppressed */ ag_cors = ag->ag_cors; ag_del(ag); } CHECK_AG(); } /* Try to aggregate a route with previous routes. */ void ag_check(naddr dst, naddr mask, naddr gate, char metric, char pref, u_int seqno, u_short tag, u_short state, void (*out)(struct ag_info *)) /* output using this */ { struct ag_info *ag, *nag, *ag_cors; naddr xaddr; int x; NTOHL(dst); /* Punt non-contiguous subnet masks. * * (X & -X) contains a single bit if and only if X is a power of 2. * (X + (X & -X)) == 0 if and only if X is a power of 2. */ if ((mask & -mask) + mask != 0) { struct ag_info nc_ag; nc_ag.ag_dst_h = dst; nc_ag.ag_mask = mask; nc_ag.ag_gate = gate; nc_ag.ag_metric = metric; nc_ag.ag_pref = pref; nc_ag.ag_tag = tag; nc_ag.ag_state = state; nc_ag.ag_seqno = seqno; out(&nc_ag); return; } /* Search for the right slot in the aggregation table. */ ag_cors = 0; ag = ag_corsest; while (ag != 0) { if (ag->ag_mask >= mask) break; /* Suppress routes as we look. * A route to an address less than the current destination * will not be affected by the current route or any route * seen hereafter. That means it is safe to suppress it. * This check keeps poor routes (eg. with large hop counts) * from preventing suppresion of finer routes. */ if (ag_cors != 0 && ag->ag_dst_h < dst && (ag->ag_state & AGS_SUPPRESS) && ag_cors->ag_pref <= ag->ag_pref && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h && (ag_cors->ag_gate == ag->ag_gate || (ag->ag_state & AGS_DEAD) || (ag_cors->ag_state & AGS_RDISC))) { if (ag_cors->ag_seqno > ag->ag_seqno) ag_cors->ag_seqno = ag->ag_seqno; if (AG_IS_REDUN(ag->ag_state) && ag_cors->ag_mask==ag->ag_mask<<1) { if (ag_cors->ag_dst_h == dst) ag_cors->ag_state |= AGS_REDUN0; else ag_cors->ag_state |= AGS_REDUN1; } ag_del(ag); CHECK_AG(); } else { ag_cors = ag; } ag = ag_cors->ag_fine; } /* If we find the even/odd twin of the new route, and if the * masks and so forth are equal, we can aggregate them. * We can probably promote one of the pair. * * Since the routes are encountered in lexical order, * the new route must be odd. However, the second or later * times around this loop, it could be the even twin promoted * from the even/odd pair of twins of the finer route. */ while (ag != 0 && ag->ag_mask == mask && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) { /* When a promoted route encounters the same but explicit * route, assume the new one has been promoted, and * so its gateway, metric and tag are right. * * Routes are encountered in lexical order, so an even/odd * pair is never promoted until the parent route is * already present. So we know that the new route * is a promoted pair and the route already in the slot * is the explicit route that was made redundant by * the pair. * * The sequence number only controls flash updating, and * so should be the smaller of the two. */ if (ag->ag_dst_h == dst) { ag->ag_metric = metric; ag->ag_pref = pref; ag->ag_gate = gate; ag->ag_tag = tag; if (ag->ag_seqno > seqno) ag->ag_seqno = seqno; /* some bits are set only if both routes have them */ ag->ag_state &= ~(~state & (AGS_PROMOTE | AGS_RIPV2)); /* others are set if they are set on either route */ ag->ag_state |= (state & (AGS_REDUN0 | AGS_REDUN1 | AGS_GATEWAY | AGS_SUPPRESS)); return; } /* If one of the routes can be promoted and suppressed * and the other can at least be suppressed, they * can be combined. * Note that any route that can be promoted is always * marked to be eligible to be suppressed. */ if (!((state & AGS_PROMOTE) && (ag->ag_state & AGS_SUPPRESS)) && !((ag->ag_state & AGS_PROMOTE) && (state & AGS_SUPPRESS))) break; /* A pair of even/odd twin routes can be combined * if either is redundant, or if they are via the * same gateway and have the same metric. * Except that the kernel does not care about the * metric. */ if (AG_IS_REDUN(ag->ag_state) || AG_IS_REDUN(state) || (ag->ag_gate == gate && ag->ag_pref == pref && (state & ag->ag_state & AGS_PROMOTE) != 0 && ag->ag_tag == tag)) { /* We have both the even and odd pairs. * Since the routes are encountered in order, * the route in the slot must be the even twin. * * Combine and promote the pair of routes. */ if (seqno > ag->ag_seqno) seqno = ag->ag_seqno; if (!AG_IS_REDUN(state)) state &= ~AGS_REDUN1; if (AG_IS_REDUN(ag->ag_state)) state |= AGS_REDUN0; else state &= ~AGS_REDUN0; state |= (ag->ag_state & AGS_RIPV2); /* Get rid of the even twin that was already * in the slot. */ ag_del(ag); } else if (ag->ag_pref >= pref && (ag->ag_state & AGS_PROMOTE)) { /* If we cannot combine the pair, maybe the route * with the worse metric can be promoted. * * Promote the old, even twin, by giving its slot * in the table to the new, odd twin. */ ag->ag_dst_h = dst; xaddr = ag->ag_gate; ag->ag_gate = gate; gate = xaddr; x = ag->ag_tag; ag->ag_tag = tag; tag = x; x = ag->ag_state; ag->ag_state = state; state = x; if (!AG_IS_REDUN(state)) state &= ~AGS_REDUN0; x = ag->ag_metric; ag->ag_metric = metric; metric = x; x = ag->ag_pref; ag->ag_pref = pref; pref = x; if (seqno >= ag->ag_seqno) seqno = ag->ag_seqno; else ag->ag_seqno = seqno; } else { if (!(state & AGS_PROMOTE)) break; /* cannot promote either twin */ /* promote the new, odd twin by shaving its * mask and address. */ if (seqno > ag->ag_seqno) seqno = ag->ag_seqno; else ag->ag_seqno = seqno; if (!AG_IS_REDUN(state)) state &= ~AGS_REDUN1; } mask <<= 1; dst &= mask; if (ag_cors == 0) { ag = ag_corsest; break; } ag = ag_cors; ag_cors = ag->ag_cors; } /* When we can no longer promote and combine routes, * flush the old route in the target slot. Also flush * any finer routes that we know will never be aggregated by * the new route. * * In case we moved toward coarser masks, * get back where we belong */ if (ag != 0 && ag->ag_mask < mask) { ag_cors = ag; ag = ag->ag_fine; } /* Empty the target slot */ if (ag != 0 && ag->ag_mask == mask) { ag_flush(ag->ag_dst_h, ag->ag_mask, out); ag = (ag_cors == 0) ? ag_corsest : ag_cors->ag_fine; } #ifdef DEBUG_AG (void)fflush(stderr); if (ag == 0 && ag_cors != ag_finest) abort(); if (ag_cors == 0 && ag != ag_corsest) abort(); if (ag != 0 && ag->ag_cors != ag_cors) abort(); if (ag_cors != 0 && ag_cors->ag_fine != ag) abort(); CHECK_AG(); #endif /* Save the new route on the end of the table. */ nag = ag_avail; ag_avail = nag->ag_fine; nag->ag_dst_h = dst; nag->ag_mask = mask; nag->ag_gate = gate; nag->ag_metric = metric; nag->ag_pref = pref; nag->ag_tag = tag; nag->ag_state = state; nag->ag_seqno = seqno; nag->ag_fine = ag; if (ag != 0) ag->ag_cors = nag; else ag_finest = nag; nag->ag_cors = ag_cors; if (ag_cors == 0) ag_corsest = nag; else ag_cors->ag_fine = nag; CHECK_AG(); } static char * rtm_type_name(u_char type) { static char *rtm_types[] = { "RTM_ADD", "RTM_DELETE", "RTM_CHANGE", "RTM_GET", "RTM_LOSING", "RTM_REDIRECT", "RTM_MISS", "RTM_LOCK", "RTM_OLDADD", "RTM_OLDDEL", "RTM_RESOLVE", "RTM_NEWADDR", "RTM_DELADDR", "RTM_IFINFO" }; static char name0[10]; if (type > sizeof(rtm_types)/sizeof(rtm_types[0]) || type == 0) { sprintf(name0, "RTM type %#x", type); return name0; } else { return rtm_types[type-1]; } } /* Trim a mask in a sockaddr * Produce a length of 0 for an address of 0. * Otherwise produce the index of the first zero byte. */ void #ifdef _HAVE_SIN_LEN masktrim(struct sockaddr_in *ap) #else masktrim(struct sockaddr_in_new *ap) #endif { register char *cp; if (ap->sin_addr.s_addr == 0) { ap->sin_len = 0; return; } cp = (char *)(&ap->sin_addr.s_addr+1); while (*--cp != 0) continue; ap->sin_len = cp - (char*)ap + 1; } /* Tell the kernel to add, delete or change a route */ static void rtioctl(int action, /* RTM_DELETE, etc */ naddr dst, naddr gate, naddr mask, int metric, int flags) { struct { struct rt_msghdr w_rtm; struct sockaddr_in w_dst; struct sockaddr_in w_gate; #ifdef _HAVE_SA_LEN struct sockaddr_in w_mask; #else struct sockaddr_in_new w_mask; #endif } w; long cc; again: bzero(&w, sizeof(w)); w.w_rtm.rtm_msglen = sizeof(w); w.w_rtm.rtm_version = RTM_VERSION; w.w_rtm.rtm_type = action; w.w_rtm.rtm_flags = flags; w.w_rtm.rtm_seq = ++rt_sock_seqno; w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY; if (metric != 0) { w.w_rtm.rtm_rmx.rmx_hopcount = metric; w.w_rtm.rtm_inits |= RTV_HOPCOUNT; } w.w_dst.sin_family = AF_INET; w.w_dst.sin_addr.s_addr = dst; w.w_gate.sin_family = AF_INET; w.w_gate.sin_addr.s_addr = gate; #ifdef _HAVE_SA_LEN w.w_dst.sin_len = sizeof(w.w_dst); w.w_gate.sin_len = sizeof(w.w_gate); #endif if (mask == HOST_MASK) { w.w_rtm.rtm_flags |= RTF_HOST; w.w_rtm.rtm_msglen -= sizeof(w.w_mask); } else { w.w_rtm.rtm_addrs |= RTA_NETMASK; w.w_mask.sin_addr.s_addr = htonl(mask); #ifdef _HAVE_SA_LEN masktrim(&w.w_mask); if (w.w_mask.sin_len == 0) w.w_mask.sin_len = sizeof(long); w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len); #endif } #ifndef NO_INSTALL cc = write(rt_sock, &w, w.w_rtm.rtm_msglen); if (cc == w.w_rtm.rtm_msglen) return; if (cc < 0) { if (errno == ESRCH && action == RTM_CHANGE) { trace_msg("route to %s disappeared before CHANGE", addrname(dst, mask, 0)); action = RTM_ADD; goto again; } msglog("write(rt_sock) %s %s: %s", rtm_type_name(action), addrname(dst, mask, 0), strerror(errno)); } else { msglog("write(rt_sock) wrote %d instead of %d", cc, w.w_rtm.rtm_msglen); } #endif } #define KHASH_SIZE 71 /* should be prime */ #define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE] static struct khash { struct khash *k_next; naddr k_dst; naddr k_mask; naddr k_gate; short k_metric; u_short k_state; #define KS_NEW 0x001 #define KS_DELETE 0x002 #define KS_ADD 0x004 #define KS_CHANGE 0x008 #define KS_DEL_ADD 0x010 #define KS_STATIC 0x020 #define KS_GATEWAY 0x040 #define KS_DYNAMIC 0x080 #define KS_DELETED 0x100 /* already deleted */ time_t k_hold; time_t k_time; #define K_HOLD_LIM 30 } *khash_bins[KHASH_SIZE]; static struct khash* kern_find(naddr dst, naddr mask, struct khash ***ppk) { struct khash *k, **pk; for (pk = &KHASH(dst,mask); (k = *pk) != 0; pk = &k->k_next) { if (k->k_dst == dst && k->k_mask == mask) break; } if (ppk != 0) *ppk = pk; return k; } static struct khash* kern_add(naddr dst, naddr mask) { struct khash *k, **pk; k = kern_find(dst, mask, &pk); if (k != 0) return k; k = (struct khash *)malloc(sizeof(*k)); bzero(k, sizeof(*k)); k->k_dst = dst; k->k_mask = mask; k->k_state = KS_NEW; k->k_time = now.tv_sec; k->k_hold = now.tv_sec; *pk = k; return k; } /* add a route the kernel told us * rt_xaddrs() must have already been called. */ static void rtm_add(struct rt_msghdr *rtm) { struct khash *k; struct interface *ifp; struct rt_entry *rt; naddr mask; if (rtm->rtm_flags & RTF_HOST) { mask = HOST_MASK; } else if (RTINFO_NETMASK != 0) { mask = ntohl(S_ADDR(RTINFO_NETMASK)); } else { msglog("punt %s without mask", rtm_type_name(rtm->rtm_type)); return; } if (RTINFO_GATE == 0 || RTINFO_GATE->sa_family != AF_INET) { msglog("punt %s without gateway", rtm_type_name(rtm->rtm_type)); return; } k = kern_add(S_ADDR(RTINFO_DST), mask); k->k_gate = S_ADDR(RTINFO_GATE); k->k_metric = rtm->rtm_rmx.rmx_hopcount; if (k->k_metric < 0) k->k_metric = 0; else if (k->k_metric > HOPCNT_INFINITY) k->k_metric = HOPCNT_INFINITY; k->k_state &= ~(KS_NEW | KS_DELETED | KS_GATEWAY | KS_STATIC); if (rtm->rtm_flags & RTF_GATEWAY) k->k_state |= KS_GATEWAY; if (rtm->rtm_flags & RTF_STATIC) k->k_state |= KS_STATIC; if (rtm->rtm_flags & RTF_DYNAMIC) k->k_state |= KS_DYNAMIC; k->k_time = now.tv_sec; k->k_hold = now.tv_sec; /* Put static routes with real metrics into the daemon table so * they can be advertised. */ if (!(k->k_state & KS_STATIC)) return; if (RTINFO_IFP != 0 && RTINFO_IFP->sdl_nlen != 0) { RTINFO_IFP->sdl_data[RTINFO_IFP->sdl_nlen] = '\0'; ifp = ifwithname(RTINFO_IFP->sdl_data, k->k_gate); } else { ifp = iflookup(k->k_gate); } if (ifp == 0) { msglog("static route %s --> %s impossibly lacks ifp", addrname(S_ADDR(RTINFO_DST), mask, 0), naddr_ntoa(k->k_gate)); return; } if (k->k_metric == 0) return; rt = rtget(k->k_dst, k->k_mask); if (rt != 0) { if (rt->rt_ifp != ifp || 0 != (rt->rt_state & RS_NET_S)) { rtdelete(rt); rt = 0; } else if (!(rt->rt_state & (RS_IF | RS_LOCAL | RS_MHOME | RS_GW))) { rtchange(rt, RS_STATIC, k->k_gate, ifp->int_addr, k->k_metric, 0, ifp, now.tv_sec, 0); } } if (rt == 0) rtadd(k->k_dst, k->k_mask, k->k_gate, ifp->int_addr, k->k_metric, 0, RS_STATIC, ifp); } /* deal with packet loss */ static void rtm_lose(struct rt_msghdr *rtm) { if (RTINFO_GATE == 0 || RTINFO_GATE->sa_family != AF_INET) { msglog("punt %s without gateway", rtm_type_name(rtm->rtm_type)); return; } if (!supplier) rdisc_age(S_ADDR(RTINFO_GATE)); age(S_ADDR(RTINFO_GATE)); } /* Clean the kernel table by copying it to the daemon image. * Eventually the daemon will delete any extra routes. */ void flush_kern(void) { size_t needed; int mib[6]; char *buf, *next, *lim; struct rt_msghdr *rtm; struct interface *ifp; static struct sockaddr_in gate_sa; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; /* protocol */ mib[3] = 0; /* wildcard address family */ mib[4] = NET_RT_DUMP; mib[5] = 0; /* no flags */ if (sysctl(mib, 6, 0, &needed, 0, 0) < 0) { DBGERR(1,"RT_DUMP-sysctl-estimate"); return; } buf = malloc(needed); if (sysctl(mib, 6, buf, &needed, 0, 0) < 0) BADERR(1,"RT_DUMP"); lim = buf + needed; for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; rt_xaddrs((struct sockaddr *)(rtm+1), (struct sockaddr *)(next + rtm->rtm_msglen), rtm->rtm_addrs); if (RTINFO_DST == 0 || RTINFO_DST->sa_family != AF_INET) continue; if (RTINFO_GATE == 0) continue; if (RTINFO_GATE->sa_family != AF_INET) { if (RTINFO_GATE->sa_family != AF_LINK) continue; ifp = ifwithindex(((struct sockaddr_dl *) RTINFO_GATE)->sdl_index); if (ifp == 0) continue; gate_sa.sin_addr.s_addr = ifp->int_addr; #ifdef _HAVE_SA_LEN gate_sa.sin_len = sizeof(gate_sa); #endif gate_sa.sin_family = AF_INET; RTINFO_GATE = (struct sockaddr *)&gate_sa; } /* ignore multicast addresses */ if (IN_MULTICAST(ntohl(S_ADDR(RTINFO_DST)))) continue; /* Note static routes and interface routes. */ rtm_add(rtm); } free(buf); } /* Listen to announcements from the kernel */ void read_rt(void) { long cc; struct interface *ifp; naddr mask; union { struct { struct rt_msghdr rtm; struct sockaddr addrs[RTAX_MAX]; } r; struct if_msghdr ifm; } m; char pid_str[10+19+1]; for (;;) { cc = read(rt_sock, &m, sizeof(m)); if (cc <= 0) { if (cc < 0 && errno != EWOULDBLOCK) LOGERR("read(rt_sock)"); return; } if (m.r.rtm.rtm_version != RTM_VERSION) { msglog("bogus routing message version %d", m.r.rtm.rtm_version); continue; } /* Ignore our own results. */ if (m.r.rtm.rtm_type <= RTM_CHANGE && m.r.rtm.rtm_pid == mypid) { static int complained = 0; if (!complained) { msglog("receiving our own change messages"); complained = 1; } continue; } if (m.r.rtm.rtm_type == RTM_IFINFO) { ifp = ifwithindex(m.ifm.ifm_index); if (ifp == 0) trace_msg("note %s with flags %#x" " for index #%d\n", rtm_type_name(m.r.rtm.rtm_type), m.ifm.ifm_flags, m.ifm.ifm_index); else trace_msg("note %s with flags %#x for %s\n", rtm_type_name(m.r.rtm.rtm_type), m.ifm.ifm_flags, ifp->int_name); /* After being informed of a change to an interface, * check them all now if the check would otherwise * be a long time from now, if the interface is * not known, or if the interface has been turned * off or on. */ if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL || ifp == 0 || ((ifp->int_if_flags ^ m.ifm.ifm_flags) & IFF_UP_RUNNING) != 0) ifinit_timer.tv_sec = now.tv_sec; continue; } if (m.r.rtm.rtm_type <= RTM_CHANGE) (void)sprintf(pid_str," from pid %d",m.r.rtm.rtm_pid); else pid_str[0] = '\0'; rt_xaddrs(m.r.addrs, &m.r.addrs[RTAX_MAX], m.r.rtm.rtm_addrs); if (RTINFO_DST == 0) { trace_msg("ignore %s%s without dst\n", rtm_type_name(m.r.rtm.rtm_type), pid_str); continue; } if (RTINFO_DST->sa_family != AF_INET) { trace_msg("ignore %s%s for AF %d\n", rtm_type_name(m.r.rtm.rtm_type), pid_str, RTINFO_DST->sa_family); continue; } mask = ((RTINFO_NETMASK != 0) ? ntohl(S_ADDR(RTINFO_NETMASK)) : (m.r.rtm.rtm_flags & RTF_HOST) ? HOST_MASK : std_mask(S_ADDR(RTINFO_DST))); if (RTINFO_GATE == 0 || RTINFO_GATE->sa_family != AF_INET) { trace_msg("%s for %s%s\n", rtm_type_name(m.r.rtm.rtm_type), addrname(S_ADDR(RTINFO_DST), mask, 0), pid_str); } else { trace_msg("%s %s --> %s%s\n", rtm_type_name(m.r.rtm.rtm_type), addrname(S_ADDR(RTINFO_DST), mask, 0), saddr_ntoa(RTINFO_GATE), pid_str); } switch (m.r.rtm.rtm_type) { case RTM_ADD: case RTM_CHANGE: if (m.r.rtm.rtm_errno != 0) { trace_msg("ignore %s%s with \"%s\" error\n", rtm_type_name(m.r.rtm.rtm_type), pid_str, strerror(m.r.rtm.rtm_errno)); } else { rtm_add(&m.r.rtm); } break; case RTM_REDIRECT: if (m.r.rtm.rtm_errno != 0) { trace_msg("ignore %s with \"%s\" from %s" " for %s-->%s\n", rtm_type_name(m.r.rtm.rtm_type), strerror(m.r.rtm.rtm_errno), saddr_ntoa(RTINFO_AUTHOR), saddr_ntoa(RTINFO_GATE), addrname(S_ADDR(RTINFO_DST), mask, 0)); } else { rtm_add(&m.r.rtm); } break; case RTM_DELETE: if (m.r.rtm.rtm_errno != 0) { trace_msg("ignore %s%s with \"%s\" error\n", rtm_type_name(m.r.rtm.rtm_type), pid_str, strerror(m.r.rtm.rtm_errno)); } else { del_static(S_ADDR(RTINFO_DST), mask, 1); } break; case RTM_LOSING: rtm_lose(&m.r.rtm); break; default: break; } } } /* after aggregating, note routes that belong in the kernel */ static void kern_out(struct ag_info *ag) { struct khash *k; /* Do not install bad routes if they are not already present. * This includes routes that had RS_NET_S for interfaces that * recently died. */ if (ag->ag_metric == HOPCNT_INFINITY && 0 == kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0)) return; k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask); /* will need to add new entry */ if (k->k_state & KS_NEW) { k->k_state = KS_ADD; if (ag->ag_state & AGS_GATEWAY) k->k_state |= KS_GATEWAY; k->k_gate = ag->ag_gate; k->k_metric = ag->ag_metric; return; } /* modify existing kernel entry if necessary */ k->k_state &= ~(KS_DELETE | KS_DYNAMIC); if (k->k_gate != ag->ag_gate || k->k_metric != ag->ag_metric) { k->k_gate = ag->ag_gate; k->k_metric = ag->ag_metric; k->k_state |= KS_CHANGE; } if ((k->k_state & KS_GATEWAY) && !(ag->ag_state & AGS_GATEWAY)) { k->k_state &= ~KS_GATEWAY; k->k_state |= (KS_ADD | KS_DEL_ADD); } else if (!(k->k_state & KS_GATEWAY) && (ag->ag_state & AGS_GATEWAY)) { k->k_state |= KS_GATEWAY; k->k_state |= (KS_ADD | KS_DEL_ADD); } #undef RT } /* ARGSUSED */ static int walk_kern(struct radix_node *rn, struct walkarg *w) { #define RT ((struct rt_entry *)rn) char pref; u_int ags = 0; /* Do not install synthetic routes */ if (0 != (RT->rt_state & RS_NET_S)) return 0; /* Do not install routes for "external" remote interfaces. */ if ((RT->rt_state & RS_IF) && RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL)) return 0; /* If it is not an interface, or an alias for an interface, * it must be a "gateway." * * If it is a "remote" interface, it is also a "gateway" to * the kernel if is not a alias. */ if (!(RT->rt_state & RS_IF) || RT->rt_ifp == 0 || ((RT->rt_ifp->int_state & IS_REMOTE) && RT->rt_ifp->int_metric == 0)) ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_PROMOTE); if (RT->rt_metric == HOPCNT_INFINITY) { pref = HOPCNT_INFINITY; ags |= (AGS_DEAD | AGS_SUPPRESS); } else { pref = 1; } if (RT->rt_state & RS_RDISC) ags |= AGS_RDISC; ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, RT->rt_metric, pref, 0, 0, ags, kern_out); return 0; #undef RT } /* Update the kernel table to match the daemon table. */ void fix_kern(void) { int i, flags; struct khash *k, **pk; need_kern = age_timer; /* Walk daemon table, updating the copy of the kernel table. */ (void)rn_walktree(rhead, walk_kern, 0); ag_flush(0,0,kern_out); for (i = 0; i < KHASH_SIZE; i++) { for (pk = &khash_bins[i]; (k = *pk) != 0; ) { /* Do not touch static routes */ if (k->k_state & KS_STATIC) { pk = &k->k_next; continue; } /* check hold on routes deleted by the operator */ if (k->k_hold > now.tv_sec) { LIM_SEC(need_kern, k->k_hold); pk = &k->k_next; continue; } if (k->k_state & KS_DELETE) { if (!(k->k_state & KS_DELETED)) rtioctl(RTM_DELETE, k->k_dst,k->k_gate, k->k_mask, 0, 0); *pk = k->k_next; free(k); continue; } if (k->k_state & KS_DEL_ADD) rtioctl(RTM_DELETE, k->k_dst,k->k_gate,k->k_mask, 0, 0); flags = (k->k_state & KS_GATEWAY) ? RTF_GATEWAY : 0; if (k->k_state & KS_ADD) { rtioctl(RTM_ADD, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags); } else if (k->k_state & KS_CHANGE) { rtioctl(RTM_CHANGE, k->k_dst,k->k_gate,k->k_mask, k->k_metric, flags); } k->k_state &= ~(KS_ADD | KS_CHANGE | KS_DEL_ADD); /* Unless it seems something else is handling the * routes in the kernel, mark this route to be * deleted in the next cycle. * This deletes routes that disappear from the * daemon table, since the normal aging code * will clear the bit for routes that have not * disappeard from the daemon table. */ if (now.tv_sec >= EPOCH+MIN_WAITTIME-1 && (rip_interfaces != 0 || !supplier)) k->k_state |= KS_DELETE; pk = &k->k_next; } } } /* Delete a static route in the image of the kernel table. */ void del_static(naddr dst, naddr mask, int gone) { struct khash *k; struct rt_entry *rt; /* Just mark it in the table to be deleted next time the kernel * table is updated. * If it has already been deleted, mark it as such, and set its * hold timer so that it will not be deleted again for a while. * This lets the operator delete a route added by the daemon * and add a replacement. */ k = kern_find(dst, mask, 0); if (k != 0) { k->k_state &= ~KS_STATIC; k->k_state |= KS_DELETE; if (gone) { k->k_state |= KS_DELETED; k->k_hold = now.tv_sec + K_HOLD_LIM; } } rt = rtget(dst, mask); if (rt != 0 && (rt->rt_state & RS_STATIC)) rtbad(rt); } /* Delete all routes generated from ICMP Redirects that use a given * gateway. */ void del_redirects(naddr bad_gate, time_t old) { int i; struct khash *k; for (i = 0; i < KHASH_SIZE; i++) { for (k = khash_bins[i]; k != 0; k = k->k_next) { if (!(k->k_state & KS_DYNAMIC) || 0 != (k->k_state & (KS_STATIC | KS_DELETE))) continue; if (k->k_gate != bad_gate && k->k_time > old) continue; k->k_state |= KS_DELETE; need_kern.tv_sec = now.tv_sec; if (TRACEACTIONS) trace_msg("mark redirected %s --> %s" " for deletion\n", addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate)); } } } /* Start the daemon tables. */ void rtinit(void) { extern int max_keylen; int i; struct ag_info *ag; /* Initialize the radix trees */ max_keylen = sizeof(struct sockaddr_in); rn_init(); rn_inithead((void**)&rhead, 32); /* mark all of the slots in the table free */ ag_avail = ag_slots; for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) { ag->ag_fine = ag+1; ag++; } } #ifdef _HAVE_SIN_LEN static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET}; static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET}; #else static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET}; static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET}; #endif void set_need_flash(void) { if (!need_flash) { need_flash = 1; /* Do not send the flash update immediately. Wait a little * while to hear from other routers. */ no_flash.tv_sec = now.tv_sec + MIN_WAITTIME; } } /* Get a particular routing table entry */ struct rt_entry * rtget(naddr dst, naddr mask) { struct rt_entry *rt; dst_sock.sin_addr.s_addr = dst; mask_sock.sin_addr.s_addr = mask; masktrim(&mask_sock); rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead); if (!rt || rt->rt_dst != dst || rt->rt_mask != mask) return 0; return rt; } /* Find a route to dst as the kernel would. */ struct rt_entry * rtfind(naddr dst) { dst_sock.sin_addr.s_addr = dst; return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead); } /* add a route to the table */ void rtadd(naddr dst, naddr mask, naddr gate, /* forward packets here */ naddr router, /* on the authority of this router */ int metric, u_short tag, u_int state, /* RS_ for our table */ struct interface *ifp) { struct rt_entry *rt; naddr smask; int i; struct rt_spare *rts; rt = (struct rt_entry *)malloc(sizeof (*rt)); if (rt == 0) { BADERR(1,"rtadd malloc"); return; } bzero(rt, sizeof(*rt)); for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++) rts->rts_metric = HOPCNT_INFINITY; rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock; rt->rt_dst = dst; rt->rt_dst_sock.sin_family = AF_INET; #ifdef _HAVE_SIN_LEN rt->rt_dst_sock.sin_len = dst_sock.sin_len; #endif if (mask != HOST_MASK) { smask = std_mask(dst); if ((smask & ~mask) == 0 && mask > smask) state |= RS_SUBNET; } mask_sock.sin_addr.s_addr = mask; masktrim(&mask_sock); rt->rt_mask = mask; rt->rt_state = state; rt->rt_gate = gate; rt->rt_router = router; rt->rt_time = now.tv_sec; if (metric == HOPCNT_INFINITY) { rt->rt_time -= POISON_SECS; rt->rt_hold_down = now.tv_sec+HOLD_TIME; } rt->rt_metric = metric; if ((rt->rt_state & RS_NET_S) == 0) rt->rt_hold_metric = metric; else rt->rt_hold_metric = HOPCNT_INFINITY; rt->rt_tag = tag; rt->rt_ifp = ifp; rt->rt_seqno = update_seqno+1; if (TRACEACTIONS) trace_add_del("Add", rt); need_kern.tv_sec = now.tv_sec; set_need_flash(); if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock, rhead, rt->rt_nodes)) { msglog("rnh_addaddr() failed for %s mask=%#x", naddr_ntoa(dst), mask); } } /* notice a changed route */ void rtchange(struct rt_entry *rt, u_int state, /* new state bits */ naddr gate, /* now forward packets here */ naddr router, /* on the authority of this router */ int metric, /* new metric */ u_short tag, struct interface *ifp, time_t new_time, char *label) { if (rt->rt_metric != metric) { /* Hold down the route if it is bad, but only long enough * for neighors that do not implement poison-reverse or * split horizon to hear the bad news. */ if (metric == HOPCNT_INFINITY) { if (new_time > now.tv_sec - POISON_SECS) new_time = now.tv_sec - POISON_SECS; if (!(rt->rt_state & RS_RDISC) && rt->rt_hold_down < now.tv_sec+HOLD_TIME) rt->rt_hold_down = now.tv_sec+HOLD_TIME; if (now.tv_sec < rt->rt_hold_down) LIM_SEC(age_timer, rt->rt_hold_down+1); } else { rt->rt_hold_down = 0; if ((rt->rt_state & RS_NET_S) == 0) rt->rt_hold_metric = metric; } rt->rt_seqno = update_seqno+1; set_need_flash(); } if (rt->rt_gate != gate) { need_kern.tv_sec = now.tv_sec; rt->rt_seqno = update_seqno+1; set_need_flash(); } state |= (rt->rt_state & RS_SUBNET); if (TRACEACTIONS) trace_change(rt, state, gate, router, metric, tag, ifp, new_time, label ? label : "Chg "); rt->rt_state = state; rt->rt_gate = gate; rt->rt_router = router; rt->rt_metric = metric; rt->rt_tag = tag; rt->rt_ifp = ifp; rt->rt_time = new_time; } /* switch to a backup route */ void rtswitch(struct rt_entry *rt, struct rt_spare *rts) { struct rt_spare *rts1, swap; char label[10]; int i; /* Do not change permanent routes */ if (0 != (rt->rt_state & (RS_GW | RS_MHOME | RS_STATIC | RS_IF))) return; /* Do not discard synthetic routes until they go bad */ if (0 != (rt->rt_state & RS_NET_S) && rt->rt_metric < HOPCNT_INFINITY) return; if (rts == 0) { /* find the best alternative among the spares */ rts = rt->rt_spares+1; for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) { if (BETTER_LINK(rts1,rts)) rts = rts1; } } /* Do not bother if it is not worthwhile. */ if (!BETTER_LINK(rts, rt->rt_spares)) return; /* Do not change the route if it is being held down. * Honor the hold-down to counter systems that do not support * split horizon or for other causes of counting to infinity, * and so only for routes worse than our last good route. */ if (now.tv_sec < rt->rt_hold_down && rts->rts_metric > rt->rt_hold_metric) { LIM_SEC(age_timer, rt->rt_hold_down+1); return; } swap = rt->rt_spares[0]; (void)sprintf(label, "Use #%d", rts - rt->rt_spares); rtchange(rt, rt->rt_state & ~(RS_NET_S | RS_RDISC), rts->rts_gate, rts->rts_router, rts->rts_metric, rts->rts_tag, rts->rts_ifp, rts->rts_time, label); *rts = swap; } void rtdelete(struct rt_entry *rt) { struct khash *k; if (TRACEACTIONS) trace_add_del("Del", rt); k = kern_find(rt->rt_dst, rt->rt_mask, 0); if (k != 0) { k->k_state |= KS_DELETE; need_kern.tv_sec = now.tv_sec; } dst_sock.sin_addr.s_addr = rt->rt_dst; mask_sock.sin_addr.s_addr = rt->rt_mask; masktrim(&mask_sock); if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock, rhead)) { msglog("rnh_deladdr() failed"); } else { free(rt); } } /* Get rid of a bad route, and try to switch to a replacement. */ void rtbad(struct rt_entry *rt) { /* Poison the route */ rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), rt->rt_gate, rt->rt_router, HOPCNT_INFINITY, rt->rt_tag, 0, rt->rt_time, 0); rtswitch(rt, 0); } /* Junk a RS_NET_S route, but save if if it is needed by another interface. */ void rtbad_sub(struct rt_entry *rt) { struct interface *ifp, *ifp1; struct intnet *intnetp; u_int state; ifp1 = 0; state = 0; if (rt->rt_state & RS_LOCAL) { /* Is this the route through loopback for the interface? * If so, see if it is used by any other interfaces, a * point-to-point interface with the same local address. */ for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) { if (ifp->int_metric == HOPCNT_INFINITY) continue; /* Save it if another interface needs it */ if (ifp->int_addr == rt->rt_ifp->int_addr) { state |= RS_LOCAL; ifp1 = ifp; break; } } } if (!(state & RS_LOCAL) && (rt->rt_state & RS_NET_S)) { for (ifp = ifnet; ifp != 0; ifp = ifp->int_next) { if (ifp->int_metric == HOPCNT_INFINITY) continue; /* Retain RIPv1 logical network route if * there is another interface that justifies * it. */ if ((ifp->int_state & IS_NEED_NET_SUB) && rt->rt_mask == ifp->int_std_mask && rt->rt_dst == ifp->int_std_addr) { state |= RS_NET_SUB; ifp1 = ifp; } else if ((ifp->int_if_flags & IFF_POINTOPOINT) && rt->rt_mask == ifp->int_host_mask && rt->rt_dst == ifp->int_host_addr && ridhosts) { state |= RS_NET_HOST; ifp1 = ifp; } } if (ifp1 == 0) { for (intnetp = intnets; intnetp != 0; intnetp = intnetp->intnet_next) { if (intnetp->intnet_addr == rt->rt_dst && intnetp->intnet_mask == rt->rt_mask) { state |= RS_NET_SUB; break; } } } } if (ifp1 != 0) { rtchange(rt, (rt->rt_state & ~(RS_NET_S | RS_LOCAL)) | state, rt->rt_gate, rt->rt_router, NET_S_METRIC, rt->rt_tag, ifp1, rt->rt_time, 0); } else { rtbad(rt); } } /* Called while walking the table looking for sick interfaces * or after a time change. */ /* ARGSUSED */ int walk_bad(struct radix_node *rn, struct walkarg *w) { #define RT ((struct rt_entry *)rn) struct rt_spare *rts; int i; time_t new_time; /* fix any spare routes through the interface */ rts = RT->rt_spares; for (i = NUM_SPARES; i != 1; i--) { rts++; if (rts->rts_ifp != 0 && (rts->rts_ifp->int_state & IS_BROKE)) { new_time = rts->rts_time; if (new_time >= now_garbage) new_time = now_garbage-1; if (TRACEACTIONS) trace_upslot(RT, rts, rts->rts_gate, rts->rts_router, 0, HOPCNT_INFINITY, rts->rts_tag, new_time); rts->rts_ifp = 0; rts->rts_metric = HOPCNT_INFINITY; rts->rts_time = new_time; } } /* Deal with the main route */ /* finished if it has been handled before or if its interface is ok */ if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE)) return 0; /* Bad routes for other than interfaces are easy. */ if (!(RT->rt_state & RS_IF)) { rtbad(RT); return 0; } rtbad_sub(RT); return 0; #undef RT } /* Check the age of an individual route. */ /* ARGSUSED */ static int walk_age(struct radix_node *rn, struct walkarg *w) { #define RT ((struct rt_entry *)rn) struct interface *ifp; struct rt_spare *rts; int i; /* age the spare routes */ rts = RT->rt_spares; for (i = NUM_SPARES; i != 0; i--, rts++) { ifp = rts->rts_ifp; if (i == NUM_SPARES) { if (!AGE_RT(RT, ifp)) { /* Keep various things from deciding ageless * routes are stale */ rts->rts_time = now.tv_sec; continue; } /* forget RIP routes after RIP has been turned off. */ if (rip_sock < 0 && !(RT->rt_state & RS_RDISC)) { rtdelete(RT); return 0; } } if (age_bad_gate == rts->rts_gate && rts->rts_time >= now_stale) { /* age failing routes */ rts->rts_time -= SUPPLY_INTERVAL; } else if (ppp_noage && ifp != 0 && (ifp->int_if_flags & IFF_POINTOPOINT) && (ifp->int_state & IS_QUIET)) { /* optionally do not age routes through quiet * point-to-point interfaces */ rts->rts_time = now.tv_sec; continue; } /* trash the spare routes when they go bad */ if (rts->rts_metric < HOPCNT_INFINITY && now_garbage > rts->rts_time) { if (TRACEACTIONS) trace_upslot(RT, rts, rts->rts_gate, rts->rts_router, rts->rts_ifp, HOPCNT_INFINITY, rts->rts_tag, rts->rts_time); rts->rts_metric = HOPCNT_INFINITY; } } /* finished if the active route is still fresh */ if (now_stale <= RT->rt_time) return 0; /* try to switch to an alternative */ if (now.tv_sec < RT->rt_hold_down) { LIM_SEC(age_timer, RT->rt_hold_down+1); return 0; } else { rtswitch(RT, 0); } /* Delete a dead route after it has been publically mourned. */ if (now_garbage > RT->rt_time) { rtdelete(RT); return 0; } /* Start poisoning a bad route before deleting it. */ if (now.tv_sec - RT->rt_time > EXPIRE_TIME) rtchange(RT, RT->rt_state, RT->rt_gate, RT->rt_router, HOPCNT_INFINITY, RT->rt_tag, RT->rt_ifp, RT->rt_time, 0); return 0; } /* Watch for dead routes and interfaces. */ void age(naddr bad_gate) { struct interface *ifp; age_timer.tv_sec = now.tv_sec + (rip_sock < 0 ? NEVER : SUPPLY_INTERVAL); for (ifp = ifnet; ifp; ifp = ifp->int_next) { /* Check for dead IS_REMOTE interfaces by timing their * transmissions. */ if ((ifp->int_state & IS_REMOTE) && !(ifp->int_state & IS_PASSIVE) && (ifp->int_state & IS_ACTIVE)) { LIM_SEC(age_timer, now.tv_sec+SUPPLY_INTERVAL); if (now.tv_sec - ifp->int_act_time > EXPIRE_TIME) ifbad(ifp, "remote interface %s to %s timed out"); } } /* Age routes. */ age_bad_gate = bad_gate; (void)rn_walktree(rhead, walk_age, 0); /* Update the kernel routing table. */ fix_kern(); }