summaryrefslogtreecommitdiff
path: root/ELF/OutputSections.cpp
blob: cb9c57657af32f20a04ceaf5177c2043cdbb5613 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//===- OutputSections.cpp -------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "OutputSections.h"
#include "Config.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Threads.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"

using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

using namespace lld;
using namespace lld::elf;

uint8_t Out::First;
OutputSection *Out::Opd;
uint8_t *Out::OpdBuf;
PhdrEntry *Out::TlsPhdr;
OutputSection *Out::DebugInfo;
OutputSection *Out::ElfHeader;
OutputSection *Out::ProgramHeaders;
OutputSection *Out::PreinitArray;
OutputSection *Out::InitArray;
OutputSection *Out::FiniArray;

uint32_t OutputSection::getPhdrFlags() const {
  uint32_t Ret = PF_R;
  if (Flags & SHF_WRITE)
    Ret |= PF_W;
  if (Flags & SHF_EXECINSTR)
    Ret |= PF_X;
  return Ret;
}

template <class ELFT>
void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) {
  Shdr->sh_entsize = Entsize;
  Shdr->sh_addralign = Alignment;
  Shdr->sh_type = Type;
  Shdr->sh_offset = Offset;
  Shdr->sh_flags = Flags;
  Shdr->sh_info = Info;
  Shdr->sh_link = Link;
  Shdr->sh_addr = Addr;
  Shdr->sh_size = Size;
  Shdr->sh_name = ShName;
}

OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags)
    : SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type,
                  /*Info*/ 0,
                  /*Link*/ 0),
      SectionIndex(INT_MAX) {}

static bool compareByFilePosition(InputSection *A, InputSection *B) {
  // Synthetic doesn't have link order dependecy, stable_sort will keep it last
  if (A->kind() == InputSectionBase::Synthetic ||
      B->kind() == InputSectionBase::Synthetic)
    return false;
  auto *LA = cast<InputSection>(A->getLinkOrderDep());
  auto *LB = cast<InputSection>(B->getLinkOrderDep());
  OutputSection *AOut = LA->OutSec;
  OutputSection *BOut = LB->OutSec;
  if (AOut != BOut)
    return AOut->SectionIndex < BOut->SectionIndex;
  return LA->OutSecOff < LB->OutSecOff;
}

// Compress section contents if this section contains debug info.
template <class ELFT> void OutputSection::maybeCompress() {
  typedef typename ELFT::Chdr Elf_Chdr;

  // Compress only DWARF debug sections.
  if (!Config->CompressDebugSections || (Flags & SHF_ALLOC) ||
      !Name.startswith(".debug_"))
    return;

  // Create a section header.
  ZDebugHeader.resize(sizeof(Elf_Chdr));
  auto *Hdr = reinterpret_cast<Elf_Chdr *>(ZDebugHeader.data());
  Hdr->ch_type = ELFCOMPRESS_ZLIB;
  Hdr->ch_size = Size;
  Hdr->ch_addralign = Alignment;

  // Write section contents to a temporary buffer and compress it.
  std::vector<uint8_t> Buf(Size);
  writeTo<ELFT>(Buf.data());
  if (Error E = zlib::compress(toStringRef(Buf), CompressedData))
    fatal("compress failed: " + llvm::toString(std::move(E)));

  // Update section headers.
  Size = sizeof(Elf_Chdr) + CompressedData.size();
  Flags |= SHF_COMPRESSED;
}

template <class ELFT> void OutputSection::finalize() {
  if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) {
    std::sort(Sections.begin(), Sections.end(), compareByFilePosition);
    assignOffsets();

    // We must preserve the link order dependency of sections with the
    // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
    // need to translate the InputSection sh_link to the OutputSection sh_link,
    // all InputSections in the OutputSection have the same dependency.
    if (auto *D = this->Sections.front()->getLinkOrderDep())
      this->Link = D->OutSec->SectionIndex;
  }

  uint32_t Type = this->Type;
  if (!Config->CopyRelocs || (Type != SHT_RELA && Type != SHT_REL))
    return;

  InputSection *First = Sections[0];
  if (isa<SyntheticSection>(First))
    return;

  this->Link = In<ELFT>::SymTab->OutSec->SectionIndex;
  // sh_info for SHT_REL[A] sections should contain the section header index of
  // the section to which the relocation applies.
  InputSectionBase *S = First->getRelocatedSection();
  this->Info = S->OutSec->SectionIndex;
}

static uint64_t updateOffset(uint64_t Off, InputSection *S) {
  Off = alignTo(Off, S->Alignment);
  S->OutSecOff = Off;
  return Off + S->getSize();
}

void OutputSection::addSection(InputSection *S) {
  assert(S->Live);
  Sections.push_back(S);
  S->OutSec = this;
  this->updateAlignment(S->Alignment);

  // The actual offsets will be computed by assignAddresses. For now, use
  // crude approximation so that it is at least easy for other code to know the
  // section order. It is also used to calculate the output section size early
  // for compressed debug sections.
  this->Size = updateOffset(Size, S);

  // If this section contains a table of fixed-size entries, sh_entsize
  // holds the element size. Consequently, if this contains two or more
  // input sections, all of them must have the same sh_entsize. However,
  // you can put different types of input sections into one output
  // sectin by using linker scripts. I don't know what to do here.
  // Probably we sholuld handle that as an error. But for now we just
  // pick the largest sh_entsize.
  this->Entsize = std::max(this->Entsize, S->Entsize);
}

// This function is called after we sort input sections
// and scan relocations to setup sections' offsets.
void OutputSection::assignOffsets() {
  uint64_t Off = 0;
  for (InputSection *S : Sections)
    Off = updateOffset(Off, S);
  this->Size = Off;
}

void OutputSection::sort(std::function<int(InputSectionBase *S)> Order) {
  typedef std::pair<unsigned, InputSection *> Pair;
  auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };

  std::vector<Pair> V;
  for (InputSection *S : Sections)
    V.push_back({Order(S), S});
  std::stable_sort(V.begin(), V.end(), Comp);
  Sections.clear();
  for (Pair &P : V)
    Sections.push_back(P.second);
}

// Sorts input sections by section name suffixes, so that .foo.N comes
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
// We want to keep the original order if the priorities are the same
// because the compiler keeps the original initialization order in a
// translation unit and we need to respect that.
// For more detail, read the section of the GCC's manual about init_priority.
void OutputSection::sortInitFini() {
  // Sort sections by priority.
  sort([](InputSectionBase *S) { return getPriority(S->Name); });
}

// Returns true if S matches /Filename.?\.o$/.
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
  if (!S.endswith(".o"))
    return false;
  S = S.drop_back(2);
  if (S.endswith(Filename))
    return true;
  return !S.empty() && S.drop_back().endswith(Filename);
}

static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }

// .ctors and .dtors are sorted by this priority from highest to lowest.
//
//  1. The section was contained in crtbegin (crtbegin contains
//     some sentinel value in its .ctors and .dtors so that the runtime
//     can find the beginning of the sections.)
//
//  2. The section has an optional priority value in the form of ".ctors.N"
//     or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
//     they are compared as string rather than number.
//
//  3. The section is just ".ctors" or ".dtors".
//
//  4. The section was contained in crtend, which contains an end marker.
//
// In an ideal world, we don't need this function because .init_array and
// .ctors are duplicate features (and .init_array is newer.) However, there
// are too many real-world use cases of .ctors, so we had no choice to
// support that with this rather ad-hoc semantics.
static bool compCtors(const InputSection *A, const InputSection *B) {
  bool BeginA = isCrtbegin(A->File->getName());
  bool BeginB = isCrtbegin(B->File->getName());
  if (BeginA != BeginB)
    return BeginA;
  bool EndA = isCrtend(A->File->getName());
  bool EndB = isCrtend(B->File->getName());
  if (EndA != EndB)
    return EndB;
  StringRef X = A->Name;
  StringRef Y = B->Name;
  assert(X.startswith(".ctors") || X.startswith(".dtors"));
  assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
  X = X.substr(6);
  Y = Y.substr(6);
  if (X.empty() && Y.empty())
    return false;
  return X < Y;
}

// Sorts input sections by the special rules for .ctors and .dtors.
// Unfortunately, the rules are different from the one for .{init,fini}_array.
// Read the comment above.
void OutputSection::sortCtorsDtors() {
  std::stable_sort(Sections.begin(), Sections.end(), compCtors);
}

// Fill [Buf, Buf + Size) with Filler.
// This is used for linker script "=fillexp" command.
static void fill(uint8_t *Buf, size_t Size, uint32_t Filler) {
  size_t I = 0;
  for (; I + 4 < Size; I += 4)
    memcpy(Buf + I, &Filler, 4);
  memcpy(Buf + I, &Filler, Size - I);
}

uint32_t OutputSection::getFiller() {
  // Determine what to fill gaps between InputSections with, as specified by the
  // linker script. If nothing is specified and this is an executable section,
  // fall back to trap instructions to prevent bad diassembly and detect invalid
  // jumps to padding.
  if (Optional<uint32_t> Filler = Script->getFiller(Name))
    return *Filler;
  if (Flags & SHF_EXECINSTR)
    return Target->TrapInstr;
  return 0;
}

template <class ELFT> void OutputSection::writeTo(uint8_t *Buf) {
  Loc = Buf;

  // We may have already rendered compressed content when using
  // -compress-debug-sections option. Write it together with header.
  if (!CompressedData.empty()) {
    memcpy(Buf, ZDebugHeader.data(), ZDebugHeader.size());
    memcpy(Buf + ZDebugHeader.size(), CompressedData.data(),
           CompressedData.size());
    return;
  }

  // Write leading padding.
  uint32_t Filler = getFiller();
  if (Filler)
    fill(Buf, Sections.empty() ? Size : Sections[0]->OutSecOff, Filler);

  parallelFor(0, Sections.size(), [=](size_t I) {
    InputSection *Sec = Sections[I];
    Sec->writeTo<ELFT>(Buf);

    // Fill gaps between sections.
    if (Filler) {
      uint8_t *Start = Buf + Sec->OutSecOff + Sec->getSize();
      uint8_t *End;
      if (I + 1 == Sections.size())
        End = Buf + Size;
      else
        End = Buf + Sections[I + 1]->OutSecOff;
      fill(Start, End - Start, Filler);
    }
  });

  // Linker scripts may have BYTE()-family commands with which you
  // can write arbitrary bytes to the output. Process them if any.
  Script->writeDataBytes(this, Buf);
}

static uint64_t getOutFlags(InputSectionBase *S) {
  return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED;
}

static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) {
  //  The ELF spec just says
  // ----------------------------------------------------------------
  // In the first phase, input sections that match in name, type and
  // attribute flags should be concatenated into single sections.
  // ----------------------------------------------------------------
  //
  // However, it is clear that at least some flags have to be ignored for
  // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
  // ignored. We should not have two output .text sections just because one was
  // in a group and another was not for example.
  //
  // It also seems that that wording was a late addition and didn't get the
  // necessary scrutiny.
  //
  // Merging sections with different flags is expected by some users. One
  // reason is that if one file has
  //
  // int *const bar __attribute__((section(".foo"))) = (int *)0;
  //
  // gcc with -fPIC will produce a read only .foo section. But if another
  // file has
  //
  // int zed;
  // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
  //
  // gcc with -fPIC will produce a read write section.
  //
  // Last but not least, when using linker script the merge rules are forced by
  // the script. Unfortunately, linker scripts are name based. This means that
  // expressions like *(.foo*) can refer to multiple input sections with
  // different flags. We cannot put them in different output sections or we
  // would produce wrong results for
  //
  // start = .; *(.foo.*) end = .; *(.bar)
  //
  // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
  // another. The problem is that there is no way to layout those output
  // sections such that the .foo sections are the only thing between the start
  // and end symbols.
  //
  // Given the above issues, we instead merge sections by name and error on
  // incompatible types and flags.

  uint32_t Alignment = 0;
  uint64_t Flags = 0;
  if (Config->Relocatable && (C->Flags & SHF_MERGE)) {
    Alignment = std::max<uint64_t>(C->Alignment, C->Entsize);
    Flags = C->Flags & (SHF_MERGE | SHF_STRINGS);
  }

  return SectionKey{OutsecName, Flags, Alignment};
}

OutputSectionFactory::OutputSectionFactory(
    std::vector<OutputSection *> &OutputSections)
    : OutputSections(OutputSections) {}

static uint64_t getIncompatibleFlags(uint64_t Flags) {
  return Flags & (SHF_ALLOC | SHF_TLS);
}

// We allow sections of types listed below to merged into a
// single progbits section. This is typically done by linker
// scripts. Merging nobits and progbits will force disk space
// to be allocated for nobits sections. Other ones don't require
// any special treatment on top of progbits, so there doesn't
// seem to be a harm in merging them.
static bool canMergeToProgbits(unsigned Type) {
  return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY ||
         Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY ||
         Type == SHT_NOTE;
}

static void reportDiscarded(InputSectionBase *IS) {
  if (!Config->PrintGcSections)
    return;
  message("removing unused section from '" + IS->Name + "' in file '" +
          IS->File->getName());
}

void OutputSectionFactory::addInputSec(InputSectionBase *IS,
                                       StringRef OutsecName) {
  SectionKey Key = createKey(IS, OutsecName);
  OutputSection *&Sec = Map[Key];
  return addInputSec(IS, OutsecName, Sec);
}

void OutputSectionFactory::addInputSec(InputSectionBase *IS,
                                       StringRef OutsecName,
                                       OutputSection *&Sec) {
  if (!IS->Live) {
    reportDiscarded(IS);
    return;
  }

  uint64_t Flags = getOutFlags(IS);
  if (Sec) {
    if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags))
      error("incompatible section flags for " + Sec->Name +
            "\n>>> " + toString(IS) + ": 0x" + utohexstr(IS->Flags) +
            "\n>>> output section " + Sec->Name + ": 0x" +
            utohexstr(Sec->Flags));
    if (Sec->Type != IS->Type) {
      if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type))
        Sec->Type = SHT_PROGBITS;
      else
        error("Section has different type from others with the same name " +
              toString(IS));
    }
    Sec->Flags |= Flags;
  } else {
    Sec = make<OutputSection>(OutsecName, IS->Type, Flags);
    OutputSections.push_back(Sec);
  }

  Sec->addSection(cast<InputSection>(IS));
}

OutputSectionFactory::~OutputSectionFactory() {}

SectionKey DenseMapInfo<SectionKey>::getEmptyKey() {
  return SectionKey{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0};
}

SectionKey DenseMapInfo<SectionKey>::getTombstoneKey() {
  return SectionKey{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0};
}

unsigned DenseMapInfo<SectionKey>::getHashValue(const SectionKey &Val) {
  return hash_combine(Val.Name, Val.Flags, Val.Alignment);
}

bool DenseMapInfo<SectionKey>::isEqual(const SectionKey &LHS,
                                       const SectionKey &RHS) {
  return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
         LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment;
}

uint64_t elf::getHeaderSize() {
  if (Config->OFormatBinary)
    return 0;
  return Out::ElfHeader->Size + Out::ProgramHeaders->Size;
}

template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);

template void OutputSection::finalize<ELF32LE>();
template void OutputSection::finalize<ELF32BE>();
template void OutputSection::finalize<ELF64LE>();
template void OutputSection::finalize<ELF64BE>();

template void OutputSection::maybeCompress<ELF32LE>();
template void OutputSection::maybeCompress<ELF32BE>();
template void OutputSection::maybeCompress<ELF64LE>();
template void OutputSection::maybeCompress<ELF64BE>();

template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf);
template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf);
template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf);
template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf);