aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Vectorize
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Vectorize
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize')
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp1248
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp1250
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h287
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp7694
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp6923
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h126
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp751
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlan.h1688
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h40
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp354
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h71
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp84
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h35
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h44
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp248
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h74
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp467
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h186
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp132
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h43
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp42
21 files changed, 0 insertions, 21787 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
deleted file mode 100644
index 4273080ddd91..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
+++ /dev/null
@@ -1,1248 +0,0 @@
-//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass merges loads/stores to/from sequential memory addresses into vector
-// loads/stores. Although there's nothing GPU-specific in here, this pass is
-// motivated by the microarchitectural quirks of nVidia and AMD GPUs.
-//
-// (For simplicity below we talk about loads only, but everything also applies
-// to stores.)
-//
-// This pass is intended to be run late in the pipeline, after other
-// vectorization opportunities have been exploited. So the assumption here is
-// that immediately following our new vector load we'll need to extract out the
-// individual elements of the load, so we can operate on them individually.
-//
-// On CPUs this transformation is usually not beneficial, because extracting the
-// elements of a vector register is expensive on most architectures. It's
-// usually better just to load each element individually into its own scalar
-// register.
-//
-// However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
-// "vector load" loads directly into a series of scalar registers. In effect,
-// extracting the elements of the vector is free. It's therefore always
-// beneficial to vectorize a sequence of loads on these architectures.
-//
-// Vectorizing (perhaps a better name might be "coalescing") loads can have
-// large performance impacts on GPU kernels, and opportunities for vectorizing
-// are common in GPU code. This pass tries very hard to find such
-// opportunities; its runtime is quadratic in the number of loads in a BB.
-//
-// Some CPU architectures, such as ARM, have instructions that load into
-// multiple scalar registers, similar to a GPU vectorized load. In theory ARM
-// could use this pass (with some modifications), but currently it implements
-// its own pass to do something similar to what we do here.
-
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/OrderedBasicBlock.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Vectorize.h"
-#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdlib>
-#include <tuple>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "load-store-vectorizer"
-
-STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
-STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
-
-// FIXME: Assuming stack alignment of 4 is always good enough
-static const unsigned StackAdjustedAlignment = 4;
-
-namespace {
-
-/// ChainID is an arbitrary token that is allowed to be different only for the
-/// accesses that are guaranteed to be considered non-consecutive by
-/// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
-/// together and reducing the number of instructions the main search operates on
-/// at a time, i.e. this is to reduce compile time and nothing else as the main
-/// search has O(n^2) time complexity. The underlying type of ChainID should not
-/// be relied upon.
-using ChainID = const Value *;
-using InstrList = SmallVector<Instruction *, 8>;
-using InstrListMap = MapVector<ChainID, InstrList>;
-
-class Vectorizer {
- Function &F;
- AliasAnalysis &AA;
- DominatorTree &DT;
- ScalarEvolution &SE;
- TargetTransformInfo &TTI;
- const DataLayout &DL;
- IRBuilder<> Builder;
-
-public:
- Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
- ScalarEvolution &SE, TargetTransformInfo &TTI)
- : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
- DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
-
- bool run();
-
-private:
- unsigned getPointerAddressSpace(Value *I);
-
- unsigned getAlignment(LoadInst *LI) const {
- unsigned Align = LI->getAlignment();
- if (Align != 0)
- return Align;
-
- return DL.getABITypeAlignment(LI->getType());
- }
-
- unsigned getAlignment(StoreInst *SI) const {
- unsigned Align = SI->getAlignment();
- if (Align != 0)
- return Align;
-
- return DL.getABITypeAlignment(SI->getValueOperand()->getType());
- }
-
- static const unsigned MaxDepth = 3;
-
- bool isConsecutiveAccess(Value *A, Value *B);
- bool areConsecutivePointers(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
- unsigned Depth = 0) const;
- bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
- unsigned Depth) const;
- bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
- unsigned Depth) const;
-
- /// After vectorization, reorder the instructions that I depends on
- /// (the instructions defining its operands), to ensure they dominate I.
- void reorder(Instruction *I);
-
- /// Returns the first and the last instructions in Chain.
- std::pair<BasicBlock::iterator, BasicBlock::iterator>
- getBoundaryInstrs(ArrayRef<Instruction *> Chain);
-
- /// Erases the original instructions after vectorizing.
- void eraseInstructions(ArrayRef<Instruction *> Chain);
-
- /// "Legalize" the vector type that would be produced by combining \p
- /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
- /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
- /// expected to have more than 4 elements.
- std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
- splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
-
- /// Finds the largest prefix of Chain that's vectorizable, checking for
- /// intervening instructions which may affect the memory accessed by the
- /// instructions within Chain.
- ///
- /// The elements of \p Chain must be all loads or all stores and must be in
- /// address order.
- ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
-
- /// Collects load and store instructions to vectorize.
- std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
-
- /// Processes the collected instructions, the \p Map. The values of \p Map
- /// should be all loads or all stores.
- bool vectorizeChains(InstrListMap &Map);
-
- /// Finds the load/stores to consecutive memory addresses and vectorizes them.
- bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
-
- /// Vectorizes the load instructions in Chain.
- bool
- vectorizeLoadChain(ArrayRef<Instruction *> Chain,
- SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
-
- /// Vectorizes the store instructions in Chain.
- bool
- vectorizeStoreChain(ArrayRef<Instruction *> Chain,
- SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
-
- /// Check if this load/store access is misaligned accesses.
- bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
- unsigned Alignment);
-};
-
-class LoadStoreVectorizerLegacyPass : public FunctionPass {
-public:
- static char ID;
-
- LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
- initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override;
-
- StringRef getPassName() const override {
- return "GPU Load and Store Vectorizer";
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.setPreservesCFG();
- }
-};
-
-} // end anonymous namespace
-
-char LoadStoreVectorizerLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
- "Vectorize load and Store instructions", false, false)
-INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
- "Vectorize load and store instructions", false, false)
-
-Pass *llvm::createLoadStoreVectorizerPass() {
- return new LoadStoreVectorizerLegacyPass();
-}
-
-bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
-
- AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
-
- Vectorizer V(F, AA, DT, SE, TTI);
- return V.run();
-}
-
-PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return PreservedAnalyses::all();
-
- AliasAnalysis &AA = AM.getResult<AAManager>(F);
- DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
- ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
-
- Vectorizer V(F, AA, DT, SE, TTI);
- bool Changed = V.run();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return Changed ? PA : PreservedAnalyses::all();
-}
-
-// The real propagateMetadata expects a SmallVector<Value*>, but we deal in
-// vectors of Instructions.
-static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
- SmallVector<Value *, 8> VL(IL.begin(), IL.end());
- propagateMetadata(I, VL);
-}
-
-// Vectorizer Implementation
-bool Vectorizer::run() {
- bool Changed = false;
-
- // Scan the blocks in the function in post order.
- for (BasicBlock *BB : post_order(&F)) {
- InstrListMap LoadRefs, StoreRefs;
- std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
- Changed |= vectorizeChains(LoadRefs);
- Changed |= vectorizeChains(StoreRefs);
- }
-
- return Changed;
-}
-
-unsigned Vectorizer::getPointerAddressSpace(Value *I) {
- if (LoadInst *L = dyn_cast<LoadInst>(I))
- return L->getPointerAddressSpace();
- if (StoreInst *S = dyn_cast<StoreInst>(I))
- return S->getPointerAddressSpace();
- return -1;
-}
-
-// FIXME: Merge with llvm::isConsecutiveAccess
-bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
- Value *PtrA = getLoadStorePointerOperand(A);
- Value *PtrB = getLoadStorePointerOperand(B);
- unsigned ASA = getPointerAddressSpace(A);
- unsigned ASB = getPointerAddressSpace(B);
-
- // Check that the address spaces match and that the pointers are valid.
- if (!PtrA || !PtrB || (ASA != ASB))
- return false;
-
- // Make sure that A and B are different pointers of the same size type.
- Type *PtrATy = PtrA->getType()->getPointerElementType();
- Type *PtrBTy = PtrB->getType()->getPointerElementType();
- if (PtrA == PtrB ||
- PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
- DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
- DL.getTypeStoreSize(PtrATy->getScalarType()) !=
- DL.getTypeStoreSize(PtrBTy->getScalarType()))
- return false;
-
- unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
- APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
-
- return areConsecutivePointers(PtrA, PtrB, Size);
-}
-
-bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
- const APInt &PtrDelta,
- unsigned Depth) const {
- unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
- APInt OffsetA(PtrBitWidth, 0);
- APInt OffsetB(PtrBitWidth, 0);
- PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
- PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
-
- APInt OffsetDelta = OffsetB - OffsetA;
-
- // Check if they are based on the same pointer. That makes the offsets
- // sufficient.
- if (PtrA == PtrB)
- return OffsetDelta == PtrDelta;
-
- // Compute the necessary base pointer delta to have the necessary final delta
- // equal to the pointer delta requested.
- APInt BaseDelta = PtrDelta - OffsetDelta;
-
- // Compute the distance with SCEV between the base pointers.
- const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
- const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
- const SCEV *C = SE.getConstant(BaseDelta);
- const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
- if (X == PtrSCEVB)
- return true;
-
- // The above check will not catch the cases where one of the pointers is
- // factorized but the other one is not, such as (C + (S * (A + B))) vs
- // (AS + BS). Get the minus scev. That will allow re-combining the expresions
- // and getting the simplified difference.
- const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
- if (C == Dist)
- return true;
-
- // Sometimes even this doesn't work, because SCEV can't always see through
- // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
- // things the hard way.
- return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
-}
-
-bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
- APInt PtrDelta,
- unsigned Depth) const {
- auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
- auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
- if (!GEPA || !GEPB)
- return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
-
- // Look through GEPs after checking they're the same except for the last
- // index.
- if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
- GEPA->getPointerOperand() != GEPB->getPointerOperand())
- return false;
- gep_type_iterator GTIA = gep_type_begin(GEPA);
- gep_type_iterator GTIB = gep_type_begin(GEPB);
- for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
- if (GTIA.getOperand() != GTIB.getOperand())
- return false;
- ++GTIA;
- ++GTIB;
- }
-
- Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
- Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
- if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
- OpA->getType() != OpB->getType())
- return false;
-
- if (PtrDelta.isNegative()) {
- if (PtrDelta.isMinSignedValue())
- return false;
- PtrDelta.negate();
- std::swap(OpA, OpB);
- }
- uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
- if (PtrDelta.urem(Stride) != 0)
- return false;
- unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
- APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
-
- // Only look through a ZExt/SExt.
- if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
- return false;
-
- bool Signed = isa<SExtInst>(OpA);
-
- // At this point A could be a function parameter, i.e. not an instruction
- Value *ValA = OpA->getOperand(0);
- OpB = dyn_cast<Instruction>(OpB->getOperand(0));
- if (!OpB || ValA->getType() != OpB->getType())
- return false;
-
- // Now we need to prove that adding IdxDiff to ValA won't overflow.
- bool Safe = false;
- // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
- // ValA, we're okay.
- if (OpB->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(OpB->getOperand(1)) &&
- IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) {
- if (Signed)
- Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap();
- else
- Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap();
- }
-
- unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
-
- // Second attempt:
- // If all set bits of IdxDiff or any higher order bit other than the sign bit
- // are known to be zero in ValA, we can add Diff to it while guaranteeing no
- // overflow of any sort.
- if (!Safe) {
- OpA = dyn_cast<Instruction>(ValA);
- if (!OpA)
- return false;
- KnownBits Known(BitWidth);
- computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT);
- APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
- if (Signed)
- BitsAllowedToBeSet.clearBit(BitWidth - 1);
- if (BitsAllowedToBeSet.ult(IdxDiff))
- return false;
- }
-
- const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
- const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
- const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
- const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
- return X == OffsetSCEVB;
-}
-
-bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
- const APInt &PtrDelta,
- unsigned Depth) const {
- if (Depth++ == MaxDepth)
- return false;
-
- if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
- if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
- return SelectA->getCondition() == SelectB->getCondition() &&
- areConsecutivePointers(SelectA->getTrueValue(),
- SelectB->getTrueValue(), PtrDelta, Depth) &&
- areConsecutivePointers(SelectA->getFalseValue(),
- SelectB->getFalseValue(), PtrDelta, Depth);
- }
- }
- return false;
-}
-
-void Vectorizer::reorder(Instruction *I) {
- OrderedBasicBlock OBB(I->getParent());
- SmallPtrSet<Instruction *, 16> InstructionsToMove;
- SmallVector<Instruction *, 16> Worklist;
-
- Worklist.push_back(I);
- while (!Worklist.empty()) {
- Instruction *IW = Worklist.pop_back_val();
- int NumOperands = IW->getNumOperands();
- for (int i = 0; i < NumOperands; i++) {
- Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
- if (!IM || IM->getOpcode() == Instruction::PHI)
- continue;
-
- // If IM is in another BB, no need to move it, because this pass only
- // vectorizes instructions within one BB.
- if (IM->getParent() != I->getParent())
- continue;
-
- if (!OBB.dominates(IM, I)) {
- InstructionsToMove.insert(IM);
- Worklist.push_back(IM);
- }
- }
- }
-
- // All instructions to move should follow I. Start from I, not from begin().
- for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
- ++BBI) {
- if (!InstructionsToMove.count(&*BBI))
- continue;
- Instruction *IM = &*BBI;
- --BBI;
- IM->removeFromParent();
- IM->insertBefore(I);
- }
-}
-
-std::pair<BasicBlock::iterator, BasicBlock::iterator>
-Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
- Instruction *C0 = Chain[0];
- BasicBlock::iterator FirstInstr = C0->getIterator();
- BasicBlock::iterator LastInstr = C0->getIterator();
-
- BasicBlock *BB = C0->getParent();
- unsigned NumFound = 0;
- for (Instruction &I : *BB) {
- if (!is_contained(Chain, &I))
- continue;
-
- ++NumFound;
- if (NumFound == 1) {
- FirstInstr = I.getIterator();
- }
- if (NumFound == Chain.size()) {
- LastInstr = I.getIterator();
- break;
- }
- }
-
- // Range is [first, last).
- return std::make_pair(FirstInstr, ++LastInstr);
-}
-
-void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
- SmallVector<Instruction *, 16> Instrs;
- for (Instruction *I : Chain) {
- Value *PtrOperand = getLoadStorePointerOperand(I);
- assert(PtrOperand && "Instruction must have a pointer operand.");
- Instrs.push_back(I);
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
- Instrs.push_back(GEP);
- }
-
- // Erase instructions.
- for (Instruction *I : Instrs)
- if (I->use_empty())
- I->eraseFromParent();
-}
-
-std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
-Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
- unsigned ElementSizeBits) {
- unsigned ElementSizeBytes = ElementSizeBits / 8;
- unsigned SizeBytes = ElementSizeBytes * Chain.size();
- unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
- if (NumLeft == Chain.size()) {
- if ((NumLeft & 1) == 0)
- NumLeft /= 2; // Split even in half
- else
- --NumLeft; // Split off last element
- } else if (NumLeft == 0)
- NumLeft = 1;
- return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
-}
-
-ArrayRef<Instruction *>
-Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
- // These are in BB order, unlike Chain, which is in address order.
- SmallVector<Instruction *, 16> MemoryInstrs;
- SmallVector<Instruction *, 16> ChainInstrs;
-
- bool IsLoadChain = isa<LoadInst>(Chain[0]);
- LLVM_DEBUG({
- for (Instruction *I : Chain) {
- if (IsLoadChain)
- assert(isa<LoadInst>(I) &&
- "All elements of Chain must be loads, or all must be stores.");
- else
- assert(isa<StoreInst>(I) &&
- "All elements of Chain must be loads, or all must be stores.");
- }
- });
-
- for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
- if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
- if (!is_contained(Chain, &I))
- MemoryInstrs.push_back(&I);
- else
- ChainInstrs.push_back(&I);
- } else if (isa<IntrinsicInst>(&I) &&
- cast<IntrinsicInst>(&I)->getIntrinsicID() ==
- Intrinsic::sideeffect) {
- // Ignore llvm.sideeffect calls.
- } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
- LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
- << '\n');
- break;
- } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
- LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
- << '\n');
- break;
- }
- }
-
- OrderedBasicBlock OBB(Chain[0]->getParent());
-
- // Loop until we find an instruction in ChainInstrs that we can't vectorize.
- unsigned ChainInstrIdx = 0;
- Instruction *BarrierMemoryInstr = nullptr;
-
- for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
- Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
-
- // If a barrier memory instruction was found, chain instructions that follow
- // will not be added to the valid prefix.
- if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr))
- break;
-
- // Check (in BB order) if any instruction prevents ChainInstr from being
- // vectorized. Find and store the first such "conflicting" instruction.
- for (Instruction *MemInstr : MemoryInstrs) {
- // If a barrier memory instruction was found, do not check past it.
- if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr))
- break;
-
- auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
- auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
- if (MemLoad && ChainLoad)
- continue;
-
- // We can ignore the alias if the we have a load store pair and the load
- // is known to be invariant. The load cannot be clobbered by the store.
- auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
- return LI->getMetadata(LLVMContext::MD_invariant_load);
- };
-
- // We can ignore the alias as long as the load comes before the store,
- // because that means we won't be moving the load past the store to
- // vectorize it (the vectorized load is inserted at the location of the
- // first load in the chain).
- if (isa<StoreInst>(MemInstr) && ChainLoad &&
- (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr)))
- continue;
-
- // Same case, but in reverse.
- if (MemLoad && isa<StoreInst>(ChainInstr) &&
- (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr)))
- continue;
-
- if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
- MemoryLocation::get(ChainInstr))) {
- LLVM_DEBUG({
- dbgs() << "LSV: Found alias:\n"
- " Aliasing instruction and pointer:\n"
- << " " << *MemInstr << '\n'
- << " " << *getLoadStorePointerOperand(MemInstr) << '\n'
- << " Aliased instruction and pointer:\n"
- << " " << *ChainInstr << '\n'
- << " " << *getLoadStorePointerOperand(ChainInstr) << '\n';
- });
- // Save this aliasing memory instruction as a barrier, but allow other
- // instructions that precede the barrier to be vectorized with this one.
- BarrierMemoryInstr = MemInstr;
- break;
- }
- }
- // Continue the search only for store chains, since vectorizing stores that
- // precede an aliasing load is valid. Conversely, vectorizing loads is valid
- // up to an aliasing store, but should not pull loads from further down in
- // the basic block.
- if (IsLoadChain && BarrierMemoryInstr) {
- // The BarrierMemoryInstr is a store that precedes ChainInstr.
- assert(OBB.dominates(BarrierMemoryInstr, ChainInstr));
- break;
- }
- }
-
- // Find the largest prefix of Chain whose elements are all in
- // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of
- // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB
- // order.)
- SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
- ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
- unsigned ChainIdx = 0;
- for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
- if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
- break;
- }
- return Chain.slice(0, ChainIdx);
-}
-
-static ChainID getChainID(const Value *Ptr, const DataLayout &DL) {
- const Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
- if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
- // The select's themselves are distinct instructions even if they share the
- // same condition and evaluate to consecutive pointers for true and false
- // values of the condition. Therefore using the select's themselves for
- // grouping instructions would put consecutive accesses into different lists
- // and they won't be even checked for being consecutive, and won't be
- // vectorized.
- return Sel->getCondition();
- }
- return ObjPtr;
-}
-
-std::pair<InstrListMap, InstrListMap>
-Vectorizer::collectInstructions(BasicBlock *BB) {
- InstrListMap LoadRefs;
- InstrListMap StoreRefs;
-
- for (Instruction &I : *BB) {
- if (!I.mayReadOrWriteMemory())
- continue;
-
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (!LI->isSimple())
- continue;
-
- // Skip if it's not legal.
- if (!TTI.isLegalToVectorizeLoad(LI))
- continue;
-
- Type *Ty = LI->getType();
- if (!VectorType::isValidElementType(Ty->getScalarType()))
- continue;
-
- // Skip weird non-byte sizes. They probably aren't worth the effort of
- // handling correctly.
- unsigned TySize = DL.getTypeSizeInBits(Ty);
- if ((TySize % 8) != 0)
- continue;
-
- // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
- // functions are currently using an integer type for the vectorized
- // load/store, and does not support casting between the integer type and a
- // vector of pointers (e.g. i64 to <2 x i16*>)
- if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
- continue;
-
- Value *Ptr = LI->getPointerOperand();
- unsigned AS = Ptr->getType()->getPointerAddressSpace();
- unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
-
- unsigned VF = VecRegSize / TySize;
- VectorType *VecTy = dyn_cast<VectorType>(Ty);
-
- // No point in looking at these if they're too big to vectorize.
- if (TySize > VecRegSize / 2 ||
- (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
- continue;
-
- // Make sure all the users of a vector are constant-index extracts.
- if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
- const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
- return EEI && isa<ConstantInt>(EEI->getOperand(1));
- }))
- continue;
-
- // Save the load locations.
- const ChainID ID = getChainID(Ptr, DL);
- LoadRefs[ID].push_back(LI);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isSimple())
- continue;
-
- // Skip if it's not legal.
- if (!TTI.isLegalToVectorizeStore(SI))
- continue;
-
- Type *Ty = SI->getValueOperand()->getType();
- if (!VectorType::isValidElementType(Ty->getScalarType()))
- continue;
-
- // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
- // functions are currently using an integer type for the vectorized
- // load/store, and does not support casting between the integer type and a
- // vector of pointers (e.g. i64 to <2 x i16*>)
- if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
- continue;
-
- // Skip weird non-byte sizes. They probably aren't worth the effort of
- // handling correctly.
- unsigned TySize = DL.getTypeSizeInBits(Ty);
- if ((TySize % 8) != 0)
- continue;
-
- Value *Ptr = SI->getPointerOperand();
- unsigned AS = Ptr->getType()->getPointerAddressSpace();
- unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
-
- unsigned VF = VecRegSize / TySize;
- VectorType *VecTy = dyn_cast<VectorType>(Ty);
-
- // No point in looking at these if they're too big to vectorize.
- if (TySize > VecRegSize / 2 ||
- (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
- continue;
-
- if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
- const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
- return EEI && isa<ConstantInt>(EEI->getOperand(1));
- }))
- continue;
-
- // Save store location.
- const ChainID ID = getChainID(Ptr, DL);
- StoreRefs[ID].push_back(SI);
- }
- }
-
- return {LoadRefs, StoreRefs};
-}
-
-bool Vectorizer::vectorizeChains(InstrListMap &Map) {
- bool Changed = false;
-
- for (const std::pair<ChainID, InstrList> &Chain : Map) {
- unsigned Size = Chain.second.size();
- if (Size < 2)
- continue;
-
- LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
-
- // Process the stores in chunks of 64.
- for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
- unsigned Len = std::min<unsigned>(CE - CI, 64);
- ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
- Changed |= vectorizeInstructions(Chunk);
- }
- }
-
- return Changed;
-}
-
-bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
- LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
- << " instructions.\n");
- SmallVector<int, 16> Heads, Tails;
- int ConsecutiveChain[64];
-
- // Do a quadratic search on all of the given loads/stores and find all of the
- // pairs of loads/stores that follow each other.
- for (int i = 0, e = Instrs.size(); i < e; ++i) {
- ConsecutiveChain[i] = -1;
- for (int j = e - 1; j >= 0; --j) {
- if (i == j)
- continue;
-
- if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
- if (ConsecutiveChain[i] != -1) {
- int CurDistance = std::abs(ConsecutiveChain[i] - i);
- int NewDistance = std::abs(ConsecutiveChain[i] - j);
- if (j < i || NewDistance > CurDistance)
- continue; // Should not insert.
- }
-
- Tails.push_back(j);
- Heads.push_back(i);
- ConsecutiveChain[i] = j;
- }
- }
- }
-
- bool Changed = false;
- SmallPtrSet<Instruction *, 16> InstructionsProcessed;
-
- for (int Head : Heads) {
- if (InstructionsProcessed.count(Instrs[Head]))
- continue;
- bool LongerChainExists = false;
- for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
- if (Head == Tails[TIt] &&
- !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
- LongerChainExists = true;
- break;
- }
- if (LongerChainExists)
- continue;
-
- // We found an instr that starts a chain. Now follow the chain and try to
- // vectorize it.
- SmallVector<Instruction *, 16> Operands;
- int I = Head;
- while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
- if (InstructionsProcessed.count(Instrs[I]))
- break;
-
- Operands.push_back(Instrs[I]);
- I = ConsecutiveChain[I];
- }
-
- bool Vectorized = false;
- if (isa<LoadInst>(*Operands.begin()))
- Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
- else
- Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
-
- Changed |= Vectorized;
- }
-
- return Changed;
-}
-
-bool Vectorizer::vectorizeStoreChain(
- ArrayRef<Instruction *> Chain,
- SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
- StoreInst *S0 = cast<StoreInst>(Chain[0]);
-
- // If the vector has an int element, default to int for the whole store.
- Type *StoreTy = nullptr;
- for (Instruction *I : Chain) {
- StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
- if (StoreTy->isIntOrIntVectorTy())
- break;
-
- if (StoreTy->isPtrOrPtrVectorTy()) {
- StoreTy = Type::getIntNTy(F.getParent()->getContext(),
- DL.getTypeSizeInBits(StoreTy));
- break;
- }
- }
- assert(StoreTy && "Failed to find store type");
-
- unsigned Sz = DL.getTypeSizeInBits(StoreTy);
- unsigned AS = S0->getPointerAddressSpace();
- unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
- unsigned VF = VecRegSize / Sz;
- unsigned ChainSize = Chain.size();
- unsigned Alignment = getAlignment(S0);
-
- if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
- InstructionsProcessed->insert(Chain.begin(), Chain.end());
- return false;
- }
-
- ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
- if (NewChain.empty()) {
- // No vectorization possible.
- InstructionsProcessed->insert(Chain.begin(), Chain.end());
- return false;
- }
- if (NewChain.size() == 1) {
- // Failed after the first instruction. Discard it and try the smaller chain.
- InstructionsProcessed->insert(NewChain.front());
- return false;
- }
-
- // Update Chain to the valid vectorizable subchain.
- Chain = NewChain;
- ChainSize = Chain.size();
-
- // Check if it's legal to vectorize this chain. If not, split the chain and
- // try again.
- unsigned EltSzInBytes = Sz / 8;
- unsigned SzInBytes = EltSzInBytes * ChainSize;
-
- VectorType *VecTy;
- VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
- if (VecStoreTy)
- VecTy = VectorType::get(StoreTy->getScalarType(),
- Chain.size() * VecStoreTy->getNumElements());
- else
- VecTy = VectorType::get(StoreTy, Chain.size());
-
- // If it's more than the max vector size or the target has a better
- // vector factor, break it into two pieces.
- unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
- if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
- LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
- " Creating two separate arrays.\n");
- return vectorizeStoreChain(Chain.slice(0, TargetVF),
- InstructionsProcessed) |
- vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
- }
-
- LLVM_DEBUG({
- dbgs() << "LSV: Stores to vectorize:\n";
- for (Instruction *I : Chain)
- dbgs() << " " << *I << "\n";
- });
-
- // We won't try again to vectorize the elements of the chain, regardless of
- // whether we succeed below.
- InstructionsProcessed->insert(Chain.begin(), Chain.end());
-
- // If the store is going to be misaligned, don't vectorize it.
- if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
- if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
- auto Chains = splitOddVectorElts(Chain, Sz);
- return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
- vectorizeStoreChain(Chains.second, InstructionsProcessed);
- }
-
- unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
- StackAdjustedAlignment,
- DL, S0, nullptr, &DT);
- if (NewAlign != 0)
- Alignment = NewAlign;
- }
-
- if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
- auto Chains = splitOddVectorElts(Chain, Sz);
- return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
- vectorizeStoreChain(Chains.second, InstructionsProcessed);
- }
-
- BasicBlock::iterator First, Last;
- std::tie(First, Last) = getBoundaryInstrs(Chain);
- Builder.SetInsertPoint(&*Last);
-
- Value *Vec = UndefValue::get(VecTy);
-
- if (VecStoreTy) {
- unsigned VecWidth = VecStoreTy->getNumElements();
- for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
- StoreInst *Store = cast<StoreInst>(Chain[I]);
- for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
- unsigned NewIdx = J + I * VecWidth;
- Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
- Builder.getInt32(J));
- if (Extract->getType() != StoreTy->getScalarType())
- Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
-
- Value *Insert =
- Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
- Vec = Insert;
- }
- }
- } else {
- for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
- StoreInst *Store = cast<StoreInst>(Chain[I]);
- Value *Extract = Store->getValueOperand();
- if (Extract->getType() != StoreTy->getScalarType())
- Extract =
- Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
-
- Value *Insert =
- Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
- Vec = Insert;
- }
- }
-
- StoreInst *SI = Builder.CreateAlignedStore(
- Vec,
- Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
- Alignment);
- propagateMetadata(SI, Chain);
-
- eraseInstructions(Chain);
- ++NumVectorInstructions;
- NumScalarsVectorized += Chain.size();
- return true;
-}
-
-bool Vectorizer::vectorizeLoadChain(
- ArrayRef<Instruction *> Chain,
- SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
- LoadInst *L0 = cast<LoadInst>(Chain[0]);
-
- // If the vector has an int element, default to int for the whole load.
- Type *LoadTy;
- for (const auto &V : Chain) {
- LoadTy = cast<LoadInst>(V)->getType();
- if (LoadTy->isIntOrIntVectorTy())
- break;
-
- if (LoadTy->isPtrOrPtrVectorTy()) {
- LoadTy = Type::getIntNTy(F.getParent()->getContext(),
- DL.getTypeSizeInBits(LoadTy));
- break;
- }
- }
-
- unsigned Sz = DL.getTypeSizeInBits(LoadTy);
- unsigned AS = L0->getPointerAddressSpace();
- unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
- unsigned VF = VecRegSize / Sz;
- unsigned ChainSize = Chain.size();
- unsigned Alignment = getAlignment(L0);
-
- if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
- InstructionsProcessed->insert(Chain.begin(), Chain.end());
- return false;
- }
-
- ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
- if (NewChain.empty()) {
- // No vectorization possible.
- InstructionsProcessed->insert(Chain.begin(), Chain.end());
- return false;
- }
- if (NewChain.size() == 1) {
- // Failed after the first instruction. Discard it and try the smaller chain.
- InstructionsProcessed->insert(NewChain.front());
- return false;
- }
-
- // Update Chain to the valid vectorizable subchain.
- Chain = NewChain;
- ChainSize = Chain.size();
-
- // Check if it's legal to vectorize this chain. If not, split the chain and
- // try again.
- unsigned EltSzInBytes = Sz / 8;
- unsigned SzInBytes = EltSzInBytes * ChainSize;
- VectorType *VecTy;
- VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
- if (VecLoadTy)
- VecTy = VectorType::get(LoadTy->getScalarType(),
- Chain.size() * VecLoadTy->getNumElements());
- else
- VecTy = VectorType::get(LoadTy, Chain.size());
-
- // If it's more than the max vector size or the target has a better
- // vector factor, break it into two pieces.
- unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
- if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
- LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
- " Creating two separate arrays.\n");
- return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
- vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
- }
-
- // We won't try again to vectorize the elements of the chain, regardless of
- // whether we succeed below.
- InstructionsProcessed->insert(Chain.begin(), Chain.end());
-
- // If the load is going to be misaligned, don't vectorize it.
- if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
- if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
- auto Chains = splitOddVectorElts(Chain, Sz);
- return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
- vectorizeLoadChain(Chains.second, InstructionsProcessed);
- }
-
- Alignment = getOrEnforceKnownAlignment(
- L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT);
- }
-
- if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
- auto Chains = splitOddVectorElts(Chain, Sz);
- return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
- vectorizeLoadChain(Chains.second, InstructionsProcessed);
- }
-
- LLVM_DEBUG({
- dbgs() << "LSV: Loads to vectorize:\n";
- for (Instruction *I : Chain)
- I->dump();
- });
-
- // getVectorizablePrefix already computed getBoundaryInstrs. The value of
- // Last may have changed since then, but the value of First won't have. If it
- // matters, we could compute getBoundaryInstrs only once and reuse it here.
- BasicBlock::iterator First, Last;
- std::tie(First, Last) = getBoundaryInstrs(Chain);
- Builder.SetInsertPoint(&*First);
-
- Value *Bitcast =
- Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
- LoadInst *LI = Builder.CreateAlignedLoad(VecTy, Bitcast, Alignment);
- propagateMetadata(LI, Chain);
-
- if (VecLoadTy) {
- SmallVector<Instruction *, 16> InstrsToErase;
-
- unsigned VecWidth = VecLoadTy->getNumElements();
- for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
- for (auto Use : Chain[I]->users()) {
- // All users of vector loads are ExtractElement instructions with
- // constant indices, otherwise we would have bailed before now.
- Instruction *UI = cast<Instruction>(Use);
- unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
- unsigned NewIdx = Idx + I * VecWidth;
- Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
- UI->getName());
- if (V->getType() != UI->getType())
- V = Builder.CreateBitCast(V, UI->getType());
-
- // Replace the old instruction.
- UI->replaceAllUsesWith(V);
- InstrsToErase.push_back(UI);
- }
- }
-
- // Bitcast might not be an Instruction, if the value being loaded is a
- // constant. In that case, no need to reorder anything.
- if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
- reorder(BitcastInst);
-
- for (auto I : InstrsToErase)
- I->eraseFromParent();
- } else {
- for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
- Value *CV = Chain[I];
- Value *V =
- Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
- if (V->getType() != CV->getType()) {
- V = Builder.CreateBitOrPointerCast(V, CV->getType());
- }
-
- // Replace the old instruction.
- CV->replaceAllUsesWith(V);
- }
-
- if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
- reorder(BitcastInst);
- }
-
- eraseInstructions(Chain);
-
- ++NumVectorInstructions;
- NumScalarsVectorized += Chain.size();
- return true;
-}
-
-bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
- unsigned Alignment) {
- if (Alignment % SzInBytes == 0)
- return false;
-
- bool Fast = false;
- bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
- SzInBytes * 8, AddressSpace,
- Alignment, &Fast);
- LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
- << " and fast? " << Fast << "\n";);
- return !Allows || !Fast;
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
deleted file mode 100644
index 138f18e49c92..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
+++ /dev/null
@@ -1,1250 +0,0 @@
-//===- LoopVectorizationLegality.cpp --------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file provides loop vectorization legality analysis. Original code
-// resided in LoopVectorize.cpp for a long time.
-//
-// At this point, it is implemented as a utility class, not as an analysis
-// pass. It should be easy to create an analysis pass around it if there
-// is a need (but D45420 needs to happen first).
-//
-#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/IntrinsicInst.h"
-
-using namespace llvm;
-
-#define LV_NAME "loop-vectorize"
-#define DEBUG_TYPE LV_NAME
-
-extern cl::opt<bool> EnableVPlanPredication;
-
-static cl::opt<bool>
- EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
- cl::desc("Enable if-conversion during vectorization."));
-
-static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
- "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
- cl::desc("The maximum allowed number of runtime memory checks with a "
- "vectorize(enable) pragma."));
-
-static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
- "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed."));
-
-static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
- "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed with a "
- "vectorize(enable) pragma"));
-
-/// Maximum vectorization interleave count.
-static const unsigned MaxInterleaveFactor = 16;
-
-namespace llvm {
-
-#ifndef NDEBUG
-static void debugVectorizationFailure(const StringRef DebugMsg,
- Instruction *I) {
- dbgs() << "LV: Not vectorizing: " << DebugMsg;
- if (I != nullptr)
- dbgs() << " " << *I;
- else
- dbgs() << '.';
- dbgs() << '\n';
-}
-#endif
-
-OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
- StringRef RemarkName,
- Loop *TheLoop,
- Instruction *I) {
- Value *CodeRegion = TheLoop->getHeader();
- DebugLoc DL = TheLoop->getStartLoc();
-
- if (I) {
- CodeRegion = I->getParent();
- // If there is no debug location attached to the instruction, revert back to
- // using the loop's.
- if (I->getDebugLoc())
- DL = I->getDebugLoc();
- }
-
- OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
- R << "loop not vectorized: ";
- return R;
-}
-
-bool LoopVectorizeHints::Hint::validate(unsigned Val) {
- switch (Kind) {
- case HK_WIDTH:
- return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
- case HK_UNROLL:
- return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
- case HK_FORCE:
- return (Val <= 1);
- case HK_ISVECTORIZED:
- return (Val == 0 || Val == 1);
- }
- return false;
-}
-
-LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
- bool InterleaveOnlyWhenForced,
- OptimizationRemarkEmitter &ORE)
- : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
- Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
- Force("vectorize.enable", FK_Undefined, HK_FORCE),
- IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
- // Populate values with existing loop metadata.
- getHintsFromMetadata();
-
- // force-vector-interleave overrides DisableInterleaving.
- if (VectorizerParams::isInterleaveForced())
- Interleave.Value = VectorizerParams::VectorizationInterleave;
-
- if (IsVectorized.Value != 1)
- // If the vectorization width and interleaving count are both 1 then
- // consider the loop to have been already vectorized because there's
- // nothing more that we can do.
- IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
- LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
- << "LV: Interleaving disabled by the pass manager\n");
-}
-
-void LoopVectorizeHints::setAlreadyVectorized() {
- LLVMContext &Context = TheLoop->getHeader()->getContext();
-
- MDNode *IsVectorizedMD = MDNode::get(
- Context,
- {MDString::get(Context, "llvm.loop.isvectorized"),
- ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
- MDNode *LoopID = TheLoop->getLoopID();
- MDNode *NewLoopID =
- makePostTransformationMetadata(Context, LoopID,
- {Twine(Prefix(), "vectorize.").str(),
- Twine(Prefix(), "interleave.").str()},
- {IsVectorizedMD});
- TheLoop->setLoopID(NewLoopID);
-
- // Update internal cache.
- IsVectorized.Value = 1;
-}
-
-bool LoopVectorizeHints::allowVectorization(
- Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
- if (getForce() == LoopVectorizeHints::FK_Disabled) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
- emitRemarkWithHints();
- return false;
- }
-
- if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
- emitRemarkWithHints();
- return false;
- }
-
- if (getIsVectorized() == 1) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
- // FIXME: Add interleave.disable metadata. This will allow
- // vectorize.disable to be used without disabling the pass and errors
- // to differentiate between disabled vectorization and a width of 1.
- ORE.emit([&]() {
- return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
- "AllDisabled", L->getStartLoc(),
- L->getHeader())
- << "loop not vectorized: vectorization and interleaving are "
- "explicitly disabled, or the loop has already been "
- "vectorized";
- });
- return false;
- }
-
- return true;
-}
-
-void LoopVectorizeHints::emitRemarkWithHints() const {
- using namespace ore;
-
- ORE.emit([&]() {
- if (Force.Value == LoopVectorizeHints::FK_Disabled)
- return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
- TheLoop->getStartLoc(),
- TheLoop->getHeader())
- << "loop not vectorized: vectorization is explicitly disabled";
- else {
- OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
- TheLoop->getStartLoc(), TheLoop->getHeader());
- R << "loop not vectorized";
- if (Force.Value == LoopVectorizeHints::FK_Enabled) {
- R << " (Force=" << NV("Force", true);
- if (Width.Value != 0)
- R << ", Vector Width=" << NV("VectorWidth", Width.Value);
- if (Interleave.Value != 0)
- R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
- R << ")";
- }
- return R;
- }
- });
-}
-
-const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
- if (getWidth() == 1)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Disabled)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
- return LV_NAME;
- return OptimizationRemarkAnalysis::AlwaysPrint;
-}
-
-void LoopVectorizeHints::getHintsFromMetadata() {
- MDNode *LoopID = TheLoop->getLoopID();
- if (!LoopID)
- return;
-
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
-
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- const MDString *S = nullptr;
- SmallVector<Metadata *, 4> Args;
-
- // The expected hint is either a MDString or a MDNode with the first
- // operand a MDString.
- if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
- if (!MD || MD->getNumOperands() == 0)
- continue;
- S = dyn_cast<MDString>(MD->getOperand(0));
- for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
- Args.push_back(MD->getOperand(i));
- } else {
- S = dyn_cast<MDString>(LoopID->getOperand(i));
- assert(Args.size() == 0 && "too many arguments for MDString");
- }
-
- if (!S)
- continue;
-
- // Check if the hint starts with the loop metadata prefix.
- StringRef Name = S->getString();
- if (Args.size() == 1)
- setHint(Name, Args[0]);
- }
-}
-
-void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
- if (!Name.startswith(Prefix()))
- return;
- Name = Name.substr(Prefix().size(), StringRef::npos);
-
- const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
- if (!C)
- return;
- unsigned Val = C->getZExtValue();
-
- Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
- for (auto H : Hints) {
- if (Name == H->Name) {
- if (H->validate(Val))
- H->Value = Val;
- else
- LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
- break;
- }
- }
-}
-
-bool LoopVectorizationRequirements::doesNotMeet(
- Function *F, Loop *L, const LoopVectorizeHints &Hints) {
- const char *PassName = Hints.vectorizeAnalysisPassName();
- bool Failed = false;
- if (UnsafeAlgebraInst && !Hints.allowReordering()) {
- ORE.emit([&]() {
- return OptimizationRemarkAnalysisFPCommute(
- PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
- UnsafeAlgebraInst->getParent())
- << "loop not vectorized: cannot prove it is safe to reorder "
- "floating-point operations";
- });
- Failed = true;
- }
-
- // Test if runtime memcheck thresholds are exceeded.
- bool PragmaThresholdReached =
- NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
- bool ThresholdReached =
- NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
- if ((ThresholdReached && !Hints.allowReordering()) ||
- PragmaThresholdReached) {
- ORE.emit([&]() {
- return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
- L->getStartLoc(),
- L->getHeader())
- << "loop not vectorized: cannot prove it is safe to reorder "
- "memory operations";
- });
- LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
- Failed = true;
- }
-
- return Failed;
-}
-
-// Return true if the inner loop \p Lp is uniform with regard to the outer loop
-// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
-// executing the inner loop will execute the same iterations). This check is
-// very constrained for now but it will be relaxed in the future. \p Lp is
-// considered uniform if it meets all the following conditions:
-// 1) it has a canonical IV (starting from 0 and with stride 1),
-// 2) its latch terminator is a conditional branch and,
-// 3) its latch condition is a compare instruction whose operands are the
-// canonical IV and an OuterLp invariant.
-// This check doesn't take into account the uniformity of other conditions not
-// related to the loop latch because they don't affect the loop uniformity.
-//
-// NOTE: We decided to keep all these checks and its associated documentation
-// together so that we can easily have a picture of the current supported loop
-// nests. However, some of the current checks don't depend on \p OuterLp and
-// would be redundantly executed for each \p Lp if we invoked this function for
-// different candidate outer loops. This is not the case for now because we
-// don't currently have the infrastructure to evaluate multiple candidate outer
-// loops and \p OuterLp will be a fixed parameter while we only support explicit
-// outer loop vectorization. It's also very likely that these checks go away
-// before introducing the aforementioned infrastructure. However, if this is not
-// the case, we should move the \p OuterLp independent checks to a separate
-// function that is only executed once for each \p Lp.
-static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
- assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
-
- // If Lp is the outer loop, it's uniform by definition.
- if (Lp == OuterLp)
- return true;
- assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
-
- // 1.
- PHINode *IV = Lp->getCanonicalInductionVariable();
- if (!IV) {
- LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
- return false;
- }
-
- // 2.
- BasicBlock *Latch = Lp->getLoopLatch();
- auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBr || LatchBr->isUnconditional()) {
- LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
- return false;
- }
-
- // 3.
- auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
- if (!LatchCmp) {
- LLVM_DEBUG(
- dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
- return false;
- }
-
- Value *CondOp0 = LatchCmp->getOperand(0);
- Value *CondOp1 = LatchCmp->getOperand(1);
- Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
- if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
- !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
- LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
- return false;
- }
-
- return true;
-}
-
-// Return true if \p Lp and all its nested loops are uniform with regard to \p
-// OuterLp.
-static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
- if (!isUniformLoop(Lp, OuterLp))
- return false;
-
- // Check if nested loops are uniform.
- for (Loop *SubLp : *Lp)
- if (!isUniformLoopNest(SubLp, OuterLp))
- return false;
-
- return true;
-}
-
-/// Check whether it is safe to if-convert this phi node.
-///
-/// Phi nodes with constant expressions that can trap are not safe to if
-/// convert.
-static bool canIfConvertPHINodes(BasicBlock *BB) {
- for (PHINode &Phi : BB->phis()) {
- for (Value *V : Phi.incoming_values())
- if (auto *C = dyn_cast<Constant>(V))
- if (C->canTrap())
- return false;
- }
- return true;
-}
-
-static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
- if (Ty->isPointerTy())
- return DL.getIntPtrType(Ty);
-
- // It is possible that char's or short's overflow when we ask for the loop's
- // trip count, work around this by changing the type size.
- if (Ty->getScalarSizeInBits() < 32)
- return Type::getInt32Ty(Ty->getContext());
-
- return Ty;
-}
-
-static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
- Ty0 = convertPointerToIntegerType(DL, Ty0);
- Ty1 = convertPointerToIntegerType(DL, Ty1);
- if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
- return Ty0;
- return Ty1;
-}
-
-/// Check that the instruction has outside loop users and is not an
-/// identified reduction variable.
-static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
- SmallPtrSetImpl<Value *> &AllowedExit) {
- // Reductions, Inductions and non-header phis are allowed to have exit users. All
- // other instructions must not have external users.
- if (!AllowedExit.count(Inst))
- // Check that all of the users of the loop are inside the BB.
- for (User *U : Inst->users()) {
- Instruction *UI = cast<Instruction>(U);
- // This user may be a reduction exit value.
- if (!TheLoop->contains(UI)) {
- LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
- return true;
- }
- }
- return false;
-}
-
-int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
- const ValueToValueMap &Strides =
- getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
-
- int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
- if (Stride == 1 || Stride == -1)
- return Stride;
- return 0;
-}
-
-bool LoopVectorizationLegality::isUniform(Value *V) {
- return LAI->isUniform(V);
-}
-
-void LoopVectorizationLegality::reportVectorizationFailure(
- const StringRef DebugMsg, const StringRef OREMsg,
- const StringRef ORETag, Instruction *I) const {
- LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
- ORE->emit(createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
- ORETag, TheLoop, I) << OREMsg);
-}
-
-bool LoopVectorizationLegality::canVectorizeOuterLoop() {
- assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
-
- for (BasicBlock *BB : TheLoop->blocks()) {
- // Check whether the BB terminator is a BranchInst. Any other terminator is
- // not supported yet.
- auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Br) {
- reportVectorizationFailure("Unsupported basic block terminator",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // Check whether the BranchInst is a supported one. Only unconditional
- // branches, conditional branches with an outer loop invariant condition or
- // backedges are supported.
- // FIXME: We skip these checks when VPlan predication is enabled as we
- // want to allow divergent branches. This whole check will be removed
- // once VPlan predication is on by default.
- if (!EnableVPlanPredication && Br && Br->isConditional() &&
- !TheLoop->isLoopInvariant(Br->getCondition()) &&
- !LI->isLoopHeader(Br->getSuccessor(0)) &&
- !LI->isLoopHeader(Br->getSuccessor(1))) {
- reportVectorizationFailure("Unsupported conditional branch",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- }
-
- // Check whether inner loops are uniform. At this point, we only support
- // simple outer loops scenarios with uniform nested loops.
- if (!isUniformLoopNest(TheLoop /*loop nest*/,
- TheLoop /*context outer loop*/)) {
- reportVectorizationFailure("Outer loop contains divergent loops",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // Check whether we are able to set up outer loop induction.
- if (!setupOuterLoopInductions()) {
- reportVectorizationFailure("Unsupported outer loop Phi(s)",
- "Unsupported outer loop Phi(s)",
- "UnsupportedPhi");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- return Result;
-}
-
-void LoopVectorizationLegality::addInductionPhi(
- PHINode *Phi, const InductionDescriptor &ID,
- SmallPtrSetImpl<Value *> &AllowedExit) {
- Inductions[Phi] = ID;
-
- // In case this induction also comes with casts that we know we can ignore
- // in the vectorized loop body, record them here. All casts could be recorded
- // here for ignoring, but suffices to record only the first (as it is the
- // only one that may bw used outside the cast sequence).
- const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
- if (!Casts.empty())
- InductionCastsToIgnore.insert(*Casts.begin());
-
- Type *PhiTy = Phi->getType();
- const DataLayout &DL = Phi->getModule()->getDataLayout();
-
- // Get the widest type.
- if (!PhiTy->isFloatingPointTy()) {
- if (!WidestIndTy)
- WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
- else
- WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
- }
-
- // Int inductions are special because we only allow one IV.
- if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
- ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
- isa<Constant>(ID.getStartValue()) &&
- cast<Constant>(ID.getStartValue())->isNullValue()) {
-
- // Use the phi node with the widest type as induction. Use the last
- // one if there are multiple (no good reason for doing this other
- // than it is expedient). We've checked that it begins at zero and
- // steps by one, so this is a canonical induction variable.
- if (!PrimaryInduction || PhiTy == WidestIndTy)
- PrimaryInduction = Phi;
- }
-
- // Both the PHI node itself, and the "post-increment" value feeding
- // back into the PHI node may have external users.
- // We can allow those uses, except if the SCEVs we have for them rely
- // on predicates that only hold within the loop, since allowing the exit
- // currently means re-using this SCEV outside the loop (see PR33706 for more
- // details).
- if (PSE.getUnionPredicate().isAlwaysTrue()) {
- AllowedExit.insert(Phi);
- AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
- }
-
- LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
-}
-
-bool LoopVectorizationLegality::setupOuterLoopInductions() {
- BasicBlock *Header = TheLoop->getHeader();
-
- // Returns true if a given Phi is a supported induction.
- auto isSupportedPhi = [&](PHINode &Phi) -> bool {
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
- ID.getKind() == InductionDescriptor::IK_IntInduction) {
- addInductionPhi(&Phi, ID, AllowedExit);
- return true;
- } else {
- // Bail out for any Phi in the outer loop header that is not a supported
- // induction.
- LLVM_DEBUG(
- dbgs()
- << "LV: Found unsupported PHI for outer loop vectorization.\n");
- return false;
- }
- };
-
- if (llvm::all_of(Header->phis(), isSupportedPhi))
- return true;
- else
- return false;
-}
-
-bool LoopVectorizationLegality::canVectorizeInstrs() {
- BasicBlock *Header = TheLoop->getHeader();
-
- // Look for the attribute signaling the absence of NaNs.
- Function &F = *Header->getParent();
- HasFunNoNaNAttr =
- F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
-
- // For each block in the loop.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // Scan the instructions in the block and look for hazards.
- for (Instruction &I : *BB) {
- if (auto *Phi = dyn_cast<PHINode>(&I)) {
- Type *PhiTy = Phi->getType();
- // Check that this PHI type is allowed.
- if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
- !PhiTy->isPointerTy()) {
- reportVectorizationFailure("Found a non-int non-pointer PHI",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- return false;
- }
-
- // If this PHINode is not in the header block, then we know that we
- // can convert it to select during if-conversion. No need to check if
- // the PHIs in this block are induction or reduction variables.
- if (BB != Header) {
- // Non-header phi nodes that have outside uses can be vectorized. Add
- // them to the list of allowed exits.
- // Unsafe cyclic dependencies with header phis are identified during
- // legalization for reduction, induction and first order
- // recurrences.
- AllowedExit.insert(&I);
- continue;
- }
-
- // We only allow if-converted PHIs with exactly two incoming values.
- if (Phi->getNumIncomingValues() != 2) {
- reportVectorizationFailure("Found an invalid PHI",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood", Phi);
- return false;
- }
-
- RecurrenceDescriptor RedDes;
- if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
- DT)) {
- if (RedDes.hasUnsafeAlgebra())
- Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
- AllowedExit.insert(RedDes.getLoopExitInstr());
- Reductions[Phi] = RedDes;
- continue;
- }
-
- // TODO: Instead of recording the AllowedExit, it would be good to record the
- // complementary set: NotAllowedExit. These include (but may not be
- // limited to):
- // 1. Reduction phis as they represent the one-before-last value, which
- // is not available when vectorized
- // 2. Induction phis and increment when SCEV predicates cannot be used
- // outside the loop - see addInductionPhi
- // 3. Non-Phis with outside uses when SCEV predicates cannot be used
- // outside the loop - see call to hasOutsideLoopUser in the non-phi
- // handling below
- // 4. FirstOrderRecurrence phis that can possibly be handled by
- // extraction.
- // By recording these, we can then reason about ways to vectorize each
- // of these NotAllowedExit.
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
- addInductionPhi(Phi, ID, AllowedExit);
- if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
- Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
- continue;
- }
-
- if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
- SinkAfter, DT)) {
- FirstOrderRecurrences.insert(Phi);
- continue;
- }
-
- // As a last resort, coerce the PHI to a AddRec expression
- // and re-try classifying it a an induction PHI.
- if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
- addInductionPhi(Phi, ID, AllowedExit);
- continue;
- }
-
- reportVectorizationFailure("Found an unidentified PHI",
- "value that could not be identified as "
- "reduction is used outside the loop",
- "NonReductionValueUsedOutsideLoop", Phi);
- return false;
- } // end of PHI handling
-
- // We handle calls that:
- // * Are debug info intrinsics.
- // * Have a mapping to an IR intrinsic.
- // * Have a vector version available.
- auto *CI = dyn_cast<CallInst>(&I);
- if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
- !isa<DbgInfoIntrinsic>(CI) &&
- !(CI->getCalledFunction() && TLI &&
- TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
- // If the call is a recognized math libary call, it is likely that
- // we can vectorize it given loosened floating-point constraints.
- LibFunc Func;
- bool IsMathLibCall =
- TLI && CI->getCalledFunction() &&
- CI->getType()->isFloatingPointTy() &&
- TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
- TLI->hasOptimizedCodeGen(Func);
-
- if (IsMathLibCall) {
- // TODO: Ideally, we should not use clang-specific language here,
- // but it's hard to provide meaningful yet generic advice.
- // Also, should this be guarded by allowExtraAnalysis() and/or be part
- // of the returned info from isFunctionVectorizable()?
- reportVectorizationFailure("Found a non-intrinsic callsite",
- "library call cannot be vectorized. "
- "Try compiling with -fno-math-errno, -ffast-math, "
- "or similar flags",
- "CantVectorizeLibcall", CI);
- } else {
- reportVectorizationFailure("Found a non-intrinsic callsite",
- "call instruction cannot be vectorized",
- "CantVectorizeLibcall", CI);
- }
- return false;
- }
-
- // Some intrinsics have scalar arguments and should be same in order for
- // them to be vectorized (i.e. loop invariant).
- if (CI) {
- auto *SE = PSE.getSE();
- Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
- if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
- if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
- reportVectorizationFailure("Found unvectorizable intrinsic",
- "intrinsic instruction cannot be vectorized",
- "CantVectorizeIntrinsic", CI);
- return false;
- }
- }
- }
-
- // Check that the instruction return type is vectorizable.
- // Also, we can't vectorize extractelement instructions.
- if ((!VectorType::isValidElementType(I.getType()) &&
- !I.getType()->isVoidTy()) ||
- isa<ExtractElementInst>(I)) {
- reportVectorizationFailure("Found unvectorizable type",
- "instruction return type cannot be vectorized",
- "CantVectorizeInstructionReturnType", &I);
- return false;
- }
-
- // Check that the stored type is vectorizable.
- if (auto *ST = dyn_cast<StoreInst>(&I)) {
- Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T)) {
- reportVectorizationFailure("Store instruction cannot be vectorized",
- "store instruction cannot be vectorized",
- "CantVectorizeStore", ST);
- return false;
- }
-
- // For nontemporal stores, check that a nontemporal vector version is
- // supported on the target.
- if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
- // Arbitrarily try a vector of 2 elements.
- Type *VecTy = VectorType::get(T, /*NumElements=*/2);
- assert(VecTy && "did not find vectorized version of stored type");
- unsigned Alignment = getLoadStoreAlignment(ST);
- if (!TTI->isLegalNTStore(VecTy, Alignment)) {
- reportVectorizationFailure(
- "nontemporal store instruction cannot be vectorized",
- "nontemporal store instruction cannot be vectorized",
- "CantVectorizeNontemporalStore", ST);
- return false;
- }
- }
-
- } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
- if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
- // For nontemporal loads, check that a nontemporal vector version is
- // supported on the target (arbitrarily try a vector of 2 elements).
- Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
- assert(VecTy && "did not find vectorized version of load type");
- unsigned Alignment = getLoadStoreAlignment(LD);
- if (!TTI->isLegalNTLoad(VecTy, Alignment)) {
- reportVectorizationFailure(
- "nontemporal load instruction cannot be vectorized",
- "nontemporal load instruction cannot be vectorized",
- "CantVectorizeNontemporalLoad", LD);
- return false;
- }
- }
-
- // FP instructions can allow unsafe algebra, thus vectorizable by
- // non-IEEE-754 compliant SIMD units.
- // This applies to floating-point math operations and calls, not memory
- // operations, shuffles, or casts, as they don't change precision or
- // semantics.
- } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
- !I.isFast()) {
- LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
- Hints->setPotentiallyUnsafe();
- }
-
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
- // We can safely vectorize loops where instructions within the loop are
- // used outside the loop only if the SCEV predicates within the loop is
- // same as outside the loop. Allowing the exit means reusing the SCEV
- // outside the loop.
- if (PSE.getUnionPredicate().isAlwaysTrue()) {
- AllowedExit.insert(&I);
- continue;
- }
- reportVectorizationFailure("Value cannot be used outside the loop",
- "value cannot be used outside the loop",
- "ValueUsedOutsideLoop", &I);
- return false;
- }
- } // next instr.
- }
-
- if (!PrimaryInduction) {
- if (Inductions.empty()) {
- reportVectorizationFailure("Did not find one integer induction var",
- "loop induction variable could not be identified",
- "NoInductionVariable");
- return false;
- } else if (!WidestIndTy) {
- reportVectorizationFailure("Did not find one integer induction var",
- "integer loop induction variable could not be identified",
- "NoIntegerInductionVariable");
- return false;
- } else {
- LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- }
- }
-
- // Now we know the widest induction type, check if our found induction
- // is the same size. If it's not, unset it here and InnerLoopVectorizer
- // will create another.
- if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
- PrimaryInduction = nullptr;
-
- return true;
-}
-
-bool LoopVectorizationLegality::canVectorizeMemory() {
- LAI = &(*GetLAA)(*TheLoop);
- const OptimizationRemarkAnalysis *LAR = LAI->getReport();
- if (LAR) {
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
- "loop not vectorized: ", *LAR);
- });
- }
- if (!LAI->canVectorizeMemory())
- return false;
-
- if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
- reportVectorizationFailure("Stores to a uniform address",
- "write to a loop invariant address could not be vectorized",
- "CantVectorizeStoreToLoopInvariantAddress");
- return false;
- }
- Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
- PSE.addPredicate(LAI->getPSE().getUnionPredicate());
-
- return true;
-}
-
-bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
- Value *In0 = const_cast<Value *>(V);
- PHINode *PN = dyn_cast_or_null<PHINode>(In0);
- if (!PN)
- return false;
-
- return Inductions.count(PN);
-}
-
-bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
- auto *Inst = dyn_cast<Instruction>(V);
- return (Inst && InductionCastsToIgnore.count(Inst));
-}
-
-bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
- return isInductionPhi(V) || isCastedInductionVariable(V);
-}
-
-bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
- return FirstOrderRecurrences.count(Phi);
-}
-
-bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
- return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
-}
-
-bool LoopVectorizationLegality::blockCanBePredicated(
- BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
- const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
-
- for (Instruction &I : *BB) {
- // Check that we don't have a constant expression that can trap as operand.
- for (Value *Operand : I.operands()) {
- if (auto *C = dyn_cast<Constant>(Operand))
- if (C->canTrap())
- return false;
- }
- // We might be able to hoist the load.
- if (I.mayReadFromMemory()) {
- auto *LI = dyn_cast<LoadInst>(&I);
- if (!LI)
- return false;
- if (!SafePtrs.count(LI->getPointerOperand())) {
- // !llvm.mem.parallel_loop_access implies if-conversion safety.
- // Otherwise, record that the load needs (real or emulated) masking
- // and let the cost model decide.
- if (!IsAnnotatedParallel)
- MaskedOp.insert(LI);
- continue;
- }
- }
-
- if (I.mayWriteToMemory()) {
- auto *SI = dyn_cast<StoreInst>(&I);
- if (!SI)
- return false;
- // Predicated store requires some form of masking:
- // 1) masked store HW instruction,
- // 2) emulation via load-blend-store (only if safe and legal to do so,
- // be aware on the race conditions), or
- // 3) element-by-element predicate check and scalar store.
- MaskedOp.insert(SI);
- continue;
- }
- if (I.mayThrow())
- return false;
- }
-
- return true;
-}
-
-bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion) {
- reportVectorizationFailure("If-conversion is disabled",
- "if-conversion is disabled",
- "IfConversionDisabled");
- return false;
- }
-
- assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
-
- // A list of pointers that we can safely read and write to.
- SmallPtrSet<Value *, 8> SafePointes;
-
- // Collect safe addresses.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (blockNeedsPredication(BB))
- continue;
-
- for (Instruction &I : *BB)
- if (auto *Ptr = getLoadStorePointerOperand(&I))
- SafePointes.insert(Ptr);
- }
-
- // Collect the blocks that need predication.
- BasicBlock *Header = TheLoop->getHeader();
- for (BasicBlock *BB : TheLoop->blocks()) {
- // We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator())) {
- reportVectorizationFailure("Loop contains a switch statement",
- "loop contains a switch statement",
- "LoopContainsSwitch", BB->getTerminator());
- return false;
- }
-
- // We must be able to predicate all blocks that need to be predicated.
- if (blockNeedsPredication(BB)) {
- if (!blockCanBePredicated(BB, SafePointes)) {
- reportVectorizationFailure(
- "Control flow cannot be substituted for a select",
- "control flow cannot be substituted for a select",
- "NoCFGForSelect", BB->getTerminator());
- return false;
- }
- } else if (BB != Header && !canIfConvertPHINodes(BB)) {
- reportVectorizationFailure(
- "Control flow cannot be substituted for a select",
- "control flow cannot be substituted for a select",
- "NoCFGForSelect", BB->getTerminator());
- return false;
- }
- }
-
- // We can if-convert this loop.
- return true;
-}
-
-// Helper function to canVectorizeLoopNestCFG.
-bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
- bool UseVPlanNativePath) {
- assert((UseVPlanNativePath || Lp->empty()) &&
- "VPlan-native path is not enabled.");
-
- // TODO: ORE should be improved to show more accurate information when an
- // outer loop can't be vectorized because a nested loop is not understood or
- // legal. Something like: "outer_loop_location: loop not vectorized:
- // (inner_loop_location) loop control flow is not understood by vectorizer".
-
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
-
- // We must have a loop in canonical form. Loops with indirectbr in them cannot
- // be canonicalized.
- if (!Lp->getLoopPreheader()) {
- reportVectorizationFailure("Loop doesn't have a legal pre-header",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // We must have a single backedge.
- if (Lp->getNumBackEdges() != 1) {
- reportVectorizationFailure("The loop must have a single backedge",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // We must have a single exiting block.
- if (!Lp->getExitingBlock()) {
- reportVectorizationFailure("The loop must have an exiting block",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // We only handle bottom-tested loops, i.e. loop in which the condition is
- // checked at the end of each iteration. With that we can assume that all
- // instructions in the loop are executed the same number of times.
- if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
- reportVectorizationFailure("The exiting block is not the loop latch",
- "loop control flow is not understood by vectorizer",
- "CFGNotUnderstood");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- return Result;
-}
-
-bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
- Loop *Lp, bool UseVPlanNativePath) {
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // Recursively check whether the loop control flow of nested loops is
- // understood.
- for (Loop *SubLp : *Lp)
- if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- return Result;
-}
-
-bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
-
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- // Check whether the loop-related control flow in the loop nest is expected by
- // vectorizer.
- if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // We need to have a loop header.
- LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
- << '\n');
-
- // Specific checks for outer loops. We skip the remaining legal checks at this
- // point because they don't support outer loops.
- if (!TheLoop->empty()) {
- assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
-
- if (!canVectorizeOuterLoop()) {
- reportVectorizationFailure("Unsupported outer loop",
- "unsupported outer loop",
- "UnsupportedOuterLoop");
- // TODO: Implement DoExtraAnalysis when subsequent legal checks support
- // outer loops.
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
- return Result;
- }
-
- assert(TheLoop->empty() && "Inner loop expected.");
- // Check if we can if-convert non-single-bb loops.
- unsigned NumBlocks = TheLoop->getNumBlocks();
- if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
- LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // Check if we can vectorize the instructions and CFG in this loop.
- if (!canVectorizeInstrs()) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // Go over each instruction and look at memory deps.
- if (!canVectorizeMemory()) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
- << (LAI->getRuntimePointerChecking()->Need
- ? " (with a runtime bound check)"
- : "")
- << "!\n");
-
- unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
- if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
- SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
-
- if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
- reportVectorizationFailure("Too many SCEV checks needed",
- "Too many SCEV assumptions need to be made and checked at runtime",
- "TooManySCEVRunTimeChecks");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
-
- // Okay! We've done all the tests. If any have failed, return false. Otherwise
- // we can vectorize, and at this point we don't have any other mem analysis
- // which may limit our maximum vectorization factor, so just return true with
- // no restrictions.
- return Result;
-}
-
-bool LoopVectorizationLegality::canFoldTailByMasking() {
-
- LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
-
- if (!PrimaryInduction) {
- reportVectorizationFailure(
- "No primary induction, cannot fold tail by masking",
- "Missing a primary induction variable in the loop, which is "
- "needed in order to fold tail by masking as required.",
- "NoPrimaryInduction");
- return false;
- }
-
- // TODO: handle reductions when tail is folded by masking.
- if (!Reductions.empty()) {
- reportVectorizationFailure(
- "Loop has reductions, cannot fold tail by masking",
- "Cannot fold tail by masking in the presence of reductions.",
- "ReductionFoldingTailByMasking");
- return false;
- }
-
- // TODO: handle outside users when tail is folded by masking.
- for (auto *AE : AllowedExit) {
- // Check that all users of allowed exit values are inside the loop.
- for (User *U : AE->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (TheLoop->contains(UI))
- continue;
- reportVectorizationFailure(
- "Cannot fold tail by masking, loop has an outside user for",
- "Cannot fold tail by masking in the presence of live outs.",
- "LiveOutFoldingTailByMasking", UI);
- return false;
- }
- }
-
- // The list of pointers that we can safely read and write to remains empty.
- SmallPtrSet<Value *, 8> SafePointers;
-
- // Check and mark all blocks for predication, including those that ordinarily
- // do not need predication such as the header block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockCanBePredicated(BB, SafePointers)) {
- reportVectorizationFailure(
- "Cannot fold tail by masking as required",
- "control flow cannot be substituted for a select",
- "NoCFGForSelect", BB->getTerminator());
- return false;
- }
- }
-
- LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
- return true;
-}
-
-} // namespace llvm
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
deleted file mode 100644
index 97077cce83e3..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
+++ /dev/null
@@ -1,287 +0,0 @@
-//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file provides a LoopVectorizationPlanner class.
-/// InnerLoopVectorizer vectorizes loops which contain only one basic
-/// LoopVectorizationPlanner - drives the vectorization process after having
-/// passed Legality checks.
-/// The planner builds and optimizes the Vectorization Plans which record the
-/// decisions how to vectorize the given loop. In particular, represent the
-/// control-flow of the vectorized version, the replication of instructions that
-/// are to be scalarized, and interleave access groups.
-///
-/// Also provides a VPlan-based builder utility analogous to IRBuilder.
-/// It provides an instruction-level API for generating VPInstructions while
-/// abstracting away the Recipe manipulation details.
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
-#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
-
-#include "VPlan.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-
-namespace llvm {
-
-/// VPlan-based builder utility analogous to IRBuilder.
-class VPBuilder {
-private:
- VPBasicBlock *BB = nullptr;
- VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
-
- VPInstruction *createInstruction(unsigned Opcode,
- ArrayRef<VPValue *> Operands) {
- VPInstruction *Instr = new VPInstruction(Opcode, Operands);
- if (BB)
- BB->insert(Instr, InsertPt);
- return Instr;
- }
-
- VPInstruction *createInstruction(unsigned Opcode,
- std::initializer_list<VPValue *> Operands) {
- return createInstruction(Opcode, ArrayRef<VPValue *>(Operands));
- }
-
-public:
- VPBuilder() {}
-
- /// Clear the insertion point: created instructions will not be inserted into
- /// a block.
- void clearInsertionPoint() {
- BB = nullptr;
- InsertPt = VPBasicBlock::iterator();
- }
-
- VPBasicBlock *getInsertBlock() const { return BB; }
- VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
-
- /// InsertPoint - A saved insertion point.
- class VPInsertPoint {
- VPBasicBlock *Block = nullptr;
- VPBasicBlock::iterator Point;
-
- public:
- /// Creates a new insertion point which doesn't point to anything.
- VPInsertPoint() = default;
-
- /// Creates a new insertion point at the given location.
- VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
- : Block(InsertBlock), Point(InsertPoint) {}
-
- /// Returns true if this insert point is set.
- bool isSet() const { return Block != nullptr; }
-
- VPBasicBlock *getBlock() const { return Block; }
- VPBasicBlock::iterator getPoint() const { return Point; }
- };
-
- /// Sets the current insert point to a previously-saved location.
- void restoreIP(VPInsertPoint IP) {
- if (IP.isSet())
- setInsertPoint(IP.getBlock(), IP.getPoint());
- else
- clearInsertionPoint();
- }
-
- /// This specifies that created VPInstructions should be appended to the end
- /// of the specified block.
- void setInsertPoint(VPBasicBlock *TheBB) {
- assert(TheBB && "Attempting to set a null insert point");
- BB = TheBB;
- InsertPt = BB->end();
- }
-
- /// This specifies that created instructions should be inserted at the
- /// specified point.
- void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
- BB = TheBB;
- InsertPt = IP;
- }
-
- /// Insert and return the specified instruction.
- VPInstruction *insert(VPInstruction *I) const {
- BB->insert(I, InsertPt);
- return I;
- }
-
- /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
- /// its underlying Instruction.
- VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
- Instruction *Inst = nullptr) {
- VPInstruction *NewVPInst = createInstruction(Opcode, Operands);
- NewVPInst->setUnderlyingValue(Inst);
- return NewVPInst;
- }
- VPValue *createNaryOp(unsigned Opcode,
- std::initializer_list<VPValue *> Operands,
- Instruction *Inst = nullptr) {
- return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst);
- }
-
- VPValue *createNot(VPValue *Operand) {
- return createInstruction(VPInstruction::Not, {Operand});
- }
-
- VPValue *createAnd(VPValue *LHS, VPValue *RHS) {
- return createInstruction(Instruction::BinaryOps::And, {LHS, RHS});
- }
-
- VPValue *createOr(VPValue *LHS, VPValue *RHS) {
- return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS});
- }
-
- //===--------------------------------------------------------------------===//
- // RAII helpers.
- //===--------------------------------------------------------------------===//
-
- /// RAII object that stores the current insertion point and restores it when
- /// the object is destroyed.
- class InsertPointGuard {
- VPBuilder &Builder;
- VPBasicBlock *Block;
- VPBasicBlock::iterator Point;
-
- public:
- InsertPointGuard(VPBuilder &B)
- : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
-
- InsertPointGuard(const InsertPointGuard &) = delete;
- InsertPointGuard &operator=(const InsertPointGuard &) = delete;
-
- ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
- };
-};
-
-/// TODO: The following VectorizationFactor was pulled out of
-/// LoopVectorizationCostModel class. LV also deals with
-/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
-/// We need to streamline them.
-
-/// Information about vectorization costs
-struct VectorizationFactor {
- // Vector width with best cost
- unsigned Width;
- // Cost of the loop with that width
- unsigned Cost;
-
- // Width 1 means no vectorization, cost 0 means uncomputed cost.
- static VectorizationFactor Disabled() { return {1, 0}; }
-
- bool operator==(const VectorizationFactor &rhs) const {
- return Width == rhs.Width && Cost == rhs.Cost;
- }
-};
-
-/// Planner drives the vectorization process after having passed
-/// Legality checks.
-class LoopVectorizationPlanner {
- /// The loop that we evaluate.
- Loop *OrigLoop;
-
- /// Loop Info analysis.
- LoopInfo *LI;
-
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
-
- /// Target Transform Info.
- const TargetTransformInfo *TTI;
-
- /// The legality analysis.
- LoopVectorizationLegality *Legal;
-
- /// The profitability analysis.
- LoopVectorizationCostModel &CM;
-
- SmallVector<VPlanPtr, 4> VPlans;
-
- /// This class is used to enable the VPlan to invoke a method of ILV. This is
- /// needed until the method is refactored out of ILV and becomes reusable.
- struct VPCallbackILV : public VPCallback {
- InnerLoopVectorizer &ILV;
-
- VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {}
-
- Value *getOrCreateVectorValues(Value *V, unsigned Part) override;
- };
-
- /// A builder used to construct the current plan.
- VPBuilder Builder;
-
- unsigned BestVF = 0;
- unsigned BestUF = 0;
-
-public:
- LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI,
- LoopVectorizationLegality *Legal,
- LoopVectorizationCostModel &CM)
- : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {}
-
- /// Plan how to best vectorize, return the best VF and its cost, or None if
- /// vectorization and interleaving should be avoided up front.
- Optional<VectorizationFactor> plan(bool OptForSize, unsigned UserVF);
-
- /// Use the VPlan-native path to plan how to best vectorize, return the best
- /// VF and its cost.
- VectorizationFactor planInVPlanNativePath(bool OptForSize, unsigned UserVF);
-
- /// Finalize the best decision and dispose of all other VPlans.
- void setBestPlan(unsigned VF, unsigned UF);
-
- /// Generate the IR code for the body of the vectorized loop according to the
- /// best selected VPlan.
- void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT);
-
- void printPlans(raw_ostream &O) {
- for (const auto &Plan : VPlans)
- O << *Plan;
- }
-
- /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
- /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
- /// returned value holds for the entire \p Range.
- static bool
- getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate,
- VFRange &Range);
-
-protected:
- /// Collect the instructions from the original loop that would be trivially
- /// dead in the vectorized loop if generated.
- void collectTriviallyDeadInstructions(
- SmallPtrSetImpl<Instruction *> &DeadInstructions);
-
- /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
- /// according to the information gathered by Legal when it checked if it is
- /// legal to vectorize the loop.
- void buildVPlans(unsigned MinVF, unsigned MaxVF);
-
-private:
- /// Build a VPlan according to the information gathered by Legal. \return a
- /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
- /// exclusive, possibly decreasing \p Range.End.
- VPlanPtr buildVPlan(VFRange &Range);
-
- /// Build a VPlan using VPRecipes according to the information gather by
- /// Legal. This method is only used for the legacy inner loop vectorizer.
- VPlanPtr
- buildVPlanWithVPRecipes(VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
- SmallPtrSetImpl<Instruction *> &DeadInstructions);
-
- /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
- /// according to the information gathered by Legal when it checked if it is
- /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
- void buildVPlansWithVPRecipes(unsigned MinVF, unsigned MaxVF);
-};
-
-} // namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
deleted file mode 100644
index 46265e3f3e13..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ /dev/null
@@ -1,7694 +0,0 @@
-//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
-// and generates target-independent LLVM-IR.
-// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
-// of instructions in order to estimate the profitability of vectorization.
-//
-// The loop vectorizer combines consecutive loop iterations into a single
-// 'wide' iteration. After this transformation the index is incremented
-// by the SIMD vector width, and not by one.
-//
-// This pass has three parts:
-// 1. The main loop pass that drives the different parts.
-// 2. LoopVectorizationLegality - A unit that checks for the legality
-// of the vectorization.
-// 3. InnerLoopVectorizer - A unit that performs the actual
-// widening of instructions.
-// 4. LoopVectorizationCostModel - A unit that checks for the profitability
-// of vectorization. It decides on the optimal vector width, which
-// can be one, if vectorization is not profitable.
-//
-// There is a development effort going on to migrate loop vectorizer to the
-// VPlan infrastructure and to introduce outer loop vectorization support (see
-// docs/Proposal/VectorizationPlan.rst and
-// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
-// purpose, we temporarily introduced the VPlan-native vectorization path: an
-// alternative vectorization path that is natively implemented on top of the
-// VPlan infrastructure. See EnableVPlanNativePath for enabling.
-//
-//===----------------------------------------------------------------------===//
-//
-// The reduction-variable vectorization is based on the paper:
-// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
-//
-// Variable uniformity checks are inspired by:
-// Karrenberg, R. and Hack, S. Whole Function Vectorization.
-//
-// The interleaved access vectorization is based on the paper:
-// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
-// Data for SIMD
-//
-// Other ideas/concepts are from:
-// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
-//
-// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
-// Vectorizing Compilers.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Vectorize/LoopVectorize.h"
-#include "LoopVectorizationPlanner.h"
-#include "VPRecipeBuilder.h"
-#include "VPlan.h"
-#include "VPlanHCFGBuilder.h"
-#include "VPlanHCFGTransforms.h"
-#include "VPlanPredicator.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/BlockFrequencyInfo.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/DemandedBits.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/LoopAccessAnalysis.h"
-#include "llvm/Analysis/LoopAnalysisManager.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopIterator.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ProfileSummaryInfo.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/DiagnosticInfo.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/LoopSimplify.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/LoopVersioning.h"
-#include "llvm/Transforms/Utils/SizeOpts.h"
-#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <cstdlib>
-#include <functional>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <string>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define LV_NAME "loop-vectorize"
-#define DEBUG_TYPE LV_NAME
-
-/// @{
-/// Metadata attribute names
-static const char *const LLVMLoopVectorizeFollowupAll =
- "llvm.loop.vectorize.followup_all";
-static const char *const LLVMLoopVectorizeFollowupVectorized =
- "llvm.loop.vectorize.followup_vectorized";
-static const char *const LLVMLoopVectorizeFollowupEpilogue =
- "llvm.loop.vectorize.followup_epilogue";
-/// @}
-
-STATISTIC(LoopsVectorized, "Number of loops vectorized");
-STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
-
-/// Loops with a known constant trip count below this number are vectorized only
-/// if no scalar iteration overheads are incurred.
-static cl::opt<unsigned> TinyTripCountVectorThreshold(
- "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
- cl::desc("Loops with a constant trip count that is smaller than this "
- "value are vectorized only if no scalar iteration overheads "
- "are incurred."));
-
-static cl::opt<bool> MaximizeBandwidth(
- "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
- cl::desc("Maximize bandwidth when selecting vectorization factor which "
- "will be determined by the smallest type in loop."));
-
-static cl::opt<bool> EnableInterleavedMemAccesses(
- "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
-
-/// An interleave-group may need masking if it resides in a block that needs
-/// predication, or in order to mask away gaps.
-static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
- "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
-
-/// We don't interleave loops with a known constant trip count below this
-/// number.
-static const unsigned TinyTripCountInterleaveThreshold = 128;
-
-static cl::opt<unsigned> ForceTargetNumScalarRegs(
- "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of scalar registers."));
-
-static cl::opt<unsigned> ForceTargetNumVectorRegs(
- "force-target-num-vector-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of vector registers."));
-
-static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
- "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "scalar loops."));
-
-static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
- "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "vectorized loops."));
-
-static cl::opt<unsigned> ForceTargetInstructionCost(
- "force-target-instruction-cost", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's expected cost for "
- "an instruction to a single constant value. Mostly "
- "useful for getting consistent testing."));
-
-static cl::opt<unsigned> SmallLoopCost(
- "small-loop-cost", cl::init(20), cl::Hidden,
- cl::desc(
- "The cost of a loop that is considered 'small' by the interleaver."));
-
-static cl::opt<bool> LoopVectorizeWithBlockFrequency(
- "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
- cl::desc("Enable the use of the block frequency analysis to access PGO "
- "heuristics minimizing code growth in cold regions and being more "
- "aggressive in hot regions."));
-
-// Runtime interleave loops for load/store throughput.
-static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
- "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
- cl::desc(
- "Enable runtime interleaving until load/store ports are saturated"));
-
-/// The number of stores in a loop that are allowed to need predication.
-static cl::opt<unsigned> NumberOfStoresToPredicate(
- "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
- cl::desc("Max number of stores to be predicated behind an if."));
-
-static cl::opt<bool> EnableIndVarRegisterHeur(
- "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
- cl::desc("Count the induction variable only once when interleaving"));
-
-static cl::opt<bool> EnableCondStoresVectorization(
- "enable-cond-stores-vec", cl::init(true), cl::Hidden,
- cl::desc("Enable if predication of stores during vectorization."));
-
-static cl::opt<unsigned> MaxNestedScalarReductionIC(
- "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
- cl::desc("The maximum interleave count to use when interleaving a scalar "
- "reduction in a nested loop."));
-
-cl::opt<bool> EnableVPlanNativePath(
- "enable-vplan-native-path", cl::init(false), cl::Hidden,
- cl::desc("Enable VPlan-native vectorization path with "
- "support for outer loop vectorization."));
-
-// FIXME: Remove this switch once we have divergence analysis. Currently we
-// assume divergent non-backedge branches when this switch is true.
-cl::opt<bool> EnableVPlanPredication(
- "enable-vplan-predication", cl::init(false), cl::Hidden,
- cl::desc("Enable VPlan-native vectorization path predicator with "
- "support for outer loop vectorization."));
-
-// This flag enables the stress testing of the VPlan H-CFG construction in the
-// VPlan-native vectorization path. It must be used in conjuction with
-// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
-// verification of the H-CFGs built.
-static cl::opt<bool> VPlanBuildStressTest(
- "vplan-build-stress-test", cl::init(false), cl::Hidden,
- cl::desc(
- "Build VPlan for every supported loop nest in the function and bail "
- "out right after the build (stress test the VPlan H-CFG construction "
- "in the VPlan-native vectorization path)."));
-
-cl::opt<bool> llvm::EnableLoopInterleaving(
- "interleave-loops", cl::init(true), cl::Hidden,
- cl::desc("Enable loop interleaving in Loop vectorization passes"));
-cl::opt<bool> llvm::EnableLoopVectorization(
- "vectorize-loops", cl::init(true), cl::Hidden,
- cl::desc("Run the Loop vectorization passes"));
-
-/// A helper function for converting Scalar types to vector types.
-/// If the incoming type is void, we return void. If the VF is 1, we return
-/// the scalar type.
-static Type *ToVectorTy(Type *Scalar, unsigned VF) {
- if (Scalar->isVoidTy() || VF == 1)
- return Scalar;
- return VectorType::get(Scalar, VF);
-}
-
-/// A helper function that returns the type of loaded or stored value.
-static Type *getMemInstValueType(Value *I) {
- assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
- "Expected Load or Store instruction");
- if (auto *LI = dyn_cast<LoadInst>(I))
- return LI->getType();
- return cast<StoreInst>(I)->getValueOperand()->getType();
-}
-
-/// A helper function that returns true if the given type is irregular. The
-/// type is irregular if its allocated size doesn't equal the store size of an
-/// element of the corresponding vector type at the given vectorization factor.
-static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
- // Determine if an array of VF elements of type Ty is "bitcast compatible"
- // with a <VF x Ty> vector.
- if (VF > 1) {
- auto *VectorTy = VectorType::get(Ty, VF);
- return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
- }
-
- // If the vectorization factor is one, we just check if an array of type Ty
- // requires padding between elements.
- return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
-}
-
-/// A helper function that returns the reciprocal of the block probability of
-/// predicated blocks. If we return X, we are assuming the predicated block
-/// will execute once for every X iterations of the loop header.
-///
-/// TODO: We should use actual block probability here, if available. Currently,
-/// we always assume predicated blocks have a 50% chance of executing.
-static unsigned getReciprocalPredBlockProb() { return 2; }
-
-/// A helper function that adds a 'fast' flag to floating-point operations.
-static Value *addFastMathFlag(Value *V) {
- if (isa<FPMathOperator>(V))
- cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
- return V;
-}
-
-static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
- if (isa<FPMathOperator>(V))
- cast<Instruction>(V)->setFastMathFlags(FMF);
- return V;
-}
-
-/// A helper function that returns an integer or floating-point constant with
-/// value C.
-static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
- return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
- : ConstantFP::get(Ty, C);
-}
-
-namespace llvm {
-
-/// InnerLoopVectorizer vectorizes loops which contain only one basic
-/// block to a specified vectorization factor (VF).
-/// This class performs the widening of scalars into vectors, or multiple
-/// scalars. This class also implements the following features:
-/// * It inserts an epilogue loop for handling loops that don't have iteration
-/// counts that are known to be a multiple of the vectorization factor.
-/// * It handles the code generation for reduction variables.
-/// * Scalarization (implementation using scalars) of un-vectorizable
-/// instructions.
-/// InnerLoopVectorizer does not perform any vectorization-legality
-/// checks, and relies on the caller to check for the different legality
-/// aspects. The InnerLoopVectorizer relies on the
-/// LoopVectorizationLegality class to provide information about the induction
-/// and reduction variables that were found to a given vectorization factor.
-class InnerLoopVectorizer {
-public:
- InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, unsigned VecWidth,
- unsigned UnrollFactor, LoopVectorizationLegality *LVL,
- LoopVectorizationCostModel *CM)
- : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
- AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
- Builder(PSE.getSE()->getContext()),
- VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
- virtual ~InnerLoopVectorizer() = default;
-
- /// Create a new empty loop. Unlink the old loop and connect the new one.
- /// Return the pre-header block of the new loop.
- BasicBlock *createVectorizedLoopSkeleton();
-
- /// Widen a single instruction within the innermost loop.
- void widenInstruction(Instruction &I);
-
- /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
- void fixVectorizedLoop();
-
- // Return true if any runtime check is added.
- bool areSafetyChecksAdded() { return AddedSafetyChecks; }
-
- /// A type for vectorized values in the new loop. Each value from the
- /// original loop, when vectorized, is represented by UF vector values in the
- /// new unrolled loop, where UF is the unroll factor.
- using VectorParts = SmallVector<Value *, 2>;
-
- /// Vectorize a single PHINode in a block. This method handles the induction
- /// variable canonicalization. It supports both VF = 1 for unrolled loops and
- /// arbitrary length vectors.
- void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
-
- /// A helper function to scalarize a single Instruction in the innermost loop.
- /// Generates a sequence of scalar instances for each lane between \p MinLane
- /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
- /// inclusive..
- void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
- bool IfPredicateInstr);
-
- /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
- /// is provided, the integer induction variable will first be truncated to
- /// the corresponding type.
- void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
-
- /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
- /// vector or scalar value on-demand if one is not yet available. When
- /// vectorizing a loop, we visit the definition of an instruction before its
- /// uses. When visiting the definition, we either vectorize or scalarize the
- /// instruction, creating an entry for it in the corresponding map. (In some
- /// cases, such as induction variables, we will create both vector and scalar
- /// entries.) Then, as we encounter uses of the definition, we derive values
- /// for each scalar or vector use unless such a value is already available.
- /// For example, if we scalarize a definition and one of its uses is vector,
- /// we build the required vector on-demand with an insertelement sequence
- /// when visiting the use. Otherwise, if the use is scalar, we can use the
- /// existing scalar definition.
- ///
- /// Return a value in the new loop corresponding to \p V from the original
- /// loop at unroll index \p Part. If the value has already been vectorized,
- /// the corresponding vector entry in VectorLoopValueMap is returned. If,
- /// however, the value has a scalar entry in VectorLoopValueMap, we construct
- /// a new vector value on-demand by inserting the scalar values into a vector
- /// with an insertelement sequence. If the value has been neither vectorized
- /// nor scalarized, it must be loop invariant, so we simply broadcast the
- /// value into a vector.
- Value *getOrCreateVectorValue(Value *V, unsigned Part);
-
- /// Return a value in the new loop corresponding to \p V from the original
- /// loop at unroll and vector indices \p Instance. If the value has been
- /// vectorized but not scalarized, the necessary extractelement instruction
- /// will be generated.
- Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
-
- /// Construct the vector value of a scalarized value \p V one lane at a time.
- void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
-
- /// Try to vectorize the interleaved access group that \p Instr belongs to,
- /// optionally masking the vector operations if \p BlockInMask is non-null.
- void vectorizeInterleaveGroup(Instruction *Instr,
- VectorParts *BlockInMask = nullptr);
-
- /// Vectorize Load and Store instructions, optionally masking the vector
- /// operations if \p BlockInMask is non-null.
- void vectorizeMemoryInstruction(Instruction *Instr,
- VectorParts *BlockInMask = nullptr);
-
- /// Set the debug location in the builder using the debug location in
- /// the instruction.
- void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
-
- /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
- void fixNonInductionPHIs(void);
-
-protected:
- friend class LoopVectorizationPlanner;
-
- /// A small list of PHINodes.
- using PhiVector = SmallVector<PHINode *, 4>;
-
- /// A type for scalarized values in the new loop. Each value from the
- /// original loop, when scalarized, is represented by UF x VF scalar values
- /// in the new unrolled loop, where UF is the unroll factor and VF is the
- /// vectorization factor.
- using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
-
- /// Set up the values of the IVs correctly when exiting the vector loop.
- void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
- Value *CountRoundDown, Value *EndValue,
- BasicBlock *MiddleBlock);
-
- /// Create a new induction variable inside L.
- PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
- Value *Step, Instruction *DL);
-
- /// Handle all cross-iteration phis in the header.
- void fixCrossIterationPHIs();
-
- /// Fix a first-order recurrence. This is the second phase of vectorizing
- /// this phi node.
- void fixFirstOrderRecurrence(PHINode *Phi);
-
- /// Fix a reduction cross-iteration phi. This is the second phase of
- /// vectorizing this phi node.
- void fixReduction(PHINode *Phi);
-
- /// The Loop exit block may have single value PHI nodes with some
- /// incoming value. While vectorizing we only handled real values
- /// that were defined inside the loop and we should have one value for
- /// each predecessor of its parent basic block. See PR14725.
- void fixLCSSAPHIs();
-
- /// Iteratively sink the scalarized operands of a predicated instruction into
- /// the block that was created for it.
- void sinkScalarOperands(Instruction *PredInst);
-
- /// Shrinks vector element sizes to the smallest bitwidth they can be legally
- /// represented as.
- void truncateToMinimalBitwidths();
-
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
-
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- virtual Value *getBroadcastInstrs(Value *V);
-
- /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
- /// to each vector element of Val. The sequence starts at StartIndex.
- /// \p Opcode is relevant for FP induction variable.
- virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps Opcode =
- Instruction::BinaryOpsEnd);
-
- /// Compute scalar induction steps. \p ScalarIV is the scalar induction
- /// variable on which to base the steps, \p Step is the size of the step, and
- /// \p EntryVal is the value from the original loop that maps to the steps.
- /// Note that \p EntryVal doesn't have to be an induction variable - it
- /// can also be a truncate instruction.
- void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
- const InductionDescriptor &ID);
-
- /// Create a vector induction phi node based on an existing scalar one. \p
- /// EntryVal is the value from the original loop that maps to the vector phi
- /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
- /// truncate instruction, instead of widening the original IV, we widen a
- /// version of the IV truncated to \p EntryVal's type.
- void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
- Value *Step, Instruction *EntryVal);
-
- /// Returns true if an instruction \p I should be scalarized instead of
- /// vectorized for the chosen vectorization factor.
- bool shouldScalarizeInstruction(Instruction *I) const;
-
- /// Returns true if we should generate a scalar version of \p IV.
- bool needsScalarInduction(Instruction *IV) const;
-
- /// If there is a cast involved in the induction variable \p ID, which should
- /// be ignored in the vectorized loop body, this function records the
- /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
- /// cast. We had already proved that the casted Phi is equal to the uncasted
- /// Phi in the vectorized loop (under a runtime guard), and therefore
- /// there is no need to vectorize the cast - the same value can be used in the
- /// vector loop for both the Phi and the cast.
- /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
- /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
- ///
- /// \p EntryVal is the value from the original loop that maps to the vector
- /// phi node and is used to distinguish what is the IV currently being
- /// processed - original one (if \p EntryVal is a phi corresponding to the
- /// original IV) or the "newly-created" one based on the proof mentioned above
- /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
- /// latter case \p EntryVal is a TruncInst and we must not record anything for
- /// that IV, but it's error-prone to expect callers of this routine to care
- /// about that, hence this explicit parameter.
- void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
- const Instruction *EntryVal,
- Value *VectorLoopValue,
- unsigned Part,
- unsigned Lane = UINT_MAX);
-
- /// Generate a shuffle sequence that will reverse the vector Vec.
- virtual Value *reverseVector(Value *Vec);
-
- /// Returns (and creates if needed) the original loop trip count.
- Value *getOrCreateTripCount(Loop *NewLoop);
-
- /// Returns (and creates if needed) the trip count of the widened loop.
- Value *getOrCreateVectorTripCount(Loop *NewLoop);
-
- /// Returns a bitcasted value to the requested vector type.
- /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
- Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
- const DataLayout &DL);
-
- /// Emit a bypass check to see if the vector trip count is zero, including if
- /// it overflows.
- void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
-
- /// Emit a bypass check to see if all of the SCEV assumptions we've
- /// had to make are correct.
- void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
-
- /// Emit bypass checks to check any memory assumptions we may have made.
- void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
-
- /// Compute the transformed value of Index at offset StartValue using step
- /// StepValue.
- /// For integer induction, returns StartValue + Index * StepValue.
- /// For pointer induction, returns StartValue[Index * StepValue].
- /// FIXME: The newly created binary instructions should contain nsw/nuw
- /// flags, which can be found from the original scalar operations.
- Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
- const DataLayout &DL,
- const InductionDescriptor &ID) const;
-
- /// Add additional metadata to \p To that was not present on \p Orig.
- ///
- /// Currently this is used to add the noalias annotations based on the
- /// inserted memchecks. Use this for instructions that are *cloned* into the
- /// vector loop.
- void addNewMetadata(Instruction *To, const Instruction *Orig);
-
- /// Add metadata from one instruction to another.
- ///
- /// This includes both the original MDs from \p From and additional ones (\see
- /// addNewMetadata). Use this for *newly created* instructions in the vector
- /// loop.
- void addMetadata(Instruction *To, Instruction *From);
-
- /// Similar to the previous function but it adds the metadata to a
- /// vector of instructions.
- void addMetadata(ArrayRef<Value *> To, Instruction *From);
-
- /// The original loop.
- Loop *OrigLoop;
-
- /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
- /// dynamic knowledge to simplify SCEV expressions and converts them to a
- /// more usable form.
- PredicatedScalarEvolution &PSE;
-
- /// Loop Info.
- LoopInfo *LI;
-
- /// Dominator Tree.
- DominatorTree *DT;
-
- /// Alias Analysis.
- AliasAnalysis *AA;
-
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
-
- /// Target Transform Info.
- const TargetTransformInfo *TTI;
-
- /// Assumption Cache.
- AssumptionCache *AC;
-
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
-
- /// LoopVersioning. It's only set up (non-null) if memchecks were
- /// used.
- ///
- /// This is currently only used to add no-alias metadata based on the
- /// memchecks. The actually versioning is performed manually.
- std::unique_ptr<LoopVersioning> LVer;
-
- /// The vectorization SIMD factor to use. Each vector will have this many
- /// vector elements.
- unsigned VF;
-
- /// The vectorization unroll factor to use. Each scalar is vectorized to this
- /// many different vector instructions.
- unsigned UF;
-
- /// The builder that we use
- IRBuilder<> Builder;
-
- // --- Vectorization state ---
-
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
-
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
-
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
-
- /// The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
-
- /// The vector loop body.
- BasicBlock *LoopVectorBody;
-
- /// The scalar loop body.
- BasicBlock *LoopScalarBody;
-
- /// A list of all bypass blocks. The first block is the entry of the loop.
- SmallVector<BasicBlock *, 4> LoopBypassBlocks;
-
- /// The new Induction variable which was added to the new block.
- PHINode *Induction = nullptr;
-
- /// The induction variable of the old basic block.
- PHINode *OldInduction = nullptr;
-
- /// Maps values from the original loop to their corresponding values in the
- /// vectorized loop. A key value can map to either vector values, scalar
- /// values or both kinds of values, depending on whether the key was
- /// vectorized and scalarized.
- VectorizerValueMap VectorLoopValueMap;
-
- /// Store instructions that were predicated.
- SmallVector<Instruction *, 4> PredicatedInstructions;
-
- /// Trip count of the original loop.
- Value *TripCount = nullptr;
-
- /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
- Value *VectorTripCount = nullptr;
-
- /// The legality analysis.
- LoopVectorizationLegality *Legal;
-
- /// The profitablity analysis.
- LoopVectorizationCostModel *Cost;
-
- // Record whether runtime checks are added.
- bool AddedSafetyChecks = false;
-
- // Holds the end values for each induction variable. We save the end values
- // so we can later fix-up the external users of the induction variables.
- DenseMap<PHINode *, Value *> IVEndValues;
-
- // Vector of original scalar PHIs whose corresponding widened PHIs need to be
- // fixed up at the end of vector code generation.
- SmallVector<PHINode *, 8> OrigPHIsToFix;
-};
-
-class InnerLoopUnroller : public InnerLoopVectorizer {
-public:
- InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
- LoopVectorizationLegality *LVL,
- LoopVectorizationCostModel *CM)
- : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
- UnrollFactor, LVL, CM) {}
-
-private:
- Value *getBroadcastInstrs(Value *V) override;
- Value *getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps Opcode =
- Instruction::BinaryOpsEnd) override;
- Value *reverseVector(Value *Vec) override;
-};
-
-} // end namespace llvm
-
-/// Look for a meaningful debug location on the instruction or it's
-/// operands.
-static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
- if (!I)
- return I;
-
- DebugLoc Empty;
- if (I->getDebugLoc() != Empty)
- return I;
-
- for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
- if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
- if (OpInst->getDebugLoc() != Empty)
- return OpInst;
- }
-
- return I;
-}
-
-void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
- if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
- const DILocation *DIL = Inst->getDebugLoc();
- if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
- !isa<DbgInfoIntrinsic>(Inst)) {
- auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
- if (NewDIL)
- B.SetCurrentDebugLocation(NewDIL.getValue());
- else
- LLVM_DEBUG(dbgs()
- << "Failed to create new discriminator: "
- << DIL->getFilename() << " Line: " << DIL->getLine());
- }
- else
- B.SetCurrentDebugLocation(DIL);
- } else
- B.SetCurrentDebugLocation(DebugLoc());
-}
-
-#ifndef NDEBUG
-/// \return string containing a file name and a line # for the given loop.
-static std::string getDebugLocString(const Loop *L) {
- std::string Result;
- if (L) {
- raw_string_ostream OS(Result);
- if (const DebugLoc LoopDbgLoc = L->getStartLoc())
- LoopDbgLoc.print(OS);
- else
- // Just print the module name.
- OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
- OS.flush();
- }
- return Result;
-}
-#endif
-
-void InnerLoopVectorizer::addNewMetadata(Instruction *To,
- const Instruction *Orig) {
- // If the loop was versioned with memchecks, add the corresponding no-alias
- // metadata.
- if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
- LVer->annotateInstWithNoAlias(To, Orig);
-}
-
-void InnerLoopVectorizer::addMetadata(Instruction *To,
- Instruction *From) {
- propagateMetadata(To, From);
- addNewMetadata(To, From);
-}
-
-void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
- Instruction *From) {
- for (Value *V : To) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- addMetadata(I, From);
- }
-}
-
-namespace llvm {
-
-/// LoopVectorizationCostModel - estimates the expected speedups due to
-/// vectorization.
-/// In many cases vectorization is not profitable. This can happen because of
-/// a number of reasons. In this class we mainly attempt to predict the
-/// expected speedup/slowdowns due to the supported instruction set. We use the
-/// TargetTransformInfo to query the different backends for the cost of
-/// different operations.
-class LoopVectorizationCostModel {
-public:
- LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, LoopVectorizationLegality *Legal,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI, DemandedBits *DB,
- AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, const Function *F,
- const LoopVectorizeHints *Hints,
- InterleavedAccessInfo &IAI)
- : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
- AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {}
-
- /// \return An upper bound for the vectorization factor, or None if
- /// vectorization and interleaving should be avoided up front.
- Optional<unsigned> computeMaxVF(bool OptForSize);
-
- /// \return The most profitable vectorization factor and the cost of that VF.
- /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
- /// then this vectorization factor will be selected if vectorization is
- /// possible.
- VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
-
- /// Setup cost-based decisions for user vectorization factor.
- void selectUserVectorizationFactor(unsigned UserVF) {
- collectUniformsAndScalars(UserVF);
- collectInstsToScalarize(UserVF);
- }
-
- /// \return The size (in bits) of the smallest and widest types in the code
- /// that needs to be vectorized. We ignore values that remain scalar such as
- /// 64 bit loop indices.
- std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
-
- /// \return The desired interleave count.
- /// If interleave count has been specified by metadata it will be returned.
- /// Otherwise, the interleave count is computed and returned. VF and LoopCost
- /// are the selected vectorization factor and the cost of the selected VF.
- unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
- unsigned LoopCost);
-
- /// Memory access instruction may be vectorized in more than one way.
- /// Form of instruction after vectorization depends on cost.
- /// This function takes cost-based decisions for Load/Store instructions
- /// and collects them in a map. This decisions map is used for building
- /// the lists of loop-uniform and loop-scalar instructions.
- /// The calculated cost is saved with widening decision in order to
- /// avoid redundant calculations.
- void setCostBasedWideningDecision(unsigned VF);
-
- /// A struct that represents some properties of the register usage
- /// of a loop.
- struct RegisterUsage {
- /// Holds the number of loop invariant values that are used in the loop.
- unsigned LoopInvariantRegs;
-
- /// Holds the maximum number of concurrent live intervals in the loop.
- unsigned MaxLocalUsers;
- };
-
- /// \return Returns information about the register usages of the loop for the
- /// given vectorization factors.
- SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
-
- /// Collect values we want to ignore in the cost model.
- void collectValuesToIgnore();
-
- /// \returns The smallest bitwidth each instruction can be represented with.
- /// The vector equivalents of these instructions should be truncated to this
- /// type.
- const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
- return MinBWs;
- }
-
- /// \returns True if it is more profitable to scalarize instruction \p I for
- /// vectorization factor \p VF.
- bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
- assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
-
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
-
- auto Scalars = InstsToScalarize.find(VF);
- assert(Scalars != InstsToScalarize.end() &&
- "VF not yet analyzed for scalarization profitability");
- return Scalars->second.find(I) != Scalars->second.end();
- }
-
- /// Returns true if \p I is known to be uniform after vectorization.
- bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
- if (VF == 1)
- return true;
-
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
-
- auto UniformsPerVF = Uniforms.find(VF);
- assert(UniformsPerVF != Uniforms.end() &&
- "VF not yet analyzed for uniformity");
- return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
- }
-
- /// Returns true if \p I is known to be scalar after vectorization.
- bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
- if (VF == 1)
- return true;
-
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
-
- auto ScalarsPerVF = Scalars.find(VF);
- assert(ScalarsPerVF != Scalars.end() &&
- "Scalar values are not calculated for VF");
- return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
- }
-
- /// \returns True if instruction \p I can be truncated to a smaller bitwidth
- /// for vectorization factor \p VF.
- bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
- return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
- !isProfitableToScalarize(I, VF) &&
- !isScalarAfterVectorization(I, VF);
- }
-
- /// Decision that was taken during cost calculation for memory instruction.
- enum InstWidening {
- CM_Unknown,
- CM_Widen, // For consecutive accesses with stride +1.
- CM_Widen_Reverse, // For consecutive accesses with stride -1.
- CM_Interleave,
- CM_GatherScatter,
- CM_Scalarize
- };
-
- /// Save vectorization decision \p W and \p Cost taken by the cost model for
- /// instruction \p I and vector width \p VF.
- void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
- unsigned Cost) {
- assert(VF >= 2 && "Expected VF >=2");
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
- }
-
- /// Save vectorization decision \p W and \p Cost taken by the cost model for
- /// interleaving group \p Grp and vector width \p VF.
- void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
- InstWidening W, unsigned Cost) {
- assert(VF >= 2 && "Expected VF >=2");
- /// Broadcast this decicion to all instructions inside the group.
- /// But the cost will be assigned to one instruction only.
- for (unsigned i = 0; i < Grp->getFactor(); ++i) {
- if (auto *I = Grp->getMember(i)) {
- if (Grp->getInsertPos() == I)
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
- else
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
- }
- }
- }
-
- /// Return the cost model decision for the given instruction \p I and vector
- /// width \p VF. Return CM_Unknown if this instruction did not pass
- /// through the cost modeling.
- InstWidening getWideningDecision(Instruction *I, unsigned VF) {
- assert(VF >= 2 && "Expected VF >=2");
-
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return CM_GatherScatter;
-
- std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
- auto Itr = WideningDecisions.find(InstOnVF);
- if (Itr == WideningDecisions.end())
- return CM_Unknown;
- return Itr->second.first;
- }
-
- /// Return the vectorization cost for the given instruction \p I and vector
- /// width \p VF.
- unsigned getWideningCost(Instruction *I, unsigned VF) {
- assert(VF >= 2 && "Expected VF >=2");
- std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
- assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
- "The cost is not calculated");
- return WideningDecisions[InstOnVF].second;
- }
-
- /// Return True if instruction \p I is an optimizable truncate whose operand
- /// is an induction variable. Such a truncate will be removed by adding a new
- /// induction variable with the destination type.
- bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
- // If the instruction is not a truncate, return false.
- auto *Trunc = dyn_cast<TruncInst>(I);
- if (!Trunc)
- return false;
-
- // Get the source and destination types of the truncate.
- Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
- Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
-
- // If the truncate is free for the given types, return false. Replacing a
- // free truncate with an induction variable would add an induction variable
- // update instruction to each iteration of the loop. We exclude from this
- // check the primary induction variable since it will need an update
- // instruction regardless.
- Value *Op = Trunc->getOperand(0);
- if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
- return false;
-
- // If the truncated value is not an induction variable, return false.
- return Legal->isInductionPhi(Op);
- }
-
- /// Collects the instructions to scalarize for each predicated instruction in
- /// the loop.
- void collectInstsToScalarize(unsigned VF);
-
- /// Collect Uniform and Scalar values for the given \p VF.
- /// The sets depend on CM decision for Load/Store instructions
- /// that may be vectorized as interleave, gather-scatter or scalarized.
- void collectUniformsAndScalars(unsigned VF) {
- // Do the analysis once.
- if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
- return;
- setCostBasedWideningDecision(VF);
- collectLoopUniforms(VF);
- collectLoopScalars(VF);
- }
-
- /// Returns true if the target machine supports masked store operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
- return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
- }
-
- /// Returns true if the target machine supports masked load operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
- return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
- }
-
- /// Returns true if the target machine supports masked scatter operation
- /// for the given \p DataType.
- bool isLegalMaskedScatter(Type *DataType) {
- return TTI.isLegalMaskedScatter(DataType);
- }
-
- /// Returns true if the target machine supports masked gather operation
- /// for the given \p DataType.
- bool isLegalMaskedGather(Type *DataType) {
- return TTI.isLegalMaskedGather(DataType);
- }
-
- /// Returns true if the target machine can represent \p V as a masked gather
- /// or scatter operation.
- bool isLegalGatherOrScatter(Value *V) {
- bool LI = isa<LoadInst>(V);
- bool SI = isa<StoreInst>(V);
- if (!LI && !SI)
- return false;
- auto *Ty = getMemInstValueType(V);
- return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
- }
-
- /// Returns true if \p I is an instruction that will be scalarized with
- /// predication. Such instructions include conditional stores and
- /// instructions that may divide by zero.
- /// If a non-zero VF has been calculated, we check if I will be scalarized
- /// predication for that VF.
- bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
-
- // Returns true if \p I is an instruction that will be predicated either
- // through scalar predication or masked load/store or masked gather/scatter.
- // Superset of instructions that return true for isScalarWithPredication.
- bool isPredicatedInst(Instruction *I) {
- if (!blockNeedsPredication(I->getParent()))
- return false;
- // Loads and stores that need some form of masked operation are predicated
- // instructions.
- if (isa<LoadInst>(I) || isa<StoreInst>(I))
- return Legal->isMaskRequired(I);
- return isScalarWithPredication(I);
- }
-
- /// Returns true if \p I is a memory instruction with consecutive memory
- /// access that can be widened.
- bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
-
- /// Returns true if \p I is a memory instruction in an interleaved-group
- /// of memory accesses that can be vectorized with wide vector loads/stores
- /// and shuffles.
- bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
-
- /// Check if \p Instr belongs to any interleaved access group.
- bool isAccessInterleaved(Instruction *Instr) {
- return InterleaveInfo.isInterleaved(Instr);
- }
-
- /// Get the interleaved access group that \p Instr belongs to.
- const InterleaveGroup<Instruction> *
- getInterleavedAccessGroup(Instruction *Instr) {
- return InterleaveInfo.getInterleaveGroup(Instr);
- }
-
- /// Returns true if an interleaved group requires a scalar iteration
- /// to handle accesses with gaps, and there is nothing preventing us from
- /// creating a scalar epilogue.
- bool requiresScalarEpilogue() const {
- return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue();
- }
-
- /// Returns true if a scalar epilogue is not allowed due to optsize.
- bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; }
-
- /// Returns true if all loop blocks should be masked to fold tail loop.
- bool foldTailByMasking() const { return FoldTailByMasking; }
-
- bool blockNeedsPredication(BasicBlock *BB) {
- return foldTailByMasking() || Legal->blockNeedsPredication(BB);
- }
-
- /// Estimate cost of an intrinsic call instruction CI if it were vectorized
- /// with factor VF. Return the cost of the instruction, including
- /// scalarization overhead if it's needed.
- unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
-
- /// Estimate cost of a call instruction CI if it were vectorized with factor
- /// VF. Return the cost of the instruction, including scalarization overhead
- /// if it's needed. The flag NeedToScalarize shows if the call needs to be
- /// scalarized -
- /// i.e. either vector version isn't available, or is too expensive.
- unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
-
-private:
- unsigned NumPredStores = 0;
-
- /// \return An upper bound for the vectorization factor, larger than zero.
- /// One is returned if vectorization should best be avoided due to cost.
- unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
-
- /// The vectorization cost is a combination of the cost itself and a boolean
- /// indicating whether any of the contributing operations will actually
- /// operate on
- /// vector values after type legalization in the backend. If this latter value
- /// is
- /// false, then all operations will be scalarized (i.e. no vectorization has
- /// actually taken place).
- using VectorizationCostTy = std::pair<unsigned, bool>;
-
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- VectorizationCostTy expectedCost(unsigned VF);
-
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
-
- /// The cost-computation logic from getInstructionCost which provides
- /// the vector type as an output parameter.
- unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
-
- /// Calculate vectorization cost of memory instruction \p I.
- unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
-
- /// The cost computation for scalarized memory instruction.
- unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
-
- /// The cost computation for interleaving group of memory instructions.
- unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
-
- /// The cost computation for Gather/Scatter instruction.
- unsigned getGatherScatterCost(Instruction *I, unsigned VF);
-
- /// The cost computation for widening instruction \p I with consecutive
- /// memory access.
- unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
-
- /// The cost calculation for Load/Store instruction \p I with uniform pointer -
- /// Load: scalar load + broadcast.
- /// Store: scalar store + (loop invariant value stored? 0 : extract of last
- /// element)
- unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
-
- /// Estimate the overhead of scalarizing an instruction. This is a
- /// convenience wrapper for the type-based getScalarizationOverhead API.
- unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
-
- /// Returns whether the instruction is a load or store and will be a emitted
- /// as a vector operation.
- bool isConsecutiveLoadOrStore(Instruction *I);
-
- /// Returns true if an artificially high cost for emulated masked memrefs
- /// should be used.
- bool useEmulatedMaskMemRefHack(Instruction *I);
-
- /// Create an analysis remark that explains why vectorization failed
- ///
- /// \p RemarkName is the identifier for the remark. \return the remark object
- /// that can be streamed to.
- OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
- return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
- RemarkName, TheLoop);
- }
-
- /// Map of scalar integer values to the smallest bitwidth they can be legally
- /// represented as. The vector equivalents of these values should be truncated
- /// to this type.
- MapVector<Instruction *, uint64_t> MinBWs;
-
- /// A type representing the costs for instructions if they were to be
- /// scalarized rather than vectorized. The entries are Instruction-Cost
- /// pairs.
- using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
-
- /// A set containing all BasicBlocks that are known to present after
- /// vectorization as a predicated block.
- SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
-
- /// Records whether it is allowed to have the original scalar loop execute at
- /// least once. This may be needed as a fallback loop in case runtime
- /// aliasing/dependence checks fail, or to handle the tail/remainder
- /// iterations when the trip count is unknown or doesn't divide by the VF,
- /// or as a peel-loop to handle gaps in interleave-groups.
- /// Under optsize and when the trip count is very small we don't allow any
- /// iterations to execute in the scalar loop.
- bool IsScalarEpilogueAllowed = true;
-
- /// All blocks of loop are to be masked to fold tail of scalar iterations.
- bool FoldTailByMasking = false;
-
- /// A map holding scalar costs for different vectorization factors. The
- /// presence of a cost for an instruction in the mapping indicates that the
- /// instruction will be scalarized when vectorizing with the associated
- /// vectorization factor. The entries are VF-ScalarCostTy pairs.
- DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
-
- /// Holds the instructions known to be uniform after vectorization.
- /// The data is collected per VF.
- DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
-
- /// Holds the instructions known to be scalar after vectorization.
- /// The data is collected per VF.
- DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
-
- /// Holds the instructions (address computations) that are forced to be
- /// scalarized.
- DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
-
- /// Returns the expected difference in cost from scalarizing the expression
- /// feeding a predicated instruction \p PredInst. The instructions to
- /// scalarize and their scalar costs are collected in \p ScalarCosts. A
- /// non-negative return value implies the expression will be scalarized.
- /// Currently, only single-use chains are considered for scalarization.
- int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
- unsigned VF);
-
- /// Collect the instructions that are uniform after vectorization. An
- /// instruction is uniform if we represent it with a single scalar value in
- /// the vectorized loop corresponding to each vector iteration. Examples of
- /// uniform instructions include pointer operands of consecutive or
- /// interleaved memory accesses. Note that although uniformity implies an
- /// instruction will be scalar, the reverse is not true. In general, a
- /// scalarized instruction will be represented by VF scalar values in the
- /// vectorized loop, each corresponding to an iteration of the original
- /// scalar loop.
- void collectLoopUniforms(unsigned VF);
-
- /// Collect the instructions that are scalar after vectorization. An
- /// instruction is scalar if it is known to be uniform or will be scalarized
- /// during vectorization. Non-uniform scalarized instructions will be
- /// represented by VF values in the vectorized loop, each corresponding to an
- /// iteration of the original scalar loop.
- void collectLoopScalars(unsigned VF);
-
- /// Keeps cost model vectorization decision and cost for instructions.
- /// Right now it is used for memory instructions only.
- using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
- std::pair<InstWidening, unsigned>>;
-
- DecisionList WideningDecisions;
-
- /// Returns true if \p V is expected to be vectorized and it needs to be
- /// extracted.
- bool needsExtract(Value *V, unsigned VF) const {
- Instruction *I = dyn_cast<Instruction>(V);
- if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
- return false;
-
- // Assume we can vectorize V (and hence we need extraction) if the
- // scalars are not computed yet. This can happen, because it is called
- // via getScalarizationOverhead from setCostBasedWideningDecision, before
- // the scalars are collected. That should be a safe assumption in most
- // cases, because we check if the operands have vectorizable types
- // beforehand in LoopVectorizationLegality.
- return Scalars.find(VF) == Scalars.end() ||
- !isScalarAfterVectorization(I, VF);
- };
-
- /// Returns a range containing only operands needing to be extracted.
- SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
- unsigned VF) {
- return SmallVector<Value *, 4>(make_filter_range(
- Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
- }
-
-public:
- /// The loop that we evaluate.
- Loop *TheLoop;
-
- /// Predicated scalar evolution analysis.
- PredicatedScalarEvolution &PSE;
-
- /// Loop Info analysis.
- LoopInfo *LI;
-
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
-
- /// Vector target information.
- const TargetTransformInfo &TTI;
-
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
-
- /// Demanded bits analysis.
- DemandedBits *DB;
-
- /// Assumption cache.
- AssumptionCache *AC;
-
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
-
- const Function *TheFunction;
-
- /// Loop Vectorize Hint.
- const LoopVectorizeHints *Hints;
-
- /// The interleave access information contains groups of interleaved accesses
- /// with the same stride and close to each other.
- InterleavedAccessInfo &InterleaveInfo;
-
- /// Values to ignore in the cost model.
- SmallPtrSet<const Value *, 16> ValuesToIgnore;
-
- /// Values to ignore in the cost model when VF > 1.
- SmallPtrSet<const Value *, 16> VecValuesToIgnore;
-};
-
-} // end namespace llvm
-
-// Return true if \p OuterLp is an outer loop annotated with hints for explicit
-// vectorization. The loop needs to be annotated with #pragma omp simd
-// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
-// vector length information is not provided, vectorization is not considered
-// explicit. Interleave hints are not allowed either. These limitations will be
-// relaxed in the future.
-// Please, note that we are currently forced to abuse the pragma 'clang
-// vectorize' semantics. This pragma provides *auto-vectorization hints*
-// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
-// provides *explicit vectorization hints* (LV can bypass legal checks and
-// assume that vectorization is legal). However, both hints are implemented
-// using the same metadata (llvm.loop.vectorize, processed by
-// LoopVectorizeHints). This will be fixed in the future when the native IR
-// representation for pragma 'omp simd' is introduced.
-static bool isExplicitVecOuterLoop(Loop *OuterLp,
- OptimizationRemarkEmitter *ORE) {
- assert(!OuterLp->empty() && "This is not an outer loop");
- LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
-
- // Only outer loops with an explicit vectorization hint are supported.
- // Unannotated outer loops are ignored.
- if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
- return false;
-
- Function *Fn = OuterLp->getHeader()->getParent();
- if (!Hints.allowVectorization(Fn, OuterLp,
- true /*VectorizeOnlyWhenForced*/)) {
- LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
- return false;
- }
-
- if (Hints.getInterleave() > 1) {
- // TODO: Interleave support is future work.
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
- "outer loops.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
-
- return true;
-}
-
-static void collectSupportedLoops(Loop &L, LoopInfo *LI,
- OptimizationRemarkEmitter *ORE,
- SmallVectorImpl<Loop *> &V) {
- // Collect inner loops and outer loops without irreducible control flow. For
- // now, only collect outer loops that have explicit vectorization hints. If we
- // are stress testing the VPlan H-CFG construction, we collect the outermost
- // loop of every loop nest.
- if (L.empty() || VPlanBuildStressTest ||
- (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
- LoopBlocksRPO RPOT(&L);
- RPOT.perform(LI);
- if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
- V.push_back(&L);
- // TODO: Collect inner loops inside marked outer loops in case
- // vectorization fails for the outer loop. Do not invoke
- // 'containsIrreducibleCFG' again for inner loops when the outer loop is
- // already known to be reducible. We can use an inherited attribute for
- // that.
- return;
- }
- }
- for (Loop *InnerL : L)
- collectSupportedLoops(*InnerL, LI, ORE, V);
-}
-
-namespace {
-
-/// The LoopVectorize Pass.
-struct LoopVectorize : public FunctionPass {
- /// Pass identification, replacement for typeid
- static char ID;
-
- LoopVectorizePass Impl;
-
- explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
- bool VectorizeOnlyWhenForced = false)
- : FunctionPass(ID) {
- Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced;
- Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced;
- initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
-
- std::function<const LoopAccessInfo &(Loop &)> GetLAA =
- [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
-
- return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
- GetLAA, *ORE, PSI);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<LoopAccessLegacyAnalysis>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
-
- // We currently do not preserve loopinfo/dominator analyses with outer loop
- // vectorization. Until this is addressed, mark these analyses as preserved
- // only for non-VPlan-native path.
- // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
- if (!EnableVPlanNativePath) {
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
-
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
-// LoopVectorizationCostModel and LoopVectorizationPlanner.
-//===----------------------------------------------------------------------===//
-
-Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // We need to place the broadcast of invariant variables outside the loop,
- // but only if it's proven safe to do so. Else, broadcast will be inside
- // vector loop body.
- Instruction *Instr = dyn_cast<Instruction>(V);
- bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
- (!Instr ||
- DT->dominates(Instr->getParent(), LoopVectorPreHeader));
- // Place the code for broadcasting invariant variables in the new preheader.
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (SafeToHoist)
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
-
- // Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
-
- return Shuf;
-}
-
-void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
- const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
- assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
- "Expected either an induction phi-node or a truncate of it!");
- Value *Start = II.getStartValue();
-
- // Construct the initial value of the vector IV in the vector loop preheader
- auto CurrIP = Builder.saveIP();
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- if (isa<TruncInst>(EntryVal)) {
- assert(Start->getType()->isIntegerTy() &&
- "Truncation requires an integer type");
- auto *TruncType = cast<IntegerType>(EntryVal->getType());
- Step = Builder.CreateTrunc(Step, TruncType);
- Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
- }
- Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
- Value *SteppedStart =
- getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
-
- // We create vector phi nodes for both integer and floating-point induction
- // variables. Here, we determine the kind of arithmetic we will perform.
- Instruction::BinaryOps AddOp;
- Instruction::BinaryOps MulOp;
- if (Step->getType()->isIntegerTy()) {
- AddOp = Instruction::Add;
- MulOp = Instruction::Mul;
- } else {
- AddOp = II.getInductionOpcode();
- MulOp = Instruction::FMul;
- }
-
- // Multiply the vectorization factor by the step using integer or
- // floating-point arithmetic as appropriate.
- Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
- Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
-
- // Create a vector splat to use in the induction update.
- //
- // FIXME: If the step is non-constant, we create the vector splat with
- // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
- // handle a constant vector splat.
- Value *SplatVF = isa<Constant>(Mul)
- ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
- : Builder.CreateVectorSplat(VF, Mul);
- Builder.restoreIP(CurrIP);
-
- // We may need to add the step a number of times, depending on the unroll
- // factor. The last of those goes into the PHI.
- PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
- &*LoopVectorBody->getFirstInsertionPt());
- VecInd->setDebugLoc(EntryVal->getDebugLoc());
- Instruction *LastInduction = VecInd;
- for (unsigned Part = 0; Part < UF; ++Part) {
- VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
-
- if (isa<TruncInst>(EntryVal))
- addMetadata(LastInduction, EntryVal);
- recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
-
- LastInduction = cast<Instruction>(addFastMathFlag(
- Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
- LastInduction->setDebugLoc(EntryVal->getDebugLoc());
- }
-
- // Move the last step to the end of the latch block. This ensures consistent
- // placement of all induction updates.
- auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
- auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
- auto *ICmp = cast<Instruction>(Br->getCondition());
- LastInduction->moveBefore(ICmp);
- LastInduction->setName("vec.ind.next");
-
- VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
- VecInd->addIncoming(LastInduction, LoopVectorLatch);
-}
-
-bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
- return Cost->isScalarAfterVectorization(I, VF) ||
- Cost->isProfitableToScalarize(I, VF);
-}
-
-bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
- if (shouldScalarizeInstruction(IV))
- return true;
- auto isScalarInst = [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
- };
- return llvm::any_of(IV->users(), isScalarInst);
-}
-
-void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
- const InductionDescriptor &ID, const Instruction *EntryVal,
- Value *VectorLoopVal, unsigned Part, unsigned Lane) {
- assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
- "Expected either an induction phi-node or a truncate of it!");
-
- // This induction variable is not the phi from the original loop but the
- // newly-created IV based on the proof that casted Phi is equal to the
- // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
- // re-uses the same InductionDescriptor that original IV uses but we don't
- // have to do any recording in this case - that is done when original IV is
- // processed.
- if (isa<TruncInst>(EntryVal))
- return;
-
- const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
- if (Casts.empty())
- return;
- // Only the first Cast instruction in the Casts vector is of interest.
- // The rest of the Casts (if exist) have no uses outside the
- // induction update chain itself.
- Instruction *CastInst = *Casts.begin();
- if (Lane < UINT_MAX)
- VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
- else
- VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
-}
-
-void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
- assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
- "Primary induction variable must have an integer type");
-
- auto II = Legal->getInductionVars()->find(IV);
- assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
-
- auto ID = II->second;
- assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
-
- // The scalar value to broadcast. This will be derived from the canonical
- // induction variable.
- Value *ScalarIV = nullptr;
-
- // The value from the original loop to which we are mapping the new induction
- // variable.
- Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
-
- // True if we have vectorized the induction variable.
- auto VectorizedIV = false;
-
- // Determine if we want a scalar version of the induction variable. This is
- // true if the induction variable itself is not widened, or if it has at
- // least one user in the loop that is not widened.
- auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
-
- // Generate code for the induction step. Note that induction steps are
- // required to be loop-invariant
- assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
- "Induction step should be loop invariant");
- auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
- Value *Step = nullptr;
- if (PSE.getSE()->isSCEVable(IV->getType())) {
- SCEVExpander Exp(*PSE.getSE(), DL, "induction");
- Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
- LoopVectorPreHeader->getTerminator());
- } else {
- Step = cast<SCEVUnknown>(ID.getStep())->getValue();
- }
-
- // Try to create a new independent vector induction variable. If we can't
- // create the phi node, we will splat the scalar induction variable in each
- // loop iteration.
- if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
- createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
- VectorizedIV = true;
- }
-
- // If we haven't yet vectorized the induction variable, or if we will create
- // a scalar one, we need to define the scalar induction variable and step
- // values. If we were given a truncation type, truncate the canonical
- // induction variable and step. Otherwise, derive these values from the
- // induction descriptor.
- if (!VectorizedIV || NeedsScalarIV) {
- ScalarIV = Induction;
- if (IV != OldInduction) {
- ScalarIV = IV->getType()->isIntegerTy()
- ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
- : Builder.CreateCast(Instruction::SIToFP, Induction,
- IV->getType());
- ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
- ScalarIV->setName("offset.idx");
- }
- if (Trunc) {
- auto *TruncType = cast<IntegerType>(Trunc->getType());
- assert(Step->getType()->isIntegerTy() &&
- "Truncation requires an integer step");
- ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
- Step = Builder.CreateTrunc(Step, TruncType);
- }
- }
-
- // If we haven't yet vectorized the induction variable, splat the scalar
- // induction variable, and build the necessary step vectors.
- // TODO: Don't do it unless the vectorized IV is really required.
- if (!VectorizedIV) {
- Value *Broadcasted = getBroadcastInstrs(ScalarIV);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *EntryPart =
- getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
- VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
- if (Trunc)
- addMetadata(EntryPart, Trunc);
- recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
- }
- }
-
- // If an induction variable is only used for counting loop iterations or
- // calculating addresses, it doesn't need to be widened. Create scalar steps
- // that can be used by instructions we will later scalarize. Note that the
- // addition of the scalar steps will not increase the number of instructions
- // in the loop in the common case prior to InstCombine. We will be trading
- // one vector extract for each scalar step.
- if (NeedsScalarIV)
- buildScalarSteps(ScalarIV, Step, EntryVal, ID);
-}
-
-Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps BinOp) {
- // Create and check the types.
- assert(Val->getType()->isVectorTy() && "Must be a vector");
- int VLen = Val->getType()->getVectorNumElements();
-
- Type *STy = Val->getType()->getScalarType();
- assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
- "Induction Step must be an integer or FP");
- assert(Step->getType() == STy && "Step has wrong type");
-
- SmallVector<Constant *, 8> Indices;
-
- if (STy->isIntegerTy()) {
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantInt::get(STy, StartIdx + i));
-
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
- assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
- Step = Builder.CreateVectorSplat(VLen, Step);
- assert(Step->getType() == Val->getType() && "Invalid step vec");
- // FIXME: The newly created binary instructions should contain nsw/nuw flags,
- // which can be found from the original scalar operations.
- Step = Builder.CreateMul(Cv, Step);
- return Builder.CreateAdd(Val, Step, "induction");
- }
-
- // Floating point induction.
- assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
- "Binary Opcode should be specified for FP induction");
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
-
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
-
- Step = Builder.CreateVectorSplat(VLen, Step);
-
- // Floating point operations had to be 'fast' to enable the induction.
- FastMathFlags Flags;
- Flags.setFast();
-
- Value *MulOp = Builder.CreateFMul(Cv, Step);
- if (isa<Instruction>(MulOp))
- // Have to check, MulOp may be a constant
- cast<Instruction>(MulOp)->setFastMathFlags(Flags);
-
- Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
- if (isa<Instruction>(BOp))
- cast<Instruction>(BOp)->setFastMathFlags(Flags);
- return BOp;
-}
-
-void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
- Instruction *EntryVal,
- const InductionDescriptor &ID) {
- // We shouldn't have to build scalar steps if we aren't vectorizing.
- assert(VF > 1 && "VF should be greater than one");
-
- // Get the value type and ensure it and the step have the same integer type.
- Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
- assert(ScalarIVTy == Step->getType() &&
- "Val and Step should have the same type");
-
- // We build scalar steps for both integer and floating-point induction
- // variables. Here, we determine the kind of arithmetic we will perform.
- Instruction::BinaryOps AddOp;
- Instruction::BinaryOps MulOp;
- if (ScalarIVTy->isIntegerTy()) {
- AddOp = Instruction::Add;
- MulOp = Instruction::Mul;
- } else {
- AddOp = ID.getInductionOpcode();
- MulOp = Instruction::FMul;
- }
-
- // Determine the number of scalars we need to generate for each unroll
- // iteration. If EntryVal is uniform, we only need to generate the first
- // lane. Otherwise, we generate all VF values.
- unsigned Lanes =
- Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
- : VF;
- // Compute the scalar steps and save the results in VectorLoopValueMap.
- for (unsigned Part = 0; Part < UF; ++Part) {
- for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
- auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
- auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
- auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
- VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
- recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
- }
- }
-}
-
-Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- assert(!V->getType()->isVoidTy() && "Type does not produce a value");
-
- // If we have a stride that is replaced by one, do it here. Defer this for
- // the VPlan-native path until we start running Legal checks in that path.
- if (!EnableVPlanNativePath && Legal->hasStride(V))
- V = ConstantInt::get(V->getType(), 1);
-
- // If we have a vector mapped to this value, return it.
- if (VectorLoopValueMap.hasVectorValue(V, Part))
- return VectorLoopValueMap.getVectorValue(V, Part);
-
- // If the value has not been vectorized, check if it has been scalarized
- // instead. If it has been scalarized, and we actually need the value in
- // vector form, we will construct the vector values on demand.
- if (VectorLoopValueMap.hasAnyScalarValue(V)) {
- Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
-
- // If we've scalarized a value, that value should be an instruction.
- auto *I = cast<Instruction>(V);
-
- // If we aren't vectorizing, we can just copy the scalar map values over to
- // the vector map.
- if (VF == 1) {
- VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
- return ScalarValue;
- }
-
- // Get the last scalar instruction we generated for V and Part. If the value
- // is known to be uniform after vectorization, this corresponds to lane zero
- // of the Part unroll iteration. Otherwise, the last instruction is the one
- // we created for the last vector lane of the Part unroll iteration.
- unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
- auto *LastInst = cast<Instruction>(
- VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
-
- // Set the insert point after the last scalarized instruction. This ensures
- // the insertelement sequence will directly follow the scalar definitions.
- auto OldIP = Builder.saveIP();
- auto NewIP = std::next(BasicBlock::iterator(LastInst));
- Builder.SetInsertPoint(&*NewIP);
-
- // However, if we are vectorizing, we need to construct the vector values.
- // If the value is known to be uniform after vectorization, we can just
- // broadcast the scalar value corresponding to lane zero for each unroll
- // iteration. Otherwise, we construct the vector values using insertelement
- // instructions. Since the resulting vectors are stored in
- // VectorLoopValueMap, we will only generate the insertelements once.
- Value *VectorValue = nullptr;
- if (Cost->isUniformAfterVectorization(I, VF)) {
- VectorValue = getBroadcastInstrs(ScalarValue);
- VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
- } else {
- // Initialize packing with insertelements to start from undef.
- Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
- VectorLoopValueMap.setVectorValue(V, Part, Undef);
- for (unsigned Lane = 0; Lane < VF; ++Lane)
- packScalarIntoVectorValue(V, {Part, Lane});
- VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
- }
- Builder.restoreIP(OldIP);
- return VectorValue;
- }
-
- // If this scalar is unknown, assume that it is a constant or that it is
- // loop invariant. Broadcast V and save the value for future uses.
- Value *B = getBroadcastInstrs(V);
- VectorLoopValueMap.setVectorValue(V, Part, B);
- return B;
-}
-
-Value *
-InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
- const VPIteration &Instance) {
- // If the value is not an instruction contained in the loop, it should
- // already be scalar.
- if (OrigLoop->isLoopInvariant(V))
- return V;
-
- assert(Instance.Lane > 0
- ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
- : true && "Uniform values only have lane zero");
-
- // If the value from the original loop has not been vectorized, it is
- // represented by UF x VF scalar values in the new loop. Return the requested
- // scalar value.
- if (VectorLoopValueMap.hasScalarValue(V, Instance))
- return VectorLoopValueMap.getScalarValue(V, Instance);
-
- // If the value has not been scalarized, get its entry in VectorLoopValueMap
- // for the given unroll part. If this entry is not a vector type (i.e., the
- // vectorization factor is one), there is no need to generate an
- // extractelement instruction.
- auto *U = getOrCreateVectorValue(V, Instance.Part);
- if (!U->getType()->isVectorTy()) {
- assert(VF == 1 && "Value not scalarized has non-vector type");
- return U;
- }
-
- // Otherwise, the value from the original loop has been vectorized and is
- // represented by UF vector values. Extract and return the requested scalar
- // value from the appropriate vector lane.
- return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
-}
-
-void InnerLoopVectorizer::packScalarIntoVectorValue(
- Value *V, const VPIteration &Instance) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't pack a vector");
- assert(!V->getType()->isVoidTy() && "Type does not produce a value");
-
- Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
- Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
- VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
- Builder.getInt32(Instance.Lane));
- VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
-}
-
-Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
- assert(Vec->getType()->isVectorTy() && "Invalid type");
- SmallVector<Constant *, 8> ShuffleMask;
- for (unsigned i = 0; i < VF; ++i)
- ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
-
- return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
- ConstantVector::get(ShuffleMask),
- "reverse");
-}
-
-// Return whether we allow using masked interleave-groups (for dealing with
-// strided loads/stores that reside in predicated blocks, or for dealing
-// with gaps).
-static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
- return EnableMaskedInterleavedMemAccesses;
-
- return TTI.enableMaskedInterleavedAccessVectorization();
-}
-
-// Try to vectorize the interleave group that \p Instr belongs to.
-//
-// E.g. Translate following interleaved load group (factor = 3):
-// for (i = 0; i < N; i+=3) {
-// R = Pic[i]; // Member of index 0
-// G = Pic[i+1]; // Member of index 1
-// B = Pic[i+2]; // Member of index 2
-// ... // do something to R, G, B
-// }
-// To:
-// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
-// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
-// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
-// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
-//
-// Or translate following interleaved store group (factor = 3):
-// for (i = 0; i < N; i+=3) {
-// ... do something to R, G, B
-// Pic[i] = R; // Member of index 0
-// Pic[i+1] = G; // Member of index 1
-// Pic[i+2] = B; // Member of index 2
-// }
-// To:
-// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
-// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
-// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
-// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
-// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
-void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr,
- VectorParts *BlockInMask) {
- const InterleaveGroup<Instruction> *Group =
- Cost->getInterleavedAccessGroup(Instr);
- assert(Group && "Fail to get an interleaved access group.");
-
- // Skip if current instruction is not the insert position.
- if (Instr != Group->getInsertPos())
- return;
-
- const DataLayout &DL = Instr->getModule()->getDataLayout();
- Value *Ptr = getLoadStorePointerOperand(Instr);
-
- // Prepare for the vector type of the interleaved load/store.
- Type *ScalarTy = getMemInstValueType(Instr);
- unsigned InterleaveFactor = Group->getFactor();
- Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
- Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr));
-
- // Prepare for the new pointers.
- setDebugLocFromInst(Builder, Ptr);
- SmallVector<Value *, 2> NewPtrs;
- unsigned Index = Group->getIndex(Instr);
-
- VectorParts Mask;
- bool IsMaskForCondRequired = BlockInMask;
- if (IsMaskForCondRequired) {
- Mask = *BlockInMask;
- // TODO: extend the masked interleaved-group support to reversed access.
- assert(!Group->isReverse() && "Reversed masked interleave-group "
- "not supported.");
- }
-
- // If the group is reverse, adjust the index to refer to the last vector lane
- // instead of the first. We adjust the index from the first vector lane,
- // rather than directly getting the pointer for lane VF - 1, because the
- // pointer operand of the interleaved access is supposed to be uniform. For
- // uniform instructions, we're only required to generate a value for the
- // first vector lane in each unroll iteration.
- if (Group->isReverse())
- Index += (VF - 1) * Group->getFactor();
-
- bool InBounds = false;
- if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
- InBounds = gep->isInBounds();
-
- for (unsigned Part = 0; Part < UF; Part++) {
- Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
-
- // Notice current instruction could be any index. Need to adjust the address
- // to the member of index 0.
- //
- // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
- // b = A[i]; // Member of index 0
- // Current pointer is pointed to A[i+1], adjust it to A[i].
- //
- // E.g. A[i+1] = a; // Member of index 1
- // A[i] = b; // Member of index 0
- // A[i+2] = c; // Member of index 2 (Current instruction)
- // Current pointer is pointed to A[i+2], adjust it to A[i].
- NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index));
- if (InBounds)
- cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true);
-
- // Cast to the vector pointer type.
- NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
- }
-
- setDebugLocFromInst(Builder, Instr);
- Value *UndefVec = UndefValue::get(VecTy);
-
- Value *MaskForGaps = nullptr;
- if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
- MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
- assert(MaskForGaps && "Mask for Gaps is required but it is null");
- }
-
- // Vectorize the interleaved load group.
- if (isa<LoadInst>(Instr)) {
- // For each unroll part, create a wide load for the group.
- SmallVector<Value *, 2> NewLoads;
- for (unsigned Part = 0; Part < UF; Part++) {
- Instruction *NewLoad;
- if (IsMaskForCondRequired || MaskForGaps) {
- assert(useMaskedInterleavedAccesses(*TTI) &&
- "masked interleaved groups are not allowed.");
- Value *GroupMask = MaskForGaps;
- if (IsMaskForCondRequired) {
- auto *Undefs = UndefValue::get(Mask[Part]->getType());
- auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF);
- Value *ShuffledMask = Builder.CreateShuffleVector(
- Mask[Part], Undefs, RepMask, "interleaved.mask");
- GroupMask = MaskForGaps
- ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
- MaskForGaps)
- : ShuffledMask;
- }
- NewLoad =
- Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(),
- GroupMask, UndefVec, "wide.masked.vec");
- }
- else
- NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part],
- Group->getAlignment(), "wide.vec");
- Group->addMetadata(NewLoad);
- NewLoads.push_back(NewLoad);
- }
-
- // For each member in the group, shuffle out the appropriate data from the
- // wide loads.
- for (unsigned I = 0; I < InterleaveFactor; ++I) {
- Instruction *Member = Group->getMember(I);
-
- // Skip the gaps in the group.
- if (!Member)
- continue;
-
- Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
- for (unsigned Part = 0; Part < UF; Part++) {
- Value *StridedVec = Builder.CreateShuffleVector(
- NewLoads[Part], UndefVec, StrideMask, "strided.vec");
-
- // If this member has different type, cast the result type.
- if (Member->getType() != ScalarTy) {
- VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
- StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
- }
-
- if (Group->isReverse())
- StridedVec = reverseVector(StridedVec);
-
- VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
- }
- }
- return;
- }
-
- // The sub vector type for current instruction.
- VectorType *SubVT = VectorType::get(ScalarTy, VF);
-
- // Vectorize the interleaved store group.
- for (unsigned Part = 0; Part < UF; Part++) {
- // Collect the stored vector from each member.
- SmallVector<Value *, 4> StoredVecs;
- for (unsigned i = 0; i < InterleaveFactor; i++) {
- // Interleaved store group doesn't allow a gap, so each index has a member
- Instruction *Member = Group->getMember(i);
- assert(Member && "Fail to get a member from an interleaved store group");
-
- Value *StoredVec = getOrCreateVectorValue(
- cast<StoreInst>(Member)->getValueOperand(), Part);
- if (Group->isReverse())
- StoredVec = reverseVector(StoredVec);
-
- // If this member has different type, cast it to a unified type.
-
- if (StoredVec->getType() != SubVT)
- StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
-
- StoredVecs.push_back(StoredVec);
- }
-
- // Concatenate all vectors into a wide vector.
- Value *WideVec = concatenateVectors(Builder, StoredVecs);
-
- // Interleave the elements in the wide vector.
- Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
- Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
- "interleaved.vec");
-
- Instruction *NewStoreInstr;
- if (IsMaskForCondRequired) {
- auto *Undefs = UndefValue::get(Mask[Part]->getType());
- auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF);
- Value *ShuffledMask = Builder.CreateShuffleVector(
- Mask[Part], Undefs, RepMask, "interleaved.mask");
- NewStoreInstr = Builder.CreateMaskedStore(
- IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask);
- }
- else
- NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part],
- Group->getAlignment());
-
- Group->addMetadata(NewStoreInstr);
- }
-}
-
-void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
- VectorParts *BlockInMask) {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(Instr);
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
-
- assert((LI || SI) && "Invalid Load/Store instruction");
-
- LoopVectorizationCostModel::InstWidening Decision =
- Cost->getWideningDecision(Instr, VF);
- assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
- "CM decision should be taken at this point");
- if (Decision == LoopVectorizationCostModel::CM_Interleave)
- return vectorizeInterleaveGroup(Instr);
-
- Type *ScalarDataTy = getMemInstValueType(Instr);
- Type *DataTy = VectorType::get(ScalarDataTy, VF);
- Value *Ptr = getLoadStorePointerOperand(Instr);
- unsigned Alignment = getLoadStoreAlignment(Instr);
- // An alignment of 0 means target abi alignment. We need to use the scalar's
- // target abi alignment in such a case.
- const DataLayout &DL = Instr->getModule()->getDataLayout();
- if (!Alignment)
- Alignment = DL.getABITypeAlignment(ScalarDataTy);
- unsigned AddressSpace = getLoadStoreAddressSpace(Instr);
-
- // Determine if the pointer operand of the access is either consecutive or
- // reverse consecutive.
- bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
- bool ConsecutiveStride =
- Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
- bool CreateGatherScatter =
- (Decision == LoopVectorizationCostModel::CM_GatherScatter);
-
- // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
- // gather/scatter. Otherwise Decision should have been to Scalarize.
- assert((ConsecutiveStride || CreateGatherScatter) &&
- "The instruction should be scalarized");
-
- // Handle consecutive loads/stores.
- if (ConsecutiveStride)
- Ptr = getOrCreateScalarValue(Ptr, {0, 0});
-
- VectorParts Mask;
- bool isMaskRequired = BlockInMask;
- if (isMaskRequired)
- Mask = *BlockInMask;
-
- bool InBounds = false;
- if (auto *gep = dyn_cast<GetElementPtrInst>(
- getLoadStorePointerOperand(Instr)->stripPointerCasts()))
- InBounds = gep->isInBounds();
-
- const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
- // Calculate the pointer for the specific unroll-part.
- GetElementPtrInst *PartPtr = nullptr;
-
- if (Reverse) {
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
- PartPtr->setIsInBounds(InBounds);
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
- PartPtr->setIsInBounds(InBounds);
- if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
- Mask[Part] = reverseVector(Mask[Part]);
- } else {
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
- PartPtr->setIsInBounds(InBounds);
- }
-
- return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
- };
-
- // Handle Stores:
- if (SI) {
- setDebugLocFromInst(Builder, SI);
-
- for (unsigned Part = 0; Part < UF; ++Part) {
- Instruction *NewSI = nullptr;
- Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
- if (CreateGatherScatter) {
- Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
- Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
- NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
- MaskPart);
- } else {
- if (Reverse) {
- // If we store to reverse consecutive memory locations, then we need
- // to reverse the order of elements in the stored value.
- StoredVal = reverseVector(StoredVal);
- // We don't want to update the value in the map as it might be used in
- // another expression. So don't call resetVectorValue(StoredVal).
- }
- auto *VecPtr = CreateVecPtr(Part, Ptr);
- if (isMaskRequired)
- NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
- Mask[Part]);
- else
- NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
- }
- addMetadata(NewSI, SI);
- }
- return;
- }
-
- // Handle loads.
- assert(LI && "Must have a load instruction");
- setDebugLocFromInst(Builder, LI);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *NewLI;
- if (CreateGatherScatter) {
- Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
- Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
- NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
- nullptr, "wide.masked.gather");
- addMetadata(NewLI, LI);
- } else {
- auto *VecPtr = CreateVecPtr(Part, Ptr);
- if (isMaskRequired)
- NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
- UndefValue::get(DataTy),
- "wide.masked.load");
- else
- NewLI =
- Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
-
- // Add metadata to the load, but setVectorValue to the reverse shuffle.
- addMetadata(NewLI, LI);
- if (Reverse)
- NewLI = reverseVector(NewLI);
- }
- VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
- }
-}
-
-void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
- const VPIteration &Instance,
- bool IfPredicateInstr) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
-
- setDebugLocFromInst(Builder, Instr);
-
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
-
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
-
- // Replace the operands of the cloned instructions with their scalar
- // equivalents in the new loop.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
- Cloned->setOperand(op, NewOp);
- }
- addNewMetadata(Cloned, Instr);
-
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
-
- // Add the cloned scalar to the scalar map entry.
- VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
-
- // If we just cloned a new assumption, add it the assumption cache.
- if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
- if (II->getIntrinsicID() == Intrinsic::assume)
- AC->registerAssumption(II);
-
- // End if-block.
- if (IfPredicateInstr)
- PredicatedInstructions.push_back(Cloned);
-}
-
-PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
- Value *End, Value *Step,
- Instruction *DL) {
- BasicBlock *Header = L->getHeader();
- BasicBlock *Latch = L->getLoopLatch();
- // As we're just creating this loop, it's possible no latch exists
- // yet. If so, use the header as this will be a single block loop.
- if (!Latch)
- Latch = Header;
-
- IRBuilder<> Builder(&*Header->getFirstInsertionPt());
- Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
- setDebugLocFromInst(Builder, OldInst);
- auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
-
- Builder.SetInsertPoint(Latch->getTerminator());
- setDebugLocFromInst(Builder, OldInst);
-
- // Create i+1 and fill the PHINode.
- Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
- Induction->addIncoming(Start, L->getLoopPreheader());
- Induction->addIncoming(Next, Latch);
- // Create the compare.
- Value *ICmp = Builder.CreateICmpEQ(Next, End);
- Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
-
- // Now we have two terminators. Remove the old one from the block.
- Latch->getTerminator()->eraseFromParent();
-
- return Induction;
-}
-
-Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
- if (TripCount)
- return TripCount;
-
- assert(L && "Create Trip Count for null loop.");
- IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
- // Find the loop boundaries.
- ScalarEvolution *SE = PSE.getSE();
- const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
- assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
- "Invalid loop count");
-
- Type *IdxTy = Legal->getWidestInductionType();
- assert(IdxTy && "No type for induction");
-
- // The exit count might have the type of i64 while the phi is i32. This can
- // happen if we have an induction variable that is sign extended before the
- // compare. The only way that we get a backedge taken count is that the
- // induction variable was signed and as such will not overflow. In such a case
- // truncation is legal.
- if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
- IdxTy->getPrimitiveSizeInBits())
- BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
- BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
-
- // Get the total trip count from the count by adding 1.
- const SCEV *ExitCount = SE->getAddExpr(
- BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
-
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
-
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, DL, "induction");
-
- // Count holds the overall loop count (N).
- TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- L->getLoopPreheader()->getTerminator());
-
- if (TripCount->getType()->isPointerTy())
- TripCount =
- CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
- L->getLoopPreheader()->getTerminator());
-
- return TripCount;
-}
-
-Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
- if (VectorTripCount)
- return VectorTripCount;
-
- Value *TC = getOrCreateTripCount(L);
- IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
-
- Type *Ty = TC->getType();
- Constant *Step = ConstantInt::get(Ty, VF * UF);
-
- // If the tail is to be folded by masking, round the number of iterations N
- // up to a multiple of Step instead of rounding down. This is done by first
- // adding Step-1 and then rounding down. Note that it's ok if this addition
- // overflows: the vector induction variable will eventually wrap to zero given
- // that it starts at zero and its Step is a power of two; the loop will then
- // exit, with the last early-exit vector comparison also producing all-true.
- if (Cost->foldTailByMasking()) {
- assert(isPowerOf2_32(VF * UF) &&
- "VF*UF must be a power of 2 when folding tail by masking");
- TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
- }
-
- // Now we need to generate the expression for the part of the loop that the
- // vectorized body will execute. This is equal to N - (N % Step) if scalar
- // iterations are not required for correctness, or N - Step, otherwise. Step
- // is equal to the vectorization factor (number of SIMD elements) times the
- // unroll factor (number of SIMD instructions).
- Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
-
- // If there is a non-reversed interleaved group that may speculatively access
- // memory out-of-bounds, we need to ensure that there will be at least one
- // iteration of the scalar epilogue loop. Thus, if the step evenly divides
- // the trip count, we set the remainder to be equal to the step. If the step
- // does not evenly divide the trip count, no adjustment is necessary since
- // there will already be scalar iterations. Note that the minimum iterations
- // check ensures that N >= Step.
- if (VF > 1 && Cost->requiresScalarEpilogue()) {
- auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
- R = Builder.CreateSelect(IsZero, Step, R);
- }
-
- VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
-
- return VectorTripCount;
-}
-
-Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
- const DataLayout &DL) {
- // Verify that V is a vector type with same number of elements as DstVTy.
- unsigned VF = DstVTy->getNumElements();
- VectorType *SrcVecTy = cast<VectorType>(V->getType());
- assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
- Type *SrcElemTy = SrcVecTy->getElementType();
- Type *DstElemTy = DstVTy->getElementType();
- assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
- "Vector elements must have same size");
-
- // Do a direct cast if element types are castable.
- if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
- return Builder.CreateBitOrPointerCast(V, DstVTy);
- }
- // V cannot be directly casted to desired vector type.
- // May happen when V is a floating point vector but DstVTy is a vector of
- // pointers or vice-versa. Handle this using a two-step bitcast using an
- // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
- assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
- "Only one type should be a pointer type");
- assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
- "Only one type should be a floating point type");
- Type *IntTy =
- IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
- VectorType *VecIntTy = VectorType::get(IntTy, VF);
- Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
- return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
-}
-
-void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
- BasicBlock *Bypass) {
- Value *Count = getOrCreateTripCount(L);
- BasicBlock *BB = L->getLoopPreheader();
- IRBuilder<> Builder(BB->getTerminator());
-
- // Generate code to check if the loop's trip count is less than VF * UF, or
- // equal to it in case a scalar epilogue is required; this implies that the
- // vector trip count is zero. This check also covers the case where adding one
- // to the backedge-taken count overflowed leading to an incorrect trip count
- // of zero. In this case we will also jump to the scalar loop.
- auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
- : ICmpInst::ICMP_ULT;
-
- // If tail is to be folded, vector loop takes care of all iterations.
- Value *CheckMinIters = Builder.getFalse();
- if (!Cost->foldTailByMasking())
- CheckMinIters = Builder.CreateICmp(
- P, Count, ConstantInt::get(Count->getType(), VF * UF),
- "min.iters.check");
-
- BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
- // Update dominator tree immediately if the generated block is a
- // LoopBypassBlock because SCEV expansions to generate loop bypass
- // checks may query it before the current function is finished.
- DT->addNewBlock(NewBB, BB);
- if (L->getParentLoop())
- L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
- ReplaceInstWithInst(BB->getTerminator(),
- BranchInst::Create(Bypass, NewBB, CheckMinIters));
- LoopBypassBlocks.push_back(BB);
-}
-
-void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
- BasicBlock *BB = L->getLoopPreheader();
-
- // Generate the code to check that the SCEV assumptions that we made.
- // We want the new basic block to start at the first instruction in a
- // sequence of instructions that form a check.
- SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
- "scev.check");
- Value *SCEVCheck =
- Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
-
- if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
- if (C->isZero())
- return;
-
- assert(!Cost->foldTailByMasking() &&
- "Cannot SCEV check stride or overflow when folding tail");
- // Create a new block containing the stride check.
- BB->setName("vector.scevcheck");
- auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
- // Update dominator tree immediately if the generated block is a
- // LoopBypassBlock because SCEV expansions to generate loop bypass
- // checks may query it before the current function is finished.
- DT->addNewBlock(NewBB, BB);
- if (L->getParentLoop())
- L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
- ReplaceInstWithInst(BB->getTerminator(),
- BranchInst::Create(Bypass, NewBB, SCEVCheck));
- LoopBypassBlocks.push_back(BB);
- AddedSafetyChecks = true;
-}
-
-void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
- // VPlan-native path does not do any analysis for runtime checks currently.
- if (EnableVPlanNativePath)
- return;
-
- BasicBlock *BB = L->getLoopPreheader();
-
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- Instruction *FirstCheckInst;
- Instruction *MemRuntimeCheck;
- std::tie(FirstCheckInst, MemRuntimeCheck) =
- Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
- if (!MemRuntimeCheck)
- return;
-
- assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail");
- // Create a new block containing the memory check.
- BB->setName("vector.memcheck");
- auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
- // Update dominator tree immediately if the generated block is a
- // LoopBypassBlock because SCEV expansions to generate loop bypass
- // checks may query it before the current function is finished.
- DT->addNewBlock(NewBB, BB);
- if (L->getParentLoop())
- L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
- ReplaceInstWithInst(BB->getTerminator(),
- BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
- LoopBypassBlocks.push_back(BB);
- AddedSafetyChecks = true;
-
- // We currently don't use LoopVersioning for the actual loop cloning but we
- // still use it to add the noalias metadata.
- LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
- PSE.getSE());
- LVer->prepareNoAliasMetadata();
-}
-
-Value *InnerLoopVectorizer::emitTransformedIndex(
- IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
- const InductionDescriptor &ID) const {
-
- SCEVExpander Exp(*SE, DL, "induction");
- auto Step = ID.getStep();
- auto StartValue = ID.getStartValue();
- assert(Index->getType() == Step->getType() &&
- "Index type does not match StepValue type");
-
- // Note: the IR at this point is broken. We cannot use SE to create any new
- // SCEV and then expand it, hoping that SCEV's simplification will give us
- // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
- // lead to various SCEV crashes. So all we can do is to use builder and rely
- // on InstCombine for future simplifications. Here we handle some trivial
- // cases only.
- auto CreateAdd = [&B](Value *X, Value *Y) {
- assert(X->getType() == Y->getType() && "Types don't match!");
- if (auto *CX = dyn_cast<ConstantInt>(X))
- if (CX->isZero())
- return Y;
- if (auto *CY = dyn_cast<ConstantInt>(Y))
- if (CY->isZero())
- return X;
- return B.CreateAdd(X, Y);
- };
-
- auto CreateMul = [&B](Value *X, Value *Y) {
- assert(X->getType() == Y->getType() && "Types don't match!");
- if (auto *CX = dyn_cast<ConstantInt>(X))
- if (CX->isOne())
- return Y;
- if (auto *CY = dyn_cast<ConstantInt>(Y))
- if (CY->isOne())
- return X;
- return B.CreateMul(X, Y);
- };
-
- switch (ID.getKind()) {
- case InductionDescriptor::IK_IntInduction: {
- assert(Index->getType() == StartValue->getType() &&
- "Index type does not match StartValue type");
- if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
- return B.CreateSub(StartValue, Index);
- auto *Offset = CreateMul(
- Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
- return CreateAdd(StartValue, Offset);
- }
- case InductionDescriptor::IK_PtrInduction: {
- assert(isa<SCEVConstant>(Step) &&
- "Expected constant step for pointer induction");
- return B.CreateGEP(
- StartValue->getType()->getPointerElementType(), StartValue,
- CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
- &*B.GetInsertPoint())));
- }
- case InductionDescriptor::IK_FpInduction: {
- assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
- auto InductionBinOp = ID.getInductionBinOp();
- assert(InductionBinOp &&
- (InductionBinOp->getOpcode() == Instruction::FAdd ||
- InductionBinOp->getOpcode() == Instruction::FSub) &&
- "Original bin op should be defined for FP induction");
-
- Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
-
- // Floating point operations had to be 'fast' to enable the induction.
- FastMathFlags Flags;
- Flags.setFast();
-
- Value *MulExp = B.CreateFMul(StepValue, Index);
- if (isa<Instruction>(MulExp))
- // We have to check, the MulExp may be a constant.
- cast<Instruction>(MulExp)->setFastMathFlags(Flags);
-
- Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
- "induction");
- if (isa<Instruction>(BOp))
- cast<Instruction>(BOp)->setFastMathFlags(Flags);
-
- return BOp;
- }
- case InductionDescriptor::IK_NoInduction:
- return nullptr;
- }
- llvm_unreachable("invalid enum");
-}
-
-BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
- /*
- In this function we generate a new loop. The new loop will contain
- the vectorized instructions while the old loop will continue to run the
- scalar remainder.
-
- [ ] <-- loop iteration number check.
- / |
- / v
- | [ ] <-- vector loop bypass (may consist of multiple blocks).
- | / |
- | / v
- || [ ] <-- vector pre header.
- |/ |
- | v
- | [ ] \
- | [ ]_| <-- vector loop.
- | |
- | v
- | -[ ] <--- middle-block.
- | / |
- | / v
- -|- >[ ] <--- new preheader.
- | |
- | v
- | [ ] \
- | [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
- ...
- */
-
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
- BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- MDNode *OrigLoopID = OrigLoop->getLoopID();
- assert(VectorPH && "Invalid loop structure");
- assert(ExitBlock && "Must have an exit block");
-
- // Some loops have a single integer induction variable, while other loops
- // don't. One example is c++ iterators that often have multiple pointer
- // induction variables. In the code below we also support a case where we
- // don't have a single induction variable.
- //
- // We try to obtain an induction variable from the original loop as hard
- // as possible. However if we don't find one that:
- // - is an integer
- // - counts from zero, stepping by one
- // - is the size of the widest induction variable type
- // then we create a new one.
- OldInduction = Legal->getPrimaryInduction();
- Type *IdxTy = Legal->getWidestInductionType();
-
- // Split the single block loop into the two loop structure described above.
- BasicBlock *VecBody =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
- BasicBlock *MiddleBlock =
- VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
- BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
-
- // Create and register the new vector loop.
- Loop *Lp = LI->AllocateLoop();
- Loop *ParentLoop = OrigLoop->getParentLoop();
-
- // Insert the new loop into the loop nest and register the new basic blocks
- // before calling any utilities such as SCEV that require valid LoopInfo.
- if (ParentLoop) {
- ParentLoop->addChildLoop(Lp);
- ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
- ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
- } else {
- LI->addTopLevelLoop(Lp);
- }
- Lp->addBasicBlockToLoop(VecBody, *LI);
-
- // Find the loop boundaries.
- Value *Count = getOrCreateTripCount(Lp);
-
- Value *StartIdx = ConstantInt::get(IdxTy, 0);
-
- // Now, compare the new count to zero. If it is zero skip the vector loop and
- // jump to the scalar loop. This check also covers the case where the
- // backedge-taken count is uint##_max: adding one to it will overflow leading
- // to an incorrect trip count of zero. In this (rare) case we will also jump
- // to the scalar loop.
- emitMinimumIterationCountCheck(Lp, ScalarPH);
-
- // Generate the code to check any assumptions that we've made for SCEV
- // expressions.
- emitSCEVChecks(Lp, ScalarPH);
-
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- emitMemRuntimeChecks(Lp, ScalarPH);
-
- // Generate the induction variable.
- // The loop step is equal to the vectorization factor (num of SIMD elements)
- // times the unroll factor (num of SIMD instructions).
- Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
- Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- Induction =
- createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
- getDebugLocFromInstOrOperands(OldInduction));
-
- // We are going to resume the execution of the scalar loop.
- // Go over all of the induction variables that we found and fix the
- // PHIs that are left in the scalar version of the loop.
- // The starting values of PHI nodes depend on the counter of the last
- // iteration in the vectorized loop.
- // If we come from a bypass edge then we need to start from the original
- // start value.
-
- // This variable saves the new starting index for the scalar loop. It is used
- // to test if there are any tail iterations left once the vector loop has
- // completed.
- LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
- for (auto &InductionEntry : *List) {
- PHINode *OrigPhi = InductionEntry.first;
- InductionDescriptor II = InductionEntry.second;
-
- // Create phi nodes to merge from the backedge-taken check block.
- PHINode *BCResumeVal = PHINode::Create(
- OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
- // Copy original phi DL over to the new one.
- BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
- Value *&EndValue = IVEndValues[OrigPhi];
- if (OrigPhi == OldInduction) {
- // We know what the end value is.
- EndValue = CountRoundDown;
- } else {
- IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
- Type *StepType = II.getStep()->getType();
- Instruction::CastOps CastOp =
- CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
- Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
- const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
- EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
- EndValue->setName("ind.end");
- }
-
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- BCResumeVal->addIncoming(EndValue, MiddleBlock);
-
- // Fix the scalar body counter (PHI node).
- // The old induction's phi node in the scalar body needs the truncated
- // value.
- for (BasicBlock *BB : LoopBypassBlocks)
- BCResumeVal->addIncoming(II.getStartValue(), BB);
- OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal);
- }
-
- // We need the OrigLoop (scalar loop part) latch terminator to help
- // produce correct debug info for the middle block BB instructions.
- // The legality check stage guarantees that the loop will have a single
- // latch.
- assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
- "Scalar loop latch terminator isn't a branch");
- BranchInst *ScalarLatchBr =
- cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
-
- // Add a check in the middle block to see if we have completed
- // all of the iterations in the first vector loop.
- // If (N - N%VF) == N, then we *don't* need to run the remainder.
- // If tail is to be folded, we know we don't need to run the remainder.
- Value *CmpN = Builder.getTrue();
- if (!Cost->foldTailByMasking()) {
- CmpN =
- CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
- CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
-
- // Here we use the same DebugLoc as the scalar loop latch branch instead
- // of the corresponding compare because they may have ended up with
- // different line numbers and we want to avoid awkward line stepping while
- // debugging. Eg. if the compare has got a line number inside the loop.
- cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
- }
-
- BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN);
- BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
- ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst);
-
- // Get ready to start creating new instructions into the vectorized body.
- Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
-
- // Save the state.
- LoopVectorPreHeader = Lp->getLoopPreheader();
- LoopScalarPreHeader = ScalarPH;
- LoopMiddleBlock = MiddleBlock;
- LoopExitBlock = ExitBlock;
- LoopVectorBody = VecBody;
- LoopScalarBody = OldBasicBlock;
-
- Optional<MDNode *> VectorizedLoopID =
- makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
- LLVMLoopVectorizeFollowupVectorized});
- if (VectorizedLoopID.hasValue()) {
- Lp->setLoopID(VectorizedLoopID.getValue());
-
- // Do not setAlreadyVectorized if loop attributes have been defined
- // explicitly.
- return LoopVectorPreHeader;
- }
-
- // Keep all loop hints from the original loop on the vector loop (we'll
- // replace the vectorizer-specific hints below).
- if (MDNode *LID = OrigLoop->getLoopID())
- Lp->setLoopID(LID);
-
- LoopVectorizeHints Hints(Lp, true, *ORE);
- Hints.setAlreadyVectorized();
-
- return LoopVectorPreHeader;
-}
-
-// Fix up external users of the induction variable. At this point, we are
-// in LCSSA form, with all external PHIs that use the IV having one input value,
-// coming from the remainder loop. We need those PHIs to also have a correct
-// value for the IV when arriving directly from the middle block.
-void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
- const InductionDescriptor &II,
- Value *CountRoundDown, Value *EndValue,
- BasicBlock *MiddleBlock) {
- // There are two kinds of external IV usages - those that use the value
- // computed in the last iteration (the PHI) and those that use the penultimate
- // value (the value that feeds into the phi from the loop latch).
- // We allow both, but they, obviously, have different values.
-
- assert(OrigLoop->getExitBlock() && "Expected a single exit block");
-
- DenseMap<Value *, Value *> MissingVals;
-
- // An external user of the last iteration's value should see the value that
- // the remainder loop uses to initialize its own IV.
- Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
- for (User *U : PostInc->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (!OrigLoop->contains(UI)) {
- assert(isa<PHINode>(UI) && "Expected LCSSA form");
- MissingVals[UI] = EndValue;
- }
- }
-
- // An external user of the penultimate value need to see EndValue - Step.
- // The simplest way to get this is to recompute it from the constituent SCEVs,
- // that is Start + (Step * (CRD - 1)).
- for (User *U : OrigPhi->users()) {
- auto *UI = cast<Instruction>(U);
- if (!OrigLoop->contains(UI)) {
- const DataLayout &DL =
- OrigLoop->getHeader()->getModule()->getDataLayout();
- assert(isa<PHINode>(UI) && "Expected LCSSA form");
-
- IRBuilder<> B(MiddleBlock->getTerminator());
- Value *CountMinusOne = B.CreateSub(
- CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
- Value *CMO =
- !II.getStep()->getType()->isIntegerTy()
- ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
- II.getStep()->getType())
- : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
- CMO->setName("cast.cmo");
- Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
- Escape->setName("ind.escape");
- MissingVals[UI] = Escape;
- }
- }
-
- for (auto &I : MissingVals) {
- PHINode *PHI = cast<PHINode>(I.first);
- // One corner case we have to handle is two IVs "chasing" each-other,
- // that is %IV2 = phi [...], [ %IV1, %latch ]
- // In this case, if IV1 has an external use, we need to avoid adding both
- // "last value of IV1" and "penultimate value of IV2". So, verify that we
- // don't already have an incoming value for the middle block.
- if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
- PHI->addIncoming(I.second, MiddleBlock);
- }
-}
-
-namespace {
-
-struct CSEDenseMapInfo {
- static bool canHandle(const Instruction *I) {
- return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
- }
-
- static inline Instruction *getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
-
- static inline Instruction *getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
-
- static unsigned getHashValue(const Instruction *I) {
- assert(canHandle(I) && "Unknown instruction!");
- return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
- I->value_op_end()));
- }
-
- static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
- if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
- LHS == getTombstoneKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
-};
-
-} // end anonymous namespace
-
-///Perform cse of induction variable instructions.
-static void cse(BasicBlock *BB) {
- // Perform simple cse.
- SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *In = &*I++;
-
- if (!CSEDenseMapInfo::canHandle(In))
- continue;
-
- // Check if we can replace this instruction with any of the
- // visited instructions.
- if (Instruction *V = CSEMap.lookup(In)) {
- In->replaceAllUsesWith(V);
- In->eraseFromParent();
- continue;
- }
-
- CSEMap[In] = In;
- }
-}
-
-unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
- unsigned VF,
- bool &NeedToScalarize) {
- Function *F = CI->getCalledFunction();
- StringRef FnName = CI->getCalledFunction()->getName();
- Type *ScalarRetTy = CI->getType();
- SmallVector<Type *, 4> Tys, ScalarTys;
- for (auto &ArgOp : CI->arg_operands())
- ScalarTys.push_back(ArgOp->getType());
-
- // Estimate cost of scalarized vector call. The source operands are assumed
- // to be vectors, so we need to extract individual elements from there,
- // execute VF scalar calls, and then gather the result into the vector return
- // value.
- unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
- if (VF == 1)
- return ScalarCallCost;
-
- // Compute corresponding vector type for return value and arguments.
- Type *RetTy = ToVectorTy(ScalarRetTy, VF);
- for (Type *ScalarTy : ScalarTys)
- Tys.push_back(ToVectorTy(ScalarTy, VF));
-
- // Compute costs of unpacking argument values for the scalar calls and
- // packing the return values to a vector.
- unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
-
- unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
-
- // If we can't emit a vector call for this function, then the currently found
- // cost is the cost we need to return.
- NeedToScalarize = true;
- if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
- return Cost;
-
- // If the corresponding vector cost is cheaper, return its cost.
- unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
- if (VectorCallCost < Cost) {
- NeedToScalarize = false;
- return VectorCallCost;
- }
- return Cost;
-}
-
-unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
- unsigned VF) {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- assert(ID && "Expected intrinsic call!");
-
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
-
- SmallVector<Value *, 4> Operands(CI->arg_operands());
- return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
-}
-
-static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
- auto *I1 = cast<IntegerType>(T1->getVectorElementType());
- auto *I2 = cast<IntegerType>(T2->getVectorElementType());
- return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
-}
-static Type *largestIntegerVectorType(Type *T1, Type *T2) {
- auto *I1 = cast<IntegerType>(T1->getVectorElementType());
- auto *I2 = cast<IntegerType>(T2->getVectorElementType());
- return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
-}
-
-void InnerLoopVectorizer::truncateToMinimalBitwidths() {
- // For every instruction `I` in MinBWs, truncate the operands, create a
- // truncated version of `I` and reextend its result. InstCombine runs
- // later and will remove any ext/trunc pairs.
- SmallPtrSet<Value *, 4> Erased;
- for (const auto &KV : Cost->getMinimalBitwidths()) {
- // If the value wasn't vectorized, we must maintain the original scalar
- // type. The absence of the value from VectorLoopValueMap indicates that it
- // wasn't vectorized.
- if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
- continue;
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *I = getOrCreateVectorValue(KV.first, Part);
- if (Erased.find(I) != Erased.end() || I->use_empty() ||
- !isa<Instruction>(I))
- continue;
- Type *OriginalTy = I->getType();
- Type *ScalarTruncatedTy =
- IntegerType::get(OriginalTy->getContext(), KV.second);
- Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
- OriginalTy->getVectorNumElements());
- if (TruncatedTy == OriginalTy)
- continue;
-
- IRBuilder<> B(cast<Instruction>(I));
- auto ShrinkOperand = [&](Value *V) -> Value * {
- if (auto *ZI = dyn_cast<ZExtInst>(V))
- if (ZI->getSrcTy() == TruncatedTy)
- return ZI->getOperand(0);
- return B.CreateZExtOrTrunc(V, TruncatedTy);
- };
-
- // The actual instruction modification depends on the instruction type,
- // unfortunately.
- Value *NewI = nullptr;
- if (auto *BO = dyn_cast<BinaryOperator>(I)) {
- NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
- ShrinkOperand(BO->getOperand(1)));
-
- // Any wrapping introduced by shrinking this operation shouldn't be
- // considered undefined behavior. So, we can't unconditionally copy
- // arithmetic wrapping flags to NewI.
- cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
- } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
- NewI =
- B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
- ShrinkOperand(CI->getOperand(1)));
- } else if (auto *SI = dyn_cast<SelectInst>(I)) {
- NewI = B.CreateSelect(SI->getCondition(),
- ShrinkOperand(SI->getTrueValue()),
- ShrinkOperand(SI->getFalseValue()));
- } else if (auto *CI = dyn_cast<CastInst>(I)) {
- switch (CI->getOpcode()) {
- default:
- llvm_unreachable("Unhandled cast!");
- case Instruction::Trunc:
- NewI = ShrinkOperand(CI->getOperand(0));
- break;
- case Instruction::SExt:
- NewI = B.CreateSExtOrTrunc(
- CI->getOperand(0),
- smallestIntegerVectorType(OriginalTy, TruncatedTy));
- break;
- case Instruction::ZExt:
- NewI = B.CreateZExtOrTrunc(
- CI->getOperand(0),
- smallestIntegerVectorType(OriginalTy, TruncatedTy));
- break;
- }
- } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
- auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
- auto *O0 = B.CreateZExtOrTrunc(
- SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
- auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
- auto *O1 = B.CreateZExtOrTrunc(
- SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
-
- NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
- } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
- // Don't do anything with the operands, just extend the result.
- continue;
- } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
- auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
- auto *O0 = B.CreateZExtOrTrunc(
- IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
- auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
- NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
- } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
- auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
- auto *O0 = B.CreateZExtOrTrunc(
- EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
- NewI = B.CreateExtractElement(O0, EE->getOperand(2));
- } else {
- // If we don't know what to do, be conservative and don't do anything.
- continue;
- }
-
- // Lastly, extend the result.
- NewI->takeName(cast<Instruction>(I));
- Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
- I->replaceAllUsesWith(Res);
- cast<Instruction>(I)->eraseFromParent();
- Erased.insert(I);
- VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
- }
- }
-
- // We'll have created a bunch of ZExts that are now parentless. Clean up.
- for (const auto &KV : Cost->getMinimalBitwidths()) {
- // If the value wasn't vectorized, we must maintain the original scalar
- // type. The absence of the value from VectorLoopValueMap indicates that it
- // wasn't vectorized.
- if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
- continue;
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *I = getOrCreateVectorValue(KV.first, Part);
- ZExtInst *Inst = dyn_cast<ZExtInst>(I);
- if (Inst && Inst->use_empty()) {
- Value *NewI = Inst->getOperand(0);
- Inst->eraseFromParent();
- VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
- }
- }
- }
-}
-
-void InnerLoopVectorizer::fixVectorizedLoop() {
- // Insert truncates and extends for any truncated instructions as hints to
- // InstCombine.
- if (VF > 1)
- truncateToMinimalBitwidths();
-
- // Fix widened non-induction PHIs by setting up the PHI operands.
- if (OrigPHIsToFix.size()) {
- assert(EnableVPlanNativePath &&
- "Unexpected non-induction PHIs for fixup in non VPlan-native path");
- fixNonInductionPHIs();
- }
-
- // At this point every instruction in the original loop is widened to a
- // vector form. Now we need to fix the recurrences in the loop. These PHI
- // nodes are currently empty because we did not want to introduce cycles.
- // This is the second stage of vectorizing recurrences.
- fixCrossIterationPHIs();
-
- // Update the dominator tree.
- //
- // FIXME: After creating the structure of the new loop, the dominator tree is
- // no longer up-to-date, and it remains that way until we update it
- // here. An out-of-date dominator tree is problematic for SCEV,
- // because SCEVExpander uses it to guide code generation. The
- // vectorizer use SCEVExpanders in several places. Instead, we should
- // keep the dominator tree up-to-date as we go.
- updateAnalysis();
-
- // Fix-up external users of the induction variables.
- for (auto &Entry : *Legal->getInductionVars())
- fixupIVUsers(Entry.first, Entry.second,
- getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
- IVEndValues[Entry.first], LoopMiddleBlock);
-
- fixLCSSAPHIs();
- for (Instruction *PI : PredicatedInstructions)
- sinkScalarOperands(&*PI);
-
- // Remove redundant induction instructions.
- cse(LoopVectorBody);
-}
-
-void InnerLoopVectorizer::fixCrossIterationPHIs() {
- // In order to support recurrences we need to be able to vectorize Phi nodes.
- // Phi nodes have cycles, so we need to vectorize them in two stages. This is
- // stage #2: We now need to fix the recurrences by adding incoming edges to
- // the currently empty PHI nodes. At this point every instruction in the
- // original loop is widened to a vector form so we can use them to construct
- // the incoming edges.
- for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
- // Handle first-order recurrences and reductions that need to be fixed.
- if (Legal->isFirstOrderRecurrence(&Phi))
- fixFirstOrderRecurrence(&Phi);
- else if (Legal->isReductionVariable(&Phi))
- fixReduction(&Phi);
- }
-}
-
-void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
- // This is the second phase of vectorizing first-order recurrences. An
- // overview of the transformation is described below. Suppose we have the
- // following loop.
- //
- // for (int i = 0; i < n; ++i)
- // b[i] = a[i] - a[i - 1];
- //
- // There is a first-order recurrence on "a". For this loop, the shorthand
- // scalar IR looks like:
- //
- // scalar.ph:
- // s_init = a[-1]
- // br scalar.body
- //
- // scalar.body:
- // i = phi [0, scalar.ph], [i+1, scalar.body]
- // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
- // s2 = a[i]
- // b[i] = s2 - s1
- // br cond, scalar.body, ...
- //
- // In this example, s1 is a recurrence because it's value depends on the
- // previous iteration. In the first phase of vectorization, we created a
- // temporary value for s1. We now complete the vectorization and produce the
- // shorthand vector IR shown below (for VF = 4, UF = 1).
- //
- // vector.ph:
- // v_init = vector(..., ..., ..., a[-1])
- // br vector.body
- //
- // vector.body
- // i = phi [0, vector.ph], [i+4, vector.body]
- // v1 = phi [v_init, vector.ph], [v2, vector.body]
- // v2 = a[i, i+1, i+2, i+3];
- // v3 = vector(v1(3), v2(0, 1, 2))
- // b[i, i+1, i+2, i+3] = v2 - v3
- // br cond, vector.body, middle.block
- //
- // middle.block:
- // x = v2(3)
- // br scalar.ph
- //
- // scalar.ph:
- // s_init = phi [x, middle.block], [a[-1], otherwise]
- // br scalar.body
- //
- // After execution completes the vector loop, we extract the next value of
- // the recurrence (x) to use as the initial value in the scalar loop.
-
- // Get the original loop preheader and single loop latch.
- auto *Preheader = OrigLoop->getLoopPreheader();
- auto *Latch = OrigLoop->getLoopLatch();
-
- // Get the initial and previous values of the scalar recurrence.
- auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
- auto *Previous = Phi->getIncomingValueForBlock(Latch);
-
- // Create a vector from the initial value.
- auto *VectorInit = ScalarInit;
- if (VF > 1) {
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- VectorInit = Builder.CreateInsertElement(
- UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
- Builder.getInt32(VF - 1), "vector.recur.init");
- }
-
- // We constructed a temporary phi node in the first phase of vectorization.
- // This phi node will eventually be deleted.
- Builder.SetInsertPoint(
- cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
-
- // Create a phi node for the new recurrence. The current value will either be
- // the initial value inserted into a vector or loop-varying vector value.
- auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
- VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
-
- // Get the vectorized previous value of the last part UF - 1. It appears last
- // among all unrolled iterations, due to the order of their construction.
- Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
-
- // Set the insertion point after the previous value if it is an instruction.
- // Note that the previous value may have been constant-folded so it is not
- // guaranteed to be an instruction in the vector loop. Also, if the previous
- // value is a phi node, we should insert after all the phi nodes to avoid
- // breaking basic block verification.
- if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
- isa<PHINode>(PreviousLastPart))
- Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
- else
- Builder.SetInsertPoint(
- &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
-
- // We will construct a vector for the recurrence by combining the values for
- // the current and previous iterations. This is the required shuffle mask.
- SmallVector<Constant *, 8> ShuffleMask(VF);
- ShuffleMask[0] = Builder.getInt32(VF - 1);
- for (unsigned I = 1; I < VF; ++I)
- ShuffleMask[I] = Builder.getInt32(I + VF - 1);
-
- // The vector from which to take the initial value for the current iteration
- // (actual or unrolled). Initially, this is the vector phi node.
- Value *Incoming = VecPhi;
-
- // Shuffle the current and previous vector and update the vector parts.
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
- Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
- auto *Shuffle =
- VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
- ConstantVector::get(ShuffleMask))
- : Incoming;
- PhiPart->replaceAllUsesWith(Shuffle);
- cast<Instruction>(PhiPart)->eraseFromParent();
- VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
- Incoming = PreviousPart;
- }
-
- // Fix the latch value of the new recurrence in the vector loop.
- VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
-
- // Extract the last vector element in the middle block. This will be the
- // initial value for the recurrence when jumping to the scalar loop.
- auto *ExtractForScalar = Incoming;
- if (VF > 1) {
- Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
- ExtractForScalar = Builder.CreateExtractElement(
- ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
- }
- // Extract the second last element in the middle block if the
- // Phi is used outside the loop. We need to extract the phi itself
- // and not the last element (the phi update in the current iteration). This
- // will be the value when jumping to the exit block from the LoopMiddleBlock,
- // when the scalar loop is not run at all.
- Value *ExtractForPhiUsedOutsideLoop = nullptr;
- if (VF > 1)
- ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
- Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
- // When loop is unrolled without vectorizing, initialize
- // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
- // `Incoming`. This is analogous to the vectorized case above: extracting the
- // second last element when VF > 1.
- else if (UF > 1)
- ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
-
- // Fix the initial value of the original recurrence in the scalar loop.
- Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
- auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
- for (auto *BB : predecessors(LoopScalarPreHeader)) {
- auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
- Start->addIncoming(Incoming, BB);
- }
-
- Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
- Phi->setName("scalar.recur");
-
- // Finally, fix users of the recurrence outside the loop. The users will need
- // either the last value of the scalar recurrence or the last value of the
- // vector recurrence we extracted in the middle block. Since the loop is in
- // LCSSA form, we just need to find all the phi nodes for the original scalar
- // recurrence in the exit block, and then add an edge for the middle block.
- for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
- if (LCSSAPhi.getIncomingValue(0) == Phi) {
- LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
- }
- }
-}
-
-void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
- Constant *Zero = Builder.getInt32(0);
-
- // Get it's reduction variable descriptor.
- assert(Legal->isReductionVariable(Phi) &&
- "Unable to find the reduction variable");
- RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
-
- RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
- TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
- Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
- RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
- RdxDesc.getMinMaxRecurrenceKind();
- setDebugLocFromInst(Builder, ReductionStartValue);
-
- // We need to generate a reduction vector from the incoming scalar.
- // To do so, we need to generate the 'identity' vector and override
- // one of the elements with the incoming scalar reduction. We need
- // to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
-
- // This is the vector-clone of the value that leaves the loop.
- Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
-
- // Find the reduction identity variable. Zero for addition, or, xor,
- // one for multiplication, -1 for And.
- Value *Identity;
- Value *VectorStart;
- if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
- RK == RecurrenceDescriptor::RK_FloatMinMax) {
- // MinMax reduction have the start value as their identify.
- if (VF == 1) {
- VectorStart = Identity = ReductionStartValue;
- } else {
- VectorStart = Identity =
- Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
- }
- } else {
- // Handle other reduction kinds:
- Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
- RK, VecTy->getScalarType());
- if (VF == 1) {
- Identity = Iden;
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart = ReductionStartValue;
- } else {
- Identity = ConstantVector::getSplat(VF, Iden);
-
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart =
- Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
- }
- }
-
- // Fix the vector-loop phi.
-
- // Reductions do not have to start at zero. They can start with
- // any loop invariant values.
- BasicBlock *Latch = OrigLoop->getLoopLatch();
- Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
- Value *Val = getOrCreateVectorValue(LoopVal, Part);
- // Make sure to add the reduction stat value only to the
- // first unroll part.
- Value *StartVal = (Part == 0) ? VectorStart : Identity;
- cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
- cast<PHINode>(VecRdxPhi)
- ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
- }
-
- // Before each round, move the insertion point right between
- // the PHIs and the values we are going to write.
- // This allows us to write both PHINodes and the extractelement
- // instructions.
- Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
-
- setDebugLocFromInst(Builder, LoopExitInst);
-
- // If the vector reduction can be performed in a smaller type, we truncate
- // then extend the loop exit value to enable InstCombine to evaluate the
- // entire expression in the smaller type.
- if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
- Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
- Builder.SetInsertPoint(
- LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
- VectorParts RdxParts(UF);
- for (unsigned Part = 0; Part < UF; ++Part) {
- RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
- Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
- Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
- : Builder.CreateZExt(Trunc, VecTy);
- for (Value::user_iterator UI = RdxParts[Part]->user_begin();
- UI != RdxParts[Part]->user_end();)
- if (*UI != Trunc) {
- (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
- RdxParts[Part] = Extnd;
- } else {
- ++UI;
- }
- }
- Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
- for (unsigned Part = 0; Part < UF; ++Part) {
- RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
- VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
- }
- }
-
- // Reduce all of the unrolled parts into a single vector.
- Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
- unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
-
- // The middle block terminator has already been assigned a DebugLoc here (the
- // OrigLoop's single latch terminator). We want the whole middle block to
- // appear to execute on this line because: (a) it is all compiler generated,
- // (b) these instructions are always executed after evaluating the latch
- // conditional branch, and (c) other passes may add new predecessors which
- // terminate on this line. This is the easiest way to ensure we don't
- // accidentally cause an extra step back into the loop while debugging.
- setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
- for (unsigned Part = 1; Part < UF; ++Part) {
- Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
- if (Op != Instruction::ICmp && Op != Instruction::FCmp)
- // Floating point operations had to be 'fast' to enable the reduction.
- ReducedPartRdx = addFastMathFlag(
- Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
- ReducedPartRdx, "bin.rdx"),
- RdxDesc.getFastMathFlags());
- else
- ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
- RdxPart);
- }
-
- if (VF > 1) {
- bool NoNaN = Legal->hasFunNoNaNAttr();
- ReducedPartRdx =
- createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
- // If the reduction can be performed in a smaller type, we need to extend
- // the reduction to the wider type before we branch to the original loop.
- if (Phi->getType() != RdxDesc.getRecurrenceType())
- ReducedPartRdx =
- RdxDesc.isSigned()
- ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
- : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
- }
-
- // Create a phi node that merges control-flow from the backedge-taken check
- // block and the middle block.
- PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
- LoopScalarPreHeader->getTerminator());
- for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
- BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
- BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
-
- // Now, we need to fix the users of the reduction variable
- // inside and outside of the scalar remainder loop.
- // We know that the loop is in LCSSA form. We need to update the
- // PHI nodes in the exit blocks.
- for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
- // All PHINodes need to have a single entry edge, or two if
- // we already fixed them.
- assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
-
- // We found a reduction value exit-PHI. Update it with the
- // incoming bypass edge.
- if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
- LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
- } // end of the LCSSA phi scan.
-
- // Fix the scalar loop reduction variable with the incoming reduction sum
- // from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx =
- Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
- assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
- // Pick the other block.
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
- Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
- Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
-}
-
-void InnerLoopVectorizer::fixLCSSAPHIs() {
- for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
- if (LCSSAPhi.getNumIncomingValues() == 1) {
- auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
- // Non-instruction incoming values will have only one value.
- unsigned LastLane = 0;
- if (isa<Instruction>(IncomingValue))
- LastLane = Cost->isUniformAfterVectorization(
- cast<Instruction>(IncomingValue), VF)
- ? 0
- : VF - 1;
- // Can be a loop invariant incoming value or the last scalar value to be
- // extracted from the vectorized loop.
- Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
- Value *lastIncomingValue =
- getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
- LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
- }
- }
-}
-
-void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
- // The basic block and loop containing the predicated instruction.
- auto *PredBB = PredInst->getParent();
- auto *VectorLoop = LI->getLoopFor(PredBB);
-
- // Initialize a worklist with the operands of the predicated instruction.
- SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
-
- // Holds instructions that we need to analyze again. An instruction may be
- // reanalyzed if we don't yet know if we can sink it or not.
- SmallVector<Instruction *, 8> InstsToReanalyze;
-
- // Returns true if a given use occurs in the predicated block. Phi nodes use
- // their operands in their corresponding predecessor blocks.
- auto isBlockOfUsePredicated = [&](Use &U) -> bool {
- auto *I = cast<Instruction>(U.getUser());
- BasicBlock *BB = I->getParent();
- if (auto *Phi = dyn_cast<PHINode>(I))
- BB = Phi->getIncomingBlock(
- PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
- return BB == PredBB;
- };
-
- // Iteratively sink the scalarized operands of the predicated instruction
- // into the block we created for it. When an instruction is sunk, it's
- // operands are then added to the worklist. The algorithm ends after one pass
- // through the worklist doesn't sink a single instruction.
- bool Changed;
- do {
- // Add the instructions that need to be reanalyzed to the worklist, and
- // reset the changed indicator.
- Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
- InstsToReanalyze.clear();
- Changed = false;
-
- while (!Worklist.empty()) {
- auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
-
- // We can't sink an instruction if it is a phi node, is already in the
- // predicated block, is not in the loop, or may have side effects.
- if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
- !VectorLoop->contains(I) || I->mayHaveSideEffects())
- continue;
-
- // It's legal to sink the instruction if all its uses occur in the
- // predicated block. Otherwise, there's nothing to do yet, and we may
- // need to reanalyze the instruction.
- if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
- InstsToReanalyze.push_back(I);
- continue;
- }
-
- // Move the instruction to the beginning of the predicated block, and add
- // it's operands to the worklist.
- I->moveBefore(&*PredBB->getFirstInsertionPt());
- Worklist.insert(I->op_begin(), I->op_end());
-
- // The sinking may have enabled other instructions to be sunk, so we will
- // need to iterate.
- Changed = true;
- }
- } while (Changed);
-}
-
-void InnerLoopVectorizer::fixNonInductionPHIs() {
- for (PHINode *OrigPhi : OrigPHIsToFix) {
- PHINode *NewPhi =
- cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
- unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
-
- SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
- predecessors(OrigPhi->getParent()));
- SmallVector<BasicBlock *, 2> VectorBBPredecessors(
- predecessors(NewPhi->getParent()));
- assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
- "Scalar and Vector BB should have the same number of predecessors");
-
- // The insertion point in Builder may be invalidated by the time we get
- // here. Force the Builder insertion point to something valid so that we do
- // not run into issues during insertion point restore in
- // getOrCreateVectorValue calls below.
- Builder.SetInsertPoint(NewPhi);
-
- // The predecessor order is preserved and we can rely on mapping between
- // scalar and vector block predecessors.
- for (unsigned i = 0; i < NumIncomingValues; ++i) {
- BasicBlock *NewPredBB = VectorBBPredecessors[i];
-
- // When looking up the new scalar/vector values to fix up, use incoming
- // values from original phi.
- Value *ScIncV =
- OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
-
- // Scalar incoming value may need a broadcast
- Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
- NewPhi->addIncoming(NewIncV, NewPredBB);
- }
- }
-}
-
-void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
- unsigned VF) {
- PHINode *P = cast<PHINode>(PN);
- if (EnableVPlanNativePath) {
- // Currently we enter here in the VPlan-native path for non-induction
- // PHIs where all control flow is uniform. We simply widen these PHIs.
- // Create a vector phi with no operands - the vector phi operands will be
- // set at the end of vector code generation.
- Type *VecTy =
- (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
- Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
- VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
- OrigPHIsToFix.push_back(P);
-
- return;
- }
-
- assert(PN->getParent() == OrigLoop->getHeader() &&
- "Non-header phis should have been handled elsewhere");
-
- // In order to support recurrences we need to be able to vectorize Phi nodes.
- // Phi nodes have cycles, so we need to vectorize them in two stages. This is
- // stage #1: We create a new vector PHI node with no incoming edges. We'll use
- // this value when we vectorize all of the instructions that use the PHI.
- if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
- for (unsigned Part = 0; Part < UF; ++Part) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy =
- (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
- Value *EntryPart = PHINode::Create(
- VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
- VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
- }
- return;
- }
-
- setDebugLocFromInst(Builder, P);
-
- // This PHINode must be an induction variable.
- // Make sure that we know about it.
- assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
-
- InductionDescriptor II = Legal->getInductionVars()->lookup(P);
- const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
-
- // FIXME: The newly created binary instructions should contain nsw/nuw flags,
- // which can be found from the original scalar operations.
- switch (II.getKind()) {
- case InductionDescriptor::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case InductionDescriptor::IK_IntInduction:
- case InductionDescriptor::IK_FpInduction:
- llvm_unreachable("Integer/fp induction is handled elsewhere.");
- case InductionDescriptor::IK_PtrInduction: {
- // Handle the pointer induction variable case.
- assert(P->getType()->isPointerTy() && "Unexpected type.");
- // This is the normalized GEP that starts counting at zero.
- Value *PtrInd = Induction;
- PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
- // Determine the number of scalars we need to generate for each unroll
- // iteration. If the instruction is uniform, we only need to generate the
- // first lane. Otherwise, we generate all VF values.
- unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
- // These are the scalar results. Notice that we don't generate vector GEPs
- // because scalar GEPs result in better code.
- for (unsigned Part = 0; Part < UF; ++Part) {
- for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
- Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
- Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
- Value *SclrGep =
- emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
- SclrGep->setName("next.gep");
- VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
- }
- }
- return;
- }
- }
-}
-
-/// A helper function for checking whether an integer division-related
-/// instruction may divide by zero (in which case it must be predicated if
-/// executed conditionally in the scalar code).
-/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
-/// Non-zero divisors that are non compile-time constants will not be
-/// converted into multiplication, so we will still end up scalarizing
-/// the division, but can do so w/o predication.
-static bool mayDivideByZero(Instruction &I) {
- assert((I.getOpcode() == Instruction::UDiv ||
- I.getOpcode() == Instruction::SDiv ||
- I.getOpcode() == Instruction::URem ||
- I.getOpcode() == Instruction::SRem) &&
- "Unexpected instruction");
- Value *Divisor = I.getOperand(1);
- auto *CInt = dyn_cast<ConstantInt>(Divisor);
- return !CInt || CInt->isZero();
-}
-
-void InnerLoopVectorizer::widenInstruction(Instruction &I) {
- switch (I.getOpcode()) {
- case Instruction::Br:
- case Instruction::PHI:
- llvm_unreachable("This instruction is handled by a different recipe.");
- case Instruction::GetElementPtr: {
- // Construct a vector GEP by widening the operands of the scalar GEP as
- // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
- // results in a vector of pointers when at least one operand of the GEP
- // is vector-typed. Thus, to keep the representation compact, we only use
- // vector-typed operands for loop-varying values.
- auto *GEP = cast<GetElementPtrInst>(&I);
-
- if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
- // If we are vectorizing, but the GEP has only loop-invariant operands,
- // the GEP we build (by only using vector-typed operands for
- // loop-varying values) would be a scalar pointer. Thus, to ensure we
- // produce a vector of pointers, we need to either arbitrarily pick an
- // operand to broadcast, or broadcast a clone of the original GEP.
- // Here, we broadcast a clone of the original.
- //
- // TODO: If at some point we decide to scalarize instructions having
- // loop-invariant operands, this special case will no longer be
- // required. We would add the scalarization decision to
- // collectLoopScalars() and teach getVectorValue() to broadcast
- // the lane-zero scalar value.
- auto *Clone = Builder.Insert(GEP->clone());
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
- VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
- addMetadata(EntryPart, GEP);
- }
- } else {
- // If the GEP has at least one loop-varying operand, we are sure to
- // produce a vector of pointers. But if we are only unrolling, we want
- // to produce a scalar GEP for each unroll part. Thus, the GEP we
- // produce with the code below will be scalar (if VF == 1) or vector
- // (otherwise). Note that for the unroll-only case, we still maintain
- // values in the vector mapping with initVector, as we do for other
- // instructions.
- for (unsigned Part = 0; Part < UF; ++Part) {
- // The pointer operand of the new GEP. If it's loop-invariant, we
- // won't broadcast it.
- auto *Ptr =
- OrigLoop->isLoopInvariant(GEP->getPointerOperand())
- ? GEP->getPointerOperand()
- : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
-
- // Collect all the indices for the new GEP. If any index is
- // loop-invariant, we won't broadcast it.
- SmallVector<Value *, 4> Indices;
- for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
- if (OrigLoop->isLoopInvariant(U.get()))
- Indices.push_back(U.get());
- else
- Indices.push_back(getOrCreateVectorValue(U.get(), Part));
- }
-
- // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
- // but it should be a vector, otherwise.
- auto *NewGEP =
- GEP->isInBounds()
- ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
- Indices)
- : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
- assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
- "NewGEP is not a pointer vector");
- VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
- addMetadata(NewGEP, GEP);
- }
- }
-
- break;
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::URem:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::FNeg:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Just widen unops and binops.
- setDebugLocFromInst(Builder, &I);
-
- for (unsigned Part = 0; Part < UF; ++Part) {
- SmallVector<Value *, 2> Ops;
- for (Value *Op : I.operands())
- Ops.push_back(getOrCreateVectorValue(Op, Part));
-
- Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
-
- if (auto *VecOp = dyn_cast<Instruction>(V))
- VecOp->copyIRFlags(&I);
-
- // Use this vector value for all users of the original instruction.
- VectorLoopValueMap.setVectorValue(&I, Part, V);
- addMetadata(V, &I);
- }
-
- break;
- }
- case Instruction::Select: {
- // Widen selects.
- // If the selector is loop invariant we can create a select
- // instruction with a scalar condition. Otherwise, use vector-select.
- auto *SE = PSE.getSE();
- bool InvariantCond =
- SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
- setDebugLocFromInst(Builder, &I);
-
- // The condition can be loop invariant but still defined inside the
- // loop. This means that we can't just use the original 'cond' value.
- // We have to take the 'vectorized' value and pick the first lane.
- // Instcombine will make this a no-op.
-
- auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
-
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
- Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
- Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
- Value *Sel =
- Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
- VectorLoopValueMap.setVectorValue(&I, Part, Sel);
- addMetadata(Sel, &I);
- }
-
- break;
- }
-
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Widen compares. Generate vector compares.
- bool FCmp = (I.getOpcode() == Instruction::FCmp);
- auto *Cmp = dyn_cast<CmpInst>(&I);
- setDebugLocFromInst(Builder, Cmp);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
- Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
- Value *C = nullptr;
- if (FCmp) {
- // Propagate fast math flags.
- IRBuilder<>::FastMathFlagGuard FMFG(Builder);
- Builder.setFastMathFlags(Cmp->getFastMathFlags());
- C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
- } else {
- C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
- }
- VectorLoopValueMap.setVectorValue(&I, Part, C);
- addMetadata(C, &I);
- }
-
- break;
- }
-
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- auto *CI = dyn_cast<CastInst>(&I);
- setDebugLocFromInst(Builder, CI);
-
- /// Vectorize casts.
- Type *DestTy =
- (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
-
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
- Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
- VectorLoopValueMap.setVectorValue(&I, Part, Cast);
- addMetadata(Cast, &I);
- }
- break;
- }
-
- case Instruction::Call: {
- // Ignore dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- break;
- setDebugLocFromInst(Builder, &I);
-
- Module *M = I.getParent()->getParent()->getParent();
- auto *CI = cast<CallInst>(&I);
-
- StringRef FnName = CI->getCalledFunction()->getName();
- Function *F = CI->getCalledFunction();
- Type *RetTy = ToVectorTy(CI->getType(), VF);
- SmallVector<Type *, 4> Tys;
- for (Value *ArgOperand : CI->arg_operands())
- Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
-
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
-
- // The flag shows whether we use Intrinsic or a usual Call for vectorized
- // version of the instruction.
- // Is it beneficial to perform intrinsic call compared to lib call?
- bool NeedToScalarize;
- unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
- bool UseVectorIntrinsic =
- ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
- assert((UseVectorIntrinsic || !NeedToScalarize) &&
- "Instruction should be scalarized elsewhere.");
-
- for (unsigned Part = 0; Part < UF; ++Part) {
- SmallVector<Value *, 4> Args;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
- Value *Arg = CI->getArgOperand(i);
- // Some intrinsics have a scalar argument - don't replace it with a
- // vector.
- if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
- Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
- Args.push_back(Arg);
- }
-
- Function *VectorF;
- if (UseVectorIntrinsic) {
- // Use vector version of the intrinsic.
- Type *TysForDecl[] = {CI->getType()};
- if (VF > 1)
- TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
- VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
- } else {
- // Use vector version of the library call.
- StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
- assert(!VFnName.empty() && "Vector function name is empty.");
- VectorF = M->getFunction(VFnName);
- if (!VectorF) {
- // Generate a declaration
- FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
- VectorF =
- Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
- VectorF->copyAttributesFrom(F);
- }
- }
- assert(VectorF && "Can't create vector function.");
-
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
-
- if (isa<FPMathOperator>(V))
- V->copyFastMathFlags(CI);
-
- VectorLoopValueMap.setVectorValue(&I, Part, V);
- addMetadata(V, &I);
- }
-
- break;
- }
-
- default:
- // This instruction is not vectorized by simple widening.
- LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
- llvm_unreachable("Unhandled instruction!");
- } // end of switch.
-}
-
-void InnerLoopVectorizer::updateAnalysis() {
- // Forget the original basic block.
- PSE.getSE()->forgetLoop(OrigLoop);
-
- // DT is not kept up-to-date for outer loop vectorization
- if (EnableVPlanNativePath)
- return;
-
- // Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
- "Entry does not dominate exit.");
-
- DT->addNewBlock(LoopMiddleBlock,
- LI->getLoopFor(LoopVectorBody)->getLoopLatch());
- DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
- DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
- DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
- assert(DT->verify(DominatorTree::VerificationLevel::Fast));
-}
-
-void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
- // We should not collect Scalars more than once per VF. Right now, this
- // function is called from collectUniformsAndScalars(), which already does
- // this check. Collecting Scalars for VF=1 does not make any sense.
- assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
- "This function should not be visited twice for the same VF");
-
- SmallSetVector<Instruction *, 8> Worklist;
-
- // These sets are used to seed the analysis with pointers used by memory
- // accesses that will remain scalar.
- SmallSetVector<Instruction *, 8> ScalarPtrs;
- SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
-
- // A helper that returns true if the use of Ptr by MemAccess will be scalar.
- // The pointer operands of loads and stores will be scalar as long as the
- // memory access is not a gather or scatter operation. The value operand of a
- // store will remain scalar if the store is scalarized.
- auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
- InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- if (auto *Store = dyn_cast<StoreInst>(MemAccess))
- if (Ptr == Store->getValueOperand())
- return WideningDecision == CM_Scalarize;
- assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
- "Ptr is neither a value or pointer operand");
- return WideningDecision != CM_GatherScatter;
- };
-
- // A helper that returns true if the given value is a bitcast or
- // getelementptr instruction contained in the loop.
- auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
- return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
- isa<GetElementPtrInst>(V)) &&
- !TheLoop->isLoopInvariant(V);
- };
-
- // A helper that evaluates a memory access's use of a pointer. If the use
- // will be a scalar use, and the pointer is only used by memory accesses, we
- // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
- // PossibleNonScalarPtrs.
- auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
- // We only care about bitcast and getelementptr instructions contained in
- // the loop.
- if (!isLoopVaryingBitCastOrGEP(Ptr))
- return;
-
- // If the pointer has already been identified as scalar (e.g., if it was
- // also identified as uniform), there's nothing to do.
- auto *I = cast<Instruction>(Ptr);
- if (Worklist.count(I))
- return;
-
- // If the use of the pointer will be a scalar use, and all users of the
- // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
- // place the pointer in PossibleNonScalarPtrs.
- if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
- return isa<LoadInst>(U) || isa<StoreInst>(U);
- }))
- ScalarPtrs.insert(I);
- else
- PossibleNonScalarPtrs.insert(I);
- };
-
- // We seed the scalars analysis with three classes of instructions: (1)
- // instructions marked uniform-after-vectorization, (2) bitcast and
- // getelementptr instructions used by memory accesses requiring a scalar use,
- // and (3) pointer induction variables and their update instructions (we
- // currently only scalarize these).
- //
- // (1) Add to the worklist all instructions that have been identified as
- // uniform-after-vectorization.
- Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
-
- // (2) Add to the worklist all bitcast and getelementptr instructions used by
- // memory accesses requiring a scalar use. The pointer operands of loads and
- // stores will be scalar as long as the memory accesses is not a gather or
- // scatter operation. The value operand of a store will remain scalar if the
- // store is scalarized.
- for (auto *BB : TheLoop->blocks())
- for (auto &I : *BB) {
- if (auto *Load = dyn_cast<LoadInst>(&I)) {
- evaluatePtrUse(Load, Load->getPointerOperand());
- } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
- evaluatePtrUse(Store, Store->getPointerOperand());
- evaluatePtrUse(Store, Store->getValueOperand());
- }
- }
- for (auto *I : ScalarPtrs)
- if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
- Worklist.insert(I);
- }
-
- // (3) Add to the worklist all pointer induction variables and their update
- // instructions.
- //
- // TODO: Once we are able to vectorize pointer induction variables we should
- // no longer insert them into the worklist here.
- auto *Latch = TheLoop->getLoopLatch();
- for (auto &Induction : *Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
- continue;
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
- << "\n");
- }
-
- // Insert the forced scalars.
- // FIXME: Currently widenPHIInstruction() often creates a dead vector
- // induction variable when the PHI user is scalarized.
- auto ForcedScalar = ForcedScalars.find(VF);
- if (ForcedScalar != ForcedScalars.end())
- for (auto *I : ForcedScalar->second)
- Worklist.insert(I);
-
- // Expand the worklist by looking through any bitcasts and getelementptr
- // instructions we've already identified as scalar. This is similar to the
- // expansion step in collectLoopUniforms(); however, here we're only
- // expanding to include additional bitcasts and getelementptr instructions.
- unsigned Idx = 0;
- while (Idx != Worklist.size()) {
- Instruction *Dst = Worklist[Idx++];
- if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
- continue;
- auto *Src = cast<Instruction>(Dst->getOperand(0));
- if (llvm::all_of(Src->users(), [&](User *U) -> bool {
- auto *J = cast<Instruction>(U);
- return !TheLoop->contains(J) || Worklist.count(J) ||
- ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
- isScalarUse(J, Src));
- })) {
- Worklist.insert(Src);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
- }
- }
-
- // An induction variable will remain scalar if all users of the induction
- // variable and induction variable update remain scalar.
- for (auto &Induction : *Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
-
- // We already considered pointer induction variables, so there's no reason
- // to look at their users again.
- //
- // TODO: Once we are able to vectorize pointer induction variables we
- // should no longer skip over them here.
- if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
- continue;
-
- // Determine if all users of the induction variable are scalar after
- // vectorization.
- auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
- });
- if (!ScalarInd)
- continue;
-
- // Determine if all users of the induction variable update instruction are
- // scalar after vectorization.
- auto ScalarIndUpdate =
- llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
- });
- if (!ScalarIndUpdate)
- continue;
-
- // The induction variable and its update instruction will remain scalar.
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
- << "\n");
- }
-
- Scalars[VF].insert(Worklist.begin(), Worklist.end());
-}
-
-bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
- if (!blockNeedsPredication(I->getParent()))
- return false;
- switch(I->getOpcode()) {
- default:
- break;
- case Instruction::Load:
- case Instruction::Store: {
- if (!Legal->isMaskRequired(I))
- return false;
- auto *Ptr = getLoadStorePointerOperand(I);
- auto *Ty = getMemInstValueType(I);
- // We have already decided how to vectorize this instruction, get that
- // result.
- if (VF > 1) {
- InstWidening WideningDecision = getWideningDecision(I, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- return WideningDecision == CM_Scalarize;
- }
- return isa<LoadInst>(I) ?
- !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty))
- : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::URem:
- return mayDivideByZero(*I);
- }
- return false;
-}
-
-bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
- unsigned VF) {
- assert(isAccessInterleaved(I) && "Expecting interleaved access.");
- assert(getWideningDecision(I, VF) == CM_Unknown &&
- "Decision should not be set yet.");
- auto *Group = getInterleavedAccessGroup(I);
- assert(Group && "Must have a group.");
-
- // If the instruction's allocated size doesn't equal it's type size, it
- // requires padding and will be scalarized.
- auto &DL = I->getModule()->getDataLayout();
- auto *ScalarTy = getMemInstValueType(I);
- if (hasIrregularType(ScalarTy, DL, VF))
- return false;
-
- // Check if masking is required.
- // A Group may need masking for one of two reasons: it resides in a block that
- // needs predication, or it was decided to use masking to deal with gaps.
- bool PredicatedAccessRequiresMasking =
- Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
- bool AccessWithGapsRequiresMasking =
- Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed;
- if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
- return true;
-
- // If masked interleaving is required, we expect that the user/target had
- // enabled it, because otherwise it either wouldn't have been created or
- // it should have been invalidated by the CostModel.
- assert(useMaskedInterleavedAccesses(TTI) &&
- "Masked interleave-groups for predicated accesses are not enabled.");
-
- auto *Ty = getMemInstValueType(I);
- return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty)
- : TTI.isLegalMaskedStore(Ty);
-}
-
-bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
- unsigned VF) {
- // Get and ensure we have a valid memory instruction.
- LoadInst *LI = dyn_cast<LoadInst>(I);
- StoreInst *SI = dyn_cast<StoreInst>(I);
- assert((LI || SI) && "Invalid memory instruction");
-
- auto *Ptr = getLoadStorePointerOperand(I);
-
- // In order to be widened, the pointer should be consecutive, first of all.
- if (!Legal->isConsecutivePtr(Ptr))
- return false;
-
- // If the instruction is a store located in a predicated block, it will be
- // scalarized.
- if (isScalarWithPredication(I))
- return false;
-
- // If the instruction's allocated size doesn't equal it's type size, it
- // requires padding and will be scalarized.
- auto &DL = I->getModule()->getDataLayout();
- auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
- if (hasIrregularType(ScalarTy, DL, VF))
- return false;
-
- return true;
-}
-
-void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
- // We should not collect Uniforms more than once per VF. Right now,
- // this function is called from collectUniformsAndScalars(), which
- // already does this check. Collecting Uniforms for VF=1 does not make any
- // sense.
-
- assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
- "This function should not be visited twice for the same VF");
-
- // Visit the list of Uniforms. If we'll not find any uniform value, we'll
- // not analyze again. Uniforms.count(VF) will return 1.
- Uniforms[VF].clear();
-
- // We now know that the loop is vectorizable!
- // Collect instructions inside the loop that will remain uniform after
- // vectorization.
-
- // Global values, params and instructions outside of current loop are out of
- // scope.
- auto isOutOfScope = [&](Value *V) -> bool {
- Instruction *I = dyn_cast<Instruction>(V);
- return (!I || !TheLoop->contains(I));
- };
-
- SetVector<Instruction *> Worklist;
- BasicBlock *Latch = TheLoop->getLoopLatch();
-
- // Start with the conditional branch. If the branch condition is an
- // instruction contained in the loop that is only used by the branch, it is
- // uniform.
- auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
- if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
- Worklist.insert(Cmp);
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
- }
-
- // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
- // are pointers that are treated like consecutive pointers during
- // vectorization. The pointer operands of interleaved accesses are an
- // example.
- SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
-
- // Holds pointer operands of instructions that are possibly non-uniform.
- SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
-
- auto isUniformDecision = [&](Instruction *I, unsigned VF) {
- InstWidening WideningDecision = getWideningDecision(I, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
-
- return (WideningDecision == CM_Widen ||
- WideningDecision == CM_Widen_Reverse ||
- WideningDecision == CM_Interleave);
- };
- // Iterate over the instructions in the loop, and collect all
- // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
- // that a consecutive-like pointer operand will be scalarized, we collect it
- // in PossibleNonUniformPtrs instead. We use two sets here because a single
- // getelementptr instruction can be used by both vectorized and scalarized
- // memory instructions. For example, if a loop loads and stores from the same
- // location, but the store is conditional, the store will be scalarized, and
- // the getelementptr won't remain uniform.
- for (auto *BB : TheLoop->blocks())
- for (auto &I : *BB) {
- // If there's no pointer operand, there's nothing to do.
- auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
- if (!Ptr)
- continue;
-
- // True if all users of Ptr are memory accesses that have Ptr as their
- // pointer operand.
- auto UsersAreMemAccesses =
- llvm::all_of(Ptr->users(), [&](User *U) -> bool {
- return getLoadStorePointerOperand(U) == Ptr;
- });
-
- // Ensure the memory instruction will not be scalarized or used by
- // gather/scatter, making its pointer operand non-uniform. If the pointer
- // operand is used by any instruction other than a memory access, we
- // conservatively assume the pointer operand may be non-uniform.
- if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
- PossibleNonUniformPtrs.insert(Ptr);
-
- // If the memory instruction will be vectorized and its pointer operand
- // is consecutive-like, or interleaving - the pointer operand should
- // remain uniform.
- else
- ConsecutiveLikePtrs.insert(Ptr);
- }
-
- // Add to the Worklist all consecutive and consecutive-like pointers that
- // aren't also identified as possibly non-uniform.
- for (auto *V : ConsecutiveLikePtrs)
- if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) {
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
- Worklist.insert(V);
- }
-
- // Expand Worklist in topological order: whenever a new instruction
- // is added , its users should be already inside Worklist. It ensures
- // a uniform instruction will only be used by uniform instructions.
- unsigned idx = 0;
- while (idx != Worklist.size()) {
- Instruction *I = Worklist[idx++];
-
- for (auto OV : I->operand_values()) {
- // isOutOfScope operands cannot be uniform instructions.
- if (isOutOfScope(OV))
- continue;
- // First order recurrence Phi's should typically be considered
- // non-uniform.
- auto *OP = dyn_cast<PHINode>(OV);
- if (OP && Legal->isFirstOrderRecurrence(OP))
- continue;
- // If all the users of the operand are uniform, then add the
- // operand into the uniform worklist.
- auto *OI = cast<Instruction>(OV);
- if (llvm::all_of(OI->users(), [&](User *U) -> bool {
- auto *J = cast<Instruction>(U);
- return Worklist.count(J) ||
- (OI == getLoadStorePointerOperand(J) &&
- isUniformDecision(J, VF));
- })) {
- Worklist.insert(OI);
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
- }
- }
- }
-
- // Returns true if Ptr is the pointer operand of a memory access instruction
- // I, and I is known to not require scalarization.
- auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
- return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
- };
-
- // For an instruction to be added into Worklist above, all its users inside
- // the loop should also be in Worklist. However, this condition cannot be
- // true for phi nodes that form a cyclic dependence. We must process phi
- // nodes separately. An induction variable will remain uniform if all users
- // of the induction variable and induction variable update remain uniform.
- // The code below handles both pointer and non-pointer induction variables.
- for (auto &Induction : *Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
-
- // Determine if all users of the induction variable are uniform after
- // vectorization.
- auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
- isVectorizedMemAccessUse(I, Ind);
- });
- if (!UniformInd)
- continue;
-
- // Determine if all users of the induction variable update instruction are
- // uniform after vectorization.
- auto UniformIndUpdate =
- llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
- isVectorizedMemAccessUse(I, IndUpdate);
- });
- if (!UniformIndUpdate)
- continue;
-
- // The induction variable and its update instruction will remain uniform.
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate
- << "\n");
- }
-
- Uniforms[VF].insert(Worklist.begin(), Worklist.end());
-}
-
-Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
- if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
- // TODO: It may by useful to do since it's still likely to be dynamically
- // uniform if the target can skip.
- LLVM_DEBUG(
- dbgs() << "LV: Not inserting runtime ptr check for divergent target");
-
- ORE->emit(
- createMissedAnalysis("CantVersionLoopWithDivergentTarget")
- << "runtime pointer checks needed. Not enabled for divergent target");
-
- return None;
- }
-
- unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
- if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
- return computeFeasibleMaxVF(OptForSize, TC);
-
- if (Legal->getRuntimePointerChecking()->Need) {
- ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
- << "runtime pointer checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- LLVM_DEBUG(
- dbgs()
- << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
- return None;
- }
-
- if (!PSE.getUnionPredicate().getPredicates().empty()) {
- ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
- << "runtime SCEV checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- LLVM_DEBUG(
- dbgs()
- << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n");
- return None;
- }
-
- // FIXME: Avoid specializing for stride==1 instead of bailing out.
- if (!Legal->getLAI()->getSymbolicStrides().empty()) {
- ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
- << "runtime stride == 1 checks needed. Enable vectorization of "
- "this loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- LLVM_DEBUG(
- dbgs()
- << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n");
- return None;
- }
-
- // If we optimize the program for size, avoid creating the tail loop.
- LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
-
- if (TC == 1) {
- ORE->emit(createMissedAnalysis("SingleIterationLoop")
- << "loop trip count is one, irrelevant for vectorization");
- LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n");
- return None;
- }
-
- // Record that scalar epilogue is not allowed.
- LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
-
- IsScalarEpilogueAllowed = !OptForSize;
-
- // We don't create an epilogue when optimizing for size.
- // Invalidate interleave groups that require an epilogue if we can't mask
- // the interleave-group.
- if (!useMaskedInterleavedAccesses(TTI))
- InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
-
- unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
-
- if (TC > 0 && TC % MaxVF == 0) {
- LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
- return MaxVF;
- }
-
- // If we don't know the precise trip count, or if the trip count that we
- // found modulo the vectorization factor is not zero, try to fold the tail
- // by masking.
- // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
- if (Legal->canFoldTailByMasking()) {
- FoldTailByMasking = true;
- return MaxVF;
- }
-
- if (TC == 0) {
- ORE->emit(
- createMissedAnalysis("UnknownLoopCountComplexCFG")
- << "unable to calculate the loop count due to complex control flow");
- return None;
- }
-
- ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
- << "cannot optimize for size and vectorize at the same time. "
- "Enable vectorization of this loop with '#pragma clang loop "
- "vectorize(enable)' when compiling with -Os/-Oz");
- return None;
-}
-
-unsigned
-LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
- unsigned ConstTripCount) {
- MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
- unsigned SmallestType, WidestType;
- std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
- unsigned WidestRegister = TTI.getRegisterBitWidth(true);
-
- // Get the maximum safe dependence distance in bits computed by LAA.
- // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
- // the memory accesses that is most restrictive (involved in the smallest
- // dependence distance).
- unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
-
- WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
-
- unsigned MaxVectorSize = WidestRegister / WidestType;
-
- LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
- << " / " << WidestType << " bits.\n");
- LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
- << WidestRegister << " bits.\n");
-
- assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
- " into one vector!");
- if (MaxVectorSize == 0) {
- LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
- MaxVectorSize = 1;
- return MaxVectorSize;
- } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
- isPowerOf2_32(ConstTripCount)) {
- // We need to clamp the VF to be the ConstTripCount. There is no point in
- // choosing a higher viable VF as done in the loop below.
- LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
- << ConstTripCount << "\n");
- MaxVectorSize = ConstTripCount;
- return MaxVectorSize;
- }
-
- unsigned MaxVF = MaxVectorSize;
- if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
- (MaximizeBandwidth && !OptForSize)) {
- // Collect all viable vectorization factors larger than the default MaxVF
- // (i.e. MaxVectorSize).
- SmallVector<unsigned, 8> VFs;
- unsigned NewMaxVectorSize = WidestRegister / SmallestType;
- for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
- VFs.push_back(VS);
-
- // For each VF calculate its register usage.
- auto RUs = calculateRegisterUsage(VFs);
-
- // Select the largest VF which doesn't require more registers than existing
- // ones.
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
- for (int i = RUs.size() - 1; i >= 0; --i) {
- if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
- MaxVF = VFs[i];
- break;
- }
- }
- if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
- if (MaxVF < MinVF) {
- LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
- << ") with target's minimum: " << MinVF << '\n');
- MaxVF = MinVF;
- }
- }
- }
- return MaxVF;
-}
-
-VectorizationFactor
-LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
- float Cost = expectedCost(1).first;
- const float ScalarCost = Cost;
- unsigned Width = 1;
- LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
-
- bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
- if (ForceVectorization && MaxVF > 1) {
- // Ignore scalar width, because the user explicitly wants vectorization.
- // Initialize cost to max so that VF = 2 is, at least, chosen during cost
- // evaluation.
- Cost = std::numeric_limits<float>::max();
- }
-
- for (unsigned i = 2; i <= MaxVF; i *= 2) {
- // Notice that the vector loop needs to be executed less times, so
- // we need to divide the cost of the vector loops by the width of
- // the vector elements.
- VectorizationCostTy C = expectedCost(i);
- float VectorCost = C.first / (float)i;
- LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
- << " costs: " << (int)VectorCost << ".\n");
- if (!C.second && !ForceVectorization) {
- LLVM_DEBUG(
- dbgs() << "LV: Not considering vector loop of width " << i
- << " because it will not generate any vector instructions.\n");
- continue;
- }
- if (VectorCost < Cost) {
- Cost = VectorCost;
- Width = i;
- }
- }
-
- if (!EnableCondStoresVectorization && NumPredStores) {
- ORE->emit(createMissedAnalysis("ConditionalStore")
- << "store that is conditionally executed prevents vectorization");
- LLVM_DEBUG(
- dbgs() << "LV: No vectorization. There are conditional stores.\n");
- Width = 1;
- Cost = ScalarCost;
- }
-
- LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
- << "LV: Vectorization seems to be not beneficial, "
- << "but was forced by a user.\n");
- LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
- VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
- return Factor;
-}
-
-std::pair<unsigned, unsigned>
-LoopVectorizationCostModel::getSmallestAndWidestTypes() {
- unsigned MinWidth = -1U;
- unsigned MaxWidth = 8;
- const DataLayout &DL = TheFunction->getParent()->getDataLayout();
-
- // For each block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // For each instruction in the loop.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- Type *T = I.getType();
-
- // Skip ignored values.
- if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
- continue;
-
- // Only examine Loads, Stores and PHINodes.
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
- continue;
-
- // Examine PHI nodes that are reduction variables. Update the type to
- // account for the recurrence type.
- if (auto *PN = dyn_cast<PHINode>(&I)) {
- if (!Legal->isReductionVariable(PN))
- continue;
- RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
- T = RdxDesc.getRecurrenceType();
- }
-
- // Examine the stored values.
- if (auto *ST = dyn_cast<StoreInst>(&I))
- T = ST->getValueOperand()->getType();
-
- // Ignore loaded pointer types and stored pointer types that are not
- // vectorizable.
- //
- // FIXME: The check here attempts to predict whether a load or store will
- // be vectorized. We only know this for certain after a VF has
- // been selected. Here, we assume that if an access can be
- // vectorized, it will be. We should also look at extending this
- // optimization to non-pointer types.
- //
- if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
- !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
- continue;
-
- MinWidth = std::min(MinWidth,
- (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
- MaxWidth = std::max(MaxWidth,
- (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
- }
- }
-
- return {MinWidth, MaxWidth};
-}
-
-unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
- unsigned VF,
- unsigned LoopCost) {
- // -- The interleave heuristics --
- // We interleave the loop in order to expose ILP and reduce the loop overhead.
- // There are many micro-architectural considerations that we can't predict
- // at this level. For example, frontend pressure (on decode or fetch) due to
- // code size, or the number and capabilities of the execution ports.
- //
- // We use the following heuristics to select the interleave count:
- // 1. If the code has reductions, then we interleave to break the cross
- // iteration dependency.
- // 2. If the loop is really small, then we interleave to reduce the loop
- // overhead.
- // 3. We don't interleave if we think that we will spill registers to memory
- // due to the increased register pressure.
-
- // When we optimize for size, we don't interleave.
- if (OptForSize)
- return 1;
-
- // We used the distance for the interleave count.
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- return 1;
-
- // Do not interleave loops with a relatively small trip count.
- unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
- if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
- return 1;
-
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
- LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
- << " registers\n");
-
- if (VF == 1) {
- if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumScalarRegs;
- } else {
- if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumVectorRegs;
- }
-
- RegisterUsage R = calculateRegisterUsage({VF})[0];
- // We divide by these constants so assume that we have at least one
- // instruction that uses at least one register.
- R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
-
- // We calculate the interleave count using the following formula.
- // Subtract the number of loop invariants from the number of available
- // registers. These registers are used by all of the interleaved instances.
- // Next, divide the remaining registers by the number of registers that is
- // required by the loop, in order to estimate how many parallel instances
- // fit without causing spills. All of this is rounded down if necessary to be
- // a power of two. We want power of two interleave count to simplify any
- // addressing operations or alignment considerations.
- // We also want power of two interleave counts to ensure that the induction
- // variable of the vector loop wraps to zero, when tail is folded by masking;
- // this currently happens when OptForSize, in which case IC is set to 1 above.
- unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
- R.MaxLocalUsers);
-
- // Don't count the induction variable as interleaved.
- if (EnableIndVarRegisterHeur)
- IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
- std::max(1U, (R.MaxLocalUsers - 1)));
-
- // Clamp the interleave ranges to reasonable counts.
- unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
-
- // Check if the user has overridden the max.
- if (VF == 1) {
- if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
- } else {
- if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
- }
-
- // If we did not calculate the cost for VF (because the user selected the VF)
- // then we calculate the cost of VF here.
- if (LoopCost == 0)
- LoopCost = expectedCost(VF).first;
-
- assert(LoopCost && "Non-zero loop cost expected");
-
- // Clamp the calculated IC to be between the 1 and the max interleave count
- // that the target allows.
- if (IC > MaxInterleaveCount)
- IC = MaxInterleaveCount;
- else if (IC < 1)
- IC = 1;
-
- // Interleave if we vectorized this loop and there is a reduction that could
- // benefit from interleaving.
- if (VF > 1 && !Legal->getReductionVars()->empty()) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
- return IC;
- }
-
- // Note that if we've already vectorized the loop we will have done the
- // runtime check and so interleaving won't require further checks.
- bool InterleavingRequiresRuntimePointerCheck =
- (VF == 1 && Legal->getRuntimePointerChecking()->Need);
-
- // We want to interleave small loops in order to reduce the loop overhead and
- // potentially expose ILP opportunities.
- LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
- if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
- // We assume that the cost overhead is 1 and we use the cost model
- // to estimate the cost of the loop and interleave until the cost of the
- // loop overhead is about 5% of the cost of the loop.
- unsigned SmallIC =
- std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
-
- // Interleave until store/load ports (estimated by max interleave count) are
- // saturated.
- unsigned NumStores = Legal->getNumStores();
- unsigned NumLoads = Legal->getNumLoads();
- unsigned StoresIC = IC / (NumStores ? NumStores : 1);
- unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
-
- // If we have a scalar reduction (vector reductions are already dealt with
- // by this point), we can increase the critical path length if the loop
- // we're interleaving is inside another loop. Limit, by default to 2, so the
- // critical path only gets increased by one reduction operation.
- if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
- unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
- SmallIC = std::min(SmallIC, F);
- StoresIC = std::min(StoresIC, F);
- LoadsIC = std::min(LoadsIC, F);
- }
-
- if (EnableLoadStoreRuntimeInterleave &&
- std::max(StoresIC, LoadsIC) > SmallIC) {
- LLVM_DEBUG(
- dbgs() << "LV: Interleaving to saturate store or load ports.\n");
- return std::max(StoresIC, LoadsIC);
- }
-
- LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
- return SmallIC;
- }
-
- // Interleave if this is a large loop (small loops are already dealt with by
- // this point) that could benefit from interleaving.
- bool HasReductions = !Legal->getReductionVars()->empty();
- if (TTI.enableAggressiveInterleaving(HasReductions)) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
- return IC;
- }
-
- LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
- return 1;
-}
-
-SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
-LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
- // This function calculates the register usage by measuring the highest number
- // of values that are alive at a single location. Obviously, this is a very
- // rough estimation. We scan the loop in a topological order in order and
- // assign a number to each instruction. We use RPO to ensure that defs are
- // met before their users. We assume that each instruction that has in-loop
- // users starts an interval. We record every time that an in-loop value is
- // used, so we have a list of the first and last occurrences of each
- // instruction. Next, we transpose this data structure into a multi map that
- // holds the list of intervals that *end* at a specific location. This multi
- // map allows us to perform a linear search. We scan the instructions linearly
- // and record each time that a new interval starts, by placing it in a set.
- // If we find this value in the multi-map then we remove it from the set.
- // The max register usage is the maximum size of the set.
- // We also search for instructions that are defined outside the loop, but are
- // used inside the loop. We need this number separately from the max-interval
- // usage number because when we unroll, loop-invariant values do not take
- // more register.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
-
- RegisterUsage RU;
-
- // Each 'key' in the map opens a new interval. The values
- // of the map are the index of the 'last seen' usage of the
- // instruction that is the key.
- using IntervalMap = DenseMap<Instruction *, unsigned>;
-
- // Maps instruction to its index.
- SmallVector<Instruction *, 64> IdxToInstr;
- // Marks the end of each interval.
- IntervalMap EndPoint;
- // Saves the list of instruction indices that are used in the loop.
- SmallPtrSet<Instruction *, 8> Ends;
- // Saves the list of values that are used in the loop but are
- // defined outside the loop, such as arguments and constants.
- SmallPtrSet<Value *, 8> LoopInvariants;
-
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- IdxToInstr.push_back(&I);
-
- // Save the end location of each USE.
- for (Value *U : I.operands()) {
- auto *Instr = dyn_cast<Instruction>(U);
-
- // Ignore non-instruction values such as arguments, constants, etc.
- if (!Instr)
- continue;
-
- // If this instruction is outside the loop then record it and continue.
- if (!TheLoop->contains(Instr)) {
- LoopInvariants.insert(Instr);
- continue;
- }
-
- // Overwrite previous end points.
- EndPoint[Instr] = IdxToInstr.size();
- Ends.insert(Instr);
- }
- }
- }
-
- // Saves the list of intervals that end with the index in 'key'.
- using InstrList = SmallVector<Instruction *, 2>;
- DenseMap<unsigned, InstrList> TransposeEnds;
-
- // Transpose the EndPoints to a list of values that end at each index.
- for (auto &Interval : EndPoint)
- TransposeEnds[Interval.second].push_back(Interval.first);
-
- SmallPtrSet<Instruction *, 8> OpenIntervals;
-
- // Get the size of the widest register.
- unsigned MaxSafeDepDist = -1U;
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
- unsigned WidestRegister =
- std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
- const DataLayout &DL = TheFunction->getParent()->getDataLayout();
-
- SmallVector<RegisterUsage, 8> RUs(VFs.size());
- SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
-
- LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
-
- // A lambda that gets the register usage for the given type and VF.
- auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
- if (Ty->isTokenTy())
- return 0U;
- unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
- return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
- };
-
- for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
- Instruction *I = IdxToInstr[i];
-
- // Remove all of the instructions that end at this location.
- InstrList &List = TransposeEnds[i];
- for (Instruction *ToRemove : List)
- OpenIntervals.erase(ToRemove);
-
- // Ignore instructions that are never used within the loop.
- if (Ends.find(I) == Ends.end())
- continue;
-
- // Skip ignored values.
- if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
- continue;
-
- // For each VF find the maximum usage of registers.
- for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
- if (VFs[j] == 1) {
- MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
- continue;
- }
- collectUniformsAndScalars(VFs[j]);
- // Count the number of live intervals.
- unsigned RegUsage = 0;
- for (auto Inst : OpenIntervals) {
- // Skip ignored values for VF > 1.
- if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() ||
- isScalarAfterVectorization(Inst, VFs[j]))
- continue;
- RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
- }
- MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
- }
-
- LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
- << OpenIntervals.size() << '\n');
-
- // Add the current instruction to the list of open intervals.
- OpenIntervals.insert(I);
- }
-
- for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
- unsigned Invariant = 0;
- if (VFs[i] == 1)
- Invariant = LoopInvariants.size();
- else {
- for (auto Inst : LoopInvariants)
- Invariant += GetRegUsage(Inst->getType(), VFs[i]);
- }
-
- LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
- LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
- LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant
- << '\n');
-
- RU.LoopInvariantRegs = Invariant;
- RU.MaxLocalUsers = MaxUsages[i];
- RUs[i] = RU;
- }
-
- return RUs;
-}
-
-bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
- // TODO: Cost model for emulated masked load/store is completely
- // broken. This hack guides the cost model to use an artificially
- // high enough value to practically disable vectorization with such
- // operations, except where previously deployed legality hack allowed
- // using very low cost values. This is to avoid regressions coming simply
- // from moving "masked load/store" check from legality to cost model.
- // Masked Load/Gather emulation was previously never allowed.
- // Limited number of Masked Store/Scatter emulation was allowed.
- assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
- return isa<LoadInst>(I) ||
- (isa<StoreInst>(I) &&
- NumPredStores > NumberOfStoresToPredicate);
-}
-
-void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
- // If we aren't vectorizing the loop, or if we've already collected the
- // instructions to scalarize, there's nothing to do. Collection may already
- // have occurred if we have a user-selected VF and are now computing the
- // expected cost for interleaving.
- if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
- return;
-
- // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
- // not profitable to scalarize any instructions, the presence of VF in the
- // map will indicate that we've analyzed it already.
- ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
-
- // Find all the instructions that are scalar with predication in the loop and
- // determine if it would be better to not if-convert the blocks they are in.
- // If so, we also record the instructions to scalarize.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockNeedsPredication(BB))
- continue;
- for (Instruction &I : *BB)
- if (isScalarWithPredication(&I)) {
- ScalarCostsTy ScalarCosts;
- // Do not apply discount logic if hacked cost is needed
- // for emulated masked memrefs.
- if (!useEmulatedMaskMemRefHack(&I) &&
- computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
- ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
- // Remember that BB will remain after vectorization.
- PredicatedBBsAfterVectorization.insert(BB);
- }
- }
-}
-
-int LoopVectorizationCostModel::computePredInstDiscount(
- Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
- unsigned VF) {
- assert(!isUniformAfterVectorization(PredInst, VF) &&
- "Instruction marked uniform-after-vectorization will be predicated");
-
- // Initialize the discount to zero, meaning that the scalar version and the
- // vector version cost the same.
- int Discount = 0;
-
- // Holds instructions to analyze. The instructions we visit are mapped in
- // ScalarCosts. Those instructions are the ones that would be scalarized if
- // we find that the scalar version costs less.
- SmallVector<Instruction *, 8> Worklist;
-
- // Returns true if the given instruction can be scalarized.
- auto canBeScalarized = [&](Instruction *I) -> bool {
- // We only attempt to scalarize instructions forming a single-use chain
- // from the original predicated block that would otherwise be vectorized.
- // Although not strictly necessary, we give up on instructions we know will
- // already be scalar to avoid traversing chains that are unlikely to be
- // beneficial.
- if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
- isScalarAfterVectorization(I, VF))
- return false;
-
- // If the instruction is scalar with predication, it will be analyzed
- // separately. We ignore it within the context of PredInst.
- if (isScalarWithPredication(I))
- return false;
-
- // If any of the instruction's operands are uniform after vectorization,
- // the instruction cannot be scalarized. This prevents, for example, a
- // masked load from being scalarized.
- //
- // We assume we will only emit a value for lane zero of an instruction
- // marked uniform after vectorization, rather than VF identical values.
- // Thus, if we scalarize an instruction that uses a uniform, we would
- // create uses of values corresponding to the lanes we aren't emitting code
- // for. This behavior can be changed by allowing getScalarValue to clone
- // the lane zero values for uniforms rather than asserting.
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (isUniformAfterVectorization(J, VF))
- return false;
-
- // Otherwise, we can scalarize the instruction.
- return true;
- };
-
- // Compute the expected cost discount from scalarizing the entire expression
- // feeding the predicated instruction. We currently only consider expressions
- // that are single-use instruction chains.
- Worklist.push_back(PredInst);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
-
- // If we've already analyzed the instruction, there's nothing to do.
- if (ScalarCosts.find(I) != ScalarCosts.end())
- continue;
-
- // Compute the cost of the vector instruction. Note that this cost already
- // includes the scalarization overhead of the predicated instruction.
- unsigned VectorCost = getInstructionCost(I, VF).first;
-
- // Compute the cost of the scalarized instruction. This cost is the cost of
- // the instruction as if it wasn't if-converted and instead remained in the
- // predicated block. We will scale this cost by block probability after
- // computing the scalarization overhead.
- unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
-
- // Compute the scalarization overhead of needed insertelement instructions
- // and phi nodes.
- if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
- ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
- true, false);
- ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
- }
-
- // Compute the scalarization overhead of needed extractelement
- // instructions. For each of the instruction's operands, if the operand can
- // be scalarized, add it to the worklist; otherwise, account for the
- // overhead.
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get())) {
- assert(VectorType::isValidElementType(J->getType()) &&
- "Instruction has non-scalar type");
- if (canBeScalarized(J))
- Worklist.push_back(J);
- else if (needsExtract(J, VF))
- ScalarCost += TTI.getScalarizationOverhead(
- ToVectorTy(J->getType(),VF), false, true);
- }
-
- // Scale the total scalar cost by block probability.
- ScalarCost /= getReciprocalPredBlockProb();
-
- // Compute the discount. A non-negative discount means the vector version
- // of the instruction costs more, and scalarizing would be beneficial.
- Discount += VectorCost - ScalarCost;
- ScalarCosts[I] = ScalarCost;
- }
-
- return Discount;
-}
-
-LoopVectorizationCostModel::VectorizationCostTy
-LoopVectorizationCostModel::expectedCost(unsigned VF) {
- VectorizationCostTy Cost;
-
- // For each block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- VectorizationCostTy BlockCost;
-
- // For each instruction in the old loop.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- // Skip ignored values.
- if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
- (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
- continue;
-
- VectorizationCostTy C = getInstructionCost(&I, VF);
-
- // Check if we should override the cost.
- if (ForceTargetInstructionCost.getNumOccurrences() > 0)
- C.first = ForceTargetInstructionCost;
-
- BlockCost.first += C.first;
- BlockCost.second |= C.second;
- LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
- << " for VF " << VF << " For instruction: " << I
- << '\n');
- }
-
- // If we are vectorizing a predicated block, it will have been
- // if-converted. This means that the block's instructions (aside from
- // stores and instructions that may divide by zero) will now be
- // unconditionally executed. For the scalar case, we may not always execute
- // the predicated block. Thus, scale the block's cost by the probability of
- // executing it.
- if (VF == 1 && blockNeedsPredication(BB))
- BlockCost.first /= getReciprocalPredBlockProb();
-
- Cost.first += BlockCost.first;
- Cost.second |= BlockCost.second;
- }
-
- return Cost;
-}
-
-/// Gets Address Access SCEV after verifying that the access pattern
-/// is loop invariant except the induction variable dependence.
-///
-/// This SCEV can be sent to the Target in order to estimate the address
-/// calculation cost.
-static const SCEV *getAddressAccessSCEV(
- Value *Ptr,
- LoopVectorizationLegality *Legal,
- PredicatedScalarEvolution &PSE,
- const Loop *TheLoop) {
-
- auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (!Gep)
- return nullptr;
-
- // We are looking for a gep with all loop invariant indices except for one
- // which should be an induction variable.
- auto SE = PSE.getSE();
- unsigned NumOperands = Gep->getNumOperands();
- for (unsigned i = 1; i < NumOperands; ++i) {
- Value *Opd = Gep->getOperand(i);
- if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
- !Legal->isInductionVariable(Opd))
- return nullptr;
- }
-
- // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
- return PSE.getSCEV(Ptr);
-}
-
-static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
- return Legal->hasStride(I->getOperand(0)) ||
- Legal->hasStride(I->getOperand(1));
-}
-
-unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
- unsigned VF) {
- assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
- Type *ValTy = getMemInstValueType(I);
- auto SE = PSE.getSE();
-
- unsigned Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- Value *Ptr = getLoadStorePointerOperand(I);
- Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
-
- // Figure out whether the access is strided and get the stride value
- // if it's known in compile time
- const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
-
- // Get the cost of the scalar memory instruction and address computation.
- unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
-
- // Don't pass *I here, since it is scalar but will actually be part of a
- // vectorized loop where the user of it is a vectorized instruction.
- Cost += VF *
- TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
- AS);
-
- // Get the overhead of the extractelement and insertelement instructions
- // we might create due to scalarization.
- Cost += getScalarizationOverhead(I, VF);
-
- // If we have a predicated store, it may not be executed for each vector
- // lane. Scale the cost by the probability of executing the predicated
- // block.
- if (isPredicatedInst(I)) {
- Cost /= getReciprocalPredBlockProb();
-
- if (useEmulatedMaskMemRefHack(I))
- // Artificially setting to a high enough value to practically disable
- // vectorization with such operations.
- Cost = 3000000;
- }
-
- return Cost;
-}
-
-unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = getLoadStoreAlignment(I);
- Value *Ptr = getLoadStorePointerOperand(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
-
- assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
- "Stride should be 1 or -1 for consecutive memory access");
- unsigned Cost = 0;
- if (Legal->isMaskRequired(I))
- Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- else
- Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
-
- bool Reverse = ConsecutiveStride < 0;
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
- return Cost;
-}
-
-unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- if (isa<LoadInst>(I)) {
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
- TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
- }
- StoreInst *SI = cast<StoreInst>(I);
-
- bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
- (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost(
- Instruction::ExtractElement,
- VectorTy, VF - 1));
-}
-
-unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = getLoadStoreAlignment(I);
- Value *Ptr = getLoadStorePointerOperand(I);
-
- return TTI.getAddressComputationCost(VectorTy) +
- TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
- Legal->isMaskRequired(I), Alignment);
-}
-
-unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned AS = getLoadStoreAddressSpace(I);
-
- auto Group = getInterleavedAccessGroup(I);
- assert(Group && "Fail to get an interleaved access group.");
-
- unsigned InterleaveFactor = Group->getFactor();
- Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
-
- // Holds the indices of existing members in an interleaved load group.
- // An interleaved store group doesn't need this as it doesn't allow gaps.
- SmallVector<unsigned, 4> Indices;
- if (isa<LoadInst>(I)) {
- for (unsigned i = 0; i < InterleaveFactor; i++)
- if (Group->getMember(i))
- Indices.push_back(i);
- }
-
- // Calculate the cost of the whole interleaved group.
- bool UseMaskForGaps =
- Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed;
- unsigned Cost = TTI.getInterleavedMemoryOpCost(
- I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
- Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps);
-
- if (Group->isReverse()) {
- // TODO: Add support for reversed masked interleaved access.
- assert(!Legal->isMaskRequired(I) &&
- "Reverse masked interleaved access not supported.");
- Cost += Group->getNumMembers() *
- TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
- }
- return Cost;
-}
-
-unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
- unsigned VF) {
- // Calculate scalar cost only. Vectorization cost should be ready at this
- // moment.
- if (VF == 1) {
- Type *ValTy = getMemInstValueType(I);
- unsigned Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
-
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
- }
- return getWideningCost(I, VF);
-}
-
-LoopVectorizationCostModel::VectorizationCostTy
-LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- // If we know that this instruction will remain uniform, check the cost of
- // the scalar version.
- if (isUniformAfterVectorization(I, VF))
- VF = 1;
-
- if (VF > 1 && isProfitableToScalarize(I, VF))
- return VectorizationCostTy(InstsToScalarize[VF][I], false);
-
- // Forced scalars do not have any scalarization overhead.
- auto ForcedScalar = ForcedScalars.find(VF);
- if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
- auto InstSet = ForcedScalar->second;
- if (InstSet.find(I) != InstSet.end())
- return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
- }
-
- Type *VectorTy;
- unsigned C = getInstructionCost(I, VF, VectorTy);
-
- bool TypeNotScalarized =
- VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
- return VectorizationCostTy(C, TypeNotScalarized);
-}
-
-unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
- unsigned VF) {
-
- if (VF == 1)
- return 0;
-
- unsigned Cost = 0;
- Type *RetTy = ToVectorTy(I->getType(), VF);
- if (!RetTy->isVoidTy() &&
- (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
- Cost += TTI.getScalarizationOverhead(RetTy, true, false);
-
- // Some targets keep addresses scalar.
- if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
- return Cost;
-
- // Some targets support efficient element stores.
- if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
- return Cost;
-
- // Collect operands to consider.
- CallInst *CI = dyn_cast<CallInst>(I);
- Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
-
- // Skip operands that do not require extraction/scalarization and do not incur
- // any overhead.
- return Cost + TTI.getOperandsScalarizationOverhead(
- filterExtractingOperands(Ops, VF), VF);
-}
-
-void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
- if (VF == 1)
- return;
- NumPredStores = 0;
- for (BasicBlock *BB : TheLoop->blocks()) {
- // For each instruction in the old loop.
- for (Instruction &I : *BB) {
- Value *Ptr = getLoadStorePointerOperand(&I);
- if (!Ptr)
- continue;
-
- // TODO: We should generate better code and update the cost model for
- // predicated uniform stores. Today they are treated as any other
- // predicated store (see added test cases in
- // invariant-store-vectorization.ll).
- if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
- NumPredStores++;
-
- if (Legal->isUniform(Ptr) &&
- // Conditional loads and stores should be scalarized and predicated.
- // isScalarWithPredication cannot be used here since masked
- // gather/scatters are not considered scalar with predication.
- !Legal->blockNeedsPredication(I.getParent())) {
- // TODO: Avoid replicating loads and stores instead of
- // relying on instcombine to remove them.
- // Load: Scalar load + broadcast
- // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
- unsigned Cost = getUniformMemOpCost(&I, VF);
- setWideningDecision(&I, VF, CM_Scalarize, Cost);
- continue;
- }
-
- // We assume that widening is the best solution when possible.
- if (memoryInstructionCanBeWidened(&I, VF)) {
- unsigned Cost = getConsecutiveMemOpCost(&I, VF);
- int ConsecutiveStride =
- Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
- assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
- "Expected consecutive stride.");
- InstWidening Decision =
- ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
- setWideningDecision(&I, VF, Decision, Cost);
- continue;
- }
-
- // Choose between Interleaving, Gather/Scatter or Scalarization.
- unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
- unsigned NumAccesses = 1;
- if (isAccessInterleaved(&I)) {
- auto Group = getInterleavedAccessGroup(&I);
- assert(Group && "Fail to get an interleaved access group.");
-
- // Make one decision for the whole group.
- if (getWideningDecision(&I, VF) != CM_Unknown)
- continue;
-
- NumAccesses = Group->getNumMembers();
- if (interleavedAccessCanBeWidened(&I, VF))
- InterleaveCost = getInterleaveGroupCost(&I, VF);
- }
-
- unsigned GatherScatterCost =
- isLegalGatherOrScatter(&I)
- ? getGatherScatterCost(&I, VF) * NumAccesses
- : std::numeric_limits<unsigned>::max();
-
- unsigned ScalarizationCost =
- getMemInstScalarizationCost(&I, VF) * NumAccesses;
-
- // Choose better solution for the current VF,
- // write down this decision and use it during vectorization.
- unsigned Cost;
- InstWidening Decision;
- if (InterleaveCost <= GatherScatterCost &&
- InterleaveCost < ScalarizationCost) {
- Decision = CM_Interleave;
- Cost = InterleaveCost;
- } else if (GatherScatterCost < ScalarizationCost) {
- Decision = CM_GatherScatter;
- Cost = GatherScatterCost;
- } else {
- Decision = CM_Scalarize;
- Cost = ScalarizationCost;
- }
- // If the instructions belongs to an interleave group, the whole group
- // receives the same decision. The whole group receives the cost, but
- // the cost will actually be assigned to one instruction.
- if (auto Group = getInterleavedAccessGroup(&I))
- setWideningDecision(Group, VF, Decision, Cost);
- else
- setWideningDecision(&I, VF, Decision, Cost);
- }
- }
-
- // Make sure that any load of address and any other address computation
- // remains scalar unless there is gather/scatter support. This avoids
- // inevitable extracts into address registers, and also has the benefit of
- // activating LSR more, since that pass can't optimize vectorized
- // addresses.
- if (TTI.prefersVectorizedAddressing())
- return;
-
- // Start with all scalar pointer uses.
- SmallPtrSet<Instruction *, 8> AddrDefs;
- for (BasicBlock *BB : TheLoop->blocks())
- for (Instruction &I : *BB) {
- Instruction *PtrDef =
- dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
- if (PtrDef && TheLoop->contains(PtrDef) &&
- getWideningDecision(&I, VF) != CM_GatherScatter)
- AddrDefs.insert(PtrDef);
- }
-
- // Add all instructions used to generate the addresses.
- SmallVector<Instruction *, 4> Worklist;
- for (auto *I : AddrDefs)
- Worklist.push_back(I);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- for (auto &Op : I->operands())
- if (auto *InstOp = dyn_cast<Instruction>(Op))
- if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
- AddrDefs.insert(InstOp).second)
- Worklist.push_back(InstOp);
- }
-
- for (auto *I : AddrDefs) {
- if (isa<LoadInst>(I)) {
- // Setting the desired widening decision should ideally be handled in
- // by cost functions, but since this involves the task of finding out
- // if the loaded register is involved in an address computation, it is
- // instead changed here when we know this is the case.
- InstWidening Decision = getWideningDecision(I, VF);
- if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
- // Scalarize a widened load of address.
- setWideningDecision(I, VF, CM_Scalarize,
- (VF * getMemoryInstructionCost(I, 1)));
- else if (auto Group = getInterleavedAccessGroup(I)) {
- // Scalarize an interleave group of address loads.
- for (unsigned I = 0; I < Group->getFactor(); ++I) {
- if (Instruction *Member = Group->getMember(I))
- setWideningDecision(Member, VF, CM_Scalarize,
- (VF * getMemoryInstructionCost(Member, 1)));
- }
- }
- } else
- // Make sure I gets scalarized and a cost estimate without
- // scalarization overhead.
- ForcedScalars[VF].insert(I);
- }
-}
-
-unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
- unsigned VF,
- Type *&VectorTy) {
- Type *RetTy = I->getType();
- if (canTruncateToMinimalBitwidth(I, VF))
- RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
- VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
- auto SE = PSE.getSE();
-
- // TODO: We need to estimate the cost of intrinsic calls.
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because the cost of GEPs in
- // vectorized code depends on whether the corresponding memory instruction
- // is scalarized or not. Therefore, we handle GEPs with the memory
- // instruction cost.
- return 0;
- case Instruction::Br: {
- // In cases of scalarized and predicated instructions, there will be VF
- // predicated blocks in the vectorized loop. Each branch around these
- // blocks requires also an extract of its vector compare i1 element.
- bool ScalarPredicatedBB = false;
- BranchInst *BI = cast<BranchInst>(I);
- if (VF > 1 && BI->isConditional() &&
- (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
- PredicatedBBsAfterVectorization.end() ||
- PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
- PredicatedBBsAfterVectorization.end()))
- ScalarPredicatedBB = true;
-
- if (ScalarPredicatedBB) {
- // Return cost for branches around scalarized and predicated blocks.
- Type *Vec_i1Ty =
- VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
- return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
- (TTI.getCFInstrCost(Instruction::Br) * VF));
- } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
- // The back-edge branch will remain, as will all scalar branches.
- return TTI.getCFInstrCost(Instruction::Br);
- else
- // This branch will be eliminated by if-conversion.
- return 0;
- // Note: We currently assume zero cost for an unconditional branch inside
- // a predicated block since it will become a fall-through, although we
- // may decide in the future to call TTI for all branches.
- }
- case Instruction::PHI: {
- auto *Phi = cast<PHINode>(I);
-
- // First-order recurrences are replaced by vector shuffles inside the loop.
- // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
- if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
- return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
- VectorTy, VF - 1, VectorType::get(RetTy, 1));
-
- // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
- // converted into select instructions. We require N - 1 selects per phi
- // node, where N is the number of incoming values.
- if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
- return (Phi->getNumIncomingValues() - 1) *
- TTI.getCmpSelInstrCost(
- Instruction::Select, ToVectorTy(Phi->getType(), VF),
- ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
-
- return TTI.getCFInstrCost(Instruction::PHI);
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- // If we have a predicated instruction, it may not be executed for each
- // vector lane. Get the scalarization cost and scale this amount by the
- // probability of executing the predicated block. If the instruction is not
- // predicated, we fall through to the next case.
- if (VF > 1 && isScalarWithPredication(I)) {
- unsigned Cost = 0;
-
- // These instructions have a non-void type, so account for the phi nodes
- // that we will create. This cost is likely to be zero. The phi node
- // cost, if any, should be scaled by the block probability because it
- // models a copy at the end of each predicated block.
- Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
-
- // The cost of the non-predicated instruction.
- Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
-
- // The cost of insertelement and extractelement instructions needed for
- // scalarization.
- Cost += getScalarizationOverhead(I, VF);
-
- // Scale the cost by the probability of executing the predicated blocks.
- // This assumes the predicated block for each vector lane is equally
- // likely.
- return Cost / getReciprocalPredBlockProb();
- }
- LLVM_FALLTHROUGH;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Since we will replace the stride by 1 the multiplication should go away.
- if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
- return 0;
- // Certain instructions can be cheaper to vectorize if they have a constant
- // second vector operand. One example of this are shifts on x86.
- Value *Op2 = I->getOperand(1);
- TargetTransformInfo::OperandValueProperties Op2VP;
- TargetTransformInfo::OperandValueKind Op2VK =
- TTI.getOperandInfo(Op2, Op2VP);
- if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
- Op2VK = TargetTransformInfo::OK_UniformValue;
-
- SmallVector<const Value *, 4> Operands(I->operand_values());
- unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
- return N * TTI.getArithmeticInstrCost(
- I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
- Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands);
- }
- case Instruction::FNeg: {
- unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
- return N * TTI.getArithmeticInstrCost(
- I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
- TargetTransformInfo::OK_AnyValue,
- TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
- I->getOperand(0));
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- Type *CondTy = SI->getCondition()->getType();
- if (!ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
-
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
- if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
- ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
- VectorTy = ToVectorTy(ValTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
- }
- case Instruction::Store:
- case Instruction::Load: {
- unsigned Width = VF;
- if (Width > 1) {
- InstWidening Decision = getWideningDecision(I, Width);
- assert(Decision != CM_Unknown &&
- "CM decision should be taken at this point");
- if (Decision == CM_Scalarize)
- Width = 1;
- }
- VectorTy = ToVectorTy(getMemInstValueType(I), Width);
- return getMemoryInstructionCost(I, VF);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- // We optimize the truncation of induction variables having constant
- // integer steps. The cost of these truncations is the same as the scalar
- // operation.
- if (isOptimizableIVTruncate(I, VF)) {
- auto *Trunc = cast<TruncInst>(I);
- return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
- Trunc->getSrcTy(), Trunc);
- }
-
- Type *SrcScalarTy = I->getOperand(0)->getType();
- Type *SrcVecTy =
- VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
- if (canTruncateToMinimalBitwidth(I, VF)) {
- // This cast is going to be shrunk. This may remove the cast or it might
- // turn it into slightly different cast. For example, if MinBW == 16,
- // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
- //
- // Calculate the modified src and dest types.
- Type *MinVecTy = VectorTy;
- if (I->getOpcode() == Instruction::Trunc) {
- SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
- VectorTy =
- largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
- } else if (I->getOpcode() == Instruction::ZExt ||
- I->getOpcode() == Instruction::SExt) {
- SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
- VectorTy =
- smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
- }
- }
-
- unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
- return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
- }
- case Instruction::Call: {
- bool NeedToScalarize;
- CallInst *CI = cast<CallInst>(I);
- unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
- if (getVectorIntrinsicIDForCall(CI, TLI))
- return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
- return CallCost;
- }
- default:
- // The cost of executing VF copies of the scalar instruction. This opcode
- // is unknown. Assume that it is the same as 'mul'.
- return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
- getScalarizationOverhead(I, VF);
- } // end of switch.
-}
-
-char LoopVectorize::ID = 0;
-
-static const char lv_name[] = "Loop Vectorization";
-
-INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
-INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
-INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
-
-namespace llvm {
-
-Pass *createLoopVectorizePass() { return new LoopVectorize(); }
-
-Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
- bool VectorizeOnlyWhenForced) {
- return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
-}
-
-} // end namespace llvm
-
-bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
- // Check if the pointer operand of a load or store instruction is
- // consecutive.
- if (auto *Ptr = getLoadStorePointerOperand(Inst))
- return Legal->isConsecutivePtr(Ptr);
- return false;
-}
-
-void LoopVectorizationCostModel::collectValuesToIgnore() {
- // Ignore ephemeral values.
- CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
-
- // Ignore type-promoting instructions we identified during reduction
- // detection.
- for (auto &Reduction : *Legal->getReductionVars()) {
- RecurrenceDescriptor &RedDes = Reduction.second;
- SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
- VecValuesToIgnore.insert(Casts.begin(), Casts.end());
- }
- // Ignore type-casting instructions we identified during induction
- // detection.
- for (auto &Induction : *Legal->getInductionVars()) {
- InductionDescriptor &IndDes = Induction.second;
- const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
- VecValuesToIgnore.insert(Casts.begin(), Casts.end());
- }
-}
-
-// TODO: we could return a pair of values that specify the max VF and
-// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
-// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
-// doesn't have a cost model that can choose which plan to execute if
-// more than one is generated.
-static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
- LoopVectorizationCostModel &CM) {
- unsigned WidestType;
- std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
- return WidestVectorRegBits / WidestType;
-}
-
-VectorizationFactor
-LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
- unsigned UserVF) {
- unsigned VF = UserVF;
- // Outer loop handling: They may require CFG and instruction level
- // transformations before even evaluating whether vectorization is profitable.
- // Since we cannot modify the incoming IR, we need to build VPlan upfront in
- // the vectorization pipeline.
- if (!OrigLoop->empty()) {
- // If the user doesn't provide a vectorization factor, determine a
- // reasonable one.
- if (!UserVF) {
- VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
- LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
-
- // Make sure we have a VF > 1 for stress testing.
- if (VPlanBuildStressTest && VF < 2) {
- LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
- << "overriding computed VF.\n");
- VF = 4;
- }
- }
- assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
- assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
- LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
- << " to build VPlans.\n");
- buildVPlans(VF, VF);
-
- // For VPlan build stress testing, we bail out after VPlan construction.
- if (VPlanBuildStressTest)
- return VectorizationFactor::Disabled();
-
- return {VF, 0};
- }
-
- LLVM_DEBUG(
- dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
- "VPlan-native path.\n");
- return VectorizationFactor::Disabled();
-}
-
-Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize,
- unsigned UserVF) {
- assert(OrigLoop->empty() && "Inner loop expected.");
- Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
- if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
- return None;
-
- // Invalidate interleave groups if all blocks of loop will be predicated.
- if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
- !useMaskedInterleavedAccesses(*TTI)) {
- LLVM_DEBUG(
- dbgs()
- << "LV: Invalidate all interleaved groups due to fold-tail by masking "
- "which requires masked-interleaved support.\n");
- CM.InterleaveInfo.reset();
- }
-
- if (UserVF) {
- LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
- assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
- // Collect the instructions (and their associated costs) that will be more
- // profitable to scalarize.
- CM.selectUserVectorizationFactor(UserVF);
- buildVPlansWithVPRecipes(UserVF, UserVF);
- LLVM_DEBUG(printPlans(dbgs()));
- return {{UserVF, 0}};
- }
-
- unsigned MaxVF = MaybeMaxVF.getValue();
- assert(MaxVF != 0 && "MaxVF is zero.");
-
- for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
- // Collect Uniform and Scalar instructions after vectorization with VF.
- CM.collectUniformsAndScalars(VF);
-
- // Collect the instructions (and their associated costs) that will be more
- // profitable to scalarize.
- if (VF > 1)
- CM.collectInstsToScalarize(VF);
- }
-
- buildVPlansWithVPRecipes(1, MaxVF);
- LLVM_DEBUG(printPlans(dbgs()));
- if (MaxVF == 1)
- return VectorizationFactor::Disabled();
-
- // Select the optimal vectorization factor.
- return CM.selectVectorizationFactor(MaxVF);
-}
-
-void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
- LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
- << '\n');
- BestVF = VF;
- BestUF = UF;
-
- erase_if(VPlans, [VF](const VPlanPtr &Plan) {
- return !Plan->hasVF(VF);
- });
- assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
-}
-
-void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
- DominatorTree *DT) {
- // Perform the actual loop transformation.
-
- // 1. Create a new empty loop. Unlink the old loop and connect the new one.
- VPCallbackILV CallbackILV(ILV);
-
- VPTransformState State{BestVF, BestUF, LI,
- DT, ILV.Builder, ILV.VectorLoopValueMap,
- &ILV, CallbackILV};
- State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
- State.TripCount = ILV.getOrCreateTripCount(nullptr);
-
- //===------------------------------------------------===//
- //
- // Notice: any optimization or new instruction that go
- // into the code below should also be implemented in
- // the cost-model.
- //
- //===------------------------------------------------===//
-
- // 2. Copy and widen instructions from the old loop into the new loop.
- assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
- VPlans.front()->execute(&State);
-
- // 3. Fix the vectorized code: take care of header phi's, live-outs,
- // predication, updating analyses.
- ILV.fixVectorizedLoop();
-}
-
-void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
- SmallPtrSetImpl<Instruction *> &DeadInstructions) {
- BasicBlock *Latch = OrigLoop->getLoopLatch();
-
- // We create new control-flow for the vectorized loop, so the original
- // condition will be dead after vectorization if it's only used by the
- // branch.
- auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
- if (Cmp && Cmp->hasOneUse())
- DeadInstructions.insert(Cmp);
-
- // We create new "steps" for induction variable updates to which the original
- // induction variables map. An original update instruction will be dead if
- // all its users except the induction variable are dead.
- for (auto &Induction : *Legal->getInductionVars()) {
- PHINode *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
- DeadInstructions.end();
- }))
- DeadInstructions.insert(IndUpdate);
-
- // We record as "Dead" also the type-casting instructions we had identified
- // during induction analysis. We don't need any handling for them in the
- // vectorized loop because we have proven that, under a proper runtime
- // test guarding the vectorized loop, the value of the phi, and the casted
- // value of the phi, are the same. The last instruction in this casting chain
- // will get its scalar/vector/widened def from the scalar/vector/widened def
- // of the respective phi node. Any other casts in the induction def-use chain
- // have no other uses outside the phi update chain, and will be ignored.
- InductionDescriptor &IndDes = Induction.second;
- const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
- DeadInstructions.insert(Casts.begin(), Casts.end());
- }
-}
-
-Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
-
-Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
-
-Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps BinOp) {
- // When unrolling and the VF is 1, we only need to add a simple scalar.
- Type *Ty = Val->getType();
- assert(!Ty->isVectorTy() && "Val must be a scalar");
-
- if (Ty->isFloatingPointTy()) {
- Constant *C = ConstantFP::get(Ty, (double)StartIdx);
-
- // Floating point operations had to be 'fast' to enable the unrolling.
- Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
- return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
- }
- Constant *C = ConstantInt::get(Ty, StartIdx);
- return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
-}
-
-static void AddRuntimeUnrollDisableMetaData(Loop *L) {
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- bool IsUnrollMetadata = false;
- MDNode *LoopID = L->getLoopID();
- if (LoopID) {
- // First find existing loop unrolling disable metadata.
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const auto *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata =
- S && S->getString().startswith("llvm.loop.unroll.disable");
- }
- MDs.push_back(LoopID->getOperand(i));
- }
- }
-
- if (!IsUnrollMetadata) {
- // Add runtime unroll disable metadata.
- LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(
- MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L->setLoopID(NewLoopID);
- }
-}
-
-bool LoopVectorizationPlanner::getDecisionAndClampRange(
- const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
- assert(Range.End > Range.Start && "Trying to test an empty VF range.");
- bool PredicateAtRangeStart = Predicate(Range.Start);
-
- for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
- if (Predicate(TmpVF) != PredicateAtRangeStart) {
- Range.End = TmpVF;
- break;
- }
-
- return PredicateAtRangeStart;
-}
-
-/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
-/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
-/// of VF's starting at a given VF and extending it as much as possible. Each
-/// vectorization decision can potentially shorten this sub-range during
-/// buildVPlan().
-void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
- for (unsigned VF = MinVF; VF < MaxVF + 1;) {
- VFRange SubRange = {VF, MaxVF + 1};
- VPlans.push_back(buildVPlan(SubRange));
- VF = SubRange.End;
- }
-}
-
-VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
- VPlanPtr &Plan) {
- assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
-
- // Look for cached value.
- std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
- EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
- if (ECEntryIt != EdgeMaskCache.end())
- return ECEntryIt->second;
-
- VPValue *SrcMask = createBlockInMask(Src, Plan);
-
- // The terminator has to be a branch inst!
- BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
- assert(BI && "Unexpected terminator found");
-
- if (!BI->isConditional())
- return EdgeMaskCache[Edge] = SrcMask;
-
- VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
- assert(EdgeMask && "No Edge Mask found for condition");
-
- if (BI->getSuccessor(0) != Dst)
- EdgeMask = Builder.createNot(EdgeMask);
-
- if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
- EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
-
- return EdgeMaskCache[Edge] = EdgeMask;
-}
-
-VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
- assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
-
- // Look for cached value.
- BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
- if (BCEntryIt != BlockMaskCache.end())
- return BCEntryIt->second;
-
- // All-one mask is modelled as no-mask following the convention for masked
- // load/store/gather/scatter. Initialize BlockMask to no-mask.
- VPValue *BlockMask = nullptr;
-
- if (OrigLoop->getHeader() == BB) {
- if (!CM.blockNeedsPredication(BB))
- return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
-
- // Introduce the early-exit compare IV <= BTC to form header block mask.
- // This is used instead of IV < TC because TC may wrap, unlike BTC.
- VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction());
- VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
- BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
- return BlockMaskCache[BB] = BlockMask;
- }
-
- // This is the block mask. We OR all incoming edges.
- for (auto *Predecessor : predecessors(BB)) {
- VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
- if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
- return BlockMaskCache[BB] = EdgeMask;
-
- if (!BlockMask) { // BlockMask has its initialized nullptr value.
- BlockMask = EdgeMask;
- continue;
- }
-
- BlockMask = Builder.createOr(BlockMask, EdgeMask);
- }
-
- return BlockMaskCache[BB] = BlockMask;
-}
-
-VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I,
- VFRange &Range,
- VPlanPtr &Plan) {
- const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I);
- if (!IG)
- return nullptr;
-
- // Now check if IG is relevant for VF's in the given range.
- auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
- return [=](unsigned VF) -> bool {
- return (VF >= 2 && // Query is illegal for VF == 1
- CM.getWideningDecision(I, VF) ==
- LoopVectorizationCostModel::CM_Interleave);
- };
- };
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range))
- return nullptr;
-
- // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
- // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
- // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
- assert(I == IG->getInsertPos() &&
- "Generating a recipe for an adjunct member of an interleave group");
-
- VPValue *Mask = nullptr;
- if (Legal->isMaskRequired(I))
- Mask = createBlockInMask(I->getParent(), Plan);
-
- return new VPInterleaveRecipe(IG, Mask);
-}
-
-VPWidenMemoryInstructionRecipe *
-VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
- VPlanPtr &Plan) {
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
- return nullptr;
-
- auto willWiden = [&](unsigned VF) -> bool {
- if (VF == 1)
- return false;
- if (CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF))
- return false;
- LoopVectorizationCostModel::InstWidening Decision =
- CM.getWideningDecision(I, VF);
- assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
- "CM decision should be taken at this point.");
- assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
- "Interleave memory opportunity should be caught earlier.");
- return Decision != LoopVectorizationCostModel::CM_Scalarize;
- };
-
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
- return nullptr;
-
- VPValue *Mask = nullptr;
- if (Legal->isMaskRequired(I))
- Mask = createBlockInMask(I->getParent(), Plan);
-
- return new VPWidenMemoryInstructionRecipe(*I, Mask);
-}
-
-VPWidenIntOrFpInductionRecipe *
-VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) {
- if (PHINode *Phi = dyn_cast<PHINode>(I)) {
- // Check if this is an integer or fp induction. If so, build the recipe that
- // produces its scalar and vector values.
- InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
- if (II.getKind() == InductionDescriptor::IK_IntInduction ||
- II.getKind() == InductionDescriptor::IK_FpInduction)
- return new VPWidenIntOrFpInductionRecipe(Phi);
-
- return nullptr;
- }
-
- // Optimize the special case where the source is a constant integer
- // induction variable. Notice that we can only optimize the 'trunc' case
- // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
- // (c) other casts depend on pointer size.
-
- // Determine whether \p K is a truncation based on an induction variable that
- // can be optimized.
- auto isOptimizableIVTruncate =
- [&](Instruction *K) -> std::function<bool(unsigned)> {
- return
- [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
- };
-
- if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange(
- isOptimizableIVTruncate(I), Range))
- return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
- cast<TruncInst>(I));
- return nullptr;
-}
-
-VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) {
- PHINode *Phi = dyn_cast<PHINode>(I);
- if (!Phi || Phi->getParent() == OrigLoop->getHeader())
- return nullptr;
-
- // We know that all PHIs in non-header blocks are converted into selects, so
- // we don't have to worry about the insertion order and we can just use the
- // builder. At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
-
- SmallVector<VPValue *, 2> Masks;
- unsigned NumIncoming = Phi->getNumIncomingValues();
- for (unsigned In = 0; In < NumIncoming; In++) {
- VPValue *EdgeMask =
- createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
- assert((EdgeMask || NumIncoming == 1) &&
- "Multiple predecessors with one having a full mask");
- if (EdgeMask)
- Masks.push_back(EdgeMask);
- }
- return new VPBlendRecipe(Phi, Masks);
-}
-
-bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
- VFRange &Range) {
-
- bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
-
- if (IsPredicated)
- return false;
-
- auto IsVectorizableOpcode = [](unsigned Opcode) {
- switch (Opcode) {
- case Instruction::Add:
- case Instruction::And:
- case Instruction::AShr:
- case Instruction::BitCast:
- case Instruction::Br:
- case Instruction::Call:
- case Instruction::FAdd:
- case Instruction::FCmp:
- case Instruction::FDiv:
- case Instruction::FMul:
- case Instruction::FNeg:
- case Instruction::FPExt:
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- case Instruction::FPTrunc:
- case Instruction::FRem:
- case Instruction::FSub:
- case Instruction::GetElementPtr:
- case Instruction::ICmp:
- case Instruction::IntToPtr:
- case Instruction::Load:
- case Instruction::LShr:
- case Instruction::Mul:
- case Instruction::Or:
- case Instruction::PHI:
- case Instruction::PtrToInt:
- case Instruction::SDiv:
- case Instruction::Select:
- case Instruction::SExt:
- case Instruction::Shl:
- case Instruction::SIToFP:
- case Instruction::SRem:
- case Instruction::Store:
- case Instruction::Sub:
- case Instruction::Trunc:
- case Instruction::UDiv:
- case Instruction::UIToFP:
- case Instruction::URem:
- case Instruction::Xor:
- case Instruction::ZExt:
- return true;
- }
- return false;
- };
-
- if (!IsVectorizableOpcode(I->getOpcode()))
- return false;
-
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
- ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
- return false;
- }
-
- auto willWiden = [&](unsigned VF) -> bool {
- if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF)))
- return false;
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- // The following case may be scalarized depending on the VF.
- // The flag shows whether we use Intrinsic or a usual Call for vectorized
- // version of the instruction.
- // Is it beneficial to perform intrinsic call compared to lib call?
- bool NeedToScalarize;
- unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
- bool UseVectorIntrinsic =
- ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
- return UseVectorIntrinsic || !NeedToScalarize;
- }
- if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
- assert(CM.getWideningDecision(I, VF) ==
- LoopVectorizationCostModel::CM_Scalarize &&
- "Memory widening decisions should have been taken care by now");
- return false;
- }
- return true;
- };
-
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
- return false;
-
- // Success: widen this instruction. We optimize the common case where
- // consecutive instructions can be represented by a single recipe.
- if (!VPBB->empty()) {
- VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
- if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
- return true;
- }
-
- VPBB->appendRecipe(new VPWidenRecipe(I));
- return true;
-}
-
-VPBasicBlock *VPRecipeBuilder::handleReplication(
- Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
- DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
- VPlanPtr &Plan) {
- bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
- Range);
-
- bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
-
- auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
-
- // Find if I uses a predicated instruction. If so, it will use its scalar
- // value. Avoid hoisting the insert-element which packs the scalar value into
- // a vector value, as that happens iff all users use the vector value.
- for (auto &Op : I->operands())
- if (auto *PredInst = dyn_cast<Instruction>(Op))
- if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
- PredInst2Recipe[PredInst]->setAlsoPack(false);
-
- // Finalize the recipe for Instr, first if it is not predicated.
- if (!IsPredicated) {
- LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
- VPBB->appendRecipe(Recipe);
- return VPBB;
- }
- LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
- assert(VPBB->getSuccessors().empty() &&
- "VPBB has successors when handling predicated replication.");
- // Record predicated instructions for above packing optimizations.
- PredInst2Recipe[I] = Recipe;
- VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
- VPBlockUtils::insertBlockAfter(Region, VPBB);
- auto *RegSucc = new VPBasicBlock();
- VPBlockUtils::insertBlockAfter(RegSucc, Region);
- return RegSucc;
-}
-
-VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
- VPRecipeBase *PredRecipe,
- VPlanPtr &Plan) {
- // Instructions marked for predication are replicated and placed under an
- // if-then construct to prevent side-effects.
-
- // Generate recipes to compute the block mask for this region.
- VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
-
- // Build the triangular if-then region.
- std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
- assert(Instr->getParent() && "Predicated instruction not in any basic block");
- auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
- auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
- auto *PHIRecipe =
- Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
- auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
- auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
- VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
-
- // Note: first set Entry as region entry and then connect successors starting
- // from it in order, to propagate the "parent" of each VPBasicBlock.
- VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
- VPBlockUtils::connectBlocks(Pred, Exit);
-
- return Region;
-}
-
-bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range,
- VPlanPtr &Plan, VPBasicBlock *VPBB) {
- VPRecipeBase *Recipe = nullptr;
- // Check if Instr should belong to an interleave memory recipe, or already
- // does. In the latter case Instr is irrelevant.
- if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
-
- // Check if Instr is a memory operation that should be widened.
- if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
-
- // Check if Instr should form some PHI recipe.
- if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
- if ((Recipe = tryToBlend(Instr, Plan))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
- if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
- VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
- return true;
- }
-
- // Check if Instr is to be widened by a general VPWidenRecipe, after
- // having first checked for specific widening recipes that deal with
- // Interleave Groups, Inductions and Phi nodes.
- if (tryToWiden(Instr, VPBB, Range))
- return true;
-
- return false;
-}
-
-void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
- unsigned MaxVF) {
- assert(OrigLoop->empty() && "Inner loop expected.");
-
- // Collect conditions feeding internal conditional branches; they need to be
- // represented in VPlan for it to model masking.
- SmallPtrSet<Value *, 1> NeedDef;
-
- auto *Latch = OrigLoop->getLoopLatch();
- for (BasicBlock *BB : OrigLoop->blocks()) {
- if (BB == Latch)
- continue;
- BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
- if (Branch && Branch->isConditional())
- NeedDef.insert(Branch->getCondition());
- }
-
- // If the tail is to be folded by masking, the primary induction variable
- // needs to be represented in VPlan for it to model early-exit masking.
- if (CM.foldTailByMasking())
- NeedDef.insert(Legal->getPrimaryInduction());
-
- // Collect instructions from the original loop that will become trivially dead
- // in the vectorized loop. We don't need to vectorize these instructions. For
- // example, original induction update instructions can become dead because we
- // separately emit induction "steps" when generating code for the new loop.
- // Similarly, we create a new latch condition when setting up the structure
- // of the new loop, so the old one can become dead.
- SmallPtrSet<Instruction *, 4> DeadInstructions;
- collectTriviallyDeadInstructions(DeadInstructions);
-
- for (unsigned VF = MinVF; VF < MaxVF + 1;) {
- VFRange SubRange = {VF, MaxVF + 1};
- VPlans.push_back(
- buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions));
- VF = SubRange.End;
- }
-}
-
-VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
- VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
- SmallPtrSetImpl<Instruction *> &DeadInstructions) {
- // Hold a mapping from predicated instructions to their recipes, in order to
- // fix their AlsoPack behavior if a user is determined to replicate and use a
- // scalar instead of vector value.
- DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
-
- DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
- DenseMap<Instruction *, Instruction *> SinkAfterInverse;
-
- // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
- VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
- auto Plan = llvm::make_unique<VPlan>(VPBB);
-
- VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder);
- // Represent values that will have defs inside VPlan.
- for (Value *V : NeedDef)
- Plan->addVPValue(V);
-
- // Scan the body of the loop in a topological order to visit each basic block
- // after having visited its predecessor basic blocks.
- LoopBlocksDFS DFS(OrigLoop);
- DFS.perform(LI);
-
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
- // Relevant instructions from basic block BB will be grouped into VPRecipe
- // ingredients and fill a new VPBasicBlock.
- unsigned VPBBsForBB = 0;
- auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
- VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
- VPBB = FirstVPBBForBB;
- Builder.setInsertPoint(VPBB);
-
- std::vector<Instruction *> Ingredients;
-
- // Organize the ingredients to vectorize from current basic block in the
- // right order.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- Instruction *Instr = &I;
-
- // First filter out irrelevant instructions, to ensure no recipes are
- // built for them.
- if (isa<BranchInst>(Instr) ||
- DeadInstructions.find(Instr) != DeadInstructions.end())
- continue;
-
- // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
- // member of the IG, do not construct any Recipe for it.
- const InterleaveGroup<Instruction> *IG =
- CM.getInterleavedAccessGroup(Instr);
- if (IG && Instr != IG->getInsertPos() &&
- Range.Start >= 2 && // Query is illegal for VF == 1
- CM.getWideningDecision(Instr, Range.Start) ==
- LoopVectorizationCostModel::CM_Interleave) {
- auto SinkCandidate = SinkAfterInverse.find(Instr);
- if (SinkCandidate != SinkAfterInverse.end())
- Ingredients.push_back(SinkCandidate->second);
- continue;
- }
-
- // Move instructions to handle first-order recurrences, step 1: avoid
- // handling this instruction until after we've handled the instruction it
- // should follow.
- auto SAIt = SinkAfter.find(Instr);
- if (SAIt != SinkAfter.end()) {
- LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after"
- << *SAIt->second
- << " to vectorize a 1st order recurrence.\n");
- SinkAfterInverse[SAIt->second] = Instr;
- continue;
- }
-
- Ingredients.push_back(Instr);
-
- // Move instructions to handle first-order recurrences, step 2: push the
- // instruction to be sunk at its insertion point.
- auto SAInvIt = SinkAfterInverse.find(Instr);
- if (SAInvIt != SinkAfterInverse.end())
- Ingredients.push_back(SAInvIt->second);
- }
-
- // Introduce each ingredient into VPlan.
- for (Instruction *Instr : Ingredients) {
- if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB))
- continue;
-
- // Otherwise, if all widening options failed, Instruction is to be
- // replicated. This may create a successor for VPBB.
- VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
- Instr, Range, VPBB, PredInst2Recipe, Plan);
- if (NextVPBB != VPBB) {
- VPBB = NextVPBB;
- VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
- : "");
- }
- }
- }
-
- // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
- // may also be empty, such as the last one VPBB, reflecting original
- // basic-blocks with no recipes.
- VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
- assert(PreEntry->empty() && "Expecting empty pre-entry block.");
- VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
- VPBlockUtils::disconnectBlocks(PreEntry, Entry);
- delete PreEntry;
-
- std::string PlanName;
- raw_string_ostream RSO(PlanName);
- unsigned VF = Range.Start;
- Plan->addVF(VF);
- RSO << "Initial VPlan for VF={" << VF;
- for (VF *= 2; VF < Range.End; VF *= 2) {
- Plan->addVF(VF);
- RSO << "," << VF;
- }
- RSO << "},UF>=1";
- RSO.flush();
- Plan->setName(PlanName);
-
- return Plan;
-}
-
-VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
- // Outer loop handling: They may require CFG and instruction level
- // transformations before even evaluating whether vectorization is profitable.
- // Since we cannot modify the incoming IR, we need to build VPlan upfront in
- // the vectorization pipeline.
- assert(!OrigLoop->empty());
- assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
-
- // Create new empty VPlan
- auto Plan = llvm::make_unique<VPlan>();
-
- // Build hierarchical CFG
- VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
- HCFGBuilder.buildHierarchicalCFG();
-
- for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
- Plan->addVF(VF);
-
- if (EnableVPlanPredication) {
- VPlanPredicator VPP(*Plan);
- VPP.predicate();
-
- // Avoid running transformation to recipes until masked code generation in
- // VPlan-native path is in place.
- return Plan;
- }
-
- SmallPtrSet<Instruction *, 1> DeadInstructions;
- VPlanHCFGTransforms::VPInstructionsToVPRecipes(
- Plan, Legal->getInductionVars(), DeadInstructions);
-
- return Plan;
-}
-
-Value* LoopVectorizationPlanner::VPCallbackILV::
-getOrCreateVectorValues(Value *V, unsigned Part) {
- return ILV.getOrCreateVectorValue(V, Part);
-}
-
-void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n"
- << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
- IG->getInsertPos()->printAsOperand(O, false);
- if (User) {
- O << ", ";
- User->getOperand(0)->printAsOperand(O);
- }
- O << "\\l\"";
- for (unsigned i = 0; i < IG->getFactor(); ++i)
- if (Instruction *I = IG->getMember(i))
- O << " +\n"
- << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
-}
-
-void VPWidenRecipe::execute(VPTransformState &State) {
- for (auto &Instr : make_range(Begin, End))
- State.ILV->widenInstruction(Instr);
-}
-
-void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Int or FP induction being replicated.");
- State.ILV->widenIntOrFpInduction(IV, Trunc);
-}
-
-void VPWidenPHIRecipe::execute(VPTransformState &State) {
- State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
-}
-
-void VPBlendRecipe::execute(VPTransformState &State) {
- State.ILV->setDebugLocFromInst(State.Builder, Phi);
- // We know that all PHIs in non-header blocks are converted into
- // selects, so we don't have to worry about the insertion order and we
- // can just use the builder.
- // At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
-
- unsigned NumIncoming = Phi->getNumIncomingValues();
-
- assert((User || NumIncoming == 1) &&
- "Multiple predecessors with predecessors having a full mask");
- // Generate a sequence of selects of the form:
- // SELECT(Mask3, In3,
- // SELECT(Mask2, In2,
- // ( ...)))
- InnerLoopVectorizer::VectorParts Entry(State.UF);
- for (unsigned In = 0; In < NumIncoming; ++In) {
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- // We might have single edge PHIs (blocks) - use an identity
- // 'select' for the first PHI operand.
- Value *In0 =
- State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
- if (In == 0)
- Entry[Part] = In0; // Initialize with the first incoming value.
- else {
- // Select between the current value and the previous incoming edge
- // based on the incoming mask.
- Value *Cond = State.get(User->getOperand(In), Part);
- Entry[Part] =
- State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
- }
- }
- }
- for (unsigned Part = 0; Part < State.UF; ++Part)
- State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
-}
-
-void VPInterleaveRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Interleave group being replicated.");
- if (!User)
- return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
-
- // Last (and currently only) operand is a mask.
- InnerLoopVectorizer::VectorParts MaskValues(State.UF);
- VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
- for (unsigned Part = 0; Part < State.UF; ++Part)
- MaskValues[Part] = State.get(Mask, Part);
- State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues);
-}
-
-void VPReplicateRecipe::execute(VPTransformState &State) {
- if (State.Instance) { // Generate a single instance.
- State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
- // Insert scalar instance packing it into a vector.
- if (AlsoPack && State.VF > 1) {
- // If we're constructing lane 0, initialize to start from undef.
- if (State.Instance->Lane == 0) {
- Value *Undef =
- UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
- State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
- }
- State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
- }
- return;
- }
-
- // Generate scalar instances for all VF lanes of all UF parts, unless the
- // instruction is uniform inwhich case generate only the first lane for each
- // of the UF parts.
- unsigned EndLane = IsUniform ? 1 : State.VF;
- for (unsigned Part = 0; Part < State.UF; ++Part)
- for (unsigned Lane = 0; Lane < EndLane; ++Lane)
- State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
-}
-
-void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
- assert(State.Instance && "Branch on Mask works only on single instance.");
-
- unsigned Part = State.Instance->Part;
- unsigned Lane = State.Instance->Lane;
-
- Value *ConditionBit = nullptr;
- if (!User) // Block in mask is all-one.
- ConditionBit = State.Builder.getTrue();
- else {
- VPValue *BlockInMask = User->getOperand(0);
- ConditionBit = State.get(BlockInMask, Part);
- if (ConditionBit->getType()->isVectorTy())
- ConditionBit = State.Builder.CreateExtractElement(
- ConditionBit, State.Builder.getInt32(Lane));
- }
-
- // Replace the temporary unreachable terminator with a new conditional branch,
- // whose two destinations will be set later when they are created.
- auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
- assert(isa<UnreachableInst>(CurrentTerminator) &&
- "Expected to replace unreachable terminator with conditional branch.");
- auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
- CondBr->setSuccessor(0, nullptr);
- ReplaceInstWithInst(CurrentTerminator, CondBr);
-}
-
-void VPPredInstPHIRecipe::execute(VPTransformState &State) {
- assert(State.Instance && "Predicated instruction PHI works per instance.");
- Instruction *ScalarPredInst = cast<Instruction>(
- State.ValueMap.getScalarValue(PredInst, *State.Instance));
- BasicBlock *PredicatedBB = ScalarPredInst->getParent();
- BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
- assert(PredicatingBB && "Predicated block has no single predecessor.");
-
- // By current pack/unpack logic we need to generate only a single phi node: if
- // a vector value for the predicated instruction exists at this point it means
- // the instruction has vector users only, and a phi for the vector value is
- // needed. In this case the recipe of the predicated instruction is marked to
- // also do that packing, thereby "hoisting" the insert-element sequence.
- // Otherwise, a phi node for the scalar value is needed.
- unsigned Part = State.Instance->Part;
- if (State.ValueMap.hasVectorValue(PredInst, Part)) {
- Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
- InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
- PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
- VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
- VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
- State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
- } else {
- Type *PredInstType = PredInst->getType();
- PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
- Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
- Phi->addIncoming(ScalarPredInst, PredicatedBB);
- State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
- }
-}
-
-void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
- if (!User)
- return State.ILV->vectorizeMemoryInstruction(&Instr);
-
- // Last (and currently only) operand is a mask.
- InnerLoopVectorizer::VectorParts MaskValues(State.UF);
- VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
- for (unsigned Part = 0; Part < State.UF; ++Part)
- MaskValues[Part] = State.get(Mask, Part);
- State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
-}
-
-// Process the loop in the VPlan-native vectorization path. This path builds
-// VPlan upfront in the vectorization pipeline, which allows to apply
-// VPlan-to-VPlan transformations from the very beginning without modifying the
-// input LLVM IR.
-static bool processLoopInVPlanNativePath(
- Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
- LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
- TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
-
- assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
- Function *F = L->getHeader()->getParent();
- InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
- LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
- &Hints, IAI);
- // Use the planner for outer loop vectorization.
- // TODO: CM is not used at this point inside the planner. Turn CM into an
- // optional argument if we don't need it in the future.
- LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM);
-
- // Get user vectorization factor.
- const unsigned UserVF = Hints.getWidth();
-
- // Check the function attributes and profiles to find out if this function
- // should be optimized for size.
- bool OptForSize =
- Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- (F->hasOptSize() ||
- llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI));
-
- // Plan how to best vectorize, return the best VF and its cost.
- const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF);
-
- // If we are stress testing VPlan builds, do not attempt to generate vector
- // code. Masked vector code generation support will follow soon.
- // Also, do not attempt to vectorize if no vector code will be produced.
- if (VPlanBuildStressTest || EnableVPlanPredication ||
- VectorizationFactor::Disabled() == VF)
- return false;
-
- LVP.setBestPlan(VF.Width, 1);
-
- InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
- &CM);
- LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
- << L->getHeader()->getParent()->getName() << "\"\n");
- LVP.executePlan(LB, DT);
-
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
-
- LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
-}
-
-bool LoopVectorizePass::processLoop(Loop *L) {
- assert((EnableVPlanNativePath || L->empty()) &&
- "VPlan-native path is not enabled. Only process inner loops.");
-
-#ifndef NDEBUG
- const std::string DebugLocStr = getDebugLocString(L);
-#endif /* NDEBUG */
-
- LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
- << L->getHeader()->getParent()->getName() << "\" from "
- << DebugLocStr << "\n");
-
- LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
-
- LLVM_DEBUG(
- dbgs() << "LV: Loop hints:"
- << " force="
- << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
- ? "disabled"
- : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
- ? "enabled"
- : "?"))
- << " width=" << Hints.getWidth()
- << " unroll=" << Hints.getInterleave() << "\n");
-
- // Function containing loop
- Function *F = L->getHeader()->getParent();
-
- // Looking at the diagnostic output is the only way to determine if a loop
- // was vectorized (other than looking at the IR or machine code), so it
- // is important to generate an optimization remark for each loop. Most of
- // these messages are generated as OptimizationRemarkAnalysis. Remarks
- // generated as OptimizationRemark and OptimizationRemarkMissed are
- // less verbose reporting vectorized loops and unvectorized loops that may
- // benefit from vectorization, respectively.
-
- if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
- LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
- return false;
- }
-
- PredicatedScalarEvolution PSE(*SE, *L);
-
- // Check if it is legal to vectorize the loop.
- LoopVectorizationRequirements Requirements(*ORE);
- LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
- &Requirements, &Hints, DB, AC);
- if (!LVL.canVectorize(EnableVPlanNativePath)) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
-
- // Check the function attributes and profiles to find out if this function
- // should be optimized for size.
- bool OptForSize =
- Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- (F->hasOptSize() ||
- llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI));
-
- // Entrance to the VPlan-native vectorization path. Outer loops are processed
- // here. They may require CFG and instruction level transformations before
- // even evaluating whether vectorization is profitable. Since we cannot modify
- // the incoming IR, we need to build VPlan upfront in the vectorization
- // pipeline.
- if (!L->empty())
- return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
- ORE, BFI, PSI, Hints);
-
- assert(L->empty() && "Inner loop expected.");
- // Check the loop for a trip count threshold: vectorize loops with a tiny trip
- // count by optimizing for size, to minimize overheads.
- // Prefer constant trip counts over profile data, over upper bound estimate.
- unsigned ExpectedTC = 0;
- bool HasExpectedTC = false;
- if (const SCEVConstant *ConstExits =
- dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
- const APInt &ExitsCount = ConstExits->getAPInt();
- // We are interested in small values for ExpectedTC. Skip over those that
- // can't fit an unsigned.
- if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
- ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
- HasExpectedTC = true;
- }
- }
- // ExpectedTC may be large because it's bound by a variable. Check
- // profiling information to validate we should vectorize.
- if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
- auto EstimatedTC = getLoopEstimatedTripCount(L);
- if (EstimatedTC) {
- ExpectedTC = *EstimatedTC;
- HasExpectedTC = true;
- }
- }
- if (!HasExpectedTC) {
- ExpectedTC = SE->getSmallConstantMaxTripCount(L);
- HasExpectedTC = (ExpectedTC > 0);
- }
-
- if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
- LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
- << "This loop is worth vectorizing only if no scalar "
- << "iteration overheads are incurred.");
- if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
- LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
- else {
- LLVM_DEBUG(dbgs() << "\n");
- // Loops with a very small trip count are considered for vectorization
- // under OptForSize, thereby making sure the cost of their loop body is
- // dominant, free of runtime guards and scalar iteration overheads.
- OptForSize = true;
- }
- }
-
- // Check the function attributes to see if implicit floats are allowed.
- // FIXME: This check doesn't seem possibly correct -- what if the loop is
- // an integer loop and the vector instructions selected are purely integer
- // vector instructions?
- if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
- "attribute is used.\n");
- ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(),
- "NoImplicitFloat", L)
- << "loop not vectorized due to NoImplicitFloat attribute");
- Hints.emitRemarkWithHints();
- return false;
- }
-
- // Check if the target supports potentially unsafe FP vectorization.
- // FIXME: Add a check for the type of safety issue (denormal, signaling)
- // for the target we're vectorizing for, to make sure none of the
- // additional fp-math flags can help.
- if (Hints.isPotentiallyUnsafe() &&
- TTI->isFPVectorizationPotentiallyUnsafe()) {
- LLVM_DEBUG(
- dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
- ORE->emit(
- createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
- << "loop not vectorized due to unsafe FP support.");
- Hints.emitRemarkWithHints();
- return false;
- }
-
- bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
- InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
-
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
- UseInterleaved = EnableInterleavedMemAccesses;
-
- // Analyze interleaved memory accesses.
- if (UseInterleaved) {
- IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
- }
-
- // Use the cost model.
- LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
- &Hints, IAI);
- CM.collectValuesToIgnore();
-
- // Use the planner for vectorization.
- LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
-
- // Get user vectorization factor.
- unsigned UserVF = Hints.getWidth();
-
- // Plan how to best vectorize, return the best VF and its cost.
- Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF);
-
- VectorizationFactor VF = VectorizationFactor::Disabled();
- unsigned IC = 1;
- unsigned UserIC = Hints.getInterleave();
-
- if (MaybeVF) {
- VF = *MaybeVF;
- // Select the interleave count.
- IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
- }
-
- // Identify the diagnostic messages that should be produced.
- std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
- bool VectorizeLoop = true, InterleaveLoop = true;
- if (Requirements.doesNotMeet(F, L, Hints)) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
- "requirements.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
-
- if (VF.Width == 1) {
- LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- VecDiagMsg = std::make_pair(
- "VectorizationNotBeneficial",
- "the cost-model indicates that vectorization is not beneficial");
- VectorizeLoop = false;
- }
-
- if (!MaybeVF && UserIC > 1) {
- // Tell the user interleaving was avoided up-front, despite being explicitly
- // requested.
- LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
- "interleaving should be avoided up front\n");
- IntDiagMsg = std::make_pair(
- "InterleavingAvoided",
- "Ignoring UserIC, because interleaving was avoided up front");
- InterleaveLoop = false;
- } else if (IC == 1 && UserIC <= 1) {
- // Tell the user interleaving is not beneficial.
- LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
- IntDiagMsg = std::make_pair(
- "InterleavingNotBeneficial",
- "the cost-model indicates that interleaving is not beneficial");
- InterleaveLoop = false;
- if (UserIC == 1) {
- IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
- IntDiagMsg.second +=
- " and is explicitly disabled or interleave count is set to 1";
- }
- } else if (IC > 1 && UserIC == 1) {
- // Tell the user interleaving is beneficial, but it explicitly disabled.
- LLVM_DEBUG(
- dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
- IntDiagMsg = std::make_pair(
- "InterleavingBeneficialButDisabled",
- "the cost-model indicates that interleaving is beneficial "
- "but is explicitly disabled or interleave count is set to 1");
- InterleaveLoop = false;
- }
-
- // Override IC if user provided an interleave count.
- IC = UserIC > 0 ? UserIC : IC;
-
- // Emit diagnostic messages, if any.
- const char *VAPassName = Hints.vectorizeAnalysisPassName();
- if (!VectorizeLoop && !InterleaveLoop) {
- // Do not vectorize or interleaving the loop.
- ORE->emit([&]() {
- return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << VecDiagMsg.second;
- });
- ORE->emit([&]() {
- return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << IntDiagMsg.second;
- });
- return false;
- } else if (!VectorizeLoop && InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << VecDiagMsg.second;
- });
- } else if (VectorizeLoop && !InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
- << ") in " << DebugLocStr << '\n');
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << IntDiagMsg.second;
- });
- } else if (VectorizeLoop && InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
- << ") in " << DebugLocStr << '\n');
- LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- }
-
- LVP.setBestPlan(VF.Width, IC);
-
- using namespace ore;
- bool DisableRuntimeUnroll = false;
- MDNode *OrigLoopID = L->getLoopID();
-
- if (!VectorizeLoop) {
- assert(IC > 1 && "interleave count should not be 1 or 0");
- // If we decided that it is not legal to vectorize the loop, then
- // interleave it.
- InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
- &CM);
- LVP.executePlan(Unroller, DT);
-
- ORE->emit([&]() {
- return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
- L->getHeader())
- << "interleaved loop (interleaved count: "
- << NV("InterleaveCount", IC) << ")";
- });
- } else {
- // If we decided that it is *legal* to vectorize the loop, then do it.
- InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
- &LVL, &CM);
- LVP.executePlan(LB, DT);
- ++LoopsVectorized;
-
- // Add metadata to disable runtime unrolling a scalar loop when there are
- // no runtime checks about strides and memory. A scalar loop that is
- // rarely used is not worth unrolling.
- if (!LB.areSafetyChecksAdded())
- DisableRuntimeUnroll = true;
-
- // Report the vectorization decision.
- ORE->emit([&]() {
- return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
- L->getHeader())
- << "vectorized loop (vectorization width: "
- << NV("VectorizationFactor", VF.Width)
- << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
- });
- }
-
- Optional<MDNode *> RemainderLoopID =
- makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
- LLVMLoopVectorizeFollowupEpilogue});
- if (RemainderLoopID.hasValue()) {
- L->setLoopID(RemainderLoopID.getValue());
- } else {
- if (DisableRuntimeUnroll)
- AddRuntimeUnrollDisableMetaData(L);
-
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- }
-
- LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
-}
-
-bool LoopVectorizePass::runImpl(
- Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
- DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
- DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
- std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
- OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
- SE = &SE_;
- LI = &LI_;
- TTI = &TTI_;
- DT = &DT_;
- BFI = &BFI_;
- TLI = TLI_;
- AA = &AA_;
- AC = &AC_;
- GetLAA = &GetLAA_;
- DB = &DB_;
- ORE = &ORE_;
- PSI = PSI_;
-
- // Don't attempt if
- // 1. the target claims to have no vector registers, and
- // 2. interleaving won't help ILP.
- //
- // The second condition is necessary because, even if the target has no
- // vector registers, loop vectorization may still enable scalar
- // interleaving.
- if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
- return false;
-
- bool Changed = false;
-
- // The vectorizer requires loops to be in simplified form.
- // Since simplification may add new inner loops, it has to run before the
- // legality and profitability checks. This means running the loop vectorizer
- // will simplify all loops, regardless of whether anything end up being
- // vectorized.
- for (auto &L : *LI)
- Changed |=
- simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
-
- // Build up a worklist of inner-loops to vectorize. This is necessary as
- // the act of vectorizing or partially unrolling a loop creates new loops
- // and can invalidate iterators across the loops.
- SmallVector<Loop *, 8> Worklist;
-
- for (Loop *L : *LI)
- collectSupportedLoops(*L, LI, ORE, Worklist);
-
- LoopsAnalyzed += Worklist.size();
-
- // Now walk the identified inner loops.
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
-
- // For the inner loops we actually process, form LCSSA to simplify the
- // transform.
- Changed |= formLCSSARecursively(*L, *DT, LI, SE);
-
- Changed |= processLoop(L);
- }
-
- // Process each loop nest in the function.
- return Changed;
-}
-
-PreservedAnalyses LoopVectorizePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- MemorySSA *MSSA = EnableMSSALoopDependency
- ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
- : nullptr;
-
- auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
- std::function<const LoopAccessInfo &(Loop &)> GetLAA =
- [&](Loop &L) -> const LoopAccessInfo & {
- LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
- return LAM.getResult<LoopAccessAnalysis>(L, AR);
- };
- const ModuleAnalysisManager &MAM =
- AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
- ProfileSummaryInfo *PSI =
- MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
- bool Changed =
- runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
-
- // We currently do not preserve loopinfo/dominator analyses with outer loop
- // vectorization. Until this is addressed, mark these analyses as preserved
- // only for non-VPlan-native path.
- // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
- if (!EnableVPlanNativePath) {
- PA.preserve<LoopAnalysis>();
- PA.preserve<DominatorTreeAnalysis>();
- }
- PA.preserve<BasicAA>();
- PA.preserve<GlobalsAA>();
- return PA;
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
deleted file mode 100644
index 27a86c0bca91..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ /dev/null
@@ -1,6923 +0,0 @@
-//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
-// stores that can be put together into vector-stores. Next, it attempts to
-// construct vectorizable tree using the use-def chains. If a profitable tree
-// was found, the SLP vectorizer performs vectorization on the tree.
-//
-// The pass is inspired by the work described in the paper:
-// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/iterator.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/DemandedBits.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/LoopAccessAnalysis.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/NoFolder.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/DOTGraphTraits.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Vectorize.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <memory>
-#include <set>
-#include <string>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-using namespace slpvectorizer;
-
-#define SV_NAME "slp-vectorizer"
-#define DEBUG_TYPE "SLP"
-
-STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
-
-cl::opt<bool>
- llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
- cl::desc("Run the SLP vectorization passes"));
-
-static cl::opt<int>
- SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
- cl::desc("Only vectorize if you gain more than this "
- "number "));
-
-static cl::opt<bool>
-ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
- cl::desc("Attempt to vectorize horizontal reductions"));
-
-static cl::opt<bool> ShouldStartVectorizeHorAtStore(
- "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
- cl::desc(
- "Attempt to vectorize horizontal reductions feeding into a store"));
-
-static cl::opt<int>
-MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
-
-/// Limits the size of scheduling regions in a block.
-/// It avoid long compile times for _very_ large blocks where vector
-/// instructions are spread over a wide range.
-/// This limit is way higher than needed by real-world functions.
-static cl::opt<int>
-ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
- cl::desc("Limit the size of the SLP scheduling region per block"));
-
-static cl::opt<int> MinVectorRegSizeOption(
- "slp-min-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
-
-static cl::opt<unsigned> RecursionMaxDepth(
- "slp-recursion-max-depth", cl::init(12), cl::Hidden,
- cl::desc("Limit the recursion depth when building a vectorizable tree"));
-
-static cl::opt<unsigned> MinTreeSize(
- "slp-min-tree-size", cl::init(3), cl::Hidden,
- cl::desc("Only vectorize small trees if they are fully vectorizable"));
-
-static cl::opt<bool>
- ViewSLPTree("view-slp-tree", cl::Hidden,
- cl::desc("Display the SLP trees with Graphviz"));
-
-// Limit the number of alias checks. The limit is chosen so that
-// it has no negative effect on the llvm benchmarks.
-static const unsigned AliasedCheckLimit = 10;
-
-// Another limit for the alias checks: The maximum distance between load/store
-// instructions where alias checks are done.
-// This limit is useful for very large basic blocks.
-static const unsigned MaxMemDepDistance = 160;
-
-/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
-/// regions to be handled.
-static const int MinScheduleRegionSize = 16;
-
-/// Predicate for the element types that the SLP vectorizer supports.
-///
-/// The most important thing to filter here are types which are invalid in LLVM
-/// vectors. We also filter target specific types which have absolutely no
-/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
-/// avoids spending time checking the cost model and realizing that they will
-/// be inevitably scalarized.
-static bool isValidElementType(Type *Ty) {
- return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
- !Ty->isPPC_FP128Ty();
-}
-
-/// \returns true if all of the instructions in \p VL are in the same block or
-/// false otherwise.
-static bool allSameBlock(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- BasicBlock *BB = I0->getParent();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return false;
-
- if (BB != I->getParent())
- return false;
- }
- return true;
-}
-
-/// \returns True if all of the values in \p VL are constants.
-static bool allConstant(ArrayRef<Value *> VL) {
- for (Value *i : VL)
- if (!isa<Constant>(i))
- return false;
- return true;
-}
-
-/// \returns True if all of the values in \p VL are identical.
-static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
-}
-
-/// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
-static bool isCommutative(Instruction *I) {
- if (auto *IC = dyn_cast<CmpInst>(I))
- return IC->isCommutative();
- return I->isCommutative();
-}
-
-/// Checks if the vector of instructions can be represented as a shuffle, like:
-/// %x0 = extractelement <4 x i8> %x, i32 0
-/// %x3 = extractelement <4 x i8> %x, i32 3
-/// %y1 = extractelement <4 x i8> %y, i32 1
-/// %y2 = extractelement <4 x i8> %y, i32 2
-/// %x0x0 = mul i8 %x0, %x0
-/// %x3x3 = mul i8 %x3, %x3
-/// %y1y1 = mul i8 %y1, %y1
-/// %y2y2 = mul i8 %y2, %y2
-/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
-/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
-/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
-/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
-/// ret <4 x i8> %ins4
-/// can be transformed into:
-/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
-/// i32 6>
-/// %2 = mul <4 x i8> %1, %1
-/// ret <4 x i8> %2
-/// We convert this initially to something like:
-/// %x0 = extractelement <4 x i8> %x, i32 0
-/// %x3 = extractelement <4 x i8> %x, i32 3
-/// %y1 = extractelement <4 x i8> %y, i32 1
-/// %y2 = extractelement <4 x i8> %y, i32 2
-/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
-/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
-/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
-/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
-/// %5 = mul <4 x i8> %4, %4
-/// %6 = extractelement <4 x i8> %5, i32 0
-/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
-/// %7 = extractelement <4 x i8> %5, i32 1
-/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
-/// %8 = extractelement <4 x i8> %5, i32 2
-/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
-/// %9 = extractelement <4 x i8> %5, i32 3
-/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
-/// ret <4 x i8> %ins4
-/// InstCombiner transforms this into a shuffle and vector mul
-/// TODO: Can we split off and reuse the shuffle mask detection from
-/// TargetTransformInfo::getInstructionThroughput?
-static Optional<TargetTransformInfo::ShuffleKind>
-isShuffle(ArrayRef<Value *> VL) {
- auto *EI0 = cast<ExtractElementInst>(VL[0]);
- unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
- Value *Vec1 = nullptr;
- Value *Vec2 = nullptr;
- enum ShuffleMode { Unknown, Select, Permute };
- ShuffleMode CommonShuffleMode = Unknown;
- for (unsigned I = 0, E = VL.size(); I < E; ++I) {
- auto *EI = cast<ExtractElementInst>(VL[I]);
- auto *Vec = EI->getVectorOperand();
- // All vector operands must have the same number of vector elements.
- if (Vec->getType()->getVectorNumElements() != Size)
- return None;
- auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
- if (!Idx)
- return None;
- // Undefined behavior if Idx is negative or >= Size.
- if (Idx->getValue().uge(Size))
- continue;
- unsigned IntIdx = Idx->getValue().getZExtValue();
- // We can extractelement from undef vector.
- if (isa<UndefValue>(Vec))
- continue;
- // For correct shuffling we have to have at most 2 different vector operands
- // in all extractelement instructions.
- if (!Vec1 || Vec1 == Vec)
- Vec1 = Vec;
- else if (!Vec2 || Vec2 == Vec)
- Vec2 = Vec;
- else
- return None;
- if (CommonShuffleMode == Permute)
- continue;
- // If the extract index is not the same as the operation number, it is a
- // permutation.
- if (IntIdx != I) {
- CommonShuffleMode = Permute;
- continue;
- }
- CommonShuffleMode = Select;
- }
- // If we're not crossing lanes in different vectors, consider it as blending.
- if (CommonShuffleMode == Select && Vec2)
- return TargetTransformInfo::SK_Select;
- // If Vec2 was never used, we have a permutation of a single vector, otherwise
- // we have permutation of 2 vectors.
- return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
- : TargetTransformInfo::SK_PermuteSingleSrc;
-}
-
-namespace {
-
-/// Main data required for vectorization of instructions.
-struct InstructionsState {
- /// The very first instruction in the list with the main opcode.
- Value *OpValue = nullptr;
-
- /// The main/alternate instruction.
- Instruction *MainOp = nullptr;
- Instruction *AltOp = nullptr;
-
- /// The main/alternate opcodes for the list of instructions.
- unsigned getOpcode() const {
- return MainOp ? MainOp->getOpcode() : 0;
- }
-
- unsigned getAltOpcode() const {
- return AltOp ? AltOp->getOpcode() : 0;
- }
-
- /// Some of the instructions in the list have alternate opcodes.
- bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
-
- bool isOpcodeOrAlt(Instruction *I) const {
- unsigned CheckedOpcode = I->getOpcode();
- return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
- }
-
- InstructionsState() = delete;
- InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
- : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
-};
-
-} // end anonymous namespace
-
-/// Chooses the correct key for scheduling data. If \p Op has the same (or
-/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
-/// OpValue.
-static Value *isOneOf(const InstructionsState &S, Value *Op) {
- auto *I = dyn_cast<Instruction>(Op);
- if (I && S.isOpcodeOrAlt(I))
- return Op;
- return S.OpValue;
-}
-
-/// \returns analysis of the Instructions in \p VL described in
-/// InstructionsState, the Opcode that we suppose the whole list
-/// could be vectorized even if its structure is diverse.
-static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
- unsigned BaseIndex = 0) {
- // Make sure these are all Instructions.
- if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
- return InstructionsState(VL[BaseIndex], nullptr, nullptr);
-
- bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
- bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
- unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
- unsigned AltOpcode = Opcode;
- unsigned AltIndex = BaseIndex;
-
- // Check for one alternate opcode from another BinaryOperator.
- // TODO - generalize to support all operators (types, calls etc.).
- for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
- unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
- if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
- if (InstOpcode == Opcode || InstOpcode == AltOpcode)
- continue;
- if (Opcode == AltOpcode) {
- AltOpcode = InstOpcode;
- AltIndex = Cnt;
- continue;
- }
- } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
- Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
- Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
- if (Ty0 == Ty1) {
- if (InstOpcode == Opcode || InstOpcode == AltOpcode)
- continue;
- if (Opcode == AltOpcode) {
- AltOpcode = InstOpcode;
- AltIndex = Cnt;
- continue;
- }
- }
- } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
- continue;
- return InstructionsState(VL[BaseIndex], nullptr, nullptr);
- }
-
- return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
- cast<Instruction>(VL[AltIndex]));
-}
-
-/// \returns true if all of the values in \p VL have the same type or false
-/// otherwise.
-static bool allSameType(ArrayRef<Value *> VL) {
- Type *Ty = VL[0]->getType();
- for (int i = 1, e = VL.size(); i < e; i++)
- if (VL[i]->getType() != Ty)
- return false;
-
- return true;
-}
-
-/// \returns True if Extract{Value,Element} instruction extracts element Idx.
-static Optional<unsigned> getExtractIndex(Instruction *E) {
- unsigned Opcode = E->getOpcode();
- assert((Opcode == Instruction::ExtractElement ||
- Opcode == Instruction::ExtractValue) &&
- "Expected extractelement or extractvalue instruction.");
- if (Opcode == Instruction::ExtractElement) {
- auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
- if (!CI)
- return None;
- return CI->getZExtValue();
- }
- ExtractValueInst *EI = cast<ExtractValueInst>(E);
- if (EI->getNumIndices() != 1)
- return None;
- return *EI->idx_begin();
-}
-
-/// \returns True if in-tree use also needs extract. This refers to
-/// possible scalar operand in vectorized instruction.
-static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
- TargetLibraryInfo *TLI) {
- unsigned Opcode = UserInst->getOpcode();
- switch (Opcode) {
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(UserInst);
- return (LI->getPointerOperand() == Scalar);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(UserInst);
- return (SI->getPointerOperand() == Scalar);
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(UserInst);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- if (hasVectorInstrinsicScalarOpd(ID, i))
- return (CI->getArgOperand(i) == Scalar);
- }
- LLVM_FALLTHROUGH;
- }
- default:
- return false;
- }
-}
-
-/// \returns the AA location that is being access by the instruction.
-static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return MemoryLocation::get(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return MemoryLocation::get(LI);
- return MemoryLocation();
-}
-
-/// \returns True if the instruction is not a volatile or atomic load/store.
-static bool isSimple(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isSimple();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isSimple();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return true;
-}
-
-namespace llvm {
-
-namespace slpvectorizer {
-
-/// Bottom Up SLP Vectorizer.
-class BoUpSLP {
- struct TreeEntry;
-
-public:
- using ValueList = SmallVector<Value *, 8>;
- using InstrList = SmallVector<Instruction *, 16>;
- using ValueSet = SmallPtrSet<Value *, 16>;
- using StoreList = SmallVector<StoreInst *, 8>;
- using ExtraValueToDebugLocsMap =
- MapVector<Value *, SmallVector<Instruction *, 2>>;
-
- BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
- TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
- const DataLayout *DL, OptimizationRemarkEmitter *ORE)
- : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
- DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
- CodeMetrics::collectEphemeralValues(F, AC, EphValues);
- // Use the vector register size specified by the target unless overridden
- // by a command-line option.
- // TODO: It would be better to limit the vectorization factor based on
- // data type rather than just register size. For example, x86 AVX has
- // 256-bit registers, but it does not support integer operations
- // at that width (that requires AVX2).
- if (MaxVectorRegSizeOption.getNumOccurrences())
- MaxVecRegSize = MaxVectorRegSizeOption;
- else
- MaxVecRegSize = TTI->getRegisterBitWidth(true);
-
- if (MinVectorRegSizeOption.getNumOccurrences())
- MinVecRegSize = MinVectorRegSizeOption;
- else
- MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
- }
-
- /// Vectorize the tree that starts with the elements in \p VL.
- /// Returns the vectorized root.
- Value *vectorizeTree();
-
- /// Vectorize the tree but with the list of externally used values \p
- /// ExternallyUsedValues. Values in this MapVector can be replaced but the
- /// generated extractvalue instructions.
- Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
-
- /// \returns the cost incurred by unwanted spills and fills, caused by
- /// holding live values over call sites.
- int getSpillCost() const;
-
- /// \returns the vectorization cost of the subtree that starts at \p VL.
- /// A negative number means that this is profitable.
- int getTreeCost();
-
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
- void buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst = None);
-
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
- /// into account (anf updating it, if required) list of externally used
- /// values stored in \p ExternallyUsedValues.
- void buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst = None);
-
- /// Clear the internal data structures that are created by 'buildTree'.
- void deleteTree() {
- VectorizableTree.clear();
- ScalarToTreeEntry.clear();
- MustGather.clear();
- ExternalUses.clear();
- NumOpsWantToKeepOrder.clear();
- NumOpsWantToKeepOriginalOrder = 0;
- for (auto &Iter : BlocksSchedules) {
- BlockScheduling *BS = Iter.second.get();
- BS->clear();
- }
- MinBWs.clear();
- }
-
- unsigned getTreeSize() const { return VectorizableTree.size(); }
-
- /// Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence();
-
- /// \returns The best order of instructions for vectorization.
- Optional<ArrayRef<unsigned>> bestOrder() const {
- auto I = std::max_element(
- NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
- [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
- const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
- return D1.second < D2.second;
- });
- if (I == NumOpsWantToKeepOrder.end() ||
- I->getSecond() <= NumOpsWantToKeepOriginalOrder)
- return None;
-
- return makeArrayRef(I->getFirst());
- }
-
- /// \return The vector element size in bits to use when vectorizing the
- /// expression tree ending at \p V. If V is a store, the size is the width of
- /// the stored value. Otherwise, the size is the width of the largest loaded
- /// value reaching V. This method is used by the vectorizer to calculate
- /// vectorization factors.
- unsigned getVectorElementSize(Value *V) const;
-
- /// Compute the minimum type sizes required to represent the entries in a
- /// vectorizable tree.
- void computeMinimumValueSizes();
-
- // \returns maximum vector register size as set by TTI or overridden by cl::opt.
- unsigned getMaxVecRegSize() const {
- return MaxVecRegSize;
- }
-
- // \returns minimum vector register size as set by cl::opt.
- unsigned getMinVecRegSize() const {
- return MinVecRegSize;
- }
-
- /// Check if ArrayType or StructType is isomorphic to some VectorType.
- ///
- /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
- unsigned canMapToVector(Type *T, const DataLayout &DL) const;
-
- /// \returns True if the VectorizableTree is both tiny and not fully
- /// vectorizable. We do not vectorize such trees.
- bool isTreeTinyAndNotFullyVectorizable() const;
-
- OptimizationRemarkEmitter *getORE() { return ORE; }
-
- /// This structure holds any data we need about the edges being traversed
- /// during buildTree_rec(). We keep track of:
- /// (i) the user TreeEntry index, and
- /// (ii) the index of the edge.
- struct EdgeInfo {
- EdgeInfo() = default;
- EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
- : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
- /// The user TreeEntry.
- TreeEntry *UserTE = nullptr;
- /// The operand index of the use.
- unsigned EdgeIdx = UINT_MAX;
-#ifndef NDEBUG
- friend inline raw_ostream &operator<<(raw_ostream &OS,
- const BoUpSLP::EdgeInfo &EI) {
- EI.dump(OS);
- return OS;
- }
- /// Debug print.
- void dump(raw_ostream &OS) const {
- OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
- << " EdgeIdx:" << EdgeIdx << "}";
- }
- LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
-#endif
- };
-
- /// A helper data structure to hold the operands of a vector of instructions.
- /// This supports a fixed vector length for all operand vectors.
- class VLOperands {
- /// For each operand we need (i) the value, and (ii) the opcode that it
- /// would be attached to if the expression was in a left-linearized form.
- /// This is required to avoid illegal operand reordering.
- /// For example:
- /// \verbatim
- /// 0 Op1
- /// |/
- /// Op1 Op2 Linearized + Op2
- /// \ / ----------> |/
- /// - -
- ///
- /// Op1 - Op2 (0 + Op1) - Op2
- /// \endverbatim
- ///
- /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
- ///
- /// Another way to think of this is to track all the operations across the
- /// path from the operand all the way to the root of the tree and to
- /// calculate the operation that corresponds to this path. For example, the
- /// path from Op2 to the root crosses the RHS of the '-', therefore the
- /// corresponding operation is a '-' (which matches the one in the
- /// linearized tree, as shown above).
- ///
- /// For lack of a better term, we refer to this operation as Accumulated
- /// Path Operation (APO).
- struct OperandData {
- OperandData() = default;
- OperandData(Value *V, bool APO, bool IsUsed)
- : V(V), APO(APO), IsUsed(IsUsed) {}
- /// The operand value.
- Value *V = nullptr;
- /// TreeEntries only allow a single opcode, or an alternate sequence of
- /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
- /// APO. It is set to 'true' if 'V' is attached to an inverse operation
- /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
- /// (e.g., Add/Mul)
- bool APO = false;
- /// Helper data for the reordering function.
- bool IsUsed = false;
- };
-
- /// During operand reordering, we are trying to select the operand at lane
- /// that matches best with the operand at the neighboring lane. Our
- /// selection is based on the type of value we are looking for. For example,
- /// if the neighboring lane has a load, we need to look for a load that is
- /// accessing a consecutive address. These strategies are summarized in the
- /// 'ReorderingMode' enumerator.
- enum class ReorderingMode {
- Load, ///< Matching loads to consecutive memory addresses
- Opcode, ///< Matching instructions based on opcode (same or alternate)
- Constant, ///< Matching constants
- Splat, ///< Matching the same instruction multiple times (broadcast)
- Failed, ///< We failed to create a vectorizable group
- };
-
- using OperandDataVec = SmallVector<OperandData, 2>;
-
- /// A vector of operand vectors.
- SmallVector<OperandDataVec, 4> OpsVec;
-
- const DataLayout &DL;
- ScalarEvolution &SE;
-
- /// \returns the operand data at \p OpIdx and \p Lane.
- OperandData &getData(unsigned OpIdx, unsigned Lane) {
- return OpsVec[OpIdx][Lane];
- }
-
- /// \returns the operand data at \p OpIdx and \p Lane. Const version.
- const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
- return OpsVec[OpIdx][Lane];
- }
-
- /// Clears the used flag for all entries.
- void clearUsed() {
- for (unsigned OpIdx = 0, NumOperands = getNumOperands();
- OpIdx != NumOperands; ++OpIdx)
- for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
- ++Lane)
- OpsVec[OpIdx][Lane].IsUsed = false;
- }
-
- /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
- void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
- std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
- }
-
- // Search all operands in Ops[*][Lane] for the one that matches best
- // Ops[OpIdx][LastLane] and return its opreand index.
- // If no good match can be found, return None.
- Optional<unsigned>
- getBestOperand(unsigned OpIdx, int Lane, int LastLane,
- ArrayRef<ReorderingMode> ReorderingModes) {
- unsigned NumOperands = getNumOperands();
-
- // The operand of the previous lane at OpIdx.
- Value *OpLastLane = getData(OpIdx, LastLane).V;
-
- // Our strategy mode for OpIdx.
- ReorderingMode RMode = ReorderingModes[OpIdx];
-
- // The linearized opcode of the operand at OpIdx, Lane.
- bool OpIdxAPO = getData(OpIdx, Lane).APO;
-
- const unsigned BestScore = 2;
- const unsigned GoodScore = 1;
-
- // The best operand index and its score.
- // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
- // are using the score to differentiate between the two.
- struct BestOpData {
- Optional<unsigned> Idx = None;
- unsigned Score = 0;
- } BestOp;
-
- // Iterate through all unused operands and look for the best.
- for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
- // Get the operand at Idx and Lane.
- OperandData &OpData = getData(Idx, Lane);
- Value *Op = OpData.V;
- bool OpAPO = OpData.APO;
-
- // Skip already selected operands.
- if (OpData.IsUsed)
- continue;
-
- // Skip if we are trying to move the operand to a position with a
- // different opcode in the linearized tree form. This would break the
- // semantics.
- if (OpAPO != OpIdxAPO)
- continue;
-
- // Look for an operand that matches the current mode.
- switch (RMode) {
- case ReorderingMode::Load:
- if (isa<LoadInst>(Op)) {
- // Figure out which is left and right, so that we can check for
- // consecutive loads
- bool LeftToRight = Lane > LastLane;
- Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
- Value *OpRight = (LeftToRight) ? Op : OpLastLane;
- if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
- cast<LoadInst>(OpRight), DL, SE))
- BestOp.Idx = Idx;
- }
- break;
- case ReorderingMode::Opcode:
- // We accept both Instructions and Undefs, but with different scores.
- if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
- cast<Instruction>(Op)->getOpcode() ==
- cast<Instruction>(OpLastLane)->getOpcode()) ||
- (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
- isa<UndefValue>(Op)) {
- // An instruction has a higher score than an undef.
- unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
- if (Score > BestOp.Score) {
- BestOp.Idx = Idx;
- BestOp.Score = Score;
- }
- }
- break;
- case ReorderingMode::Constant:
- if (isa<Constant>(Op)) {
- unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
- if (Score > BestOp.Score) {
- BestOp.Idx = Idx;
- BestOp.Score = Score;
- }
- }
- break;
- case ReorderingMode::Splat:
- if (Op == OpLastLane)
- BestOp.Idx = Idx;
- break;
- case ReorderingMode::Failed:
- return None;
- }
- }
-
- if (BestOp.Idx) {
- getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
- return BestOp.Idx;
- }
- // If we could not find a good match return None.
- return None;
- }
-
- /// Helper for reorderOperandVecs. \Returns the lane that we should start
- /// reordering from. This is the one which has the least number of operands
- /// that can freely move about.
- unsigned getBestLaneToStartReordering() const {
- unsigned BestLane = 0;
- unsigned Min = UINT_MAX;
- for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
- ++Lane) {
- unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
- if (NumFreeOps < Min) {
- Min = NumFreeOps;
- BestLane = Lane;
- }
- }
- return BestLane;
- }
-
- /// \Returns the maximum number of operands that are allowed to be reordered
- /// for \p Lane. This is used as a heuristic for selecting the first lane to
- /// start operand reordering.
- unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
- unsigned CntTrue = 0;
- unsigned NumOperands = getNumOperands();
- // Operands with the same APO can be reordered. We therefore need to count
- // how many of them we have for each APO, like this: Cnt[APO] = x.
- // Since we only have two APOs, namely true and false, we can avoid using
- // a map. Instead we can simply count the number of operands that
- // correspond to one of them (in this case the 'true' APO), and calculate
- // the other by subtracting it from the total number of operands.
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
- if (getData(OpIdx, Lane).APO)
- ++CntTrue;
- unsigned CntFalse = NumOperands - CntTrue;
- return std::max(CntTrue, CntFalse);
- }
-
- /// Go through the instructions in VL and append their operands.
- void appendOperandsOfVL(ArrayRef<Value *> VL) {
- assert(!VL.empty() && "Bad VL");
- assert((empty() || VL.size() == getNumLanes()) &&
- "Expected same number of lanes");
- assert(isa<Instruction>(VL[0]) && "Expected instruction");
- unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
- OpsVec.resize(NumOperands);
- unsigned NumLanes = VL.size();
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
- OpsVec[OpIdx].resize(NumLanes);
- for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
- assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
- // Our tree has just 3 nodes: the root and two operands.
- // It is therefore trivial to get the APO. We only need to check the
- // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
- // RHS operand. The LHS operand of both add and sub is never attached
- // to an inversese operation in the linearized form, therefore its APO
- // is false. The RHS is true only if VL[Lane] is an inverse operation.
-
- // Since operand reordering is performed on groups of commutative
- // operations or alternating sequences (e.g., +, -), we can safely
- // tell the inverse operations by checking commutativity.
- bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
- bool APO = (OpIdx == 0) ? false : IsInverseOperation;
- OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
- APO, false};
- }
- }
- }
-
- /// \returns the number of operands.
- unsigned getNumOperands() const { return OpsVec.size(); }
-
- /// \returns the number of lanes.
- unsigned getNumLanes() const { return OpsVec[0].size(); }
-
- /// \returns the operand value at \p OpIdx and \p Lane.
- Value *getValue(unsigned OpIdx, unsigned Lane) const {
- return getData(OpIdx, Lane).V;
- }
-
- /// \returns true if the data structure is empty.
- bool empty() const { return OpsVec.empty(); }
-
- /// Clears the data.
- void clear() { OpsVec.clear(); }
-
- /// \Returns true if there are enough operands identical to \p Op to fill
- /// the whole vector.
- /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
- bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
- bool OpAPO = getData(OpIdx, Lane).APO;
- for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
- if (Ln == Lane)
- continue;
- // This is set to true if we found a candidate for broadcast at Lane.
- bool FoundCandidate = false;
- for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
- OperandData &Data = getData(OpI, Ln);
- if (Data.APO != OpAPO || Data.IsUsed)
- continue;
- if (Data.V == Op) {
- FoundCandidate = true;
- Data.IsUsed = true;
- break;
- }
- }
- if (!FoundCandidate)
- return false;
- }
- return true;
- }
-
- public:
- /// Initialize with all the operands of the instruction vector \p RootVL.
- VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
- ScalarEvolution &SE)
- : DL(DL), SE(SE) {
- // Append all the operands of RootVL.
- appendOperandsOfVL(RootVL);
- }
-
- /// \Returns a value vector with the operands across all lanes for the
- /// opearnd at \p OpIdx.
- ValueList getVL(unsigned OpIdx) const {
- ValueList OpVL(OpsVec[OpIdx].size());
- assert(OpsVec[OpIdx].size() == getNumLanes() &&
- "Expected same num of lanes across all operands");
- for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
- OpVL[Lane] = OpsVec[OpIdx][Lane].V;
- return OpVL;
- }
-
- // Performs operand reordering for 2 or more operands.
- // The original operands are in OrigOps[OpIdx][Lane].
- // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
- void reorder() {
- unsigned NumOperands = getNumOperands();
- unsigned NumLanes = getNumLanes();
- // Each operand has its own mode. We are using this mode to help us select
- // the instructions for each lane, so that they match best with the ones
- // we have selected so far.
- SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
-
- // This is a greedy single-pass algorithm. We are going over each lane
- // once and deciding on the best order right away with no back-tracking.
- // However, in order to increase its effectiveness, we start with the lane
- // that has operands that can move the least. For example, given the
- // following lanes:
- // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
- // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
- // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
- // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
- // we will start at Lane 1, since the operands of the subtraction cannot
- // be reordered. Then we will visit the rest of the lanes in a circular
- // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
-
- // Find the first lane that we will start our search from.
- unsigned FirstLane = getBestLaneToStartReordering();
-
- // Initialize the modes.
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
- Value *OpLane0 = getValue(OpIdx, FirstLane);
- // Keep track if we have instructions with all the same opcode on one
- // side.
- if (isa<LoadInst>(OpLane0))
- ReorderingModes[OpIdx] = ReorderingMode::Load;
- else if (isa<Instruction>(OpLane0)) {
- // Check if OpLane0 should be broadcast.
- if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
- ReorderingModes[OpIdx] = ReorderingMode::Splat;
- else
- ReorderingModes[OpIdx] = ReorderingMode::Opcode;
- }
- else if (isa<Constant>(OpLane0))
- ReorderingModes[OpIdx] = ReorderingMode::Constant;
- else if (isa<Argument>(OpLane0))
- // Our best hope is a Splat. It may save some cost in some cases.
- ReorderingModes[OpIdx] = ReorderingMode::Splat;
- else
- // NOTE: This should be unreachable.
- ReorderingModes[OpIdx] = ReorderingMode::Failed;
- }
-
- // If the initial strategy fails for any of the operand indexes, then we
- // perform reordering again in a second pass. This helps avoid assigning
- // high priority to the failed strategy, and should improve reordering for
- // the non-failed operand indexes.
- for (int Pass = 0; Pass != 2; ++Pass) {
- // Skip the second pass if the first pass did not fail.
- bool StrategyFailed = false;
- // Mark all operand data as free to use.
- clearUsed();
- // We keep the original operand order for the FirstLane, so reorder the
- // rest of the lanes. We are visiting the nodes in a circular fashion,
- // using FirstLane as the center point and increasing the radius
- // distance.
- for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
- // Visit the lane on the right and then the lane on the left.
- for (int Direction : {+1, -1}) {
- int Lane = FirstLane + Direction * Distance;
- if (Lane < 0 || Lane >= (int)NumLanes)
- continue;
- int LastLane = Lane - Direction;
- assert(LastLane >= 0 && LastLane < (int)NumLanes &&
- "Out of bounds");
- // Look for a good match for each operand.
- for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
- // Search for the operand that matches SortedOps[OpIdx][Lane-1].
- Optional<unsigned> BestIdx =
- getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
- // By not selecting a value, we allow the operands that follow to
- // select a better matching value. We will get a non-null value in
- // the next run of getBestOperand().
- if (BestIdx) {
- // Swap the current operand with the one returned by
- // getBestOperand().
- swap(OpIdx, BestIdx.getValue(), Lane);
- } else {
- // We failed to find a best operand, set mode to 'Failed'.
- ReorderingModes[OpIdx] = ReorderingMode::Failed;
- // Enable the second pass.
- StrategyFailed = true;
- }
- }
- }
- }
- // Skip second pass if the strategy did not fail.
- if (!StrategyFailed)
- break;
- }
- }
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
- switch (RMode) {
- case ReorderingMode::Load:
- return "Load";
- case ReorderingMode::Opcode:
- return "Opcode";
- case ReorderingMode::Constant:
- return "Constant";
- case ReorderingMode::Splat:
- return "Splat";
- case ReorderingMode::Failed:
- return "Failed";
- }
- llvm_unreachable("Unimplemented Reordering Type");
- }
-
- LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
- raw_ostream &OS) {
- return OS << getModeStr(RMode);
- }
-
- /// Debug print.
- LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
- printMode(RMode, dbgs());
- }
-
- friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
- return printMode(RMode, OS);
- }
-
- LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
- const unsigned Indent = 2;
- unsigned Cnt = 0;
- for (const OperandDataVec &OpDataVec : OpsVec) {
- OS << "Operand " << Cnt++ << "\n";
- for (const OperandData &OpData : OpDataVec) {
- OS.indent(Indent) << "{";
- if (Value *V = OpData.V)
- OS << *V;
- else
- OS << "null";
- OS << ", APO:" << OpData.APO << "}\n";
- }
- OS << "\n";
- }
- return OS;
- }
-
- /// Debug print.
- LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
-#endif
- };
-
-private:
- /// Checks if all users of \p I are the part of the vectorization tree.
- bool areAllUsersVectorized(Instruction *I) const;
-
- /// \returns the cost of the vectorizable entry.
- int getEntryCost(TreeEntry *E);
-
- /// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
- const EdgeInfo &EI);
-
- /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
- /// be vectorized to use the original vector (or aggregate "bitcast" to a
- /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
- /// returns false, setting \p CurrentOrder to either an empty vector or a
- /// non-identity permutation that allows to reuse extract instructions.
- bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
- SmallVectorImpl<unsigned> &CurrentOrder) const;
-
- /// Vectorize a single entry in the tree.
- Value *vectorizeTree(TreeEntry *E);
-
- /// Vectorize a single entry in the tree, starting in \p VL.
- Value *vectorizeTree(ArrayRef<Value *> VL);
-
- /// \returns the scalarization cost for this type. Scalarization in this
- /// context means the creation of vectors from a group of scalars.
- int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
-
- /// \returns the scalarization cost for this list of values. Assuming that
- /// this subtree gets vectorized, we may need to extract the values from the
- /// roots. This method calculates the cost of extracting the values.
- int getGatherCost(ArrayRef<Value *> VL) const;
-
- /// Set the Builder insert point to one after the last instruction in
- /// the bundle
- void setInsertPointAfterBundle(ArrayRef<Value *> VL,
- const InstructionsState &S);
-
- /// \returns a vector from a collection of scalars in \p VL.
- Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
-
- /// \returns whether the VectorizableTree is fully vectorizable and will
- /// be beneficial even the tree height is tiny.
- bool isFullyVectorizableTinyTree() const;
-
- /// Reorder commutative or alt operands to get better probability of
- /// generating vectorized code.
- static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right,
- const DataLayout &DL,
- ScalarEvolution &SE);
- struct TreeEntry {
- using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
- TreeEntry(VecTreeTy &Container) : Container(Container) {}
-
- /// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) const {
- if (VL.size() == Scalars.size())
- return std::equal(VL.begin(), VL.end(), Scalars.begin());
- return VL.size() == ReuseShuffleIndices.size() &&
- std::equal(
- VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
- [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
- }
-
- /// A vector of scalars.
- ValueList Scalars;
-
- /// The Scalars are vectorized into this value. It is initialized to Null.
- Value *VectorizedValue = nullptr;
-
- /// Do we need to gather this sequence ?
- bool NeedToGather = false;
-
- /// Does this sequence require some shuffling?
- SmallVector<unsigned, 4> ReuseShuffleIndices;
-
- /// Does this entry require reordering?
- ArrayRef<unsigned> ReorderIndices;
-
- /// Points back to the VectorizableTree.
- ///
- /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
- /// to be a pointer and needs to be able to initialize the child iterator.
- /// Thus we need a reference back to the container to translate the indices
- /// to entries.
- VecTreeTy &Container;
-
- /// The TreeEntry index containing the user of this entry. We can actually
- /// have multiple users so the data structure is not truly a tree.
- SmallVector<EdgeInfo, 1> UserTreeIndices;
-
- /// The index of this treeEntry in VectorizableTree.
- int Idx = -1;
-
- private:
- /// The operands of each instruction in each lane Operands[op_index][lane].
- /// Note: This helps avoid the replication of the code that performs the
- /// reordering of operands during buildTree_rec() and vectorizeTree().
- SmallVector<ValueList, 2> Operands;
-
- public:
- /// Set this bundle's \p OpIdx'th operand to \p OpVL.
- void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL,
- ArrayRef<unsigned> ReuseShuffleIndices) {
- if (Operands.size() < OpIdx + 1)
- Operands.resize(OpIdx + 1);
- assert(Operands[OpIdx].size() == 0 && "Already resized?");
- Operands[OpIdx].resize(Scalars.size());
- for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
- Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty())
- ? OpVL[ReuseShuffleIndices[Lane]]
- : OpVL[Lane];
- }
-
- /// If there is a user TreeEntry, then set its operand.
- void trySetUserTEOperand(const EdgeInfo &UserTreeIdx,
- ArrayRef<Value *> OpVL,
- ArrayRef<unsigned> ReuseShuffleIndices) {
- if (UserTreeIdx.UserTE)
- UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL,
- ReuseShuffleIndices);
- }
-
- /// \returns the \p OpIdx operand of this TreeEntry.
- ValueList &getOperand(unsigned OpIdx) {
- assert(OpIdx < Operands.size() && "Off bounds");
- return Operands[OpIdx];
- }
-
- /// \return the single \p OpIdx operand.
- Value *getSingleOperand(unsigned OpIdx) const {
- assert(OpIdx < Operands.size() && "Off bounds");
- assert(!Operands[OpIdx].empty() && "No operand available");
- return Operands[OpIdx][0];
- }
-
-#ifndef NDEBUG
- /// Debug printer.
- LLVM_DUMP_METHOD void dump() const {
- dbgs() << Idx << ".\n";
- for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
- dbgs() << "Operand " << OpI << ":\n";
- for (const Value *V : Operands[OpI])
- dbgs().indent(2) << *V << "\n";
- }
- dbgs() << "Scalars: \n";
- for (Value *V : Scalars)
- dbgs().indent(2) << *V << "\n";
- dbgs() << "NeedToGather: " << NeedToGather << "\n";
- dbgs() << "VectorizedValue: ";
- if (VectorizedValue)
- dbgs() << *VectorizedValue;
- else
- dbgs() << "NULL";
- dbgs() << "\n";
- dbgs() << "ReuseShuffleIndices: ";
- if (ReuseShuffleIndices.empty())
- dbgs() << "Emtpy";
- else
- for (unsigned Idx : ReuseShuffleIndices)
- dbgs() << Idx << ", ";
- dbgs() << "\n";
- dbgs() << "ReorderIndices: ";
- for (unsigned Idx : ReorderIndices)
- dbgs() << Idx << ", ";
- dbgs() << "\n";
- dbgs() << "UserTreeIndices: ";
- for (const auto &EInfo : UserTreeIndices)
- dbgs() << EInfo << ", ";
- dbgs() << "\n";
- }
-#endif
- };
-
- /// Create a new VectorizableTree entry.
- TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
- const EdgeInfo &UserTreeIdx,
- ArrayRef<unsigned> ReuseShuffleIndices = None,
- ArrayRef<unsigned> ReorderIndices = None) {
- VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree));
- TreeEntry *Last = VectorizableTree.back().get();
- Last->Idx = VectorizableTree.size() - 1;
- Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
- Last->NeedToGather = !Vectorized;
- Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
- ReuseShuffleIndices.end());
- Last->ReorderIndices = ReorderIndices;
- if (Vectorized) {
- for (int i = 0, e = VL.size(); i != e; ++i) {
- assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
- ScalarToTreeEntry[VL[i]] = Last->Idx;
- }
- } else {
- MustGather.insert(VL.begin(), VL.end());
- }
-
- if (UserTreeIdx.UserTE)
- Last->UserTreeIndices.push_back(UserTreeIdx);
-
- Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices);
- return Last;
- }
-
- /// -- Vectorization State --
- /// Holds all of the tree entries.
- TreeEntry::VecTreeTy VectorizableTree;
-
-#ifndef NDEBUG
- /// Debug printer.
- LLVM_DUMP_METHOD void dumpVectorizableTree() const {
- for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
- VectorizableTree[Id]->dump();
- dbgs() << "\n";
- }
- }
-#endif
-
- TreeEntry *getTreeEntry(Value *V) {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return VectorizableTree[I->second].get();
- return nullptr;
- }
-
- const TreeEntry *getTreeEntry(Value *V) const {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return VectorizableTree[I->second].get();
- return nullptr;
- }
-
- /// Maps a specific scalar to its tree entry.
- SmallDenseMap<Value*, int> ScalarToTreeEntry;
-
- /// A list of scalars that we found that we need to keep as scalars.
- ValueSet MustGather;
-
- /// This POD struct describes one external user in the vectorized tree.
- struct ExternalUser {
- ExternalUser(Value *S, llvm::User *U, int L)
- : Scalar(S), User(U), Lane(L) {}
-
- // Which scalar in our function.
- Value *Scalar;
-
- // Which user that uses the scalar.
- llvm::User *User;
-
- // Which lane does the scalar belong to.
- int Lane;
- };
- using UserList = SmallVector<ExternalUser, 16>;
-
- /// Checks if two instructions may access the same memory.
- ///
- /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
- /// is invariant in the calling loop.
- bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
- Instruction *Inst2) {
- // First check if the result is already in the cache.
- AliasCacheKey key = std::make_pair(Inst1, Inst2);
- Optional<bool> &result = AliasCache[key];
- if (result.hasValue()) {
- return result.getValue();
- }
- MemoryLocation Loc2 = getLocation(Inst2, AA);
- bool aliased = true;
- if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
- // Do the alias check.
- aliased = AA->alias(Loc1, Loc2);
- }
- // Store the result in the cache.
- result = aliased;
- return aliased;
- }
-
- using AliasCacheKey = std::pair<Instruction *, Instruction *>;
-
- /// Cache for alias results.
- /// TODO: consider moving this to the AliasAnalysis itself.
- DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
-
- /// Removes an instruction from its block and eventually deletes it.
- /// It's like Instruction::eraseFromParent() except that the actual deletion
- /// is delayed until BoUpSLP is destructed.
- /// This is required to ensure that there are no incorrect collisions in the
- /// AliasCache, which can happen if a new instruction is allocated at the
- /// same address as a previously deleted instruction.
- void eraseInstruction(Instruction *I) {
- I->removeFromParent();
- I->dropAllReferences();
- DeletedInstructions.emplace_back(I);
- }
-
- /// Temporary store for deleted instructions. Instructions will be deleted
- /// eventually when the BoUpSLP is destructed.
- SmallVector<unique_value, 8> DeletedInstructions;
-
- /// A list of values that need to extracted out of the tree.
- /// This list holds pairs of (Internal Scalar : External User). External User
- /// can be nullptr, it means that this Internal Scalar will be used later,
- /// after vectorization.
- UserList ExternalUses;
-
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
-
- /// Holds all of the instructions that we gathered.
- SetVector<Instruction *> GatherSeq;
-
- /// A list of blocks that we are going to CSE.
- SetVector<BasicBlock *> CSEBlocks;
-
- /// Contains all scheduling relevant data for an instruction.
- /// A ScheduleData either represents a single instruction or a member of an
- /// instruction bundle (= a group of instructions which is combined into a
- /// vector instruction).
- struct ScheduleData {
- // The initial value for the dependency counters. It means that the
- // dependencies are not calculated yet.
- enum { InvalidDeps = -1 };
-
- ScheduleData() = default;
-
- void init(int BlockSchedulingRegionID, Value *OpVal) {
- FirstInBundle = this;
- NextInBundle = nullptr;
- NextLoadStore = nullptr;
- IsScheduled = false;
- SchedulingRegionID = BlockSchedulingRegionID;
- UnscheduledDepsInBundle = UnscheduledDeps;
- clearDependencies();
- OpValue = OpVal;
- }
-
- /// Returns true if the dependency information has been calculated.
- bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
-
- /// Returns true for single instructions and for bundle representatives
- /// (= the head of a bundle).
- bool isSchedulingEntity() const { return FirstInBundle == this; }
-
- /// Returns true if it represents an instruction bundle and not only a
- /// single instruction.
- bool isPartOfBundle() const {
- return NextInBundle != nullptr || FirstInBundle != this;
- }
-
- /// Returns true if it is ready for scheduling, i.e. it has no more
- /// unscheduled depending instructions/bundles.
- bool isReady() const {
- assert(isSchedulingEntity() &&
- "can't consider non-scheduling entity for ready list");
- return UnscheduledDepsInBundle == 0 && !IsScheduled;
- }
-
- /// Modifies the number of unscheduled dependencies, also updating it for
- /// the whole bundle.
- int incrementUnscheduledDeps(int Incr) {
- UnscheduledDeps += Incr;
- return FirstInBundle->UnscheduledDepsInBundle += Incr;
- }
-
- /// Sets the number of unscheduled dependencies to the number of
- /// dependencies.
- void resetUnscheduledDeps() {
- incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
- }
-
- /// Clears all dependency information.
- void clearDependencies() {
- Dependencies = InvalidDeps;
- resetUnscheduledDeps();
- MemoryDependencies.clear();
- }
-
- void dump(raw_ostream &os) const {
- if (!isSchedulingEntity()) {
- os << "/ " << *Inst;
- } else if (NextInBundle) {
- os << '[' << *Inst;
- ScheduleData *SD = NextInBundle;
- while (SD) {
- os << ';' << *SD->Inst;
- SD = SD->NextInBundle;
- }
- os << ']';
- } else {
- os << *Inst;
- }
- }
-
- Instruction *Inst = nullptr;
-
- /// Points to the head in an instruction bundle (and always to this for
- /// single instructions).
- ScheduleData *FirstInBundle = nullptr;
-
- /// Single linked list of all instructions in a bundle. Null if it is a
- /// single instruction.
- ScheduleData *NextInBundle = nullptr;
-
- /// Single linked list of all memory instructions (e.g. load, store, call)
- /// in the block - until the end of the scheduling region.
- ScheduleData *NextLoadStore = nullptr;
-
- /// The dependent memory instructions.
- /// This list is derived on demand in calculateDependencies().
- SmallVector<ScheduleData *, 4> MemoryDependencies;
-
- /// This ScheduleData is in the current scheduling region if this matches
- /// the current SchedulingRegionID of BlockScheduling.
- int SchedulingRegionID = 0;
-
- /// Used for getting a "good" final ordering of instructions.
- int SchedulingPriority = 0;
-
- /// The number of dependencies. Constitutes of the number of users of the
- /// instruction plus the number of dependent memory instructions (if any).
- /// This value is calculated on demand.
- /// If InvalidDeps, the number of dependencies is not calculated yet.
- int Dependencies = InvalidDeps;
-
- /// The number of dependencies minus the number of dependencies of scheduled
- /// instructions. As soon as this is zero, the instruction/bundle gets ready
- /// for scheduling.
- /// Note that this is negative as long as Dependencies is not calculated.
- int UnscheduledDeps = InvalidDeps;
-
- /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
- /// single instructions.
- int UnscheduledDepsInBundle = InvalidDeps;
-
- /// True if this instruction is scheduled (or considered as scheduled in the
- /// dry-run).
- bool IsScheduled = false;
-
- /// Opcode of the current instruction in the schedule data.
- Value *OpValue = nullptr;
- };
-
-#ifndef NDEBUG
- friend inline raw_ostream &operator<<(raw_ostream &os,
- const BoUpSLP::ScheduleData &SD) {
- SD.dump(os);
- return os;
- }
-#endif
-
- friend struct GraphTraits<BoUpSLP *>;
- friend struct DOTGraphTraits<BoUpSLP *>;
-
- /// Contains all scheduling data for a basic block.
- struct BlockScheduling {
- BlockScheduling(BasicBlock *BB)
- : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
-
- void clear() {
- ReadyInsts.clear();
- ScheduleStart = nullptr;
- ScheduleEnd = nullptr;
- FirstLoadStoreInRegion = nullptr;
- LastLoadStoreInRegion = nullptr;
-
- // Reduce the maximum schedule region size by the size of the
- // previous scheduling run.
- ScheduleRegionSizeLimit -= ScheduleRegionSize;
- if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
- ScheduleRegionSizeLimit = MinScheduleRegionSize;
- ScheduleRegionSize = 0;
-
- // Make a new scheduling region, i.e. all existing ScheduleData is not
- // in the new region yet.
- ++SchedulingRegionID;
- }
-
- ScheduleData *getScheduleData(Value *V) {
- ScheduleData *SD = ScheduleDataMap[V];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- return nullptr;
- }
-
- ScheduleData *getScheduleData(Value *V, Value *Key) {
- if (V == Key)
- return getScheduleData(V);
- auto I = ExtraScheduleDataMap.find(V);
- if (I != ExtraScheduleDataMap.end()) {
- ScheduleData *SD = I->second[Key];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- }
- return nullptr;
- }
-
- bool isInSchedulingRegion(ScheduleData *SD) {
- return SD->SchedulingRegionID == SchedulingRegionID;
- }
-
- /// Marks an instruction as scheduled and puts all dependent ready
- /// instructions into the ready-list.
- template <typename ReadyListType>
- void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
- SD->IsScheduled = true;
- LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
-
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- if (BundleMember->Inst != BundleMember->OpValue) {
- BundleMember = BundleMember->NextInBundle;
- continue;
- }
- // Handle the def-use chain dependencies.
- for (Use &U : BundleMember->Inst->operands()) {
- auto *I = dyn_cast<Instruction>(U.get());
- if (!I)
- continue;
- doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
- if (OpDef && OpDef->hasValidDependencies() &&
- OpDef->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after
- // decrementing, so we can put the dependent instruction
- // into the ready list.
- ScheduleData *DepBundle = OpDef->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- LLVM_DEBUG(dbgs()
- << "SLP: gets ready (def): " << *DepBundle << "\n");
- }
- });
- }
- // Handle the memory dependencies.
- for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
- if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- LLVM_DEBUG(dbgs()
- << "SLP: gets ready (mem): " << *DepBundle << "\n");
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- }
-
- void doForAllOpcodes(Value *V,
- function_ref<void(ScheduleData *SD)> Action) {
- if (ScheduleData *SD = getScheduleData(V))
- Action(SD);
- auto I = ExtraScheduleDataMap.find(V);
- if (I != ExtraScheduleDataMap.end())
- for (auto &P : I->second)
- if (P.second->SchedulingRegionID == SchedulingRegionID)
- Action(P.second);
- }
-
- /// Put all instructions into the ReadyList which are ready for scheduling.
- template <typename ReadyListType>
- void initialFillReadyList(ReadyListType &ReadyList) {
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [&](ScheduleData *SD) {
- if (SD->isSchedulingEntity() && SD->isReady()) {
- ReadyList.insert(SD);
- LLVM_DEBUG(dbgs()
- << "SLP: initially in ready list: " << *I << "\n");
- }
- });
- }
- }
-
- /// Checks if a bundle of instructions can be scheduled, i.e. has no
- /// cyclic dependencies. This is only a dry-run, no instructions are
- /// actually moved at this stage.
- bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
- const InstructionsState &S);
-
- /// Un-bundles a group of instructions.
- void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
-
- /// Allocates schedule data chunk.
- ScheduleData *allocateScheduleDataChunks();
-
- /// Extends the scheduling region so that V is inside the region.
- /// \returns true if the region size is within the limit.
- bool extendSchedulingRegion(Value *V, const InstructionsState &S);
-
- /// Initialize the ScheduleData structures for new instructions in the
- /// scheduling region.
- void initScheduleData(Instruction *FromI, Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore);
-
- /// Updates the dependency information of a bundle and of all instructions/
- /// bundles which depend on the original bundle.
- void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
- BoUpSLP *SLP);
-
- /// Sets all instruction in the scheduling region to un-scheduled.
- void resetSchedule();
-
- BasicBlock *BB;
-
- /// Simple memory allocation for ScheduleData.
- std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
-
- /// The size of a ScheduleData array in ScheduleDataChunks.
- int ChunkSize;
-
- /// The allocator position in the current chunk, which is the last entry
- /// of ScheduleDataChunks.
- int ChunkPos;
-
- /// Attaches ScheduleData to Instruction.
- /// Note that the mapping survives during all vectorization iterations, i.e.
- /// ScheduleData structures are recycled.
- DenseMap<Value *, ScheduleData *> ScheduleDataMap;
-
- /// Attaches ScheduleData to Instruction with the leading key.
- DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
- ExtraScheduleDataMap;
-
- struct ReadyList : SmallVector<ScheduleData *, 8> {
- void insert(ScheduleData *SD) { push_back(SD); }
- };
-
- /// The ready-list for scheduling (only used for the dry-run).
- ReadyList ReadyInsts;
-
- /// The first instruction of the scheduling region.
- Instruction *ScheduleStart = nullptr;
-
- /// The first instruction _after_ the scheduling region.
- Instruction *ScheduleEnd = nullptr;
-
- /// The first memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *FirstLoadStoreInRegion = nullptr;
-
- /// The last memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *LastLoadStoreInRegion = nullptr;
-
- /// The current size of the scheduling region.
- int ScheduleRegionSize = 0;
-
- /// The maximum size allowed for the scheduling region.
- int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
-
- /// The ID of the scheduling region. For a new vectorization iteration this
- /// is incremented which "removes" all ScheduleData from the region.
- // Make sure that the initial SchedulingRegionID is greater than the
- // initial SchedulingRegionID in ScheduleData (which is 0).
- int SchedulingRegionID = 1;
- };
-
- /// Attaches the BlockScheduling structures to basic blocks.
- MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
-
- /// Performs the "real" scheduling. Done before vectorization is actually
- /// performed in a basic block.
- void scheduleBlock(BlockScheduling *BS);
-
- /// List of users to ignore during scheduling and that don't need extracting.
- ArrayRef<Value *> UserIgnoreList;
-
- using OrdersType = SmallVector<unsigned, 4>;
- /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
- /// sorted SmallVectors of unsigned.
- struct OrdersTypeDenseMapInfo {
- static OrdersType getEmptyKey() {
- OrdersType V;
- V.push_back(~1U);
- return V;
- }
-
- static OrdersType getTombstoneKey() {
- OrdersType V;
- V.push_back(~2U);
- return V;
- }
-
- static unsigned getHashValue(const OrdersType &V) {
- return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
- }
-
- static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
- return LHS == RHS;
- }
- };
-
- /// Contains orders of operations along with the number of bundles that have
- /// operations in this order. It stores only those orders that require
- /// reordering, if reordering is not required it is counted using \a
- /// NumOpsWantToKeepOriginalOrder.
- DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
- /// Number of bundles that do not require reordering.
- unsigned NumOpsWantToKeepOriginalOrder = 0;
-
- // Analysis and block reference.
- Function *F;
- ScalarEvolution *SE;
- TargetTransformInfo *TTI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- AssumptionCache *AC;
- DemandedBits *DB;
- const DataLayout *DL;
- OptimizationRemarkEmitter *ORE;
-
- unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
- unsigned MinVecRegSize; // Set by cl::opt (default: 128).
-
- /// Instruction builder to construct the vectorized tree.
- IRBuilder<> Builder;
-
- /// A map of scalar integer values to the smallest bit width with which they
- /// can legally be represented. The values map to (width, signed) pairs,
- /// where "width" indicates the minimum bit width and "signed" is True if the
- /// value must be signed-extended, rather than zero-extended, back to its
- /// original width.
- MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
-};
-
-} // end namespace slpvectorizer
-
-template <> struct GraphTraits<BoUpSLP *> {
- using TreeEntry = BoUpSLP::TreeEntry;
-
- /// NodeRef has to be a pointer per the GraphWriter.
- using NodeRef = TreeEntry *;
-
- using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
-
- /// Add the VectorizableTree to the index iterator to be able to return
- /// TreeEntry pointers.
- struct ChildIteratorType
- : public iterator_adaptor_base<
- ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
- ContainerTy &VectorizableTree;
-
- ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
- ContainerTy &VT)
- : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
-
- NodeRef operator*() { return I->UserTE; }
- };
-
- static NodeRef getEntryNode(BoUpSLP &R) {
- return R.VectorizableTree[0].get();
- }
-
- static ChildIteratorType child_begin(NodeRef N) {
- return {N->UserTreeIndices.begin(), N->Container};
- }
-
- static ChildIteratorType child_end(NodeRef N) {
- return {N->UserTreeIndices.end(), N->Container};
- }
-
- /// For the node iterator we just need to turn the TreeEntry iterator into a
- /// TreeEntry* iterator so that it dereferences to NodeRef.
- class nodes_iterator {
- using ItTy = ContainerTy::iterator;
- ItTy It;
-
- public:
- nodes_iterator(const ItTy &It2) : It(It2) {}
- NodeRef operator*() { return It->get(); }
- nodes_iterator operator++() {
- ++It;
- return *this;
- }
- bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
- };
-
- static nodes_iterator nodes_begin(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.begin());
- }
-
- static nodes_iterator nodes_end(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.end());
- }
-
- static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
-};
-
-template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
- using TreeEntry = BoUpSLP::TreeEntry;
-
- DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
-
- std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
- std::string Str;
- raw_string_ostream OS(Str);
- if (isSplat(Entry->Scalars)) {
- OS << "<splat> " << *Entry->Scalars[0];
- return Str;
- }
- for (auto V : Entry->Scalars) {
- OS << *V;
- if (std::any_of(
- R->ExternalUses.begin(), R->ExternalUses.end(),
- [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
- OS << " <extract>";
- OS << "\n";
- }
- return Str;
- }
-
- static std::string getNodeAttributes(const TreeEntry *Entry,
- const BoUpSLP *) {
- if (Entry->NeedToGather)
- return "color=red";
- return "";
- }
-};
-
-} // end namespace llvm
-
-void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst) {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
-}
-
-void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst) {
- deleteTree();
- UserIgnoreList = UserIgnoreLst;
- if (!allSameType(Roots))
- return;
- buildTree_rec(Roots, 0, EdgeInfo());
-
- // Collect the values that we need to extract from the tree.
- for (auto &TEPtr : VectorizableTree) {
- TreeEntry *Entry = TEPtr.get();
-
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
-
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- int FoundLane = Lane;
- if (!Entry->ReuseShuffleIndices.empty()) {
- FoundLane =
- std::distance(Entry->ReuseShuffleIndices.begin(),
- llvm::find(Entry->ReuseShuffleIndices, FoundLane));
- }
-
- // Check if the scalar is externally used as an extra arg.
- auto ExtI = ExternallyUsedValues.find(Scalar);
- if (ExtI != ExternallyUsedValues.end()) {
- LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
- << Lane << " from " << *Scalar << ".\n");
- ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
- }
- for (User *U : Scalar->users()) {
- LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
-
- Instruction *UserInst = dyn_cast<Instruction>(U);
- if (!UserInst)
- continue;
-
- // Skip in-tree scalars that become vectors
- if (TreeEntry *UseEntry = getTreeEntry(U)) {
- Value *UseScalar = UseEntry->Scalars[0];
- // Some in-tree scalars will remain as scalar in vectorized
- // instructions. If that is the case, the one in Lane 0 will
- // be used.
- if (UseScalar != U ||
- !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
- LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
- << ".\n");
- assert(!UseEntry->NeedToGather && "Bad state");
- continue;
- }
- }
-
- // Ignore users in the user ignore list.
- if (is_contained(UserIgnoreList, UserInst))
- continue;
-
- LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
- << Lane << " from " << *Scalar << ".\n");
- ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
- }
- }
- }
-}
-
-void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
- const EdgeInfo &UserTreeIdx) {
- assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
-
- InstructionsState S = getSameOpcode(VL);
- if (Depth == RecursionMaxDepth) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
-
- // Don't handle vectors.
- if (S.OpValue->getType()->isVectorTy()) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
- if (SI->getValueOperand()->getType()->isVectorTy()) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
-
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
-
- // We now know that this is a vector of instructions of the same type from
- // the same block.
-
- // Don't vectorize ephemeral values.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (EphValues.count(VL[i])) {
- LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
- << ") is ephemeral.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
-
- // Check if this is a duplicate of another entry.
- if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
- if (!E->isSame(VL)) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- // Record the reuse of the tree node. FIXME, currently this is only used to
- // properly draw the graph rather than for the actual vectorization.
- E->UserTreeIndices.push_back(UserTreeIdx);
- LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
- << ".\n");
- E->trySetUserTEOperand(UserTreeIdx, VL, None);
- return;
- }
-
- // Check that none of the instructions in the bundle are already in the tree.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- auto *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- continue;
- if (getTreeEntry(I)) {
- LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
- << ") is already in tree.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
-
- // If any of the scalars is marked as a value that needs to stay scalar, then
- // we need to gather the scalars.
- // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) {
- LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- }
-
- // Check that all of the users of the scalars that we want to vectorize are
- // schedulable.
- auto *VL0 = cast<Instruction>(S.OpValue);
- BasicBlock *BB = VL0->getParent();
-
- if (!DT->isReachableFromEntry(BB)) {
- // Don't go into unreachable blocks. They may contain instructions with
- // dependency cycles which confuse the final scheduling.
- LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
-
- // Check that every instruction appears once in this bundle.
- SmallVector<unsigned, 4> ReuseShuffleIndicies;
- SmallVector<Value *, 4> UniqueValues;
- DenseMap<Value *, unsigned> UniquePositions;
- for (Value *V : VL) {
- auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
- ReuseShuffleIndicies.emplace_back(Res.first->second);
- if (Res.second)
- UniqueValues.emplace_back(V);
- }
- if (UniqueValues.size() == VL.size()) {
- ReuseShuffleIndicies.clear();
- } else {
- LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
- if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
- LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false, UserTreeIdx);
- return;
- }
- VL = UniqueValues;
- }
-
- auto &BSRef = BlocksSchedules[BB];
- if (!BSRef)
- BSRef = llvm::make_unique<BlockScheduling>(BB);
-
- BlockScheduling &BS = *BSRef.get();
-
- if (!BS.tryScheduleBundle(VL, this, S)) {
- LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
- assert((!BS.getScheduleData(VL0) ||
- !BS.getScheduleData(VL0)->isPartOfBundle()) &&
- "tryScheduleBundle should cancelScheduling on failure");
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
-
- unsigned ShuffleOrOp = S.isAltShuffle() ?
- (unsigned) Instruction::ShuffleVector : S.getOpcode();
- switch (ShuffleOrOp) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
-
- // Check for terminator values (e.g. invoke).
- for (unsigned j = 0; j < VL.size(); ++j)
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- Instruction *Term = dyn_cast<Instruction>(
- cast<PHINode>(VL[j])->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
- if (Term && Term->isTerminator()) {
- LLVM_DEBUG(dbgs()
- << "SLP: Need to swizzle PHINodes (terminator use).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
-
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
-
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
-
- buildTree_rec(Operands, Depth + 1, {TE, i});
- }
- return;
- }
- case Instruction::ExtractValue:
- case Instruction::ExtractElement: {
- OrdersType CurrentOrder;
- bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
- if (Reuse) {
- LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
- ++NumOpsWantToKeepOriginalOrder;
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
- ReuseShuffleIndicies);
- // This is a special case, as it does not gather, but at the same time
- // we are not extending buildTree_rec() towards the operands.
- ValueList Op0;
- Op0.assign(VL.size(), VL0->getOperand(0));
- VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies);
- return;
- }
- if (!CurrentOrder.empty()) {
- LLVM_DEBUG({
- dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
- "with order";
- for (unsigned Idx : CurrentOrder)
- dbgs() << " " << Idx;
- dbgs() << "\n";
- });
- // Insert new order with initial value 0, if it does not exist,
- // otherwise return the iterator to the existing one.
- auto StoredCurrentOrderAndNum =
- NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++StoredCurrentOrderAndNum->getSecond();
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies,
- StoredCurrentOrderAndNum->getFirst());
- // This is a special case, as it does not gather, but at the same time
- // we are not extending buildTree_rec() towards the operands.
- ValueList Op0;
- Op0.assign(VL.size(), VL0->getOperand(0));
- VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies);
- return;
- }
- LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
- newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies);
- BS.cancelScheduling(VL, VL0);
- return;
- }
- case Instruction::Load: {
- // Check that a vectorized load would load the same memory as a scalar
- // load. For example, we don't want to vectorize loads that are smaller
- // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
- // treats loading/storing it as an i8 struct. If we vectorize loads/stores
- // from such a struct, we read/write packed bits disagreeing with the
- // unvectorized version.
- Type *ScalarTy = VL0->getType();
-
- if (DL->getTypeSizeInBits(ScalarTy) !=
- DL->getTypeAllocSizeInBits(ScalarTy)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
- return;
- }
-
- // Make sure all loads in the bundle are simple - we can't vectorize
- // atomic or volatile loads.
- SmallVector<Value *, 4> PointerOps(VL.size());
- auto POIter = PointerOps.begin();
- for (Value *V : VL) {
- auto *L = cast<LoadInst>(V);
- if (!L->isSimple()) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
- return;
- }
- *POIter = L->getPointerOperand();
- ++POIter;
- }
-
- OrdersType CurrentOrder;
- // Check the order of pointer operands.
- if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
- Value *Ptr0;
- Value *PtrN;
- if (CurrentOrder.empty()) {
- Ptr0 = PointerOps.front();
- PtrN = PointerOps.back();
- } else {
- Ptr0 = PointerOps[CurrentOrder.front()];
- PtrN = PointerOps[CurrentOrder.back()];
- }
- const SCEV *Scev0 = SE->getSCEV(Ptr0);
- const SCEV *ScevN = SE->getSCEV(PtrN);
- const auto *Diff =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
- uint64_t Size = DL->getTypeAllocSize(ScalarTy);
- // Check that the sorted loads are consecutive.
- if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
- if (CurrentOrder.empty()) {
- // Original loads are consecutive and does not require reordering.
- ++NumOpsWantToKeepOriginalOrder;
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
- ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
- } else {
- // Need to reorder.
- auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
- ++I->getSecond();
- newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
- ReuseShuffleIndicies, I->getFirst());
- LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
- }
- return;
- }
- }
-
- LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- for (unsigned i = 0; i < VL.size(); ++i) {
- Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
- if (Ty != SrcTy || !isValidElementType(Ty)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs()
- << "SLP: Gathering casts with different src types.\n");
- return;
- }
- }
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
-
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
-
- buildTree_rec(Operands, Depth + 1, {TE, i});
- }
- return;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
- Type *ComparedTy = VL0->getOperand(0)->getType();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
- Cmp->getOperand(0)->getType() != ComparedTy) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs()
- << "SLP: Gathering cmp with different predicate.\n");
- return;
- }
- }
-
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
-
- ValueList Left, Right;
- if (cast<CmpInst>(VL0)->isCommutative()) {
- // Commutative predicate - collect + sort operands of the instructions
- // so that each side is more likely to have the same opcode.
- assert(P0 == SwapP0 && "Commutative Predicate mismatch");
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
- } else {
- // Collect operands - commute if it uses the swapped predicate.
- for (Value *V : VL) {
- auto *Cmp = cast<CmpInst>(V);
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- if (Cmp->getPredicate() != P0)
- std::swap(LHS, RHS);
- Left.push_back(LHS);
- Right.push_back(RHS);
- }
- }
-
- buildTree_rec(Left, Depth + 1, {TE, 0});
- buildTree_rec(Right, Depth + 1, {TE, 1});
- return;
- }
- case Instruction::Select:
- case Instruction::FNeg:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
-
- // Sort operands of the instructions so that each side is more likely to
- // have the same opcode.
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
- buildTree_rec(Left, Depth + 1, {TE, 0});
- buildTree_rec(Right, Depth + 1, {TE, 1});
- return;
- }
-
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
-
- buildTree_rec(Operands, Depth + 1, {TE, i});
- }
- return;
- }
- case Instruction::GetElementPtr: {
- // We don't combine GEPs with complicated (nested) indexing.
- for (unsigned j = 0; j < VL.size(); ++j) {
- if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
- LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
-
- // We can't combine several GEPs into one vector if they operate on
- // different types.
- Type *Ty0 = VL0->getOperand(0)->getType();
- for (unsigned j = 0; j < VL.size(); ++j) {
- Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
- if (Ty0 != CurTy) {
- LLVM_DEBUG(dbgs()
- << "SLP: not-vectorizable GEP (different types).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
-
- // We don't combine GEPs with non-constant indexes.
- for (unsigned j = 0; j < VL.size(); ++j) {
- auto Op = cast<Instruction>(VL[j])->getOperand(1);
- if (!isa<ConstantInt>(Op)) {
- LLVM_DEBUG(dbgs()
- << "SLP: not-vectorizable GEP (non-constant indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- return;
- }
- }
-
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
- for (unsigned i = 0, e = 2; i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
-
- buildTree_rec(Operands, Depth + 1, {TE, i});
- }
- return;
- }
- case Instruction::Store: {
- // Check if the stores are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
- return;
- }
-
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
-
- ValueList Operands;
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(0));
-
- buildTree_rec(Operands, Depth + 1, {TE, 0});
- return;
- }
- case Instruction::Call: {
- // Check if the calls are all to the same vectorizable intrinsic.
- CallInst *CI = cast<CallInst>(VL0);
- // Check if this is an Intrinsic call or something that can be
- // represented by an intrinsic call
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (!isTriviallyVectorizable(ID)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
- return;
- }
- Function *Int = CI->getCalledFunction();
- unsigned NumArgs = CI->getNumArgOperands();
- SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
- for (unsigned j = 0; j != NumArgs; ++j)
- if (hasVectorInstrinsicScalarOpd(ID, j))
- ScalarArgs[j] = CI->getArgOperand(j);
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
- if (!CI2 || CI2->getCalledFunction() != Int ||
- getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
- !CI->hasIdenticalOperandBundleSchema(*CI2)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
- << "\n");
- return;
- }
- // Some intrinsics have scalar arguments and should be same in order for
- // them to be vectorized.
- for (unsigned j = 0; j != NumArgs; ++j) {
- if (hasVectorInstrinsicScalarOpd(ID, j)) {
- Value *A1J = CI2->getArgOperand(j);
- if (ScalarArgs[j] != A1J) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
- << " argument " << ScalarArgs[j] << "!=" << A1J
- << "\n");
- return;
- }
- }
- }
- // Verify that the bundle operands are identical between the two calls.
- if (CI->hasOperandBundles() &&
- !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
- CI->op_begin() + CI->getBundleOperandsEndIndex(),
- CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
- << *CI << "!=" << *VL[i] << '\n');
- return;
- }
- }
-
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL) {
- CallInst *CI2 = dyn_cast<CallInst>(j);
- Operands.push_back(CI2->getArgOperand(i));
- }
- buildTree_rec(Operands, Depth + 1, {TE, i});
- }
- return;
- }
- case Instruction::ShuffleVector: {
- // If this is not an alternate sequence of opcode like add-sub
- // then do not vectorize this instruction.
- if (!S.isAltShuffle()) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
- return;
- }
- auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
-
- // Reorder operands if reordering would enable vectorization.
- if (isa<BinaryOperator>(VL0)) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
- buildTree_rec(Left, Depth + 1, {TE, 0});
- buildTree_rec(Right, Depth + 1, {TE, 1});
- return;
- }
-
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
-
- buildTree_rec(Operands, Depth + 1, {TE, i});
- }
- return;
- }
- default:
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
- LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
- return;
- }
-}
-
-unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
- unsigned N;
- Type *EltTy;
- auto *ST = dyn_cast<StructType>(T);
- if (ST) {
- N = ST->getNumElements();
- EltTy = *ST->element_begin();
- } else {
- N = cast<ArrayType>(T)->getNumElements();
- EltTy = cast<ArrayType>(T)->getElementType();
- }
- if (!isValidElementType(EltTy))
- return 0;
- uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
- if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
- return 0;
- if (ST) {
- // Check that struct is homogeneous.
- for (const auto *Ty : ST->elements())
- if (Ty != EltTy)
- return 0;
- }
- return N;
-}
-
-bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
- SmallVectorImpl<unsigned> &CurrentOrder) const {
- Instruction *E0 = cast<Instruction>(OpValue);
- assert(E0->getOpcode() == Instruction::ExtractElement ||
- E0->getOpcode() == Instruction::ExtractValue);
- assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *Vec = E0->getOperand(0);
-
- CurrentOrder.clear();
-
- // We have to extract from a vector/aggregate with the same number of elements.
- unsigned NElts;
- if (E0->getOpcode() == Instruction::ExtractValue) {
- const DataLayout &DL = E0->getModule()->getDataLayout();
- NElts = canMapToVector(Vec->getType(), DL);
- if (!NElts)
- return false;
- // Check if load can be rewritten as load of vector.
- LoadInst *LI = dyn_cast<LoadInst>(Vec);
- if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
- return false;
- } else {
- NElts = Vec->getType()->getVectorNumElements();
- }
-
- if (NElts != VL.size())
- return false;
-
- // Check that all of the indices extract from the correct offset.
- bool ShouldKeepOrder = true;
- unsigned E = VL.size();
- // Assign to all items the initial value E + 1 so we can check if the extract
- // instruction index was used already.
- // Also, later we can check that all the indices are used and we have a
- // consecutive access in the extract instructions, by checking that no
- // element of CurrentOrder still has value E + 1.
- CurrentOrder.assign(E, E + 1);
- unsigned I = 0;
- for (; I < E; ++I) {
- auto *Inst = cast<Instruction>(VL[I]);
- if (Inst->getOperand(0) != Vec)
- break;
- Optional<unsigned> Idx = getExtractIndex(Inst);
- if (!Idx)
- break;
- const unsigned ExtIdx = *Idx;
- if (ExtIdx != I) {
- if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
- break;
- ShouldKeepOrder = false;
- CurrentOrder[ExtIdx] = I;
- } else {
- if (CurrentOrder[I] != E + 1)
- break;
- CurrentOrder[I] = I;
- }
- }
- if (I < E) {
- CurrentOrder.clear();
- return false;
- }
-
- return ShouldKeepOrder;
-}
-
-bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
- return I->hasOneUse() ||
- std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
- return ScalarToTreeEntry.count(U) > 0;
- });
-}
-
-int BoUpSLP::getEntryCost(TreeEntry *E) {
- ArrayRef<Value*> VL = E->Scalars;
-
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
- ScalarTy = CI->getOperand(0)->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
-
- // If we have computed a smaller type for the expression, update VecTy so
- // that the costs will be accurate.
- if (MinBWs.count(VL[0]))
- VecTy = VectorType::get(
- IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
-
- unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
- bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
- int ReuseShuffleCost = 0;
- if (NeedToShuffleReuses) {
- ReuseShuffleCost =
- TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- if (E->NeedToGather) {
- if (allConstant(VL))
- return 0;
- if (isSplat(VL)) {
- return ReuseShuffleCost +
- TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
- if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement &&
- allSameType(VL) && allSameBlock(VL)) {
- Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
- if (ShuffleKind.hasValue()) {
- int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
- for (auto *V : VL) {
- // If all users of instruction are going to be vectorized and this
- // instruction itself is not going to be vectorized, consider this
- // instruction as dead and remove its cost from the final cost of the
- // vectorized tree.
- if (areAllUsersVectorized(cast<Instruction>(V)) &&
- !ScalarToTreeEntry.count(V)) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(V)->getIndexOperand());
- Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
- IO->getZExtValue());
- }
- }
- return ReuseShuffleCost + Cost;
- }
- }
- return ReuseShuffleCost + getGatherCost(VL);
- }
- InstructionsState S = getSameOpcode(VL);
- assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
- Instruction *VL0 = cast<Instruction>(S.OpValue);
- unsigned ShuffleOrOp = S.isAltShuffle() ?
- (unsigned) Instruction::ShuffleVector : S.getOpcode();
- switch (ShuffleOrOp) {
- case Instruction::PHI:
- return 0;
-
- case Instruction::ExtractValue:
- case Instruction::ExtractElement:
- if (NeedToShuffleReuses) {
- unsigned Idx = 0;
- for (unsigned I : E->ReuseShuffleIndices) {
- if (ShuffleOrOp == Instruction::ExtractElement) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(VL[I])->getIndexOperand());
- Idx = IO->getZExtValue();
- ReuseShuffleCost -= TTI->getVectorInstrCost(
- Instruction::ExtractElement, VecTy, Idx);
- } else {
- ReuseShuffleCost -= TTI->getVectorInstrCost(
- Instruction::ExtractElement, VecTy, Idx);
- ++Idx;
- }
- }
- Idx = ReuseShuffleNumbers;
- for (Value *V : VL) {
- if (ShuffleOrOp == Instruction::ExtractElement) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(V)->getIndexOperand());
- Idx = IO->getZExtValue();
- } else {
- --Idx;
- }
- ReuseShuffleCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
- }
- }
- if (!E->NeedToGather) {
- int DeadCost = ReuseShuffleCost;
- if (!E->ReorderIndices.empty()) {
- // TODO: Merge this shuffle with the ReuseShuffleCost.
- DeadCost += TTI->getShuffleCost(
- TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *E = cast<Instruction>(VL[i]);
- // If all users are going to be vectorized, instruction can be
- // considered as dead.
- // The same, if have only one user, it will be vectorized for sure.
- if (areAllUsersVectorized(E)) {
- // Take credit for instruction that will become dead.
- if (E->hasOneUse()) {
- Instruction *Ext = E->user_back();
- if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
- all_of(Ext->users(),
- [](User *U) { return isa<GetElementPtrInst>(U); })) {
- // Use getExtractWithExtendCost() to calculate the cost of
- // extractelement/ext pair.
- DeadCost -= TTI->getExtractWithExtendCost(
- Ext->getOpcode(), Ext->getType(), VecTy, i);
- // Add back the cost of s|zext which is subtracted separately.
- DeadCost += TTI->getCastInstrCost(
- Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
- continue;
- }
- }
- DeadCost -=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
- }
- }
- return DeadCost;
- }
- return ReuseShuffleCost + getGatherCost(VL);
-
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- int ScalarEltCost =
- TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
-
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * ScalarEltCost;
-
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = 0;
- // Check if the values are candidates to demote.
- if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
- VecCost = ReuseShuffleCost +
- TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0);
- }
- return VecCost - ScalarCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select: {
- // Calculate the cost of this instruction.
- int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy,
- Builder.getInt1Ty(), VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
- int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- case Instruction::FNeg:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Certain instructions can be cheaper to vectorize if they have a
- // constant second vector operand.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_PowerOf2;
-
- // If all operands are exactly the same ConstantInt then set the
- // operand kind to OK_UniformConstantValue.
- // If instead not all operands are constants, then set the operand kind
- // to OK_AnyValue. If all operands are constants but not the same,
- // then set the operand kind to OK_NonUniformConstantValue.
- ConstantInt *CInt0 = nullptr;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- const Instruction *I = cast<Instruction>(VL[i]);
- unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
- ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
- if (!CInt) {
- Op2VK = TargetTransformInfo::OK_AnyValue;
- Op2VP = TargetTransformInfo::OP_None;
- break;
- }
- if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
- !CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_None;
- if (i == 0) {
- CInt0 = CInt;
- continue;
- }
- if (CInt0 != CInt)
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- }
-
- SmallVector<const Value *, 4> Operands(VL0->operand_values());
- int ScalarEltCost = TTI->getArithmeticInstrCost(
- S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
- int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK,
- Op2VK, Op1VP, Op2VP, Operands);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- case Instruction::GetElementPtr: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
-
- int ScalarEltCost =
- TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
- int VecCost =
- TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- case Instruction::Load: {
- // Cost of wide load - cost of scalar loads.
- unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
- int ScalarEltCost =
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
- int VecLdCost =
- TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
- if (!E->ReorderIndices.empty()) {
- // TODO: Merge this shuffle with the ReuseShuffleCost.
- VecLdCost += TTI->getShuffleCost(
- TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- return ReuseShuffleCost + VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
- int ScalarEltCost =
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
- int VecStCost =
- TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
- return ReuseShuffleCost + VecStCost - ScalarStCost;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
-
- // Calculate the cost of the scalar and vector calls.
- SmallVector<Type *, 4> ScalarTys;
- for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
- ScalarTys.push_back(CI->getArgOperand(op)->getType());
-
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
-
- int ScalarEltCost =
- TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
- if (NeedToShuffleReuses) {
- ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
- }
- int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
-
- SmallVector<Value *, 4> Args(CI->arg_operands());
- int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
- VecTy->getNumElements());
-
- LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
- << " (" << VecCallCost << "-" << ScalarCallCost << ")"
- << " for " << *CI << "\n");
-
- return ReuseShuffleCost + VecCallCost - ScalarCallCost;
- }
- case Instruction::ShuffleVector: {
- assert(S.isAltShuffle() &&
- ((Instruction::isBinaryOp(S.getOpcode()) &&
- Instruction::isBinaryOp(S.getAltOpcode())) ||
- (Instruction::isCast(S.getOpcode()) &&
- Instruction::isCast(S.getAltOpcode()))) &&
- "Invalid Shuffle Vector Operand");
- int ScalarCost = 0;
- if (NeedToShuffleReuses) {
- for (unsigned Idx : E->ReuseShuffleIndices) {
- Instruction *I = cast<Instruction>(VL[Idx]);
- ReuseShuffleCost -= TTI->getInstructionCost(
- I, TargetTransformInfo::TCK_RecipThroughput);
- }
- for (Value *V : VL) {
- Instruction *I = cast<Instruction>(V);
- ReuseShuffleCost += TTI->getInstructionCost(
- I, TargetTransformInfo::TCK_RecipThroughput);
- }
- }
- for (Value *i : VL) {
- Instruction *I = cast<Instruction>(i);
- assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
- ScalarCost += TTI->getInstructionCost(
- I, TargetTransformInfo::TCK_RecipThroughput);
- }
- // VecCost is equal to sum of the cost of creating 2 vectors
- // and the cost of creating shuffle.
- int VecCost = 0;
- if (Instruction::isBinaryOp(S.getOpcode())) {
- VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy);
- VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy);
- } else {
- Type *Src0SclTy = S.MainOp->getOperand(0)->getType();
- Type *Src1SclTy = S.AltOp->getOperand(0)->getType();
- VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
- VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
- VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty);
- VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty);
- }
- VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
- return ReuseShuffleCost + VecCost - ScalarCost;
- }
- default:
- llvm_unreachable("Unknown instruction");
- }
-}
-
-bool BoUpSLP::isFullyVectorizableTinyTree() const {
- LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
- << VectorizableTree.size() << " is fully vectorizable .\n");
-
- // We only handle trees of heights 1 and 2.
- if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
- return true;
-
- if (VectorizableTree.size() != 2)
- return false;
-
- // Handle splat and all-constants stores.
- if (!VectorizableTree[0]->NeedToGather &&
- (allConstant(VectorizableTree[1]->Scalars) ||
- isSplat(VectorizableTree[1]->Scalars)))
- return true;
-
- // Gathering cost would be too much for tiny trees.
- if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
- return false;
-
- return true;
-}
-
-bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
- // We can vectorize the tree if its size is greater than or equal to the
- // minimum size specified by the MinTreeSize command line option.
- if (VectorizableTree.size() >= MinTreeSize)
- return false;
-
- // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
- // can vectorize it if we can prove it fully vectorizable.
- if (isFullyVectorizableTinyTree())
- return false;
-
- assert(VectorizableTree.empty()
- ? ExternalUses.empty()
- : true && "We shouldn't have any external users");
-
- // Otherwise, we can't vectorize the tree. It is both tiny and not fully
- // vectorizable.
- return true;
-}
-
-int BoUpSLP::getSpillCost() const {
- // Walk from the bottom of the tree to the top, tracking which values are
- // live. When we see a call instruction that is not part of our tree,
- // query TTI to see if there is a cost to keeping values live over it
- // (for example, if spills and fills are required).
- unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
- int Cost = 0;
-
- SmallPtrSet<Instruction*, 4> LiveValues;
- Instruction *PrevInst = nullptr;
-
- for (const auto &TEPtr : VectorizableTree) {
- Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
- if (!Inst)
- continue;
-
- if (!PrevInst) {
- PrevInst = Inst;
- continue;
- }
-
- // Update LiveValues.
- LiveValues.erase(PrevInst);
- for (auto &J : PrevInst->operands()) {
- if (isa<Instruction>(&*J) && getTreeEntry(&*J))
- LiveValues.insert(cast<Instruction>(&*J));
- }
-
- LLVM_DEBUG({
- dbgs() << "SLP: #LV: " << LiveValues.size();
- for (auto *X : LiveValues)
- dbgs() << " " << X->getName();
- dbgs() << ", Looking at ";
- Inst->dump();
- });
-
- // Now find the sequence of instructions between PrevInst and Inst.
- unsigned NumCalls = 0;
- BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
- PrevInstIt =
- PrevInst->getIterator().getReverse();
- while (InstIt != PrevInstIt) {
- if (PrevInstIt == PrevInst->getParent()->rend()) {
- PrevInstIt = Inst->getParent()->rbegin();
- continue;
- }
-
- // Debug informations don't impact spill cost.
- if ((isa<CallInst>(&*PrevInstIt) &&
- !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
- &*PrevInstIt != PrevInst)
- NumCalls++;
-
- ++PrevInstIt;
- }
-
- if (NumCalls) {
- SmallVector<Type*, 4> V;
- for (auto *II : LiveValues)
- V.push_back(VectorType::get(II->getType(), BundleWidth));
- Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
- }
-
- PrevInst = Inst;
- }
-
- return Cost;
-}
-
-int BoUpSLP::getTreeCost() {
- int Cost = 0;
- LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
- << VectorizableTree.size() << ".\n");
-
- unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
-
- for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
- TreeEntry &TE = *VectorizableTree[I].get();
-
- // We create duplicate tree entries for gather sequences that have multiple
- // uses. However, we should not compute the cost of duplicate sequences.
- // For example, if we have a build vector (i.e., insertelement sequence)
- // that is used by more than one vector instruction, we only need to
- // compute the cost of the insertelement instructions once. The redundant
- // instructions will be eliminated by CSE.
- //
- // We should consider not creating duplicate tree entries for gather
- // sequences, and instead add additional edges to the tree representing
- // their uses. Since such an approach results in fewer total entries,
- // existing heuristics based on tree size may yield different results.
- //
- if (TE.NeedToGather &&
- std::any_of(
- std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
- [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
- return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
- }))
- continue;
-
- int C = getEntryCost(&TE);
- LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
- << " for bundle that starts with " << *TE.Scalars[0]
- << ".\n");
- Cost += C;
- }
-
- SmallPtrSet<Value *, 16> ExtractCostCalculated;
- int ExtractCost = 0;
- for (ExternalUser &EU : ExternalUses) {
- // We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(EU.Scalar).second)
- continue;
-
- // Uses by ephemeral values are free (because the ephemeral value will be
- // removed prior to code generation, and so the extraction will be
- // removed as well).
- if (EphValues.count(EU.User))
- continue;
-
- // If we plan to rewrite the tree in a smaller type, we will need to sign
- // extend the extracted value back to the original type. Here, we account
- // for the extract and the added cost of the sign extend if needed.
- auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
- auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto Extend =
- MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
- VecTy = VectorType::get(MinTy, BundleWidth);
- ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
- VecTy, EU.Lane);
- } else {
- ExtractCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
- }
- }
-
- int SpillCost = getSpillCost();
- Cost += SpillCost + ExtractCost;
-
- std::string Str;
- {
- raw_string_ostream OS(Str);
- OS << "SLP: Spill Cost = " << SpillCost << ".\n"
- << "SLP: Extract Cost = " << ExtractCost << ".\n"
- << "SLP: Total Cost = " << Cost << ".\n";
- }
- LLVM_DEBUG(dbgs() << Str);
-
- if (ViewSLPTree)
- ViewGraph(this, "SLP" + F->getName(), false, Str);
-
- return Cost;
-}
-
-int BoUpSLP::getGatherCost(Type *Ty,
- const DenseSet<unsigned> &ShuffledIndices) const {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- if (!ShuffledIndices.count(i))
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- if (!ShuffledIndices.empty())
- Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
- return Cost;
-}
-
-int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- // Check if the same elements are inserted several times and count them as
- // shuffle candidates.
- DenseSet<unsigned> ShuffledElements;
- DenseSet<Value *> UniqueElements;
- // Iterate in reverse order to consider insert elements with the high cost.
- for (unsigned I = VL.size(); I > 0; --I) {
- unsigned Idx = I - 1;
- if (!UniqueElements.insert(VL[Idx]).second)
- ShuffledElements.insert(Idx);
- }
- return getGatherCost(VecTy, ShuffledElements);
-}
-
-// Perform operand reordering on the instructions in VL and return the reordered
-// operands in Left and Right.
-void BoUpSLP::reorderInputsAccordingToOpcode(
- ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right, const DataLayout &DL,
- ScalarEvolution &SE) {
- if (VL.empty())
- return;
- VLOperands Ops(VL, DL, SE);
- // Reorder the operands in place.
- Ops.reorder();
- Left = Ops.getVL(0);
- Right = Ops.getVL(1);
-}
-
-void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL,
- const InstructionsState &S) {
- // Get the basic block this bundle is in. All instructions in the bundle
- // should be in this block.
- auto *Front = cast<Instruction>(S.OpValue);
- auto *BB = Front->getParent();
- assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
- auto *I = cast<Instruction>(V);
- return !S.isOpcodeOrAlt(I) || I->getParent() == BB;
- }));
-
- // The last instruction in the bundle in program order.
- Instruction *LastInst = nullptr;
-
- // Find the last instruction. The common case should be that BB has been
- // scheduled, and the last instruction is VL.back(). So we start with
- // VL.back() and iterate over schedule data until we reach the end of the
- // bundle. The end of the bundle is marked by null ScheduleData.
- if (BlocksSchedules.count(BB)) {
- auto *Bundle =
- BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back()));
- if (Bundle && Bundle->isPartOfBundle())
- for (; Bundle; Bundle = Bundle->NextInBundle)
- if (Bundle->OpValue == Bundle->Inst)
- LastInst = Bundle->Inst;
- }
-
- // LastInst can still be null at this point if there's either not an entry
- // for BB in BlocksSchedules or there's no ScheduleData available for
- // VL.back(). This can be the case if buildTree_rec aborts for various
- // reasons (e.g., the maximum recursion depth is reached, the maximum region
- // size is reached, etc.). ScheduleData is initialized in the scheduling
- // "dry-run".
- //
- // If this happens, we can still find the last instruction by brute force. We
- // iterate forwards from Front (inclusive) until we either see all
- // instructions in the bundle or reach the end of the block. If Front is the
- // last instruction in program order, LastInst will be set to Front, and we
- // will visit all the remaining instructions in the block.
- //
- // One of the reasons we exit early from buildTree_rec is to place an upper
- // bound on compile-time. Thus, taking an additional compile-time hit here is
- // not ideal. However, this should be exceedingly rare since it requires that
- // we both exit early from buildTree_rec and that the bundle be out-of-order
- // (causing us to iterate all the way to the end of the block).
- if (!LastInst) {
- SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
- for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
- if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I))
- LastInst = &I;
- if (Bundle.empty())
- break;
- }
- }
-
- // Set the insertion point after the last instruction in the bundle. Set the
- // debug location to Front.
- Builder.SetInsertPoint(BB, ++LastInst->getIterator());
- Builder.SetCurrentDebugLocation(Front->getDebugLoc());
-}
-
-Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
- Value *Vec = UndefValue::get(Ty);
- // Generate the 'InsertElement' instruction.
- for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
- GatherSeq.insert(Insrt);
- CSEBlocks.insert(Insrt->getParent());
-
- // Add to our 'need-to-extract' list.
- if (TreeEntry *E = getTreeEntry(VL[i])) {
- // Find which lane we need to extract.
- int FoundLane = -1;
- for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
- // Is this the lane of the scalar that we are looking for ?
- if (E->Scalars[Lane] == VL[i]) {
- FoundLane = Lane;
- break;
- }
- }
- assert(FoundLane >= 0 && "Could not find the correct lane");
- if (!E->ReuseShuffleIndices.empty()) {
- FoundLane =
- std::distance(E->ReuseShuffleIndices.begin(),
- llvm::find(E->ReuseShuffleIndices, FoundLane));
- }
- ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
- }
- }
- }
-
- return Vec;
-}
-
-Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
- InstructionsState S = getSameOpcode(VL);
- if (S.getOpcode()) {
- if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- if (E->isSame(VL)) {
- Value *V = vectorizeTree(E);
- if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
- // We need to get the vectorized value but without shuffle.
- if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
- V = SV->getOperand(0);
- } else {
- // Reshuffle to get only unique values.
- SmallVector<unsigned, 4> UniqueIdxs;
- SmallSet<unsigned, 4> UsedIdxs;
- for(unsigned Idx : E->ReuseShuffleIndices)
- if (UsedIdxs.insert(Idx).second)
- UniqueIdxs.emplace_back(Idx);
- V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
- UniqueIdxs);
- }
- }
- return V;
- }
- }
- }
-
- Type *ScalarTy = S.OpValue->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
- ScalarTy = SI->getValueOperand()->getType();
-
- // Check that every instruction appears once in this bundle.
- SmallVector<unsigned, 4> ReuseShuffleIndicies;
- SmallVector<Value *, 4> UniqueValues;
- if (VL.size() > 2) {
- DenseMap<Value *, unsigned> UniquePositions;
- for (Value *V : VL) {
- auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
- ReuseShuffleIndicies.emplace_back(Res.first->second);
- if (Res.second || isa<Constant>(V))
- UniqueValues.emplace_back(V);
- }
- // Do not shuffle single element or if number of unique values is not power
- // of 2.
- if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
- !llvm::isPowerOf2_32(UniqueValues.size()))
- ReuseShuffleIndicies.clear();
- else
- VL = UniqueValues;
- }
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
-
- Value *V = Gather(VL, VecTy);
- if (!ReuseShuffleIndicies.empty()) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- ReuseShuffleIndicies, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- return V;
-}
-
-static void inversePermutation(ArrayRef<unsigned> Indices,
- SmallVectorImpl<unsigned> &Mask) {
- Mask.clear();
- const unsigned E = Indices.size();
- Mask.resize(E);
- for (unsigned I = 0; I < E; ++I)
- Mask[Indices[I]] = I;
-}
-
-Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
- IRBuilder<>::InsertPointGuard Guard(Builder);
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
- return E->VectorizedValue;
- }
-
- InstructionsState S = getSameOpcode(E->Scalars);
- Instruction *VL0 = cast<Instruction>(S.OpValue);
- Type *ScalarTy = VL0->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
-
- bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
-
- if (E->NeedToGather) {
- setInsertPointAfterBundle(E->Scalars, S);
- auto *V = Gather(E->Scalars, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- E->VectorizedValue = V;
- return V;
- }
-
- unsigned ShuffleOrOp = S.isAltShuffle() ?
- (unsigned) Instruction::ShuffleVector : S.getOpcode();
- switch (ShuffleOrOp) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- Value *V = NewPhi;
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
-
- // PHINodes may have multiple entries from the same block. We want to
- // visit every block once.
- SmallPtrSet<BasicBlock*, 4> VisitedBBs;
-
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
-
- if (!VisitedBBs.insert(IBB).second) {
- NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
- continue;
- }
-
- Builder.SetInsertPoint(IBB->getTerminator());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(E->getOperand(i));
- NewPhi->addIncoming(Vec, IBB);
- }
-
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return V;
- }
-
- case Instruction::ExtractElement: {
- if (!E->NeedToGather) {
- Value *V = E->getSingleOperand(0);
- if (!E->ReorderIndices.empty()) {
- OrdersType Mask;
- inversePermutation(E->ReorderIndices, Mask);
- Builder.SetInsertPoint(VL0);
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
- "reorder_shuffle");
- }
- if (NeedToShuffleReuses) {
- // TODO: Merge this shuffle with the ReorderShuffleMask.
- if (E->ReorderIndices.empty())
- Builder.SetInsertPoint(VL0);
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- return V;
- }
- setInsertPointAfterBundle(E->Scalars, S);
- auto *V = Gather(E->Scalars, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ExtractValue: {
- if (!E->NeedToGather) {
- LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
- Builder.SetInsertPoint(LI);
- PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
- Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
- LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
- Value *NewV = propagateMetadata(V, E->Scalars);
- if (!E->ReorderIndices.empty()) {
- OrdersType Mask;
- inversePermutation(E->ReorderIndices, Mask);
- NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
- "reorder_shuffle");
- }
- if (NeedToShuffleReuses) {
- // TODO: Merge this shuffle with the ReorderShuffleMask.
- NewV = Builder.CreateShuffleVector(
- NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = NewV;
- return NewV;
- }
- setInsertPointAfterBundle(E->Scalars, S);
- auto *V = Gather(E->Scalars, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- if (auto *I = dyn_cast<Instruction>(V)) {
- GatherSeq.insert(I);
- CSEBlocks.insert(I->getParent());
- }
- }
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *InVec = vectorizeTree(E->getOperand(0));
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
-
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *L = vectorizeTree(E->getOperand(0));
- Value *R = vectorizeTree(E->getOperand(1));
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
-
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Value *V;
- if (S.getOpcode() == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
-
- propagateIRFlags(V, E->Scalars, VL0);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Select: {
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *Cond = vectorizeTree(E->getOperand(0));
- Value *True = vectorizeTree(E->getOperand(1));
- Value *False = vectorizeTree(E->getOperand(2));
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
-
- Value *V = Builder.CreateSelect(Cond, True, False);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::FNeg: {
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *Op = vectorizeTree(E->getOperand(0));
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
-
- Value *V = Builder.CreateUnOp(
- static_cast<Instruction::UnaryOps>(S.getOpcode()), Op);
- propagateIRFlags(V, E->Scalars, VL0);
- if (auto *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
-
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
-
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *LHS = vectorizeTree(E->getOperand(0));
- Value *RHS = vectorizeTree(E->getOperand(1));
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
-
- Value *V = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
- propagateIRFlags(V, E->Scalars, VL0);
- if (auto *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
-
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
-
- return V;
- }
- case Instruction::Load: {
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- bool IsReorder = !E->ReorderIndices.empty();
- if (IsReorder) {
- S = getSameOpcode(E->Scalars, E->ReorderIndices.front());
- VL0 = cast<Instruction>(S.OpValue);
- }
- setInsertPointAfterBundle(E->Scalars, S);
-
- LoadInst *LI = cast<LoadInst>(VL0);
- Type *ScalarLoadTy = LI->getType();
- unsigned AS = LI->getPointerAddressSpace();
-
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo(AS));
-
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- Value *PO = LI->getPointerOperand();
- if (getTreeEntry(PO))
- ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
-
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecTy, VecPtr);
- if (!Alignment) {
- Alignment = DL->getABITypeAlignment(ScalarLoadTy);
- }
- LI->setAlignment(Alignment);
- Value *V = propagateMetadata(LI, E->Scalars);
- if (IsReorder) {
- OrdersType Mask;
- inversePermutation(E->ReorderIndices, Mask);
- V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
- Mask, "reorder_shuffle");
- }
- if (NeedToShuffleReuses) {
- // TODO: Merge this shuffle with the ReorderShuffleMask.
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
- unsigned AS = SI->getPointerAddressSpace();
-
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *VecValue = vectorizeTree(E->getOperand(0));
- Value *ScalarPtr = SI->getPointerOperand();
- Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
- StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
-
- // The pointer operand uses an in-tree scalar, so add the new BitCast to
- // ExternalUses to make sure that an extract will be generated in the
- // future.
- if (getTreeEntry(ScalarPtr))
- ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
-
- if (!Alignment)
- Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
-
- ST->setAlignment(Alignment);
- Value *V = propagateMetadata(ST, E->Scalars);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::GetElementPtr: {
- setInsertPointAfterBundle(E->Scalars, S);
-
- Value *Op0 = vectorizeTree(E->getOperand(0));
-
- std::vector<Value *> OpVecs;
- for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
- ++j) {
- Value *OpVec = vectorizeTree(E->getOperand(j));
- OpVecs.push_back(OpVec);
- }
-
- Value *V = Builder.CreateGEP(
- cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
- if (Instruction *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
-
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
-
- return V;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- setInsertPointAfterBundle(E->Scalars, S);
- Function *FI;
- Intrinsic::ID IID = Intrinsic::not_intrinsic;
- Value *ScalarArg = nullptr;
- if (CI && (FI = CI->getCalledFunction())) {
- IID = FI->getIntrinsicID();
- }
- std::vector<Value *> OpVecs;
- for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
- ValueList OpVL;
- // Some intrinsics have scalar arguments. This argument should not be
- // vectorized.
- if (hasVectorInstrinsicScalarOpd(IID, j)) {
- CallInst *CEI = cast<CallInst>(VL0);
- ScalarArg = CEI->getArgOperand(j);
- OpVecs.push_back(CEI->getArgOperand(j));
- continue;
- }
-
- Value *OpVec = vectorizeTree(E->getOperand(j));
- LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
- OpVecs.push_back(OpVec);
- }
-
- Module *M = F->getParent();
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
- Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
-
- // The scalar argument uses an in-tree scalar so we add the new vectorized
- // call to ExternalUses list to make sure that an extract will be
- // generated in the future.
- if (ScalarArg && getTreeEntry(ScalarArg))
- ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
-
- propagateIRFlags(V, E->Scalars, VL0);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::ShuffleVector: {
- assert(S.isAltShuffle() &&
- ((Instruction::isBinaryOp(S.getOpcode()) &&
- Instruction::isBinaryOp(S.getAltOpcode())) ||
- (Instruction::isCast(S.getOpcode()) &&
- Instruction::isCast(S.getAltOpcode()))) &&
- "Invalid Shuffle Vector Operand");
-
- Value *LHS, *RHS;
- if (Instruction::isBinaryOp(S.getOpcode())) {
- setInsertPointAfterBundle(E->Scalars, S);
- LHS = vectorizeTree(E->getOperand(0));
- RHS = vectorizeTree(E->getOperand(1));
- } else {
- setInsertPointAfterBundle(E->Scalars, S);
- LHS = vectorizeTree(E->getOperand(0));
- }
-
- if (E->VectorizedValue) {
- LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
- return E->VectorizedValue;
- }
-
- Value *V0, *V1;
- if (Instruction::isBinaryOp(S.getOpcode())) {
- V0 = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
- V1 = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS);
- } else {
- V0 = Builder.CreateCast(
- static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy);
- V1 = Builder.CreateCast(
- static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy);
- }
-
- // Create shuffle to take alternate operations from the vector.
- // Also, gather up main and alt scalar ops to propagate IR flags to
- // each vector operation.
- ValueList OpScalars, AltScalars;
- unsigned e = E->Scalars.size();
- SmallVector<Constant *, 8> Mask(e);
- for (unsigned i = 0; i < e; ++i) {
- auto *OpInst = cast<Instruction>(E->Scalars[i]);
- assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
- if (OpInst->getOpcode() == S.getAltOpcode()) {
- Mask[i] = Builder.getInt32(e + i);
- AltScalars.push_back(E->Scalars[i]);
- } else {
- Mask[i] = Builder.getInt32(i);
- OpScalars.push_back(E->Scalars[i]);
- }
- }
-
- Value *ShuffleMask = ConstantVector::get(Mask);
- propagateIRFlags(V0, OpScalars);
- propagateIRFlags(V1, AltScalars);
-
- Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
- if (Instruction *I = dyn_cast<Instruction>(V))
- V = propagateMetadata(I, E->Scalars);
- if (NeedToShuffleReuses) {
- V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
- E->ReuseShuffleIndices, "shuffle");
- }
- E->VectorizedValue = V;
- ++NumVectorInstructions;
-
- return V;
- }
- default:
- llvm_unreachable("unknown inst");
- }
- return nullptr;
-}
-
-Value *BoUpSLP::vectorizeTree() {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- return vectorizeTree(ExternallyUsedValues);
-}
-
-Value *
-BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
- // All blocks must be scheduled before any instructions are inserted.
- for (auto &BSIter : BlocksSchedules) {
- scheduleBlock(BSIter.second.get());
- }
-
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
-
- // If the vectorized tree can be rewritten in a smaller type, we truncate the
- // vectorized root. InstCombine will then rewrite the entire expression. We
- // sign extend the extracted values below.
- auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- if (auto *I = dyn_cast<Instruction>(VectorRoot))
- Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
- auto BundleWidth = VectorizableTree[0]->Scalars.size();
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto *VecTy = VectorType::get(MinTy, BundleWidth);
- auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
- VectorizableTree[0]->VectorizedValue = Trunc;
- }
-
- LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
- << " values .\n");
-
- // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
- // specified by ScalarType.
- auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
- if (!MinBWs.count(ScalarRoot))
- return Ex;
- if (MinBWs[ScalarRoot].second)
- return Builder.CreateSExt(Ex, ScalarType);
- return Builder.CreateZExt(Ex, ScalarType);
- };
-
- // Extract all of the elements with the external uses.
- for (const auto &ExternalUse : ExternalUses) {
- Value *Scalar = ExternalUse.Scalar;
- llvm::User *User = ExternalUse.User;
-
- // Skip users that we already RAUW. This happens when one instruction
- // has multiple uses of the same value.
- if (User && !is_contained(Scalar->users(), User))
- continue;
- TreeEntry *E = getTreeEntry(Scalar);
- assert(E && "Invalid scalar");
- assert(!E->NeedToGather && "Extracting from a gather list");
-
- Value *Vec = E->VectorizedValue;
- assert(Vec && "Can't find vectorizable value");
-
- Value *Lane = Builder.getInt32(ExternalUse.Lane);
- // If User == nullptr, the Scalar is used as extra arg. Generate
- // ExtractElement instruction and update the record for this scalar in
- // ExternallyUsedValues.
- if (!User) {
- assert(ExternallyUsedValues.count(Scalar) &&
- "Scalar with nullptr as an external user must be registered in "
- "ExternallyUsedValues map");
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
- auto &Locs = ExternallyUsedValues[Scalar];
- ExternallyUsedValues.insert({Ex, Locs});
- ExternallyUsedValues.erase(Scalar);
- // Required to update internally referenced instructions.
- Scalar->replaceAllUsesWith(Ex);
- continue;
- }
-
- // Generate extracts for out-of-tree users.
- // Find the insertion point for the extractelement lane.
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- if (PHINode *PH = dyn_cast<PHINode>(User)) {
- for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
- if (PH->getIncomingValue(i) == Scalar) {
- Instruction *IncomingTerminator =
- PH->getIncomingBlock(i)->getTerminator();
- if (isa<CatchSwitchInst>(IncomingTerminator)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(PH->getIncomingBlock(i));
- PH->setOperand(i, Ex);
- }
- }
- } else {
- Builder.SetInsertPoint(cast<Instruction>(User));
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(User)->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(&F->getEntryBlock());
- User->replaceUsesOfWith(Scalar, Ex);
- }
-
- LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
- }
-
- // For each vectorized value:
- for (auto &TEPtr : VectorizableTree) {
- TreeEntry *Entry = TEPtr.get();
-
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
-
- assert(Entry->VectorizedValue && "Can't find vectorizable value");
-
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
-
- Type *Ty = Scalar->getType();
- if (!Ty->isVoidTy()) {
-#ifndef NDEBUG
- for (User *U : Scalar->users()) {
- LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
-
- // It is legal to replace users in the ignorelist by undef.
- assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
- "Replacing out-of-tree value with undef");
- }
-#endif
- Value *Undef = UndefValue::get(Ty);
- Scalar->replaceAllUsesWith(Undef);
- }
- LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- eraseInstruction(cast<Instruction>(Scalar));
- }
- }
-
- Builder.ClearInsertionPoint();
-
- return VectorizableTree[0]->VectorizedValue;
-}
-
-void BoUpSLP::optimizeGatherSequence() {
- LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
- << " gather sequences instructions.\n");
- // LICM InsertElementInst sequences.
- for (Instruction *I : GatherSeq) {
- if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
- continue;
-
- // Check if this block is inside a loop.
- Loop *L = LI->getLoopFor(I->getParent());
- if (!L)
- continue;
-
- // Check if it has a preheader.
- BasicBlock *PreHeader = L->getLoopPreheader();
- if (!PreHeader)
- continue;
-
- // If the vector or the element that we insert into it are
- // instructions that are defined in this basic block then we can't
- // hoist this instruction.
- auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
- auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
- if (Op0 && L->contains(Op0))
- continue;
- if (Op1 && L->contains(Op1))
- continue;
-
- // We can hoist this instruction. Move it to the pre-header.
- I->moveBefore(PreHeader->getTerminator());
- }
-
- // Make a list of all reachable blocks in our CSE queue.
- SmallVector<const DomTreeNode *, 8> CSEWorkList;
- CSEWorkList.reserve(CSEBlocks.size());
- for (BasicBlock *BB : CSEBlocks)
- if (DomTreeNode *N = DT->getNode(BB)) {
- assert(DT->isReachableFromEntry(N));
- CSEWorkList.push_back(N);
- }
-
- // Sort blocks by domination. This ensures we visit a block after all blocks
- // dominating it are visited.
- llvm::stable_sort(CSEWorkList,
- [this](const DomTreeNode *A, const DomTreeNode *B) {
- return DT->properlyDominates(A, B);
- });
-
- // Perform O(N^2) search over the gather sequences and merge identical
- // instructions. TODO: We can further optimize this scan if we split the
- // instructions into different buckets based on the insert lane.
- SmallVector<Instruction *, 16> Visited;
- for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
- assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
- "Worklist not sorted properly!");
- BasicBlock *BB = (*I)->getBlock();
- // For all instructions in blocks containing gather sequences:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = &*it++;
- if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
- continue;
-
- // Check if we can replace this instruction with any of the
- // visited instructions.
- for (Instruction *v : Visited) {
- if (In->isIdenticalTo(v) &&
- DT->dominates(v->getParent(), In->getParent())) {
- In->replaceAllUsesWith(v);
- eraseInstruction(In);
- In = nullptr;
- break;
- }
- }
- if (In) {
- assert(!is_contained(Visited, In));
- Visited.push_back(In);
- }
- }
- }
- CSEBlocks.clear();
- GatherSeq.clear();
-}
-
-// Groups the instructions to a bundle (which is then a single scheduling entity)
-// and schedules instructions until the bundle gets ready.
-bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
- BoUpSLP *SLP,
- const InstructionsState &S) {
- if (isa<PHINode>(S.OpValue))
- return true;
-
- // Initialize the instruction bundle.
- Instruction *OldScheduleEnd = ScheduleEnd;
- ScheduleData *PrevInBundle = nullptr;
- ScheduleData *Bundle = nullptr;
- bool ReSchedule = false;
- LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
-
- // Make sure that the scheduling region contains all
- // instructions of the bundle.
- for (Value *V : VL) {
- if (!extendSchedulingRegion(V, S))
- return false;
- }
-
- for (Value *V : VL) {
- ScheduleData *BundleMember = getScheduleData(V);
- assert(BundleMember &&
- "no ScheduleData for bundle member (maybe not in same basic block)");
- if (BundleMember->IsScheduled) {
- // A bundle member was scheduled as single instruction before and now
- // needs to be scheduled as part of the bundle. We just get rid of the
- // existing schedule.
- LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
- << " was already scheduled\n");
- ReSchedule = true;
- }
- assert(BundleMember->isSchedulingEntity() &&
- "bundle member already part of other bundle");
- if (PrevInBundle) {
- PrevInBundle->NextInBundle = BundleMember;
- } else {
- Bundle = BundleMember;
- }
- BundleMember->UnscheduledDepsInBundle = 0;
- Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
-
- // Group the instructions to a bundle.
- BundleMember->FirstInBundle = Bundle;
- PrevInBundle = BundleMember;
- }
- if (ScheduleEnd != OldScheduleEnd) {
- // The scheduling region got new instructions at the lower end (or it is a
- // new region for the first bundle). This makes it necessary to
- // recalculate all dependencies.
- // It is seldom that this needs to be done a second time after adding the
- // initial bundle to the region.
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [](ScheduleData *SD) {
- SD->clearDependencies();
- });
- }
- ReSchedule = true;
- }
- if (ReSchedule) {
- resetSchedule();
- initialFillReadyList(ReadyInsts);
- }
-
- LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
- << BB->getName() << "\n");
-
- calculateDependencies(Bundle, true, SLP);
-
- // Now try to schedule the new bundle. As soon as the bundle is "ready" it
- // means that there are no cyclic dependencies and we can schedule it.
- // Note that's important that we don't "schedule" the bundle yet (see
- // cancelScheduling).
- while (!Bundle->isReady() && !ReadyInsts.empty()) {
-
- ScheduleData *pickedSD = ReadyInsts.back();
- ReadyInsts.pop_back();
-
- if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
- schedule(pickedSD, ReadyInsts);
- }
- }
- if (!Bundle->isReady()) {
- cancelScheduling(VL, S.OpValue);
- return false;
- }
- return true;
-}
-
-void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
- Value *OpValue) {
- if (isa<PHINode>(OpValue))
- return;
-
- ScheduleData *Bundle = getScheduleData(OpValue);
- LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
- assert(!Bundle->IsScheduled &&
- "Can't cancel bundle which is already scheduled");
- assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
- "tried to unbundle something which is not a bundle");
-
- // Un-bundle: make single instructions out of the bundle.
- ScheduleData *BundleMember = Bundle;
- while (BundleMember) {
- assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
- BundleMember->FirstInBundle = BundleMember;
- ScheduleData *Next = BundleMember->NextInBundle;
- BundleMember->NextInBundle = nullptr;
- BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
- if (BundleMember->UnscheduledDepsInBundle == 0) {
- ReadyInsts.insert(BundleMember);
- }
- BundleMember = Next;
- }
-}
-
-BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
- // Allocate a new ScheduleData for the instruction.
- if (ChunkPos >= ChunkSize) {
- ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
- ChunkPos = 0;
- }
- return &(ScheduleDataChunks.back()[ChunkPos++]);
-}
-
-bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
- const InstructionsState &S) {
- if (getScheduleData(V, isOneOf(S, V)))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- assert(I && "bundle member must be an instruction");
- assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
- auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
- ScheduleData *ISD = getScheduleData(I);
- if (!ISD)
- return false;
- assert(isInSchedulingRegion(ISD) &&
- "ScheduleData not in scheduling region");
- ScheduleData *SD = allocateScheduleDataChunks();
- SD->Inst = I;
- SD->init(SchedulingRegionID, S.OpValue);
- ExtraScheduleDataMap[I][S.OpValue] = SD;
- return true;
- };
- if (CheckSheduleForI(I))
- return true;
- if (!ScheduleStart) {
- // It's the first instruction in the new region.
- initScheduleData(I, I->getNextNode(), nullptr, nullptr);
- ScheduleStart = I;
- ScheduleEnd = I->getNextNode();
- if (isOneOf(S, I) != I)
- CheckSheduleForI(I);
- assert(ScheduleEnd && "tried to vectorize a terminator?");
- LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
- return true;
- }
- // Search up and down at the same time, because we don't know if the new
- // instruction is above or below the existing scheduling region.
- BasicBlock::reverse_iterator UpIter =
- ++ScheduleStart->getIterator().getReverse();
- BasicBlock::reverse_iterator UpperEnd = BB->rend();
- BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
- BasicBlock::iterator LowerEnd = BB->end();
- while (true) {
- if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
- LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
- return false;
- }
-
- if (UpIter != UpperEnd) {
- if (&*UpIter == I) {
- initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
- ScheduleStart = I;
- if (isOneOf(S, I) != I)
- CheckSheduleForI(I);
- LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
- << "\n");
- return true;
- }
- ++UpIter;
- }
- if (DownIter != LowerEnd) {
- if (&*DownIter == I) {
- initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
- nullptr);
- ScheduleEnd = I->getNextNode();
- if (isOneOf(S, I) != I)
- CheckSheduleForI(I);
- assert(ScheduleEnd && "tried to vectorize a terminator?");
- LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
- << "\n");
- return true;
- }
- ++DownIter;
- }
- assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
- "instruction not found in block");
- }
- return true;
-}
-
-void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
- Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore) {
- ScheduleData *CurrentLoadStore = PrevLoadStore;
- for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
- ScheduleData *SD = ScheduleDataMap[I];
- if (!SD) {
- SD = allocateScheduleDataChunks();
- ScheduleDataMap[I] = SD;
- SD->Inst = I;
- }
- assert(!isInSchedulingRegion(SD) &&
- "new ScheduleData already in scheduling region");
- SD->init(SchedulingRegionID, I);
-
- if (I->mayReadOrWriteMemory() &&
- (!isa<IntrinsicInst>(I) ||
- cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
- // Update the linked list of memory accessing instructions.
- if (CurrentLoadStore) {
- CurrentLoadStore->NextLoadStore = SD;
- } else {
- FirstLoadStoreInRegion = SD;
- }
- CurrentLoadStore = SD;
- }
- }
- if (NextLoadStore) {
- if (CurrentLoadStore)
- CurrentLoadStore->NextLoadStore = NextLoadStore;
- } else {
- LastLoadStoreInRegion = CurrentLoadStore;
- }
-}
-
-void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
- bool InsertInReadyList,
- BoUpSLP *SLP) {
- assert(SD->isSchedulingEntity());
-
- SmallVector<ScheduleData *, 10> WorkList;
- WorkList.push_back(SD);
-
- while (!WorkList.empty()) {
- ScheduleData *SD = WorkList.back();
- WorkList.pop_back();
-
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- assert(isInSchedulingRegion(BundleMember));
- if (!BundleMember->hasValidDependencies()) {
-
- LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
- << "\n");
- BundleMember->Dependencies = 0;
- BundleMember->resetUnscheduledDeps();
-
- // Handle def-use chain dependencies.
- if (BundleMember->OpValue != BundleMember->Inst) {
- ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- for (User *U : BundleMember->Inst->users()) {
- if (isa<Instruction>(U)) {
- ScheduleData *UseSD = getScheduleData(U);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- // I'm not sure if this can ever happen. But we need to be safe.
- // This lets the instruction/bundle never be scheduled and
- // eventually disable vectorization.
- BundleMember->Dependencies++;
- BundleMember->incrementUnscheduledDeps(1);
- }
- }
- }
-
- // Handle the memory dependencies.
- ScheduleData *DepDest = BundleMember->NextLoadStore;
- if (DepDest) {
- Instruction *SrcInst = BundleMember->Inst;
- MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
- bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
- unsigned numAliased = 0;
- unsigned DistToSrc = 1;
-
- while (DepDest) {
- assert(isInSchedulingRegion(DepDest));
-
- // We have two limits to reduce the complexity:
- // 1) AliasedCheckLimit: It's a small limit to reduce calls to
- // SLP->isAliased (which is the expensive part in this loop).
- // 2) MaxMemDepDistance: It's for very large blocks and it aborts
- // the whole loop (even if the loop is fast, it's quadratic).
- // It's important for the loop break condition (see below) to
- // check this limit even between two read-only instructions.
- if (DistToSrc >= MaxMemDepDistance ||
- ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
- (numAliased >= AliasedCheckLimit ||
- SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
-
- // We increment the counter only if the locations are aliased
- // (instead of counting all alias checks). This gives a better
- // balance between reduced runtime and accurate dependencies.
- numAliased++;
-
- DepDest->MemoryDependencies.push_back(BundleMember);
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = DepDest->FirstInBundle;
- if (!DestBundle->IsScheduled) {
- BundleMember->incrementUnscheduledDeps(1);
- }
- if (!DestBundle->hasValidDependencies()) {
- WorkList.push_back(DestBundle);
- }
- }
- DepDest = DepDest->NextLoadStore;
-
- // Example, explaining the loop break condition: Let's assume our
- // starting instruction is i0 and MaxMemDepDistance = 3.
- //
- // +--------v--v--v
- // i0,i1,i2,i3,i4,i5,i6,i7,i8
- // +--------^--^--^
- //
- // MaxMemDepDistance let us stop alias-checking at i3 and we add
- // dependencies from i0 to i3,i4,.. (even if they are not aliased).
- // Previously we already added dependencies from i3 to i6,i7,i8
- // (because of MaxMemDepDistance). As we added a dependency from
- // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
- // and we can abort this loop at i6.
- if (DistToSrc >= 2 * MaxMemDepDistance)
- break;
- DistToSrc++;
- }
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- if (InsertInReadyList && SD->isReady()) {
- ReadyInsts.push_back(SD);
- LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
- << "\n");
- }
- }
-}
-
-void BoUpSLP::BlockScheduling::resetSchedule() {
- assert(ScheduleStart &&
- "tried to reset schedule on block which has not been scheduled");
- for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [&](ScheduleData *SD) {
- assert(isInSchedulingRegion(SD) &&
- "ScheduleData not in scheduling region");
- SD->IsScheduled = false;
- SD->resetUnscheduledDeps();
- });
- }
- ReadyInsts.clear();
-}
-
-void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
- if (!BS->ScheduleStart)
- return;
-
- LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
-
- BS->resetSchedule();
-
- // For the real scheduling we use a more sophisticated ready-list: it is
- // sorted by the original instruction location. This lets the final schedule
- // be as close as possible to the original instruction order.
- struct ScheduleDataCompare {
- bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
- return SD2->SchedulingPriority < SD1->SchedulingPriority;
- }
- };
- std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
-
- // Ensure that all dependency data is updated and fill the ready-list with
- // initial instructions.
- int Idx = 0;
- int NumToSchedule = 0;
- for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
- I = I->getNextNode()) {
- BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
- assert(SD->isPartOfBundle() ==
- (getTreeEntry(SD->Inst) != nullptr) &&
- "scheduler and vectorizer bundle mismatch");
- SD->FirstInBundle->SchedulingPriority = Idx++;
- if (SD->isSchedulingEntity()) {
- BS->calculateDependencies(SD, false, this);
- NumToSchedule++;
- }
- });
- }
- BS->initialFillReadyList(ReadyInsts);
-
- Instruction *LastScheduledInst = BS->ScheduleEnd;
-
- // Do the "real" scheduling.
- while (!ReadyInsts.empty()) {
- ScheduleData *picked = *ReadyInsts.begin();
- ReadyInsts.erase(ReadyInsts.begin());
-
- // Move the scheduled instruction(s) to their dedicated places, if not
- // there yet.
- ScheduleData *BundleMember = picked;
- while (BundleMember) {
- Instruction *pickedInst = BundleMember->Inst;
- if (LastScheduledInst->getNextNode() != pickedInst) {
- BS->BB->getInstList().remove(pickedInst);
- BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
- pickedInst);
- }
- LastScheduledInst = pickedInst;
- BundleMember = BundleMember->NextInBundle;
- }
-
- BS->schedule(picked, ReadyInsts);
- NumToSchedule--;
- }
- assert(NumToSchedule == 0 && "could not schedule all instructions");
-
- // Avoid duplicate scheduling of the block.
- BS->ScheduleStart = nullptr;
-}
-
-unsigned BoUpSLP::getVectorElementSize(Value *V) const {
- // If V is a store, just return the width of the stored value without
- // traversing the expression tree. This is the common case.
- if (auto *Store = dyn_cast<StoreInst>(V))
- return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
-
- // If V is not a store, we can traverse the expression tree to find loads
- // that feed it. The type of the loaded value may indicate a more suitable
- // width than V's type. We want to base the vector element size on the width
- // of memory operations where possible.
- SmallVector<Instruction *, 16> Worklist;
- SmallPtrSet<Instruction *, 16> Visited;
- if (auto *I = dyn_cast<Instruction>(V))
- Worklist.push_back(I);
-
- // Traverse the expression tree in bottom-up order looking for loads. If we
- // encounter an instruction we don't yet handle, we give up.
- auto MaxWidth = 0u;
- auto FoundUnknownInst = false;
- while (!Worklist.empty() && !FoundUnknownInst) {
- auto *I = Worklist.pop_back_val();
- Visited.insert(I);
-
- // We should only be looking at scalar instructions here. If the current
- // instruction has a vector type, give up.
- auto *Ty = I->getType();
- if (isa<VectorType>(Ty))
- FoundUnknownInst = true;
-
- // If the current instruction is a load, update MaxWidth to reflect the
- // width of the loaded value.
- else if (isa<LoadInst>(I))
- MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
-
- // Otherwise, we need to visit the operands of the instruction. We only
- // handle the interesting cases from buildTree here. If an operand is an
- // instruction we haven't yet visited, we add it to the worklist.
- else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (!Visited.count(J))
- Worklist.push_back(J);
- }
-
- // If we don't yet handle the instruction, give up.
- else
- FoundUnknownInst = true;
- }
-
- // If we didn't encounter a memory access in the expression tree, or if we
- // gave up for some reason, just return the width of V.
- if (!MaxWidth || FoundUnknownInst)
- return DL->getTypeSizeInBits(V->getType());
-
- // Otherwise, return the maximum width we found.
- return MaxWidth;
-}
-
-// Determine if a value V in a vectorizable expression Expr can be demoted to a
-// smaller type with a truncation. We collect the values that will be demoted
-// in ToDemote and additional roots that require investigating in Roots.
-static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
- SmallVectorImpl<Value *> &ToDemote,
- SmallVectorImpl<Value *> &Roots) {
- // We can always demote constants.
- if (isa<Constant>(V)) {
- ToDemote.push_back(V);
- return true;
- }
-
- // If the value is not an instruction in the expression with only one use, it
- // cannot be demoted.
- auto *I = dyn_cast<Instruction>(V);
- if (!I || !I->hasOneUse() || !Expr.count(I))
- return false;
-
- switch (I->getOpcode()) {
-
- // We can always demote truncations and extensions. Since truncations can
- // seed additional demotion, we save the truncated value.
- case Instruction::Trunc:
- Roots.push_back(I->getOperand(0));
- break;
- case Instruction::ZExt:
- case Instruction::SExt:
- break;
-
- // We can demote certain binary operations if we can demote both of their
- // operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
- return false;
- break;
-
- // We can demote selects if we can demote their true and false values.
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
- return false;
- break;
- }
-
- // We can demote phis if we can demote all their incoming operands. Note that
- // we don't need to worry about cycles since we ensure single use above.
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
- return false;
- break;
- }
-
- // Otherwise, conservatively give up.
- default:
- return false;
- }
-
- // Record the value that we can demote.
- ToDemote.push_back(V);
- return true;
-}
-
-void BoUpSLP::computeMinimumValueSizes() {
- // If there are no external uses, the expression tree must be rooted by a
- // store. We can't demote in-memory values, so there is nothing to do here.
- if (ExternalUses.empty())
- return;
-
- // We only attempt to truncate integer expressions.
- auto &TreeRoot = VectorizableTree[0]->Scalars;
- auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
- if (!TreeRootIT)
- return;
-
- // If the expression is not rooted by a store, these roots should have
- // external uses. We will rely on InstCombine to rewrite the expression in
- // the narrower type. However, InstCombine only rewrites single-use values.
- // This means that if a tree entry other than a root is used externally, it
- // must have multiple uses and InstCombine will not rewrite it. The code
- // below ensures that only the roots are used externally.
- SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
- for (auto &EU : ExternalUses)
- if (!Expr.erase(EU.Scalar))
- return;
- if (!Expr.empty())
- return;
-
- // Collect the scalar values of the vectorizable expression. We will use this
- // context to determine which values can be demoted. If we see a truncation,
- // we mark it as seeding another demotion.
- for (auto &EntryPtr : VectorizableTree)
- Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
-
- // Ensure the roots of the vectorizable tree don't form a cycle. They must
- // have a single external user that is not in the vectorizable tree.
- for (auto *Root : TreeRoot)
- if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
- return;
-
- // Conservatively determine if we can actually truncate the roots of the
- // expression. Collect the values that can be demoted in ToDemote and
- // additional roots that require investigating in Roots.
- SmallVector<Value *, 32> ToDemote;
- SmallVector<Value *, 4> Roots;
- for (auto *Root : TreeRoot)
- if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
- return;
-
- // The maximum bit width required to represent all the values that can be
- // demoted without loss of precision. It would be safe to truncate the roots
- // of the expression to this width.
- auto MaxBitWidth = 8u;
-
- // We first check if all the bits of the roots are demanded. If they're not,
- // we can truncate the roots to this narrower type.
- for (auto *Root : TreeRoot) {
- auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
- MaxBitWidth = std::max<unsigned>(
- Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
- }
-
- // True if the roots can be zero-extended back to their original type, rather
- // than sign-extended. We know that if the leading bits are not demanded, we
- // can safely zero-extend. So we initialize IsKnownPositive to True.
- bool IsKnownPositive = true;
-
- // If all the bits of the roots are demanded, we can try a little harder to
- // compute a narrower type. This can happen, for example, if the roots are
- // getelementptr indices. InstCombine promotes these indices to the pointer
- // width. Thus, all their bits are technically demanded even though the
- // address computation might be vectorized in a smaller type.
- //
- // We start by looking at each entry that can be demoted. We compute the
- // maximum bit width required to store the scalar by using ValueTracking to
- // compute the number of high-order bits we can truncate.
- if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
- llvm::all_of(TreeRoot, [](Value *R) {
- assert(R->hasOneUse() && "Root should have only one use!");
- return isa<GetElementPtrInst>(R->user_back());
- })) {
- MaxBitWidth = 8u;
-
- // Determine if the sign bit of all the roots is known to be zero. If not,
- // IsKnownPositive is set to False.
- IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
- KnownBits Known = computeKnownBits(R, *DL);
- return Known.isNonNegative();
- });
-
- // Determine the maximum number of bits required to store the scalar
- // values.
- for (auto *Scalar : ToDemote) {
- auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
- auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
- MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
- }
-
- // If we can't prove that the sign bit is zero, we must add one to the
- // maximum bit width to account for the unknown sign bit. This preserves
- // the existing sign bit so we can safely sign-extend the root back to the
- // original type. Otherwise, if we know the sign bit is zero, we will
- // zero-extend the root instead.
- //
- // FIXME: This is somewhat suboptimal, as there will be cases where adding
- // one to the maximum bit width will yield a larger-than-necessary
- // type. In general, we need to add an extra bit only if we can't
- // prove that the upper bit of the original type is equal to the
- // upper bit of the proposed smaller type. If these two bits are the
- // same (either zero or one) we know that sign-extending from the
- // smaller type will result in the same value. Here, since we can't
- // yet prove this, we are just making the proposed smaller type
- // larger to ensure correctness.
- if (!IsKnownPositive)
- ++MaxBitWidth;
- }
-
- // Round MaxBitWidth up to the next power-of-two.
- if (!isPowerOf2_64(MaxBitWidth))
- MaxBitWidth = NextPowerOf2(MaxBitWidth);
-
- // If the maximum bit width we compute is less than the with of the roots'
- // type, we can proceed with the narrowing. Otherwise, do nothing.
- if (MaxBitWidth >= TreeRootIT->getBitWidth())
- return;
-
- // If we can truncate the root, we must collect additional values that might
- // be demoted as a result. That is, those seeded by truncations we will
- // modify.
- while (!Roots.empty())
- collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
-
- // Finally, map the values we can demote to the maximum bit with we computed.
- for (auto *Scalar : ToDemote)
- MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
-}
-
-namespace {
-
-/// The SLPVectorizer Pass.
-struct SLPVectorizer : public FunctionPass {
- SLPVectorizerPass Impl;
-
- /// Pass identification, replacement for typeid
- static char ID;
-
- explicit SLPVectorizer() : FunctionPass(ID) {
- initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
- }
-
- bool doInitialization(Module &M) override {
- return false;
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
-
- return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
-};
-
-} // end anonymous namespace
-
-PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
- auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
- auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
- auto *AA = &AM.getResult<AAManager>(F);
- auto *LI = &AM.getResult<LoopAnalysis>(F);
- auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *AC = &AM.getResult<AssumptionAnalysis>(F);
- auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
- auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
-
- bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- if (!Changed)
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<AAManager>();
- PA.preserve<GlobalsAA>();
- return PA;
-}
-
-bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
- TargetTransformInfo *TTI_,
- TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
- LoopInfo *LI_, DominatorTree *DT_,
- AssumptionCache *AC_, DemandedBits *DB_,
- OptimizationRemarkEmitter *ORE_) {
- SE = SE_;
- TTI = TTI_;
- TLI = TLI_;
- AA = AA_;
- LI = LI_;
- DT = DT_;
- AC = AC_;
- DB = DB_;
- DL = &F.getParent()->getDataLayout();
-
- Stores.clear();
- GEPs.clear();
- bool Changed = false;
-
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
-
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
-
- LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
-
- // Use the bottom up slp vectorizer to construct chains that start with
- // store instructions.
- BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
-
- // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
- // delete instructions.
-
- // Scan the blocks in the function in post order.
- for (auto BB : post_order(&F.getEntryBlock())) {
- collectSeedInstructions(BB);
-
- // Vectorize trees that end at stores.
- if (!Stores.empty()) {
- LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
- << " underlying objects.\n");
- Changed |= vectorizeStoreChains(R);
- }
-
- // Vectorize trees that end at reductions.
- Changed |= vectorizeChainsInBlock(BB, R);
-
- // Vectorize the index computations of getelementptr instructions. This
- // is primarily intended to catch gather-like idioms ending at
- // non-consecutive loads.
- if (!GEPs.empty()) {
- LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
- << " underlying objects.\n");
- Changed |= vectorizeGEPIndices(BB, R);
- }
- }
-
- if (Changed) {
- R.optimizeGatherSequence();
- LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
- LLVM_DEBUG(verifyFunction(F));
- }
- return Changed;
-}
-
-/// Check that the Values in the slice in VL array are still existent in
-/// the WeakTrackingVH array.
-/// Vectorization of part of the VL array may cause later values in the VL array
-/// to become invalid. We track when this has happened in the WeakTrackingVH
-/// array.
-static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
- ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
- unsigned SliceSize) {
- VL = VL.slice(SliceBegin, SliceSize);
- VH = VH.slice(SliceBegin, SliceSize);
- return !std::equal(VL.begin(), VL.end(), VH.begin());
-}
-
-bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
- unsigned VecRegSize) {
- const unsigned ChainLen = Chain.size();
- LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- const unsigned Sz = R.getVectorElementSize(Chain[0]);
- const unsigned VF = VecRegSize / Sz;
-
- if (!isPowerOf2_32(Sz) || VF < 2)
- return false;
-
- // Keep track of values that were deleted by vectorizing in the loop below.
- const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
-
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
-
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
- continue;
-
- LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
-
- R.buildTree(Operands);
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
-
- R.computeMinimumValueSizes();
-
- int Cost = R.getTreeCost();
-
- LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
- << "\n");
- if (Cost < -SLPCostThreshold) {
- LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
-
- using namespace ore;
-
- R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
- cast<StoreInst>(Chain[i]))
- << "Stores SLP vectorized with cost " << NV("Cost", Cost)
- << " and with tree size "
- << NV("TreeSize", R.getTreeSize()));
-
- R.vectorizeTree();
-
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
-
- return Changed;
-}
-
-bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
- BoUpSLP &R) {
- SetVector<StoreInst *> Heads;
- SmallDenseSet<StoreInst *> Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
-
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- BoUpSLP::ValueSet VectorizedStores;
- bool Changed = false;
-
- auto &&FindConsecutiveAccess =
- [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
- if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
- return false;
-
- Tails.insert(Stores[Idx]);
- Heads.insert(Stores[K]);
- ConsecutiveChain[Stores[K]] = Stores[Idx];
- return true;
- };
-
- // Do a quadratic search on all of the given stores in reverse order and find
- // all of the pairs of stores that follow each other.
- int E = Stores.size();
- for (int Idx = E - 1; Idx >= 0; --Idx) {
- // If a store has multiple consecutive store candidates, search according
- // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
- // This is because usually pairing with immediate succeeding or preceding
- // candidate create the best chance to find slp vectorization opportunity.
- for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
- if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
- (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
- break;
- }
-
- // For stores that start but don't end a link in the chain:
- for (auto *SI : llvm::reverse(Heads)) {
- if (Tails.count(SI))
- continue;
-
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- BoUpSLP::ValueList Operands;
- StoreInst *I = SI;
- // Collect the chain into a list.
- while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
-
- // FIXME: Is division-by-2 the correct step? Should we assert that the
- // register size is a power-of-2?
- for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
- Size /= 2) {
- if (vectorizeStoreChain(Operands, R, Size)) {
- // Mark the vectorized stores so that we don't vectorize them again.
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed = true;
- break;
- }
- }
- }
-
- return Changed;
-}
-
-void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
- // Initialize the collections. We will make a single pass over the block.
- Stores.clear();
- GEPs.clear();
-
- // Visit the store and getelementptr instructions in BB and organize them in
- // Stores and GEPs according to the underlying objects of their pointer
- // operands.
- for (Instruction &I : *BB) {
- // Ignore store instructions that are volatile or have a pointer operand
- // that doesn't point to a scalar type.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isSimple())
- continue;
- if (!isValidElementType(SI->getValueOperand()->getType()))
- continue;
- Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
- }
-
- // Ignore getelementptr instructions that have more than one index, a
- // constant index, or a pointer operand that doesn't point to a scalar
- // type.
- else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- auto Idx = GEP->idx_begin()->get();
- if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
- continue;
- if (!isValidElementType(Idx->getType()))
- continue;
- if (GEP->getType()->isVectorTy())
- continue;
- GEPs[GEP->getPointerOperand()].push_back(GEP);
- }
- }
-}
-
-bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
- if (!A || !B)
- return false;
- Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
-}
-
-bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- int UserCost, bool AllowReorder) {
- if (VL.size() < 2)
- return false;
-
- LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
- << VL.size() << ".\n");
-
- // Check that all of the parts are scalar instructions of the same type,
- // we permit an alternate opcode via InstructionsState.
- InstructionsState S = getSameOpcode(VL);
- if (!S.getOpcode())
- return false;
-
- Instruction *I0 = cast<Instruction>(S.OpValue);
- unsigned Sz = R.getVectorElementSize(I0);
- unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
- unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
- if (MaxVF < 2) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
- << "Cannot SLP vectorize list: vectorization factor "
- << "less than 2 is not supported";
- });
- return false;
- }
-
- for (Value *V : VL) {
- Type *Ty = V->getType();
- if (!isValidElementType(Ty)) {
- // NOTE: the following will give user internal llvm type name, which may
- // not be useful.
- R.getORE()->emit([&]() {
- std::string type_str;
- llvm::raw_string_ostream rso(type_str);
- Ty->print(rso);
- return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
- << "Cannot SLP vectorize list: type "
- << rso.str() + " is unsupported by vectorizer";
- });
- return false;
- }
- }
-
- bool Changed = false;
- bool CandidateFound = false;
- int MinCost = SLPCostThreshold;
-
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
-
- unsigned NextInst = 0, MaxInst = VL.size();
- for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
- VF /= 2) {
- // No actual vectorization should happen, if number of parts is the same as
- // provided vectorization factor (i.e. the scalar type is used for vector
- // code during codegen).
- auto *VecTy = VectorType::get(VL[0]->getType(), VF);
- if (TTI->getNumberOfParts(VecTy) == VF)
- continue;
- for (unsigned I = NextInst; I < MaxInst; ++I) {
- unsigned OpsWidth = 0;
-
- if (I + VF > MaxInst)
- OpsWidth = MaxInst - I;
- else
- OpsWidth = VF;
-
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
-
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
- continue;
-
- LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
-
- R.buildTree(Ops);
- Optional<ArrayRef<unsigned>> Order = R.bestOrder();
- // TODO: check if we can allow reordering for more cases.
- if (AllowReorder && Order) {
- // TODO: reorder tree nodes without tree rebuilding.
- // Conceptually, there is nothing actually preventing us from trying to
- // reorder a larger list. In fact, we do exactly this when vectorizing
- // reductions. However, at this point, we only expect to get here when
- // there are exactly two operations.
- assert(Ops.size() == 2);
- Value *ReorderedOps[] = {Ops[1], Ops[0]};
- R.buildTree(ReorderedOps, None);
- }
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
-
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost() - UserCost;
- CandidateFound = true;
- MinCost = std::min(MinCost, Cost);
-
- if (Cost < -SLPCostThreshold) {
- LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
- cast<Instruction>(Ops[0]))
- << "SLP vectorized with cost " << ore::NV("Cost", Cost)
- << " and with tree size "
- << ore::NV("TreeSize", R.getTreeSize()));
-
- R.vectorizeTree();
- // Move to the next bundle.
- I += VF - 1;
- NextInst = I + 1;
- Changed = true;
- }
- }
- }
-
- if (!Changed && CandidateFound) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
- << "List vectorization was possible but not beneficial with cost "
- << ore::NV("Cost", MinCost) << " >= "
- << ore::NV("Treshold", -SLPCostThreshold);
- });
- } else if (!Changed) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
- << "Cannot SLP vectorize list: vectorization was impossible"
- << " with available vectorization factors";
- });
- }
- return Changed;
-}
-
-bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
- if (!I)
- return false;
-
- if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
- return false;
-
- Value *P = I->getParent();
-
- // Vectorize in current basic block only.
- auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
- auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
- if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
- return false;
-
- // Try to vectorize V.
- if (tryToVectorizePair(Op0, Op1, R))
- return true;
-
- auto *A = dyn_cast<BinaryOperator>(Op0);
- auto *B = dyn_cast<BinaryOperator>(Op1);
- // Try to skip B.
- if (B && B->hasOneUse()) {
- auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
- auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
- if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
- return true;
- if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
- return true;
- }
-
- // Try to skip A.
- if (A && A->hasOneUse()) {
- auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
- auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
- if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
- return true;
- if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
- return true;
- }
- return false;
-}
-
-/// Generate a shuffle mask to be used in a reduction tree.
-///
-/// \param VecLen The length of the vector to be reduced.
-/// \param NumEltsToRdx The number of elements that should be reduced in the
-/// vector.
-/// \param IsPairwise Whether the reduction is a pairwise or splitting
-/// reduction. A pairwise reduction will generate a mask of
-/// <0,2,...> or <1,3,..> while a splitting reduction will generate
-/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
-/// \param IsLeft True will generate a mask of even elements, odd otherwise.
-static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
- bool IsPairwise, bool IsLeft,
- IRBuilder<> &Builder) {
- assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
-
- SmallVector<Constant *, 32> ShuffleMask(
- VecLen, UndefValue::get(Builder.getInt32Ty()));
-
- if (IsPairwise)
- // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
- else
- // Move the upper half of the vector to the lower half.
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
-
- return ConstantVector::get(ShuffleMask);
-}
-
-namespace {
-
-/// Model horizontal reductions.
-///
-/// A horizontal reduction is a tree of reduction operations (currently add and
-/// fadd) that has operations that can be put into a vector as its leaf.
-/// For example, this tree:
-///
-/// mul mul mul mul
-/// \ / \ /
-/// + +
-/// \ /
-/// +
-/// This tree has "mul" as its reduced values and "+" as its reduction
-/// operations. A reduction might be feeding into a store or a binary operation
-/// feeding a phi.
-/// ...
-/// \ /
-/// +
-/// |
-/// phi +=
-///
-/// Or:
-/// ...
-/// \ /
-/// +
-/// |
-/// *p =
-///
-class HorizontalReduction {
- using ReductionOpsType = SmallVector<Value *, 16>;
- using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
- ReductionOpsListType ReductionOps;
- SmallVector<Value *, 32> ReducedVals;
- // Use map vector to make stable output.
- MapVector<Instruction *, Value *> ExtraArgs;
-
- /// Kind of the reduction data.
- enum ReductionKind {
- RK_None, /// Not a reduction.
- RK_Arithmetic, /// Binary reduction data.
- RK_Min, /// Minimum reduction data.
- RK_UMin, /// Unsigned minimum reduction data.
- RK_Max, /// Maximum reduction data.
- RK_UMax, /// Unsigned maximum reduction data.
- };
-
- /// Contains info about operation, like its opcode, left and right operands.
- class OperationData {
- /// Opcode of the instruction.
- unsigned Opcode = 0;
-
- /// Left operand of the reduction operation.
- Value *LHS = nullptr;
-
- /// Right operand of the reduction operation.
- Value *RHS = nullptr;
-
- /// Kind of the reduction operation.
- ReductionKind Kind = RK_None;
-
- /// True if float point min/max reduction has no NaNs.
- bool NoNaN = false;
-
- /// Checks if the reduction operation can be vectorized.
- bool isVectorizable() const {
- return LHS && RHS &&
- // We currently only support add/mul/logical && min/max reductions.
- ((Kind == RK_Arithmetic &&
- (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
- Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
- Opcode == Instruction::And || Opcode == Instruction::Or ||
- Opcode == Instruction::Xor)) ||
- ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- (Kind == RK_Min || Kind == RK_Max)) ||
- (Opcode == Instruction::ICmp &&
- (Kind == RK_UMin || Kind == RK_UMax)));
- }
-
- /// Creates reduction operation with the current opcode.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- Value *Cmp;
- switch (Kind) {
- case RK_Arithmetic:
- return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
- Name);
- case RK_Min:
- Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
- : Builder.CreateFCmpOLT(LHS, RHS);
- break;
- case RK_Max:
- Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
- : Builder.CreateFCmpOGT(LHS, RHS);
- break;
- case RK_UMin:
- assert(Opcode == Instruction::ICmp && "Expected integer types.");
- Cmp = Builder.CreateICmpULT(LHS, RHS);
- break;
- case RK_UMax:
- assert(Opcode == Instruction::ICmp && "Expected integer types.");
- Cmp = Builder.CreateICmpUGT(LHS, RHS);
- break;
- case RK_None:
- llvm_unreachable("Unknown reduction operation.");
- }
- return Builder.CreateSelect(Cmp, LHS, RHS, Name);
- }
-
- public:
- explicit OperationData() = default;
-
- /// Construction for reduced values. They are identified by opcode only and
- /// don't have associated LHS/RHS values.
- explicit OperationData(Value *V) {
- if (auto *I = dyn_cast<Instruction>(V))
- Opcode = I->getOpcode();
- }
-
- /// Constructor for reduction operations with opcode and its left and
- /// right operands.
- OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
- bool NoNaN = false)
- : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
- assert(Kind != RK_None && "One of the reduction operations is expected.");
- }
-
- explicit operator bool() const { return Opcode; }
-
- /// Get the index of the first operand.
- unsigned getFirstOperandIndex() const {
- assert(!!*this && "The opcode is not set.");
- switch (Kind) {
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return 1;
- case RK_Arithmetic:
- case RK_None:
- break;
- }
- return 0;
- }
-
- /// Total number of operands in the reduction operation.
- unsigned getNumberOfOperands() const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return 2;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return 3;
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
-
- /// Checks if the operation has the same parent as \p P.
- bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- if (!IsRedOp)
- return I->getParent() == P;
- switch (Kind) {
- case RK_Arithmetic:
- // Arithmetic reduction operation must be used once only.
- return I->getParent() == P;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax: {
- // SelectInst must be used twice while the condition op must have single
- // use only.
- auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
- return I->getParent() == P && Cmp && Cmp->getParent() == P;
- }
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Expected number of uses for reduction operations/reduced values.
- bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return I->hasOneUse();
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return I->hasNUses(2) &&
- (!IsReductionOp ||
- cast<SelectInst>(I)->getCondition()->hasOneUse());
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
-
- /// Initializes the list of reduction operations.
- void initReductionOps(ReductionOpsListType &ReductionOps) {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- ReductionOps.assign(1, ReductionOpsType());
- break;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- ReductionOps.assign(2, ReductionOpsType());
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- }
- /// Add all reduction operations for the reduction instruction \p I.
- void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- ReductionOps[0].emplace_back(I);
- break;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
- ReductionOps[1].emplace_back(I);
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- }
-
- /// Checks if instruction is associative and can be vectorized.
- bool isAssociative(Instruction *I) const {
- assert(Kind != RK_None && *this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return I->isAssociative();
- case RK_Min:
- case RK_Max:
- return Opcode == Instruction::ICmp ||
- cast<Instruction>(I->getOperand(0))->isFast();
- case RK_UMin:
- case RK_UMax:
- assert(Opcode == Instruction::ICmp &&
- "Only integer compare operation is expected.");
- return true;
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
-
- /// Checks if the reduction operation can be vectorized.
- bool isVectorizable(Instruction *I) const {
- return isVectorizable() && isAssociative(I);
- }
-
- /// Checks if two operation data are both a reduction op or both a reduced
- /// value.
- bool operator==(const OperationData &OD) {
- assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
- "One of the comparing operations is incorrect.");
- return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
- }
- bool operator!=(const OperationData &OD) { return !(*this == OD); }
- void clear() {
- Opcode = 0;
- LHS = nullptr;
- RHS = nullptr;
- Kind = RK_None;
- NoNaN = false;
- }
-
- /// Get the opcode of the reduction operation.
- unsigned getOpcode() const {
- assert(isVectorizable() && "Expected vectorizable operation.");
- return Opcode;
- }
-
- /// Get kind of reduction data.
- ReductionKind getKind() const { return Kind; }
- Value *getLHS() const { return LHS; }
- Value *getRHS() const { return RHS; }
- Type *getConditionType() const {
- switch (Kind) {
- case RK_Arithmetic:
- return nullptr;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- return CmpInst::makeCmpResultType(LHS->getType());
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
-
- /// Creates reduction operation with the current opcode with the IR flags
- /// from \p ReductionOps.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name,
- const ReductionOpsListType &ReductionOps) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- auto *Op = createOp(Builder, Name);
- switch (Kind) {
- case RK_Arithmetic:
- propagateIRFlags(Op, ReductionOps[0]);
- return Op;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- if (auto *SI = dyn_cast<SelectInst>(Op))
- propagateIRFlags(SI->getCondition(), ReductionOps[0]);
- propagateIRFlags(Op, ReductionOps[1]);
- return Op;
- case RK_None:
- break;
- }
- llvm_unreachable("Unknown reduction operation.");
- }
- /// Creates reduction operation with the current opcode with the IR flags
- /// from \p I.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name,
- Instruction *I) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- auto *Op = createOp(Builder, Name);
- switch (Kind) {
- case RK_Arithmetic:
- propagateIRFlags(Op, I);
- return Op;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- if (auto *SI = dyn_cast<SelectInst>(Op)) {
- propagateIRFlags(SI->getCondition(),
- cast<SelectInst>(I)->getCondition());
- }
- propagateIRFlags(Op, I);
- return Op;
- case RK_None:
- break;
- }
- llvm_unreachable("Unknown reduction operation.");
- }
-
- TargetTransformInfo::ReductionFlags getFlags() const {
- TargetTransformInfo::ReductionFlags Flags;
- Flags.NoNaN = NoNaN;
- switch (Kind) {
- case RK_Arithmetic:
- break;
- case RK_Min:
- Flags.IsSigned = Opcode == Instruction::ICmp;
- Flags.IsMaxOp = false;
- break;
- case RK_Max:
- Flags.IsSigned = Opcode == Instruction::ICmp;
- Flags.IsMaxOp = true;
- break;
- case RK_UMin:
- Flags.IsSigned = false;
- Flags.IsMaxOp = false;
- break;
- case RK_UMax:
- Flags.IsSigned = false;
- Flags.IsMaxOp = true;
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- return Flags;
- }
- };
-
- WeakTrackingVH ReductionRoot;
-
- /// The operation data of the reduction operation.
- OperationData ReductionData;
-
- /// The operation data of the values we perform a reduction on.
- OperationData ReducedValueData;
-
- /// Should we model this reduction as a pairwise reduction tree or a tree that
- /// splits the vector in halves and adds those halves.
- bool IsPairwiseReduction = false;
-
- /// Checks if the ParentStackElem.first should be marked as a reduction
- /// operation with an extra argument or as extra argument itself.
- void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
- Value *ExtraArg) {
- if (ExtraArgs.count(ParentStackElem.first)) {
- ExtraArgs[ParentStackElem.first] = nullptr;
- // We ran into something like:
- // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
- // The whole ParentStackElem.first should be considered as an extra value
- // in this case.
- // Do not perform analysis of remaining operands of ParentStackElem.first
- // instruction, this whole instruction is an extra argument.
- ParentStackElem.second = ParentStackElem.first->getNumOperands();
- } else {
- // We ran into something like:
- // ParentStackElem.first += ... + ExtraArg + ...
- ExtraArgs[ParentStackElem.first] = ExtraArg;
- }
- }
-
- static OperationData getOperationData(Value *V) {
- if (!V)
- return OperationData();
-
- Value *LHS;
- Value *RHS;
- if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
- return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
- RK_Arithmetic);
- }
- if (auto *Select = dyn_cast<SelectInst>(V)) {
- // Look for a min/max pattern.
- if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
- } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
- } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
- m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(
- Instruction::FCmp, LHS, RHS, RK_Min,
- cast<Instruction>(Select->getCondition())->hasNoNaNs());
- } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
- } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
- } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
- m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(
- Instruction::FCmp, LHS, RHS, RK_Max,
- cast<Instruction>(Select->getCondition())->hasNoNaNs());
- } else {
- // Try harder: look for min/max pattern based on instructions producing
- // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
- // During the intermediate stages of SLP, it's very common to have
- // pattern like this (since optimizeGatherSequence is run only once
- // at the end):
- // %1 = extractelement <2 x i32> %a, i32 0
- // %2 = extractelement <2 x i32> %a, i32 1
- // %cond = icmp sgt i32 %1, %2
- // %3 = extractelement <2 x i32> %a, i32 0
- // %4 = extractelement <2 x i32> %a, i32 1
- // %select = select i1 %cond, i32 %3, i32 %4
- CmpInst::Predicate Pred;
- Instruction *L1;
- Instruction *L2;
-
- LHS = Select->getTrueValue();
- RHS = Select->getFalseValue();
- Value *Cond = Select->getCondition();
-
- // TODO: Support inverse predicates.
- if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
- if (!isa<ExtractElementInst>(RHS) ||
- !L2->isIdenticalTo(cast<Instruction>(RHS)))
- return OperationData(V);
- } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
- if (!isa<ExtractElementInst>(LHS) ||
- !L1->isIdenticalTo(cast<Instruction>(LHS)))
- return OperationData(V);
- } else {
- if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
- return OperationData(V);
- if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
- !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
- !L2->isIdenticalTo(cast<Instruction>(RHS)))
- return OperationData(V);
- }
- switch (Pred) {
- default:
- return OperationData(V);
-
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
-
- case CmpInst::ICMP_SLT:
- case CmpInst::ICMP_SLE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
-
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULT:
- case CmpInst::FCMP_ULE:
- return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
- cast<Instruction>(Cond)->hasNoNaNs());
-
- case CmpInst::ICMP_UGT:
- case CmpInst::ICMP_UGE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
-
- case CmpInst::ICMP_SGT:
- case CmpInst::ICMP_SGE:
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
-
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGT:
- case CmpInst::FCMP_UGE:
- return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
- cast<Instruction>(Cond)->hasNoNaNs());
- }
- }
- }
- return OperationData(V);
- }
-
-public:
- HorizontalReduction() = default;
-
- /// Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
- assert((!Phi || is_contained(Phi->operands(), B)) &&
- "Thi phi needs to use the binary operator");
-
- ReductionData = getOperationData(B);
-
- // We could have a initial reductions that is not an add.
- // r *= v1 + v2 + v3 + v4
- // In such a case start looking for a tree rooted in the first '+'.
- if (Phi) {
- if (ReductionData.getLHS() == Phi) {
- Phi = nullptr;
- B = dyn_cast<Instruction>(ReductionData.getRHS());
- ReductionData = getOperationData(B);
- } else if (ReductionData.getRHS() == Phi) {
- Phi = nullptr;
- B = dyn_cast<Instruction>(ReductionData.getLHS());
- ReductionData = getOperationData(B);
- }
- }
-
- if (!ReductionData.isVectorizable(B))
- return false;
-
- Type *Ty = B->getType();
- if (!isValidElementType(Ty))
- return false;
- if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
- return false;
-
- ReducedValueData.clear();
- ReductionRoot = B;
-
- // Post order traverse the reduction tree starting at B. We only handle true
- // trees containing only binary operators.
- SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
- Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
- ReductionData.initReductionOps(ReductionOps);
- while (!Stack.empty()) {
- Instruction *TreeN = Stack.back().first;
- unsigned EdgeToVist = Stack.back().second++;
- OperationData OpData = getOperationData(TreeN);
- bool IsReducedValue = OpData != ReductionData;
-
- // Postorder vist.
- if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
- if (IsReducedValue)
- ReducedVals.push_back(TreeN);
- else {
- auto I = ExtraArgs.find(TreeN);
- if (I != ExtraArgs.end() && !I->second) {
- // Check if TreeN is an extra argument of its parent operation.
- if (Stack.size() <= 1) {
- // TreeN can't be an extra argument as it is a root reduction
- // operation.
- return false;
- }
- // Yes, TreeN is an extra argument, do not add it to a list of
- // reduction operations.
- // Stack[Stack.size() - 2] always points to the parent operation.
- markExtraArg(Stack[Stack.size() - 2], TreeN);
- ExtraArgs.erase(TreeN);
- } else
- ReductionData.addReductionOps(TreeN, ReductionOps);
- }
- // Retract.
- Stack.pop_back();
- continue;
- }
-
- // Visit left or right.
- Value *NextV = TreeN->getOperand(EdgeToVist);
- if (NextV != Phi) {
- auto *I = dyn_cast<Instruction>(NextV);
- OpData = getOperationData(I);
- // Continue analysis if the next operand is a reduction operation or
- // (possibly) a reduced value. If the reduced value opcode is not set,
- // the first met operation != reduction operation is considered as the
- // reduced value class.
- if (I && (!ReducedValueData || OpData == ReducedValueData ||
- OpData == ReductionData)) {
- const bool IsReductionOperation = OpData == ReductionData;
- // Only handle trees in the current basic block.
- if (!ReductionData.hasSameParent(I, B->getParent(),
- IsReductionOperation)) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
-
- // Each tree node needs to have minimal number of users except for the
- // ultimate reduction.
- if (!ReductionData.hasRequiredNumberOfUses(I,
- OpData == ReductionData) &&
- I != B) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
-
- if (IsReductionOperation) {
- // We need to be able to reassociate the reduction operations.
- if (!OpData.isAssociative(I)) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- } else if (ReducedValueData &&
- ReducedValueData != OpData) {
- // Make sure that the opcodes of the operations that we are going to
- // reduce match.
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- } else if (!ReducedValueData)
- ReducedValueData = OpData;
-
- Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
- continue;
- }
- }
- // NextV is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), NextV);
- }
- return true;
- }
-
- /// Attempt to vectorize the tree found by
- /// matchAssociativeReduction.
- bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
- if (ReducedVals.empty())
- return false;
-
- // If there is a sufficient number of reduction values, reduce
- // to a nearby power-of-2. Can safely generate oversized
- // vectors and rely on the backend to split them to legal sizes.
- unsigned NumReducedVals = ReducedVals.size();
- if (NumReducedVals < 4)
- return false;
-
- unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
-
- Value *VectorizedTree = nullptr;
-
- // FIXME: Fast-math-flags should be set based on the instructions in the
- // reduction (not all of 'fast' are required).
- IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
- FastMathFlags Unsafe;
- Unsafe.setFast();
- Builder.setFastMathFlags(Unsafe);
- unsigned i = 0;
-
- BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
- // The same extra argument may be used several time, so log each attempt
- // to use it.
- for (auto &Pair : ExtraArgs) {
- assert(Pair.first && "DebugLoc must be set.");
- ExternallyUsedValues[Pair.second].push_back(Pair.first);
- }
- // The reduction root is used as the insertion point for new instructions,
- // so set it as externally used to prevent it from being deleted.
- ExternallyUsedValues[ReductionRoot];
- SmallVector<Value *, 16> IgnoreList;
- for (auto &V : ReductionOps)
- IgnoreList.append(V.begin(), V.end());
- while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
- auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
- V.buildTree(VL, ExternallyUsedValues, IgnoreList);
- Optional<ArrayRef<unsigned>> Order = V.bestOrder();
- // TODO: Handle orders of size less than number of elements in the vector.
- if (Order && Order->size() == VL.size()) {
- // TODO: reorder tree nodes without tree rebuilding.
- SmallVector<Value *, 4> ReorderedOps(VL.size());
- llvm::transform(*Order, ReorderedOps.begin(),
- [VL](const unsigned Idx) { return VL[Idx]; });
- V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
- }
- if (V.isTreeTinyAndNotFullyVectorizable())
- break;
-
- V.computeMinimumValueSizes();
-
- // Estimate cost.
- int TreeCost = V.getTreeCost();
- int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
- int Cost = TreeCost + ReductionCost;
- if (Cost >= -SLPCostThreshold) {
- V.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
- << "Vectorizing horizontal reduction is possible"
- << "but not beneficial with cost "
- << ore::NV("Cost", Cost) << " and threshold "
- << ore::NV("Threshold", -SLPCostThreshold);
- });
- break;
- }
-
- LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
- << Cost << ". (HorRdx)\n");
- V.getORE()->emit([&]() {
- return OptimizationRemark(
- SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
- << "Vectorized horizontal reduction with cost "
- << ore::NV("Cost", Cost) << " and with tree size "
- << ore::NV("TreeSize", V.getTreeSize());
- });
-
- // Vectorize a tree.
- DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
- Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
-
- // Emit a reduction.
- Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
- Value *ReducedSubTree =
- emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
- if (VectorizedTree) {
- Builder.SetCurrentDebugLocation(Loc);
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, ReducedSubTree,
- ReductionData.getKind());
- VectorizedTree =
- VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
- } else
- VectorizedTree = ReducedSubTree;
- i += ReduxWidth;
- ReduxWidth = PowerOf2Floor(NumReducedVals - i);
- }
-
- if (VectorizedTree) {
- // Finish the reduction.
- for (; i < NumReducedVals; ++i) {
- auto *I = cast<Instruction>(ReducedVals[i]);
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, I,
- ReductionData.getKind());
- VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
- }
- for (auto &Pair : ExternallyUsedValues) {
- // Add each externally used value to the final reduction.
- for (auto *I : Pair.second) {
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, Pair.first,
- ReductionData.getKind());
- VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
- }
- }
- // Update users.
- ReductionRoot->replaceAllUsesWith(VectorizedTree);
- }
- return VectorizedTree != nullptr;
- }
-
- unsigned numReductionValues() const {
- return ReducedVals.size();
- }
-
-private:
- /// Calculate the cost of a reduction.
- int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
- unsigned ReduxWidth) {
- Type *ScalarTy = FirstReducedVal->getType();
- Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
-
- int PairwiseRdxCost;
- int SplittingRdxCost;
- switch (ReductionData.getKind()) {
- case RK_Arithmetic:
- PairwiseRdxCost =
- TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
- /*IsPairwiseForm=*/true);
- SplittingRdxCost =
- TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
- /*IsPairwiseForm=*/false);
- break;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax: {
- Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
- bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
- ReductionData.getKind() == RK_UMax;
- PairwiseRdxCost =
- TTI->getMinMaxReductionCost(VecTy, VecCondTy,
- /*IsPairwiseForm=*/true, IsUnsigned);
- SplittingRdxCost =
- TTI->getMinMaxReductionCost(VecTy, VecCondTy,
- /*IsPairwiseForm=*/false, IsUnsigned);
- break;
- }
- case RK_None:
- llvm_unreachable("Expected arithmetic or min/max reduction operation");
- }
-
- IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
- int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
-
- int ScalarReduxCost;
- switch (ReductionData.getKind()) {
- case RK_Arithmetic:
- ScalarReduxCost =
- TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
- break;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- ScalarReduxCost =
- TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
- TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
- CmpInst::makeCmpResultType(ScalarTy));
- break;
- case RK_None:
- llvm_unreachable("Expected arithmetic or min/max reduction operation");
- }
- ScalarReduxCost *= (ReduxWidth - 1);
-
- LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
- << " for reduction that starts with " << *FirstReducedVal
- << " (It is a "
- << (IsPairwiseReduction ? "pairwise" : "splitting")
- << " reduction)\n");
-
- return VecReduxCost - ScalarReduxCost;
- }
-
- /// Emit a horizontal reduction of the vectorized value.
- Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
- unsigned ReduxWidth, const TargetTransformInfo *TTI) {
- assert(VectorizedValue && "Need to have a vectorized tree node");
- assert(isPowerOf2_32(ReduxWidth) &&
- "We only handle power-of-two reductions for now");
-
- if (!IsPairwiseReduction) {
- // FIXME: The builder should use an FMF guard. It should not be hard-coded
- // to 'fast'.
- assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
- return createSimpleTargetReduction(
- Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
- ReductionData.getFlags(), ReductionOps.back());
- }
-
- Value *TmpVec = VectorizedValue;
- for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
- Value *LeftMask =
- createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
- Value *RightMask =
- createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
-
- Value *LeftShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
- Value *RightShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
- "rdx.shuf.r");
- OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
- RightShuf, ReductionData.getKind());
- TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
- }
-
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
-};
-
-} // end anonymous namespace
-
-/// Recognize construction of vectors like
-/// %ra = insertelement <4 x float> undef, float %s0, i32 0
-/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
-/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
-/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
-/// starting from the last insertelement instruction.
-///
-/// Returns true if it matches
-static bool findBuildVector(InsertElementInst *LastInsertElem,
- TargetTransformInfo *TTI,
- SmallVectorImpl<Value *> &BuildVectorOpds,
- int &UserCost) {
- UserCost = 0;
- Value *V = nullptr;
- do {
- if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
- UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
- LastInsertElem->getType(),
- CI->getZExtValue());
- }
- BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
- V = LastInsertElem->getOperand(0);
- if (isa<UndefValue>(V))
- break;
- LastInsertElem = dyn_cast<InsertElementInst>(V);
- if (!LastInsertElem || !LastInsertElem->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
-}
-
-/// Like findBuildVector, but looks for construction of aggregate.
-///
-/// \return true if it matches.
-static bool findBuildAggregate(InsertValueInst *IV,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- Value *V;
- do {
- BuildVectorOpds.push_back(IV->getInsertedValueOperand());
- V = IV->getAggregateOperand();
- if (isa<UndefValue>(V))
- break;
- IV = dyn_cast<InsertValueInst>(V);
- if (!IV || !IV->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
-}
-
-static bool PhiTypeSorterFunc(Value *V, Value *V2) {
- return V->getType() < V2->getType();
-}
-
-/// Try and get a reduction value from a phi node.
-///
-/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
-/// if they come from either \p ParentBB or a containing loop latch.
-///
-/// \returns A candidate reduction value if possible, or \code nullptr \endcode
-/// if not possible.
-static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
- BasicBlock *ParentBB, LoopInfo *LI) {
- // There are situations where the reduction value is not dominated by the
- // reduction phi. Vectorizing such cases has been reported to cause
- // miscompiles. See PR25787.
- auto DominatedReduxValue = [&](Value *R) {
- return isa<Instruction>(R) &&
- DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
- };
-
- Value *Rdx = nullptr;
-
- // Return the incoming value if it comes from the same BB as the phi node.
- if (P->getIncomingBlock(0) == ParentBB) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == ParentBB) {
- Rdx = P->getIncomingValue(1);
- }
-
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
-
- // Otherwise, check whether we have a loop latch to look at.
- Loop *BBL = LI->getLoopFor(ParentBB);
- if (!BBL)
- return nullptr;
- BasicBlock *BBLatch = BBL->getLoopLatch();
- if (!BBLatch)
- return nullptr;
-
- // There is a loop latch, return the incoming value if it comes from
- // that. This reduction pattern occasionally turns up.
- if (P->getIncomingBlock(0) == BBLatch) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == BBLatch) {
- Rdx = P->getIncomingValue(1);
- }
-
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
-
- return nullptr;
-}
-
-/// Attempt to reduce a horizontal reduction.
-/// If it is legal to match a horizontal reduction feeding the phi node \a P
-/// with reduction operators \a Root (or one of its operands) in a basic block
-/// \a BB, then check if it can be done. If horizontal reduction is not found
-/// and root instruction is a binary operation, vectorization of the operands is
-/// attempted.
-/// \returns true if a horizontal reduction was matched and reduced or operands
-/// of one of the binary instruction were vectorized.
-/// \returns false if a horizontal reduction was not matched (or not possible)
-/// or no vectorization of any binary operation feeding \a Root instruction was
-/// performed.
-static bool tryToVectorizeHorReductionOrInstOperands(
- PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI,
- const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
- if (!ShouldVectorizeHor)
- return false;
-
- if (!Root)
- return false;
-
- if (Root->getParent() != BB || isa<PHINode>(Root))
- return false;
- // Start analysis starting from Root instruction. If horizontal reduction is
- // found, try to vectorize it. If it is not a horizontal reduction or
- // vectorization is not possible or not effective, and currently analyzed
- // instruction is a binary operation, try to vectorize the operands, using
- // pre-order DFS traversal order. If the operands were not vectorized, repeat
- // the same procedure considering each operand as a possible root of the
- // horizontal reduction.
- // Interrupt the process if the Root instruction itself was vectorized or all
- // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
- SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
- SmallPtrSet<Value *, 8> VisitedInstrs;
- bool Res = false;
- while (!Stack.empty()) {
- Value *V;
- unsigned Level;
- std::tie(V, Level) = Stack.pop_back_val();
- if (!V)
- continue;
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- continue;
- auto *BI = dyn_cast<BinaryOperator>(Inst);
- auto *SI = dyn_cast<SelectInst>(Inst);
- if (BI || SI) {
- HorizontalReduction HorRdx;
- if (HorRdx.matchAssociativeReduction(P, Inst)) {
- if (HorRdx.tryToReduce(R, TTI)) {
- Res = true;
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- if (P && BI) {
- Inst = dyn_cast<Instruction>(BI->getOperand(0));
- if (Inst == P)
- Inst = dyn_cast<Instruction>(BI->getOperand(1));
- if (!Inst) {
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- }
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- if (Vectorize(Inst, R)) {
- Res = true;
- continue;
- }
-
- // Try to vectorize operands.
- // Continue analysis for the instruction from the same basic block only to
- // save compile time.
- if (++Level < RecursionMaxDepth)
- for (auto *Op : Inst->operand_values())
- if (VisitedInstrs.insert(Op).second)
- if (auto *I = dyn_cast<Instruction>(Op))
- if (!isa<PHINode>(I) && I->getParent() == BB)
- Stack.emplace_back(Op, Level);
- }
- return Res;
-}
-
-bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
- BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI) {
- if (!V)
- return false;
- auto *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
-
- if (!isa<BinaryOperator>(I))
- P = nullptr;
- // Try to match and vectorize a horizontal reduction.
- auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
- return tryToVectorize(I, R);
- };
- return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
- ExtraVectorization);
-}
-
-bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
- BasicBlock *BB, BoUpSLP &R) {
- const DataLayout &DL = BB->getModule()->getDataLayout();
- if (!R.canMapToVector(IVI->getType(), DL))
- return false;
-
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildAggregate(IVI, BuildVectorOpds))
- return false;
-
- LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
- // Aggregate value is unlikely to be processed in vector register, we need to
- // extract scalars into scalar registers, so NeedExtraction is set true.
- return tryToVectorizeList(BuildVectorOpds, R);
-}
-
-bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
- BasicBlock *BB, BoUpSLP &R) {
- int UserCost;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
- (llvm::all_of(BuildVectorOpds,
- [](Value *V) { return isa<ExtractElementInst>(V); }) &&
- isShuffle(BuildVectorOpds)))
- return false;
-
- // Vectorize starting with the build vector operands ignoring the BuildVector
- // instructions for the purpose of scheduling and user extraction.
- return tryToVectorizeList(BuildVectorOpds, R, UserCost);
-}
-
-bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
- BoUpSLP &R) {
- if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
- return true;
-
- bool OpsChanged = false;
- for (int Idx = 0; Idx < 2; ++Idx) {
- OpsChanged |=
- vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
- }
- return OpsChanged;
-}
-
-bool SLPVectorizerPass::vectorizeSimpleInstructions(
- SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
- bool OpsChanged = false;
- for (auto &VH : reverse(Instructions)) {
- auto *I = dyn_cast_or_null<Instruction>(VH);
- if (!I)
- continue;
- if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
- OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
- else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
- OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
- else if (auto *CI = dyn_cast<CmpInst>(I))
- OpsChanged |= vectorizeCmpInst(CI, BB, R);
- }
- Instructions.clear();
- return OpsChanged;
-}
-
-bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
- bool Changed = false;
- SmallVector<Value *, 4> Incoming;
- SmallPtrSet<Value *, 16> VisitedInstrs;
-
- bool HaveVectorizedPhiNodes = true;
- while (HaveVectorizedPhiNodes) {
- HaveVectorizedPhiNodes = false;
-
- // Collect the incoming values from the PHIs.
- Incoming.clear();
- for (Instruction &I : *BB) {
- PHINode *P = dyn_cast<PHINode>(&I);
- if (!P)
- break;
-
- if (!VisitedInstrs.count(P))
- Incoming.push_back(P);
- }
-
- // Sort by type.
- llvm::stable_sort(Incoming, PhiTypeSorterFunc);
-
- // Try to vectorize elements base on their type.
- for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
- E = Incoming.end();
- IncIt != E;) {
-
- // Look for the next elements with the same type.
- SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
- while (SameTypeIt != E &&
- (*SameTypeIt)->getType() == (*IncIt)->getType()) {
- VisitedInstrs.insert(*SameTypeIt);
- ++SameTypeIt;
- }
-
- // Try to vectorize them.
- unsigned NumElts = (SameTypeIt - IncIt);
- LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
- << NumElts << ")\n");
- // The order in which the phi nodes appear in the program does not matter.
- // So allow tryToVectorizeList to reorder them if it is beneficial. This
- // is done when there are exactly two elements since tryToVectorizeList
- // asserts that there are only two values when AllowReorder is true.
- bool AllowReorder = NumElts == 2;
- if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
- /*UserCost=*/0, AllowReorder)) {
- // Success start over because instructions might have been changed.
- HaveVectorizedPhiNodes = true;
- Changed = true;
- break;
- }
-
- // Start over at the next instruction of a different type (or the end).
- IncIt = SameTypeIt;
- }
- }
-
- VisitedInstrs.clear();
-
- SmallVector<WeakVH, 8> PostProcessInstructions;
- SmallDenseSet<Instruction *, 4> KeyNodes;
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(&*it).second) {
- if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
- vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
-
- if (isa<DbgInfoIntrinsic>(it))
- continue;
-
- // Try to vectorize reductions that use PHINodes.
- if (PHINode *P = dyn_cast<PHINode>(it)) {
- // Check that the PHI is a reduction PHI.
- if (P->getNumIncomingValues() != 2)
- return Changed;
-
- // Try to match and vectorize a horizontal reduction.
- if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
- TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- continue;
- }
-
- // Ran into an instruction without users, like terminator, or function call
- // with ignored return value, store. Ignore unused instructions (basing on
- // instruction type, except for CallInst and InvokeInst).
- if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
- isa<InvokeInst>(it))) {
- KeyNodes.insert(&*it);
- bool OpsChanged = false;
- if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
- for (auto *V : it->operand_values()) {
- // Try to match and vectorize a horizontal reduction.
- OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
- }
- }
- // Start vectorization of post-process list of instructions from the
- // top-tree instructions to try to vectorize as many instructions as
- // possible.
- OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
- if (OpsChanged) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
-
- if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
- isa<InsertValueInst>(it))
- PostProcessInstructions.push_back(&*it);
- }
-
- return Changed;
-}
-
-bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
- auto Changed = false;
- for (auto &Entry : GEPs) {
- // If the getelementptr list has fewer than two elements, there's nothing
- // to do.
- if (Entry.second.size() < 2)
- continue;
-
- LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
- << Entry.second.size() << ".\n");
-
- // We process the getelementptr list in chunks of 16 (like we do for
- // stores) to minimize compile-time.
- for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
- auto Len = std::min<unsigned>(BE - BI, 16);
- auto GEPList = makeArrayRef(&Entry.second[BI], Len);
-
- // Initialize a set a candidate getelementptrs. Note that we use a
- // SetVector here to preserve program order. If the index computations
- // are vectorizable and begin with loads, we want to minimize the chance
- // of having to reorder them later.
- SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
-
- // Some of the candidates may have already been vectorized after we
- // initially collected them. If so, the WeakTrackingVHs will have
- // nullified the
- // values, so remove them from the set of candidates.
- Candidates.remove(nullptr);
-
- // Remove from the set of candidates all pairs of getelementptrs with
- // constant differences. Such getelementptrs are likely not good
- // candidates for vectorization in a bottom-up phase since one can be
- // computed from the other. We also ensure all candidate getelementptr
- // indices are unique.
- for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
- auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
- if (!Candidates.count(GEPI))
- continue;
- auto *SCEVI = SE->getSCEV(GEPList[I]);
- for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
- auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
- auto *SCEVJ = SE->getSCEV(GEPList[J]);
- if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
- Candidates.remove(GEPList[I]);
- Candidates.remove(GEPList[J]);
- } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
- Candidates.remove(GEPList[J]);
- }
- }
- }
-
- // We break out of the above computation as soon as we know there are
- // fewer than two candidates remaining.
- if (Candidates.size() < 2)
- continue;
-
- // Add the single, non-constant index of each candidate to the bundle. We
- // ensured the indices met these constraints when we originally collected
- // the getelementptrs.
- SmallVector<Value *, 16> Bundle(Candidates.size());
- auto BundleIndex = 0u;
- for (auto *V : Candidates) {
- auto *GEP = cast<GetElementPtrInst>(V);
- auto *GEPIdx = GEP->idx_begin()->get();
- assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
- Bundle[BundleIndex++] = GEPIdx;
- }
-
- // Try and vectorize the indices. We are currently only interested in
- // gather-like cases of the form:
- //
- // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
- //
- // where the loads of "a", the loads of "b", and the subtractions can be
- // performed in parallel. It's likely that detecting this pattern in a
- // bottom-up phase will be simpler and less costly than building a
- // full-blown top-down phase beginning at the consecutive loads.
- Changed |= tryToVectorizeList(Bundle, R);
- }
- }
- return Changed;
-}
-
-bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
- bool Changed = false;
- // Attempt to sort and vectorize each of the store-groups.
- for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
- ++it) {
- if (it->second.size() < 2)
- continue;
-
- LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
- << it->second.size() << ".\n");
-
- // Process the stores in chunks of 16.
- // TODO: The limit of 16 inhibits greater vectorization factors.
- // For example, AVX2 supports v32i8. Increasing this limit, however,
- // may cause a significant compile-time increase.
- for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
- unsigned Len = std::min<unsigned>(CE - CI, 16);
- Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
- }
- }
- return Changed;
-}
-
-char SLPVectorizer::ID = 0;
-
-static const char lv_name[] = "SLP Vectorizer";
-
-INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
-INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
-INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
-
-Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h b/contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h
deleted file mode 100644
index 0ca6a6b93cfd..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h
+++ /dev/null
@@ -1,126 +0,0 @@
-//===- VPRecipeBuilder.h - Helper class to build recipes --------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H
-
-#include "LoopVectorizationPlanner.h"
-#include "VPlan.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/IR/IRBuilder.h"
-
-namespace llvm {
-
-class LoopVectorizationLegality;
-class LoopVectorizationCostModel;
-class TargetTransformInfo;
-class TargetLibraryInfo;
-
-/// Helper class to create VPRecipies from IR instructions.
-class VPRecipeBuilder {
- /// The loop that we evaluate.
- Loop *OrigLoop;
-
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
-
- /// The legality analysis.
- LoopVectorizationLegality *Legal;
-
- /// The profitablity analysis.
- LoopVectorizationCostModel &CM;
-
- VPBuilder &Builder;
-
- /// When we if-convert we need to create edge masks. We have to cache values
- /// so that we don't end up with exponential recursion/IR. Note that
- /// if-conversion currently takes place during VPlan-construction, so these
- /// caches are only used at that stage.
- using EdgeMaskCacheTy =
- DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>;
- using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>;
- EdgeMaskCacheTy EdgeMaskCache;
- BlockMaskCacheTy BlockMaskCache;
-
-public:
- /// A helper function that computes the predicate of the block BB, assuming
- /// that the header block of the loop is set to True. It returns the *entry*
- /// mask for the block BB.
- VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan);
-
- /// A helper function that computes the predicate of the edge between SRC
- /// and DST.
- VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan);
-
- /// Check if \I belongs to an Interleave Group within the given VF \p Range,
- /// \return true in the first returned value if so and false otherwise.
- /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG
- /// for \p Range.Start, and provide it as the second returned value.
- /// Note that if \I is an adjunct member of an IG for \p Range.Start, the
- /// \return value is <true, nullptr>, as it is handled by another recipe.
- /// \p Range.End may be decreased to ensure same decision from \p Range.Start
- /// to \p Range.End.
- VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range,
- VPlanPtr &Plan);
-
- /// Check if \I is a memory instruction to be widened for \p Range.Start and
- /// potentially masked. Such instructions are handled by a recipe that takes
- /// an additional VPInstruction for the mask.
- VPWidenMemoryInstructionRecipe *
- tryToWidenMemory(Instruction *I, VFRange &Range, VPlanPtr &Plan);
-
- /// Check if an induction recipe should be constructed for \I within the given
- /// VF \p Range. If so build and return it. If not, return null. \p Range.End
- /// may be decreased to ensure same decision from \p Range.Start to
- /// \p Range.End.
- VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I,
- VFRange &Range);
-
- /// Handle non-loop phi nodes. Currently all such phi nodes are turned into
- /// a sequence of select instructions as the vectorizer currently performs
- /// full if-conversion.
- VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan);
-
- /// Check if \p I can be widened within the given VF \p Range. If \p I can be
- /// widened for \p Range.Start, check if the last recipe of \p VPBB can be
- /// extended to include \p I or else build a new VPWidenRecipe for it and
- /// append it to \p VPBB. Return true if \p I can be widened for Range.Start,
- /// false otherwise. Range.End may be decreased to ensure same decision from
- /// \p Range.Start to \p Range.End.
- bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range);
-
- /// Create a replicating region for instruction \p I that requires
- /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I.
- VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe,
- VPlanPtr &Plan);
-
-public:
- VPRecipeBuilder(Loop *OrigLoop, const TargetLibraryInfo *TLI,
- LoopVectorizationLegality *Legal,
- LoopVectorizationCostModel &CM, VPBuilder &Builder)
- : OrigLoop(OrigLoop), TLI(TLI), Legal(Legal), CM(CM), Builder(Builder) {}
-
- /// Check if a recipe can be create for \p I withing the given VF \p Range.
- /// If a recipe can be created, it adds it to \p VPBB.
- bool tryToCreateRecipe(Instruction *Instr, VFRange &Range, VPlanPtr &Plan,
- VPBasicBlock *VPBB);
-
- /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it
- /// is predicated. \return \p VPBB augmented with this new recipe if \p I is
- /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new
- /// Region. Update the packing decision of predicated instructions if they
- /// feed \p I. Range.End may be decreased to ensure same recipe behavior from
- /// \p Range.Start to \p Range.End.
- VPBasicBlock *handleReplication(
- Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
- DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
- VPlanPtr &Plan);
-};
-} // end namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp
deleted file mode 100644
index 517d759d7bfc..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp
+++ /dev/null
@@ -1,751 +0,0 @@
-//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This is the LLVM vectorization plan. It represents a candidate for
-/// vectorization, allowing to plan and optimize how to vectorize a given loop
-/// before generating LLVM-IR.
-/// The vectorizer uses vectorization plans to estimate the costs of potential
-/// candidates and if profitable to execute the desired plan, generating vector
-/// LLVM-IR code.
-///
-//===----------------------------------------------------------------------===//
-
-#include "VPlan.h"
-#include "VPlanDominatorTree.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GenericDomTreeConstruction.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include <cassert>
-#include <iterator>
-#include <string>
-#include <vector>
-
-using namespace llvm;
-extern cl::opt<bool> EnableVPlanNativePath;
-
-#define DEBUG_TYPE "vplan"
-
-raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
- if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
- Instr->print(OS);
- else
- V.printAsOperand(OS);
- return OS;
-}
-
-/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
-const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
- const VPBlockBase *Block = this;
- while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
- Block = Region->getEntry();
- return cast<VPBasicBlock>(Block);
-}
-
-VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
- VPBlockBase *Block = this;
- while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
- Block = Region->getEntry();
- return cast<VPBasicBlock>(Block);
-}
-
-/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
-const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
- const VPBlockBase *Block = this;
- while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
- Block = Region->getExit();
- return cast<VPBasicBlock>(Block);
-}
-
-VPBasicBlock *VPBlockBase::getExitBasicBlock() {
- VPBlockBase *Block = this;
- while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
- Block = Region->getExit();
- return cast<VPBasicBlock>(Block);
-}
-
-VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
- if (!Successors.empty() || !Parent)
- return this;
- assert(Parent->getExit() == this &&
- "Block w/o successors not the exit of its parent.");
- return Parent->getEnclosingBlockWithSuccessors();
-}
-
-VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
- if (!Predecessors.empty() || !Parent)
- return this;
- assert(Parent->getEntry() == this &&
- "Block w/o predecessors not the entry of its parent.");
- return Parent->getEnclosingBlockWithPredecessors();
-}
-
-void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
- SmallVector<VPBlockBase *, 8> Blocks;
- for (VPBlockBase *Block : depth_first(Entry))
- Blocks.push_back(Block);
-
- for (VPBlockBase *Block : Blocks)
- delete Block;
-}
-
-BasicBlock *
-VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
- // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
- // Pred stands for Predessor. Prev stands for Previous - last visited/created.
- BasicBlock *PrevBB = CFG.PrevBB;
- BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
- PrevBB->getParent(), CFG.LastBB);
- LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
-
- // Hook up the new basic block to its predecessors.
- for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
- VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
- auto &PredVPSuccessors = PredVPBB->getSuccessors();
- BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
-
- // In outer loop vectorization scenario, the predecessor BBlock may not yet
- // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
- // vectorization. We do not encounter this case in inner loop vectorization
- // as we start out by building a loop skeleton with the vector loop header
- // and latch blocks. As a result, we never enter this function for the
- // header block in the non VPlan-native path.
- if (!PredBB) {
- assert(EnableVPlanNativePath &&
- "Unexpected null predecessor in non VPlan-native path");
- CFG.VPBBsToFix.push_back(PredVPBB);
- continue;
- }
-
- assert(PredBB && "Predecessor basic-block not found building successor.");
- auto *PredBBTerminator = PredBB->getTerminator();
- LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
- if (isa<UnreachableInst>(PredBBTerminator)) {
- assert(PredVPSuccessors.size() == 1 &&
- "Predecessor ending w/o branch must have single successor.");
- PredBBTerminator->eraseFromParent();
- BranchInst::Create(NewBB, PredBB);
- } else {
- assert(PredVPSuccessors.size() == 2 &&
- "Predecessor ending with branch must have two successors.");
- unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
- assert(!PredBBTerminator->getSuccessor(idx) &&
- "Trying to reset an existing successor block.");
- PredBBTerminator->setSuccessor(idx, NewBB);
- }
- }
- return NewBB;
-}
-
-void VPBasicBlock::execute(VPTransformState *State) {
- bool Replica = State->Instance &&
- !(State->Instance->Part == 0 && State->Instance->Lane == 0);
- VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
- VPBlockBase *SingleHPred = nullptr;
- BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
-
- // 1. Create an IR basic block, or reuse the last one if possible.
- // The last IR basic block is reused, as an optimization, in three cases:
- // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
- // B. when the current VPBB has a single (hierarchical) predecessor which
- // is PrevVPBB and the latter has a single (hierarchical) successor; and
- // C. when the current VPBB is an entry of a region replica - where PrevVPBB
- // is the exit of this region from a previous instance, or the predecessor
- // of this region.
- if (PrevVPBB && /* A */
- !((SingleHPred = getSingleHierarchicalPredecessor()) &&
- SingleHPred->getExitBasicBlock() == PrevVPBB &&
- PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
- !(Replica && getPredecessors().empty())) { /* C */
- NewBB = createEmptyBasicBlock(State->CFG);
- State->Builder.SetInsertPoint(NewBB);
- // Temporarily terminate with unreachable until CFG is rewired.
- UnreachableInst *Terminator = State->Builder.CreateUnreachable();
- State->Builder.SetInsertPoint(Terminator);
- // Register NewBB in its loop. In innermost loops its the same for all BB's.
- Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
- L->addBasicBlockToLoop(NewBB, *State->LI);
- State->CFG.PrevBB = NewBB;
- }
-
- // 2. Fill the IR basic block with IR instructions.
- LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
- << " in BB:" << NewBB->getName() << '\n');
-
- State->CFG.VPBB2IRBB[this] = NewBB;
- State->CFG.PrevVPBB = this;
-
- for (VPRecipeBase &Recipe : Recipes)
- Recipe.execute(*State);
-
- VPValue *CBV;
- if (EnableVPlanNativePath && (CBV = getCondBit())) {
- Value *IRCBV = CBV->getUnderlyingValue();
- assert(IRCBV && "Unexpected null underlying value for condition bit");
-
- // Condition bit value in a VPBasicBlock is used as the branch selector. In
- // the VPlan-native path case, since all branches are uniform we generate a
- // branch instruction using the condition value from vector lane 0 and dummy
- // successors. The successors are fixed later when the successor blocks are
- // visited.
- Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
- NewCond = State->Builder.CreateExtractElement(NewCond,
- State->Builder.getInt32(0));
-
- // Replace the temporary unreachable terminator with the new conditional
- // branch.
- auto *CurrentTerminator = NewBB->getTerminator();
- assert(isa<UnreachableInst>(CurrentTerminator) &&
- "Expected to replace unreachable terminator with conditional "
- "branch.");
- auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
- CondBr->setSuccessor(0, nullptr);
- ReplaceInstWithInst(CurrentTerminator, CondBr);
- }
-
- LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
-}
-
-void VPRegionBlock::execute(VPTransformState *State) {
- ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
-
- if (!isReplicator()) {
- // Visit the VPBlocks connected to "this", starting from it.
- for (VPBlockBase *Block : RPOT) {
- if (EnableVPlanNativePath) {
- // The inner loop vectorization path does not represent loop preheader
- // and exit blocks as part of the VPlan. In the VPlan-native path, skip
- // vectorizing loop preheader block. In future, we may replace this
- // check with the check for loop preheader.
- if (Block->getNumPredecessors() == 0)
- continue;
-
- // Skip vectorizing loop exit block. In future, we may replace this
- // check with the check for loop exit.
- if (Block->getNumSuccessors() == 0)
- continue;
- }
-
- LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
- Block->execute(State);
- }
- return;
- }
-
- assert(!State->Instance && "Replicating a Region with non-null instance.");
-
- // Enter replicating mode.
- State->Instance = {0, 0};
-
- for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
- State->Instance->Part = Part;
- for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
- State->Instance->Lane = Lane;
- // Visit the VPBlocks connected to \p this, starting from it.
- for (VPBlockBase *Block : RPOT) {
- LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
- Block->execute(State);
- }
- }
- }
-
- // Exit replicating mode.
- State->Instance.reset();
-}
-
-void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
- Parent = InsertPos->getParent();
- Parent->getRecipeList().insert(InsertPos->getIterator(), this);
-}
-
-iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
- return getParent()->getRecipeList().erase(getIterator());
-}
-
-void VPInstruction::generateInstruction(VPTransformState &State,
- unsigned Part) {
- IRBuilder<> &Builder = State.Builder;
-
- if (Instruction::isBinaryOp(getOpcode())) {
- Value *A = State.get(getOperand(0), Part);
- Value *B = State.get(getOperand(1), Part);
- Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
- State.set(this, V, Part);
- return;
- }
-
- switch (getOpcode()) {
- case VPInstruction::Not: {
- Value *A = State.get(getOperand(0), Part);
- Value *V = Builder.CreateNot(A);
- State.set(this, V, Part);
- break;
- }
- case VPInstruction::ICmpULE: {
- Value *IV = State.get(getOperand(0), Part);
- Value *TC = State.get(getOperand(1), Part);
- Value *V = Builder.CreateICmpULE(IV, TC);
- State.set(this, V, Part);
- break;
- }
- default:
- llvm_unreachable("Unsupported opcode for instruction");
- }
-}
-
-void VPInstruction::execute(VPTransformState &State) {
- assert(!State.Instance && "VPInstruction executing an Instance");
- for (unsigned Part = 0; Part < State.UF; ++Part)
- generateInstruction(State, Part);
-}
-
-void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n" << Indent << "\"EMIT ";
- print(O);
- O << "\\l\"";
-}
-
-void VPInstruction::print(raw_ostream &O) const {
- printAsOperand(O);
- O << " = ";
-
- switch (getOpcode()) {
- case VPInstruction::Not:
- O << "not";
- break;
- case VPInstruction::ICmpULE:
- O << "icmp ule";
- break;
- case VPInstruction::SLPLoad:
- O << "combined load";
- break;
- case VPInstruction::SLPStore:
- O << "combined store";
- break;
- default:
- O << Instruction::getOpcodeName(getOpcode());
- }
-
- for (const VPValue *Operand : operands()) {
- O << " ";
- Operand->printAsOperand(O);
- }
-}
-
-/// Generate the code inside the body of the vectorized loop. Assumes a single
-/// LoopVectorBody basic-block was created for this. Introduce additional
-/// basic-blocks as needed, and fill them all.
-void VPlan::execute(VPTransformState *State) {
- // -1. Check if the backedge taken count is needed, and if so build it.
- if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
- Value *TC = State->TripCount;
- IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
- auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
- "trip.count.minus.1");
- Value2VPValue[TCMO] = BackedgeTakenCount;
- }
-
- // 0. Set the reverse mapping from VPValues to Values for code generation.
- for (auto &Entry : Value2VPValue)
- State->VPValue2Value[Entry.second] = Entry.first;
-
- BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
- BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
- assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
-
- // 1. Make room to generate basic-blocks inside loop body if needed.
- BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
- VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
- Loop *L = State->LI->getLoopFor(VectorHeaderBB);
- L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
- // Remove the edge between Header and Latch to allow other connections.
- // Temporarily terminate with unreachable until CFG is rewired.
- // Note: this asserts the generated code's assumption that
- // getFirstInsertionPt() can be dereferenced into an Instruction.
- VectorHeaderBB->getTerminator()->eraseFromParent();
- State->Builder.SetInsertPoint(VectorHeaderBB);
- UnreachableInst *Terminator = State->Builder.CreateUnreachable();
- State->Builder.SetInsertPoint(Terminator);
-
- // 2. Generate code in loop body.
- State->CFG.PrevVPBB = nullptr;
- State->CFG.PrevBB = VectorHeaderBB;
- State->CFG.LastBB = VectorLatchBB;
-
- for (VPBlockBase *Block : depth_first(Entry))
- Block->execute(State);
-
- // Setup branch terminator successors for VPBBs in VPBBsToFix based on
- // VPBB's successors.
- for (auto VPBB : State->CFG.VPBBsToFix) {
- assert(EnableVPlanNativePath &&
- "Unexpected VPBBsToFix in non VPlan-native path");
- BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
- assert(BB && "Unexpected null basic block for VPBB");
-
- unsigned Idx = 0;
- auto *BBTerminator = BB->getTerminator();
-
- for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
- VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
- BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
- ++Idx;
- }
- }
-
- // 3. Merge the temporary latch created with the last basic-block filled.
- BasicBlock *LastBB = State->CFG.PrevBB;
- // Connect LastBB to VectorLatchBB to facilitate their merge.
- assert((EnableVPlanNativePath ||
- isa<UnreachableInst>(LastBB->getTerminator())) &&
- "Expected InnerLoop VPlan CFG to terminate with unreachable");
- assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
- "Expected VPlan CFG to terminate with branch in NativePath");
- LastBB->getTerminator()->eraseFromParent();
- BranchInst::Create(VectorLatchBB, LastBB);
-
- // Merge LastBB with Latch.
- bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
- (void)Merged;
- assert(Merged && "Could not merge last basic block with latch.");
- VectorLatchBB = LastBB;
-
- // We do not attempt to preserve DT for outer loop vectorization currently.
- if (!EnableVPlanNativePath)
- updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
-}
-
-void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
- BasicBlock *LoopLatchBB) {
- BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
- assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
- DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
- // The vector body may be more than a single basic-block by this point.
- // Update the dominator tree information inside the vector body by propagating
- // it from header to latch, expecting only triangular control-flow, if any.
- BasicBlock *PostDomSucc = nullptr;
- for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
- // Get the list of successors of this block.
- std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
- assert(Succs.size() <= 2 &&
- "Basic block in vector loop has more than 2 successors.");
- PostDomSucc = Succs[0];
- if (Succs.size() == 1) {
- assert(PostDomSucc->getSinglePredecessor() &&
- "PostDom successor has more than one predecessor.");
- DT->addNewBlock(PostDomSucc, BB);
- continue;
- }
- BasicBlock *InterimSucc = Succs[1];
- if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
- PostDomSucc = Succs[1];
- InterimSucc = Succs[0];
- }
- assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
- "One successor of a basic block does not lead to the other.");
- assert(InterimSucc->getSinglePredecessor() &&
- "Interim successor has more than one predecessor.");
- assert(PostDomSucc->hasNPredecessors(2) &&
- "PostDom successor has more than two predecessors.");
- DT->addNewBlock(InterimSucc, BB);
- DT->addNewBlock(PostDomSucc, BB);
- }
-}
-
-const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
- return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
- Twine(getOrCreateBID(Block));
-}
-
-const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
- const std::string &Name = Block->getName();
- if (!Name.empty())
- return Name;
- return "VPB" + Twine(getOrCreateBID(Block));
-}
-
-void VPlanPrinter::dump() {
- Depth = 1;
- bumpIndent(0);
- OS << "digraph VPlan {\n";
- OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
- if (!Plan.getName().empty())
- OS << "\\n" << DOT::EscapeString(Plan.getName());
- if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) {
- OS << ", where:";
- if (Plan.BackedgeTakenCount)
- OS << "\\n"
- << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount";
- for (auto Entry : Plan.Value2VPValue) {
- OS << "\\n" << *Entry.second;
- OS << DOT::EscapeString(" := ");
- Entry.first->printAsOperand(OS, false);
- }
- }
- OS << "\"]\n";
- OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
- OS << "edge [fontname=Courier, fontsize=30]\n";
- OS << "compound=true\n";
-
- for (VPBlockBase *Block : depth_first(Plan.getEntry()))
- dumpBlock(Block);
-
- OS << "}\n";
-}
-
-void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
- if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
- dumpBasicBlock(BasicBlock);
- else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
- dumpRegion(Region);
- else
- llvm_unreachable("Unsupported kind of VPBlock.");
-}
-
-void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
- bool Hidden, const Twine &Label) {
- // Due to "dot" we print an edge between two regions as an edge between the
- // exit basic block and the entry basic of the respective regions.
- const VPBlockBase *Tail = From->getExitBasicBlock();
- const VPBlockBase *Head = To->getEntryBasicBlock();
- OS << Indent << getUID(Tail) << " -> " << getUID(Head);
- OS << " [ label=\"" << Label << '\"';
- if (Tail != From)
- OS << " ltail=" << getUID(From);
- if (Head != To)
- OS << " lhead=" << getUID(To);
- if (Hidden)
- OS << "; splines=none";
- OS << "]\n";
-}
-
-void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
- auto &Successors = Block->getSuccessors();
- if (Successors.size() == 1)
- drawEdge(Block, Successors.front(), false, "");
- else if (Successors.size() == 2) {
- drawEdge(Block, Successors.front(), false, "T");
- drawEdge(Block, Successors.back(), false, "F");
- } else {
- unsigned SuccessorNumber = 0;
- for (auto *Successor : Successors)
- drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
- }
-}
-
-void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
- OS << Indent << getUID(BasicBlock) << " [label =\n";
- bumpIndent(1);
- OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
- bumpIndent(1);
-
- // Dump the block predicate.
- const VPValue *Pred = BasicBlock->getPredicate();
- if (Pred) {
- OS << " +\n" << Indent << " \"BlockPredicate: ";
- if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
- PredI->printAsOperand(OS);
- OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
- << ")\\l\"";
- } else
- Pred->printAsOperand(OS);
- }
-
- for (const VPRecipeBase &Recipe : *BasicBlock)
- Recipe.print(OS, Indent);
-
- // Dump the condition bit.
- const VPValue *CBV = BasicBlock->getCondBit();
- if (CBV) {
- OS << " +\n" << Indent << " \"CondBit: ";
- if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
- CBI->printAsOperand(OS);
- OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
- } else {
- CBV->printAsOperand(OS);
- OS << "\"";
- }
- }
-
- bumpIndent(-2);
- OS << "\n" << Indent << "]\n";
- dumpEdges(BasicBlock);
-}
-
-void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
- OS << Indent << "subgraph " << getUID(Region) << " {\n";
- bumpIndent(1);
- OS << Indent << "fontname=Courier\n"
- << Indent << "label=\""
- << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
- << DOT::EscapeString(Region->getName()) << "\"\n";
- // Dump the blocks of the region.
- assert(Region->getEntry() && "Region contains no inner blocks.");
- for (const VPBlockBase *Block : depth_first(Region->getEntry()))
- dumpBlock(Block);
- bumpIndent(-1);
- OS << Indent << "}\n";
- dumpEdges(Region);
-}
-
-void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
- std::string IngredientString;
- raw_string_ostream RSO(IngredientString);
- if (auto *Inst = dyn_cast<Instruction>(V)) {
- if (!Inst->getType()->isVoidTy()) {
- Inst->printAsOperand(RSO, false);
- RSO << " = ";
- }
- RSO << Inst->getOpcodeName() << " ";
- unsigned E = Inst->getNumOperands();
- if (E > 0) {
- Inst->getOperand(0)->printAsOperand(RSO, false);
- for (unsigned I = 1; I < E; ++I)
- Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
- }
- } else // !Inst
- V->printAsOperand(RSO, false);
- RSO.flush();
- O << DOT::EscapeString(IngredientString);
-}
-
-void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n" << Indent << "\"WIDEN\\l\"";
- for (auto &Instr : make_range(Begin, End))
- O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\"";
-}
-
-void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
- const Twine &Indent) const {
- O << " +\n" << Indent << "\"WIDEN-INDUCTION";
- if (Trunc) {
- O << "\\l\"";
- O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\"";
- O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\"";
- } else
- O << " " << VPlanIngredient(IV) << "\\l\"";
-}
-
-void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
-}
-
-void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n" << Indent << "\"BLEND ";
- Phi->printAsOperand(O, false);
- O << " =";
- if (!User) {
- // Not a User of any mask: not really blending, this is a
- // single-predecessor phi.
- O << " ";
- Phi->getIncomingValue(0)->printAsOperand(O, false);
- } else {
- for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
- O << " ";
- Phi->getIncomingValue(I)->printAsOperand(O, false);
- O << "/";
- User->getOperand(I)->printAsOperand(O);
- }
- }
- O << "\\l\"";
-}
-
-void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n"
- << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
- << VPlanIngredient(Ingredient);
- if (AlsoPack)
- O << " (S->V)";
- O << "\\l\"";
-}
-
-void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n"
- << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
- << "\\l\"";
-}
-
-void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
- const Twine &Indent) const {
- O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
- if (User) {
- O << ", ";
- User->getOperand(0)->printAsOperand(O);
- }
- O << "\\l\"";
-}
-
-template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
-
-void VPValue::replaceAllUsesWith(VPValue *New) {
- for (VPUser *User : users())
- for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
- if (User->getOperand(I) == this)
- User->setOperand(I, New);
-}
-
-void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
- Old2NewTy &Old2New,
- InterleavedAccessInfo &IAI) {
- ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
- for (VPBlockBase *Base : RPOT) {
- visitBlock(Base, Old2New, IAI);
- }
-}
-
-void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
- InterleavedAccessInfo &IAI) {
- if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
- for (VPRecipeBase &VPI : *VPBB) {
- assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
- auto *VPInst = cast<VPInstruction>(&VPI);
- auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
- auto *IG = IAI.getInterleaveGroup(Inst);
- if (!IG)
- continue;
-
- auto NewIGIter = Old2New.find(IG);
- if (NewIGIter == Old2New.end())
- Old2New[IG] = new InterleaveGroup<VPInstruction>(
- IG->getFactor(), IG->isReverse(), IG->getAlignment());
-
- if (Inst == IG->getInsertPos())
- Old2New[IG]->setInsertPos(VPInst);
-
- InterleaveGroupMap[VPInst] = Old2New[IG];
- InterleaveGroupMap[VPInst]->insertMember(
- VPInst, IG->getIndex(Inst),
- IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor());
- }
- } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
- visitRegion(Region, Old2New, IAI);
- else
- llvm_unreachable("Unsupported kind of VPBlock.");
-}
-
-VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
- InterleavedAccessInfo &IAI) {
- Old2NewTy Old2New;
- visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlan.h b/contrib/llvm/lib/Transforms/Vectorize/VPlan.h
deleted file mode 100644
index 8a06412ad590..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlan.h
+++ /dev/null
@@ -1,1688 +0,0 @@
-//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file
-/// This file contains the declarations of the Vectorization Plan base classes:
-/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
-/// VPBlockBase, together implementing a Hierarchical CFG;
-/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
-/// treated as proper graphs for generic algorithms;
-/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
-/// within VPBasicBlocks;
-/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
-/// instruction;
-/// 5. The VPlan class holding a candidate for vectorization;
-/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
-/// These are documented in docs/VectorizationPlan.rst.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
-
-#include "VPlanLoopInfo.h"
-#include "VPlanValue.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/ADT/ilist.h"
-#include "llvm/ADT/ilist_node.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/IRBuilder.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <map>
-#include <string>
-
-namespace llvm {
-
-class LoopVectorizationLegality;
-class LoopVectorizationCostModel;
-class BasicBlock;
-class DominatorTree;
-class InnerLoopVectorizer;
-template <class T> class InterleaveGroup;
-class LoopInfo;
-class raw_ostream;
-class Value;
-class VPBasicBlock;
-class VPRegionBlock;
-class VPlan;
-class VPlanSlp;
-
-/// A range of powers-of-2 vectorization factors with fixed start and
-/// adjustable end. The range includes start and excludes end, e.g.,:
-/// [1, 9) = {1, 2, 4, 8}
-struct VFRange {
- // A power of 2.
- const unsigned Start;
-
- // Need not be a power of 2. If End <= Start range is empty.
- unsigned End;
-};
-
-using VPlanPtr = std::unique_ptr<VPlan>;
-
-/// In what follows, the term "input IR" refers to code that is fed into the
-/// vectorizer whereas the term "output IR" refers to code that is generated by
-/// the vectorizer.
-
-/// VPIteration represents a single point in the iteration space of the output
-/// (vectorized and/or unrolled) IR loop.
-struct VPIteration {
- /// in [0..UF)
- unsigned Part;
-
- /// in [0..VF)
- unsigned Lane;
-};
-
-/// This is a helper struct for maintaining vectorization state. It's used for
-/// mapping values from the original loop to their corresponding values in
-/// the new loop. Two mappings are maintained: one for vectorized values and
-/// one for scalarized values. Vectorized values are represented with UF
-/// vector values in the new loop, and scalarized values are represented with
-/// UF x VF scalar values in the new loop. UF and VF are the unroll and
-/// vectorization factors, respectively.
-///
-/// Entries can be added to either map with setVectorValue and setScalarValue,
-/// which assert that an entry was not already added before. If an entry is to
-/// replace an existing one, call resetVectorValue and resetScalarValue. This is
-/// currently needed to modify the mapped values during "fix-up" operations that
-/// occur once the first phase of widening is complete. These operations include
-/// type truncation and the second phase of recurrence widening.
-///
-/// Entries from either map can be retrieved using the getVectorValue and
-/// getScalarValue functions, which assert that the desired value exists.
-struct VectorizerValueMap {
- friend struct VPTransformState;
-
-private:
- /// The unroll factor. Each entry in the vector map contains UF vector values.
- unsigned UF;
-
- /// The vectorization factor. Each entry in the scalar map contains UF x VF
- /// scalar values.
- unsigned VF;
-
- /// The vector and scalar map storage. We use std::map and not DenseMap
- /// because insertions to DenseMap invalidate its iterators.
- using VectorParts = SmallVector<Value *, 2>;
- using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
- std::map<Value *, VectorParts> VectorMapStorage;
- std::map<Value *, ScalarParts> ScalarMapStorage;
-
-public:
- /// Construct an empty map with the given unroll and vectorization factors.
- VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
-
- /// \return True if the map has any vector entry for \p Key.
- bool hasAnyVectorValue(Value *Key) const {
- return VectorMapStorage.count(Key);
- }
-
- /// \return True if the map has a vector entry for \p Key and \p Part.
- bool hasVectorValue(Value *Key, unsigned Part) const {
- assert(Part < UF && "Queried Vector Part is too large.");
- if (!hasAnyVectorValue(Key))
- return false;
- const VectorParts &Entry = VectorMapStorage.find(Key)->second;
- assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
- return Entry[Part] != nullptr;
- }
-
- /// \return True if the map has any scalar entry for \p Key.
- bool hasAnyScalarValue(Value *Key) const {
- return ScalarMapStorage.count(Key);
- }
-
- /// \return True if the map has a scalar entry for \p Key and \p Instance.
- bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
- assert(Instance.Part < UF && "Queried Scalar Part is too large.");
- assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
- if (!hasAnyScalarValue(Key))
- return false;
- const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
- assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
- assert(Entry[Instance.Part].size() == VF &&
- "ScalarParts has wrong dimensions.");
- return Entry[Instance.Part][Instance.Lane] != nullptr;
- }
-
- /// Retrieve the existing vector value that corresponds to \p Key and
- /// \p Part.
- Value *getVectorValue(Value *Key, unsigned Part) {
- assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
- return VectorMapStorage[Key][Part];
- }
-
- /// Retrieve the existing scalar value that corresponds to \p Key and
- /// \p Instance.
- Value *getScalarValue(Value *Key, const VPIteration &Instance) {
- assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
- return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
- }
-
- /// Set a vector value associated with \p Key and \p Part. Assumes such a
- /// value is not already set. If it is, use resetVectorValue() instead.
- void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
- assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
- if (!VectorMapStorage.count(Key)) {
- VectorParts Entry(UF);
- VectorMapStorage[Key] = Entry;
- }
- VectorMapStorage[Key][Part] = Vector;
- }
-
- /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
- /// value is not already set.
- void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
- assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
- if (!ScalarMapStorage.count(Key)) {
- ScalarParts Entry(UF);
- // TODO: Consider storing uniform values only per-part, as they occupy
- // lane 0 only, keeping the other VF-1 redundant entries null.
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part].resize(VF, nullptr);
- ScalarMapStorage[Key] = Entry;
- }
- ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
- }
-
- /// Reset the vector value associated with \p Key for the given \p Part.
- /// This function can be used to update values that have already been
- /// vectorized. This is the case for "fix-up" operations including type
- /// truncation and the second phase of recurrence vectorization.
- void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
- assert(hasVectorValue(Key, Part) && "Vector value not set for part");
- VectorMapStorage[Key][Part] = Vector;
- }
-
- /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
- /// This function can be used to update values that have already been
- /// scalarized. This is the case for "fix-up" operations including scalar phi
- /// nodes for scalarized and predicated instructions.
- void resetScalarValue(Value *Key, const VPIteration &Instance,
- Value *Scalar) {
- assert(hasScalarValue(Key, Instance) &&
- "Scalar value not set for part and lane");
- ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
- }
-};
-
-/// This class is used to enable the VPlan to invoke a method of ILV. This is
-/// needed until the method is refactored out of ILV and becomes reusable.
-struct VPCallback {
- virtual ~VPCallback() {}
- virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
-};
-
-/// VPTransformState holds information passed down when "executing" a VPlan,
-/// needed for generating the output IR.
-struct VPTransformState {
- VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
- IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
- InnerLoopVectorizer *ILV, VPCallback &Callback)
- : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
- ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
-
- /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
- unsigned VF;
- unsigned UF;
-
- /// Hold the indices to generate specific scalar instructions. Null indicates
- /// that all instances are to be generated, using either scalar or vector
- /// instructions.
- Optional<VPIteration> Instance;
-
- struct DataState {
- /// A type for vectorized values in the new loop. Each value from the
- /// original loop, when vectorized, is represented by UF vector values in
- /// the new unrolled loop, where UF is the unroll factor.
- typedef SmallVector<Value *, 2> PerPartValuesTy;
-
- DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
- } Data;
-
- /// Get the generated Value for a given VPValue and a given Part. Note that
- /// as some Defs are still created by ILV and managed in its ValueMap, this
- /// method will delegate the call to ILV in such cases in order to provide
- /// callers a consistent API.
- /// \see set.
- Value *get(VPValue *Def, unsigned Part) {
- // If Values have been set for this Def return the one relevant for \p Part.
- if (Data.PerPartOutput.count(Def))
- return Data.PerPartOutput[Def][Part];
- // Def is managed by ILV: bring the Values from ValueMap.
- return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
- }
-
- /// Set the generated Value for a given VPValue and a given Part.
- void set(VPValue *Def, Value *V, unsigned Part) {
- if (!Data.PerPartOutput.count(Def)) {
- DataState::PerPartValuesTy Entry(UF);
- Data.PerPartOutput[Def] = Entry;
- }
- Data.PerPartOutput[Def][Part] = V;
- }
-
- /// Hold state information used when constructing the CFG of the output IR,
- /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
- struct CFGState {
- /// The previous VPBasicBlock visited. Initially set to null.
- VPBasicBlock *PrevVPBB = nullptr;
-
- /// The previous IR BasicBlock created or used. Initially set to the new
- /// header BasicBlock.
- BasicBlock *PrevBB = nullptr;
-
- /// The last IR BasicBlock in the output IR. Set to the new latch
- /// BasicBlock, used for placing the newly created BasicBlocks.
- BasicBlock *LastBB = nullptr;
-
- /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
- /// of replication, maps the BasicBlock of the last replica created.
- SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
-
- /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
- /// up at the end of vector code generation.
- SmallVector<VPBasicBlock *, 8> VPBBsToFix;
-
- CFGState() = default;
- } CFG;
-
- /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
- LoopInfo *LI;
-
- /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
- DominatorTree *DT;
-
- /// Hold a reference to the IRBuilder used to generate output IR code.
- IRBuilder<> &Builder;
-
- /// Hold a reference to the Value state information used when generating the
- /// Values of the output IR.
- VectorizerValueMap &ValueMap;
-
- /// Hold a reference to a mapping between VPValues in VPlan and original
- /// Values they correspond to.
- VPValue2ValueTy VPValue2Value;
-
- /// Hold the trip count of the scalar loop.
- Value *TripCount = nullptr;
-
- /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
- InnerLoopVectorizer *ILV;
-
- VPCallback &Callback;
-};
-
-/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
-/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
-class VPBlockBase {
- friend class VPBlockUtils;
-
-private:
- const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
-
- /// An optional name for the block.
- std::string Name;
-
- /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
- /// it is a topmost VPBlockBase.
- VPRegionBlock *Parent = nullptr;
-
- /// List of predecessor blocks.
- SmallVector<VPBlockBase *, 1> Predecessors;
-
- /// List of successor blocks.
- SmallVector<VPBlockBase *, 1> Successors;
-
- /// Successor selector, null for zero or single successor blocks.
- VPValue *CondBit = nullptr;
-
- /// Current block predicate - null if the block does not need a predicate.
- VPValue *Predicate = nullptr;
-
- /// Add \p Successor as the last successor to this block.
- void appendSuccessor(VPBlockBase *Successor) {
- assert(Successor && "Cannot add nullptr successor!");
- Successors.push_back(Successor);
- }
-
- /// Add \p Predecessor as the last predecessor to this block.
- void appendPredecessor(VPBlockBase *Predecessor) {
- assert(Predecessor && "Cannot add nullptr predecessor!");
- Predecessors.push_back(Predecessor);
- }
-
- /// Remove \p Predecessor from the predecessors of this block.
- void removePredecessor(VPBlockBase *Predecessor) {
- auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
- assert(Pos && "Predecessor does not exist");
- Predecessors.erase(Pos);
- }
-
- /// Remove \p Successor from the successors of this block.
- void removeSuccessor(VPBlockBase *Successor) {
- auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
- assert(Pos && "Successor does not exist");
- Successors.erase(Pos);
- }
-
-protected:
- VPBlockBase(const unsigned char SC, const std::string &N)
- : SubclassID(SC), Name(N) {}
-
-public:
- /// An enumeration for keeping track of the concrete subclass of VPBlockBase
- /// that are actually instantiated. Values of this enumeration are kept in the
- /// SubclassID field of the VPBlockBase objects. They are used for concrete
- /// type identification.
- using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
-
- using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
-
- virtual ~VPBlockBase() = default;
-
- const std::string &getName() const { return Name; }
-
- void setName(const Twine &newName) { Name = newName.str(); }
-
- /// \return an ID for the concrete type of this object.
- /// This is used to implement the classof checks. This should not be used
- /// for any other purpose, as the values may change as LLVM evolves.
- unsigned getVPBlockID() const { return SubclassID; }
-
- VPRegionBlock *getParent() { return Parent; }
- const VPRegionBlock *getParent() const { return Parent; }
-
- void setParent(VPRegionBlock *P) { Parent = P; }
-
- /// \return the VPBasicBlock that is the entry of this VPBlockBase,
- /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
- /// VPBlockBase is a VPBasicBlock, it is returned.
- const VPBasicBlock *getEntryBasicBlock() const;
- VPBasicBlock *getEntryBasicBlock();
-
- /// \return the VPBasicBlock that is the exit of this VPBlockBase,
- /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
- /// VPBlockBase is a VPBasicBlock, it is returned.
- const VPBasicBlock *getExitBasicBlock() const;
- VPBasicBlock *getExitBasicBlock();
-
- const VPBlocksTy &getSuccessors() const { return Successors; }
- VPBlocksTy &getSuccessors() { return Successors; }
-
- const VPBlocksTy &getPredecessors() const { return Predecessors; }
- VPBlocksTy &getPredecessors() { return Predecessors; }
-
- /// \return the successor of this VPBlockBase if it has a single successor.
- /// Otherwise return a null pointer.
- VPBlockBase *getSingleSuccessor() const {
- return (Successors.size() == 1 ? *Successors.begin() : nullptr);
- }
-
- /// \return the predecessor of this VPBlockBase if it has a single
- /// predecessor. Otherwise return a null pointer.
- VPBlockBase *getSinglePredecessor() const {
- return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
- }
-
- size_t getNumSuccessors() const { return Successors.size(); }
- size_t getNumPredecessors() const { return Predecessors.size(); }
-
- /// An Enclosing Block of a block B is any block containing B, including B
- /// itself. \return the closest enclosing block starting from "this", which
- /// has successors. \return the root enclosing block if all enclosing blocks
- /// have no successors.
- VPBlockBase *getEnclosingBlockWithSuccessors();
-
- /// \return the closest enclosing block starting from "this", which has
- /// predecessors. \return the root enclosing block if all enclosing blocks
- /// have no predecessors.
- VPBlockBase *getEnclosingBlockWithPredecessors();
-
- /// \return the successors either attached directly to this VPBlockBase or, if
- /// this VPBlockBase is the exit block of a VPRegionBlock and has no
- /// successors of its own, search recursively for the first enclosing
- /// VPRegionBlock that has successors and return them. If no such
- /// VPRegionBlock exists, return the (empty) successors of the topmost
- /// VPBlockBase reached.
- const VPBlocksTy &getHierarchicalSuccessors() {
- return getEnclosingBlockWithSuccessors()->getSuccessors();
- }
-
- /// \return the hierarchical successor of this VPBlockBase if it has a single
- /// hierarchical successor. Otherwise return a null pointer.
- VPBlockBase *getSingleHierarchicalSuccessor() {
- return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
- }
-
- /// \return the predecessors either attached directly to this VPBlockBase or,
- /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
- /// predecessors of its own, search recursively for the first enclosing
- /// VPRegionBlock that has predecessors and return them. If no such
- /// VPRegionBlock exists, return the (empty) predecessors of the topmost
- /// VPBlockBase reached.
- const VPBlocksTy &getHierarchicalPredecessors() {
- return getEnclosingBlockWithPredecessors()->getPredecessors();
- }
-
- /// \return the hierarchical predecessor of this VPBlockBase if it has a
- /// single hierarchical predecessor. Otherwise return a null pointer.
- VPBlockBase *getSingleHierarchicalPredecessor() {
- return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
- }
-
- /// \return the condition bit selecting the successor.
- VPValue *getCondBit() { return CondBit; }
-
- const VPValue *getCondBit() const { return CondBit; }
-
- void setCondBit(VPValue *CV) { CondBit = CV; }
-
- VPValue *getPredicate() { return Predicate; }
-
- const VPValue *getPredicate() const { return Predicate; }
-
- void setPredicate(VPValue *Pred) { Predicate = Pred; }
-
- /// Set a given VPBlockBase \p Successor as the single successor of this
- /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
- /// This VPBlockBase must have no successors.
- void setOneSuccessor(VPBlockBase *Successor) {
- assert(Successors.empty() && "Setting one successor when others exist.");
- appendSuccessor(Successor);
- }
-
- /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
- /// successors of this VPBlockBase. \p Condition is set as the successor
- /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
- /// IfFalse. This VPBlockBase must have no successors.
- void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
- VPValue *Condition) {
- assert(Successors.empty() && "Setting two successors when others exist.");
- assert(Condition && "Setting two successors without condition!");
- CondBit = Condition;
- appendSuccessor(IfTrue);
- appendSuccessor(IfFalse);
- }
-
- /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
- /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
- /// as successor of any VPBasicBlock in \p NewPreds.
- void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
- assert(Predecessors.empty() && "Block predecessors already set.");
- for (auto *Pred : NewPreds)
- appendPredecessor(Pred);
- }
-
- /// Remove all the predecessor of this block.
- void clearPredecessors() { Predecessors.clear(); }
-
- /// Remove all the successors of this block and set to null its condition bit
- void clearSuccessors() {
- Successors.clear();
- CondBit = nullptr;
- }
-
- /// The method which generates the output IR that correspond to this
- /// VPBlockBase, thereby "executing" the VPlan.
- virtual void execute(struct VPTransformState *State) = 0;
-
- /// Delete all blocks reachable from a given VPBlockBase, inclusive.
- static void deleteCFG(VPBlockBase *Entry);
-
- void printAsOperand(raw_ostream &OS, bool PrintType) const {
- OS << getName();
- }
-
- void print(raw_ostream &OS) const {
- // TODO: Only printing VPBB name for now since we only have dot printing
- // support for VPInstructions/Recipes.
- printAsOperand(OS, false);
- }
-
- /// Return true if it is legal to hoist instructions into this block.
- bool isLegalToHoistInto() {
- // There are currently no constraints that prevent an instruction to be
- // hoisted into a VPBlockBase.
- return true;
- }
-};
-
-/// VPRecipeBase is a base class modeling a sequence of one or more output IR
-/// instructions.
-class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
- friend VPBasicBlock;
-
-private:
- const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
-
- /// Each VPRecipe belongs to a single VPBasicBlock.
- VPBasicBlock *Parent = nullptr;
-
-public:
- /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
- /// that is actually instantiated. Values of this enumeration are kept in the
- /// SubclassID field of the VPRecipeBase objects. They are used for concrete
- /// type identification.
- using VPRecipeTy = enum {
- VPBlendSC,
- VPBranchOnMaskSC,
- VPInstructionSC,
- VPInterleaveSC,
- VPPredInstPHISC,
- VPReplicateSC,
- VPWidenIntOrFpInductionSC,
- VPWidenMemoryInstructionSC,
- VPWidenPHISC,
- VPWidenSC,
- };
-
- VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
- virtual ~VPRecipeBase() = default;
-
- /// \return an ID for the concrete type of this object.
- /// This is used to implement the classof checks. This should not be used
- /// for any other purpose, as the values may change as LLVM evolves.
- unsigned getVPRecipeID() const { return SubclassID; }
-
- /// \return the VPBasicBlock which this VPRecipe belongs to.
- VPBasicBlock *getParent() { return Parent; }
- const VPBasicBlock *getParent() const { return Parent; }
-
- /// The method which generates the output IR instructions that correspond to
- /// this VPRecipe, thereby "executing" the VPlan.
- virtual void execute(struct VPTransformState &State) = 0;
-
- /// Each recipe prints itself.
- virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
-
- /// Insert an unlinked recipe into a basic block immediately before
- /// the specified recipe.
- void insertBefore(VPRecipeBase *InsertPos);
-
- /// This method unlinks 'this' from the containing basic block and deletes it.
- ///
- /// \returns an iterator pointing to the element after the erased one
- iplist<VPRecipeBase>::iterator eraseFromParent();
-};
-
-/// This is a concrete Recipe that models a single VPlan-level instruction.
-/// While as any Recipe it may generate a sequence of IR instructions when
-/// executed, these instructions would always form a single-def expression as
-/// the VPInstruction is also a single def-use vertex.
-class VPInstruction : public VPUser, public VPRecipeBase {
- friend class VPlanHCFGTransforms;
- friend class VPlanSlp;
-
-public:
- /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
- enum {
- Not = Instruction::OtherOpsEnd + 1,
- ICmpULE,
- SLPLoad,
- SLPStore,
- };
-
-private:
- typedef unsigned char OpcodeTy;
- OpcodeTy Opcode;
-
- /// Utility method serving execute(): generates a single instance of the
- /// modeled instruction.
- void generateInstruction(VPTransformState &State, unsigned Part);
-
-protected:
- Instruction *getUnderlyingInstr() {
- return cast_or_null<Instruction>(getUnderlyingValue());
- }
-
- void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
-
-public:
- VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
- : VPUser(VPValue::VPInstructionSC, Operands),
- VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
-
- VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
- : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPValue *V) {
- return V->getVPValueID() == VPValue::VPInstructionSC;
- }
-
- VPInstruction *clone() const {
- SmallVector<VPValue *, 2> Operands(operands());
- return new VPInstruction(Opcode, Operands);
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *R) {
- return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
- }
-
- unsigned getOpcode() const { return Opcode; }
-
- /// Generate the instruction.
- /// TODO: We currently execute only per-part unless a specific instance is
- /// provided.
- void execute(VPTransformState &State) override;
-
- /// Print the Recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-
- /// Print the VPInstruction.
- void print(raw_ostream &O) const;
-
- /// Return true if this instruction may modify memory.
- bool mayWriteToMemory() const {
- // TODO: we can use attributes of the called function to rule out memory
- // modifications.
- return Opcode == Instruction::Store || Opcode == Instruction::Call ||
- Opcode == Instruction::Invoke || Opcode == SLPStore;
- }
-};
-
-/// VPWidenRecipe is a recipe for producing a copy of vector type for each
-/// Instruction in its ingredients independently, in order. This recipe covers
-/// most of the traditional vectorization cases where each ingredient transforms
-/// into a vectorized version of itself.
-class VPWidenRecipe : public VPRecipeBase {
-private:
- /// Hold the ingredients by pointing to their original BasicBlock location.
- BasicBlock::iterator Begin;
- BasicBlock::iterator End;
-
-public:
- VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
- End = I->getIterator();
- Begin = End++;
- }
-
- ~VPWidenRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
- }
-
- /// Produce widened copies of all Ingredients.
- void execute(VPTransformState &State) override;
-
- /// Augment the recipe to include Instr, if it lies at its End.
- bool appendInstruction(Instruction *Instr) {
- if (End != Instr->getIterator())
- return false;
- End++;
- return true;
- }
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for handling phi nodes of integer and floating-point inductions,
-/// producing their vector and scalar values.
-class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
-private:
- PHINode *IV;
- TruncInst *Trunc;
-
-public:
- VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
- : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
- ~VPWidenIntOrFpInductionRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
- }
-
- /// Generate the vectorized and scalarized versions of the phi node as
- /// needed by their users.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for handling all phi nodes except for integer and FP inductions.
-class VPWidenPHIRecipe : public VPRecipeBase {
-private:
- PHINode *Phi;
-
-public:
- VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
- ~VPWidenPHIRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
- }
-
- /// Generate the phi/select nodes.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for vectorizing a phi-node as a sequence of mask-based select
-/// instructions.
-class VPBlendRecipe : public VPRecipeBase {
-private:
- PHINode *Phi;
-
- /// The blend operation is a User of a mask, if not null.
- std::unique_ptr<VPUser> User;
-
-public:
- VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
- : VPRecipeBase(VPBlendSC), Phi(Phi) {
- assert((Phi->getNumIncomingValues() == 1 ||
- Phi->getNumIncomingValues() == Masks.size()) &&
- "Expected the same number of incoming values and masks");
- if (!Masks.empty())
- User.reset(new VPUser(Masks));
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
- }
-
- /// Generate the phi/select nodes.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
-/// or stores into one wide load/store and shuffles.
-class VPInterleaveRecipe : public VPRecipeBase {
-private:
- const InterleaveGroup<Instruction> *IG;
- std::unique_ptr<VPUser> User;
-
-public:
- VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
- : VPRecipeBase(VPInterleaveSC), IG(IG) {
- if (Mask) // Create a VPInstruction to register as a user of the mask.
- User.reset(new VPUser({Mask}));
- }
- ~VPInterleaveRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
- }
-
- /// Generate the wide load or store, and shuffles.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-
- const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
-};
-
-/// VPReplicateRecipe replicates a given instruction producing multiple scalar
-/// copies of the original scalar type, one per lane, instead of producing a
-/// single copy of widened type for all lanes. If the instruction is known to be
-/// uniform only one copy, per lane zero, will be generated.
-class VPReplicateRecipe : public VPRecipeBase {
-private:
- /// The instruction being replicated.
- Instruction *Ingredient;
-
- /// Indicator if only a single replica per lane is needed.
- bool IsUniform;
-
- /// Indicator if the replicas are also predicated.
- bool IsPredicated;
-
- /// Indicator if the scalar values should also be packed into a vector.
- bool AlsoPack;
-
-public:
- VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
- : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
- IsPredicated(IsPredicated) {
- // Retain the previous behavior of predicateInstructions(), where an
- // insert-element of a predicated instruction got hoisted into the
- // predicated basic block iff it was its only user. This is achieved by
- // having predicated instructions also pack their values into a vector by
- // default unless they have a replicated user which uses their scalar value.
- AlsoPack = IsPredicated && !I->use_empty();
- }
-
- ~VPReplicateRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
- }
-
- /// Generate replicas of the desired Ingredient. Replicas will be generated
- /// for all parts and lanes unless a specific part and lane are specified in
- /// the \p State.
- void execute(VPTransformState &State) override;
-
- void setAlsoPack(bool Pack) { AlsoPack = Pack; }
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for generating conditional branches on the bits of a mask.
-class VPBranchOnMaskRecipe : public VPRecipeBase {
-private:
- std::unique_ptr<VPUser> User;
-
-public:
- VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
- if (BlockInMask) // nullptr means all-one mask.
- User.reset(new VPUser({BlockInMask}));
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
- }
-
- /// Generate the extraction of the appropriate bit from the block mask and the
- /// conditional branch.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override {
- O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
- if (User)
- O << *User->getOperand(0);
- else
- O << " All-One";
- O << "\\l\"";
- }
-};
-
-/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
-/// control converges back from a Branch-on-Mask. The phi nodes are needed in
-/// order to merge values that are set under such a branch and feed their uses.
-/// The phi nodes can be scalar or vector depending on the users of the value.
-/// This recipe works in concert with VPBranchOnMaskRecipe.
-class VPPredInstPHIRecipe : public VPRecipeBase {
-private:
- Instruction *PredInst;
-
-public:
- /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
- /// nodes after merging back from a Branch-on-Mask.
- VPPredInstPHIRecipe(Instruction *PredInst)
- : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
- ~VPPredInstPHIRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
- }
-
- /// Generates phi nodes for live-outs as needed to retain SSA form.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A Recipe for widening load/store operations.
-/// TODO: We currently execute only per-part unless a specific instance is
-/// provided.
-class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
-private:
- Instruction &Instr;
- std::unique_ptr<VPUser> User;
-
-public:
- VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
- : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
- if (Mask) // Create a VPInstruction to register as a user of the mask.
- User.reset(new VPUser({Mask}));
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
- }
-
- /// Generate the wide load/store.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
-/// holds a sequence of zero or more VPRecipe's each representing a sequence of
-/// output IR instructions.
-class VPBasicBlock : public VPBlockBase {
-public:
- using RecipeListTy = iplist<VPRecipeBase>;
-
-private:
- /// The VPRecipes held in the order of output instructions to generate.
- RecipeListTy Recipes;
-
-public:
- VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
- : VPBlockBase(VPBasicBlockSC, Name.str()) {
- if (Recipe)
- appendRecipe(Recipe);
- }
-
- ~VPBasicBlock() override { Recipes.clear(); }
-
- /// Instruction iterators...
- using iterator = RecipeListTy::iterator;
- using const_iterator = RecipeListTy::const_iterator;
- using reverse_iterator = RecipeListTy::reverse_iterator;
- using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
-
- //===--------------------------------------------------------------------===//
- /// Recipe iterator methods
- ///
- inline iterator begin() { return Recipes.begin(); }
- inline const_iterator begin() const { return Recipes.begin(); }
- inline iterator end() { return Recipes.end(); }
- inline const_iterator end() const { return Recipes.end(); }
-
- inline reverse_iterator rbegin() { return Recipes.rbegin(); }
- inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
- inline reverse_iterator rend() { return Recipes.rend(); }
- inline const_reverse_iterator rend() const { return Recipes.rend(); }
-
- inline size_t size() const { return Recipes.size(); }
- inline bool empty() const { return Recipes.empty(); }
- inline const VPRecipeBase &front() const { return Recipes.front(); }
- inline VPRecipeBase &front() { return Recipes.front(); }
- inline const VPRecipeBase &back() const { return Recipes.back(); }
- inline VPRecipeBase &back() { return Recipes.back(); }
-
- /// Returns a reference to the list of recipes.
- RecipeListTy &getRecipeList() { return Recipes; }
-
- /// Returns a pointer to a member of the recipe list.
- static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
- return &VPBasicBlock::Recipes;
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPBlockBase *V) {
- return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
- }
-
- void insert(VPRecipeBase *Recipe, iterator InsertPt) {
- assert(Recipe && "No recipe to append.");
- assert(!Recipe->Parent && "Recipe already in VPlan");
- Recipe->Parent = this;
- Recipes.insert(InsertPt, Recipe);
- }
-
- /// Augment the existing recipes of a VPBasicBlock with an additional
- /// \p Recipe as the last recipe.
- void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
-
- /// The method which generates the output IR instructions that correspond to
- /// this VPBasicBlock, thereby "executing" the VPlan.
- void execute(struct VPTransformState *State) override;
-
-private:
- /// Create an IR BasicBlock to hold the output instructions generated by this
- /// VPBasicBlock, and return it. Update the CFGState accordingly.
- BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
-};
-
-/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
-/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
-/// A VPRegionBlock may indicate that its contents are to be replicated several
-/// times. This is designed to support predicated scalarization, in which a
-/// scalar if-then code structure needs to be generated VF * UF times. Having
-/// this replication indicator helps to keep a single model for multiple
-/// candidate VF's. The actual replication takes place only once the desired VF
-/// and UF have been determined.
-class VPRegionBlock : public VPBlockBase {
-private:
- /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
- VPBlockBase *Entry;
-
- /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
- VPBlockBase *Exit;
-
- /// An indicator whether this region is to generate multiple replicated
- /// instances of output IR corresponding to its VPBlockBases.
- bool IsReplicator;
-
-public:
- VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
- const std::string &Name = "", bool IsReplicator = false)
- : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
- IsReplicator(IsReplicator) {
- assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
- assert(Exit->getSuccessors().empty() && "Exit block has successors.");
- Entry->setParent(this);
- Exit->setParent(this);
- }
- VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
- : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
- IsReplicator(IsReplicator) {}
-
- ~VPRegionBlock() override {
- if (Entry)
- deleteCFG(Entry);
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPBlockBase *V) {
- return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
- }
-
- const VPBlockBase *getEntry() const { return Entry; }
- VPBlockBase *getEntry() { return Entry; }
-
- /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
- /// EntryBlock must have no predecessors.
- void setEntry(VPBlockBase *EntryBlock) {
- assert(EntryBlock->getPredecessors().empty() &&
- "Entry block cannot have predecessors.");
- Entry = EntryBlock;
- EntryBlock->setParent(this);
- }
-
- // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
- // specific interface of llvm::Function, instead of using
- // GraphTraints::getEntryNode. We should add a new template parameter to
- // DominatorTreeBase representing the Graph type.
- VPBlockBase &front() const { return *Entry; }
-
- const VPBlockBase *getExit() const { return Exit; }
- VPBlockBase *getExit() { return Exit; }
-
- /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
- /// ExitBlock must have no successors.
- void setExit(VPBlockBase *ExitBlock) {
- assert(ExitBlock->getSuccessors().empty() &&
- "Exit block cannot have successors.");
- Exit = ExitBlock;
- ExitBlock->setParent(this);
- }
-
- /// An indicator whether this region is to generate multiple replicated
- /// instances of output IR corresponding to its VPBlockBases.
- bool isReplicator() const { return IsReplicator; }
-
- /// The method which generates the output IR instructions that correspond to
- /// this VPRegionBlock, thereby "executing" the VPlan.
- void execute(struct VPTransformState *State) override;
-};
-
-/// VPlan models a candidate for vectorization, encoding various decisions take
-/// to produce efficient output IR, including which branches, basic-blocks and
-/// output IR instructions to generate, and their cost. VPlan holds a
-/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
-/// VPBlock.
-class VPlan {
- friend class VPlanPrinter;
-
-private:
- /// Hold the single entry to the Hierarchical CFG of the VPlan.
- VPBlockBase *Entry;
-
- /// Holds the VFs applicable to this VPlan.
- SmallSet<unsigned, 2> VFs;
-
- /// Holds the name of the VPlan, for printing.
- std::string Name;
-
- /// Holds all the external definitions created for this VPlan.
- // TODO: Introduce a specific representation for external definitions in
- // VPlan. External definitions must be immutable and hold a pointer to its
- // underlying IR that will be used to implement its structural comparison
- // (operators '==' and '<').
- SmallPtrSet<VPValue *, 16> VPExternalDefs;
-
- /// Represents the backedge taken count of the original loop, for folding
- /// the tail.
- VPValue *BackedgeTakenCount = nullptr;
-
- /// Holds a mapping between Values and their corresponding VPValue inside
- /// VPlan.
- Value2VPValueTy Value2VPValue;
-
- /// Holds the VPLoopInfo analysis for this VPlan.
- VPLoopInfo VPLInfo;
-
- /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
- SmallVector<VPValue *, 4> VPCBVs;
-
-public:
- VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
-
- ~VPlan() {
- if (Entry)
- VPBlockBase::deleteCFG(Entry);
- for (auto &MapEntry : Value2VPValue)
- if (MapEntry.second != BackedgeTakenCount)
- delete MapEntry.second;
- if (BackedgeTakenCount)
- delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
- for (VPValue *Def : VPExternalDefs)
- delete Def;
- for (VPValue *CBV : VPCBVs)
- delete CBV;
- }
-
- /// Generate the IR code for this VPlan.
- void execute(struct VPTransformState *State);
-
- VPBlockBase *getEntry() { return Entry; }
- const VPBlockBase *getEntry() const { return Entry; }
-
- VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
-
- /// The backedge taken count of the original loop.
- VPValue *getOrCreateBackedgeTakenCount() {
- if (!BackedgeTakenCount)
- BackedgeTakenCount = new VPValue();
- return BackedgeTakenCount;
- }
-
- void addVF(unsigned VF) { VFs.insert(VF); }
-
- bool hasVF(unsigned VF) { return VFs.count(VF); }
-
- const std::string &getName() const { return Name; }
-
- void setName(const Twine &newName) { Name = newName.str(); }
-
- /// Add \p VPVal to the pool of external definitions if it's not already
- /// in the pool.
- void addExternalDef(VPValue *VPVal) {
- VPExternalDefs.insert(VPVal);
- }
-
- /// Add \p CBV to the vector of condition bit values.
- void addCBV(VPValue *CBV) {
- VPCBVs.push_back(CBV);
- }
-
- void addVPValue(Value *V) {
- assert(V && "Trying to add a null Value to VPlan");
- assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
- Value2VPValue[V] = new VPValue();
- }
-
- VPValue *getVPValue(Value *V) {
- assert(V && "Trying to get the VPValue of a null Value");
- assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
- return Value2VPValue[V];
- }
-
- /// Return the VPLoopInfo analysis for this VPlan.
- VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
- const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
-
-private:
- /// Add to the given dominator tree the header block and every new basic block
- /// that was created between it and the latch block, inclusive.
- static void updateDominatorTree(DominatorTree *DT,
- BasicBlock *LoopPreHeaderBB,
- BasicBlock *LoopLatchBB);
-};
-
-/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
-/// indented and follows the dot format.
-class VPlanPrinter {
- friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
- friend inline raw_ostream &operator<<(raw_ostream &OS,
- const struct VPlanIngredient &I);
-
-private:
- raw_ostream &OS;
- VPlan &Plan;
- unsigned Depth;
- unsigned TabWidth = 2;
- std::string Indent;
- unsigned BID = 0;
- SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
-
- VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
-
- /// Handle indentation.
- void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
-
- /// Print a given \p Block of the Plan.
- void dumpBlock(const VPBlockBase *Block);
-
- /// Print the information related to the CFG edges going out of a given
- /// \p Block, followed by printing the successor blocks themselves.
- void dumpEdges(const VPBlockBase *Block);
-
- /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
- /// its successor blocks.
- void dumpBasicBlock(const VPBasicBlock *BasicBlock);
-
- /// Print a given \p Region of the Plan.
- void dumpRegion(const VPRegionBlock *Region);
-
- unsigned getOrCreateBID(const VPBlockBase *Block) {
- return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
- }
-
- const Twine getOrCreateName(const VPBlockBase *Block);
-
- const Twine getUID(const VPBlockBase *Block);
-
- /// Print the information related to a CFG edge between two VPBlockBases.
- void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
- const Twine &Label);
-
- void dump();
-
- static void printAsIngredient(raw_ostream &O, Value *V);
-};
-
-struct VPlanIngredient {
- Value *V;
-
- VPlanIngredient(Value *V) : V(V) {}
-};
-
-inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
- VPlanPrinter::printAsIngredient(OS, I.V);
- return OS;
-}
-
-inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
- VPlanPrinter Printer(OS, Plan);
- Printer.dump();
- return OS;
-}
-
-//===----------------------------------------------------------------------===//
-// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
-//===----------------------------------------------------------------------===//
-
-// The following set of template specializations implement GraphTraits to treat
-// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
-// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
-// VPBlockBase is a VPRegionBlock, this specialization provides access to its
-// successors/predecessors but not to the blocks inside the region.
-
-template <> struct GraphTraits<VPBlockBase *> {
- using NodeRef = VPBlockBase *;
- using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
-
- static NodeRef getEntryNode(NodeRef N) { return N; }
-
- static inline ChildIteratorType child_begin(NodeRef N) {
- return N->getSuccessors().begin();
- }
-
- static inline ChildIteratorType child_end(NodeRef N) {
- return N->getSuccessors().end();
- }
-};
-
-template <> struct GraphTraits<const VPBlockBase *> {
- using NodeRef = const VPBlockBase *;
- using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
-
- static NodeRef getEntryNode(NodeRef N) { return N; }
-
- static inline ChildIteratorType child_begin(NodeRef N) {
- return N->getSuccessors().begin();
- }
-
- static inline ChildIteratorType child_end(NodeRef N) {
- return N->getSuccessors().end();
- }
-};
-
-// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
-// of successors for the inverse traversal.
-template <> struct GraphTraits<Inverse<VPBlockBase *>> {
- using NodeRef = VPBlockBase *;
- using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
-
- static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
-
- static inline ChildIteratorType child_begin(NodeRef N) {
- return N->getPredecessors().begin();
- }
-
- static inline ChildIteratorType child_end(NodeRef N) {
- return N->getPredecessors().end();
- }
-};
-
-// The following set of template specializations implement GraphTraits to
-// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
-// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
-// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
-// there won't be automatic recursion into other VPBlockBases that turn to be
-// VPRegionBlocks.
-
-template <>
-struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
- using GraphRef = VPRegionBlock *;
- using nodes_iterator = df_iterator<NodeRef>;
-
- static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
-
- static nodes_iterator nodes_begin(GraphRef N) {
- return nodes_iterator::begin(N->getEntry());
- }
-
- static nodes_iterator nodes_end(GraphRef N) {
- // df_iterator::end() returns an empty iterator so the node used doesn't
- // matter.
- return nodes_iterator::end(N);
- }
-};
-
-template <>
-struct GraphTraits<const VPRegionBlock *>
- : public GraphTraits<const VPBlockBase *> {
- using GraphRef = const VPRegionBlock *;
- using nodes_iterator = df_iterator<NodeRef>;
-
- static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
-
- static nodes_iterator nodes_begin(GraphRef N) {
- return nodes_iterator::begin(N->getEntry());
- }
-
- static nodes_iterator nodes_end(GraphRef N) {
- // df_iterator::end() returns an empty iterator so the node used doesn't
- // matter.
- return nodes_iterator::end(N);
- }
-};
-
-template <>
-struct GraphTraits<Inverse<VPRegionBlock *>>
- : public GraphTraits<Inverse<VPBlockBase *>> {
- using GraphRef = VPRegionBlock *;
- using nodes_iterator = df_iterator<NodeRef>;
-
- static NodeRef getEntryNode(Inverse<GraphRef> N) {
- return N.Graph->getExit();
- }
-
- static nodes_iterator nodes_begin(GraphRef N) {
- return nodes_iterator::begin(N->getExit());
- }
-
- static nodes_iterator nodes_end(GraphRef N) {
- // df_iterator::end() returns an empty iterator so the node used doesn't
- // matter.
- return nodes_iterator::end(N);
- }
-};
-
-//===----------------------------------------------------------------------===//
-// VPlan Utilities
-//===----------------------------------------------------------------------===//
-
-/// Class that provides utilities for VPBlockBases in VPlan.
-class VPBlockUtils {
-public:
- VPBlockUtils() = delete;
-
- /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
- /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
- /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
- /// has more than one successor, its conditional bit is propagated to \p
- /// NewBlock. \p NewBlock must have neither successors nor predecessors.
- static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
- assert(NewBlock->getSuccessors().empty() &&
- "Can't insert new block with successors.");
- // TODO: move successors from BlockPtr to NewBlock when this functionality
- // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
- // already has successors.
- BlockPtr->setOneSuccessor(NewBlock);
- NewBlock->setPredecessors({BlockPtr});
- NewBlock->setParent(BlockPtr->getParent());
- }
-
- /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
- /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
- /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
- /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
- /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
- /// must have neither successors nor predecessors.
- static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
- VPValue *Condition, VPBlockBase *BlockPtr) {
- assert(IfTrue->getSuccessors().empty() &&
- "Can't insert IfTrue with successors.");
- assert(IfFalse->getSuccessors().empty() &&
- "Can't insert IfFalse with successors.");
- BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
- IfTrue->setPredecessors({BlockPtr});
- IfFalse->setPredecessors({BlockPtr});
- IfTrue->setParent(BlockPtr->getParent());
- IfFalse->setParent(BlockPtr->getParent());
- }
-
- /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
- /// the successors of \p From and \p From to the predecessors of \p To. Both
- /// VPBlockBases must have the same parent, which can be null. Both
- /// VPBlockBases can be already connected to other VPBlockBases.
- static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
- assert((From->getParent() == To->getParent()) &&
- "Can't connect two block with different parents");
- assert(From->getNumSuccessors() < 2 &&
- "Blocks can't have more than two successors.");
- From->appendSuccessor(To);
- To->appendPredecessor(From);
- }
-
- /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
- /// from the successors of \p From and \p From from the predecessors of \p To.
- static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
- assert(To && "Successor to disconnect is null.");
- From->removeSuccessor(To);
- To->removePredecessor(From);
- }
-
- /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
- static bool isBackEdge(const VPBlockBase *FromBlock,
- const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
- assert(FromBlock->getParent() == ToBlock->getParent() &&
- FromBlock->getParent() && "Must be in same region");
- const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
- const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
- if (!FromLoop || !ToLoop || FromLoop != ToLoop)
- return false;
-
- // A back-edge is a branch from the loop latch to its header.
- return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
- }
-
- /// Returns true if \p Block is a loop latch
- static bool blockIsLoopLatch(const VPBlockBase *Block,
- const VPLoopInfo *VPLInfo) {
- if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
- return ParentVPL->isLoopLatch(Block);
-
- return false;
- }
-
- /// Count and return the number of succesors of \p PredBlock excluding any
- /// backedges.
- static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
- VPLoopInfo *VPLI) {
- unsigned Count = 0;
- for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
- if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
- Count++;
- }
- return Count;
- }
-};
-
-class VPInterleavedAccessInfo {
-private:
- DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
- InterleaveGroupMap;
-
- /// Type for mapping of instruction based interleave groups to VPInstruction
- /// interleave groups
- using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
- InterleaveGroup<VPInstruction> *>;
-
- /// Recursively \p Region and populate VPlan based interleave groups based on
- /// \p IAI.
- void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
- InterleavedAccessInfo &IAI);
- /// Recursively traverse \p Block and populate VPlan based interleave groups
- /// based on \p IAI.
- void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
- InterleavedAccessInfo &IAI);
-
-public:
- VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
-
- ~VPInterleavedAccessInfo() {
- SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
- // Avoid releasing a pointer twice.
- for (auto &I : InterleaveGroupMap)
- DelSet.insert(I.second);
- for (auto *Ptr : DelSet)
- delete Ptr;
- }
-
- /// Get the interleave group that \p Instr belongs to.
- ///
- /// \returns nullptr if doesn't have such group.
- InterleaveGroup<VPInstruction> *
- getInterleaveGroup(VPInstruction *Instr) const {
- if (InterleaveGroupMap.count(Instr))
- return InterleaveGroupMap.find(Instr)->second;
- return nullptr;
- }
-};
-
-/// Class that maps (parts of) an existing VPlan to trees of combined
-/// VPInstructions.
-class VPlanSlp {
-private:
- enum class OpMode { Failed, Load, Opcode };
-
- /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
- /// DenseMap keys.
- struct BundleDenseMapInfo {
- static SmallVector<VPValue *, 4> getEmptyKey() {
- return {reinterpret_cast<VPValue *>(-1)};
- }
-
- static SmallVector<VPValue *, 4> getTombstoneKey() {
- return {reinterpret_cast<VPValue *>(-2)};
- }
-
- static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
- return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
- }
-
- static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
- const SmallVector<VPValue *, 4> &RHS) {
- return LHS == RHS;
- }
- };
-
- /// Mapping of values in the original VPlan to a combined VPInstruction.
- DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
- BundleToCombined;
-
- VPInterleavedAccessInfo &IAI;
-
- /// Basic block to operate on. For now, only instructions in a single BB are
- /// considered.
- const VPBasicBlock &BB;
-
- /// Indicates whether we managed to combine all visited instructions or not.
- bool CompletelySLP = true;
-
- /// Width of the widest combined bundle in bits.
- unsigned WidestBundleBits = 0;
-
- using MultiNodeOpTy =
- typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
-
- // Input operand bundles for the current multi node. Each multi node operand
- // bundle contains values not matching the multi node's opcode. They will
- // be reordered in reorderMultiNodeOps, once we completed building a
- // multi node.
- SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
-
- /// Indicates whether we are building a multi node currently.
- bool MultiNodeActive = false;
-
- /// Check if we can vectorize Operands together.
- bool areVectorizable(ArrayRef<VPValue *> Operands) const;
-
- /// Add combined instruction \p New for the bundle \p Operands.
- void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
-
- /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
- VPInstruction *markFailed();
-
- /// Reorder operands in the multi node to maximize sequential memory access
- /// and commutative operations.
- SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
-
- /// Choose the best candidate to use for the lane after \p Last. The set of
- /// candidates to choose from are values with an opcode matching \p Last's
- /// or loads consecutive to \p Last.
- std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
- SmallPtrSetImpl<VPValue *> &Candidates,
- VPInterleavedAccessInfo &IAI);
-
- /// Print bundle \p Values to dbgs().
- void dumpBundle(ArrayRef<VPValue *> Values);
-
-public:
- VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
-
- ~VPlanSlp() {
- for (auto &KV : BundleToCombined)
- delete KV.second;
- }
-
- /// Tries to build an SLP tree rooted at \p Operands and returns a
- /// VPInstruction combining \p Operands, if they can be combined.
- VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
-
- /// Return the width of the widest combined bundle in bits.
- unsigned getWidestBundleBits() const { return WidestBundleBits; }
-
- /// Return true if all visited instruction can be combined.
- bool isCompletelySLP() const { return CompletelySLP; }
-};
-} // end namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h
deleted file mode 100644
index 19f5d2c00c60..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h
+++ /dev/null
@@ -1,40 +0,0 @@
-//===-- VPlanDominatorTree.h ------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file implements dominator tree analysis for a single level of a VPlan's
-/// H-CFG.
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H
-
-#include "VPlan.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/IR/Dominators.h"
-
-namespace llvm {
-
-/// Template specialization of the standard LLVM dominator tree utility for
-/// VPBlockBases.
-using VPDominatorTree = DomTreeBase<VPBlockBase>;
-
-using VPDomTreeNode = DomTreeNodeBase<VPBlockBase>;
-
-/// Template specializations of GraphTraits for VPDomTreeNode.
-template <>
-struct GraphTraits<VPDomTreeNode *>
- : public DomTreeGraphTraitsBase<VPDomTreeNode, VPDomTreeNode::iterator> {};
-
-template <>
-struct GraphTraits<const VPDomTreeNode *>
- : public DomTreeGraphTraitsBase<const VPDomTreeNode,
- VPDomTreeNode::const_iterator> {};
-} // namespace llvm
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp
deleted file mode 100644
index df96f67288f1..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp
+++ /dev/null
@@ -1,354 +0,0 @@
-//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file implements the construction of a VPlan-based Hierarchical CFG
-/// (H-CFG) for an incoming IR. This construction comprises the following
-/// components and steps:
-//
-/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
-/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
-/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
-/// in the plain CFG.
-/// NOTE: At this point, there is a direct correspondence between all the
-/// VPBasicBlocks created for the initial plain CFG and the incoming
-/// BasicBlocks. However, this might change in the future.
-///
-//===----------------------------------------------------------------------===//
-
-#include "VPlanHCFGBuilder.h"
-#include "LoopVectorizationPlanner.h"
-#include "llvm/Analysis/LoopIterator.h"
-
-#define DEBUG_TYPE "loop-vectorize"
-
-using namespace llvm;
-
-namespace {
-// Class that is used to build the plain CFG for the incoming IR.
-class PlainCFGBuilder {
-private:
- // The outermost loop of the input loop nest considered for vectorization.
- Loop *TheLoop;
-
- // Loop Info analysis.
- LoopInfo *LI;
-
- // Vectorization plan that we are working on.
- VPlan &Plan;
-
- // Output Top Region.
- VPRegionBlock *TopRegion = nullptr;
-
- // Builder of the VPlan instruction-level representation.
- VPBuilder VPIRBuilder;
-
- // NOTE: The following maps are intentionally destroyed after the plain CFG
- // construction because subsequent VPlan-to-VPlan transformation may
- // invalidate them.
- // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
- DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
- // Map incoming Value definitions to their newly-created VPValues.
- DenseMap<Value *, VPValue *> IRDef2VPValue;
-
- // Hold phi node's that need to be fixed once the plain CFG has been built.
- SmallVector<PHINode *, 8> PhisToFix;
-
- // Utility functions.
- void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
- void fixPhiNodes();
- VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
-#ifndef NDEBUG
- bool isExternalDef(Value *Val);
-#endif
- VPValue *getOrCreateVPOperand(Value *IRVal);
- void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
-
-public:
- PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
- : TheLoop(Lp), LI(LI), Plan(P) {}
-
- // Build the plain CFG and return its Top Region.
- VPRegionBlock *buildPlainCFG();
-};
-} // anonymous namespace
-
-// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
-// must have no predecessors.
-void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
- SmallVector<VPBlockBase *, 8> VPBBPreds;
- // Collect VPBB predecessors.
- for (BasicBlock *Pred : predecessors(BB))
- VPBBPreds.push_back(getOrCreateVPBB(Pred));
-
- VPBB->setPredecessors(VPBBPreds);
-}
-
-// Add operands to VPInstructions representing phi nodes from the input IR.
-void PlainCFGBuilder::fixPhiNodes() {
- for (auto *Phi : PhisToFix) {
- assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
- VPValue *VPVal = IRDef2VPValue[Phi];
- assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
- auto *VPPhi = cast<VPInstruction>(VPVal);
- assert(VPPhi->getNumOperands() == 0 &&
- "Expected VPInstruction with no operands.");
-
- for (Value *Op : Phi->operands())
- VPPhi->addOperand(getOrCreateVPOperand(Op));
- }
-}
-
-// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
-// existing one if it was already created.
-VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
- auto BlockIt = BB2VPBB.find(BB);
- if (BlockIt != BB2VPBB.end())
- // Retrieve existing VPBB.
- return BlockIt->second;
-
- // Create new VPBB.
- LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
- VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
- BB2VPBB[BB] = VPBB;
- VPBB->setParent(TopRegion);
- return VPBB;
-}
-
-#ifndef NDEBUG
-// Return true if \p Val is considered an external definition. An external
-// definition is either:
-// 1. A Value that is not an Instruction. This will be refined in the future.
-// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
-// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
-// outermost loop exits.
-bool PlainCFGBuilder::isExternalDef(Value *Val) {
- // All the Values that are not Instructions are considered external
- // definitions for now.
- Instruction *Inst = dyn_cast<Instruction>(Val);
- if (!Inst)
- return true;
-
- BasicBlock *InstParent = Inst->getParent();
- assert(InstParent && "Expected instruction parent.");
-
- // Check whether Instruction definition is in loop PH.
- BasicBlock *PH = TheLoop->getLoopPreheader();
- assert(PH && "Expected loop pre-header.");
-
- if (InstParent == PH)
- // Instruction definition is in outermost loop PH.
- return false;
-
- // Check whether Instruction definition is in the loop exit.
- BasicBlock *Exit = TheLoop->getUniqueExitBlock();
- assert(Exit && "Expected loop with single exit.");
- if (InstParent == Exit) {
- // Instruction definition is in outermost loop exit.
- return false;
- }
-
- // Check whether Instruction definition is in loop body.
- return !TheLoop->contains(Inst);
-}
-#endif
-
-// Create a new VPValue or retrieve an existing one for the Instruction's
-// operand \p IRVal. This function must only be used to create/retrieve VPValues
-// for *Instruction's operands* and not to create regular VPInstruction's. For
-// the latter, please, look at 'createVPInstructionsForVPBB'.
-VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
- auto VPValIt = IRDef2VPValue.find(IRVal);
- if (VPValIt != IRDef2VPValue.end())
- // Operand has an associated VPInstruction or VPValue that was previously
- // created.
- return VPValIt->second;
-
- // Operand doesn't have a previously created VPInstruction/VPValue. This
- // means that operand is:
- // A) a definition external to VPlan,
- // B) any other Value without specific representation in VPlan.
- // For now, we use VPValue to represent A and B and classify both as external
- // definitions. We may introduce specific VPValue subclasses for them in the
- // future.
- assert(isExternalDef(IRVal) && "Expected external definition as operand.");
-
- // A and B: Create VPValue and add it to the pool of external definitions and
- // to the Value->VPValue map.
- VPValue *NewVPVal = new VPValue(IRVal);
- Plan.addExternalDef(NewVPVal);
- IRDef2VPValue[IRVal] = NewVPVal;
- return NewVPVal;
-}
-
-// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
-// counterpart. This function must be invoked in RPO so that the operands of a
-// VPInstruction in \p BB have been visited before (except for Phi nodes).
-void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
- BasicBlock *BB) {
- VPIRBuilder.setInsertPoint(VPBB);
- for (Instruction &InstRef : *BB) {
- Instruction *Inst = &InstRef;
-
- // There shouldn't be any VPValue for Inst at this point. Otherwise, we
- // visited Inst when we shouldn't, breaking the RPO traversal order.
- assert(!IRDef2VPValue.count(Inst) &&
- "Instruction shouldn't have been visited.");
-
- if (auto *Br = dyn_cast<BranchInst>(Inst)) {
- // Branch instruction is not explicitly represented in VPlan but we need
- // to represent its condition bit when it's conditional.
- if (Br->isConditional())
- getOrCreateVPOperand(Br->getCondition());
-
- // Skip the rest of the Instruction processing for Branch instructions.
- continue;
- }
-
- VPInstruction *NewVPInst;
- if (auto *Phi = dyn_cast<PHINode>(Inst)) {
- // Phi node's operands may have not been visited at this point. We create
- // an empty VPInstruction that we will fix once the whole plain CFG has
- // been built.
- NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
- Inst->getOpcode(), {} /*No operands*/, Inst));
- PhisToFix.push_back(Phi);
- } else {
- // Translate LLVM-IR operands into VPValue operands and set them in the
- // new VPInstruction.
- SmallVector<VPValue *, 4> VPOperands;
- for (Value *Op : Inst->operands())
- VPOperands.push_back(getOrCreateVPOperand(Op));
-
- // Build VPInstruction for any arbitraty Instruction without specific
- // representation in VPlan.
- NewVPInst = cast<VPInstruction>(
- VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
- }
-
- IRDef2VPValue[Inst] = NewVPInst;
- }
-}
-
-// Main interface to build the plain CFG.
-VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
- // 1. Create the Top Region. It will be the parent of all VPBBs.
- TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
-
- // 2. Scan the body of the loop in a topological order to visit each basic
- // block after having visited its predecessor basic blocks. Create a VPBB for
- // each BB and link it to its successor and predecessor VPBBs. Note that
- // predecessors must be set in the same order as they are in the incomming IR.
- // Otherwise, there might be problems with existing phi nodes and algorithm
- // based on predecessors traversal.
-
- // Loop PH needs to be explicitly visited since it's not taken into account by
- // LoopBlocksDFS.
- BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
- assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
- "Unexpected loop preheader");
- VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
- createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
- // Create empty VPBB for Loop H so that we can link PH->H.
- VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
- // Preheader's predecessors will be set during the loop RPO traversal below.
- PreheaderVPBB->setOneSuccessor(HeaderVPBB);
-
- LoopBlocksRPO RPO(TheLoop);
- RPO.perform(LI);
-
- for (BasicBlock *BB : RPO) {
- // Create or retrieve the VPBasicBlock for this BB and create its
- // VPInstructions.
- VPBasicBlock *VPBB = getOrCreateVPBB(BB);
- createVPInstructionsForVPBB(VPBB, BB);
-
- // Set VPBB successors. We create empty VPBBs for successors if they don't
- // exist already. Recipes will be created when the successor is visited
- // during the RPO traversal.
- Instruction *TI = BB->getTerminator();
- assert(TI && "Terminator expected.");
- unsigned NumSuccs = TI->getNumSuccessors();
-
- if (NumSuccs == 1) {
- VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
- assert(SuccVPBB && "VPBB Successor not found.");
- VPBB->setOneSuccessor(SuccVPBB);
- } else if (NumSuccs == 2) {
- VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
- assert(SuccVPBB0 && "Successor 0 not found.");
- VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
- assert(SuccVPBB1 && "Successor 1 not found.");
-
- // Get VPBB's condition bit.
- assert(isa<BranchInst>(TI) && "Unsupported terminator!");
- auto *Br = cast<BranchInst>(TI);
- Value *BrCond = Br->getCondition();
- // Look up the branch condition to get the corresponding VPValue
- // representing the condition bit in VPlan (which may be in another VPBB).
- assert(IRDef2VPValue.count(BrCond) &&
- "Missing condition bit in IRDef2VPValue!");
- VPValue *VPCondBit = IRDef2VPValue[BrCond];
-
- // Link successors using condition bit.
- VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
- } else
- llvm_unreachable("Number of successors not supported.");
-
- // Set VPBB predecessors in the same order as they are in the incoming BB.
- setVPBBPredsFromBB(VPBB, BB);
- }
-
- // 3. Process outermost loop exit. We created an empty VPBB for the loop
- // single exit BB during the RPO traversal of the loop body but Instructions
- // weren't visited because it's not part of the the loop.
- BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
- assert(LoopExitBB && "Loops with multiple exits are not supported.");
- VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
- createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
- // Loop exit was already set as successor of the loop exiting BB.
- // We only set its predecessor VPBB now.
- setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
-
- // 4. The whole CFG has been built at this point so all the input Values must
- // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
- // VPlan operands.
- fixPhiNodes();
-
- // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
- // Top Region entry and exit.
- TopRegion->setEntry(PreheaderVPBB);
- TopRegion->setExit(LoopExitVPBB);
- return TopRegion;
-}
-
-VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
- PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
- return PCFGBuilder.buildPlainCFG();
-}
-
-// Public interface to build a H-CFG.
-void VPlanHCFGBuilder::buildHierarchicalCFG() {
- // Build Top Region enclosing the plain CFG and set it as VPlan entry.
- VPRegionBlock *TopRegion = buildPlainCFG();
- Plan.setEntry(TopRegion);
- LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
-
- Verifier.verifyHierarchicalCFG(TopRegion);
-
- // Compute plain CFG dom tree for VPLInfo.
- VPDomTree.recalculate(*TopRegion);
- LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
- VPDomTree.print(dbgs()));
-
- // Compute VPLInfo and keep it in Plan.
- VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
- VPLInfo.analyze(VPDomTree);
- LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
- VPLInfo.print(dbgs()));
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h
deleted file mode 100644
index 238ee7e6347c..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h
+++ /dev/null
@@ -1,71 +0,0 @@
-//===-- VPlanHCFGBuilder.h --------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file defines the VPlanHCFGBuilder class which contains the public
-/// interface (buildHierarchicalCFG) to build a VPlan-based Hierarchical CFG
-/// (H-CFG) for an incoming IR.
-///
-/// A H-CFG in VPlan is a control-flow graph whose nodes are VPBasicBlocks
-/// and/or VPRegionBlocks (i.e., other H-CFGs). The outermost H-CFG of a VPlan
-/// consists of a VPRegionBlock, denoted Top Region, which encloses any other
-/// VPBlockBase in the H-CFG. This guarantees that any VPBlockBase in the H-CFG
-/// other than the Top Region will have a parent VPRegionBlock and allows us
-/// to easily add more nodes before/after the main vector loop (such as the
-/// reduction epilogue).
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H
-
-#include "VPlan.h"
-#include "VPlanDominatorTree.h"
-#include "VPlanVerifier.h"
-
-namespace llvm {
-
-class Loop;
-class VPlanTestBase;
-
-/// Main class to build the VPlan H-CFG for an incoming IR.
-class VPlanHCFGBuilder {
- friend VPlanTestBase;
-
-private:
- // The outermost loop of the input loop nest considered for vectorization.
- Loop *TheLoop;
-
- // Loop Info analysis.
- LoopInfo *LI;
-
- // The VPlan that will contain the H-CFG we are building.
- VPlan &Plan;
-
- // VPlan verifier utility.
- VPlanVerifier Verifier;
-
- // Dominator analysis for VPlan plain CFG to be used in the
- // construction of the H-CFG. This analysis is no longer valid once regions
- // are introduced.
- VPDominatorTree VPDomTree;
-
- /// Build plain CFG for TheLoop. Return a new VPRegionBlock (TopRegion)
- /// enclosing the plain CFG.
- VPRegionBlock *buildPlainCFG();
-
-public:
- VPlanHCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
- : TheLoop(Lp), LI(LI), Plan(P) {}
-
- /// Build H-CFG for TheLoop and update Plan accordingly.
- void buildHierarchicalCFG();
-};
-} // namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp
deleted file mode 100644
index 7ed7d21b6caa..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp
+++ /dev/null
@@ -1,84 +0,0 @@
-//===-- VPlanHCFGTransforms.cpp - Utility VPlan to VPlan transforms -------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file implements a set of utility VPlan to VPlan transformations.
-///
-//===----------------------------------------------------------------------===//
-
-#include "VPlanHCFGTransforms.h"
-#include "llvm/ADT/PostOrderIterator.h"
-
-using namespace llvm;
-
-void VPlanHCFGTransforms::VPInstructionsToVPRecipes(
- VPlanPtr &Plan,
- LoopVectorizationLegality::InductionList *Inductions,
- SmallPtrSetImpl<Instruction *> &DeadInstructions) {
-
- VPRegionBlock *TopRegion = dyn_cast<VPRegionBlock>(Plan->getEntry());
- ReversePostOrderTraversal<VPBlockBase *> RPOT(TopRegion->getEntry());
-
- // Condition bit VPValues get deleted during transformation to VPRecipes.
- // Create new VPValues and save away as condition bits. These will be deleted
- // after finalizing the vector IR basic blocks.
- for (VPBlockBase *Base : RPOT) {
- VPBasicBlock *VPBB = Base->getEntryBasicBlock();
- if (auto *CondBit = VPBB->getCondBit()) {
- auto *NCondBit = new VPValue(CondBit->getUnderlyingValue());
- VPBB->setCondBit(NCondBit);
- Plan->addCBV(NCondBit);
- }
- }
- for (VPBlockBase *Base : RPOT) {
- // Do not widen instructions in pre-header and exit blocks.
- if (Base->getNumPredecessors() == 0 || Base->getNumSuccessors() == 0)
- continue;
-
- VPBasicBlock *VPBB = Base->getEntryBasicBlock();
- VPRecipeBase *LastRecipe = nullptr;
- // Introduce each ingredient into VPlan.
- for (auto I = VPBB->begin(), E = VPBB->end(); I != E;) {
- VPRecipeBase *Ingredient = &*I++;
- // Can only handle VPInstructions.
- VPInstruction *VPInst = cast<VPInstruction>(Ingredient);
- Instruction *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
- if (DeadInstructions.count(Inst)) {
- Ingredient->eraseFromParent();
- continue;
- }
-
- VPRecipeBase *NewRecipe = nullptr;
- // Create VPWidenMemoryInstructionRecipe for loads and stores.
- if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
- NewRecipe = new VPWidenMemoryInstructionRecipe(*Inst, nullptr /*Mask*/);
- else if (PHINode *Phi = dyn_cast<PHINode>(Inst)) {
- InductionDescriptor II = Inductions->lookup(Phi);
- if (II.getKind() == InductionDescriptor::IK_IntInduction ||
- II.getKind() == InductionDescriptor::IK_FpInduction) {
- NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi);
- } else
- NewRecipe = new VPWidenPHIRecipe(Phi);
- } else {
- // If the last recipe is a VPWidenRecipe, add Inst to it instead of
- // creating a new recipe.
- if (VPWidenRecipe *WidenRecipe =
- dyn_cast_or_null<VPWidenRecipe>(LastRecipe)) {
- WidenRecipe->appendInstruction(Inst);
- Ingredient->eraseFromParent();
- continue;
- }
- NewRecipe = new VPWidenRecipe(Inst);
- }
-
- NewRecipe->insertBefore(Ingredient);
- LastRecipe = NewRecipe;
- Ingredient->eraseFromParent();
- }
- }
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h
deleted file mode 100644
index 79a23c33184f..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h
+++ /dev/null
@@ -1,35 +0,0 @@
-//===- VPlanHCFGTransforms.h - Utility VPlan to VPlan transforms ----------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file provides utility VPlan to VPlan transformations.
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANHCFGTRANSFORMS_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLANHCFGTRANSFORMS_H
-
-#include "VPlan.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
-
-namespace llvm {
-
-class VPlanHCFGTransforms {
-
-public:
- /// Replaces the VPInstructions in \p Plan with corresponding
- /// widen recipes.
- static void VPInstructionsToVPRecipes(
- VPlanPtr &Plan,
- LoopVectorizationLegality::InductionList *Inductions,
- SmallPtrSetImpl<Instruction *> &DeadInstructions);
-};
-
-} // namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLANHCFGTRANSFORMS_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h
deleted file mode 100644
index 5208f2d58e2b..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h
+++ /dev/null
@@ -1,44 +0,0 @@
-//===-- VPLoopInfo.h --------------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file defines VPLoopInfo analysis and VPLoop class. VPLoopInfo is a
-/// specialization of LoopInfoBase for VPBlockBase. VPLoops is a specialization
-/// of LoopBase that is used to hold loop metadata from VPLoopInfo. Further
-/// information can be found in VectorizationPlanner.rst.
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLOOPINFO_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLOOPINFO_H
-
-#include "llvm/Analysis/LoopInfoImpl.h"
-
-namespace llvm {
-class VPBlockBase;
-
-/// Hold analysis information for every loop detected by VPLoopInfo. It is an
-/// instantiation of LoopBase.
-class VPLoop : public LoopBase<VPBlockBase, VPLoop> {
-private:
- friend class LoopInfoBase<VPBlockBase, VPLoop>;
- explicit VPLoop(VPBlockBase *VPB) : LoopBase<VPBlockBase, VPLoop>(VPB) {}
-};
-
-/// VPLoopInfo provides analysis of natural loop for VPBlockBase-based
-/// Hierarchical CFG. It is a specialization of LoopInfoBase class.
-// TODO: VPLoopInfo is initially computed on top of the VPlan plain CFG, which
-// is the same as the incoming IR CFG. If it's more efficient than running the
-// whole loop detection algorithm, we may want to create a mechanism to
-// translate LoopInfo into VPLoopInfo. However, that would require significant
-// changes in LoopInfoBase class.
-typedef LoopInfoBase<VPBlockBase, VPLoop> VPLoopInfo;
-
-} // namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLOOPINFO_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp
deleted file mode 100644
index 7a80f3ff80a5..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp
+++ /dev/null
@@ -1,248 +0,0 @@
-//===-- VPlanPredicator.cpp -------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file implements the VPlanPredicator class which contains the public
-/// interfaces to predicate and linearize the VPlan region.
-///
-//===----------------------------------------------------------------------===//
-
-#include "VPlanPredicator.h"
-#include "VPlan.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-
-#define DEBUG_TYPE "VPlanPredicator"
-
-using namespace llvm;
-
-// Generate VPInstructions at the beginning of CurrBB that calculate the
-// predicate being propagated from PredBB to CurrBB depending on the edge type
-// between them. For example if:
-// i. PredBB is controlled by predicate %BP, and
-// ii. The edge PredBB->CurrBB is the false edge, controlled by the condition
-// bit value %CBV then this function will generate the following two
-// VPInstructions at the start of CurrBB:
-// %IntermediateVal = not %CBV
-// %FinalVal = and %BP %IntermediateVal
-// It returns %FinalVal.
-VPValue *VPlanPredicator::getOrCreateNotPredicate(VPBasicBlock *PredBB,
- VPBasicBlock *CurrBB) {
- VPValue *CBV = PredBB->getCondBit();
-
- // Set the intermediate value - this is either 'CBV', or 'not CBV'
- // depending on the edge type.
- EdgeType ET = getEdgeTypeBetween(PredBB, CurrBB);
- VPValue *IntermediateVal = nullptr;
- switch (ET) {
- case EdgeType::TRUE_EDGE:
- // CurrBB is the true successor of PredBB - nothing to do here.
- IntermediateVal = CBV;
- break;
-
- case EdgeType::FALSE_EDGE:
- // CurrBB is the False successor of PredBB - compute not of CBV.
- IntermediateVal = Builder.createNot(CBV);
- break;
- }
-
- // Now AND intermediate value with PredBB's block predicate if it has one.
- VPValue *BP = PredBB->getPredicate();
- if (BP)
- return Builder.createAnd(BP, IntermediateVal);
- else
- return IntermediateVal;
-}
-
-// Generate a tree of ORs for all IncomingPredicates in WorkList.
-// Note: This function destroys the original Worklist.
-//
-// P1 P2 P3 P4 P5
-// \ / \ / /
-// OR1 OR2 /
-// \ | /
-// \ +/-+
-// \ / |
-// OR3 |
-// \ |
-// OR4 <- Returns this
-// |
-//
-// The algorithm uses a worklist of predicates as its main data structure.
-// We pop a pair of values from the front (e.g. P1 and P2), generate an OR
-// (in this example OR1), and push it back. In this example the worklist
-// contains {P3, P4, P5, OR1}.
-// The process iterates until we have only one element in the Worklist (OR4).
-// The last element is the root predicate which is returned.
-VPValue *VPlanPredicator::genPredicateTree(std::list<VPValue *> &Worklist) {
- if (Worklist.empty())
- return nullptr;
-
- // The worklist initially contains all the leaf nodes. Initialize the tree
- // using them.
- while (Worklist.size() >= 2) {
- // Pop a pair of values from the front.
- VPValue *LHS = Worklist.front();
- Worklist.pop_front();
- VPValue *RHS = Worklist.front();
- Worklist.pop_front();
-
- // Create an OR of these values.
- VPValue *Or = Builder.createOr(LHS, RHS);
-
- // Push OR to the back of the worklist.
- Worklist.push_back(Or);
- }
-
- assert(Worklist.size() == 1 && "Expected 1 item in worklist");
-
- // The root is the last node in the worklist.
- VPValue *Root = Worklist.front();
-
- // This root needs to replace the existing block predicate. This is done in
- // the caller function.
- return Root;
-}
-
-// Return whether the edge FromBlock -> ToBlock is a TRUE_EDGE or FALSE_EDGE
-VPlanPredicator::EdgeType
-VPlanPredicator::getEdgeTypeBetween(VPBlockBase *FromBlock,
- VPBlockBase *ToBlock) {
- unsigned Count = 0;
- for (VPBlockBase *SuccBlock : FromBlock->getSuccessors()) {
- if (SuccBlock == ToBlock) {
- assert(Count < 2 && "Switch not supported currently");
- return (Count == 0) ? EdgeType::TRUE_EDGE : EdgeType::FALSE_EDGE;
- }
- Count++;
- }
-
- llvm_unreachable("Broken getEdgeTypeBetween");
-}
-
-// Generate all predicates needed for CurrBlock by going through its immediate
-// predecessor blocks.
-void VPlanPredicator::createOrPropagatePredicates(VPBlockBase *CurrBlock,
- VPRegionBlock *Region) {
- // Blocks that dominate region exit inherit the predicate from the region.
- // Return after setting the predicate.
- if (VPDomTree.dominates(CurrBlock, Region->getExit())) {
- VPValue *RegionBP = Region->getPredicate();
- CurrBlock->setPredicate(RegionBP);
- return;
- }
-
- // Collect all incoming predicates in a worklist.
- std::list<VPValue *> IncomingPredicates;
-
- // Set the builder's insertion point to the top of the current BB
- VPBasicBlock *CurrBB = cast<VPBasicBlock>(CurrBlock->getEntryBasicBlock());
- Builder.setInsertPoint(CurrBB, CurrBB->begin());
-
- // For each predecessor, generate the VPInstructions required for
- // computing 'BP AND (not) CBV" at the top of CurrBB.
- // Collect the outcome of this calculation for all predecessors
- // into IncomingPredicates.
- for (VPBlockBase *PredBlock : CurrBlock->getPredecessors()) {
- // Skip back-edges
- if (VPBlockUtils::isBackEdge(PredBlock, CurrBlock, VPLI))
- continue;
-
- VPValue *IncomingPredicate = nullptr;
- unsigned NumPredSuccsNoBE =
- VPBlockUtils::countSuccessorsNoBE(PredBlock, VPLI);
-
- // If there is an unconditional branch to the currBB, then we don't create
- // edge predicates. We use the predecessor's block predicate instead.
- if (NumPredSuccsNoBE == 1)
- IncomingPredicate = PredBlock->getPredicate();
- else if (NumPredSuccsNoBE == 2) {
- // Emit recipes into CurrBlock if required
- assert(isa<VPBasicBlock>(PredBlock) && "Only BBs have multiple exits");
- IncomingPredicate =
- getOrCreateNotPredicate(cast<VPBasicBlock>(PredBlock), CurrBB);
- } else
- llvm_unreachable("FIXME: switch statement ?");
-
- if (IncomingPredicate)
- IncomingPredicates.push_back(IncomingPredicate);
- }
-
- // Logically OR all incoming predicates by building the Predicate Tree.
- VPValue *Predicate = genPredicateTree(IncomingPredicates);
-
- // Now update the block's predicate with the new one.
- CurrBlock->setPredicate(Predicate);
-}
-
-// Generate all predicates needed for Region.
-void VPlanPredicator::predicateRegionRec(VPRegionBlock *Region) {
- VPBasicBlock *EntryBlock = cast<VPBasicBlock>(Region->getEntry());
- ReversePostOrderTraversal<VPBlockBase *> RPOT(EntryBlock);
-
- // Generate edge predicates and append them to the block predicate. RPO is
- // necessary since the predecessor blocks' block predicate needs to be set
- // before the current block's block predicate can be computed.
- for (VPBlockBase *Block : make_range(RPOT.begin(), RPOT.end())) {
- // TODO: Handle nested regions once we start generating the same.
- assert(!isa<VPRegionBlock>(Block) && "Nested region not expected");
- createOrPropagatePredicates(Block, Region);
- }
-}
-
-// Linearize the CFG within Region.
-// TODO: Predication and linearization need RPOT for every region.
-// This traversal is expensive. Since predication is not adding new
-// blocks, we should be able to compute RPOT once in predication and
-// reuse it here. This becomes even more important once we have nested
-// regions.
-void VPlanPredicator::linearizeRegionRec(VPRegionBlock *Region) {
- ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
- VPBlockBase *PrevBlock = nullptr;
-
- for (VPBlockBase *CurrBlock : make_range(RPOT.begin(), RPOT.end())) {
- // TODO: Handle nested regions once we start generating the same.
- assert(!isa<VPRegionBlock>(CurrBlock) && "Nested region not expected");
-
- // Linearize control flow by adding an unconditional edge between PrevBlock
- // and CurrBlock skipping loop headers and latches to keep intact loop
- // header predecessors and loop latch successors.
- if (PrevBlock && !VPLI->isLoopHeader(CurrBlock) &&
- !VPBlockUtils::blockIsLoopLatch(PrevBlock, VPLI)) {
-
- LLVM_DEBUG(dbgs() << "Linearizing: " << PrevBlock->getName() << "->"
- << CurrBlock->getName() << "\n");
-
- PrevBlock->clearSuccessors();
- CurrBlock->clearPredecessors();
- VPBlockUtils::connectBlocks(PrevBlock, CurrBlock);
- }
-
- PrevBlock = CurrBlock;
- }
-}
-
-// Entry point. The driver function for the predicator.
-void VPlanPredicator::predicate(void) {
- // Predicate the blocks within Region.
- predicateRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
-
- // Linearlize the blocks with Region.
- linearizeRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
-}
-
-VPlanPredicator::VPlanPredicator(VPlan &Plan)
- : Plan(Plan), VPLI(&(Plan.getVPLoopInfo())) {
- // FIXME: Predicator is currently computing the dominator information for the
- // top region. Once we start storing dominator information in a VPRegionBlock,
- // we can avoid this recalculation.
- VPDomTree.recalculate(*(cast<VPRegionBlock>(Plan.getEntry())));
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h
deleted file mode 100644
index 692afd2978d5..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h
+++ /dev/null
@@ -1,74 +0,0 @@
-//===-- VPlanPredicator.h ---------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file defines the VPlanPredicator class which contains the public
-/// interfaces to predicate and linearize the VPlan region.
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_PREDICATOR_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_PREDICATOR_H
-
-#include "LoopVectorizationPlanner.h"
-#include "VPlan.h"
-#include "VPlanDominatorTree.h"
-
-namespace llvm {
-
-class VPlanPredicator {
-private:
- enum class EdgeType {
- TRUE_EDGE,
- FALSE_EDGE,
- };
-
- // VPlan being predicated.
- VPlan &Plan;
-
- // VPLoopInfo for Plan's HCFG.
- VPLoopInfo *VPLI;
-
- // Dominator tree for Plan's HCFG.
- VPDominatorTree VPDomTree;
-
- // VPlan builder used to generate VPInstructions for block predicates.
- VPBuilder Builder;
-
- /// Get the type of edge from \p FromBlock to \p ToBlock. Returns TRUE_EDGE if
- /// \p ToBlock is either the unconditional successor or the conditional true
- /// successor of \p FromBlock and FALSE_EDGE otherwise.
- EdgeType getEdgeTypeBetween(VPBlockBase *FromBlock, VPBlockBase *ToBlock);
-
- /// Create and return VPValue corresponding to the predicate for the edge from
- /// \p PredBB to \p CurrentBlock.
- VPValue *getOrCreateNotPredicate(VPBasicBlock *PredBB, VPBasicBlock *CurrBB);
-
- /// Generate and return the result of ORing all the predicate VPValues in \p
- /// Worklist.
- VPValue *genPredicateTree(std::list<VPValue *> &Worklist);
-
- /// Create or propagate predicate for \p CurrBlock in region \p Region using
- /// predicate(s) of its predecessor(s)
- void createOrPropagatePredicates(VPBlockBase *CurrBlock,
- VPRegionBlock *Region);
-
- /// Predicate the CFG within \p Region.
- void predicateRegionRec(VPRegionBlock *Region);
-
- /// Linearize the CFG within \p Region.
- void linearizeRegionRec(VPRegionBlock *Region);
-
-public:
- VPlanPredicator(VPlan &Plan);
-
- /// Predicate Plan's HCFG.
- void predicate(void);
-};
-} // end namespace llvm
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_PREDICATOR_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp
deleted file mode 100644
index e5ab24e52df6..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp
+++ /dev/null
@@ -1,467 +0,0 @@
-//===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-/// This file implements SLP analysis based on VPlan. The analysis is based on
-/// the ideas described in
-///
-/// Look-ahead SLP: auto-vectorization in the presence of commutative
-/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
-/// Luís F. W. Góes
-///
-//===----------------------------------------------------------------------===//
-
-#include "VPlan.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include <cassert>
-#include <iterator>
-#include <string>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "vplan-slp"
-
-// Number of levels to look ahead when re-ordering multi node operands.
-static unsigned LookaheadMaxDepth = 5;
-
-VPInstruction *VPlanSlp::markFailed() {
- // FIXME: Currently this is used to signal we hit instructions we cannot
- // trivially SLP'ize.
- CompletelySLP = false;
- return nullptr;
-}
-
-void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) {
- if (all_of(Operands, [](VPValue *V) {
- return cast<VPInstruction>(V)->getUnderlyingInstr();
- })) {
- unsigned BundleSize = 0;
- for (VPValue *V : Operands) {
- Type *T = cast<VPInstruction>(V)->getUnderlyingInstr()->getType();
- assert(!T->isVectorTy() && "Only scalar types supported for now");
- BundleSize += T->getScalarSizeInBits();
- }
- WidestBundleBits = std::max(WidestBundleBits, BundleSize);
- }
-
- auto Res = BundleToCombined.try_emplace(to_vector<4>(Operands), New);
- assert(Res.second &&
- "Already created a combined instruction for the operand bundle");
- (void)Res;
-}
-
-bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const {
- // Currently we only support VPInstructions.
- if (!all_of(Operands, [](VPValue *Op) {
- return Op && isa<VPInstruction>(Op) &&
- cast<VPInstruction>(Op)->getUnderlyingInstr();
- })) {
- LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n");
- return false;
- }
-
- // Check if opcodes and type width agree for all instructions in the bundle.
- // FIXME: Differing widths/opcodes can be handled by inserting additional
- // instructions.
- // FIXME: Deal with non-primitive types.
- const Instruction *OriginalInstr =
- cast<VPInstruction>(Operands[0])->getUnderlyingInstr();
- unsigned Opcode = OriginalInstr->getOpcode();
- unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits();
- if (!all_of(Operands, [Opcode, Width](VPValue *Op) {
- const Instruction *I = cast<VPInstruction>(Op)->getUnderlyingInstr();
- return I->getOpcode() == Opcode &&
- I->getType()->getPrimitiveSizeInBits() == Width;
- })) {
- LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n");
- return false;
- }
-
- // For now, all operands must be defined in the same BB.
- if (any_of(Operands, [this](VPValue *Op) {
- return cast<VPInstruction>(Op)->getParent() != &this->BB;
- })) {
- LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n");
- return false;
- }
-
- if (any_of(Operands,
- [](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) {
- LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n");
- return false;
- }
-
- // For loads, check that there are no instructions writing to memory in
- // between them.
- // TODO: we only have to forbid instructions writing to memory that could
- // interfere with any of the loads in the bundle
- if (Opcode == Instruction::Load) {
- unsigned LoadsSeen = 0;
- VPBasicBlock *Parent = cast<VPInstruction>(Operands[0])->getParent();
- for (auto &I : *Parent) {
- auto *VPI = cast<VPInstruction>(&I);
- if (VPI->getOpcode() == Instruction::Load &&
- std::find(Operands.begin(), Operands.end(), VPI) != Operands.end())
- LoadsSeen++;
-
- if (LoadsSeen == Operands.size())
- break;
- if (LoadsSeen > 0 && VPI->mayWriteToMemory()) {
- LLVM_DEBUG(
- dbgs() << "VPSLP: instruction modifying memory between loads\n");
- return false;
- }
- }
-
- if (!all_of(Operands, [](VPValue *Op) {
- return cast<LoadInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
- ->isSimple();
- })) {
- LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n");
- return false;
- }
- }
-
- if (Opcode == Instruction::Store)
- if (!all_of(Operands, [](VPValue *Op) {
- return cast<StoreInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
- ->isSimple();
- })) {
- LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n");
- return false;
- }
-
- return true;
-}
-
-static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values,
- unsigned OperandIndex) {
- SmallVector<VPValue *, 4> Operands;
- for (VPValue *V : Values) {
- auto *U = cast<VPUser>(V);
- Operands.push_back(U->getOperand(OperandIndex));
- }
- return Operands;
-}
-
-static bool areCommutative(ArrayRef<VPValue *> Values) {
- return Instruction::isCommutative(
- cast<VPInstruction>(Values[0])->getOpcode());
-}
-
-static SmallVector<SmallVector<VPValue *, 4>, 4>
-getOperands(ArrayRef<VPValue *> Values) {
- SmallVector<SmallVector<VPValue *, 4>, 4> Result;
- auto *VPI = cast<VPInstruction>(Values[0]);
-
- switch (VPI->getOpcode()) {
- case Instruction::Load:
- llvm_unreachable("Loads terminate a tree, no need to get operands");
- case Instruction::Store:
- Result.push_back(getOperands(Values, 0));
- break;
- default:
- for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I)
- Result.push_back(getOperands(Values, I));
- break;
- }
-
- return Result;
-}
-
-/// Returns the opcode of Values or ~0 if they do not all agree.
-static Optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) {
- unsigned Opcode = cast<VPInstruction>(Values[0])->getOpcode();
- if (any_of(Values, [Opcode](VPValue *V) {
- return cast<VPInstruction>(V)->getOpcode() != Opcode;
- }))
- return None;
- return {Opcode};
-}
-
-/// Returns true if A and B access sequential memory if they are loads or
-/// stores or if they have identical opcodes otherwise.
-static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B,
- VPInterleavedAccessInfo &IAI) {
- if (A->getOpcode() != B->getOpcode())
- return false;
-
- if (A->getOpcode() != Instruction::Load &&
- A->getOpcode() != Instruction::Store)
- return true;
- auto *GA = IAI.getInterleaveGroup(A);
- auto *GB = IAI.getInterleaveGroup(B);
-
- return GA && GB && GA == GB && GA->getIndex(A) + 1 == GB->getIndex(B);
-}
-
-/// Implements getLAScore from Listing 7 in the paper.
-/// Traverses and compares operands of V1 and V2 to MaxLevel.
-static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel,
- VPInterleavedAccessInfo &IAI) {
- if (!isa<VPInstruction>(V1) || !isa<VPInstruction>(V2))
- return 0;
-
- if (MaxLevel == 0)
- return (unsigned)areConsecutiveOrMatch(cast<VPInstruction>(V1),
- cast<VPInstruction>(V2), IAI);
-
- unsigned Score = 0;
- for (unsigned I = 0, EV1 = cast<VPUser>(V1)->getNumOperands(); I < EV1; ++I)
- for (unsigned J = 0, EV2 = cast<VPUser>(V2)->getNumOperands(); J < EV2; ++J)
- Score += getLAScore(cast<VPUser>(V1)->getOperand(I),
- cast<VPUser>(V2)->getOperand(J), MaxLevel - 1, IAI);
- return Score;
-}
-
-std::pair<VPlanSlp::OpMode, VPValue *>
-VPlanSlp::getBest(OpMode Mode, VPValue *Last,
- SmallPtrSetImpl<VPValue *> &Candidates,
- VPInterleavedAccessInfo &IAI) {
- assert((Mode == OpMode::Load || Mode == OpMode::Opcode) &&
- "Currently we only handle load and commutative opcodes");
- LLVM_DEBUG(dbgs() << " getBest\n");
-
- SmallVector<VPValue *, 4> BestCandidates;
- LLVM_DEBUG(dbgs() << " Candidates for "
- << *cast<VPInstruction>(Last)->getUnderlyingInstr() << " ");
- for (auto *Candidate : Candidates) {
- auto *LastI = cast<VPInstruction>(Last);
- auto *CandidateI = cast<VPInstruction>(Candidate);
- if (areConsecutiveOrMatch(LastI, CandidateI, IAI)) {
- LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr()
- << " ");
- BestCandidates.push_back(Candidate);
- }
- }
- LLVM_DEBUG(dbgs() << "\n");
-
- if (BestCandidates.empty())
- return {OpMode::Failed, nullptr};
-
- if (BestCandidates.size() == 1)
- return {Mode, BestCandidates[0]};
-
- VPValue *Best = nullptr;
- unsigned BestScore = 0;
- for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) {
- unsigned PrevScore = ~0u;
- bool AllSame = true;
-
- // FIXME: Avoid visiting the same operands multiple times.
- for (auto *Candidate : BestCandidates) {
- unsigned Score = getLAScore(Last, Candidate, Depth, IAI);
- if (PrevScore == ~0u)
- PrevScore = Score;
- if (PrevScore != Score)
- AllSame = false;
- PrevScore = Score;
-
- if (Score > BestScore) {
- BestScore = Score;
- Best = Candidate;
- }
- }
- if (!AllSame)
- break;
- }
- LLVM_DEBUG(dbgs() << "Found best "
- << *cast<VPInstruction>(Best)->getUnderlyingInstr()
- << "\n");
- Candidates.erase(Best);
-
- return {Mode, Best};
-}
-
-SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() {
- SmallVector<MultiNodeOpTy, 4> FinalOrder;
- SmallVector<OpMode, 4> Mode;
- FinalOrder.reserve(MultiNodeOps.size());
- Mode.reserve(MultiNodeOps.size());
-
- LLVM_DEBUG(dbgs() << "Reordering multinode\n");
-
- for (auto &Operands : MultiNodeOps) {
- FinalOrder.push_back({Operands.first, {Operands.second[0]}});
- if (cast<VPInstruction>(Operands.second[0])->getOpcode() ==
- Instruction::Load)
- Mode.push_back(OpMode::Load);
- else
- Mode.push_back(OpMode::Opcode);
- }
-
- for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) {
- LLVM_DEBUG(dbgs() << " Finding best value for lane " << Lane << "\n");
- SmallPtrSet<VPValue *, 4> Candidates;
- LLVM_DEBUG(dbgs() << " Candidates ");
- for (auto Ops : MultiNodeOps) {
- LLVM_DEBUG(
- dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr()
- << " ");
- Candidates.insert(Ops.second[Lane]);
- }
- LLVM_DEBUG(dbgs() << "\n");
-
- for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) {
- LLVM_DEBUG(dbgs() << " Checking " << Op << "\n");
- if (Mode[Op] == OpMode::Failed)
- continue;
-
- VPValue *Last = FinalOrder[Op].second[Lane - 1];
- std::pair<OpMode, VPValue *> Res =
- getBest(Mode[Op], Last, Candidates, IAI);
- if (Res.second)
- FinalOrder[Op].second.push_back(Res.second);
- else
- // TODO: handle this case
- FinalOrder[Op].second.push_back(markFailed());
- }
- }
-
- return FinalOrder;
-}
-
-void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) {
- dbgs() << " Ops: ";
- for (auto Op : Values)
- if (auto *Instr = cast_or_null<VPInstruction>(Op)->getUnderlyingInstr())
- dbgs() << *Instr << " | ";
- else
- dbgs() << " nullptr | ";
- dbgs() << "\n";
-}
-
-VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) {
- assert(!Values.empty() && "Need some operands!");
-
- // If we already visited this instruction bundle, re-use the existing node
- auto I = BundleToCombined.find(to_vector<4>(Values));
- if (I != BundleToCombined.end()) {
-#ifndef NDEBUG
- // Check that the resulting graph is a tree. If we re-use a node, this means
- // its values have multiple users. We only allow this, if all users of each
- // value are the same instruction.
- for (auto *V : Values) {
- auto UI = V->user_begin();
- auto *FirstUser = *UI++;
- while (UI != V->user_end()) {
- assert(*UI == FirstUser && "Currently we only support SLP trees.");
- UI++;
- }
- }
-#endif
- return I->second;
- }
-
- // Dump inputs
- LLVM_DEBUG({
- dbgs() << "buildGraph: ";
- dumpBundle(Values);
- });
-
- if (!areVectorizable(Values))
- return markFailed();
-
- assert(getOpcode(Values) && "Opcodes for all values must match");
- unsigned ValuesOpcode = getOpcode(Values).getValue();
-
- SmallVector<VPValue *, 4> CombinedOperands;
- if (areCommutative(Values)) {
- bool MultiNodeRoot = !MultiNodeActive;
- MultiNodeActive = true;
- for (auto &Operands : getOperands(Values)) {
- LLVM_DEBUG({
- dbgs() << " Visiting Commutative";
- dumpBundle(Operands);
- });
-
- auto OperandsOpcode = getOpcode(Operands);
- if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) {
- LLVM_DEBUG(dbgs() << " Same opcode, continue building\n");
- CombinedOperands.push_back(buildGraph(Operands));
- } else {
- LLVM_DEBUG(dbgs() << " Adding multinode Ops\n");
- // Create dummy VPInstruction, which will we replace later by the
- // re-ordered operand.
- VPInstruction *Op = new VPInstruction(0, {});
- CombinedOperands.push_back(Op);
- MultiNodeOps.emplace_back(Op, Operands);
- }
- }
-
- if (MultiNodeRoot) {
- LLVM_DEBUG(dbgs() << "Reorder \n");
- MultiNodeActive = false;
-
- auto FinalOrder = reorderMultiNodeOps();
-
- MultiNodeOps.clear();
- for (auto &Ops : FinalOrder) {
- VPInstruction *NewOp = buildGraph(Ops.second);
- Ops.first->replaceAllUsesWith(NewOp);
- for (unsigned i = 0; i < CombinedOperands.size(); i++)
- if (CombinedOperands[i] == Ops.first)
- CombinedOperands[i] = NewOp;
- delete Ops.first;
- Ops.first = NewOp;
- }
- LLVM_DEBUG(dbgs() << "Found final order\n");
- }
- } else {
- LLVM_DEBUG(dbgs() << " NonCommuntative\n");
- if (ValuesOpcode == Instruction::Load)
- for (VPValue *V : Values)
- CombinedOperands.push_back(cast<VPInstruction>(V)->getOperand(0));
- else
- for (auto &Operands : getOperands(Values))
- CombinedOperands.push_back(buildGraph(Operands));
- }
-
- unsigned Opcode;
- switch (ValuesOpcode) {
- case Instruction::Load:
- Opcode = VPInstruction::SLPLoad;
- break;
- case Instruction::Store:
- Opcode = VPInstruction::SLPStore;
- break;
- default:
- Opcode = ValuesOpcode;
- break;
- }
-
- if (!CompletelySLP)
- return markFailed();
-
- assert(CombinedOperands.size() > 0 && "Need more some operands");
- auto *VPI = new VPInstruction(Opcode, CombinedOperands);
- VPI->setUnderlyingInstr(cast<VPInstruction>(Values[0])->getUnderlyingInstr());
-
- LLVM_DEBUG(dbgs() << "Create VPInstruction "; VPI->print(dbgs());
- cast<VPInstruction>(Values[0])->print(dbgs()); dbgs() << "\n");
- addCombined(Values, VPI);
- return VPI;
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h
deleted file mode 100644
index 7b6c228c229e..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h
+++ /dev/null
@@ -1,186 +0,0 @@
-//===- VPlanValue.h - Represent Values in Vectorizer Plan -----------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file contains the declarations of the entities induced by Vectorization
-/// Plans, e.g. the instructions the VPlan intends to generate if executed.
-/// VPlan models the following entities:
-/// VPValue
-/// |-- VPUser
-/// | |-- VPInstruction
-/// These are documented in docs/VectorizationPlan.rst.
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-
-namespace llvm {
-
-// Forward declarations.
-class VPUser;
-
-// This is the base class of the VPlan Def/Use graph, used for modeling the data
-// flow into, within and out of the VPlan. VPValues can stand for live-ins
-// coming from the input IR, instructions which VPlan will generate if executed
-// and live-outs which the VPlan will need to fix accordingly.
-class VPValue {
- friend class VPBuilder;
- friend class VPlanHCFGTransforms;
- friend class VPBasicBlock;
- friend class VPInterleavedAccessInfo;
-
-private:
- const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
-
- SmallVector<VPUser *, 1> Users;
-
-protected:
- // Hold the underlying Value, if any, attached to this VPValue.
- Value *UnderlyingVal;
-
- VPValue(const unsigned char SC, Value *UV = nullptr)
- : SubclassID(SC), UnderlyingVal(UV) {}
-
- // DESIGN PRINCIPLE: Access to the underlying IR must be strictly limited to
- // the front-end and back-end of VPlan so that the middle-end is as
- // independent as possible of the underlying IR. We grant access to the
- // underlying IR using friendship. In that way, we should be able to use VPlan
- // for multiple underlying IRs (Polly?) by providing a new VPlan front-end,
- // back-end and analysis information for the new IR.
-
- /// Return the underlying Value attached to this VPValue.
- Value *getUnderlyingValue() { return UnderlyingVal; }
-
- // Set \p Val as the underlying Value of this VPValue.
- void setUnderlyingValue(Value *Val) {
- assert(!UnderlyingVal && "Underlying Value is already set.");
- UnderlyingVal = Val;
- }
-
-public:
- /// An enumeration for keeping track of the concrete subclass of VPValue that
- /// are actually instantiated. Values of this enumeration are kept in the
- /// SubclassID field of the VPValue objects. They are used for concrete
- /// type identification.
- enum { VPValueSC, VPUserSC, VPInstructionSC };
-
- VPValue(Value *UV = nullptr) : VPValue(VPValueSC, UV) {}
- VPValue(const VPValue &) = delete;
- VPValue &operator=(const VPValue &) = delete;
-
- /// \return an ID for the concrete type of this object.
- /// This is used to implement the classof checks. This should not be used
- /// for any other purpose, as the values may change as LLVM evolves.
- unsigned getVPValueID() const { return SubclassID; }
-
- void printAsOperand(raw_ostream &OS) const {
- OS << "%vp" << (unsigned short)(unsigned long long)this;
- }
-
- unsigned getNumUsers() const { return Users.size(); }
- void addUser(VPUser &User) { Users.push_back(&User); }
-
- typedef SmallVectorImpl<VPUser *>::iterator user_iterator;
- typedef SmallVectorImpl<VPUser *>::const_iterator const_user_iterator;
- typedef iterator_range<user_iterator> user_range;
- typedef iterator_range<const_user_iterator> const_user_range;
-
- user_iterator user_begin() { return Users.begin(); }
- const_user_iterator user_begin() const { return Users.begin(); }
- user_iterator user_end() { return Users.end(); }
- const_user_iterator user_end() const { return Users.end(); }
- user_range users() { return user_range(user_begin(), user_end()); }
- const_user_range users() const {
- return const_user_range(user_begin(), user_end());
- }
-
- /// Returns true if the value has more than one unique user.
- bool hasMoreThanOneUniqueUser() {
- if (getNumUsers() == 0)
- return false;
-
- // Check if all users match the first user.
- auto Current = std::next(user_begin());
- while (Current != user_end() && *user_begin() == *Current)
- Current++;
- return Current != user_end();
- }
-
- void replaceAllUsesWith(VPValue *New);
-};
-
-typedef DenseMap<Value *, VPValue *> Value2VPValueTy;
-typedef DenseMap<VPValue *, Value *> VPValue2ValueTy;
-
-raw_ostream &operator<<(raw_ostream &OS, const VPValue &V);
-
-/// This class augments VPValue with operands which provide the inverse def-use
-/// edges from VPValue's users to their defs.
-class VPUser : public VPValue {
-private:
- SmallVector<VPValue *, 2> Operands;
-
-protected:
- VPUser(const unsigned char SC) : VPValue(SC) {}
- VPUser(const unsigned char SC, ArrayRef<VPValue *> Operands) : VPValue(SC) {
- for (VPValue *Operand : Operands)
- addOperand(Operand);
- }
-
-public:
- VPUser() : VPValue(VPValue::VPUserSC) {}
- VPUser(ArrayRef<VPValue *> Operands) : VPUser(VPValue::VPUserSC, Operands) {}
- VPUser(std::initializer_list<VPValue *> Operands)
- : VPUser(ArrayRef<VPValue *>(Operands)) {}
- VPUser(const VPUser &) = delete;
- VPUser &operator=(const VPUser &) = delete;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPValue *V) {
- return V->getVPValueID() >= VPUserSC &&
- V->getVPValueID() <= VPInstructionSC;
- }
-
- void addOperand(VPValue *Operand) {
- Operands.push_back(Operand);
- Operand->addUser(*this);
- }
-
- unsigned getNumOperands() const { return Operands.size(); }
- inline VPValue *getOperand(unsigned N) const {
- assert(N < Operands.size() && "Operand index out of bounds");
- return Operands[N];
- }
-
- void setOperand(unsigned I, VPValue *New) { Operands[I] = New; }
-
- typedef SmallVectorImpl<VPValue *>::iterator operand_iterator;
- typedef SmallVectorImpl<VPValue *>::const_iterator const_operand_iterator;
- typedef iterator_range<operand_iterator> operand_range;
- typedef iterator_range<const_operand_iterator> const_operand_range;
-
- operand_iterator op_begin() { return Operands.begin(); }
- const_operand_iterator op_begin() const { return Operands.begin(); }
- operand_iterator op_end() { return Operands.end(); }
- const_operand_iterator op_end() const { return Operands.end(); }
- operand_range operands() { return operand_range(op_begin(), op_end()); }
- const_operand_range operands() const {
- return const_operand_range(op_begin(), op_end());
- }
-};
-
-} // namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp
deleted file mode 100644
index 394b1b93113b..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp
+++ /dev/null
@@ -1,132 +0,0 @@
-//===-- VPlanVerifier.cpp -------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file defines the class VPlanVerifier, which contains utility functions
-/// to check the consistency and invariants of a VPlan.
-///
-//===----------------------------------------------------------------------===//
-
-#include "VPlanVerifier.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-
-#define DEBUG_TYPE "loop-vectorize"
-
-using namespace llvm;
-
-static cl::opt<bool> EnableHCFGVerifier("vplan-verify-hcfg", cl::init(false),
- cl::Hidden,
- cl::desc("Verify VPlan H-CFG."));
-
-#ifndef NDEBUG
-/// Utility function that checks whether \p VPBlockVec has duplicate
-/// VPBlockBases.
-static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
- SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
- for (const auto *Block : VPBlockVec) {
- if (VPBlockSet.count(Block))
- return true;
- VPBlockSet.insert(Block);
- }
- return false;
-}
-#endif
-
-/// Helper function that verifies the CFG invariants of the VPBlockBases within
-/// \p Region. Checks in this function are generic for VPBlockBases. They are
-/// not specific for VPBasicBlocks or VPRegionBlocks.
-static void verifyBlocksInRegion(const VPRegionBlock *Region) {
- for (const VPBlockBase *VPB :
- make_range(df_iterator<const VPBlockBase *>::begin(Region->getEntry()),
- df_iterator<const VPBlockBase *>::end(Region->getExit()))) {
- // Check block's parent.
- assert(VPB->getParent() == Region && "VPBlockBase has wrong parent");
-
- // Check block's condition bit.
- if (VPB->getNumSuccessors() > 1)
- assert(VPB->getCondBit() && "Missing condition bit!");
- else
- assert(!VPB->getCondBit() && "Unexpected condition bit!");
-
- // Check block's successors.
- const auto &Successors = VPB->getSuccessors();
- // There must be only one instance of a successor in block's successor list.
- // TODO: This won't work for switch statements.
- assert(!hasDuplicates(Successors) &&
- "Multiple instances of the same successor.");
-
- for (const VPBlockBase *Succ : Successors) {
- // There must be a bi-directional link between block and successor.
- const auto &SuccPreds = Succ->getPredecessors();
- assert(std::find(SuccPreds.begin(), SuccPreds.end(), VPB) !=
- SuccPreds.end() &&
- "Missing predecessor link.");
- (void)SuccPreds;
- }
-
- // Check block's predecessors.
- const auto &Predecessors = VPB->getPredecessors();
- // There must be only one instance of a predecessor in block's predecessor
- // list.
- // TODO: This won't work for switch statements.
- assert(!hasDuplicates(Predecessors) &&
- "Multiple instances of the same predecessor.");
-
- for (const VPBlockBase *Pred : Predecessors) {
- // Block and predecessor must be inside the same region.
- assert(Pred->getParent() == VPB->getParent() &&
- "Predecessor is not in the same region.");
-
- // There must be a bi-directional link between block and predecessor.
- const auto &PredSuccs = Pred->getSuccessors();
- assert(std::find(PredSuccs.begin(), PredSuccs.end(), VPB) !=
- PredSuccs.end() &&
- "Missing successor link.");
- (void)PredSuccs;
- }
- }
-}
-
-/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
-/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
-static void verifyRegion(const VPRegionBlock *Region) {
- const VPBlockBase *Entry = Region->getEntry();
- const VPBlockBase *Exit = Region->getExit();
-
- // Entry and Exit shouldn't have any predecessor/successor, respectively.
- assert(!Entry->getNumPredecessors() && "Region entry has predecessors.");
- assert(!Exit->getNumSuccessors() && "Region exit has successors.");
- (void)Entry;
- (void)Exit;
-
- verifyBlocksInRegion(Region);
-}
-
-/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
-/// VPBlockBases. Recurse inside nested VPRegionBlocks.
-static void verifyRegionRec(const VPRegionBlock *Region) {
- verifyRegion(Region);
-
- // Recurse inside nested regions.
- for (const VPBlockBase *VPB :
- make_range(df_iterator<const VPBlockBase *>::begin(Region->getEntry()),
- df_iterator<const VPBlockBase *>::end(Region->getExit()))) {
- if (const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB))
- verifyRegionRec(SubRegion);
- }
-}
-
-void VPlanVerifier::verifyHierarchicalCFG(
- const VPRegionBlock *TopRegion) const {
- if (!EnableHCFGVerifier)
- return;
-
- LLVM_DEBUG(dbgs() << "Verifying VPlan H-CFG.\n");
- assert(!TopRegion->getParent() && "VPlan Top Region should have no parent.");
- verifyRegionRec(TopRegion);
-}
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h
deleted file mode 100644
index 7d2b26252172..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h
+++ /dev/null
@@ -1,43 +0,0 @@
-//===-- VPlanVerifier.h -----------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file declares the class VPlanVerifier, which contains utility functions
-/// to check the consistency of a VPlan. This includes the following kinds of
-/// invariants:
-///
-/// 1. Region/Block invariants:
-/// - Region's entry/exit block must have no predecessors/successors,
-/// respectively.
-/// - Block's parent must be the region immediately containing the block.
-/// - Linked blocks must have a bi-directional link (successor/predecessor).
-/// - All predecessors/successors of a block must belong to the same region.
-/// - Blocks must have no duplicated successor/predecessor.
-///
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H
-
-#include "VPlan.h"
-
-namespace llvm {
-
-/// Class with utility functions that can be used to check the consistency and
-/// invariants of a VPlan, including the components of its H-CFG.
-class VPlanVerifier {
-public:
- /// Verify the invariants of the H-CFG starting from \p TopRegion. The
- /// verification process comprises the following steps:
- /// 1. Region/Block verification: Check the Region/Block verification
- /// invariants for every region in the H-CFG.
- void verifyHierarchicalCFG(const VPRegionBlock *TopRegion) const;
-};
-} // namespace llvm
-
-#endif //LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H
diff --git a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
deleted file mode 100644
index 6a4f9169c2af..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp
+++ /dev/null
@@ -1,42 +0,0 @@
-//===-- Vectorize.cpp -----------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements common infrastructure for libLLVMVectorizeOpts.a, which
-// implements several vectorization transformations over the LLVM intermediate
-// representation, including the C bindings for that library.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Vectorize.h"
-#include "llvm-c/Initialization.h"
-#include "llvm-c/Transforms/Vectorize.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/IR/LegacyPassManager.h"
-#include "llvm/InitializePasses.h"
-
-using namespace llvm;
-
-/// initializeVectorizationPasses - Initialize all passes linked into the
-/// Vectorization library.
-void llvm::initializeVectorization(PassRegistry &Registry) {
- initializeLoopVectorizePass(Registry);
- initializeSLPVectorizerPass(Registry);
- initializeLoadStoreVectorizerLegacyPassPass(Registry);
-}
-
-void LLVMInitializeVectorization(LLVMPassRegistryRef R) {
- initializeVectorization(*unwrap(R));
-}
-
-void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) {
- unwrap(PM)->add(createLoopVectorizePass());
-}
-
-void LLVMAddSLPVectorizePass(LLVMPassManagerRef PM) {
- unwrap(PM)->add(createSLPVectorizerPass());
-}