diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Vectorize | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize')
21 files changed, 0 insertions, 21787 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp deleted file mode 100644 index 4273080ddd91..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp +++ /dev/null @@ -1,1248 +0,0 @@ -//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass merges loads/stores to/from sequential memory addresses into vector -// loads/stores. Although there's nothing GPU-specific in here, this pass is -// motivated by the microarchitectural quirks of nVidia and AMD GPUs. -// -// (For simplicity below we talk about loads only, but everything also applies -// to stores.) -// -// This pass is intended to be run late in the pipeline, after other -// vectorization opportunities have been exploited. So the assumption here is -// that immediately following our new vector load we'll need to extract out the -// individual elements of the load, so we can operate on them individually. -// -// On CPUs this transformation is usually not beneficial, because extracting the -// elements of a vector register is expensive on most architectures. It's -// usually better just to load each element individually into its own scalar -// register. -// -// However, nVidia and AMD GPUs don't have proper vector registers. Instead, a -// "vector load" loads directly into a series of scalar registers. In effect, -// extracting the elements of the vector is free. It's therefore always -// beneficial to vectorize a sequence of loads on these architectures. -// -// Vectorizing (perhaps a better name might be "coalescing") loads can have -// large performance impacts on GPU kernels, and opportunities for vectorizing -// are common in GPU code. This pass tries very hard to find such -// opportunities; its runtime is quadratic in the number of loads in a BB. -// -// Some CPU architectures, such as ARM, have instructions that load into -// multiple scalar registers, similar to a GPU vectorized load. In theory ARM -// could use this pass (with some modifications), but currently it implements -// its own pass to do something similar to what we do here. - -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/OrderedBasicBlock.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Vectorize.h" -#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" -#include <algorithm> -#include <cassert> -#include <cstdlib> -#include <tuple> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "load-store-vectorizer" - -STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); -STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); - -// FIXME: Assuming stack alignment of 4 is always good enough -static const unsigned StackAdjustedAlignment = 4; - -namespace { - -/// ChainID is an arbitrary token that is allowed to be different only for the -/// accesses that are guaranteed to be considered non-consecutive by -/// Vectorizer::isConsecutiveAccess. It's used for grouping instructions -/// together and reducing the number of instructions the main search operates on -/// at a time, i.e. this is to reduce compile time and nothing else as the main -/// search has O(n^2) time complexity. The underlying type of ChainID should not -/// be relied upon. -using ChainID = const Value *; -using InstrList = SmallVector<Instruction *, 8>; -using InstrListMap = MapVector<ChainID, InstrList>; - -class Vectorizer { - Function &F; - AliasAnalysis &AA; - DominatorTree &DT; - ScalarEvolution &SE; - TargetTransformInfo &TTI; - const DataLayout &DL; - IRBuilder<> Builder; - -public: - Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, - ScalarEvolution &SE, TargetTransformInfo &TTI) - : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), - DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} - - bool run(); - -private: - unsigned getPointerAddressSpace(Value *I); - - unsigned getAlignment(LoadInst *LI) const { - unsigned Align = LI->getAlignment(); - if (Align != 0) - return Align; - - return DL.getABITypeAlignment(LI->getType()); - } - - unsigned getAlignment(StoreInst *SI) const { - unsigned Align = SI->getAlignment(); - if (Align != 0) - return Align; - - return DL.getABITypeAlignment(SI->getValueOperand()->getType()); - } - - static const unsigned MaxDepth = 3; - - bool isConsecutiveAccess(Value *A, Value *B); - bool areConsecutivePointers(Value *PtrA, Value *PtrB, const APInt &PtrDelta, - unsigned Depth = 0) const; - bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, - unsigned Depth) const; - bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, - unsigned Depth) const; - - /// After vectorization, reorder the instructions that I depends on - /// (the instructions defining its operands), to ensure they dominate I. - void reorder(Instruction *I); - - /// Returns the first and the last instructions in Chain. - std::pair<BasicBlock::iterator, BasicBlock::iterator> - getBoundaryInstrs(ArrayRef<Instruction *> Chain); - - /// Erases the original instructions after vectorizing. - void eraseInstructions(ArrayRef<Instruction *> Chain); - - /// "Legalize" the vector type that would be produced by combining \p - /// ElementSizeBits elements in \p Chain. Break into two pieces such that the - /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is - /// expected to have more than 4 elements. - std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> - splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); - - /// Finds the largest prefix of Chain that's vectorizable, checking for - /// intervening instructions which may affect the memory accessed by the - /// instructions within Chain. - /// - /// The elements of \p Chain must be all loads or all stores and must be in - /// address order. - ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); - - /// Collects load and store instructions to vectorize. - std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); - - /// Processes the collected instructions, the \p Map. The values of \p Map - /// should be all loads or all stores. - bool vectorizeChains(InstrListMap &Map); - - /// Finds the load/stores to consecutive memory addresses and vectorizes them. - bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); - - /// Vectorizes the load instructions in Chain. - bool - vectorizeLoadChain(ArrayRef<Instruction *> Chain, - SmallPtrSet<Instruction *, 16> *InstructionsProcessed); - - /// Vectorizes the store instructions in Chain. - bool - vectorizeStoreChain(ArrayRef<Instruction *> Chain, - SmallPtrSet<Instruction *, 16> *InstructionsProcessed); - - /// Check if this load/store access is misaligned accesses. - bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, - unsigned Alignment); -}; - -class LoadStoreVectorizerLegacyPass : public FunctionPass { -public: - static char ID; - - LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { - initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override; - - StringRef getPassName() const override { - return "GPU Load and Store Vectorizer"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.setPreservesCFG(); - } -}; - -} // end anonymous namespace - -char LoadStoreVectorizerLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, - "Vectorize load and Store instructions", false, false) -INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, - "Vectorize load and store instructions", false, false) - -Pass *llvm::createLoadStoreVectorizerPass() { - return new LoadStoreVectorizerLegacyPass(); -} - -bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { - // Don't vectorize when the attribute NoImplicitFloat is used. - if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) - return false; - - AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); - DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - TargetTransformInfo &TTI = - getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - - Vectorizer V(F, AA, DT, SE, TTI); - return V.run(); -} - -PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { - // Don't vectorize when the attribute NoImplicitFloat is used. - if (F.hasFnAttribute(Attribute::NoImplicitFloat)) - return PreservedAnalyses::all(); - - AliasAnalysis &AA = AM.getResult<AAManager>(F); - DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); - ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); - TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); - - Vectorizer V(F, AA, DT, SE, TTI); - bool Changed = V.run(); - PreservedAnalyses PA; - PA.preserveSet<CFGAnalyses>(); - return Changed ? PA : PreservedAnalyses::all(); -} - -// The real propagateMetadata expects a SmallVector<Value*>, but we deal in -// vectors of Instructions. -static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { - SmallVector<Value *, 8> VL(IL.begin(), IL.end()); - propagateMetadata(I, VL); -} - -// Vectorizer Implementation -bool Vectorizer::run() { - bool Changed = false; - - // Scan the blocks in the function in post order. - for (BasicBlock *BB : post_order(&F)) { - InstrListMap LoadRefs, StoreRefs; - std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); - Changed |= vectorizeChains(LoadRefs); - Changed |= vectorizeChains(StoreRefs); - } - - return Changed; -} - -unsigned Vectorizer::getPointerAddressSpace(Value *I) { - if (LoadInst *L = dyn_cast<LoadInst>(I)) - return L->getPointerAddressSpace(); - if (StoreInst *S = dyn_cast<StoreInst>(I)) - return S->getPointerAddressSpace(); - return -1; -} - -// FIXME: Merge with llvm::isConsecutiveAccess -bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { - Value *PtrA = getLoadStorePointerOperand(A); - Value *PtrB = getLoadStorePointerOperand(B); - unsigned ASA = getPointerAddressSpace(A); - unsigned ASB = getPointerAddressSpace(B); - - // Check that the address spaces match and that the pointers are valid. - if (!PtrA || !PtrB || (ASA != ASB)) - return false; - - // Make sure that A and B are different pointers of the same size type. - Type *PtrATy = PtrA->getType()->getPointerElementType(); - Type *PtrBTy = PtrB->getType()->getPointerElementType(); - if (PtrA == PtrB || - PtrATy->isVectorTy() != PtrBTy->isVectorTy() || - DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || - DL.getTypeStoreSize(PtrATy->getScalarType()) != - DL.getTypeStoreSize(PtrBTy->getScalarType())) - return false; - - unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); - APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); - - return areConsecutivePointers(PtrA, PtrB, Size); -} - -bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, - const APInt &PtrDelta, - unsigned Depth) const { - unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); - APInt OffsetA(PtrBitWidth, 0); - APInt OffsetB(PtrBitWidth, 0); - PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); - PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); - - APInt OffsetDelta = OffsetB - OffsetA; - - // Check if they are based on the same pointer. That makes the offsets - // sufficient. - if (PtrA == PtrB) - return OffsetDelta == PtrDelta; - - // Compute the necessary base pointer delta to have the necessary final delta - // equal to the pointer delta requested. - APInt BaseDelta = PtrDelta - OffsetDelta; - - // Compute the distance with SCEV between the base pointers. - const SCEV *PtrSCEVA = SE.getSCEV(PtrA); - const SCEV *PtrSCEVB = SE.getSCEV(PtrB); - const SCEV *C = SE.getConstant(BaseDelta); - const SCEV *X = SE.getAddExpr(PtrSCEVA, C); - if (X == PtrSCEVB) - return true; - - // The above check will not catch the cases where one of the pointers is - // factorized but the other one is not, such as (C + (S * (A + B))) vs - // (AS + BS). Get the minus scev. That will allow re-combining the expresions - // and getting the simplified difference. - const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); - if (C == Dist) - return true; - - // Sometimes even this doesn't work, because SCEV can't always see through - // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking - // things the hard way. - return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); -} - -bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, - APInt PtrDelta, - unsigned Depth) const { - auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); - auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); - if (!GEPA || !GEPB) - return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); - - // Look through GEPs after checking they're the same except for the last - // index. - if (GEPA->getNumOperands() != GEPB->getNumOperands() || - GEPA->getPointerOperand() != GEPB->getPointerOperand()) - return false; - gep_type_iterator GTIA = gep_type_begin(GEPA); - gep_type_iterator GTIB = gep_type_begin(GEPB); - for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { - if (GTIA.getOperand() != GTIB.getOperand()) - return false; - ++GTIA; - ++GTIB; - } - - Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); - Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); - if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || - OpA->getType() != OpB->getType()) - return false; - - if (PtrDelta.isNegative()) { - if (PtrDelta.isMinSignedValue()) - return false; - PtrDelta.negate(); - std::swap(OpA, OpB); - } - uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); - if (PtrDelta.urem(Stride) != 0) - return false; - unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); - APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); - - // Only look through a ZExt/SExt. - if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) - return false; - - bool Signed = isa<SExtInst>(OpA); - - // At this point A could be a function parameter, i.e. not an instruction - Value *ValA = OpA->getOperand(0); - OpB = dyn_cast<Instruction>(OpB->getOperand(0)); - if (!OpB || ValA->getType() != OpB->getType()) - return false; - - // Now we need to prove that adding IdxDiff to ValA won't overflow. - bool Safe = false; - // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to - // ValA, we're okay. - if (OpB->getOpcode() == Instruction::Add && - isa<ConstantInt>(OpB->getOperand(1)) && - IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) { - if (Signed) - Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); - else - Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); - } - - unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); - - // Second attempt: - // If all set bits of IdxDiff or any higher order bit other than the sign bit - // are known to be zero in ValA, we can add Diff to it while guaranteeing no - // overflow of any sort. - if (!Safe) { - OpA = dyn_cast<Instruction>(ValA); - if (!OpA) - return false; - KnownBits Known(BitWidth); - computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); - APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); - if (Signed) - BitsAllowedToBeSet.clearBit(BitWidth - 1); - if (BitsAllowedToBeSet.ult(IdxDiff)) - return false; - } - - const SCEV *OffsetSCEVA = SE.getSCEV(ValA); - const SCEV *OffsetSCEVB = SE.getSCEV(OpB); - const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); - const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); - return X == OffsetSCEVB; -} - -bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, - const APInt &PtrDelta, - unsigned Depth) const { - if (Depth++ == MaxDepth) - return false; - - if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { - if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { - return SelectA->getCondition() == SelectB->getCondition() && - areConsecutivePointers(SelectA->getTrueValue(), - SelectB->getTrueValue(), PtrDelta, Depth) && - areConsecutivePointers(SelectA->getFalseValue(), - SelectB->getFalseValue(), PtrDelta, Depth); - } - } - return false; -} - -void Vectorizer::reorder(Instruction *I) { - OrderedBasicBlock OBB(I->getParent()); - SmallPtrSet<Instruction *, 16> InstructionsToMove; - SmallVector<Instruction *, 16> Worklist; - - Worklist.push_back(I); - while (!Worklist.empty()) { - Instruction *IW = Worklist.pop_back_val(); - int NumOperands = IW->getNumOperands(); - for (int i = 0; i < NumOperands; i++) { - Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); - if (!IM || IM->getOpcode() == Instruction::PHI) - continue; - - // If IM is in another BB, no need to move it, because this pass only - // vectorizes instructions within one BB. - if (IM->getParent() != I->getParent()) - continue; - - if (!OBB.dominates(IM, I)) { - InstructionsToMove.insert(IM); - Worklist.push_back(IM); - } - } - } - - // All instructions to move should follow I. Start from I, not from begin(). - for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; - ++BBI) { - if (!InstructionsToMove.count(&*BBI)) - continue; - Instruction *IM = &*BBI; - --BBI; - IM->removeFromParent(); - IM->insertBefore(I); - } -} - -std::pair<BasicBlock::iterator, BasicBlock::iterator> -Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { - Instruction *C0 = Chain[0]; - BasicBlock::iterator FirstInstr = C0->getIterator(); - BasicBlock::iterator LastInstr = C0->getIterator(); - - BasicBlock *BB = C0->getParent(); - unsigned NumFound = 0; - for (Instruction &I : *BB) { - if (!is_contained(Chain, &I)) - continue; - - ++NumFound; - if (NumFound == 1) { - FirstInstr = I.getIterator(); - } - if (NumFound == Chain.size()) { - LastInstr = I.getIterator(); - break; - } - } - - // Range is [first, last). - return std::make_pair(FirstInstr, ++LastInstr); -} - -void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { - SmallVector<Instruction *, 16> Instrs; - for (Instruction *I : Chain) { - Value *PtrOperand = getLoadStorePointerOperand(I); - assert(PtrOperand && "Instruction must have a pointer operand."); - Instrs.push_back(I); - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) - Instrs.push_back(GEP); - } - - // Erase instructions. - for (Instruction *I : Instrs) - if (I->use_empty()) - I->eraseFromParent(); -} - -std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> -Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, - unsigned ElementSizeBits) { - unsigned ElementSizeBytes = ElementSizeBits / 8; - unsigned SizeBytes = ElementSizeBytes * Chain.size(); - unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; - if (NumLeft == Chain.size()) { - if ((NumLeft & 1) == 0) - NumLeft /= 2; // Split even in half - else - --NumLeft; // Split off last element - } else if (NumLeft == 0) - NumLeft = 1; - return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); -} - -ArrayRef<Instruction *> -Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { - // These are in BB order, unlike Chain, which is in address order. - SmallVector<Instruction *, 16> MemoryInstrs; - SmallVector<Instruction *, 16> ChainInstrs; - - bool IsLoadChain = isa<LoadInst>(Chain[0]); - LLVM_DEBUG({ - for (Instruction *I : Chain) { - if (IsLoadChain) - assert(isa<LoadInst>(I) && - "All elements of Chain must be loads, or all must be stores."); - else - assert(isa<StoreInst>(I) && - "All elements of Chain must be loads, or all must be stores."); - } - }); - - for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { - if (isa<LoadInst>(I) || isa<StoreInst>(I)) { - if (!is_contained(Chain, &I)) - MemoryInstrs.push_back(&I); - else - ChainInstrs.push_back(&I); - } else if (isa<IntrinsicInst>(&I) && - cast<IntrinsicInst>(&I)->getIntrinsicID() == - Intrinsic::sideeffect) { - // Ignore llvm.sideeffect calls. - } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { - LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I - << '\n'); - break; - } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { - LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I - << '\n'); - break; - } - } - - OrderedBasicBlock OBB(Chain[0]->getParent()); - - // Loop until we find an instruction in ChainInstrs that we can't vectorize. - unsigned ChainInstrIdx = 0; - Instruction *BarrierMemoryInstr = nullptr; - - for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { - Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; - - // If a barrier memory instruction was found, chain instructions that follow - // will not be added to the valid prefix. - if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) - break; - - // Check (in BB order) if any instruction prevents ChainInstr from being - // vectorized. Find and store the first such "conflicting" instruction. - for (Instruction *MemInstr : MemoryInstrs) { - // If a barrier memory instruction was found, do not check past it. - if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) - break; - - auto *MemLoad = dyn_cast<LoadInst>(MemInstr); - auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); - if (MemLoad && ChainLoad) - continue; - - // We can ignore the alias if the we have a load store pair and the load - // is known to be invariant. The load cannot be clobbered by the store. - auto IsInvariantLoad = [](const LoadInst *LI) -> bool { - return LI->getMetadata(LLVMContext::MD_invariant_load); - }; - - // We can ignore the alias as long as the load comes before the store, - // because that means we won't be moving the load past the store to - // vectorize it (the vectorized load is inserted at the location of the - // first load in the chain). - if (isa<StoreInst>(MemInstr) && ChainLoad && - (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr))) - continue; - - // Same case, but in reverse. - if (MemLoad && isa<StoreInst>(ChainInstr) && - (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr))) - continue; - - if (!AA.isNoAlias(MemoryLocation::get(MemInstr), - MemoryLocation::get(ChainInstr))) { - LLVM_DEBUG({ - dbgs() << "LSV: Found alias:\n" - " Aliasing instruction and pointer:\n" - << " " << *MemInstr << '\n' - << " " << *getLoadStorePointerOperand(MemInstr) << '\n' - << " Aliased instruction and pointer:\n" - << " " << *ChainInstr << '\n' - << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; - }); - // Save this aliasing memory instruction as a barrier, but allow other - // instructions that precede the barrier to be vectorized with this one. - BarrierMemoryInstr = MemInstr; - break; - } - } - // Continue the search only for store chains, since vectorizing stores that - // precede an aliasing load is valid. Conversely, vectorizing loads is valid - // up to an aliasing store, but should not pull loads from further down in - // the basic block. - if (IsLoadChain && BarrierMemoryInstr) { - // The BarrierMemoryInstr is a store that precedes ChainInstr. - assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); - break; - } - } - - // Find the largest prefix of Chain whose elements are all in - // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of - // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB - // order.) - SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( - ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); - unsigned ChainIdx = 0; - for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { - if (!VectorizableChainInstrs.count(Chain[ChainIdx])) - break; - } - return Chain.slice(0, ChainIdx); -} - -static ChainID getChainID(const Value *Ptr, const DataLayout &DL) { - const Value *ObjPtr = GetUnderlyingObject(Ptr, DL); - if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { - // The select's themselves are distinct instructions even if they share the - // same condition and evaluate to consecutive pointers for true and false - // values of the condition. Therefore using the select's themselves for - // grouping instructions would put consecutive accesses into different lists - // and they won't be even checked for being consecutive, and won't be - // vectorized. - return Sel->getCondition(); - } - return ObjPtr; -} - -std::pair<InstrListMap, InstrListMap> -Vectorizer::collectInstructions(BasicBlock *BB) { - InstrListMap LoadRefs; - InstrListMap StoreRefs; - - for (Instruction &I : *BB) { - if (!I.mayReadOrWriteMemory()) - continue; - - if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { - if (!LI->isSimple()) - continue; - - // Skip if it's not legal. - if (!TTI.isLegalToVectorizeLoad(LI)) - continue; - - Type *Ty = LI->getType(); - if (!VectorType::isValidElementType(Ty->getScalarType())) - continue; - - // Skip weird non-byte sizes. They probably aren't worth the effort of - // handling correctly. - unsigned TySize = DL.getTypeSizeInBits(Ty); - if ((TySize % 8) != 0) - continue; - - // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain - // functions are currently using an integer type for the vectorized - // load/store, and does not support casting between the integer type and a - // vector of pointers (e.g. i64 to <2 x i16*>) - if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) - continue; - - Value *Ptr = LI->getPointerOperand(); - unsigned AS = Ptr->getType()->getPointerAddressSpace(); - unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); - - unsigned VF = VecRegSize / TySize; - VectorType *VecTy = dyn_cast<VectorType>(Ty); - - // No point in looking at these if they're too big to vectorize. - if (TySize > VecRegSize / 2 || - (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) - continue; - - // Make sure all the users of a vector are constant-index extracts. - if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { - const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); - return EEI && isa<ConstantInt>(EEI->getOperand(1)); - })) - continue; - - // Save the load locations. - const ChainID ID = getChainID(Ptr, DL); - LoadRefs[ID].push_back(LI); - } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { - if (!SI->isSimple()) - continue; - - // Skip if it's not legal. - if (!TTI.isLegalToVectorizeStore(SI)) - continue; - - Type *Ty = SI->getValueOperand()->getType(); - if (!VectorType::isValidElementType(Ty->getScalarType())) - continue; - - // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain - // functions are currently using an integer type for the vectorized - // load/store, and does not support casting between the integer type and a - // vector of pointers (e.g. i64 to <2 x i16*>) - if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) - continue; - - // Skip weird non-byte sizes. They probably aren't worth the effort of - // handling correctly. - unsigned TySize = DL.getTypeSizeInBits(Ty); - if ((TySize % 8) != 0) - continue; - - Value *Ptr = SI->getPointerOperand(); - unsigned AS = Ptr->getType()->getPointerAddressSpace(); - unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); - - unsigned VF = VecRegSize / TySize; - VectorType *VecTy = dyn_cast<VectorType>(Ty); - - // No point in looking at these if they're too big to vectorize. - if (TySize > VecRegSize / 2 || - (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) - continue; - - if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { - const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); - return EEI && isa<ConstantInt>(EEI->getOperand(1)); - })) - continue; - - // Save store location. - const ChainID ID = getChainID(Ptr, DL); - StoreRefs[ID].push_back(SI); - } - } - - return {LoadRefs, StoreRefs}; -} - -bool Vectorizer::vectorizeChains(InstrListMap &Map) { - bool Changed = false; - - for (const std::pair<ChainID, InstrList> &Chain : Map) { - unsigned Size = Chain.second.size(); - if (Size < 2) - continue; - - LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); - - // Process the stores in chunks of 64. - for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { - unsigned Len = std::min<unsigned>(CE - CI, 64); - ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); - Changed |= vectorizeInstructions(Chunk); - } - } - - return Changed; -} - -bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { - LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() - << " instructions.\n"); - SmallVector<int, 16> Heads, Tails; - int ConsecutiveChain[64]; - - // Do a quadratic search on all of the given loads/stores and find all of the - // pairs of loads/stores that follow each other. - for (int i = 0, e = Instrs.size(); i < e; ++i) { - ConsecutiveChain[i] = -1; - for (int j = e - 1; j >= 0; --j) { - if (i == j) - continue; - - if (isConsecutiveAccess(Instrs[i], Instrs[j])) { - if (ConsecutiveChain[i] != -1) { - int CurDistance = std::abs(ConsecutiveChain[i] - i); - int NewDistance = std::abs(ConsecutiveChain[i] - j); - if (j < i || NewDistance > CurDistance) - continue; // Should not insert. - } - - Tails.push_back(j); - Heads.push_back(i); - ConsecutiveChain[i] = j; - } - } - } - - bool Changed = false; - SmallPtrSet<Instruction *, 16> InstructionsProcessed; - - for (int Head : Heads) { - if (InstructionsProcessed.count(Instrs[Head])) - continue; - bool LongerChainExists = false; - for (unsigned TIt = 0; TIt < Tails.size(); TIt++) - if (Head == Tails[TIt] && - !InstructionsProcessed.count(Instrs[Heads[TIt]])) { - LongerChainExists = true; - break; - } - if (LongerChainExists) - continue; - - // We found an instr that starts a chain. Now follow the chain and try to - // vectorize it. - SmallVector<Instruction *, 16> Operands; - int I = Head; - while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { - if (InstructionsProcessed.count(Instrs[I])) - break; - - Operands.push_back(Instrs[I]); - I = ConsecutiveChain[I]; - } - - bool Vectorized = false; - if (isa<LoadInst>(*Operands.begin())) - Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); - else - Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); - - Changed |= Vectorized; - } - - return Changed; -} - -bool Vectorizer::vectorizeStoreChain( - ArrayRef<Instruction *> Chain, - SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { - StoreInst *S0 = cast<StoreInst>(Chain[0]); - - // If the vector has an int element, default to int for the whole store. - Type *StoreTy = nullptr; - for (Instruction *I : Chain) { - StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); - if (StoreTy->isIntOrIntVectorTy()) - break; - - if (StoreTy->isPtrOrPtrVectorTy()) { - StoreTy = Type::getIntNTy(F.getParent()->getContext(), - DL.getTypeSizeInBits(StoreTy)); - break; - } - } - assert(StoreTy && "Failed to find store type"); - - unsigned Sz = DL.getTypeSizeInBits(StoreTy); - unsigned AS = S0->getPointerAddressSpace(); - unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); - unsigned VF = VecRegSize / Sz; - unsigned ChainSize = Chain.size(); - unsigned Alignment = getAlignment(S0); - - if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { - InstructionsProcessed->insert(Chain.begin(), Chain.end()); - return false; - } - - ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); - if (NewChain.empty()) { - // No vectorization possible. - InstructionsProcessed->insert(Chain.begin(), Chain.end()); - return false; - } - if (NewChain.size() == 1) { - // Failed after the first instruction. Discard it and try the smaller chain. - InstructionsProcessed->insert(NewChain.front()); - return false; - } - - // Update Chain to the valid vectorizable subchain. - Chain = NewChain; - ChainSize = Chain.size(); - - // Check if it's legal to vectorize this chain. If not, split the chain and - // try again. - unsigned EltSzInBytes = Sz / 8; - unsigned SzInBytes = EltSzInBytes * ChainSize; - - VectorType *VecTy; - VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); - if (VecStoreTy) - VecTy = VectorType::get(StoreTy->getScalarType(), - Chain.size() * VecStoreTy->getNumElements()); - else - VecTy = VectorType::get(StoreTy, Chain.size()); - - // If it's more than the max vector size or the target has a better - // vector factor, break it into two pieces. - unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); - if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { - LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." - " Creating two separate arrays.\n"); - return vectorizeStoreChain(Chain.slice(0, TargetVF), - InstructionsProcessed) | - vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); - } - - LLVM_DEBUG({ - dbgs() << "LSV: Stores to vectorize:\n"; - for (Instruction *I : Chain) - dbgs() << " " << *I << "\n"; - }); - - // We won't try again to vectorize the elements of the chain, regardless of - // whether we succeed below. - InstructionsProcessed->insert(Chain.begin(), Chain.end()); - - // If the store is going to be misaligned, don't vectorize it. - if (accessIsMisaligned(SzInBytes, AS, Alignment)) { - if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { - auto Chains = splitOddVectorElts(Chain, Sz); - return vectorizeStoreChain(Chains.first, InstructionsProcessed) | - vectorizeStoreChain(Chains.second, InstructionsProcessed); - } - - unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), - StackAdjustedAlignment, - DL, S0, nullptr, &DT); - if (NewAlign != 0) - Alignment = NewAlign; - } - - if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { - auto Chains = splitOddVectorElts(Chain, Sz); - return vectorizeStoreChain(Chains.first, InstructionsProcessed) | - vectorizeStoreChain(Chains.second, InstructionsProcessed); - } - - BasicBlock::iterator First, Last; - std::tie(First, Last) = getBoundaryInstrs(Chain); - Builder.SetInsertPoint(&*Last); - - Value *Vec = UndefValue::get(VecTy); - - if (VecStoreTy) { - unsigned VecWidth = VecStoreTy->getNumElements(); - for (unsigned I = 0, E = Chain.size(); I != E; ++I) { - StoreInst *Store = cast<StoreInst>(Chain[I]); - for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { - unsigned NewIdx = J + I * VecWidth; - Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), - Builder.getInt32(J)); - if (Extract->getType() != StoreTy->getScalarType()) - Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); - - Value *Insert = - Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); - Vec = Insert; - } - } - } else { - for (unsigned I = 0, E = Chain.size(); I != E; ++I) { - StoreInst *Store = cast<StoreInst>(Chain[I]); - Value *Extract = Store->getValueOperand(); - if (Extract->getType() != StoreTy->getScalarType()) - Extract = - Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); - - Value *Insert = - Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); - Vec = Insert; - } - } - - StoreInst *SI = Builder.CreateAlignedStore( - Vec, - Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), - Alignment); - propagateMetadata(SI, Chain); - - eraseInstructions(Chain); - ++NumVectorInstructions; - NumScalarsVectorized += Chain.size(); - return true; -} - -bool Vectorizer::vectorizeLoadChain( - ArrayRef<Instruction *> Chain, - SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { - LoadInst *L0 = cast<LoadInst>(Chain[0]); - - // If the vector has an int element, default to int for the whole load. - Type *LoadTy; - for (const auto &V : Chain) { - LoadTy = cast<LoadInst>(V)->getType(); - if (LoadTy->isIntOrIntVectorTy()) - break; - - if (LoadTy->isPtrOrPtrVectorTy()) { - LoadTy = Type::getIntNTy(F.getParent()->getContext(), - DL.getTypeSizeInBits(LoadTy)); - break; - } - } - - unsigned Sz = DL.getTypeSizeInBits(LoadTy); - unsigned AS = L0->getPointerAddressSpace(); - unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); - unsigned VF = VecRegSize / Sz; - unsigned ChainSize = Chain.size(); - unsigned Alignment = getAlignment(L0); - - if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { - InstructionsProcessed->insert(Chain.begin(), Chain.end()); - return false; - } - - ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); - if (NewChain.empty()) { - // No vectorization possible. - InstructionsProcessed->insert(Chain.begin(), Chain.end()); - return false; - } - if (NewChain.size() == 1) { - // Failed after the first instruction. Discard it and try the smaller chain. - InstructionsProcessed->insert(NewChain.front()); - return false; - } - - // Update Chain to the valid vectorizable subchain. - Chain = NewChain; - ChainSize = Chain.size(); - - // Check if it's legal to vectorize this chain. If not, split the chain and - // try again. - unsigned EltSzInBytes = Sz / 8; - unsigned SzInBytes = EltSzInBytes * ChainSize; - VectorType *VecTy; - VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); - if (VecLoadTy) - VecTy = VectorType::get(LoadTy->getScalarType(), - Chain.size() * VecLoadTy->getNumElements()); - else - VecTy = VectorType::get(LoadTy, Chain.size()); - - // If it's more than the max vector size or the target has a better - // vector factor, break it into two pieces. - unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); - if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { - LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." - " Creating two separate arrays.\n"); - return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | - vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); - } - - // We won't try again to vectorize the elements of the chain, regardless of - // whether we succeed below. - InstructionsProcessed->insert(Chain.begin(), Chain.end()); - - // If the load is going to be misaligned, don't vectorize it. - if (accessIsMisaligned(SzInBytes, AS, Alignment)) { - if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { - auto Chains = splitOddVectorElts(Chain, Sz); - return vectorizeLoadChain(Chains.first, InstructionsProcessed) | - vectorizeLoadChain(Chains.second, InstructionsProcessed); - } - - Alignment = getOrEnforceKnownAlignment( - L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT); - } - - if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { - auto Chains = splitOddVectorElts(Chain, Sz); - return vectorizeLoadChain(Chains.first, InstructionsProcessed) | - vectorizeLoadChain(Chains.second, InstructionsProcessed); - } - - LLVM_DEBUG({ - dbgs() << "LSV: Loads to vectorize:\n"; - for (Instruction *I : Chain) - I->dump(); - }); - - // getVectorizablePrefix already computed getBoundaryInstrs. The value of - // Last may have changed since then, but the value of First won't have. If it - // matters, we could compute getBoundaryInstrs only once and reuse it here. - BasicBlock::iterator First, Last; - std::tie(First, Last) = getBoundaryInstrs(Chain); - Builder.SetInsertPoint(&*First); - - Value *Bitcast = - Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); - LoadInst *LI = Builder.CreateAlignedLoad(VecTy, Bitcast, Alignment); - propagateMetadata(LI, Chain); - - if (VecLoadTy) { - SmallVector<Instruction *, 16> InstrsToErase; - - unsigned VecWidth = VecLoadTy->getNumElements(); - for (unsigned I = 0, E = Chain.size(); I != E; ++I) { - for (auto Use : Chain[I]->users()) { - // All users of vector loads are ExtractElement instructions with - // constant indices, otherwise we would have bailed before now. - Instruction *UI = cast<Instruction>(Use); - unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); - unsigned NewIdx = Idx + I * VecWidth; - Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), - UI->getName()); - if (V->getType() != UI->getType()) - V = Builder.CreateBitCast(V, UI->getType()); - - // Replace the old instruction. - UI->replaceAllUsesWith(V); - InstrsToErase.push_back(UI); - } - } - - // Bitcast might not be an Instruction, if the value being loaded is a - // constant. In that case, no need to reorder anything. - if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) - reorder(BitcastInst); - - for (auto I : InstrsToErase) - I->eraseFromParent(); - } else { - for (unsigned I = 0, E = Chain.size(); I != E; ++I) { - Value *CV = Chain[I]; - Value *V = - Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); - if (V->getType() != CV->getType()) { - V = Builder.CreateBitOrPointerCast(V, CV->getType()); - } - - // Replace the old instruction. - CV->replaceAllUsesWith(V); - } - - if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) - reorder(BitcastInst); - } - - eraseInstructions(Chain); - - ++NumVectorInstructions; - NumScalarsVectorized += Chain.size(); - return true; -} - -bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, - unsigned Alignment) { - if (Alignment % SzInBytes == 0) - return false; - - bool Fast = false; - bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), - SzInBytes * 8, AddressSpace, - Alignment, &Fast); - LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows - << " and fast? " << Fast << "\n";); - return !Allows || !Fast; -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp deleted file mode 100644 index 138f18e49c92..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp +++ /dev/null @@ -1,1250 +0,0 @@ -//===- LoopVectorizationLegality.cpp --------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file provides loop vectorization legality analysis. Original code -// resided in LoopVectorize.cpp for a long time. -// -// At this point, it is implemented as a utility class, not as an analysis -// pass. It should be easy to create an analysis pass around it if there -// is a need (but D45420 needs to happen first). -// -#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/IntrinsicInst.h" - -using namespace llvm; - -#define LV_NAME "loop-vectorize" -#define DEBUG_TYPE LV_NAME - -extern cl::opt<bool> EnableVPlanPredication; - -static cl::opt<bool> - EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, - cl::desc("Enable if-conversion during vectorization.")); - -static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( - "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, - cl::desc("The maximum allowed number of runtime memory checks with a " - "vectorize(enable) pragma.")); - -static cl::opt<unsigned> VectorizeSCEVCheckThreshold( - "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, - cl::desc("The maximum number of SCEV checks allowed.")); - -static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( - "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, - cl::desc("The maximum number of SCEV checks allowed with a " - "vectorize(enable) pragma")); - -/// Maximum vectorization interleave count. -static const unsigned MaxInterleaveFactor = 16; - -namespace llvm { - -#ifndef NDEBUG -static void debugVectorizationFailure(const StringRef DebugMsg, - Instruction *I) { - dbgs() << "LV: Not vectorizing: " << DebugMsg; - if (I != nullptr) - dbgs() << " " << *I; - else - dbgs() << '.'; - dbgs() << '\n'; -} -#endif - -OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, - StringRef RemarkName, - Loop *TheLoop, - Instruction *I) { - Value *CodeRegion = TheLoop->getHeader(); - DebugLoc DL = TheLoop->getStartLoc(); - - if (I) { - CodeRegion = I->getParent(); - // If there is no debug location attached to the instruction, revert back to - // using the loop's. - if (I->getDebugLoc()) - DL = I->getDebugLoc(); - } - - OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); - R << "loop not vectorized: "; - return R; -} - -bool LoopVectorizeHints::Hint::validate(unsigned Val) { - switch (Kind) { - case HK_WIDTH: - return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; - case HK_UNROLL: - return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; - case HK_FORCE: - return (Val <= 1); - case HK_ISVECTORIZED: - return (Val == 0 || Val == 1); - } - return false; -} - -LoopVectorizeHints::LoopVectorizeHints(const Loop *L, - bool InterleaveOnlyWhenForced, - OptimizationRemarkEmitter &ORE) - : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), - Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), - Force("vectorize.enable", FK_Undefined, HK_FORCE), - IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { - // Populate values with existing loop metadata. - getHintsFromMetadata(); - - // force-vector-interleave overrides DisableInterleaving. - if (VectorizerParams::isInterleaveForced()) - Interleave.Value = VectorizerParams::VectorizationInterleave; - - if (IsVectorized.Value != 1) - // If the vectorization width and interleaving count are both 1 then - // consider the loop to have been already vectorized because there's - // nothing more that we can do. - IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; - LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() - << "LV: Interleaving disabled by the pass manager\n"); -} - -void LoopVectorizeHints::setAlreadyVectorized() { - LLVMContext &Context = TheLoop->getHeader()->getContext(); - - MDNode *IsVectorizedMD = MDNode::get( - Context, - {MDString::get(Context, "llvm.loop.isvectorized"), - ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); - MDNode *LoopID = TheLoop->getLoopID(); - MDNode *NewLoopID = - makePostTransformationMetadata(Context, LoopID, - {Twine(Prefix(), "vectorize.").str(), - Twine(Prefix(), "interleave.").str()}, - {IsVectorizedMD}); - TheLoop->setLoopID(NewLoopID); - - // Update internal cache. - IsVectorized.Value = 1; -} - -bool LoopVectorizeHints::allowVectorization( - Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { - if (getForce() == LoopVectorizeHints::FK_Disabled) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); - emitRemarkWithHints(); - return false; - } - - if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); - emitRemarkWithHints(); - return false; - } - - if (getIsVectorized() == 1) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); - // FIXME: Add interleave.disable metadata. This will allow - // vectorize.disable to be used without disabling the pass and errors - // to differentiate between disabled vectorization and a width of 1. - ORE.emit([&]() { - return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), - "AllDisabled", L->getStartLoc(), - L->getHeader()) - << "loop not vectorized: vectorization and interleaving are " - "explicitly disabled, or the loop has already been " - "vectorized"; - }); - return false; - } - - return true; -} - -void LoopVectorizeHints::emitRemarkWithHints() const { - using namespace ore; - - ORE.emit([&]() { - if (Force.Value == LoopVectorizeHints::FK_Disabled) - return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", - TheLoop->getStartLoc(), - TheLoop->getHeader()) - << "loop not vectorized: vectorization is explicitly disabled"; - else { - OptimizationRemarkMissed R(LV_NAME, "MissedDetails", - TheLoop->getStartLoc(), TheLoop->getHeader()); - R << "loop not vectorized"; - if (Force.Value == LoopVectorizeHints::FK_Enabled) { - R << " (Force=" << NV("Force", true); - if (Width.Value != 0) - R << ", Vector Width=" << NV("VectorWidth", Width.Value); - if (Interleave.Value != 0) - R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); - R << ")"; - } - return R; - } - }); -} - -const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { - if (getWidth() == 1) - return LV_NAME; - if (getForce() == LoopVectorizeHints::FK_Disabled) - return LV_NAME; - if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) - return LV_NAME; - return OptimizationRemarkAnalysis::AlwaysPrint; -} - -void LoopVectorizeHints::getHintsFromMetadata() { - MDNode *LoopID = TheLoop->getLoopID(); - if (!LoopID) - return; - - // First operand should refer to the loop id itself. - assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); - assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); - - for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { - const MDString *S = nullptr; - SmallVector<Metadata *, 4> Args; - - // The expected hint is either a MDString or a MDNode with the first - // operand a MDString. - if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { - if (!MD || MD->getNumOperands() == 0) - continue; - S = dyn_cast<MDString>(MD->getOperand(0)); - for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) - Args.push_back(MD->getOperand(i)); - } else { - S = dyn_cast<MDString>(LoopID->getOperand(i)); - assert(Args.size() == 0 && "too many arguments for MDString"); - } - - if (!S) - continue; - - // Check if the hint starts with the loop metadata prefix. - StringRef Name = S->getString(); - if (Args.size() == 1) - setHint(Name, Args[0]); - } -} - -void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { - if (!Name.startswith(Prefix())) - return; - Name = Name.substr(Prefix().size(), StringRef::npos); - - const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); - if (!C) - return; - unsigned Val = C->getZExtValue(); - - Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; - for (auto H : Hints) { - if (Name == H->Name) { - if (H->validate(Val)) - H->Value = Val; - else - LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); - break; - } - } -} - -bool LoopVectorizationRequirements::doesNotMeet( - Function *F, Loop *L, const LoopVectorizeHints &Hints) { - const char *PassName = Hints.vectorizeAnalysisPassName(); - bool Failed = false; - if (UnsafeAlgebraInst && !Hints.allowReordering()) { - ORE.emit([&]() { - return OptimizationRemarkAnalysisFPCommute( - PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), - UnsafeAlgebraInst->getParent()) - << "loop not vectorized: cannot prove it is safe to reorder " - "floating-point operations"; - }); - Failed = true; - } - - // Test if runtime memcheck thresholds are exceeded. - bool PragmaThresholdReached = - NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; - bool ThresholdReached = - NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; - if ((ThresholdReached && !Hints.allowReordering()) || - PragmaThresholdReached) { - ORE.emit([&]() { - return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", - L->getStartLoc(), - L->getHeader()) - << "loop not vectorized: cannot prove it is safe to reorder " - "memory operations"; - }); - LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); - Failed = true; - } - - return Failed; -} - -// Return true if the inner loop \p Lp is uniform with regard to the outer loop -// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes -// executing the inner loop will execute the same iterations). This check is -// very constrained for now but it will be relaxed in the future. \p Lp is -// considered uniform if it meets all the following conditions: -// 1) it has a canonical IV (starting from 0 and with stride 1), -// 2) its latch terminator is a conditional branch and, -// 3) its latch condition is a compare instruction whose operands are the -// canonical IV and an OuterLp invariant. -// This check doesn't take into account the uniformity of other conditions not -// related to the loop latch because they don't affect the loop uniformity. -// -// NOTE: We decided to keep all these checks and its associated documentation -// together so that we can easily have a picture of the current supported loop -// nests. However, some of the current checks don't depend on \p OuterLp and -// would be redundantly executed for each \p Lp if we invoked this function for -// different candidate outer loops. This is not the case for now because we -// don't currently have the infrastructure to evaluate multiple candidate outer -// loops and \p OuterLp will be a fixed parameter while we only support explicit -// outer loop vectorization. It's also very likely that these checks go away -// before introducing the aforementioned infrastructure. However, if this is not -// the case, we should move the \p OuterLp independent checks to a separate -// function that is only executed once for each \p Lp. -static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { - assert(Lp->getLoopLatch() && "Expected loop with a single latch."); - - // If Lp is the outer loop, it's uniform by definition. - if (Lp == OuterLp) - return true; - assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); - - // 1. - PHINode *IV = Lp->getCanonicalInductionVariable(); - if (!IV) { - LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); - return false; - } - - // 2. - BasicBlock *Latch = Lp->getLoopLatch(); - auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); - if (!LatchBr || LatchBr->isUnconditional()) { - LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); - return false; - } - - // 3. - auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); - if (!LatchCmp) { - LLVM_DEBUG( - dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); - return false; - } - - Value *CondOp0 = LatchCmp->getOperand(0); - Value *CondOp1 = LatchCmp->getOperand(1); - Value *IVUpdate = IV->getIncomingValueForBlock(Latch); - if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && - !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { - LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); - return false; - } - - return true; -} - -// Return true if \p Lp and all its nested loops are uniform with regard to \p -// OuterLp. -static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { - if (!isUniformLoop(Lp, OuterLp)) - return false; - - // Check if nested loops are uniform. - for (Loop *SubLp : *Lp) - if (!isUniformLoopNest(SubLp, OuterLp)) - return false; - - return true; -} - -/// Check whether it is safe to if-convert this phi node. -/// -/// Phi nodes with constant expressions that can trap are not safe to if -/// convert. -static bool canIfConvertPHINodes(BasicBlock *BB) { - for (PHINode &Phi : BB->phis()) { - for (Value *V : Phi.incoming_values()) - if (auto *C = dyn_cast<Constant>(V)) - if (C->canTrap()) - return false; - } - return true; -} - -static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { - if (Ty->isPointerTy()) - return DL.getIntPtrType(Ty); - - // It is possible that char's or short's overflow when we ask for the loop's - // trip count, work around this by changing the type size. - if (Ty->getScalarSizeInBits() < 32) - return Type::getInt32Ty(Ty->getContext()); - - return Ty; -} - -static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { - Ty0 = convertPointerToIntegerType(DL, Ty0); - Ty1 = convertPointerToIntegerType(DL, Ty1); - if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) - return Ty0; - return Ty1; -} - -/// Check that the instruction has outside loop users and is not an -/// identified reduction variable. -static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, - SmallPtrSetImpl<Value *> &AllowedExit) { - // Reductions, Inductions and non-header phis are allowed to have exit users. All - // other instructions must not have external users. - if (!AllowedExit.count(Inst)) - // Check that all of the users of the loop are inside the BB. - for (User *U : Inst->users()) { - Instruction *UI = cast<Instruction>(U); - // This user may be a reduction exit value. - if (!TheLoop->contains(UI)) { - LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); - return true; - } - } - return false; -} - -int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { - const ValueToValueMap &Strides = - getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); - - int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); - if (Stride == 1 || Stride == -1) - return Stride; - return 0; -} - -bool LoopVectorizationLegality::isUniform(Value *V) { - return LAI->isUniform(V); -} - -void LoopVectorizationLegality::reportVectorizationFailure( - const StringRef DebugMsg, const StringRef OREMsg, - const StringRef ORETag, Instruction *I) const { - LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); - ORE->emit(createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), - ORETag, TheLoop, I) << OREMsg); -} - -bool LoopVectorizationLegality::canVectorizeOuterLoop() { - assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - - for (BasicBlock *BB : TheLoop->blocks()) { - // Check whether the BB terminator is a BranchInst. Any other terminator is - // not supported yet. - auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); - if (!Br) { - reportVectorizationFailure("Unsupported basic block terminator", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Check whether the BranchInst is a supported one. Only unconditional - // branches, conditional branches with an outer loop invariant condition or - // backedges are supported. - // FIXME: We skip these checks when VPlan predication is enabled as we - // want to allow divergent branches. This whole check will be removed - // once VPlan predication is on by default. - if (!EnableVPlanPredication && Br && Br->isConditional() && - !TheLoop->isLoopInvariant(Br->getCondition()) && - !LI->isLoopHeader(Br->getSuccessor(0)) && - !LI->isLoopHeader(Br->getSuccessor(1))) { - reportVectorizationFailure("Unsupported conditional branch", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - } - - // Check whether inner loops are uniform. At this point, we only support - // simple outer loops scenarios with uniform nested loops. - if (!isUniformLoopNest(TheLoop /*loop nest*/, - TheLoop /*context outer loop*/)) { - reportVectorizationFailure("Outer loop contains divergent loops", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Check whether we are able to set up outer loop induction. - if (!setupOuterLoopInductions()) { - reportVectorizationFailure("Unsupported outer loop Phi(s)", - "Unsupported outer loop Phi(s)", - "UnsupportedPhi"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - return Result; -} - -void LoopVectorizationLegality::addInductionPhi( - PHINode *Phi, const InductionDescriptor &ID, - SmallPtrSetImpl<Value *> &AllowedExit) { - Inductions[Phi] = ID; - - // In case this induction also comes with casts that we know we can ignore - // in the vectorized loop body, record them here. All casts could be recorded - // here for ignoring, but suffices to record only the first (as it is the - // only one that may bw used outside the cast sequence). - const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); - if (!Casts.empty()) - InductionCastsToIgnore.insert(*Casts.begin()); - - Type *PhiTy = Phi->getType(); - const DataLayout &DL = Phi->getModule()->getDataLayout(); - - // Get the widest type. - if (!PhiTy->isFloatingPointTy()) { - if (!WidestIndTy) - WidestIndTy = convertPointerToIntegerType(DL, PhiTy); - else - WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); - } - - // Int inductions are special because we only allow one IV. - if (ID.getKind() == InductionDescriptor::IK_IntInduction && - ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && - isa<Constant>(ID.getStartValue()) && - cast<Constant>(ID.getStartValue())->isNullValue()) { - - // Use the phi node with the widest type as induction. Use the last - // one if there are multiple (no good reason for doing this other - // than it is expedient). We've checked that it begins at zero and - // steps by one, so this is a canonical induction variable. - if (!PrimaryInduction || PhiTy == WidestIndTy) - PrimaryInduction = Phi; - } - - // Both the PHI node itself, and the "post-increment" value feeding - // back into the PHI node may have external users. - // We can allow those uses, except if the SCEVs we have for them rely - // on predicates that only hold within the loop, since allowing the exit - // currently means re-using this SCEV outside the loop (see PR33706 for more - // details). - if (PSE.getUnionPredicate().isAlwaysTrue()) { - AllowedExit.insert(Phi); - AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); - } - - LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); -} - -bool LoopVectorizationLegality::setupOuterLoopInductions() { - BasicBlock *Header = TheLoop->getHeader(); - - // Returns true if a given Phi is a supported induction. - auto isSupportedPhi = [&](PHINode &Phi) -> bool { - InductionDescriptor ID; - if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && - ID.getKind() == InductionDescriptor::IK_IntInduction) { - addInductionPhi(&Phi, ID, AllowedExit); - return true; - } else { - // Bail out for any Phi in the outer loop header that is not a supported - // induction. - LLVM_DEBUG( - dbgs() - << "LV: Found unsupported PHI for outer loop vectorization.\n"); - return false; - } - }; - - if (llvm::all_of(Header->phis(), isSupportedPhi)) - return true; - else - return false; -} - -bool LoopVectorizationLegality::canVectorizeInstrs() { - BasicBlock *Header = TheLoop->getHeader(); - - // Look for the attribute signaling the absence of NaNs. - Function &F = *Header->getParent(); - HasFunNoNaNAttr = - F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; - - // For each block in the loop. - for (BasicBlock *BB : TheLoop->blocks()) { - // Scan the instructions in the block and look for hazards. - for (Instruction &I : *BB) { - if (auto *Phi = dyn_cast<PHINode>(&I)) { - Type *PhiTy = Phi->getType(); - // Check that this PHI type is allowed. - if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && - !PhiTy->isPointerTy()) { - reportVectorizationFailure("Found a non-int non-pointer PHI", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - return false; - } - - // If this PHINode is not in the header block, then we know that we - // can convert it to select during if-conversion. No need to check if - // the PHIs in this block are induction or reduction variables. - if (BB != Header) { - // Non-header phi nodes that have outside uses can be vectorized. Add - // them to the list of allowed exits. - // Unsafe cyclic dependencies with header phis are identified during - // legalization for reduction, induction and first order - // recurrences. - AllowedExit.insert(&I); - continue; - } - - // We only allow if-converted PHIs with exactly two incoming values. - if (Phi->getNumIncomingValues() != 2) { - reportVectorizationFailure("Found an invalid PHI", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood", Phi); - return false; - } - - RecurrenceDescriptor RedDes; - if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, - DT)) { - if (RedDes.hasUnsafeAlgebra()) - Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); - AllowedExit.insert(RedDes.getLoopExitInstr()); - Reductions[Phi] = RedDes; - continue; - } - - // TODO: Instead of recording the AllowedExit, it would be good to record the - // complementary set: NotAllowedExit. These include (but may not be - // limited to): - // 1. Reduction phis as they represent the one-before-last value, which - // is not available when vectorized - // 2. Induction phis and increment when SCEV predicates cannot be used - // outside the loop - see addInductionPhi - // 3. Non-Phis with outside uses when SCEV predicates cannot be used - // outside the loop - see call to hasOutsideLoopUser in the non-phi - // handling below - // 4. FirstOrderRecurrence phis that can possibly be handled by - // extraction. - // By recording these, we can then reason about ways to vectorize each - // of these NotAllowedExit. - InductionDescriptor ID; - if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { - addInductionPhi(Phi, ID, AllowedExit); - if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) - Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); - continue; - } - - if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, - SinkAfter, DT)) { - FirstOrderRecurrences.insert(Phi); - continue; - } - - // As a last resort, coerce the PHI to a AddRec expression - // and re-try classifying it a an induction PHI. - if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { - addInductionPhi(Phi, ID, AllowedExit); - continue; - } - - reportVectorizationFailure("Found an unidentified PHI", - "value that could not be identified as " - "reduction is used outside the loop", - "NonReductionValueUsedOutsideLoop", Phi); - return false; - } // end of PHI handling - - // We handle calls that: - // * Are debug info intrinsics. - // * Have a mapping to an IR intrinsic. - // * Have a vector version available. - auto *CI = dyn_cast<CallInst>(&I); - if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && - !isa<DbgInfoIntrinsic>(CI) && - !(CI->getCalledFunction() && TLI && - TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { - // If the call is a recognized math libary call, it is likely that - // we can vectorize it given loosened floating-point constraints. - LibFunc Func; - bool IsMathLibCall = - TLI && CI->getCalledFunction() && - CI->getType()->isFloatingPointTy() && - TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && - TLI->hasOptimizedCodeGen(Func); - - if (IsMathLibCall) { - // TODO: Ideally, we should not use clang-specific language here, - // but it's hard to provide meaningful yet generic advice. - // Also, should this be guarded by allowExtraAnalysis() and/or be part - // of the returned info from isFunctionVectorizable()? - reportVectorizationFailure("Found a non-intrinsic callsite", - "library call cannot be vectorized. " - "Try compiling with -fno-math-errno, -ffast-math, " - "or similar flags", - "CantVectorizeLibcall", CI); - } else { - reportVectorizationFailure("Found a non-intrinsic callsite", - "call instruction cannot be vectorized", - "CantVectorizeLibcall", CI); - } - return false; - } - - // Some intrinsics have scalar arguments and should be same in order for - // them to be vectorized (i.e. loop invariant). - if (CI) { - auto *SE = PSE.getSE(); - Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) - if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { - if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { - reportVectorizationFailure("Found unvectorizable intrinsic", - "intrinsic instruction cannot be vectorized", - "CantVectorizeIntrinsic", CI); - return false; - } - } - } - - // Check that the instruction return type is vectorizable. - // Also, we can't vectorize extractelement instructions. - if ((!VectorType::isValidElementType(I.getType()) && - !I.getType()->isVoidTy()) || - isa<ExtractElementInst>(I)) { - reportVectorizationFailure("Found unvectorizable type", - "instruction return type cannot be vectorized", - "CantVectorizeInstructionReturnType", &I); - return false; - } - - // Check that the stored type is vectorizable. - if (auto *ST = dyn_cast<StoreInst>(&I)) { - Type *T = ST->getValueOperand()->getType(); - if (!VectorType::isValidElementType(T)) { - reportVectorizationFailure("Store instruction cannot be vectorized", - "store instruction cannot be vectorized", - "CantVectorizeStore", ST); - return false; - } - - // For nontemporal stores, check that a nontemporal vector version is - // supported on the target. - if (ST->getMetadata(LLVMContext::MD_nontemporal)) { - // Arbitrarily try a vector of 2 elements. - Type *VecTy = VectorType::get(T, /*NumElements=*/2); - assert(VecTy && "did not find vectorized version of stored type"); - unsigned Alignment = getLoadStoreAlignment(ST); - if (!TTI->isLegalNTStore(VecTy, Alignment)) { - reportVectorizationFailure( - "nontemporal store instruction cannot be vectorized", - "nontemporal store instruction cannot be vectorized", - "CantVectorizeNontemporalStore", ST); - return false; - } - } - - } else if (auto *LD = dyn_cast<LoadInst>(&I)) { - if (LD->getMetadata(LLVMContext::MD_nontemporal)) { - // For nontemporal loads, check that a nontemporal vector version is - // supported on the target (arbitrarily try a vector of 2 elements). - Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2); - assert(VecTy && "did not find vectorized version of load type"); - unsigned Alignment = getLoadStoreAlignment(LD); - if (!TTI->isLegalNTLoad(VecTy, Alignment)) { - reportVectorizationFailure( - "nontemporal load instruction cannot be vectorized", - "nontemporal load instruction cannot be vectorized", - "CantVectorizeNontemporalLoad", LD); - return false; - } - } - - // FP instructions can allow unsafe algebra, thus vectorizable by - // non-IEEE-754 compliant SIMD units. - // This applies to floating-point math operations and calls, not memory - // operations, shuffles, or casts, as they don't change precision or - // semantics. - } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && - !I.isFast()) { - LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); - Hints->setPotentiallyUnsafe(); - } - - // Reduction instructions are allowed to have exit users. - // All other instructions must not have external users. - if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { - // We can safely vectorize loops where instructions within the loop are - // used outside the loop only if the SCEV predicates within the loop is - // same as outside the loop. Allowing the exit means reusing the SCEV - // outside the loop. - if (PSE.getUnionPredicate().isAlwaysTrue()) { - AllowedExit.insert(&I); - continue; - } - reportVectorizationFailure("Value cannot be used outside the loop", - "value cannot be used outside the loop", - "ValueUsedOutsideLoop", &I); - return false; - } - } // next instr. - } - - if (!PrimaryInduction) { - if (Inductions.empty()) { - reportVectorizationFailure("Did not find one integer induction var", - "loop induction variable could not be identified", - "NoInductionVariable"); - return false; - } else if (!WidestIndTy) { - reportVectorizationFailure("Did not find one integer induction var", - "integer loop induction variable could not be identified", - "NoIntegerInductionVariable"); - return false; - } else { - LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); - } - } - - // Now we know the widest induction type, check if our found induction - // is the same size. If it's not, unset it here and InnerLoopVectorizer - // will create another. - if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) - PrimaryInduction = nullptr; - - return true; -} - -bool LoopVectorizationLegality::canVectorizeMemory() { - LAI = &(*GetLAA)(*TheLoop); - const OptimizationRemarkAnalysis *LAR = LAI->getReport(); - if (LAR) { - ORE->emit([&]() { - return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), - "loop not vectorized: ", *LAR); - }); - } - if (!LAI->canVectorizeMemory()) - return false; - - if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { - reportVectorizationFailure("Stores to a uniform address", - "write to a loop invariant address could not be vectorized", - "CantVectorizeStoreToLoopInvariantAddress"); - return false; - } - Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); - PSE.addPredicate(LAI->getPSE().getUnionPredicate()); - - return true; -} - -bool LoopVectorizationLegality::isInductionPhi(const Value *V) { - Value *In0 = const_cast<Value *>(V); - PHINode *PN = dyn_cast_or_null<PHINode>(In0); - if (!PN) - return false; - - return Inductions.count(PN); -} - -bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { - auto *Inst = dyn_cast<Instruction>(V); - return (Inst && InductionCastsToIgnore.count(Inst)); -} - -bool LoopVectorizationLegality::isInductionVariable(const Value *V) { - return isInductionPhi(V) || isCastedInductionVariable(V); -} - -bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { - return FirstOrderRecurrences.count(Phi); -} - -bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { - return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); -} - -bool LoopVectorizationLegality::blockCanBePredicated( - BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { - const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); - - for (Instruction &I : *BB) { - // Check that we don't have a constant expression that can trap as operand. - for (Value *Operand : I.operands()) { - if (auto *C = dyn_cast<Constant>(Operand)) - if (C->canTrap()) - return false; - } - // We might be able to hoist the load. - if (I.mayReadFromMemory()) { - auto *LI = dyn_cast<LoadInst>(&I); - if (!LI) - return false; - if (!SafePtrs.count(LI->getPointerOperand())) { - // !llvm.mem.parallel_loop_access implies if-conversion safety. - // Otherwise, record that the load needs (real or emulated) masking - // and let the cost model decide. - if (!IsAnnotatedParallel) - MaskedOp.insert(LI); - continue; - } - } - - if (I.mayWriteToMemory()) { - auto *SI = dyn_cast<StoreInst>(&I); - if (!SI) - return false; - // Predicated store requires some form of masking: - // 1) masked store HW instruction, - // 2) emulation via load-blend-store (only if safe and legal to do so, - // be aware on the race conditions), or - // 3) element-by-element predicate check and scalar store. - MaskedOp.insert(SI); - continue; - } - if (I.mayThrow()) - return false; - } - - return true; -} - -bool LoopVectorizationLegality::canVectorizeWithIfConvert() { - if (!EnableIfConversion) { - reportVectorizationFailure("If-conversion is disabled", - "if-conversion is disabled", - "IfConversionDisabled"); - return false; - } - - assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); - - // A list of pointers that we can safely read and write to. - SmallPtrSet<Value *, 8> SafePointes; - - // Collect safe addresses. - for (BasicBlock *BB : TheLoop->blocks()) { - if (blockNeedsPredication(BB)) - continue; - - for (Instruction &I : *BB) - if (auto *Ptr = getLoadStorePointerOperand(&I)) - SafePointes.insert(Ptr); - } - - // Collect the blocks that need predication. - BasicBlock *Header = TheLoop->getHeader(); - for (BasicBlock *BB : TheLoop->blocks()) { - // We don't support switch statements inside loops. - if (!isa<BranchInst>(BB->getTerminator())) { - reportVectorizationFailure("Loop contains a switch statement", - "loop contains a switch statement", - "LoopContainsSwitch", BB->getTerminator()); - return false; - } - - // We must be able to predicate all blocks that need to be predicated. - if (blockNeedsPredication(BB)) { - if (!blockCanBePredicated(BB, SafePointes)) { - reportVectorizationFailure( - "Control flow cannot be substituted for a select", - "control flow cannot be substituted for a select", - "NoCFGForSelect", BB->getTerminator()); - return false; - } - } else if (BB != Header && !canIfConvertPHINodes(BB)) { - reportVectorizationFailure( - "Control flow cannot be substituted for a select", - "control flow cannot be substituted for a select", - "NoCFGForSelect", BB->getTerminator()); - return false; - } - } - - // We can if-convert this loop. - return true; -} - -// Helper function to canVectorizeLoopNestCFG. -bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, - bool UseVPlanNativePath) { - assert((UseVPlanNativePath || Lp->empty()) && - "VPlan-native path is not enabled."); - - // TODO: ORE should be improved to show more accurate information when an - // outer loop can't be vectorized because a nested loop is not understood or - // legal. Something like: "outer_loop_location: loop not vectorized: - // (inner_loop_location) loop control flow is not understood by vectorizer". - - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - - // We must have a loop in canonical form. Loops with indirectbr in them cannot - // be canonicalized. - if (!Lp->getLoopPreheader()) { - reportVectorizationFailure("Loop doesn't have a legal pre-header", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We must have a single backedge. - if (Lp->getNumBackEdges() != 1) { - reportVectorizationFailure("The loop must have a single backedge", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We must have a single exiting block. - if (!Lp->getExitingBlock()) { - reportVectorizationFailure("The loop must have an exiting block", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We only handle bottom-tested loops, i.e. loop in which the condition is - // checked at the end of each iteration. With that we can assume that all - // instructions in the loop are executed the same number of times. - if (Lp->getExitingBlock() != Lp->getLoopLatch()) { - reportVectorizationFailure("The exiting block is not the loop latch", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - return Result; -} - -bool LoopVectorizationLegality::canVectorizeLoopNestCFG( - Loop *Lp, bool UseVPlanNativePath) { - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Recursively check whether the loop control flow of nested loops is - // understood. - for (Loop *SubLp : *Lp) - if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - return Result; -} - -bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - // Check whether the loop-related control flow in the loop nest is expected by - // vectorizer. - if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We need to have a loop header. - LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() - << '\n'); - - // Specific checks for outer loops. We skip the remaining legal checks at this - // point because they don't support outer loops. - if (!TheLoop->empty()) { - assert(UseVPlanNativePath && "VPlan-native path is not enabled."); - - if (!canVectorizeOuterLoop()) { - reportVectorizationFailure("Unsupported outer loop", - "unsupported outer loop", - "UnsupportedOuterLoop"); - // TODO: Implement DoExtraAnalysis when subsequent legal checks support - // outer loops. - return false; - } - - LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); - return Result; - } - - assert(TheLoop->empty() && "Inner loop expected."); - // Check if we can if-convert non-single-bb loops. - unsigned NumBlocks = TheLoop->getNumBlocks(); - if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { - LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Check if we can vectorize the instructions and CFG in this loop. - if (!canVectorizeInstrs()) { - LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Go over each instruction and look at memory deps. - if (!canVectorizeMemory()) { - LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" - << (LAI->getRuntimePointerChecking()->Need - ? " (with a runtime bound check)" - : "") - << "!\n"); - - unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; - if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) - SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; - - if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { - reportVectorizationFailure("Too many SCEV checks needed", - "Too many SCEV assumptions need to be made and checked at runtime", - "TooManySCEVRunTimeChecks"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Okay! We've done all the tests. If any have failed, return false. Otherwise - // we can vectorize, and at this point we don't have any other mem analysis - // which may limit our maximum vectorization factor, so just return true with - // no restrictions. - return Result; -} - -bool LoopVectorizationLegality::canFoldTailByMasking() { - - LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); - - if (!PrimaryInduction) { - reportVectorizationFailure( - "No primary induction, cannot fold tail by masking", - "Missing a primary induction variable in the loop, which is " - "needed in order to fold tail by masking as required.", - "NoPrimaryInduction"); - return false; - } - - // TODO: handle reductions when tail is folded by masking. - if (!Reductions.empty()) { - reportVectorizationFailure( - "Loop has reductions, cannot fold tail by masking", - "Cannot fold tail by masking in the presence of reductions.", - "ReductionFoldingTailByMasking"); - return false; - } - - // TODO: handle outside users when tail is folded by masking. - for (auto *AE : AllowedExit) { - // Check that all users of allowed exit values are inside the loop. - for (User *U : AE->users()) { - Instruction *UI = cast<Instruction>(U); - if (TheLoop->contains(UI)) - continue; - reportVectorizationFailure( - "Cannot fold tail by masking, loop has an outside user for", - "Cannot fold tail by masking in the presence of live outs.", - "LiveOutFoldingTailByMasking", UI); - return false; - } - } - - // The list of pointers that we can safely read and write to remains empty. - SmallPtrSet<Value *, 8> SafePointers; - - // Check and mark all blocks for predication, including those that ordinarily - // do not need predication such as the header block. - for (BasicBlock *BB : TheLoop->blocks()) { - if (!blockCanBePredicated(BB, SafePointers)) { - reportVectorizationFailure( - "Cannot fold tail by masking as required", - "control flow cannot be substituted for a select", - "NoCFGForSelect", BB->getTerminator()); - return false; - } - } - - LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); - return true; -} - -} // namespace llvm diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h deleted file mode 100644 index 97077cce83e3..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h +++ /dev/null @@ -1,287 +0,0 @@ -//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file provides a LoopVectorizationPlanner class. -/// InnerLoopVectorizer vectorizes loops which contain only one basic -/// LoopVectorizationPlanner - drives the vectorization process after having -/// passed Legality checks. -/// The planner builds and optimizes the Vectorization Plans which record the -/// decisions how to vectorize the given loop. In particular, represent the -/// control-flow of the vectorized version, the replication of instructions that -/// are to be scalarized, and interleave access groups. -/// -/// Also provides a VPlan-based builder utility analogous to IRBuilder. -/// It provides an instruction-level API for generating VPInstructions while -/// abstracting away the Recipe manipulation details. -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H -#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H - -#include "VPlan.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" - -namespace llvm { - -/// VPlan-based builder utility analogous to IRBuilder. -class VPBuilder { -private: - VPBasicBlock *BB = nullptr; - VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); - - VPInstruction *createInstruction(unsigned Opcode, - ArrayRef<VPValue *> Operands) { - VPInstruction *Instr = new VPInstruction(Opcode, Operands); - if (BB) - BB->insert(Instr, InsertPt); - return Instr; - } - - VPInstruction *createInstruction(unsigned Opcode, - std::initializer_list<VPValue *> Operands) { - return createInstruction(Opcode, ArrayRef<VPValue *>(Operands)); - } - -public: - VPBuilder() {} - - /// Clear the insertion point: created instructions will not be inserted into - /// a block. - void clearInsertionPoint() { - BB = nullptr; - InsertPt = VPBasicBlock::iterator(); - } - - VPBasicBlock *getInsertBlock() const { return BB; } - VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } - - /// InsertPoint - A saved insertion point. - class VPInsertPoint { - VPBasicBlock *Block = nullptr; - VPBasicBlock::iterator Point; - - public: - /// Creates a new insertion point which doesn't point to anything. - VPInsertPoint() = default; - - /// Creates a new insertion point at the given location. - VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) - : Block(InsertBlock), Point(InsertPoint) {} - - /// Returns true if this insert point is set. - bool isSet() const { return Block != nullptr; } - - VPBasicBlock *getBlock() const { return Block; } - VPBasicBlock::iterator getPoint() const { return Point; } - }; - - /// Sets the current insert point to a previously-saved location. - void restoreIP(VPInsertPoint IP) { - if (IP.isSet()) - setInsertPoint(IP.getBlock(), IP.getPoint()); - else - clearInsertionPoint(); - } - - /// This specifies that created VPInstructions should be appended to the end - /// of the specified block. - void setInsertPoint(VPBasicBlock *TheBB) { - assert(TheBB && "Attempting to set a null insert point"); - BB = TheBB; - InsertPt = BB->end(); - } - - /// This specifies that created instructions should be inserted at the - /// specified point. - void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { - BB = TheBB; - InsertPt = IP; - } - - /// Insert and return the specified instruction. - VPInstruction *insert(VPInstruction *I) const { - BB->insert(I, InsertPt); - return I; - } - - /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as - /// its underlying Instruction. - VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, - Instruction *Inst = nullptr) { - VPInstruction *NewVPInst = createInstruction(Opcode, Operands); - NewVPInst->setUnderlyingValue(Inst); - return NewVPInst; - } - VPValue *createNaryOp(unsigned Opcode, - std::initializer_list<VPValue *> Operands, - Instruction *Inst = nullptr) { - return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst); - } - - VPValue *createNot(VPValue *Operand) { - return createInstruction(VPInstruction::Not, {Operand}); - } - - VPValue *createAnd(VPValue *LHS, VPValue *RHS) { - return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); - } - - VPValue *createOr(VPValue *LHS, VPValue *RHS) { - return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); - } - - //===--------------------------------------------------------------------===// - // RAII helpers. - //===--------------------------------------------------------------------===// - - /// RAII object that stores the current insertion point and restores it when - /// the object is destroyed. - class InsertPointGuard { - VPBuilder &Builder; - VPBasicBlock *Block; - VPBasicBlock::iterator Point; - - public: - InsertPointGuard(VPBuilder &B) - : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} - - InsertPointGuard(const InsertPointGuard &) = delete; - InsertPointGuard &operator=(const InsertPointGuard &) = delete; - - ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } - }; -}; - -/// TODO: The following VectorizationFactor was pulled out of -/// LoopVectorizationCostModel class. LV also deals with -/// VectorizerParams::VectorizationFactor and VectorizationCostTy. -/// We need to streamline them. - -/// Information about vectorization costs -struct VectorizationFactor { - // Vector width with best cost - unsigned Width; - // Cost of the loop with that width - unsigned Cost; - - // Width 1 means no vectorization, cost 0 means uncomputed cost. - static VectorizationFactor Disabled() { return {1, 0}; } - - bool operator==(const VectorizationFactor &rhs) const { - return Width == rhs.Width && Cost == rhs.Cost; - } -}; - -/// Planner drives the vectorization process after having passed -/// Legality checks. -class LoopVectorizationPlanner { - /// The loop that we evaluate. - Loop *OrigLoop; - - /// Loop Info analysis. - LoopInfo *LI; - - /// Target Library Info. - const TargetLibraryInfo *TLI; - - /// Target Transform Info. - const TargetTransformInfo *TTI; - - /// The legality analysis. - LoopVectorizationLegality *Legal; - - /// The profitability analysis. - LoopVectorizationCostModel &CM; - - SmallVector<VPlanPtr, 4> VPlans; - - /// This class is used to enable the VPlan to invoke a method of ILV. This is - /// needed until the method is refactored out of ILV and becomes reusable. - struct VPCallbackILV : public VPCallback { - InnerLoopVectorizer &ILV; - - VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} - - Value *getOrCreateVectorValues(Value *V, unsigned Part) override; - }; - - /// A builder used to construct the current plan. - VPBuilder Builder; - - unsigned BestVF = 0; - unsigned BestUF = 0; - -public: - LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, - const TargetTransformInfo *TTI, - LoopVectorizationLegality *Legal, - LoopVectorizationCostModel &CM) - : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} - - /// Plan how to best vectorize, return the best VF and its cost, or None if - /// vectorization and interleaving should be avoided up front. - Optional<VectorizationFactor> plan(bool OptForSize, unsigned UserVF); - - /// Use the VPlan-native path to plan how to best vectorize, return the best - /// VF and its cost. - VectorizationFactor planInVPlanNativePath(bool OptForSize, unsigned UserVF); - - /// Finalize the best decision and dispose of all other VPlans. - void setBestPlan(unsigned VF, unsigned UF); - - /// Generate the IR code for the body of the vectorized loop according to the - /// best selected VPlan. - void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); - - void printPlans(raw_ostream &O) { - for (const auto &Plan : VPlans) - O << *Plan; - } - - /// Test a \p Predicate on a \p Range of VF's. Return the value of applying - /// \p Predicate on Range.Start, possibly decreasing Range.End such that the - /// returned value holds for the entire \p Range. - static bool - getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, - VFRange &Range); - -protected: - /// Collect the instructions from the original loop that would be trivially - /// dead in the vectorized loop if generated. - void collectTriviallyDeadInstructions( - SmallPtrSetImpl<Instruction *> &DeadInstructions); - - /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, - /// according to the information gathered by Legal when it checked if it is - /// legal to vectorize the loop. - void buildVPlans(unsigned MinVF, unsigned MaxVF); - -private: - /// Build a VPlan according to the information gathered by Legal. \return a - /// VPlan for vectorization factors \p Range.Start and up to \p Range.End - /// exclusive, possibly decreasing \p Range.End. - VPlanPtr buildVPlan(VFRange &Range); - - /// Build a VPlan using VPRecipes according to the information gather by - /// Legal. This method is only used for the legacy inner loop vectorizer. - VPlanPtr - buildVPlanWithVPRecipes(VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, - SmallPtrSetImpl<Instruction *> &DeadInstructions); - - /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, - /// according to the information gathered by Legal when it checked if it is - /// legal to vectorize the loop. This method creates VPlans using VPRecipes. - void buildVPlansWithVPRecipes(unsigned MinVF, unsigned MaxVF); -}; - -} // namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp deleted file mode 100644 index 46265e3f3e13..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ /dev/null @@ -1,7694 +0,0 @@ -//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops -// and generates target-independent LLVM-IR. -// The vectorizer uses the TargetTransformInfo analysis to estimate the costs -// of instructions in order to estimate the profitability of vectorization. -// -// The loop vectorizer combines consecutive loop iterations into a single -// 'wide' iteration. After this transformation the index is incremented -// by the SIMD vector width, and not by one. -// -// This pass has three parts: -// 1. The main loop pass that drives the different parts. -// 2. LoopVectorizationLegality - A unit that checks for the legality -// of the vectorization. -// 3. InnerLoopVectorizer - A unit that performs the actual -// widening of instructions. -// 4. LoopVectorizationCostModel - A unit that checks for the profitability -// of vectorization. It decides on the optimal vector width, which -// can be one, if vectorization is not profitable. -// -// There is a development effort going on to migrate loop vectorizer to the -// VPlan infrastructure and to introduce outer loop vectorization support (see -// docs/Proposal/VectorizationPlan.rst and -// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this -// purpose, we temporarily introduced the VPlan-native vectorization path: an -// alternative vectorization path that is natively implemented on top of the -// VPlan infrastructure. See EnableVPlanNativePath for enabling. -// -//===----------------------------------------------------------------------===// -// -// The reduction-variable vectorization is based on the paper: -// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. -// -// Variable uniformity checks are inspired by: -// Karrenberg, R. and Hack, S. Whole Function Vectorization. -// -// The interleaved access vectorization is based on the paper: -// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved -// Data for SIMD -// -// Other ideas/concepts are from: -// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. -// -// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of -// Vectorizing Compilers. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Vectorize/LoopVectorize.h" -#include "LoopVectorizationPlanner.h" -#include "VPRecipeBuilder.h" -#include "VPlan.h" -#include "VPlanHCFGBuilder.h" -#include "VPlanHCFGTransforms.h" -#include "VPlanPredicator.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Twine.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/BasicAliasAnalysis.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/CFG.h" -#include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/DemandedBits.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/LoopAccessAnalysis.h" -#include "llvm/Analysis/LoopAnalysisManager.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopIterator.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/IR/Verifier.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/LoopSimplify.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Utils/LoopVersioning.h" -#include "llvm/Transforms/Utils/SizeOpts.h" -#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <cstdlib> -#include <functional> -#include <iterator> -#include <limits> -#include <memory> -#include <string> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define LV_NAME "loop-vectorize" -#define DEBUG_TYPE LV_NAME - -/// @{ -/// Metadata attribute names -static const char *const LLVMLoopVectorizeFollowupAll = - "llvm.loop.vectorize.followup_all"; -static const char *const LLVMLoopVectorizeFollowupVectorized = - "llvm.loop.vectorize.followup_vectorized"; -static const char *const LLVMLoopVectorizeFollowupEpilogue = - "llvm.loop.vectorize.followup_epilogue"; -/// @} - -STATISTIC(LoopsVectorized, "Number of loops vectorized"); -STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); - -/// Loops with a known constant trip count below this number are vectorized only -/// if no scalar iteration overheads are incurred. -static cl::opt<unsigned> TinyTripCountVectorThreshold( - "vectorizer-min-trip-count", cl::init(16), cl::Hidden, - cl::desc("Loops with a constant trip count that is smaller than this " - "value are vectorized only if no scalar iteration overheads " - "are incurred.")); - -static cl::opt<bool> MaximizeBandwidth( - "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, - cl::desc("Maximize bandwidth when selecting vectorization factor which " - "will be determined by the smallest type in loop.")); - -static cl::opt<bool> EnableInterleavedMemAccesses( - "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, - cl::desc("Enable vectorization on interleaved memory accesses in a loop")); - -/// An interleave-group may need masking if it resides in a block that needs -/// predication, or in order to mask away gaps. -static cl::opt<bool> EnableMaskedInterleavedMemAccesses( - "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, - cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); - -/// We don't interleave loops with a known constant trip count below this -/// number. -static const unsigned TinyTripCountInterleaveThreshold = 128; - -static cl::opt<unsigned> ForceTargetNumScalarRegs( - "force-target-num-scalar-regs", cl::init(0), cl::Hidden, - cl::desc("A flag that overrides the target's number of scalar registers.")); - -static cl::opt<unsigned> ForceTargetNumVectorRegs( - "force-target-num-vector-regs", cl::init(0), cl::Hidden, - cl::desc("A flag that overrides the target's number of vector registers.")); - -static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( - "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, - cl::desc("A flag that overrides the target's max interleave factor for " - "scalar loops.")); - -static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( - "force-target-max-vector-interleave", cl::init(0), cl::Hidden, - cl::desc("A flag that overrides the target's max interleave factor for " - "vectorized loops.")); - -static cl::opt<unsigned> ForceTargetInstructionCost( - "force-target-instruction-cost", cl::init(0), cl::Hidden, - cl::desc("A flag that overrides the target's expected cost for " - "an instruction to a single constant value. Mostly " - "useful for getting consistent testing.")); - -static cl::opt<unsigned> SmallLoopCost( - "small-loop-cost", cl::init(20), cl::Hidden, - cl::desc( - "The cost of a loop that is considered 'small' by the interleaver.")); - -static cl::opt<bool> LoopVectorizeWithBlockFrequency( - "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, - cl::desc("Enable the use of the block frequency analysis to access PGO " - "heuristics minimizing code growth in cold regions and being more " - "aggressive in hot regions.")); - -// Runtime interleave loops for load/store throughput. -static cl::opt<bool> EnableLoadStoreRuntimeInterleave( - "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, - cl::desc( - "Enable runtime interleaving until load/store ports are saturated")); - -/// The number of stores in a loop that are allowed to need predication. -static cl::opt<unsigned> NumberOfStoresToPredicate( - "vectorize-num-stores-pred", cl::init(1), cl::Hidden, - cl::desc("Max number of stores to be predicated behind an if.")); - -static cl::opt<bool> EnableIndVarRegisterHeur( - "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, - cl::desc("Count the induction variable only once when interleaving")); - -static cl::opt<bool> EnableCondStoresVectorization( - "enable-cond-stores-vec", cl::init(true), cl::Hidden, - cl::desc("Enable if predication of stores during vectorization.")); - -static cl::opt<unsigned> MaxNestedScalarReductionIC( - "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, - cl::desc("The maximum interleave count to use when interleaving a scalar " - "reduction in a nested loop.")); - -cl::opt<bool> EnableVPlanNativePath( - "enable-vplan-native-path", cl::init(false), cl::Hidden, - cl::desc("Enable VPlan-native vectorization path with " - "support for outer loop vectorization.")); - -// FIXME: Remove this switch once we have divergence analysis. Currently we -// assume divergent non-backedge branches when this switch is true. -cl::opt<bool> EnableVPlanPredication( - "enable-vplan-predication", cl::init(false), cl::Hidden, - cl::desc("Enable VPlan-native vectorization path predicator with " - "support for outer loop vectorization.")); - -// This flag enables the stress testing of the VPlan H-CFG construction in the -// VPlan-native vectorization path. It must be used in conjuction with -// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the -// verification of the H-CFGs built. -static cl::opt<bool> VPlanBuildStressTest( - "vplan-build-stress-test", cl::init(false), cl::Hidden, - cl::desc( - "Build VPlan for every supported loop nest in the function and bail " - "out right after the build (stress test the VPlan H-CFG construction " - "in the VPlan-native vectorization path).")); - -cl::opt<bool> llvm::EnableLoopInterleaving( - "interleave-loops", cl::init(true), cl::Hidden, - cl::desc("Enable loop interleaving in Loop vectorization passes")); -cl::opt<bool> llvm::EnableLoopVectorization( - "vectorize-loops", cl::init(true), cl::Hidden, - cl::desc("Run the Loop vectorization passes")); - -/// A helper function for converting Scalar types to vector types. -/// If the incoming type is void, we return void. If the VF is 1, we return -/// the scalar type. -static Type *ToVectorTy(Type *Scalar, unsigned VF) { - if (Scalar->isVoidTy() || VF == 1) - return Scalar; - return VectorType::get(Scalar, VF); -} - -/// A helper function that returns the type of loaded or stored value. -static Type *getMemInstValueType(Value *I) { - assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && - "Expected Load or Store instruction"); - if (auto *LI = dyn_cast<LoadInst>(I)) - return LI->getType(); - return cast<StoreInst>(I)->getValueOperand()->getType(); -} - -/// A helper function that returns true if the given type is irregular. The -/// type is irregular if its allocated size doesn't equal the store size of an -/// element of the corresponding vector type at the given vectorization factor. -static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { - // Determine if an array of VF elements of type Ty is "bitcast compatible" - // with a <VF x Ty> vector. - if (VF > 1) { - auto *VectorTy = VectorType::get(Ty, VF); - return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); - } - - // If the vectorization factor is one, we just check if an array of type Ty - // requires padding between elements. - return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); -} - -/// A helper function that returns the reciprocal of the block probability of -/// predicated blocks. If we return X, we are assuming the predicated block -/// will execute once for every X iterations of the loop header. -/// -/// TODO: We should use actual block probability here, if available. Currently, -/// we always assume predicated blocks have a 50% chance of executing. -static unsigned getReciprocalPredBlockProb() { return 2; } - -/// A helper function that adds a 'fast' flag to floating-point operations. -static Value *addFastMathFlag(Value *V) { - if (isa<FPMathOperator>(V)) - cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); - return V; -} - -static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { - if (isa<FPMathOperator>(V)) - cast<Instruction>(V)->setFastMathFlags(FMF); - return V; -} - -/// A helper function that returns an integer or floating-point constant with -/// value C. -static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { - return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) - : ConstantFP::get(Ty, C); -} - -namespace llvm { - -/// InnerLoopVectorizer vectorizes loops which contain only one basic -/// block to a specified vectorization factor (VF). -/// This class performs the widening of scalars into vectors, or multiple -/// scalars. This class also implements the following features: -/// * It inserts an epilogue loop for handling loops that don't have iteration -/// counts that are known to be a multiple of the vectorization factor. -/// * It handles the code generation for reduction variables. -/// * Scalarization (implementation using scalars) of un-vectorizable -/// instructions. -/// InnerLoopVectorizer does not perform any vectorization-legality -/// checks, and relies on the caller to check for the different legality -/// aspects. The InnerLoopVectorizer relies on the -/// LoopVectorizationLegality class to provide information about the induction -/// and reduction variables that were found to a given vectorization factor. -class InnerLoopVectorizer { -public: - InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, - LoopInfo *LI, DominatorTree *DT, - const TargetLibraryInfo *TLI, - const TargetTransformInfo *TTI, AssumptionCache *AC, - OptimizationRemarkEmitter *ORE, unsigned VecWidth, - unsigned UnrollFactor, LoopVectorizationLegality *LVL, - LoopVectorizationCostModel *CM) - : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), - AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), - Builder(PSE.getSE()->getContext()), - VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} - virtual ~InnerLoopVectorizer() = default; - - /// Create a new empty loop. Unlink the old loop and connect the new one. - /// Return the pre-header block of the new loop. - BasicBlock *createVectorizedLoopSkeleton(); - - /// Widen a single instruction within the innermost loop. - void widenInstruction(Instruction &I); - - /// Fix the vectorized code, taking care of header phi's, live-outs, and more. - void fixVectorizedLoop(); - - // Return true if any runtime check is added. - bool areSafetyChecksAdded() { return AddedSafetyChecks; } - - /// A type for vectorized values in the new loop. Each value from the - /// original loop, when vectorized, is represented by UF vector values in the - /// new unrolled loop, where UF is the unroll factor. - using VectorParts = SmallVector<Value *, 2>; - - /// Vectorize a single PHINode in a block. This method handles the induction - /// variable canonicalization. It supports both VF = 1 for unrolled loops and - /// arbitrary length vectors. - void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); - - /// A helper function to scalarize a single Instruction in the innermost loop. - /// Generates a sequence of scalar instances for each lane between \p MinLane - /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, - /// inclusive.. - void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, - bool IfPredicateInstr); - - /// Widen an integer or floating-point induction variable \p IV. If \p Trunc - /// is provided, the integer induction variable will first be truncated to - /// the corresponding type. - void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); - - /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a - /// vector or scalar value on-demand if one is not yet available. When - /// vectorizing a loop, we visit the definition of an instruction before its - /// uses. When visiting the definition, we either vectorize or scalarize the - /// instruction, creating an entry for it in the corresponding map. (In some - /// cases, such as induction variables, we will create both vector and scalar - /// entries.) Then, as we encounter uses of the definition, we derive values - /// for each scalar or vector use unless such a value is already available. - /// For example, if we scalarize a definition and one of its uses is vector, - /// we build the required vector on-demand with an insertelement sequence - /// when visiting the use. Otherwise, if the use is scalar, we can use the - /// existing scalar definition. - /// - /// Return a value in the new loop corresponding to \p V from the original - /// loop at unroll index \p Part. If the value has already been vectorized, - /// the corresponding vector entry in VectorLoopValueMap is returned. If, - /// however, the value has a scalar entry in VectorLoopValueMap, we construct - /// a new vector value on-demand by inserting the scalar values into a vector - /// with an insertelement sequence. If the value has been neither vectorized - /// nor scalarized, it must be loop invariant, so we simply broadcast the - /// value into a vector. - Value *getOrCreateVectorValue(Value *V, unsigned Part); - - /// Return a value in the new loop corresponding to \p V from the original - /// loop at unroll and vector indices \p Instance. If the value has been - /// vectorized but not scalarized, the necessary extractelement instruction - /// will be generated. - Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); - - /// Construct the vector value of a scalarized value \p V one lane at a time. - void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); - - /// Try to vectorize the interleaved access group that \p Instr belongs to, - /// optionally masking the vector operations if \p BlockInMask is non-null. - void vectorizeInterleaveGroup(Instruction *Instr, - VectorParts *BlockInMask = nullptr); - - /// Vectorize Load and Store instructions, optionally masking the vector - /// operations if \p BlockInMask is non-null. - void vectorizeMemoryInstruction(Instruction *Instr, - VectorParts *BlockInMask = nullptr); - - /// Set the debug location in the builder using the debug location in - /// the instruction. - void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); - - /// Fix the non-induction PHIs in the OrigPHIsToFix vector. - void fixNonInductionPHIs(void); - -protected: - friend class LoopVectorizationPlanner; - - /// A small list of PHINodes. - using PhiVector = SmallVector<PHINode *, 4>; - - /// A type for scalarized values in the new loop. Each value from the - /// original loop, when scalarized, is represented by UF x VF scalar values - /// in the new unrolled loop, where UF is the unroll factor and VF is the - /// vectorization factor. - using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; - - /// Set up the values of the IVs correctly when exiting the vector loop. - void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, - Value *CountRoundDown, Value *EndValue, - BasicBlock *MiddleBlock); - - /// Create a new induction variable inside L. - PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, - Value *Step, Instruction *DL); - - /// Handle all cross-iteration phis in the header. - void fixCrossIterationPHIs(); - - /// Fix a first-order recurrence. This is the second phase of vectorizing - /// this phi node. - void fixFirstOrderRecurrence(PHINode *Phi); - - /// Fix a reduction cross-iteration phi. This is the second phase of - /// vectorizing this phi node. - void fixReduction(PHINode *Phi); - - /// The Loop exit block may have single value PHI nodes with some - /// incoming value. While vectorizing we only handled real values - /// that were defined inside the loop and we should have one value for - /// each predecessor of its parent basic block. See PR14725. - void fixLCSSAPHIs(); - - /// Iteratively sink the scalarized operands of a predicated instruction into - /// the block that was created for it. - void sinkScalarOperands(Instruction *PredInst); - - /// Shrinks vector element sizes to the smallest bitwidth they can be legally - /// represented as. - void truncateToMinimalBitwidths(); - - /// Insert the new loop to the loop hierarchy and pass manager - /// and update the analysis passes. - void updateAnalysis(); - - /// Create a broadcast instruction. This method generates a broadcast - /// instruction (shuffle) for loop invariant values and for the induction - /// value. If this is the induction variable then we extend it to N, N+1, ... - /// this is needed because each iteration in the loop corresponds to a SIMD - /// element. - virtual Value *getBroadcastInstrs(Value *V); - - /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) - /// to each vector element of Val. The sequence starts at StartIndex. - /// \p Opcode is relevant for FP induction variable. - virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, - Instruction::BinaryOps Opcode = - Instruction::BinaryOpsEnd); - - /// Compute scalar induction steps. \p ScalarIV is the scalar induction - /// variable on which to base the steps, \p Step is the size of the step, and - /// \p EntryVal is the value from the original loop that maps to the steps. - /// Note that \p EntryVal doesn't have to be an induction variable - it - /// can also be a truncate instruction. - void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, - const InductionDescriptor &ID); - - /// Create a vector induction phi node based on an existing scalar one. \p - /// EntryVal is the value from the original loop that maps to the vector phi - /// node, and \p Step is the loop-invariant step. If \p EntryVal is a - /// truncate instruction, instead of widening the original IV, we widen a - /// version of the IV truncated to \p EntryVal's type. - void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, - Value *Step, Instruction *EntryVal); - - /// Returns true if an instruction \p I should be scalarized instead of - /// vectorized for the chosen vectorization factor. - bool shouldScalarizeInstruction(Instruction *I) const; - - /// Returns true if we should generate a scalar version of \p IV. - bool needsScalarInduction(Instruction *IV) const; - - /// If there is a cast involved in the induction variable \p ID, which should - /// be ignored in the vectorized loop body, this function records the - /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the - /// cast. We had already proved that the casted Phi is equal to the uncasted - /// Phi in the vectorized loop (under a runtime guard), and therefore - /// there is no need to vectorize the cast - the same value can be used in the - /// vector loop for both the Phi and the cast. - /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, - /// Otherwise, \p VectorLoopValue is a widened/vectorized value. - /// - /// \p EntryVal is the value from the original loop that maps to the vector - /// phi node and is used to distinguish what is the IV currently being - /// processed - original one (if \p EntryVal is a phi corresponding to the - /// original IV) or the "newly-created" one based on the proof mentioned above - /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the - /// latter case \p EntryVal is a TruncInst and we must not record anything for - /// that IV, but it's error-prone to expect callers of this routine to care - /// about that, hence this explicit parameter. - void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, - const Instruction *EntryVal, - Value *VectorLoopValue, - unsigned Part, - unsigned Lane = UINT_MAX); - - /// Generate a shuffle sequence that will reverse the vector Vec. - virtual Value *reverseVector(Value *Vec); - - /// Returns (and creates if needed) the original loop trip count. - Value *getOrCreateTripCount(Loop *NewLoop); - - /// Returns (and creates if needed) the trip count of the widened loop. - Value *getOrCreateVectorTripCount(Loop *NewLoop); - - /// Returns a bitcasted value to the requested vector type. - /// Also handles bitcasts of vector<float> <-> vector<pointer> types. - Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, - const DataLayout &DL); - - /// Emit a bypass check to see if the vector trip count is zero, including if - /// it overflows. - void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); - - /// Emit a bypass check to see if all of the SCEV assumptions we've - /// had to make are correct. - void emitSCEVChecks(Loop *L, BasicBlock *Bypass); - - /// Emit bypass checks to check any memory assumptions we may have made. - void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); - - /// Compute the transformed value of Index at offset StartValue using step - /// StepValue. - /// For integer induction, returns StartValue + Index * StepValue. - /// For pointer induction, returns StartValue[Index * StepValue]. - /// FIXME: The newly created binary instructions should contain nsw/nuw - /// flags, which can be found from the original scalar operations. - Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, - const DataLayout &DL, - const InductionDescriptor &ID) const; - - /// Add additional metadata to \p To that was not present on \p Orig. - /// - /// Currently this is used to add the noalias annotations based on the - /// inserted memchecks. Use this for instructions that are *cloned* into the - /// vector loop. - void addNewMetadata(Instruction *To, const Instruction *Orig); - - /// Add metadata from one instruction to another. - /// - /// This includes both the original MDs from \p From and additional ones (\see - /// addNewMetadata). Use this for *newly created* instructions in the vector - /// loop. - void addMetadata(Instruction *To, Instruction *From); - - /// Similar to the previous function but it adds the metadata to a - /// vector of instructions. - void addMetadata(ArrayRef<Value *> To, Instruction *From); - - /// The original loop. - Loop *OrigLoop; - - /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies - /// dynamic knowledge to simplify SCEV expressions and converts them to a - /// more usable form. - PredicatedScalarEvolution &PSE; - - /// Loop Info. - LoopInfo *LI; - - /// Dominator Tree. - DominatorTree *DT; - - /// Alias Analysis. - AliasAnalysis *AA; - - /// Target Library Info. - const TargetLibraryInfo *TLI; - - /// Target Transform Info. - const TargetTransformInfo *TTI; - - /// Assumption Cache. - AssumptionCache *AC; - - /// Interface to emit optimization remarks. - OptimizationRemarkEmitter *ORE; - - /// LoopVersioning. It's only set up (non-null) if memchecks were - /// used. - /// - /// This is currently only used to add no-alias metadata based on the - /// memchecks. The actually versioning is performed manually. - std::unique_ptr<LoopVersioning> LVer; - - /// The vectorization SIMD factor to use. Each vector will have this many - /// vector elements. - unsigned VF; - - /// The vectorization unroll factor to use. Each scalar is vectorized to this - /// many different vector instructions. - unsigned UF; - - /// The builder that we use - IRBuilder<> Builder; - - // --- Vectorization state --- - - /// The vector-loop preheader. - BasicBlock *LoopVectorPreHeader; - - /// The scalar-loop preheader. - BasicBlock *LoopScalarPreHeader; - - /// Middle Block between the vector and the scalar. - BasicBlock *LoopMiddleBlock; - - /// The ExitBlock of the scalar loop. - BasicBlock *LoopExitBlock; - - /// The vector loop body. - BasicBlock *LoopVectorBody; - - /// The scalar loop body. - BasicBlock *LoopScalarBody; - - /// A list of all bypass blocks. The first block is the entry of the loop. - SmallVector<BasicBlock *, 4> LoopBypassBlocks; - - /// The new Induction variable which was added to the new block. - PHINode *Induction = nullptr; - - /// The induction variable of the old basic block. - PHINode *OldInduction = nullptr; - - /// Maps values from the original loop to their corresponding values in the - /// vectorized loop. A key value can map to either vector values, scalar - /// values or both kinds of values, depending on whether the key was - /// vectorized and scalarized. - VectorizerValueMap VectorLoopValueMap; - - /// Store instructions that were predicated. - SmallVector<Instruction *, 4> PredicatedInstructions; - - /// Trip count of the original loop. - Value *TripCount = nullptr; - - /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) - Value *VectorTripCount = nullptr; - - /// The legality analysis. - LoopVectorizationLegality *Legal; - - /// The profitablity analysis. - LoopVectorizationCostModel *Cost; - - // Record whether runtime checks are added. - bool AddedSafetyChecks = false; - - // Holds the end values for each induction variable. We save the end values - // so we can later fix-up the external users of the induction variables. - DenseMap<PHINode *, Value *> IVEndValues; - - // Vector of original scalar PHIs whose corresponding widened PHIs need to be - // fixed up at the end of vector code generation. - SmallVector<PHINode *, 8> OrigPHIsToFix; -}; - -class InnerLoopUnroller : public InnerLoopVectorizer { -public: - InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, - LoopInfo *LI, DominatorTree *DT, - const TargetLibraryInfo *TLI, - const TargetTransformInfo *TTI, AssumptionCache *AC, - OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, - LoopVectorizationLegality *LVL, - LoopVectorizationCostModel *CM) - : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, - UnrollFactor, LVL, CM) {} - -private: - Value *getBroadcastInstrs(Value *V) override; - Value *getStepVector(Value *Val, int StartIdx, Value *Step, - Instruction::BinaryOps Opcode = - Instruction::BinaryOpsEnd) override; - Value *reverseVector(Value *Vec) override; -}; - -} // end namespace llvm - -/// Look for a meaningful debug location on the instruction or it's -/// operands. -static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { - if (!I) - return I; - - DebugLoc Empty; - if (I->getDebugLoc() != Empty) - return I; - - for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { - if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) - if (OpInst->getDebugLoc() != Empty) - return OpInst; - } - - return I; -} - -void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { - if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { - const DILocation *DIL = Inst->getDebugLoc(); - if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && - !isa<DbgInfoIntrinsic>(Inst)) { - auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); - if (NewDIL) - B.SetCurrentDebugLocation(NewDIL.getValue()); - else - LLVM_DEBUG(dbgs() - << "Failed to create new discriminator: " - << DIL->getFilename() << " Line: " << DIL->getLine()); - } - else - B.SetCurrentDebugLocation(DIL); - } else - B.SetCurrentDebugLocation(DebugLoc()); -} - -#ifndef NDEBUG -/// \return string containing a file name and a line # for the given loop. -static std::string getDebugLocString(const Loop *L) { - std::string Result; - if (L) { - raw_string_ostream OS(Result); - if (const DebugLoc LoopDbgLoc = L->getStartLoc()) - LoopDbgLoc.print(OS); - else - // Just print the module name. - OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); - OS.flush(); - } - return Result; -} -#endif - -void InnerLoopVectorizer::addNewMetadata(Instruction *To, - const Instruction *Orig) { - // If the loop was versioned with memchecks, add the corresponding no-alias - // metadata. - if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) - LVer->annotateInstWithNoAlias(To, Orig); -} - -void InnerLoopVectorizer::addMetadata(Instruction *To, - Instruction *From) { - propagateMetadata(To, From); - addNewMetadata(To, From); -} - -void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, - Instruction *From) { - for (Value *V : To) { - if (Instruction *I = dyn_cast<Instruction>(V)) - addMetadata(I, From); - } -} - -namespace llvm { - -/// LoopVectorizationCostModel - estimates the expected speedups due to -/// vectorization. -/// In many cases vectorization is not profitable. This can happen because of -/// a number of reasons. In this class we mainly attempt to predict the -/// expected speedup/slowdowns due to the supported instruction set. We use the -/// TargetTransformInfo to query the different backends for the cost of -/// different operations. -class LoopVectorizationCostModel { -public: - LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, - LoopInfo *LI, LoopVectorizationLegality *Legal, - const TargetTransformInfo &TTI, - const TargetLibraryInfo *TLI, DemandedBits *DB, - AssumptionCache *AC, - OptimizationRemarkEmitter *ORE, const Function *F, - const LoopVectorizeHints *Hints, - InterleavedAccessInfo &IAI) - : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), - AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} - - /// \return An upper bound for the vectorization factor, or None if - /// vectorization and interleaving should be avoided up front. - Optional<unsigned> computeMaxVF(bool OptForSize); - - /// \return The most profitable vectorization factor and the cost of that VF. - /// This method checks every power of two up to MaxVF. If UserVF is not ZERO - /// then this vectorization factor will be selected if vectorization is - /// possible. - VectorizationFactor selectVectorizationFactor(unsigned MaxVF); - - /// Setup cost-based decisions for user vectorization factor. - void selectUserVectorizationFactor(unsigned UserVF) { - collectUniformsAndScalars(UserVF); - collectInstsToScalarize(UserVF); - } - - /// \return The size (in bits) of the smallest and widest types in the code - /// that needs to be vectorized. We ignore values that remain scalar such as - /// 64 bit loop indices. - std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); - - /// \return The desired interleave count. - /// If interleave count has been specified by metadata it will be returned. - /// Otherwise, the interleave count is computed and returned. VF and LoopCost - /// are the selected vectorization factor and the cost of the selected VF. - unsigned selectInterleaveCount(bool OptForSize, unsigned VF, - unsigned LoopCost); - - /// Memory access instruction may be vectorized in more than one way. - /// Form of instruction after vectorization depends on cost. - /// This function takes cost-based decisions for Load/Store instructions - /// and collects them in a map. This decisions map is used for building - /// the lists of loop-uniform and loop-scalar instructions. - /// The calculated cost is saved with widening decision in order to - /// avoid redundant calculations. - void setCostBasedWideningDecision(unsigned VF); - - /// A struct that represents some properties of the register usage - /// of a loop. - struct RegisterUsage { - /// Holds the number of loop invariant values that are used in the loop. - unsigned LoopInvariantRegs; - - /// Holds the maximum number of concurrent live intervals in the loop. - unsigned MaxLocalUsers; - }; - - /// \return Returns information about the register usages of the loop for the - /// given vectorization factors. - SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); - - /// Collect values we want to ignore in the cost model. - void collectValuesToIgnore(); - - /// \returns The smallest bitwidth each instruction can be represented with. - /// The vector equivalents of these instructions should be truncated to this - /// type. - const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { - return MinBWs; - } - - /// \returns True if it is more profitable to scalarize instruction \p I for - /// vectorization factor \p VF. - bool isProfitableToScalarize(Instruction *I, unsigned VF) const { - assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); - - // Cost model is not run in the VPlan-native path - return conservative - // result until this changes. - if (EnableVPlanNativePath) - return false; - - auto Scalars = InstsToScalarize.find(VF); - assert(Scalars != InstsToScalarize.end() && - "VF not yet analyzed for scalarization profitability"); - return Scalars->second.find(I) != Scalars->second.end(); - } - - /// Returns true if \p I is known to be uniform after vectorization. - bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { - if (VF == 1) - return true; - - // Cost model is not run in the VPlan-native path - return conservative - // result until this changes. - if (EnableVPlanNativePath) - return false; - - auto UniformsPerVF = Uniforms.find(VF); - assert(UniformsPerVF != Uniforms.end() && - "VF not yet analyzed for uniformity"); - return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); - } - - /// Returns true if \p I is known to be scalar after vectorization. - bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { - if (VF == 1) - return true; - - // Cost model is not run in the VPlan-native path - return conservative - // result until this changes. - if (EnableVPlanNativePath) - return false; - - auto ScalarsPerVF = Scalars.find(VF); - assert(ScalarsPerVF != Scalars.end() && - "Scalar values are not calculated for VF"); - return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); - } - - /// \returns True if instruction \p I can be truncated to a smaller bitwidth - /// for vectorization factor \p VF. - bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { - return VF > 1 && MinBWs.find(I) != MinBWs.end() && - !isProfitableToScalarize(I, VF) && - !isScalarAfterVectorization(I, VF); - } - - /// Decision that was taken during cost calculation for memory instruction. - enum InstWidening { - CM_Unknown, - CM_Widen, // For consecutive accesses with stride +1. - CM_Widen_Reverse, // For consecutive accesses with stride -1. - CM_Interleave, - CM_GatherScatter, - CM_Scalarize - }; - - /// Save vectorization decision \p W and \p Cost taken by the cost model for - /// instruction \p I and vector width \p VF. - void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, - unsigned Cost) { - assert(VF >= 2 && "Expected VF >=2"); - WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); - } - - /// Save vectorization decision \p W and \p Cost taken by the cost model for - /// interleaving group \p Grp and vector width \p VF. - void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, - InstWidening W, unsigned Cost) { - assert(VF >= 2 && "Expected VF >=2"); - /// Broadcast this decicion to all instructions inside the group. - /// But the cost will be assigned to one instruction only. - for (unsigned i = 0; i < Grp->getFactor(); ++i) { - if (auto *I = Grp->getMember(i)) { - if (Grp->getInsertPos() == I) - WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); - else - WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); - } - } - } - - /// Return the cost model decision for the given instruction \p I and vector - /// width \p VF. Return CM_Unknown if this instruction did not pass - /// through the cost modeling. - InstWidening getWideningDecision(Instruction *I, unsigned VF) { - assert(VF >= 2 && "Expected VF >=2"); - - // Cost model is not run in the VPlan-native path - return conservative - // result until this changes. - if (EnableVPlanNativePath) - return CM_GatherScatter; - - std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); - auto Itr = WideningDecisions.find(InstOnVF); - if (Itr == WideningDecisions.end()) - return CM_Unknown; - return Itr->second.first; - } - - /// Return the vectorization cost for the given instruction \p I and vector - /// width \p VF. - unsigned getWideningCost(Instruction *I, unsigned VF) { - assert(VF >= 2 && "Expected VF >=2"); - std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); - assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && - "The cost is not calculated"); - return WideningDecisions[InstOnVF].second; - } - - /// Return True if instruction \p I is an optimizable truncate whose operand - /// is an induction variable. Such a truncate will be removed by adding a new - /// induction variable with the destination type. - bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { - // If the instruction is not a truncate, return false. - auto *Trunc = dyn_cast<TruncInst>(I); - if (!Trunc) - return false; - - // Get the source and destination types of the truncate. - Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); - Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); - - // If the truncate is free for the given types, return false. Replacing a - // free truncate with an induction variable would add an induction variable - // update instruction to each iteration of the loop. We exclude from this - // check the primary induction variable since it will need an update - // instruction regardless. - Value *Op = Trunc->getOperand(0); - if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) - return false; - - // If the truncated value is not an induction variable, return false. - return Legal->isInductionPhi(Op); - } - - /// Collects the instructions to scalarize for each predicated instruction in - /// the loop. - void collectInstsToScalarize(unsigned VF); - - /// Collect Uniform and Scalar values for the given \p VF. - /// The sets depend on CM decision for Load/Store instructions - /// that may be vectorized as interleave, gather-scatter or scalarized. - void collectUniformsAndScalars(unsigned VF) { - // Do the analysis once. - if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) - return; - setCostBasedWideningDecision(VF); - collectLoopUniforms(VF); - collectLoopScalars(VF); - } - - /// Returns true if the target machine supports masked store operation - /// for the given \p DataType and kind of access to \p Ptr. - bool isLegalMaskedStore(Type *DataType, Value *Ptr) { - return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); - } - - /// Returns true if the target machine supports masked load operation - /// for the given \p DataType and kind of access to \p Ptr. - bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { - return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); - } - - /// Returns true if the target machine supports masked scatter operation - /// for the given \p DataType. - bool isLegalMaskedScatter(Type *DataType) { - return TTI.isLegalMaskedScatter(DataType); - } - - /// Returns true if the target machine supports masked gather operation - /// for the given \p DataType. - bool isLegalMaskedGather(Type *DataType) { - return TTI.isLegalMaskedGather(DataType); - } - - /// Returns true if the target machine can represent \p V as a masked gather - /// or scatter operation. - bool isLegalGatherOrScatter(Value *V) { - bool LI = isa<LoadInst>(V); - bool SI = isa<StoreInst>(V); - if (!LI && !SI) - return false; - auto *Ty = getMemInstValueType(V); - return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); - } - - /// Returns true if \p I is an instruction that will be scalarized with - /// predication. Such instructions include conditional stores and - /// instructions that may divide by zero. - /// If a non-zero VF has been calculated, we check if I will be scalarized - /// predication for that VF. - bool isScalarWithPredication(Instruction *I, unsigned VF = 1); - - // Returns true if \p I is an instruction that will be predicated either - // through scalar predication or masked load/store or masked gather/scatter. - // Superset of instructions that return true for isScalarWithPredication. - bool isPredicatedInst(Instruction *I) { - if (!blockNeedsPredication(I->getParent())) - return false; - // Loads and stores that need some form of masked operation are predicated - // instructions. - if (isa<LoadInst>(I) || isa<StoreInst>(I)) - return Legal->isMaskRequired(I); - return isScalarWithPredication(I); - } - - /// Returns true if \p I is a memory instruction with consecutive memory - /// access that can be widened. - bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); - - /// Returns true if \p I is a memory instruction in an interleaved-group - /// of memory accesses that can be vectorized with wide vector loads/stores - /// and shuffles. - bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); - - /// Check if \p Instr belongs to any interleaved access group. - bool isAccessInterleaved(Instruction *Instr) { - return InterleaveInfo.isInterleaved(Instr); - } - - /// Get the interleaved access group that \p Instr belongs to. - const InterleaveGroup<Instruction> * - getInterleavedAccessGroup(Instruction *Instr) { - return InterleaveInfo.getInterleaveGroup(Instr); - } - - /// Returns true if an interleaved group requires a scalar iteration - /// to handle accesses with gaps, and there is nothing preventing us from - /// creating a scalar epilogue. - bool requiresScalarEpilogue() const { - return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); - } - - /// Returns true if a scalar epilogue is not allowed due to optsize. - bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } - - /// Returns true if all loop blocks should be masked to fold tail loop. - bool foldTailByMasking() const { return FoldTailByMasking; } - - bool blockNeedsPredication(BasicBlock *BB) { - return foldTailByMasking() || Legal->blockNeedsPredication(BB); - } - - /// Estimate cost of an intrinsic call instruction CI if it were vectorized - /// with factor VF. Return the cost of the instruction, including - /// scalarization overhead if it's needed. - unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); - - /// Estimate cost of a call instruction CI if it were vectorized with factor - /// VF. Return the cost of the instruction, including scalarization overhead - /// if it's needed. The flag NeedToScalarize shows if the call needs to be - /// scalarized - - /// i.e. either vector version isn't available, or is too expensive. - unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); - -private: - unsigned NumPredStores = 0; - - /// \return An upper bound for the vectorization factor, larger than zero. - /// One is returned if vectorization should best be avoided due to cost. - unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); - - /// The vectorization cost is a combination of the cost itself and a boolean - /// indicating whether any of the contributing operations will actually - /// operate on - /// vector values after type legalization in the backend. If this latter value - /// is - /// false, then all operations will be scalarized (i.e. no vectorization has - /// actually taken place). - using VectorizationCostTy = std::pair<unsigned, bool>; - - /// Returns the expected execution cost. The unit of the cost does - /// not matter because we use the 'cost' units to compare different - /// vector widths. The cost that is returned is *not* normalized by - /// the factor width. - VectorizationCostTy expectedCost(unsigned VF); - - /// Returns the execution time cost of an instruction for a given vector - /// width. Vector width of one means scalar. - VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); - - /// The cost-computation logic from getInstructionCost which provides - /// the vector type as an output parameter. - unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); - - /// Calculate vectorization cost of memory instruction \p I. - unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); - - /// The cost computation for scalarized memory instruction. - unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); - - /// The cost computation for interleaving group of memory instructions. - unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); - - /// The cost computation for Gather/Scatter instruction. - unsigned getGatherScatterCost(Instruction *I, unsigned VF); - - /// The cost computation for widening instruction \p I with consecutive - /// memory access. - unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); - - /// The cost calculation for Load/Store instruction \p I with uniform pointer - - /// Load: scalar load + broadcast. - /// Store: scalar store + (loop invariant value stored? 0 : extract of last - /// element) - unsigned getUniformMemOpCost(Instruction *I, unsigned VF); - - /// Estimate the overhead of scalarizing an instruction. This is a - /// convenience wrapper for the type-based getScalarizationOverhead API. - unsigned getScalarizationOverhead(Instruction *I, unsigned VF); - - /// Returns whether the instruction is a load or store and will be a emitted - /// as a vector operation. - bool isConsecutiveLoadOrStore(Instruction *I); - - /// Returns true if an artificially high cost for emulated masked memrefs - /// should be used. - bool useEmulatedMaskMemRefHack(Instruction *I); - - /// Create an analysis remark that explains why vectorization failed - /// - /// \p RemarkName is the identifier for the remark. \return the remark object - /// that can be streamed to. - OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { - return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), - RemarkName, TheLoop); - } - - /// Map of scalar integer values to the smallest bitwidth they can be legally - /// represented as. The vector equivalents of these values should be truncated - /// to this type. - MapVector<Instruction *, uint64_t> MinBWs; - - /// A type representing the costs for instructions if they were to be - /// scalarized rather than vectorized. The entries are Instruction-Cost - /// pairs. - using ScalarCostsTy = DenseMap<Instruction *, unsigned>; - - /// A set containing all BasicBlocks that are known to present after - /// vectorization as a predicated block. - SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; - - /// Records whether it is allowed to have the original scalar loop execute at - /// least once. This may be needed as a fallback loop in case runtime - /// aliasing/dependence checks fail, or to handle the tail/remainder - /// iterations when the trip count is unknown or doesn't divide by the VF, - /// or as a peel-loop to handle gaps in interleave-groups. - /// Under optsize and when the trip count is very small we don't allow any - /// iterations to execute in the scalar loop. - bool IsScalarEpilogueAllowed = true; - - /// All blocks of loop are to be masked to fold tail of scalar iterations. - bool FoldTailByMasking = false; - - /// A map holding scalar costs for different vectorization factors. The - /// presence of a cost for an instruction in the mapping indicates that the - /// instruction will be scalarized when vectorizing with the associated - /// vectorization factor. The entries are VF-ScalarCostTy pairs. - DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; - - /// Holds the instructions known to be uniform after vectorization. - /// The data is collected per VF. - DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; - - /// Holds the instructions known to be scalar after vectorization. - /// The data is collected per VF. - DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; - - /// Holds the instructions (address computations) that are forced to be - /// scalarized. - DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; - - /// Returns the expected difference in cost from scalarizing the expression - /// feeding a predicated instruction \p PredInst. The instructions to - /// scalarize and their scalar costs are collected in \p ScalarCosts. A - /// non-negative return value implies the expression will be scalarized. - /// Currently, only single-use chains are considered for scalarization. - int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, - unsigned VF); - - /// Collect the instructions that are uniform after vectorization. An - /// instruction is uniform if we represent it with a single scalar value in - /// the vectorized loop corresponding to each vector iteration. Examples of - /// uniform instructions include pointer operands of consecutive or - /// interleaved memory accesses. Note that although uniformity implies an - /// instruction will be scalar, the reverse is not true. In general, a - /// scalarized instruction will be represented by VF scalar values in the - /// vectorized loop, each corresponding to an iteration of the original - /// scalar loop. - void collectLoopUniforms(unsigned VF); - - /// Collect the instructions that are scalar after vectorization. An - /// instruction is scalar if it is known to be uniform or will be scalarized - /// during vectorization. Non-uniform scalarized instructions will be - /// represented by VF values in the vectorized loop, each corresponding to an - /// iteration of the original scalar loop. - void collectLoopScalars(unsigned VF); - - /// Keeps cost model vectorization decision and cost for instructions. - /// Right now it is used for memory instructions only. - using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, - std::pair<InstWidening, unsigned>>; - - DecisionList WideningDecisions; - - /// Returns true if \p V is expected to be vectorized and it needs to be - /// extracted. - bool needsExtract(Value *V, unsigned VF) const { - Instruction *I = dyn_cast<Instruction>(V); - if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) - return false; - - // Assume we can vectorize V (and hence we need extraction) if the - // scalars are not computed yet. This can happen, because it is called - // via getScalarizationOverhead from setCostBasedWideningDecision, before - // the scalars are collected. That should be a safe assumption in most - // cases, because we check if the operands have vectorizable types - // beforehand in LoopVectorizationLegality. - return Scalars.find(VF) == Scalars.end() || - !isScalarAfterVectorization(I, VF); - }; - - /// Returns a range containing only operands needing to be extracted. - SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, - unsigned VF) { - return SmallVector<Value *, 4>(make_filter_range( - Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); - } - -public: - /// The loop that we evaluate. - Loop *TheLoop; - - /// Predicated scalar evolution analysis. - PredicatedScalarEvolution &PSE; - - /// Loop Info analysis. - LoopInfo *LI; - - /// Vectorization legality. - LoopVectorizationLegality *Legal; - - /// Vector target information. - const TargetTransformInfo &TTI; - - /// Target Library Info. - const TargetLibraryInfo *TLI; - - /// Demanded bits analysis. - DemandedBits *DB; - - /// Assumption cache. - AssumptionCache *AC; - - /// Interface to emit optimization remarks. - OptimizationRemarkEmitter *ORE; - - const Function *TheFunction; - - /// Loop Vectorize Hint. - const LoopVectorizeHints *Hints; - - /// The interleave access information contains groups of interleaved accesses - /// with the same stride and close to each other. - InterleavedAccessInfo &InterleaveInfo; - - /// Values to ignore in the cost model. - SmallPtrSet<const Value *, 16> ValuesToIgnore; - - /// Values to ignore in the cost model when VF > 1. - SmallPtrSet<const Value *, 16> VecValuesToIgnore; -}; - -} // end namespace llvm - -// Return true if \p OuterLp is an outer loop annotated with hints for explicit -// vectorization. The loop needs to be annotated with #pragma omp simd -// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the -// vector length information is not provided, vectorization is not considered -// explicit. Interleave hints are not allowed either. These limitations will be -// relaxed in the future. -// Please, note that we are currently forced to abuse the pragma 'clang -// vectorize' semantics. This pragma provides *auto-vectorization hints* -// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' -// provides *explicit vectorization hints* (LV can bypass legal checks and -// assume that vectorization is legal). However, both hints are implemented -// using the same metadata (llvm.loop.vectorize, processed by -// LoopVectorizeHints). This will be fixed in the future when the native IR -// representation for pragma 'omp simd' is introduced. -static bool isExplicitVecOuterLoop(Loop *OuterLp, - OptimizationRemarkEmitter *ORE) { - assert(!OuterLp->empty() && "This is not an outer loop"); - LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); - - // Only outer loops with an explicit vectorization hint are supported. - // Unannotated outer loops are ignored. - if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) - return false; - - Function *Fn = OuterLp->getHeader()->getParent(); - if (!Hints.allowVectorization(Fn, OuterLp, - true /*VectorizeOnlyWhenForced*/)) { - LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); - return false; - } - - if (Hints.getInterleave() > 1) { - // TODO: Interleave support is future work. - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " - "outer loops.\n"); - Hints.emitRemarkWithHints(); - return false; - } - - return true; -} - -static void collectSupportedLoops(Loop &L, LoopInfo *LI, - OptimizationRemarkEmitter *ORE, - SmallVectorImpl<Loop *> &V) { - // Collect inner loops and outer loops without irreducible control flow. For - // now, only collect outer loops that have explicit vectorization hints. If we - // are stress testing the VPlan H-CFG construction, we collect the outermost - // loop of every loop nest. - if (L.empty() || VPlanBuildStressTest || - (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { - LoopBlocksRPO RPOT(&L); - RPOT.perform(LI); - if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { - V.push_back(&L); - // TODO: Collect inner loops inside marked outer loops in case - // vectorization fails for the outer loop. Do not invoke - // 'containsIrreducibleCFG' again for inner loops when the outer loop is - // already known to be reducible. We can use an inherited attribute for - // that. - return; - } - } - for (Loop *InnerL : L) - collectSupportedLoops(*InnerL, LI, ORE, V); -} - -namespace { - -/// The LoopVectorize Pass. -struct LoopVectorize : public FunctionPass { - /// Pass identification, replacement for typeid - static char ID; - - LoopVectorizePass Impl; - - explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, - bool VectorizeOnlyWhenForced = false) - : FunctionPass(ID) { - Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; - Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; - initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); - auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; - auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); - auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); - auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); - auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); - auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - - std::function<const LoopAccessInfo &(Loop &)> GetLAA = - [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; - - return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, - GetLAA, *ORE, PSI); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<LoopAccessLegacyAnalysis>(); - AU.addRequired<DemandedBitsWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - - // We currently do not preserve loopinfo/dominator analyses with outer loop - // vectorization. Until this is addressed, mark these analyses as preserved - // only for non-VPlan-native path. - // TODO: Preserve Loop and Dominator analyses for VPlan-native path. - if (!EnableVPlanNativePath) { - AU.addPreserved<LoopInfoWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - } - - AU.addPreserved<BasicAAWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - } -}; - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// -// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and -// LoopVectorizationCostModel and LoopVectorizationPlanner. -//===----------------------------------------------------------------------===// - -Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { - // We need to place the broadcast of invariant variables outside the loop, - // but only if it's proven safe to do so. Else, broadcast will be inside - // vector loop body. - Instruction *Instr = dyn_cast<Instruction>(V); - bool SafeToHoist = OrigLoop->isLoopInvariant(V) && - (!Instr || - DT->dominates(Instr->getParent(), LoopVectorPreHeader)); - // Place the code for broadcasting invariant variables in the new preheader. - IRBuilder<>::InsertPointGuard Guard(Builder); - if (SafeToHoist) - Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); - - // Broadcast the scalar into all locations in the vector. - Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); - - return Shuf; -} - -void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( - const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { - assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && - "Expected either an induction phi-node or a truncate of it!"); - Value *Start = II.getStartValue(); - - // Construct the initial value of the vector IV in the vector loop preheader - auto CurrIP = Builder.saveIP(); - Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); - if (isa<TruncInst>(EntryVal)) { - assert(Start->getType()->isIntegerTy() && - "Truncation requires an integer type"); - auto *TruncType = cast<IntegerType>(EntryVal->getType()); - Step = Builder.CreateTrunc(Step, TruncType); - Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); - } - Value *SplatStart = Builder.CreateVectorSplat(VF, Start); - Value *SteppedStart = - getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); - - // We create vector phi nodes for both integer and floating-point induction - // variables. Here, we determine the kind of arithmetic we will perform. - Instruction::BinaryOps AddOp; - Instruction::BinaryOps MulOp; - if (Step->getType()->isIntegerTy()) { - AddOp = Instruction::Add; - MulOp = Instruction::Mul; - } else { - AddOp = II.getInductionOpcode(); - MulOp = Instruction::FMul; - } - - // Multiply the vectorization factor by the step using integer or - // floating-point arithmetic as appropriate. - Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); - Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); - - // Create a vector splat to use in the induction update. - // - // FIXME: If the step is non-constant, we create the vector splat with - // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't - // handle a constant vector splat. - Value *SplatVF = isa<Constant>(Mul) - ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) - : Builder.CreateVectorSplat(VF, Mul); - Builder.restoreIP(CurrIP); - - // We may need to add the step a number of times, depending on the unroll - // factor. The last of those goes into the PHI. - PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", - &*LoopVectorBody->getFirstInsertionPt()); - VecInd->setDebugLoc(EntryVal->getDebugLoc()); - Instruction *LastInduction = VecInd; - for (unsigned Part = 0; Part < UF; ++Part) { - VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); - - if (isa<TruncInst>(EntryVal)) - addMetadata(LastInduction, EntryVal); - recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); - - LastInduction = cast<Instruction>(addFastMathFlag( - Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); - LastInduction->setDebugLoc(EntryVal->getDebugLoc()); - } - - // Move the last step to the end of the latch block. This ensures consistent - // placement of all induction updates. - auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); - auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); - auto *ICmp = cast<Instruction>(Br->getCondition()); - LastInduction->moveBefore(ICmp); - LastInduction->setName("vec.ind.next"); - - VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); - VecInd->addIncoming(LastInduction, LoopVectorLatch); -} - -bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { - return Cost->isScalarAfterVectorization(I, VF) || - Cost->isProfitableToScalarize(I, VF); -} - -bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { - if (shouldScalarizeInstruction(IV)) - return true; - auto isScalarInst = [&](User *U) -> bool { - auto *I = cast<Instruction>(U); - return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); - }; - return llvm::any_of(IV->users(), isScalarInst); -} - -void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( - const InductionDescriptor &ID, const Instruction *EntryVal, - Value *VectorLoopVal, unsigned Part, unsigned Lane) { - assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && - "Expected either an induction phi-node or a truncate of it!"); - - // This induction variable is not the phi from the original loop but the - // newly-created IV based on the proof that casted Phi is equal to the - // uncasted Phi in the vectorized loop (under a runtime guard possibly). It - // re-uses the same InductionDescriptor that original IV uses but we don't - // have to do any recording in this case - that is done when original IV is - // processed. - if (isa<TruncInst>(EntryVal)) - return; - - const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); - if (Casts.empty()) - return; - // Only the first Cast instruction in the Casts vector is of interest. - // The rest of the Casts (if exist) have no uses outside the - // induction update chain itself. - Instruction *CastInst = *Casts.begin(); - if (Lane < UINT_MAX) - VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); - else - VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); -} - -void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { - assert((IV->getType()->isIntegerTy() || IV != OldInduction) && - "Primary induction variable must have an integer type"); - - auto II = Legal->getInductionVars()->find(IV); - assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); - - auto ID = II->second; - assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); - - // The scalar value to broadcast. This will be derived from the canonical - // induction variable. - Value *ScalarIV = nullptr; - - // The value from the original loop to which we are mapping the new induction - // variable. - Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; - - // True if we have vectorized the induction variable. - auto VectorizedIV = false; - - // Determine if we want a scalar version of the induction variable. This is - // true if the induction variable itself is not widened, or if it has at - // least one user in the loop that is not widened. - auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); - - // Generate code for the induction step. Note that induction steps are - // required to be loop-invariant - assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && - "Induction step should be loop invariant"); - auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); - Value *Step = nullptr; - if (PSE.getSE()->isSCEVable(IV->getType())) { - SCEVExpander Exp(*PSE.getSE(), DL, "induction"); - Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), - LoopVectorPreHeader->getTerminator()); - } else { - Step = cast<SCEVUnknown>(ID.getStep())->getValue(); - } - - // Try to create a new independent vector induction variable. If we can't - // create the phi node, we will splat the scalar induction variable in each - // loop iteration. - if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { - createVectorIntOrFpInductionPHI(ID, Step, EntryVal); - VectorizedIV = true; - } - - // If we haven't yet vectorized the induction variable, or if we will create - // a scalar one, we need to define the scalar induction variable and step - // values. If we were given a truncation type, truncate the canonical - // induction variable and step. Otherwise, derive these values from the - // induction descriptor. - if (!VectorizedIV || NeedsScalarIV) { - ScalarIV = Induction; - if (IV != OldInduction) { - ScalarIV = IV->getType()->isIntegerTy() - ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) - : Builder.CreateCast(Instruction::SIToFP, Induction, - IV->getType()); - ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); - ScalarIV->setName("offset.idx"); - } - if (Trunc) { - auto *TruncType = cast<IntegerType>(Trunc->getType()); - assert(Step->getType()->isIntegerTy() && - "Truncation requires an integer step"); - ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); - Step = Builder.CreateTrunc(Step, TruncType); - } - } - - // If we haven't yet vectorized the induction variable, splat the scalar - // induction variable, and build the necessary step vectors. - // TODO: Don't do it unless the vectorized IV is really required. - if (!VectorizedIV) { - Value *Broadcasted = getBroadcastInstrs(ScalarIV); - for (unsigned Part = 0; Part < UF; ++Part) { - Value *EntryPart = - getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); - VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); - if (Trunc) - addMetadata(EntryPart, Trunc); - recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); - } - } - - // If an induction variable is only used for counting loop iterations or - // calculating addresses, it doesn't need to be widened. Create scalar steps - // that can be used by instructions we will later scalarize. Note that the - // addition of the scalar steps will not increase the number of instructions - // in the loop in the common case prior to InstCombine. We will be trading - // one vector extract for each scalar step. - if (NeedsScalarIV) - buildScalarSteps(ScalarIV, Step, EntryVal, ID); -} - -Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, - Instruction::BinaryOps BinOp) { - // Create and check the types. - assert(Val->getType()->isVectorTy() && "Must be a vector"); - int VLen = Val->getType()->getVectorNumElements(); - - Type *STy = Val->getType()->getScalarType(); - assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && - "Induction Step must be an integer or FP"); - assert(Step->getType() == STy && "Step has wrong type"); - - SmallVector<Constant *, 8> Indices; - - if (STy->isIntegerTy()) { - // Create a vector of consecutive numbers from zero to VF. - for (int i = 0; i < VLen; ++i) - Indices.push_back(ConstantInt::get(STy, StartIdx + i)); - - // Add the consecutive indices to the vector value. - Constant *Cv = ConstantVector::get(Indices); - assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); - Step = Builder.CreateVectorSplat(VLen, Step); - assert(Step->getType() == Val->getType() && "Invalid step vec"); - // FIXME: The newly created binary instructions should contain nsw/nuw flags, - // which can be found from the original scalar operations. - Step = Builder.CreateMul(Cv, Step); - return Builder.CreateAdd(Val, Step, "induction"); - } - - // Floating point induction. - assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && - "Binary Opcode should be specified for FP induction"); - // Create a vector of consecutive numbers from zero to VF. - for (int i = 0; i < VLen; ++i) - Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); - - // Add the consecutive indices to the vector value. - Constant *Cv = ConstantVector::get(Indices); - - Step = Builder.CreateVectorSplat(VLen, Step); - - // Floating point operations had to be 'fast' to enable the induction. - FastMathFlags Flags; - Flags.setFast(); - - Value *MulOp = Builder.CreateFMul(Cv, Step); - if (isa<Instruction>(MulOp)) - // Have to check, MulOp may be a constant - cast<Instruction>(MulOp)->setFastMathFlags(Flags); - - Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); - if (isa<Instruction>(BOp)) - cast<Instruction>(BOp)->setFastMathFlags(Flags); - return BOp; -} - -void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, - Instruction *EntryVal, - const InductionDescriptor &ID) { - // We shouldn't have to build scalar steps if we aren't vectorizing. - assert(VF > 1 && "VF should be greater than one"); - - // Get the value type and ensure it and the step have the same integer type. - Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); - assert(ScalarIVTy == Step->getType() && - "Val and Step should have the same type"); - - // We build scalar steps for both integer and floating-point induction - // variables. Here, we determine the kind of arithmetic we will perform. - Instruction::BinaryOps AddOp; - Instruction::BinaryOps MulOp; - if (ScalarIVTy->isIntegerTy()) { - AddOp = Instruction::Add; - MulOp = Instruction::Mul; - } else { - AddOp = ID.getInductionOpcode(); - MulOp = Instruction::FMul; - } - - // Determine the number of scalars we need to generate for each unroll - // iteration. If EntryVal is uniform, we only need to generate the first - // lane. Otherwise, we generate all VF values. - unsigned Lanes = - Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 - : VF; - // Compute the scalar steps and save the results in VectorLoopValueMap. - for (unsigned Part = 0; Part < UF; ++Part) { - for (unsigned Lane = 0; Lane < Lanes; ++Lane) { - auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); - auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); - auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); - VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); - recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); - } - } -} - -Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { - assert(V != Induction && "The new induction variable should not be used."); - assert(!V->getType()->isVectorTy() && "Can't widen a vector"); - assert(!V->getType()->isVoidTy() && "Type does not produce a value"); - - // If we have a stride that is replaced by one, do it here. Defer this for - // the VPlan-native path until we start running Legal checks in that path. - if (!EnableVPlanNativePath && Legal->hasStride(V)) - V = ConstantInt::get(V->getType(), 1); - - // If we have a vector mapped to this value, return it. - if (VectorLoopValueMap.hasVectorValue(V, Part)) - return VectorLoopValueMap.getVectorValue(V, Part); - - // If the value has not been vectorized, check if it has been scalarized - // instead. If it has been scalarized, and we actually need the value in - // vector form, we will construct the vector values on demand. - if (VectorLoopValueMap.hasAnyScalarValue(V)) { - Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); - - // If we've scalarized a value, that value should be an instruction. - auto *I = cast<Instruction>(V); - - // If we aren't vectorizing, we can just copy the scalar map values over to - // the vector map. - if (VF == 1) { - VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); - return ScalarValue; - } - - // Get the last scalar instruction we generated for V and Part. If the value - // is known to be uniform after vectorization, this corresponds to lane zero - // of the Part unroll iteration. Otherwise, the last instruction is the one - // we created for the last vector lane of the Part unroll iteration. - unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; - auto *LastInst = cast<Instruction>( - VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); - - // Set the insert point after the last scalarized instruction. This ensures - // the insertelement sequence will directly follow the scalar definitions. - auto OldIP = Builder.saveIP(); - auto NewIP = std::next(BasicBlock::iterator(LastInst)); - Builder.SetInsertPoint(&*NewIP); - - // However, if we are vectorizing, we need to construct the vector values. - // If the value is known to be uniform after vectorization, we can just - // broadcast the scalar value corresponding to lane zero for each unroll - // iteration. Otherwise, we construct the vector values using insertelement - // instructions. Since the resulting vectors are stored in - // VectorLoopValueMap, we will only generate the insertelements once. - Value *VectorValue = nullptr; - if (Cost->isUniformAfterVectorization(I, VF)) { - VectorValue = getBroadcastInstrs(ScalarValue); - VectorLoopValueMap.setVectorValue(V, Part, VectorValue); - } else { - // Initialize packing with insertelements to start from undef. - Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); - VectorLoopValueMap.setVectorValue(V, Part, Undef); - for (unsigned Lane = 0; Lane < VF; ++Lane) - packScalarIntoVectorValue(V, {Part, Lane}); - VectorValue = VectorLoopValueMap.getVectorValue(V, Part); - } - Builder.restoreIP(OldIP); - return VectorValue; - } - - // If this scalar is unknown, assume that it is a constant or that it is - // loop invariant. Broadcast V and save the value for future uses. - Value *B = getBroadcastInstrs(V); - VectorLoopValueMap.setVectorValue(V, Part, B); - return B; -} - -Value * -InnerLoopVectorizer::getOrCreateScalarValue(Value *V, - const VPIteration &Instance) { - // If the value is not an instruction contained in the loop, it should - // already be scalar. - if (OrigLoop->isLoopInvariant(V)) - return V; - - assert(Instance.Lane > 0 - ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) - : true && "Uniform values only have lane zero"); - - // If the value from the original loop has not been vectorized, it is - // represented by UF x VF scalar values in the new loop. Return the requested - // scalar value. - if (VectorLoopValueMap.hasScalarValue(V, Instance)) - return VectorLoopValueMap.getScalarValue(V, Instance); - - // If the value has not been scalarized, get its entry in VectorLoopValueMap - // for the given unroll part. If this entry is not a vector type (i.e., the - // vectorization factor is one), there is no need to generate an - // extractelement instruction. - auto *U = getOrCreateVectorValue(V, Instance.Part); - if (!U->getType()->isVectorTy()) { - assert(VF == 1 && "Value not scalarized has non-vector type"); - return U; - } - - // Otherwise, the value from the original loop has been vectorized and is - // represented by UF vector values. Extract and return the requested scalar - // value from the appropriate vector lane. - return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); -} - -void InnerLoopVectorizer::packScalarIntoVectorValue( - Value *V, const VPIteration &Instance) { - assert(V != Induction && "The new induction variable should not be used."); - assert(!V->getType()->isVectorTy() && "Can't pack a vector"); - assert(!V->getType()->isVoidTy() && "Type does not produce a value"); - - Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); - Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); - VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, - Builder.getInt32(Instance.Lane)); - VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); -} - -Value *InnerLoopVectorizer::reverseVector(Value *Vec) { - assert(Vec->getType()->isVectorTy() && "Invalid type"); - SmallVector<Constant *, 8> ShuffleMask; - for (unsigned i = 0; i < VF; ++i) - ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); - - return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), - ConstantVector::get(ShuffleMask), - "reverse"); -} - -// Return whether we allow using masked interleave-groups (for dealing with -// strided loads/stores that reside in predicated blocks, or for dealing -// with gaps). -static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { - // If an override option has been passed in for interleaved accesses, use it. - if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) - return EnableMaskedInterleavedMemAccesses; - - return TTI.enableMaskedInterleavedAccessVectorization(); -} - -// Try to vectorize the interleave group that \p Instr belongs to. -// -// E.g. Translate following interleaved load group (factor = 3): -// for (i = 0; i < N; i+=3) { -// R = Pic[i]; // Member of index 0 -// G = Pic[i+1]; // Member of index 1 -// B = Pic[i+2]; // Member of index 2 -// ... // do something to R, G, B -// } -// To: -// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B -// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements -// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements -// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements -// -// Or translate following interleaved store group (factor = 3): -// for (i = 0; i < N; i+=3) { -// ... do something to R, G, B -// Pic[i] = R; // Member of index 0 -// Pic[i+1] = G; // Member of index 1 -// Pic[i+2] = B; // Member of index 2 -// } -// To: -// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> -// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> -// %interleaved.vec = shuffle %R_G.vec, %B_U.vec, -// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements -// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B -void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, - VectorParts *BlockInMask) { - const InterleaveGroup<Instruction> *Group = - Cost->getInterleavedAccessGroup(Instr); - assert(Group && "Fail to get an interleaved access group."); - - // Skip if current instruction is not the insert position. - if (Instr != Group->getInsertPos()) - return; - - const DataLayout &DL = Instr->getModule()->getDataLayout(); - Value *Ptr = getLoadStorePointerOperand(Instr); - - // Prepare for the vector type of the interleaved load/store. - Type *ScalarTy = getMemInstValueType(Instr); - unsigned InterleaveFactor = Group->getFactor(); - Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); - Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); - - // Prepare for the new pointers. - setDebugLocFromInst(Builder, Ptr); - SmallVector<Value *, 2> NewPtrs; - unsigned Index = Group->getIndex(Instr); - - VectorParts Mask; - bool IsMaskForCondRequired = BlockInMask; - if (IsMaskForCondRequired) { - Mask = *BlockInMask; - // TODO: extend the masked interleaved-group support to reversed access. - assert(!Group->isReverse() && "Reversed masked interleave-group " - "not supported."); - } - - // If the group is reverse, adjust the index to refer to the last vector lane - // instead of the first. We adjust the index from the first vector lane, - // rather than directly getting the pointer for lane VF - 1, because the - // pointer operand of the interleaved access is supposed to be uniform. For - // uniform instructions, we're only required to generate a value for the - // first vector lane in each unroll iteration. - if (Group->isReverse()) - Index += (VF - 1) * Group->getFactor(); - - bool InBounds = false; - if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) - InBounds = gep->isInBounds(); - - for (unsigned Part = 0; Part < UF; Part++) { - Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); - - // Notice current instruction could be any index. Need to adjust the address - // to the member of index 0. - // - // E.g. a = A[i+1]; // Member of index 1 (Current instruction) - // b = A[i]; // Member of index 0 - // Current pointer is pointed to A[i+1], adjust it to A[i]. - // - // E.g. A[i+1] = a; // Member of index 1 - // A[i] = b; // Member of index 0 - // A[i+2] = c; // Member of index 2 (Current instruction) - // Current pointer is pointed to A[i+2], adjust it to A[i]. - NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); - if (InBounds) - cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); - - // Cast to the vector pointer type. - NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); - } - - setDebugLocFromInst(Builder, Instr); - Value *UndefVec = UndefValue::get(VecTy); - - Value *MaskForGaps = nullptr; - if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { - MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); - assert(MaskForGaps && "Mask for Gaps is required but it is null"); - } - - // Vectorize the interleaved load group. - if (isa<LoadInst>(Instr)) { - // For each unroll part, create a wide load for the group. - SmallVector<Value *, 2> NewLoads; - for (unsigned Part = 0; Part < UF; Part++) { - Instruction *NewLoad; - if (IsMaskForCondRequired || MaskForGaps) { - assert(useMaskedInterleavedAccesses(*TTI) && - "masked interleaved groups are not allowed."); - Value *GroupMask = MaskForGaps; - if (IsMaskForCondRequired) { - auto *Undefs = UndefValue::get(Mask[Part]->getType()); - auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); - Value *ShuffledMask = Builder.CreateShuffleVector( - Mask[Part], Undefs, RepMask, "interleaved.mask"); - GroupMask = MaskForGaps - ? Builder.CreateBinOp(Instruction::And, ShuffledMask, - MaskForGaps) - : ShuffledMask; - } - NewLoad = - Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), - GroupMask, UndefVec, "wide.masked.vec"); - } - else - NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], - Group->getAlignment(), "wide.vec"); - Group->addMetadata(NewLoad); - NewLoads.push_back(NewLoad); - } - - // For each member in the group, shuffle out the appropriate data from the - // wide loads. - for (unsigned I = 0; I < InterleaveFactor; ++I) { - Instruction *Member = Group->getMember(I); - - // Skip the gaps in the group. - if (!Member) - continue; - - Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); - for (unsigned Part = 0; Part < UF; Part++) { - Value *StridedVec = Builder.CreateShuffleVector( - NewLoads[Part], UndefVec, StrideMask, "strided.vec"); - - // If this member has different type, cast the result type. - if (Member->getType() != ScalarTy) { - VectorType *OtherVTy = VectorType::get(Member->getType(), VF); - StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); - } - - if (Group->isReverse()) - StridedVec = reverseVector(StridedVec); - - VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); - } - } - return; - } - - // The sub vector type for current instruction. - VectorType *SubVT = VectorType::get(ScalarTy, VF); - - // Vectorize the interleaved store group. - for (unsigned Part = 0; Part < UF; Part++) { - // Collect the stored vector from each member. - SmallVector<Value *, 4> StoredVecs; - for (unsigned i = 0; i < InterleaveFactor; i++) { - // Interleaved store group doesn't allow a gap, so each index has a member - Instruction *Member = Group->getMember(i); - assert(Member && "Fail to get a member from an interleaved store group"); - - Value *StoredVec = getOrCreateVectorValue( - cast<StoreInst>(Member)->getValueOperand(), Part); - if (Group->isReverse()) - StoredVec = reverseVector(StoredVec); - - // If this member has different type, cast it to a unified type. - - if (StoredVec->getType() != SubVT) - StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); - - StoredVecs.push_back(StoredVec); - } - - // Concatenate all vectors into a wide vector. - Value *WideVec = concatenateVectors(Builder, StoredVecs); - - // Interleave the elements in the wide vector. - Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); - Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, - "interleaved.vec"); - - Instruction *NewStoreInstr; - if (IsMaskForCondRequired) { - auto *Undefs = UndefValue::get(Mask[Part]->getType()); - auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); - Value *ShuffledMask = Builder.CreateShuffleVector( - Mask[Part], Undefs, RepMask, "interleaved.mask"); - NewStoreInstr = Builder.CreateMaskedStore( - IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); - } - else - NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], - Group->getAlignment()); - - Group->addMetadata(NewStoreInstr); - } -} - -void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, - VectorParts *BlockInMask) { - // Attempt to issue a wide load. - LoadInst *LI = dyn_cast<LoadInst>(Instr); - StoreInst *SI = dyn_cast<StoreInst>(Instr); - - assert((LI || SI) && "Invalid Load/Store instruction"); - - LoopVectorizationCostModel::InstWidening Decision = - Cost->getWideningDecision(Instr, VF); - assert(Decision != LoopVectorizationCostModel::CM_Unknown && - "CM decision should be taken at this point"); - if (Decision == LoopVectorizationCostModel::CM_Interleave) - return vectorizeInterleaveGroup(Instr); - - Type *ScalarDataTy = getMemInstValueType(Instr); - Type *DataTy = VectorType::get(ScalarDataTy, VF); - Value *Ptr = getLoadStorePointerOperand(Instr); - unsigned Alignment = getLoadStoreAlignment(Instr); - // An alignment of 0 means target abi alignment. We need to use the scalar's - // target abi alignment in such a case. - const DataLayout &DL = Instr->getModule()->getDataLayout(); - if (!Alignment) - Alignment = DL.getABITypeAlignment(ScalarDataTy); - unsigned AddressSpace = getLoadStoreAddressSpace(Instr); - - // Determine if the pointer operand of the access is either consecutive or - // reverse consecutive. - bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); - bool ConsecutiveStride = - Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); - bool CreateGatherScatter = - (Decision == LoopVectorizationCostModel::CM_GatherScatter); - - // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector - // gather/scatter. Otherwise Decision should have been to Scalarize. - assert((ConsecutiveStride || CreateGatherScatter) && - "The instruction should be scalarized"); - - // Handle consecutive loads/stores. - if (ConsecutiveStride) - Ptr = getOrCreateScalarValue(Ptr, {0, 0}); - - VectorParts Mask; - bool isMaskRequired = BlockInMask; - if (isMaskRequired) - Mask = *BlockInMask; - - bool InBounds = false; - if (auto *gep = dyn_cast<GetElementPtrInst>( - getLoadStorePointerOperand(Instr)->stripPointerCasts())) - InBounds = gep->isInBounds(); - - const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { - // Calculate the pointer for the specific unroll-part. - GetElementPtrInst *PartPtr = nullptr; - - if (Reverse) { - // If the address is consecutive but reversed, then the - // wide store needs to start at the last vector element. - PartPtr = cast<GetElementPtrInst>( - Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); - PartPtr->setIsInBounds(InBounds); - PartPtr = cast<GetElementPtrInst>( - Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); - PartPtr->setIsInBounds(InBounds); - if (isMaskRequired) // Reverse of a null all-one mask is a null mask. - Mask[Part] = reverseVector(Mask[Part]); - } else { - PartPtr = cast<GetElementPtrInst>( - Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); - PartPtr->setIsInBounds(InBounds); - } - - return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); - }; - - // Handle Stores: - if (SI) { - setDebugLocFromInst(Builder, SI); - - for (unsigned Part = 0; Part < UF; ++Part) { - Instruction *NewSI = nullptr; - Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); - if (CreateGatherScatter) { - Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; - Value *VectorGep = getOrCreateVectorValue(Ptr, Part); - NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, - MaskPart); - } else { - if (Reverse) { - // If we store to reverse consecutive memory locations, then we need - // to reverse the order of elements in the stored value. - StoredVal = reverseVector(StoredVal); - // We don't want to update the value in the map as it might be used in - // another expression. So don't call resetVectorValue(StoredVal). - } - auto *VecPtr = CreateVecPtr(Part, Ptr); - if (isMaskRequired) - NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, - Mask[Part]); - else - NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); - } - addMetadata(NewSI, SI); - } - return; - } - - // Handle loads. - assert(LI && "Must have a load instruction"); - setDebugLocFromInst(Builder, LI); - for (unsigned Part = 0; Part < UF; ++Part) { - Value *NewLI; - if (CreateGatherScatter) { - Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; - Value *VectorGep = getOrCreateVectorValue(Ptr, Part); - NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, - nullptr, "wide.masked.gather"); - addMetadata(NewLI, LI); - } else { - auto *VecPtr = CreateVecPtr(Part, Ptr); - if (isMaskRequired) - NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], - UndefValue::get(DataTy), - "wide.masked.load"); - else - NewLI = - Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); - - // Add metadata to the load, but setVectorValue to the reverse shuffle. - addMetadata(NewLI, LI); - if (Reverse) - NewLI = reverseVector(NewLI); - } - VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); - } -} - -void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, - const VPIteration &Instance, - bool IfPredicateInstr) { - assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); - - setDebugLocFromInst(Builder, Instr); - - // Does this instruction return a value ? - bool IsVoidRetTy = Instr->getType()->isVoidTy(); - - Instruction *Cloned = Instr->clone(); - if (!IsVoidRetTy) - Cloned->setName(Instr->getName() + ".cloned"); - - // Replace the operands of the cloned instructions with their scalar - // equivalents in the new loop. - for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { - auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); - Cloned->setOperand(op, NewOp); - } - addNewMetadata(Cloned, Instr); - - // Place the cloned scalar in the new loop. - Builder.Insert(Cloned); - - // Add the cloned scalar to the scalar map entry. - VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); - - // If we just cloned a new assumption, add it the assumption cache. - if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) - if (II->getIntrinsicID() == Intrinsic::assume) - AC->registerAssumption(II); - - // End if-block. - if (IfPredicateInstr) - PredicatedInstructions.push_back(Cloned); -} - -PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, - Value *End, Value *Step, - Instruction *DL) { - BasicBlock *Header = L->getHeader(); - BasicBlock *Latch = L->getLoopLatch(); - // As we're just creating this loop, it's possible no latch exists - // yet. If so, use the header as this will be a single block loop. - if (!Latch) - Latch = Header; - - IRBuilder<> Builder(&*Header->getFirstInsertionPt()); - Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); - setDebugLocFromInst(Builder, OldInst); - auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); - - Builder.SetInsertPoint(Latch->getTerminator()); - setDebugLocFromInst(Builder, OldInst); - - // Create i+1 and fill the PHINode. - Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); - Induction->addIncoming(Start, L->getLoopPreheader()); - Induction->addIncoming(Next, Latch); - // Create the compare. - Value *ICmp = Builder.CreateICmpEQ(Next, End); - Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); - - // Now we have two terminators. Remove the old one from the block. - Latch->getTerminator()->eraseFromParent(); - - return Induction; -} - -Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { - if (TripCount) - return TripCount; - - assert(L && "Create Trip Count for null loop."); - IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); - // Find the loop boundaries. - ScalarEvolution *SE = PSE.getSE(); - const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); - assert(BackedgeTakenCount != SE->getCouldNotCompute() && - "Invalid loop count"); - - Type *IdxTy = Legal->getWidestInductionType(); - assert(IdxTy && "No type for induction"); - - // The exit count might have the type of i64 while the phi is i32. This can - // happen if we have an induction variable that is sign extended before the - // compare. The only way that we get a backedge taken count is that the - // induction variable was signed and as such will not overflow. In such a case - // truncation is legal. - if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > - IdxTy->getPrimitiveSizeInBits()) - BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); - BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); - - // Get the total trip count from the count by adding 1. - const SCEV *ExitCount = SE->getAddExpr( - BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); - - const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); - - // Expand the trip count and place the new instructions in the preheader. - // Notice that the pre-header does not change, only the loop body. - SCEVExpander Exp(*SE, DL, "induction"); - - // Count holds the overall loop count (N). - TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), - L->getLoopPreheader()->getTerminator()); - - if (TripCount->getType()->isPointerTy()) - TripCount = - CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", - L->getLoopPreheader()->getTerminator()); - - return TripCount; -} - -Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { - if (VectorTripCount) - return VectorTripCount; - - Value *TC = getOrCreateTripCount(L); - IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); - - Type *Ty = TC->getType(); - Constant *Step = ConstantInt::get(Ty, VF * UF); - - // If the tail is to be folded by masking, round the number of iterations N - // up to a multiple of Step instead of rounding down. This is done by first - // adding Step-1 and then rounding down. Note that it's ok if this addition - // overflows: the vector induction variable will eventually wrap to zero given - // that it starts at zero and its Step is a power of two; the loop will then - // exit, with the last early-exit vector comparison also producing all-true. - if (Cost->foldTailByMasking()) { - assert(isPowerOf2_32(VF * UF) && - "VF*UF must be a power of 2 when folding tail by masking"); - TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); - } - - // Now we need to generate the expression for the part of the loop that the - // vectorized body will execute. This is equal to N - (N % Step) if scalar - // iterations are not required for correctness, or N - Step, otherwise. Step - // is equal to the vectorization factor (number of SIMD elements) times the - // unroll factor (number of SIMD instructions). - Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); - - // If there is a non-reversed interleaved group that may speculatively access - // memory out-of-bounds, we need to ensure that there will be at least one - // iteration of the scalar epilogue loop. Thus, if the step evenly divides - // the trip count, we set the remainder to be equal to the step. If the step - // does not evenly divide the trip count, no adjustment is necessary since - // there will already be scalar iterations. Note that the minimum iterations - // check ensures that N >= Step. - if (VF > 1 && Cost->requiresScalarEpilogue()) { - auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); - R = Builder.CreateSelect(IsZero, Step, R); - } - - VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); - - return VectorTripCount; -} - -Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, - const DataLayout &DL) { - // Verify that V is a vector type with same number of elements as DstVTy. - unsigned VF = DstVTy->getNumElements(); - VectorType *SrcVecTy = cast<VectorType>(V->getType()); - assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); - Type *SrcElemTy = SrcVecTy->getElementType(); - Type *DstElemTy = DstVTy->getElementType(); - assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && - "Vector elements must have same size"); - - // Do a direct cast if element types are castable. - if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { - return Builder.CreateBitOrPointerCast(V, DstVTy); - } - // V cannot be directly casted to desired vector type. - // May happen when V is a floating point vector but DstVTy is a vector of - // pointers or vice-versa. Handle this using a two-step bitcast using an - // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. - assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && - "Only one type should be a pointer type"); - assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && - "Only one type should be a floating point type"); - Type *IntTy = - IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); - VectorType *VecIntTy = VectorType::get(IntTy, VF); - Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); - return Builder.CreateBitOrPointerCast(CastVal, DstVTy); -} - -void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, - BasicBlock *Bypass) { - Value *Count = getOrCreateTripCount(L); - BasicBlock *BB = L->getLoopPreheader(); - IRBuilder<> Builder(BB->getTerminator()); - - // Generate code to check if the loop's trip count is less than VF * UF, or - // equal to it in case a scalar epilogue is required; this implies that the - // vector trip count is zero. This check also covers the case where adding one - // to the backedge-taken count overflowed leading to an incorrect trip count - // of zero. In this case we will also jump to the scalar loop. - auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE - : ICmpInst::ICMP_ULT; - - // If tail is to be folded, vector loop takes care of all iterations. - Value *CheckMinIters = Builder.getFalse(); - if (!Cost->foldTailByMasking()) - CheckMinIters = Builder.CreateICmp( - P, Count, ConstantInt::get(Count->getType(), VF * UF), - "min.iters.check"); - - BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); - // Update dominator tree immediately if the generated block is a - // LoopBypassBlock because SCEV expansions to generate loop bypass - // checks may query it before the current function is finished. - DT->addNewBlock(NewBB, BB); - if (L->getParentLoop()) - L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); - ReplaceInstWithInst(BB->getTerminator(), - BranchInst::Create(Bypass, NewBB, CheckMinIters)); - LoopBypassBlocks.push_back(BB); -} - -void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { - BasicBlock *BB = L->getLoopPreheader(); - - // Generate the code to check that the SCEV assumptions that we made. - // We want the new basic block to start at the first instruction in a - // sequence of instructions that form a check. - SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), - "scev.check"); - Value *SCEVCheck = - Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); - - if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) - if (C->isZero()) - return; - - assert(!Cost->foldTailByMasking() && - "Cannot SCEV check stride or overflow when folding tail"); - // Create a new block containing the stride check. - BB->setName("vector.scevcheck"); - auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); - // Update dominator tree immediately if the generated block is a - // LoopBypassBlock because SCEV expansions to generate loop bypass - // checks may query it before the current function is finished. - DT->addNewBlock(NewBB, BB); - if (L->getParentLoop()) - L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); - ReplaceInstWithInst(BB->getTerminator(), - BranchInst::Create(Bypass, NewBB, SCEVCheck)); - LoopBypassBlocks.push_back(BB); - AddedSafetyChecks = true; -} - -void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { - // VPlan-native path does not do any analysis for runtime checks currently. - if (EnableVPlanNativePath) - return; - - BasicBlock *BB = L->getLoopPreheader(); - - // Generate the code that checks in runtime if arrays overlap. We put the - // checks into a separate block to make the more common case of few elements - // faster. - Instruction *FirstCheckInst; - Instruction *MemRuntimeCheck; - std::tie(FirstCheckInst, MemRuntimeCheck) = - Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); - if (!MemRuntimeCheck) - return; - - assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); - // Create a new block containing the memory check. - BB->setName("vector.memcheck"); - auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); - // Update dominator tree immediately if the generated block is a - // LoopBypassBlock because SCEV expansions to generate loop bypass - // checks may query it before the current function is finished. - DT->addNewBlock(NewBB, BB); - if (L->getParentLoop()) - L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); - ReplaceInstWithInst(BB->getTerminator(), - BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); - LoopBypassBlocks.push_back(BB); - AddedSafetyChecks = true; - - // We currently don't use LoopVersioning for the actual loop cloning but we - // still use it to add the noalias metadata. - LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, - PSE.getSE()); - LVer->prepareNoAliasMetadata(); -} - -Value *InnerLoopVectorizer::emitTransformedIndex( - IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, - const InductionDescriptor &ID) const { - - SCEVExpander Exp(*SE, DL, "induction"); - auto Step = ID.getStep(); - auto StartValue = ID.getStartValue(); - assert(Index->getType() == Step->getType() && - "Index type does not match StepValue type"); - - // Note: the IR at this point is broken. We cannot use SE to create any new - // SCEV and then expand it, hoping that SCEV's simplification will give us - // a more optimal code. Unfortunately, attempt of doing so on invalid IR may - // lead to various SCEV crashes. So all we can do is to use builder and rely - // on InstCombine for future simplifications. Here we handle some trivial - // cases only. - auto CreateAdd = [&B](Value *X, Value *Y) { - assert(X->getType() == Y->getType() && "Types don't match!"); - if (auto *CX = dyn_cast<ConstantInt>(X)) - if (CX->isZero()) - return Y; - if (auto *CY = dyn_cast<ConstantInt>(Y)) - if (CY->isZero()) - return X; - return B.CreateAdd(X, Y); - }; - - auto CreateMul = [&B](Value *X, Value *Y) { - assert(X->getType() == Y->getType() && "Types don't match!"); - if (auto *CX = dyn_cast<ConstantInt>(X)) - if (CX->isOne()) - return Y; - if (auto *CY = dyn_cast<ConstantInt>(Y)) - if (CY->isOne()) - return X; - return B.CreateMul(X, Y); - }; - - switch (ID.getKind()) { - case InductionDescriptor::IK_IntInduction: { - assert(Index->getType() == StartValue->getType() && - "Index type does not match StartValue type"); - if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) - return B.CreateSub(StartValue, Index); - auto *Offset = CreateMul( - Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); - return CreateAdd(StartValue, Offset); - } - case InductionDescriptor::IK_PtrInduction: { - assert(isa<SCEVConstant>(Step) && - "Expected constant step for pointer induction"); - return B.CreateGEP( - StartValue->getType()->getPointerElementType(), StartValue, - CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), - &*B.GetInsertPoint()))); - } - case InductionDescriptor::IK_FpInduction: { - assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); - auto InductionBinOp = ID.getInductionBinOp(); - assert(InductionBinOp && - (InductionBinOp->getOpcode() == Instruction::FAdd || - InductionBinOp->getOpcode() == Instruction::FSub) && - "Original bin op should be defined for FP induction"); - - Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); - - // Floating point operations had to be 'fast' to enable the induction. - FastMathFlags Flags; - Flags.setFast(); - - Value *MulExp = B.CreateFMul(StepValue, Index); - if (isa<Instruction>(MulExp)) - // We have to check, the MulExp may be a constant. - cast<Instruction>(MulExp)->setFastMathFlags(Flags); - - Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, - "induction"); - if (isa<Instruction>(BOp)) - cast<Instruction>(BOp)->setFastMathFlags(Flags); - - return BOp; - } - case InductionDescriptor::IK_NoInduction: - return nullptr; - } - llvm_unreachable("invalid enum"); -} - -BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { - /* - In this function we generate a new loop. The new loop will contain - the vectorized instructions while the old loop will continue to run the - scalar remainder. - - [ ] <-- loop iteration number check. - / | - / v - | [ ] <-- vector loop bypass (may consist of multiple blocks). - | / | - | / v - || [ ] <-- vector pre header. - |/ | - | v - | [ ] \ - | [ ]_| <-- vector loop. - | | - | v - | -[ ] <--- middle-block. - | / | - | / v - -|- >[ ] <--- new preheader. - | | - | v - | [ ] \ - | [ ]_| <-- old scalar loop to handle remainder. - \ | - \ v - >[ ] <-- exit block. - ... - */ - - BasicBlock *OldBasicBlock = OrigLoop->getHeader(); - BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); - BasicBlock *ExitBlock = OrigLoop->getExitBlock(); - MDNode *OrigLoopID = OrigLoop->getLoopID(); - assert(VectorPH && "Invalid loop structure"); - assert(ExitBlock && "Must have an exit block"); - - // Some loops have a single integer induction variable, while other loops - // don't. One example is c++ iterators that often have multiple pointer - // induction variables. In the code below we also support a case where we - // don't have a single induction variable. - // - // We try to obtain an induction variable from the original loop as hard - // as possible. However if we don't find one that: - // - is an integer - // - counts from zero, stepping by one - // - is the size of the widest induction variable type - // then we create a new one. - OldInduction = Legal->getPrimaryInduction(); - Type *IdxTy = Legal->getWidestInductionType(); - - // Split the single block loop into the two loop structure described above. - BasicBlock *VecBody = - VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); - BasicBlock *MiddleBlock = - VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); - BasicBlock *ScalarPH = - MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); - - // Create and register the new vector loop. - Loop *Lp = LI->AllocateLoop(); - Loop *ParentLoop = OrigLoop->getParentLoop(); - - // Insert the new loop into the loop nest and register the new basic blocks - // before calling any utilities such as SCEV that require valid LoopInfo. - if (ParentLoop) { - ParentLoop->addChildLoop(Lp); - ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); - ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); - } else { - LI->addTopLevelLoop(Lp); - } - Lp->addBasicBlockToLoop(VecBody, *LI); - - // Find the loop boundaries. - Value *Count = getOrCreateTripCount(Lp); - - Value *StartIdx = ConstantInt::get(IdxTy, 0); - - // Now, compare the new count to zero. If it is zero skip the vector loop and - // jump to the scalar loop. This check also covers the case where the - // backedge-taken count is uint##_max: adding one to it will overflow leading - // to an incorrect trip count of zero. In this (rare) case we will also jump - // to the scalar loop. - emitMinimumIterationCountCheck(Lp, ScalarPH); - - // Generate the code to check any assumptions that we've made for SCEV - // expressions. - emitSCEVChecks(Lp, ScalarPH); - - // Generate the code that checks in runtime if arrays overlap. We put the - // checks into a separate block to make the more common case of few elements - // faster. - emitMemRuntimeChecks(Lp, ScalarPH); - - // Generate the induction variable. - // The loop step is equal to the vectorization factor (num of SIMD elements) - // times the unroll factor (num of SIMD instructions). - Value *CountRoundDown = getOrCreateVectorTripCount(Lp); - Constant *Step = ConstantInt::get(IdxTy, VF * UF); - Induction = - createInductionVariable(Lp, StartIdx, CountRoundDown, Step, - getDebugLocFromInstOrOperands(OldInduction)); - - // We are going to resume the execution of the scalar loop. - // Go over all of the induction variables that we found and fix the - // PHIs that are left in the scalar version of the loop. - // The starting values of PHI nodes depend on the counter of the last - // iteration in the vectorized loop. - // If we come from a bypass edge then we need to start from the original - // start value. - - // This variable saves the new starting index for the scalar loop. It is used - // to test if there are any tail iterations left once the vector loop has - // completed. - LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); - for (auto &InductionEntry : *List) { - PHINode *OrigPhi = InductionEntry.first; - InductionDescriptor II = InductionEntry.second; - - // Create phi nodes to merge from the backedge-taken check block. - PHINode *BCResumeVal = PHINode::Create( - OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); - // Copy original phi DL over to the new one. - BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); - Value *&EndValue = IVEndValues[OrigPhi]; - if (OrigPhi == OldInduction) { - // We know what the end value is. - EndValue = CountRoundDown; - } else { - IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); - Type *StepType = II.getStep()->getType(); - Instruction::CastOps CastOp = - CastInst::getCastOpcode(CountRoundDown, true, StepType, true); - Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); - const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); - EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); - EndValue->setName("ind.end"); - } - - // The new PHI merges the original incoming value, in case of a bypass, - // or the value at the end of the vectorized loop. - BCResumeVal->addIncoming(EndValue, MiddleBlock); - - // Fix the scalar body counter (PHI node). - // The old induction's phi node in the scalar body needs the truncated - // value. - for (BasicBlock *BB : LoopBypassBlocks) - BCResumeVal->addIncoming(II.getStartValue(), BB); - OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); - } - - // We need the OrigLoop (scalar loop part) latch terminator to help - // produce correct debug info for the middle block BB instructions. - // The legality check stage guarantees that the loop will have a single - // latch. - assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && - "Scalar loop latch terminator isn't a branch"); - BranchInst *ScalarLatchBr = - cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); - - // Add a check in the middle block to see if we have completed - // all of the iterations in the first vector loop. - // If (N - N%VF) == N, then we *don't* need to run the remainder. - // If tail is to be folded, we know we don't need to run the remainder. - Value *CmpN = Builder.getTrue(); - if (!Cost->foldTailByMasking()) { - CmpN = - CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, - CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); - - // Here we use the same DebugLoc as the scalar loop latch branch instead - // of the corresponding compare because they may have ended up with - // different line numbers and we want to avoid awkward line stepping while - // debugging. Eg. if the compare has got a line number inside the loop. - cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); - } - - BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); - BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); - ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); - - // Get ready to start creating new instructions into the vectorized body. - Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); - - // Save the state. - LoopVectorPreHeader = Lp->getLoopPreheader(); - LoopScalarPreHeader = ScalarPH; - LoopMiddleBlock = MiddleBlock; - LoopExitBlock = ExitBlock; - LoopVectorBody = VecBody; - LoopScalarBody = OldBasicBlock; - - Optional<MDNode *> VectorizedLoopID = - makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, - LLVMLoopVectorizeFollowupVectorized}); - if (VectorizedLoopID.hasValue()) { - Lp->setLoopID(VectorizedLoopID.getValue()); - - // Do not setAlreadyVectorized if loop attributes have been defined - // explicitly. - return LoopVectorPreHeader; - } - - // Keep all loop hints from the original loop on the vector loop (we'll - // replace the vectorizer-specific hints below). - if (MDNode *LID = OrigLoop->getLoopID()) - Lp->setLoopID(LID); - - LoopVectorizeHints Hints(Lp, true, *ORE); - Hints.setAlreadyVectorized(); - - return LoopVectorPreHeader; -} - -// Fix up external users of the induction variable. At this point, we are -// in LCSSA form, with all external PHIs that use the IV having one input value, -// coming from the remainder loop. We need those PHIs to also have a correct -// value for the IV when arriving directly from the middle block. -void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, - const InductionDescriptor &II, - Value *CountRoundDown, Value *EndValue, - BasicBlock *MiddleBlock) { - // There are two kinds of external IV usages - those that use the value - // computed in the last iteration (the PHI) and those that use the penultimate - // value (the value that feeds into the phi from the loop latch). - // We allow both, but they, obviously, have different values. - - assert(OrigLoop->getExitBlock() && "Expected a single exit block"); - - DenseMap<Value *, Value *> MissingVals; - - // An external user of the last iteration's value should see the value that - // the remainder loop uses to initialize its own IV. - Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); - for (User *U : PostInc->users()) { - Instruction *UI = cast<Instruction>(U); - if (!OrigLoop->contains(UI)) { - assert(isa<PHINode>(UI) && "Expected LCSSA form"); - MissingVals[UI] = EndValue; - } - } - - // An external user of the penultimate value need to see EndValue - Step. - // The simplest way to get this is to recompute it from the constituent SCEVs, - // that is Start + (Step * (CRD - 1)). - for (User *U : OrigPhi->users()) { - auto *UI = cast<Instruction>(U); - if (!OrigLoop->contains(UI)) { - const DataLayout &DL = - OrigLoop->getHeader()->getModule()->getDataLayout(); - assert(isa<PHINode>(UI) && "Expected LCSSA form"); - - IRBuilder<> B(MiddleBlock->getTerminator()); - Value *CountMinusOne = B.CreateSub( - CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); - Value *CMO = - !II.getStep()->getType()->isIntegerTy() - ? B.CreateCast(Instruction::SIToFP, CountMinusOne, - II.getStep()->getType()) - : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); - CMO->setName("cast.cmo"); - Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); - Escape->setName("ind.escape"); - MissingVals[UI] = Escape; - } - } - - for (auto &I : MissingVals) { - PHINode *PHI = cast<PHINode>(I.first); - // One corner case we have to handle is two IVs "chasing" each-other, - // that is %IV2 = phi [...], [ %IV1, %latch ] - // In this case, if IV1 has an external use, we need to avoid adding both - // "last value of IV1" and "penultimate value of IV2". So, verify that we - // don't already have an incoming value for the middle block. - if (PHI->getBasicBlockIndex(MiddleBlock) == -1) - PHI->addIncoming(I.second, MiddleBlock); - } -} - -namespace { - -struct CSEDenseMapInfo { - static bool canHandle(const Instruction *I) { - return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || - isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); - } - - static inline Instruction *getEmptyKey() { - return DenseMapInfo<Instruction *>::getEmptyKey(); - } - - static inline Instruction *getTombstoneKey() { - return DenseMapInfo<Instruction *>::getTombstoneKey(); - } - - static unsigned getHashValue(const Instruction *I) { - assert(canHandle(I) && "Unknown instruction!"); - return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), - I->value_op_end())); - } - - static bool isEqual(const Instruction *LHS, const Instruction *RHS) { - if (LHS == getEmptyKey() || RHS == getEmptyKey() || - LHS == getTombstoneKey() || RHS == getTombstoneKey()) - return LHS == RHS; - return LHS->isIdenticalTo(RHS); - } -}; - -} // end anonymous namespace - -///Perform cse of induction variable instructions. -static void cse(BasicBlock *BB) { - // Perform simple cse. - SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { - Instruction *In = &*I++; - - if (!CSEDenseMapInfo::canHandle(In)) - continue; - - // Check if we can replace this instruction with any of the - // visited instructions. - if (Instruction *V = CSEMap.lookup(In)) { - In->replaceAllUsesWith(V); - In->eraseFromParent(); - continue; - } - - CSEMap[In] = In; - } -} - -unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, - unsigned VF, - bool &NeedToScalarize) { - Function *F = CI->getCalledFunction(); - StringRef FnName = CI->getCalledFunction()->getName(); - Type *ScalarRetTy = CI->getType(); - SmallVector<Type *, 4> Tys, ScalarTys; - for (auto &ArgOp : CI->arg_operands()) - ScalarTys.push_back(ArgOp->getType()); - - // Estimate cost of scalarized vector call. The source operands are assumed - // to be vectors, so we need to extract individual elements from there, - // execute VF scalar calls, and then gather the result into the vector return - // value. - unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); - if (VF == 1) - return ScalarCallCost; - - // Compute corresponding vector type for return value and arguments. - Type *RetTy = ToVectorTy(ScalarRetTy, VF); - for (Type *ScalarTy : ScalarTys) - Tys.push_back(ToVectorTy(ScalarTy, VF)); - - // Compute costs of unpacking argument values for the scalar calls and - // packing the return values to a vector. - unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); - - unsigned Cost = ScalarCallCost * VF + ScalarizationCost; - - // If we can't emit a vector call for this function, then the currently found - // cost is the cost we need to return. - NeedToScalarize = true; - if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) - return Cost; - - // If the corresponding vector cost is cheaper, return its cost. - unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); - if (VectorCallCost < Cost) { - NeedToScalarize = false; - return VectorCallCost; - } - return Cost; -} - -unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, - unsigned VF) { - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - assert(ID && "Expected intrinsic call!"); - - FastMathFlags FMF; - if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) - FMF = FPMO->getFastMathFlags(); - - SmallVector<Value *, 4> Operands(CI->arg_operands()); - return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); -} - -static Type *smallestIntegerVectorType(Type *T1, Type *T2) { - auto *I1 = cast<IntegerType>(T1->getVectorElementType()); - auto *I2 = cast<IntegerType>(T2->getVectorElementType()); - return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; -} -static Type *largestIntegerVectorType(Type *T1, Type *T2) { - auto *I1 = cast<IntegerType>(T1->getVectorElementType()); - auto *I2 = cast<IntegerType>(T2->getVectorElementType()); - return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; -} - -void InnerLoopVectorizer::truncateToMinimalBitwidths() { - // For every instruction `I` in MinBWs, truncate the operands, create a - // truncated version of `I` and reextend its result. InstCombine runs - // later and will remove any ext/trunc pairs. - SmallPtrSet<Value *, 4> Erased; - for (const auto &KV : Cost->getMinimalBitwidths()) { - // If the value wasn't vectorized, we must maintain the original scalar - // type. The absence of the value from VectorLoopValueMap indicates that it - // wasn't vectorized. - if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) - continue; - for (unsigned Part = 0; Part < UF; ++Part) { - Value *I = getOrCreateVectorValue(KV.first, Part); - if (Erased.find(I) != Erased.end() || I->use_empty() || - !isa<Instruction>(I)) - continue; - Type *OriginalTy = I->getType(); - Type *ScalarTruncatedTy = - IntegerType::get(OriginalTy->getContext(), KV.second); - Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, - OriginalTy->getVectorNumElements()); - if (TruncatedTy == OriginalTy) - continue; - - IRBuilder<> B(cast<Instruction>(I)); - auto ShrinkOperand = [&](Value *V) -> Value * { - if (auto *ZI = dyn_cast<ZExtInst>(V)) - if (ZI->getSrcTy() == TruncatedTy) - return ZI->getOperand(0); - return B.CreateZExtOrTrunc(V, TruncatedTy); - }; - - // The actual instruction modification depends on the instruction type, - // unfortunately. - Value *NewI = nullptr; - if (auto *BO = dyn_cast<BinaryOperator>(I)) { - NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), - ShrinkOperand(BO->getOperand(1))); - - // Any wrapping introduced by shrinking this operation shouldn't be - // considered undefined behavior. So, we can't unconditionally copy - // arithmetic wrapping flags to NewI. - cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); - } else if (auto *CI = dyn_cast<ICmpInst>(I)) { - NewI = - B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), - ShrinkOperand(CI->getOperand(1))); - } else if (auto *SI = dyn_cast<SelectInst>(I)) { - NewI = B.CreateSelect(SI->getCondition(), - ShrinkOperand(SI->getTrueValue()), - ShrinkOperand(SI->getFalseValue())); - } else if (auto *CI = dyn_cast<CastInst>(I)) { - switch (CI->getOpcode()) { - default: - llvm_unreachable("Unhandled cast!"); - case Instruction::Trunc: - NewI = ShrinkOperand(CI->getOperand(0)); - break; - case Instruction::SExt: - NewI = B.CreateSExtOrTrunc( - CI->getOperand(0), - smallestIntegerVectorType(OriginalTy, TruncatedTy)); - break; - case Instruction::ZExt: - NewI = B.CreateZExtOrTrunc( - CI->getOperand(0), - smallestIntegerVectorType(OriginalTy, TruncatedTy)); - break; - } - } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { - auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); - auto *O0 = B.CreateZExtOrTrunc( - SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); - auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); - auto *O1 = B.CreateZExtOrTrunc( - SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); - - NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); - } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { - // Don't do anything with the operands, just extend the result. - continue; - } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { - auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); - auto *O0 = B.CreateZExtOrTrunc( - IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); - auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); - NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); - } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { - auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); - auto *O0 = B.CreateZExtOrTrunc( - EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); - NewI = B.CreateExtractElement(O0, EE->getOperand(2)); - } else { - // If we don't know what to do, be conservative and don't do anything. - continue; - } - - // Lastly, extend the result. - NewI->takeName(cast<Instruction>(I)); - Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); - I->replaceAllUsesWith(Res); - cast<Instruction>(I)->eraseFromParent(); - Erased.insert(I); - VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); - } - } - - // We'll have created a bunch of ZExts that are now parentless. Clean up. - for (const auto &KV : Cost->getMinimalBitwidths()) { - // If the value wasn't vectorized, we must maintain the original scalar - // type. The absence of the value from VectorLoopValueMap indicates that it - // wasn't vectorized. - if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) - continue; - for (unsigned Part = 0; Part < UF; ++Part) { - Value *I = getOrCreateVectorValue(KV.first, Part); - ZExtInst *Inst = dyn_cast<ZExtInst>(I); - if (Inst && Inst->use_empty()) { - Value *NewI = Inst->getOperand(0); - Inst->eraseFromParent(); - VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); - } - } - } -} - -void InnerLoopVectorizer::fixVectorizedLoop() { - // Insert truncates and extends for any truncated instructions as hints to - // InstCombine. - if (VF > 1) - truncateToMinimalBitwidths(); - - // Fix widened non-induction PHIs by setting up the PHI operands. - if (OrigPHIsToFix.size()) { - assert(EnableVPlanNativePath && - "Unexpected non-induction PHIs for fixup in non VPlan-native path"); - fixNonInductionPHIs(); - } - - // At this point every instruction in the original loop is widened to a - // vector form. Now we need to fix the recurrences in the loop. These PHI - // nodes are currently empty because we did not want to introduce cycles. - // This is the second stage of vectorizing recurrences. - fixCrossIterationPHIs(); - - // Update the dominator tree. - // - // FIXME: After creating the structure of the new loop, the dominator tree is - // no longer up-to-date, and it remains that way until we update it - // here. An out-of-date dominator tree is problematic for SCEV, - // because SCEVExpander uses it to guide code generation. The - // vectorizer use SCEVExpanders in several places. Instead, we should - // keep the dominator tree up-to-date as we go. - updateAnalysis(); - - // Fix-up external users of the induction variables. - for (auto &Entry : *Legal->getInductionVars()) - fixupIVUsers(Entry.first, Entry.second, - getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), - IVEndValues[Entry.first], LoopMiddleBlock); - - fixLCSSAPHIs(); - for (Instruction *PI : PredicatedInstructions) - sinkScalarOperands(&*PI); - - // Remove redundant induction instructions. - cse(LoopVectorBody); -} - -void InnerLoopVectorizer::fixCrossIterationPHIs() { - // In order to support recurrences we need to be able to vectorize Phi nodes. - // Phi nodes have cycles, so we need to vectorize them in two stages. This is - // stage #2: We now need to fix the recurrences by adding incoming edges to - // the currently empty PHI nodes. At this point every instruction in the - // original loop is widened to a vector form so we can use them to construct - // the incoming edges. - for (PHINode &Phi : OrigLoop->getHeader()->phis()) { - // Handle first-order recurrences and reductions that need to be fixed. - if (Legal->isFirstOrderRecurrence(&Phi)) - fixFirstOrderRecurrence(&Phi); - else if (Legal->isReductionVariable(&Phi)) - fixReduction(&Phi); - } -} - -void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { - // This is the second phase of vectorizing first-order recurrences. An - // overview of the transformation is described below. Suppose we have the - // following loop. - // - // for (int i = 0; i < n; ++i) - // b[i] = a[i] - a[i - 1]; - // - // There is a first-order recurrence on "a". For this loop, the shorthand - // scalar IR looks like: - // - // scalar.ph: - // s_init = a[-1] - // br scalar.body - // - // scalar.body: - // i = phi [0, scalar.ph], [i+1, scalar.body] - // s1 = phi [s_init, scalar.ph], [s2, scalar.body] - // s2 = a[i] - // b[i] = s2 - s1 - // br cond, scalar.body, ... - // - // In this example, s1 is a recurrence because it's value depends on the - // previous iteration. In the first phase of vectorization, we created a - // temporary value for s1. We now complete the vectorization and produce the - // shorthand vector IR shown below (for VF = 4, UF = 1). - // - // vector.ph: - // v_init = vector(..., ..., ..., a[-1]) - // br vector.body - // - // vector.body - // i = phi [0, vector.ph], [i+4, vector.body] - // v1 = phi [v_init, vector.ph], [v2, vector.body] - // v2 = a[i, i+1, i+2, i+3]; - // v3 = vector(v1(3), v2(0, 1, 2)) - // b[i, i+1, i+2, i+3] = v2 - v3 - // br cond, vector.body, middle.block - // - // middle.block: - // x = v2(3) - // br scalar.ph - // - // scalar.ph: - // s_init = phi [x, middle.block], [a[-1], otherwise] - // br scalar.body - // - // After execution completes the vector loop, we extract the next value of - // the recurrence (x) to use as the initial value in the scalar loop. - - // Get the original loop preheader and single loop latch. - auto *Preheader = OrigLoop->getLoopPreheader(); - auto *Latch = OrigLoop->getLoopLatch(); - - // Get the initial and previous values of the scalar recurrence. - auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); - auto *Previous = Phi->getIncomingValueForBlock(Latch); - - // Create a vector from the initial value. - auto *VectorInit = ScalarInit; - if (VF > 1) { - Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); - VectorInit = Builder.CreateInsertElement( - UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, - Builder.getInt32(VF - 1), "vector.recur.init"); - } - - // We constructed a temporary phi node in the first phase of vectorization. - // This phi node will eventually be deleted. - Builder.SetInsertPoint( - cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); - - // Create a phi node for the new recurrence. The current value will either be - // the initial value inserted into a vector or loop-varying vector value. - auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); - VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); - - // Get the vectorized previous value of the last part UF - 1. It appears last - // among all unrolled iterations, due to the order of their construction. - Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); - - // Set the insertion point after the previous value if it is an instruction. - // Note that the previous value may have been constant-folded so it is not - // guaranteed to be an instruction in the vector loop. Also, if the previous - // value is a phi node, we should insert after all the phi nodes to avoid - // breaking basic block verification. - if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || - isa<PHINode>(PreviousLastPart)) - Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); - else - Builder.SetInsertPoint( - &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); - - // We will construct a vector for the recurrence by combining the values for - // the current and previous iterations. This is the required shuffle mask. - SmallVector<Constant *, 8> ShuffleMask(VF); - ShuffleMask[0] = Builder.getInt32(VF - 1); - for (unsigned I = 1; I < VF; ++I) - ShuffleMask[I] = Builder.getInt32(I + VF - 1); - - // The vector from which to take the initial value for the current iteration - // (actual or unrolled). Initially, this is the vector phi node. - Value *Incoming = VecPhi; - - // Shuffle the current and previous vector and update the vector parts. - for (unsigned Part = 0; Part < UF; ++Part) { - Value *PreviousPart = getOrCreateVectorValue(Previous, Part); - Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); - auto *Shuffle = - VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, - ConstantVector::get(ShuffleMask)) - : Incoming; - PhiPart->replaceAllUsesWith(Shuffle); - cast<Instruction>(PhiPart)->eraseFromParent(); - VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); - Incoming = PreviousPart; - } - - // Fix the latch value of the new recurrence in the vector loop. - VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); - - // Extract the last vector element in the middle block. This will be the - // initial value for the recurrence when jumping to the scalar loop. - auto *ExtractForScalar = Incoming; - if (VF > 1) { - Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); - ExtractForScalar = Builder.CreateExtractElement( - ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); - } - // Extract the second last element in the middle block if the - // Phi is used outside the loop. We need to extract the phi itself - // and not the last element (the phi update in the current iteration). This - // will be the value when jumping to the exit block from the LoopMiddleBlock, - // when the scalar loop is not run at all. - Value *ExtractForPhiUsedOutsideLoop = nullptr; - if (VF > 1) - ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( - Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); - // When loop is unrolled without vectorizing, initialize - // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of - // `Incoming`. This is analogous to the vectorized case above: extracting the - // second last element when VF > 1. - else if (UF > 1) - ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); - - // Fix the initial value of the original recurrence in the scalar loop. - Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); - auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); - for (auto *BB : predecessors(LoopScalarPreHeader)) { - auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; - Start->addIncoming(Incoming, BB); - } - - Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); - Phi->setName("scalar.recur"); - - // Finally, fix users of the recurrence outside the loop. The users will need - // either the last value of the scalar recurrence or the last value of the - // vector recurrence we extracted in the middle block. Since the loop is in - // LCSSA form, we just need to find all the phi nodes for the original scalar - // recurrence in the exit block, and then add an edge for the middle block. - for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { - if (LCSSAPhi.getIncomingValue(0) == Phi) { - LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); - } - } -} - -void InnerLoopVectorizer::fixReduction(PHINode *Phi) { - Constant *Zero = Builder.getInt32(0); - - // Get it's reduction variable descriptor. - assert(Legal->isReductionVariable(Phi) && - "Unable to find the reduction variable"); - RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; - - RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); - TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); - Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); - RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = - RdxDesc.getMinMaxRecurrenceKind(); - setDebugLocFromInst(Builder, ReductionStartValue); - - // We need to generate a reduction vector from the incoming scalar. - // To do so, we need to generate the 'identity' vector and override - // one of the elements with the incoming scalar reduction. We need - // to do it in the vector-loop preheader. - Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); - - // This is the vector-clone of the value that leaves the loop. - Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); - - // Find the reduction identity variable. Zero for addition, or, xor, - // one for multiplication, -1 for And. - Value *Identity; - Value *VectorStart; - if (RK == RecurrenceDescriptor::RK_IntegerMinMax || - RK == RecurrenceDescriptor::RK_FloatMinMax) { - // MinMax reduction have the start value as their identify. - if (VF == 1) { - VectorStart = Identity = ReductionStartValue; - } else { - VectorStart = Identity = - Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); - } - } else { - // Handle other reduction kinds: - Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( - RK, VecTy->getScalarType()); - if (VF == 1) { - Identity = Iden; - // This vector is the Identity vector where the first element is the - // incoming scalar reduction. - VectorStart = ReductionStartValue; - } else { - Identity = ConstantVector::getSplat(VF, Iden); - - // This vector is the Identity vector where the first element is the - // incoming scalar reduction. - VectorStart = - Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); - } - } - - // Fix the vector-loop phi. - - // Reductions do not have to start at zero. They can start with - // any loop invariant values. - BasicBlock *Latch = OrigLoop->getLoopLatch(); - Value *LoopVal = Phi->getIncomingValueForBlock(Latch); - for (unsigned Part = 0; Part < UF; ++Part) { - Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); - Value *Val = getOrCreateVectorValue(LoopVal, Part); - // Make sure to add the reduction stat value only to the - // first unroll part. - Value *StartVal = (Part == 0) ? VectorStart : Identity; - cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); - cast<PHINode>(VecRdxPhi) - ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); - } - - // Before each round, move the insertion point right between - // the PHIs and the values we are going to write. - // This allows us to write both PHINodes and the extractelement - // instructions. - Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); - - setDebugLocFromInst(Builder, LoopExitInst); - - // If the vector reduction can be performed in a smaller type, we truncate - // then extend the loop exit value to enable InstCombine to evaluate the - // entire expression in the smaller type. - if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { - Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); - Builder.SetInsertPoint( - LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); - VectorParts RdxParts(UF); - for (unsigned Part = 0; Part < UF; ++Part) { - RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); - Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); - Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) - : Builder.CreateZExt(Trunc, VecTy); - for (Value::user_iterator UI = RdxParts[Part]->user_begin(); - UI != RdxParts[Part]->user_end();) - if (*UI != Trunc) { - (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); - RdxParts[Part] = Extnd; - } else { - ++UI; - } - } - Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); - for (unsigned Part = 0; Part < UF; ++Part) { - RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); - VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); - } - } - - // Reduce all of the unrolled parts into a single vector. - Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); - unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); - - // The middle block terminator has already been assigned a DebugLoc here (the - // OrigLoop's single latch terminator). We want the whole middle block to - // appear to execute on this line because: (a) it is all compiler generated, - // (b) these instructions are always executed after evaluating the latch - // conditional branch, and (c) other passes may add new predecessors which - // terminate on this line. This is the easiest way to ensure we don't - // accidentally cause an extra step back into the loop while debugging. - setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); - for (unsigned Part = 1; Part < UF; ++Part) { - Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); - if (Op != Instruction::ICmp && Op != Instruction::FCmp) - // Floating point operations had to be 'fast' to enable the reduction. - ReducedPartRdx = addFastMathFlag( - Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, - ReducedPartRdx, "bin.rdx"), - RdxDesc.getFastMathFlags()); - else - ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, - RdxPart); - } - - if (VF > 1) { - bool NoNaN = Legal->hasFunNoNaNAttr(); - ReducedPartRdx = - createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); - // If the reduction can be performed in a smaller type, we need to extend - // the reduction to the wider type before we branch to the original loop. - if (Phi->getType() != RdxDesc.getRecurrenceType()) - ReducedPartRdx = - RdxDesc.isSigned() - ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) - : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); - } - - // Create a phi node that merges control-flow from the backedge-taken check - // block and the middle block. - PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", - LoopScalarPreHeader->getTerminator()); - for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) - BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); - BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); - - // Now, we need to fix the users of the reduction variable - // inside and outside of the scalar remainder loop. - // We know that the loop is in LCSSA form. We need to update the - // PHI nodes in the exit blocks. - for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { - // All PHINodes need to have a single entry edge, or two if - // we already fixed them. - assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); - - // We found a reduction value exit-PHI. Update it with the - // incoming bypass edge. - if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) - LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); - } // end of the LCSSA phi scan. - - // Fix the scalar loop reduction variable with the incoming reduction sum - // from the vector body and from the backedge value. - int IncomingEdgeBlockIdx = - Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); - assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); - // Pick the other block. - int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); - Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); - Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); -} - -void InnerLoopVectorizer::fixLCSSAPHIs() { - for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { - if (LCSSAPhi.getNumIncomingValues() == 1) { - auto *IncomingValue = LCSSAPhi.getIncomingValue(0); - // Non-instruction incoming values will have only one value. - unsigned LastLane = 0; - if (isa<Instruction>(IncomingValue)) - LastLane = Cost->isUniformAfterVectorization( - cast<Instruction>(IncomingValue), VF) - ? 0 - : VF - 1; - // Can be a loop invariant incoming value or the last scalar value to be - // extracted from the vectorized loop. - Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); - Value *lastIncomingValue = - getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); - LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); - } - } -} - -void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { - // The basic block and loop containing the predicated instruction. - auto *PredBB = PredInst->getParent(); - auto *VectorLoop = LI->getLoopFor(PredBB); - - // Initialize a worklist with the operands of the predicated instruction. - SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); - - // Holds instructions that we need to analyze again. An instruction may be - // reanalyzed if we don't yet know if we can sink it or not. - SmallVector<Instruction *, 8> InstsToReanalyze; - - // Returns true if a given use occurs in the predicated block. Phi nodes use - // their operands in their corresponding predecessor blocks. - auto isBlockOfUsePredicated = [&](Use &U) -> bool { - auto *I = cast<Instruction>(U.getUser()); - BasicBlock *BB = I->getParent(); - if (auto *Phi = dyn_cast<PHINode>(I)) - BB = Phi->getIncomingBlock( - PHINode::getIncomingValueNumForOperand(U.getOperandNo())); - return BB == PredBB; - }; - - // Iteratively sink the scalarized operands of the predicated instruction - // into the block we created for it. When an instruction is sunk, it's - // operands are then added to the worklist. The algorithm ends after one pass - // through the worklist doesn't sink a single instruction. - bool Changed; - do { - // Add the instructions that need to be reanalyzed to the worklist, and - // reset the changed indicator. - Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); - InstsToReanalyze.clear(); - Changed = false; - - while (!Worklist.empty()) { - auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); - - // We can't sink an instruction if it is a phi node, is already in the - // predicated block, is not in the loop, or may have side effects. - if (!I || isa<PHINode>(I) || I->getParent() == PredBB || - !VectorLoop->contains(I) || I->mayHaveSideEffects()) - continue; - - // It's legal to sink the instruction if all its uses occur in the - // predicated block. Otherwise, there's nothing to do yet, and we may - // need to reanalyze the instruction. - if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { - InstsToReanalyze.push_back(I); - continue; - } - - // Move the instruction to the beginning of the predicated block, and add - // it's operands to the worklist. - I->moveBefore(&*PredBB->getFirstInsertionPt()); - Worklist.insert(I->op_begin(), I->op_end()); - - // The sinking may have enabled other instructions to be sunk, so we will - // need to iterate. - Changed = true; - } - } while (Changed); -} - -void InnerLoopVectorizer::fixNonInductionPHIs() { - for (PHINode *OrigPhi : OrigPHIsToFix) { - PHINode *NewPhi = - cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); - unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); - - SmallVector<BasicBlock *, 2> ScalarBBPredecessors( - predecessors(OrigPhi->getParent())); - SmallVector<BasicBlock *, 2> VectorBBPredecessors( - predecessors(NewPhi->getParent())); - assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && - "Scalar and Vector BB should have the same number of predecessors"); - - // The insertion point in Builder may be invalidated by the time we get - // here. Force the Builder insertion point to something valid so that we do - // not run into issues during insertion point restore in - // getOrCreateVectorValue calls below. - Builder.SetInsertPoint(NewPhi); - - // The predecessor order is preserved and we can rely on mapping between - // scalar and vector block predecessors. - for (unsigned i = 0; i < NumIncomingValues; ++i) { - BasicBlock *NewPredBB = VectorBBPredecessors[i]; - - // When looking up the new scalar/vector values to fix up, use incoming - // values from original phi. - Value *ScIncV = - OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); - - // Scalar incoming value may need a broadcast - Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); - NewPhi->addIncoming(NewIncV, NewPredBB); - } - } -} - -void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, - unsigned VF) { - PHINode *P = cast<PHINode>(PN); - if (EnableVPlanNativePath) { - // Currently we enter here in the VPlan-native path for non-induction - // PHIs where all control flow is uniform. We simply widen these PHIs. - // Create a vector phi with no operands - the vector phi operands will be - // set at the end of vector code generation. - Type *VecTy = - (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); - Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); - VectorLoopValueMap.setVectorValue(P, 0, VecPhi); - OrigPHIsToFix.push_back(P); - - return; - } - - assert(PN->getParent() == OrigLoop->getHeader() && - "Non-header phis should have been handled elsewhere"); - - // In order to support recurrences we need to be able to vectorize Phi nodes. - // Phi nodes have cycles, so we need to vectorize them in two stages. This is - // stage #1: We create a new vector PHI node with no incoming edges. We'll use - // this value when we vectorize all of the instructions that use the PHI. - if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { - for (unsigned Part = 0; Part < UF; ++Part) { - // This is phase one of vectorizing PHIs. - Type *VecTy = - (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); - Value *EntryPart = PHINode::Create( - VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); - VectorLoopValueMap.setVectorValue(P, Part, EntryPart); - } - return; - } - - setDebugLocFromInst(Builder, P); - - // This PHINode must be an induction variable. - // Make sure that we know about it. - assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); - - InductionDescriptor II = Legal->getInductionVars()->lookup(P); - const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); - - // FIXME: The newly created binary instructions should contain nsw/nuw flags, - // which can be found from the original scalar operations. - switch (II.getKind()) { - case InductionDescriptor::IK_NoInduction: - llvm_unreachable("Unknown induction"); - case InductionDescriptor::IK_IntInduction: - case InductionDescriptor::IK_FpInduction: - llvm_unreachable("Integer/fp induction is handled elsewhere."); - case InductionDescriptor::IK_PtrInduction: { - // Handle the pointer induction variable case. - assert(P->getType()->isPointerTy() && "Unexpected type."); - // This is the normalized GEP that starts counting at zero. - Value *PtrInd = Induction; - PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); - // Determine the number of scalars we need to generate for each unroll - // iteration. If the instruction is uniform, we only need to generate the - // first lane. Otherwise, we generate all VF values. - unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; - // These are the scalar results. Notice that we don't generate vector GEPs - // because scalar GEPs result in better code. - for (unsigned Part = 0; Part < UF; ++Part) { - for (unsigned Lane = 0; Lane < Lanes; ++Lane) { - Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); - Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); - Value *SclrGep = - emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); - SclrGep->setName("next.gep"); - VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); - } - } - return; - } - } -} - -/// A helper function for checking whether an integer division-related -/// instruction may divide by zero (in which case it must be predicated if -/// executed conditionally in the scalar code). -/// TODO: It may be worthwhile to generalize and check isKnownNonZero(). -/// Non-zero divisors that are non compile-time constants will not be -/// converted into multiplication, so we will still end up scalarizing -/// the division, but can do so w/o predication. -static bool mayDivideByZero(Instruction &I) { - assert((I.getOpcode() == Instruction::UDiv || - I.getOpcode() == Instruction::SDiv || - I.getOpcode() == Instruction::URem || - I.getOpcode() == Instruction::SRem) && - "Unexpected instruction"); - Value *Divisor = I.getOperand(1); - auto *CInt = dyn_cast<ConstantInt>(Divisor); - return !CInt || CInt->isZero(); -} - -void InnerLoopVectorizer::widenInstruction(Instruction &I) { - switch (I.getOpcode()) { - case Instruction::Br: - case Instruction::PHI: - llvm_unreachable("This instruction is handled by a different recipe."); - case Instruction::GetElementPtr: { - // Construct a vector GEP by widening the operands of the scalar GEP as - // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP - // results in a vector of pointers when at least one operand of the GEP - // is vector-typed. Thus, to keep the representation compact, we only use - // vector-typed operands for loop-varying values. - auto *GEP = cast<GetElementPtrInst>(&I); - - if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { - // If we are vectorizing, but the GEP has only loop-invariant operands, - // the GEP we build (by only using vector-typed operands for - // loop-varying values) would be a scalar pointer. Thus, to ensure we - // produce a vector of pointers, we need to either arbitrarily pick an - // operand to broadcast, or broadcast a clone of the original GEP. - // Here, we broadcast a clone of the original. - // - // TODO: If at some point we decide to scalarize instructions having - // loop-invariant operands, this special case will no longer be - // required. We would add the scalarization decision to - // collectLoopScalars() and teach getVectorValue() to broadcast - // the lane-zero scalar value. - auto *Clone = Builder.Insert(GEP->clone()); - for (unsigned Part = 0; Part < UF; ++Part) { - Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); - VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); - addMetadata(EntryPart, GEP); - } - } else { - // If the GEP has at least one loop-varying operand, we are sure to - // produce a vector of pointers. But if we are only unrolling, we want - // to produce a scalar GEP for each unroll part. Thus, the GEP we - // produce with the code below will be scalar (if VF == 1) or vector - // (otherwise). Note that for the unroll-only case, we still maintain - // values in the vector mapping with initVector, as we do for other - // instructions. - for (unsigned Part = 0; Part < UF; ++Part) { - // The pointer operand of the new GEP. If it's loop-invariant, we - // won't broadcast it. - auto *Ptr = - OrigLoop->isLoopInvariant(GEP->getPointerOperand()) - ? GEP->getPointerOperand() - : getOrCreateVectorValue(GEP->getPointerOperand(), Part); - - // Collect all the indices for the new GEP. If any index is - // loop-invariant, we won't broadcast it. - SmallVector<Value *, 4> Indices; - for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { - if (OrigLoop->isLoopInvariant(U.get())) - Indices.push_back(U.get()); - else - Indices.push_back(getOrCreateVectorValue(U.get(), Part)); - } - - // Create the new GEP. Note that this GEP may be a scalar if VF == 1, - // but it should be a vector, otherwise. - auto *NewGEP = - GEP->isInBounds() - ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, - Indices) - : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); - assert((VF == 1 || NewGEP->getType()->isVectorTy()) && - "NewGEP is not a pointer vector"); - VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); - addMetadata(NewGEP, GEP); - } - } - - break; - } - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::SRem: - case Instruction::URem: - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::FNeg: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::FDiv: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - // Just widen unops and binops. - setDebugLocFromInst(Builder, &I); - - for (unsigned Part = 0; Part < UF; ++Part) { - SmallVector<Value *, 2> Ops; - for (Value *Op : I.operands()) - Ops.push_back(getOrCreateVectorValue(Op, Part)); - - Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); - - if (auto *VecOp = dyn_cast<Instruction>(V)) - VecOp->copyIRFlags(&I); - - // Use this vector value for all users of the original instruction. - VectorLoopValueMap.setVectorValue(&I, Part, V); - addMetadata(V, &I); - } - - break; - } - case Instruction::Select: { - // Widen selects. - // If the selector is loop invariant we can create a select - // instruction with a scalar condition. Otherwise, use vector-select. - auto *SE = PSE.getSE(); - bool InvariantCond = - SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); - setDebugLocFromInst(Builder, &I); - - // The condition can be loop invariant but still defined inside the - // loop. This means that we can't just use the original 'cond' value. - // We have to take the 'vectorized' value and pick the first lane. - // Instcombine will make this a no-op. - - auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); - - for (unsigned Part = 0; Part < UF; ++Part) { - Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); - Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); - Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); - Value *Sel = - Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); - VectorLoopValueMap.setVectorValue(&I, Part, Sel); - addMetadata(Sel, &I); - } - - break; - } - - case Instruction::ICmp: - case Instruction::FCmp: { - // Widen compares. Generate vector compares. - bool FCmp = (I.getOpcode() == Instruction::FCmp); - auto *Cmp = dyn_cast<CmpInst>(&I); - setDebugLocFromInst(Builder, Cmp); - for (unsigned Part = 0; Part < UF; ++Part) { - Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); - Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); - Value *C = nullptr; - if (FCmp) { - // Propagate fast math flags. - IRBuilder<>::FastMathFlagGuard FMFG(Builder); - Builder.setFastMathFlags(Cmp->getFastMathFlags()); - C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); - } else { - C = Builder.CreateICmp(Cmp->getPredicate(), A, B); - } - VectorLoopValueMap.setVectorValue(&I, Part, C); - addMetadata(C, &I); - } - - break; - } - - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - auto *CI = dyn_cast<CastInst>(&I); - setDebugLocFromInst(Builder, CI); - - /// Vectorize casts. - Type *DestTy = - (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); - - for (unsigned Part = 0; Part < UF; ++Part) { - Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); - Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); - VectorLoopValueMap.setVectorValue(&I, Part, Cast); - addMetadata(Cast, &I); - } - break; - } - - case Instruction::Call: { - // Ignore dbg intrinsics. - if (isa<DbgInfoIntrinsic>(I)) - break; - setDebugLocFromInst(Builder, &I); - - Module *M = I.getParent()->getParent()->getParent(); - auto *CI = cast<CallInst>(&I); - - StringRef FnName = CI->getCalledFunction()->getName(); - Function *F = CI->getCalledFunction(); - Type *RetTy = ToVectorTy(CI->getType(), VF); - SmallVector<Type *, 4> Tys; - for (Value *ArgOperand : CI->arg_operands()) - Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); - - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - - // The flag shows whether we use Intrinsic or a usual Call for vectorized - // version of the instruction. - // Is it beneficial to perform intrinsic call compared to lib call? - bool NeedToScalarize; - unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); - bool UseVectorIntrinsic = - ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; - assert((UseVectorIntrinsic || !NeedToScalarize) && - "Instruction should be scalarized elsewhere."); - - for (unsigned Part = 0; Part < UF; ++Part) { - SmallVector<Value *, 4> Args; - for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { - Value *Arg = CI->getArgOperand(i); - // Some intrinsics have a scalar argument - don't replace it with a - // vector. - if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) - Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); - Args.push_back(Arg); - } - - Function *VectorF; - if (UseVectorIntrinsic) { - // Use vector version of the intrinsic. - Type *TysForDecl[] = {CI->getType()}; - if (VF > 1) - TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); - VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); - } else { - // Use vector version of the library call. - StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); - assert(!VFnName.empty() && "Vector function name is empty."); - VectorF = M->getFunction(VFnName); - if (!VectorF) { - // Generate a declaration - FunctionType *FTy = FunctionType::get(RetTy, Tys, false); - VectorF = - Function::Create(FTy, Function::ExternalLinkage, VFnName, M); - VectorF->copyAttributesFrom(F); - } - } - assert(VectorF && "Can't create vector function."); - - SmallVector<OperandBundleDef, 1> OpBundles; - CI->getOperandBundlesAsDefs(OpBundles); - CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); - - if (isa<FPMathOperator>(V)) - V->copyFastMathFlags(CI); - - VectorLoopValueMap.setVectorValue(&I, Part, V); - addMetadata(V, &I); - } - - break; - } - - default: - // This instruction is not vectorized by simple widening. - LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); - llvm_unreachable("Unhandled instruction!"); - } // end of switch. -} - -void InnerLoopVectorizer::updateAnalysis() { - // Forget the original basic block. - PSE.getSE()->forgetLoop(OrigLoop); - - // DT is not kept up-to-date for outer loop vectorization - if (EnableVPlanNativePath) - return; - - // Update the dominator tree information. - assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && - "Entry does not dominate exit."); - - DT->addNewBlock(LoopMiddleBlock, - LI->getLoopFor(LoopVectorBody)->getLoopLatch()); - DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); - DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); - DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); - assert(DT->verify(DominatorTree::VerificationLevel::Fast)); -} - -void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { - // We should not collect Scalars more than once per VF. Right now, this - // function is called from collectUniformsAndScalars(), which already does - // this check. Collecting Scalars for VF=1 does not make any sense. - assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && - "This function should not be visited twice for the same VF"); - - SmallSetVector<Instruction *, 8> Worklist; - - // These sets are used to seed the analysis with pointers used by memory - // accesses that will remain scalar. - SmallSetVector<Instruction *, 8> ScalarPtrs; - SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; - - // A helper that returns true if the use of Ptr by MemAccess will be scalar. - // The pointer operands of loads and stores will be scalar as long as the - // memory access is not a gather or scatter operation. The value operand of a - // store will remain scalar if the store is scalarized. - auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { - InstWidening WideningDecision = getWideningDecision(MemAccess, VF); - assert(WideningDecision != CM_Unknown && - "Widening decision should be ready at this moment"); - if (auto *Store = dyn_cast<StoreInst>(MemAccess)) - if (Ptr == Store->getValueOperand()) - return WideningDecision == CM_Scalarize; - assert(Ptr == getLoadStorePointerOperand(MemAccess) && - "Ptr is neither a value or pointer operand"); - return WideningDecision != CM_GatherScatter; - }; - - // A helper that returns true if the given value is a bitcast or - // getelementptr instruction contained in the loop. - auto isLoopVaryingBitCastOrGEP = [&](Value *V) { - return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || - isa<GetElementPtrInst>(V)) && - !TheLoop->isLoopInvariant(V); - }; - - // A helper that evaluates a memory access's use of a pointer. If the use - // will be a scalar use, and the pointer is only used by memory accesses, we - // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in - // PossibleNonScalarPtrs. - auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { - // We only care about bitcast and getelementptr instructions contained in - // the loop. - if (!isLoopVaryingBitCastOrGEP(Ptr)) - return; - - // If the pointer has already been identified as scalar (e.g., if it was - // also identified as uniform), there's nothing to do. - auto *I = cast<Instruction>(Ptr); - if (Worklist.count(I)) - return; - - // If the use of the pointer will be a scalar use, and all users of the - // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, - // place the pointer in PossibleNonScalarPtrs. - if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { - return isa<LoadInst>(U) || isa<StoreInst>(U); - })) - ScalarPtrs.insert(I); - else - PossibleNonScalarPtrs.insert(I); - }; - - // We seed the scalars analysis with three classes of instructions: (1) - // instructions marked uniform-after-vectorization, (2) bitcast and - // getelementptr instructions used by memory accesses requiring a scalar use, - // and (3) pointer induction variables and their update instructions (we - // currently only scalarize these). - // - // (1) Add to the worklist all instructions that have been identified as - // uniform-after-vectorization. - Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); - - // (2) Add to the worklist all bitcast and getelementptr instructions used by - // memory accesses requiring a scalar use. The pointer operands of loads and - // stores will be scalar as long as the memory accesses is not a gather or - // scatter operation. The value operand of a store will remain scalar if the - // store is scalarized. - for (auto *BB : TheLoop->blocks()) - for (auto &I : *BB) { - if (auto *Load = dyn_cast<LoadInst>(&I)) { - evaluatePtrUse(Load, Load->getPointerOperand()); - } else if (auto *Store = dyn_cast<StoreInst>(&I)) { - evaluatePtrUse(Store, Store->getPointerOperand()); - evaluatePtrUse(Store, Store->getValueOperand()); - } - } - for (auto *I : ScalarPtrs) - if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { - LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); - Worklist.insert(I); - } - - // (3) Add to the worklist all pointer induction variables and their update - // instructions. - // - // TODO: Once we are able to vectorize pointer induction variables we should - // no longer insert them into the worklist here. - auto *Latch = TheLoop->getLoopLatch(); - for (auto &Induction : *Legal->getInductionVars()) { - auto *Ind = Induction.first; - auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); - if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) - continue; - Worklist.insert(Ind); - Worklist.insert(IndUpdate); - LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); - LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate - << "\n"); - } - - // Insert the forced scalars. - // FIXME: Currently widenPHIInstruction() often creates a dead vector - // induction variable when the PHI user is scalarized. - auto ForcedScalar = ForcedScalars.find(VF); - if (ForcedScalar != ForcedScalars.end()) - for (auto *I : ForcedScalar->second) - Worklist.insert(I); - - // Expand the worklist by looking through any bitcasts and getelementptr - // instructions we've already identified as scalar. This is similar to the - // expansion step in collectLoopUniforms(); however, here we're only - // expanding to include additional bitcasts and getelementptr instructions. - unsigned Idx = 0; - while (Idx != Worklist.size()) { - Instruction *Dst = Worklist[Idx++]; - if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) - continue; - auto *Src = cast<Instruction>(Dst->getOperand(0)); - if (llvm::all_of(Src->users(), [&](User *U) -> bool { - auto *J = cast<Instruction>(U); - return !TheLoop->contains(J) || Worklist.count(J) || - ((isa<LoadInst>(J) || isa<StoreInst>(J)) && - isScalarUse(J, Src)); - })) { - Worklist.insert(Src); - LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); - } - } - - // An induction variable will remain scalar if all users of the induction - // variable and induction variable update remain scalar. - for (auto &Induction : *Legal->getInductionVars()) { - auto *Ind = Induction.first; - auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); - - // We already considered pointer induction variables, so there's no reason - // to look at their users again. - // - // TODO: Once we are able to vectorize pointer induction variables we - // should no longer skip over them here. - if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) - continue; - - // Determine if all users of the induction variable are scalar after - // vectorization. - auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { - auto *I = cast<Instruction>(U); - return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); - }); - if (!ScalarInd) - continue; - - // Determine if all users of the induction variable update instruction are - // scalar after vectorization. - auto ScalarIndUpdate = - llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { - auto *I = cast<Instruction>(U); - return I == Ind || !TheLoop->contains(I) || Worklist.count(I); - }); - if (!ScalarIndUpdate) - continue; - - // The induction variable and its update instruction will remain scalar. - Worklist.insert(Ind); - Worklist.insert(IndUpdate); - LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); - LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate - << "\n"); - } - - Scalars[VF].insert(Worklist.begin(), Worklist.end()); -} - -bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { - if (!blockNeedsPredication(I->getParent())) - return false; - switch(I->getOpcode()) { - default: - break; - case Instruction::Load: - case Instruction::Store: { - if (!Legal->isMaskRequired(I)) - return false; - auto *Ptr = getLoadStorePointerOperand(I); - auto *Ty = getMemInstValueType(I); - // We have already decided how to vectorize this instruction, get that - // result. - if (VF > 1) { - InstWidening WideningDecision = getWideningDecision(I, VF); - assert(WideningDecision != CM_Unknown && - "Widening decision should be ready at this moment"); - return WideningDecision == CM_Scalarize; - } - return isa<LoadInst>(I) ? - !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) - : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); - } - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::SRem: - case Instruction::URem: - return mayDivideByZero(*I); - } - return false; -} - -bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, - unsigned VF) { - assert(isAccessInterleaved(I) && "Expecting interleaved access."); - assert(getWideningDecision(I, VF) == CM_Unknown && - "Decision should not be set yet."); - auto *Group = getInterleavedAccessGroup(I); - assert(Group && "Must have a group."); - - // If the instruction's allocated size doesn't equal it's type size, it - // requires padding and will be scalarized. - auto &DL = I->getModule()->getDataLayout(); - auto *ScalarTy = getMemInstValueType(I); - if (hasIrregularType(ScalarTy, DL, VF)) - return false; - - // Check if masking is required. - // A Group may need masking for one of two reasons: it resides in a block that - // needs predication, or it was decided to use masking to deal with gaps. - bool PredicatedAccessRequiresMasking = - Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); - bool AccessWithGapsRequiresMasking = - Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; - if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) - return true; - - // If masked interleaving is required, we expect that the user/target had - // enabled it, because otherwise it either wouldn't have been created or - // it should have been invalidated by the CostModel. - assert(useMaskedInterleavedAccesses(TTI) && - "Masked interleave-groups for predicated accesses are not enabled."); - - auto *Ty = getMemInstValueType(I); - return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) - : TTI.isLegalMaskedStore(Ty); -} - -bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, - unsigned VF) { - // Get and ensure we have a valid memory instruction. - LoadInst *LI = dyn_cast<LoadInst>(I); - StoreInst *SI = dyn_cast<StoreInst>(I); - assert((LI || SI) && "Invalid memory instruction"); - - auto *Ptr = getLoadStorePointerOperand(I); - - // In order to be widened, the pointer should be consecutive, first of all. - if (!Legal->isConsecutivePtr(Ptr)) - return false; - - // If the instruction is a store located in a predicated block, it will be - // scalarized. - if (isScalarWithPredication(I)) - return false; - - // If the instruction's allocated size doesn't equal it's type size, it - // requires padding and will be scalarized. - auto &DL = I->getModule()->getDataLayout(); - auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); - if (hasIrregularType(ScalarTy, DL, VF)) - return false; - - return true; -} - -void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { - // We should not collect Uniforms more than once per VF. Right now, - // this function is called from collectUniformsAndScalars(), which - // already does this check. Collecting Uniforms for VF=1 does not make any - // sense. - - assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && - "This function should not be visited twice for the same VF"); - - // Visit the list of Uniforms. If we'll not find any uniform value, we'll - // not analyze again. Uniforms.count(VF) will return 1. - Uniforms[VF].clear(); - - // We now know that the loop is vectorizable! - // Collect instructions inside the loop that will remain uniform after - // vectorization. - - // Global values, params and instructions outside of current loop are out of - // scope. - auto isOutOfScope = [&](Value *V) -> bool { - Instruction *I = dyn_cast<Instruction>(V); - return (!I || !TheLoop->contains(I)); - }; - - SetVector<Instruction *> Worklist; - BasicBlock *Latch = TheLoop->getLoopLatch(); - - // Start with the conditional branch. If the branch condition is an - // instruction contained in the loop that is only used by the branch, it is - // uniform. - auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); - if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { - Worklist.insert(Cmp); - LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); - } - - // Holds consecutive and consecutive-like pointers. Consecutive-like pointers - // are pointers that are treated like consecutive pointers during - // vectorization. The pointer operands of interleaved accesses are an - // example. - SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; - - // Holds pointer operands of instructions that are possibly non-uniform. - SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; - - auto isUniformDecision = [&](Instruction *I, unsigned VF) { - InstWidening WideningDecision = getWideningDecision(I, VF); - assert(WideningDecision != CM_Unknown && - "Widening decision should be ready at this moment"); - - return (WideningDecision == CM_Widen || - WideningDecision == CM_Widen_Reverse || - WideningDecision == CM_Interleave); - }; - // Iterate over the instructions in the loop, and collect all - // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible - // that a consecutive-like pointer operand will be scalarized, we collect it - // in PossibleNonUniformPtrs instead. We use two sets here because a single - // getelementptr instruction can be used by both vectorized and scalarized - // memory instructions. For example, if a loop loads and stores from the same - // location, but the store is conditional, the store will be scalarized, and - // the getelementptr won't remain uniform. - for (auto *BB : TheLoop->blocks()) - for (auto &I : *BB) { - // If there's no pointer operand, there's nothing to do. - auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); - if (!Ptr) - continue; - - // True if all users of Ptr are memory accesses that have Ptr as their - // pointer operand. - auto UsersAreMemAccesses = - llvm::all_of(Ptr->users(), [&](User *U) -> bool { - return getLoadStorePointerOperand(U) == Ptr; - }); - - // Ensure the memory instruction will not be scalarized or used by - // gather/scatter, making its pointer operand non-uniform. If the pointer - // operand is used by any instruction other than a memory access, we - // conservatively assume the pointer operand may be non-uniform. - if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) - PossibleNonUniformPtrs.insert(Ptr); - - // If the memory instruction will be vectorized and its pointer operand - // is consecutive-like, or interleaving - the pointer operand should - // remain uniform. - else - ConsecutiveLikePtrs.insert(Ptr); - } - - // Add to the Worklist all consecutive and consecutive-like pointers that - // aren't also identified as possibly non-uniform. - for (auto *V : ConsecutiveLikePtrs) - if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { - LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); - Worklist.insert(V); - } - - // Expand Worklist in topological order: whenever a new instruction - // is added , its users should be already inside Worklist. It ensures - // a uniform instruction will only be used by uniform instructions. - unsigned idx = 0; - while (idx != Worklist.size()) { - Instruction *I = Worklist[idx++]; - - for (auto OV : I->operand_values()) { - // isOutOfScope operands cannot be uniform instructions. - if (isOutOfScope(OV)) - continue; - // First order recurrence Phi's should typically be considered - // non-uniform. - auto *OP = dyn_cast<PHINode>(OV); - if (OP && Legal->isFirstOrderRecurrence(OP)) - continue; - // If all the users of the operand are uniform, then add the - // operand into the uniform worklist. - auto *OI = cast<Instruction>(OV); - if (llvm::all_of(OI->users(), [&](User *U) -> bool { - auto *J = cast<Instruction>(U); - return Worklist.count(J) || - (OI == getLoadStorePointerOperand(J) && - isUniformDecision(J, VF)); - })) { - Worklist.insert(OI); - LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); - } - } - } - - // Returns true if Ptr is the pointer operand of a memory access instruction - // I, and I is known to not require scalarization. - auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { - return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); - }; - - // For an instruction to be added into Worklist above, all its users inside - // the loop should also be in Worklist. However, this condition cannot be - // true for phi nodes that form a cyclic dependence. We must process phi - // nodes separately. An induction variable will remain uniform if all users - // of the induction variable and induction variable update remain uniform. - // The code below handles both pointer and non-pointer induction variables. - for (auto &Induction : *Legal->getInductionVars()) { - auto *Ind = Induction.first; - auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); - - // Determine if all users of the induction variable are uniform after - // vectorization. - auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { - auto *I = cast<Instruction>(U); - return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || - isVectorizedMemAccessUse(I, Ind); - }); - if (!UniformInd) - continue; - - // Determine if all users of the induction variable update instruction are - // uniform after vectorization. - auto UniformIndUpdate = - llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { - auto *I = cast<Instruction>(U); - return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || - isVectorizedMemAccessUse(I, IndUpdate); - }); - if (!UniformIndUpdate) - continue; - - // The induction variable and its update instruction will remain uniform. - Worklist.insert(Ind); - Worklist.insert(IndUpdate); - LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); - LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate - << "\n"); - } - - Uniforms[VF].insert(Worklist.begin(), Worklist.end()); -} - -Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { - if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { - // TODO: It may by useful to do since it's still likely to be dynamically - // uniform if the target can skip. - LLVM_DEBUG( - dbgs() << "LV: Not inserting runtime ptr check for divergent target"); - - ORE->emit( - createMissedAnalysis("CantVersionLoopWithDivergentTarget") - << "runtime pointer checks needed. Not enabled for divergent target"); - - return None; - } - - unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); - if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. - return computeFeasibleMaxVF(OptForSize, TC); - - if (Legal->getRuntimePointerChecking()->Need) { - ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") - << "runtime pointer checks needed. Enable vectorization of this " - "loop with '#pragma clang loop vectorize(enable)' when " - "compiling with -Os/-Oz"); - LLVM_DEBUG( - dbgs() - << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); - return None; - } - - if (!PSE.getUnionPredicate().getPredicates().empty()) { - ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") - << "runtime SCEV checks needed. Enable vectorization of this " - "loop with '#pragma clang loop vectorize(enable)' when " - "compiling with -Os/-Oz"); - LLVM_DEBUG( - dbgs() - << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); - return None; - } - - // FIXME: Avoid specializing for stride==1 instead of bailing out. - if (!Legal->getLAI()->getSymbolicStrides().empty()) { - ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") - << "runtime stride == 1 checks needed. Enable vectorization of " - "this loop with '#pragma clang loop vectorize(enable)' when " - "compiling with -Os/-Oz"); - LLVM_DEBUG( - dbgs() - << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); - return None; - } - - // If we optimize the program for size, avoid creating the tail loop. - LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); - - if (TC == 1) { - ORE->emit(createMissedAnalysis("SingleIterationLoop") - << "loop trip count is one, irrelevant for vectorization"); - LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); - return None; - } - - // Record that scalar epilogue is not allowed. - LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); - - IsScalarEpilogueAllowed = !OptForSize; - - // We don't create an epilogue when optimizing for size. - // Invalidate interleave groups that require an epilogue if we can't mask - // the interleave-group. - if (!useMaskedInterleavedAccesses(TTI)) - InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); - - unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); - - if (TC > 0 && TC % MaxVF == 0) { - LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); - return MaxVF; - } - - // If we don't know the precise trip count, or if the trip count that we - // found modulo the vectorization factor is not zero, try to fold the tail - // by masking. - // FIXME: look for a smaller MaxVF that does divide TC rather than masking. - if (Legal->canFoldTailByMasking()) { - FoldTailByMasking = true; - return MaxVF; - } - - if (TC == 0) { - ORE->emit( - createMissedAnalysis("UnknownLoopCountComplexCFG") - << "unable to calculate the loop count due to complex control flow"); - return None; - } - - ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") - << "cannot optimize for size and vectorize at the same time. " - "Enable vectorization of this loop with '#pragma clang loop " - "vectorize(enable)' when compiling with -Os/-Oz"); - return None; -} - -unsigned -LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, - unsigned ConstTripCount) { - MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); - unsigned SmallestType, WidestType; - std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); - unsigned WidestRegister = TTI.getRegisterBitWidth(true); - - // Get the maximum safe dependence distance in bits computed by LAA. - // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from - // the memory accesses that is most restrictive (involved in the smallest - // dependence distance). - unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); - - WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); - - unsigned MaxVectorSize = WidestRegister / WidestType; - - LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType - << " / " << WidestType << " bits.\n"); - LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " - << WidestRegister << " bits.\n"); - - assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" - " into one vector!"); - if (MaxVectorSize == 0) { - LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); - MaxVectorSize = 1; - return MaxVectorSize; - } else if (ConstTripCount && ConstTripCount < MaxVectorSize && - isPowerOf2_32(ConstTripCount)) { - // We need to clamp the VF to be the ConstTripCount. There is no point in - // choosing a higher viable VF as done in the loop below. - LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " - << ConstTripCount << "\n"); - MaxVectorSize = ConstTripCount; - return MaxVectorSize; - } - - unsigned MaxVF = MaxVectorSize; - if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || - (MaximizeBandwidth && !OptForSize)) { - // Collect all viable vectorization factors larger than the default MaxVF - // (i.e. MaxVectorSize). - SmallVector<unsigned, 8> VFs; - unsigned NewMaxVectorSize = WidestRegister / SmallestType; - for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) - VFs.push_back(VS); - - // For each VF calculate its register usage. - auto RUs = calculateRegisterUsage(VFs); - - // Select the largest VF which doesn't require more registers than existing - // ones. - unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); - for (int i = RUs.size() - 1; i >= 0; --i) { - if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { - MaxVF = VFs[i]; - break; - } - } - if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { - if (MaxVF < MinVF) { - LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF - << ") with target's minimum: " << MinVF << '\n'); - MaxVF = MinVF; - } - } - } - return MaxVF; -} - -VectorizationFactor -LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { - float Cost = expectedCost(1).first; - const float ScalarCost = Cost; - unsigned Width = 1; - LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); - - bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; - if (ForceVectorization && MaxVF > 1) { - // Ignore scalar width, because the user explicitly wants vectorization. - // Initialize cost to max so that VF = 2 is, at least, chosen during cost - // evaluation. - Cost = std::numeric_limits<float>::max(); - } - - for (unsigned i = 2; i <= MaxVF; i *= 2) { - // Notice that the vector loop needs to be executed less times, so - // we need to divide the cost of the vector loops by the width of - // the vector elements. - VectorizationCostTy C = expectedCost(i); - float VectorCost = C.first / (float)i; - LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i - << " costs: " << (int)VectorCost << ".\n"); - if (!C.second && !ForceVectorization) { - LLVM_DEBUG( - dbgs() << "LV: Not considering vector loop of width " << i - << " because it will not generate any vector instructions.\n"); - continue; - } - if (VectorCost < Cost) { - Cost = VectorCost; - Width = i; - } - } - - if (!EnableCondStoresVectorization && NumPredStores) { - ORE->emit(createMissedAnalysis("ConditionalStore") - << "store that is conditionally executed prevents vectorization"); - LLVM_DEBUG( - dbgs() << "LV: No vectorization. There are conditional stores.\n"); - Width = 1; - Cost = ScalarCost; - } - - LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() - << "LV: Vectorization seems to be not beneficial, " - << "but was forced by a user.\n"); - LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); - VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; - return Factor; -} - -std::pair<unsigned, unsigned> -LoopVectorizationCostModel::getSmallestAndWidestTypes() { - unsigned MinWidth = -1U; - unsigned MaxWidth = 8; - const DataLayout &DL = TheFunction->getParent()->getDataLayout(); - - // For each block. - for (BasicBlock *BB : TheLoop->blocks()) { - // For each instruction in the loop. - for (Instruction &I : BB->instructionsWithoutDebug()) { - Type *T = I.getType(); - - // Skip ignored values. - if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) - continue; - - // Only examine Loads, Stores and PHINodes. - if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) - continue; - - // Examine PHI nodes that are reduction variables. Update the type to - // account for the recurrence type. - if (auto *PN = dyn_cast<PHINode>(&I)) { - if (!Legal->isReductionVariable(PN)) - continue; - RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; - T = RdxDesc.getRecurrenceType(); - } - - // Examine the stored values. - if (auto *ST = dyn_cast<StoreInst>(&I)) - T = ST->getValueOperand()->getType(); - - // Ignore loaded pointer types and stored pointer types that are not - // vectorizable. - // - // FIXME: The check here attempts to predict whether a load or store will - // be vectorized. We only know this for certain after a VF has - // been selected. Here, we assume that if an access can be - // vectorized, it will be. We should also look at extending this - // optimization to non-pointer types. - // - if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && - !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) - continue; - - MinWidth = std::min(MinWidth, - (unsigned)DL.getTypeSizeInBits(T->getScalarType())); - MaxWidth = std::max(MaxWidth, - (unsigned)DL.getTypeSizeInBits(T->getScalarType())); - } - } - - return {MinWidth, MaxWidth}; -} - -unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, - unsigned VF, - unsigned LoopCost) { - // -- The interleave heuristics -- - // We interleave the loop in order to expose ILP and reduce the loop overhead. - // There are many micro-architectural considerations that we can't predict - // at this level. For example, frontend pressure (on decode or fetch) due to - // code size, or the number and capabilities of the execution ports. - // - // We use the following heuristics to select the interleave count: - // 1. If the code has reductions, then we interleave to break the cross - // iteration dependency. - // 2. If the loop is really small, then we interleave to reduce the loop - // overhead. - // 3. We don't interleave if we think that we will spill registers to memory - // due to the increased register pressure. - - // When we optimize for size, we don't interleave. - if (OptForSize) - return 1; - - // We used the distance for the interleave count. - if (Legal->getMaxSafeDepDistBytes() != -1U) - return 1; - - // Do not interleave loops with a relatively small trip count. - unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); - if (TC > 1 && TC < TinyTripCountInterleaveThreshold) - return 1; - - unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); - LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters - << " registers\n"); - - if (VF == 1) { - if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) - TargetNumRegisters = ForceTargetNumScalarRegs; - } else { - if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) - TargetNumRegisters = ForceTargetNumVectorRegs; - } - - RegisterUsage R = calculateRegisterUsage({VF})[0]; - // We divide by these constants so assume that we have at least one - // instruction that uses at least one register. - R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); - - // We calculate the interleave count using the following formula. - // Subtract the number of loop invariants from the number of available - // registers. These registers are used by all of the interleaved instances. - // Next, divide the remaining registers by the number of registers that is - // required by the loop, in order to estimate how many parallel instances - // fit without causing spills. All of this is rounded down if necessary to be - // a power of two. We want power of two interleave count to simplify any - // addressing operations or alignment considerations. - // We also want power of two interleave counts to ensure that the induction - // variable of the vector loop wraps to zero, when tail is folded by masking; - // this currently happens when OptForSize, in which case IC is set to 1 above. - unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / - R.MaxLocalUsers); - - // Don't count the induction variable as interleaved. - if (EnableIndVarRegisterHeur) - IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / - std::max(1U, (R.MaxLocalUsers - 1))); - - // Clamp the interleave ranges to reasonable counts. - unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); - - // Check if the user has overridden the max. - if (VF == 1) { - if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) - MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; - } else { - if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) - MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; - } - - // If we did not calculate the cost for VF (because the user selected the VF) - // then we calculate the cost of VF here. - if (LoopCost == 0) - LoopCost = expectedCost(VF).first; - - assert(LoopCost && "Non-zero loop cost expected"); - - // Clamp the calculated IC to be between the 1 and the max interleave count - // that the target allows. - if (IC > MaxInterleaveCount) - IC = MaxInterleaveCount; - else if (IC < 1) - IC = 1; - - // Interleave if we vectorized this loop and there is a reduction that could - // benefit from interleaving. - if (VF > 1 && !Legal->getReductionVars()->empty()) { - LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); - return IC; - } - - // Note that if we've already vectorized the loop we will have done the - // runtime check and so interleaving won't require further checks. - bool InterleavingRequiresRuntimePointerCheck = - (VF == 1 && Legal->getRuntimePointerChecking()->Need); - - // We want to interleave small loops in order to reduce the loop overhead and - // potentially expose ILP opportunities. - LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); - if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { - // We assume that the cost overhead is 1 and we use the cost model - // to estimate the cost of the loop and interleave until the cost of the - // loop overhead is about 5% of the cost of the loop. - unsigned SmallIC = - std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); - - // Interleave until store/load ports (estimated by max interleave count) are - // saturated. - unsigned NumStores = Legal->getNumStores(); - unsigned NumLoads = Legal->getNumLoads(); - unsigned StoresIC = IC / (NumStores ? NumStores : 1); - unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); - - // If we have a scalar reduction (vector reductions are already dealt with - // by this point), we can increase the critical path length if the loop - // we're interleaving is inside another loop. Limit, by default to 2, so the - // critical path only gets increased by one reduction operation. - if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { - unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); - SmallIC = std::min(SmallIC, F); - StoresIC = std::min(StoresIC, F); - LoadsIC = std::min(LoadsIC, F); - } - - if (EnableLoadStoreRuntimeInterleave && - std::max(StoresIC, LoadsIC) > SmallIC) { - LLVM_DEBUG( - dbgs() << "LV: Interleaving to saturate store or load ports.\n"); - return std::max(StoresIC, LoadsIC); - } - - LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); - return SmallIC; - } - - // Interleave if this is a large loop (small loops are already dealt with by - // this point) that could benefit from interleaving. - bool HasReductions = !Legal->getReductionVars()->empty(); - if (TTI.enableAggressiveInterleaving(HasReductions)) { - LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); - return IC; - } - - LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); - return 1; -} - -SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> -LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { - // This function calculates the register usage by measuring the highest number - // of values that are alive at a single location. Obviously, this is a very - // rough estimation. We scan the loop in a topological order in order and - // assign a number to each instruction. We use RPO to ensure that defs are - // met before their users. We assume that each instruction that has in-loop - // users starts an interval. We record every time that an in-loop value is - // used, so we have a list of the first and last occurrences of each - // instruction. Next, we transpose this data structure into a multi map that - // holds the list of intervals that *end* at a specific location. This multi - // map allows us to perform a linear search. We scan the instructions linearly - // and record each time that a new interval starts, by placing it in a set. - // If we find this value in the multi-map then we remove it from the set. - // The max register usage is the maximum size of the set. - // We also search for instructions that are defined outside the loop, but are - // used inside the loop. We need this number separately from the max-interval - // usage number because when we unroll, loop-invariant values do not take - // more register. - LoopBlocksDFS DFS(TheLoop); - DFS.perform(LI); - - RegisterUsage RU; - - // Each 'key' in the map opens a new interval. The values - // of the map are the index of the 'last seen' usage of the - // instruction that is the key. - using IntervalMap = DenseMap<Instruction *, unsigned>; - - // Maps instruction to its index. - SmallVector<Instruction *, 64> IdxToInstr; - // Marks the end of each interval. - IntervalMap EndPoint; - // Saves the list of instruction indices that are used in the loop. - SmallPtrSet<Instruction *, 8> Ends; - // Saves the list of values that are used in the loop but are - // defined outside the loop, such as arguments and constants. - SmallPtrSet<Value *, 8> LoopInvariants; - - for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { - for (Instruction &I : BB->instructionsWithoutDebug()) { - IdxToInstr.push_back(&I); - - // Save the end location of each USE. - for (Value *U : I.operands()) { - auto *Instr = dyn_cast<Instruction>(U); - - // Ignore non-instruction values such as arguments, constants, etc. - if (!Instr) - continue; - - // If this instruction is outside the loop then record it and continue. - if (!TheLoop->contains(Instr)) { - LoopInvariants.insert(Instr); - continue; - } - - // Overwrite previous end points. - EndPoint[Instr] = IdxToInstr.size(); - Ends.insert(Instr); - } - } - } - - // Saves the list of intervals that end with the index in 'key'. - using InstrList = SmallVector<Instruction *, 2>; - DenseMap<unsigned, InstrList> TransposeEnds; - - // Transpose the EndPoints to a list of values that end at each index. - for (auto &Interval : EndPoint) - TransposeEnds[Interval.second].push_back(Interval.first); - - SmallPtrSet<Instruction *, 8> OpenIntervals; - - // Get the size of the widest register. - unsigned MaxSafeDepDist = -1U; - if (Legal->getMaxSafeDepDistBytes() != -1U) - MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; - unsigned WidestRegister = - std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); - const DataLayout &DL = TheFunction->getParent()->getDataLayout(); - - SmallVector<RegisterUsage, 8> RUs(VFs.size()); - SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); - - LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); - - // A lambda that gets the register usage for the given type and VF. - auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { - if (Ty->isTokenTy()) - return 0U; - unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); - return std::max<unsigned>(1, VF * TypeSize / WidestRegister); - }; - - for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { - Instruction *I = IdxToInstr[i]; - - // Remove all of the instructions that end at this location. - InstrList &List = TransposeEnds[i]; - for (Instruction *ToRemove : List) - OpenIntervals.erase(ToRemove); - - // Ignore instructions that are never used within the loop. - if (Ends.find(I) == Ends.end()) - continue; - - // Skip ignored values. - if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) - continue; - - // For each VF find the maximum usage of registers. - for (unsigned j = 0, e = VFs.size(); j < e; ++j) { - if (VFs[j] == 1) { - MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); - continue; - } - collectUniformsAndScalars(VFs[j]); - // Count the number of live intervals. - unsigned RegUsage = 0; - for (auto Inst : OpenIntervals) { - // Skip ignored values for VF > 1. - if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || - isScalarAfterVectorization(Inst, VFs[j])) - continue; - RegUsage += GetRegUsage(Inst->getType(), VFs[j]); - } - MaxUsages[j] = std::max(MaxUsages[j], RegUsage); - } - - LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " - << OpenIntervals.size() << '\n'); - - // Add the current instruction to the list of open intervals. - OpenIntervals.insert(I); - } - - for (unsigned i = 0, e = VFs.size(); i < e; ++i) { - unsigned Invariant = 0; - if (VFs[i] == 1) - Invariant = LoopInvariants.size(); - else { - for (auto Inst : LoopInvariants) - Invariant += GetRegUsage(Inst->getType(), VFs[i]); - } - - LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); - LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); - LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant - << '\n'); - - RU.LoopInvariantRegs = Invariant; - RU.MaxLocalUsers = MaxUsages[i]; - RUs[i] = RU; - } - - return RUs; -} - -bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ - // TODO: Cost model for emulated masked load/store is completely - // broken. This hack guides the cost model to use an artificially - // high enough value to practically disable vectorization with such - // operations, except where previously deployed legality hack allowed - // using very low cost values. This is to avoid regressions coming simply - // from moving "masked load/store" check from legality to cost model. - // Masked Load/Gather emulation was previously never allowed. - // Limited number of Masked Store/Scatter emulation was allowed. - assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); - return isa<LoadInst>(I) || - (isa<StoreInst>(I) && - NumPredStores > NumberOfStoresToPredicate); -} - -void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { - // If we aren't vectorizing the loop, or if we've already collected the - // instructions to scalarize, there's nothing to do. Collection may already - // have occurred if we have a user-selected VF and are now computing the - // expected cost for interleaving. - if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) - return; - - // Initialize a mapping for VF in InstsToScalalarize. If we find that it's - // not profitable to scalarize any instructions, the presence of VF in the - // map will indicate that we've analyzed it already. - ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; - - // Find all the instructions that are scalar with predication in the loop and - // determine if it would be better to not if-convert the blocks they are in. - // If so, we also record the instructions to scalarize. - for (BasicBlock *BB : TheLoop->blocks()) { - if (!blockNeedsPredication(BB)) - continue; - for (Instruction &I : *BB) - if (isScalarWithPredication(&I)) { - ScalarCostsTy ScalarCosts; - // Do not apply discount logic if hacked cost is needed - // for emulated masked memrefs. - if (!useEmulatedMaskMemRefHack(&I) && - computePredInstDiscount(&I, ScalarCosts, VF) >= 0) - ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); - // Remember that BB will remain after vectorization. - PredicatedBBsAfterVectorization.insert(BB); - } - } -} - -int LoopVectorizationCostModel::computePredInstDiscount( - Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, - unsigned VF) { - assert(!isUniformAfterVectorization(PredInst, VF) && - "Instruction marked uniform-after-vectorization will be predicated"); - - // Initialize the discount to zero, meaning that the scalar version and the - // vector version cost the same. - int Discount = 0; - - // Holds instructions to analyze. The instructions we visit are mapped in - // ScalarCosts. Those instructions are the ones that would be scalarized if - // we find that the scalar version costs less. - SmallVector<Instruction *, 8> Worklist; - - // Returns true if the given instruction can be scalarized. - auto canBeScalarized = [&](Instruction *I) -> bool { - // We only attempt to scalarize instructions forming a single-use chain - // from the original predicated block that would otherwise be vectorized. - // Although not strictly necessary, we give up on instructions we know will - // already be scalar to avoid traversing chains that are unlikely to be - // beneficial. - if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || - isScalarAfterVectorization(I, VF)) - return false; - - // If the instruction is scalar with predication, it will be analyzed - // separately. We ignore it within the context of PredInst. - if (isScalarWithPredication(I)) - return false; - - // If any of the instruction's operands are uniform after vectorization, - // the instruction cannot be scalarized. This prevents, for example, a - // masked load from being scalarized. - // - // We assume we will only emit a value for lane zero of an instruction - // marked uniform after vectorization, rather than VF identical values. - // Thus, if we scalarize an instruction that uses a uniform, we would - // create uses of values corresponding to the lanes we aren't emitting code - // for. This behavior can be changed by allowing getScalarValue to clone - // the lane zero values for uniforms rather than asserting. - for (Use &U : I->operands()) - if (auto *J = dyn_cast<Instruction>(U.get())) - if (isUniformAfterVectorization(J, VF)) - return false; - - // Otherwise, we can scalarize the instruction. - return true; - }; - - // Compute the expected cost discount from scalarizing the entire expression - // feeding the predicated instruction. We currently only consider expressions - // that are single-use instruction chains. - Worklist.push_back(PredInst); - while (!Worklist.empty()) { - Instruction *I = Worklist.pop_back_val(); - - // If we've already analyzed the instruction, there's nothing to do. - if (ScalarCosts.find(I) != ScalarCosts.end()) - continue; - - // Compute the cost of the vector instruction. Note that this cost already - // includes the scalarization overhead of the predicated instruction. - unsigned VectorCost = getInstructionCost(I, VF).first; - - // Compute the cost of the scalarized instruction. This cost is the cost of - // the instruction as if it wasn't if-converted and instead remained in the - // predicated block. We will scale this cost by block probability after - // computing the scalarization overhead. - unsigned ScalarCost = VF * getInstructionCost(I, 1).first; - - // Compute the scalarization overhead of needed insertelement instructions - // and phi nodes. - if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { - ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), - true, false); - ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); - } - - // Compute the scalarization overhead of needed extractelement - // instructions. For each of the instruction's operands, if the operand can - // be scalarized, add it to the worklist; otherwise, account for the - // overhead. - for (Use &U : I->operands()) - if (auto *J = dyn_cast<Instruction>(U.get())) { - assert(VectorType::isValidElementType(J->getType()) && - "Instruction has non-scalar type"); - if (canBeScalarized(J)) - Worklist.push_back(J); - else if (needsExtract(J, VF)) - ScalarCost += TTI.getScalarizationOverhead( - ToVectorTy(J->getType(),VF), false, true); - } - - // Scale the total scalar cost by block probability. - ScalarCost /= getReciprocalPredBlockProb(); - - // Compute the discount. A non-negative discount means the vector version - // of the instruction costs more, and scalarizing would be beneficial. - Discount += VectorCost - ScalarCost; - ScalarCosts[I] = ScalarCost; - } - - return Discount; -} - -LoopVectorizationCostModel::VectorizationCostTy -LoopVectorizationCostModel::expectedCost(unsigned VF) { - VectorizationCostTy Cost; - - // For each block. - for (BasicBlock *BB : TheLoop->blocks()) { - VectorizationCostTy BlockCost; - - // For each instruction in the old loop. - for (Instruction &I : BB->instructionsWithoutDebug()) { - // Skip ignored values. - if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || - (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) - continue; - - VectorizationCostTy C = getInstructionCost(&I, VF); - - // Check if we should override the cost. - if (ForceTargetInstructionCost.getNumOccurrences() > 0) - C.first = ForceTargetInstructionCost; - - BlockCost.first += C.first; - BlockCost.second |= C.second; - LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first - << " for VF " << VF << " For instruction: " << I - << '\n'); - } - - // If we are vectorizing a predicated block, it will have been - // if-converted. This means that the block's instructions (aside from - // stores and instructions that may divide by zero) will now be - // unconditionally executed. For the scalar case, we may not always execute - // the predicated block. Thus, scale the block's cost by the probability of - // executing it. - if (VF == 1 && blockNeedsPredication(BB)) - BlockCost.first /= getReciprocalPredBlockProb(); - - Cost.first += BlockCost.first; - Cost.second |= BlockCost.second; - } - - return Cost; -} - -/// Gets Address Access SCEV after verifying that the access pattern -/// is loop invariant except the induction variable dependence. -/// -/// This SCEV can be sent to the Target in order to estimate the address -/// calculation cost. -static const SCEV *getAddressAccessSCEV( - Value *Ptr, - LoopVectorizationLegality *Legal, - PredicatedScalarEvolution &PSE, - const Loop *TheLoop) { - - auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); - if (!Gep) - return nullptr; - - // We are looking for a gep with all loop invariant indices except for one - // which should be an induction variable. - auto SE = PSE.getSE(); - unsigned NumOperands = Gep->getNumOperands(); - for (unsigned i = 1; i < NumOperands; ++i) { - Value *Opd = Gep->getOperand(i); - if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && - !Legal->isInductionVariable(Opd)) - return nullptr; - } - - // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. - return PSE.getSCEV(Ptr); -} - -static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { - return Legal->hasStride(I->getOperand(0)) || - Legal->hasStride(I->getOperand(1)); -} - -unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, - unsigned VF) { - assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); - Type *ValTy = getMemInstValueType(I); - auto SE = PSE.getSE(); - - unsigned Alignment = getLoadStoreAlignment(I); - unsigned AS = getLoadStoreAddressSpace(I); - Value *Ptr = getLoadStorePointerOperand(I); - Type *PtrTy = ToVectorTy(Ptr->getType(), VF); - - // Figure out whether the access is strided and get the stride value - // if it's known in compile time - const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); - - // Get the cost of the scalar memory instruction and address computation. - unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); - - // Don't pass *I here, since it is scalar but will actually be part of a - // vectorized loop where the user of it is a vectorized instruction. - Cost += VF * - TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, - AS); - - // Get the overhead of the extractelement and insertelement instructions - // we might create due to scalarization. - Cost += getScalarizationOverhead(I, VF); - - // If we have a predicated store, it may not be executed for each vector - // lane. Scale the cost by the probability of executing the predicated - // block. - if (isPredicatedInst(I)) { - Cost /= getReciprocalPredBlockProb(); - - if (useEmulatedMaskMemRefHack(I)) - // Artificially setting to a high enough value to practically disable - // vectorization with such operations. - Cost = 3000000; - } - - return Cost; -} - -unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, - unsigned VF) { - Type *ValTy = getMemInstValueType(I); - Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned Alignment = getLoadStoreAlignment(I); - Value *Ptr = getLoadStorePointerOperand(I); - unsigned AS = getLoadStoreAddressSpace(I); - int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); - - assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && - "Stride should be 1 or -1 for consecutive memory access"); - unsigned Cost = 0; - if (Legal->isMaskRequired(I)) - Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); - else - Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); - - bool Reverse = ConsecutiveStride < 0; - if (Reverse) - Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); - return Cost; -} - -unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, - unsigned VF) { - Type *ValTy = getMemInstValueType(I); - Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned Alignment = getLoadStoreAlignment(I); - unsigned AS = getLoadStoreAddressSpace(I); - if (isa<LoadInst>(I)) { - return TTI.getAddressComputationCost(ValTy) + - TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + - TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); - } - StoreInst *SI = cast<StoreInst>(I); - - bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); - return TTI.getAddressComputationCost(ValTy) + - TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + - (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( - Instruction::ExtractElement, - VectorTy, VF - 1)); -} - -unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, - unsigned VF) { - Type *ValTy = getMemInstValueType(I); - Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned Alignment = getLoadStoreAlignment(I); - Value *Ptr = getLoadStorePointerOperand(I); - - return TTI.getAddressComputationCost(VectorTy) + - TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, - Legal->isMaskRequired(I), Alignment); -} - -unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, - unsigned VF) { - Type *ValTy = getMemInstValueType(I); - Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned AS = getLoadStoreAddressSpace(I); - - auto Group = getInterleavedAccessGroup(I); - assert(Group && "Fail to get an interleaved access group."); - - unsigned InterleaveFactor = Group->getFactor(); - Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); - - // Holds the indices of existing members in an interleaved load group. - // An interleaved store group doesn't need this as it doesn't allow gaps. - SmallVector<unsigned, 4> Indices; - if (isa<LoadInst>(I)) { - for (unsigned i = 0; i < InterleaveFactor; i++) - if (Group->getMember(i)) - Indices.push_back(i); - } - - // Calculate the cost of the whole interleaved group. - bool UseMaskForGaps = - Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; - unsigned Cost = TTI.getInterleavedMemoryOpCost( - I->getOpcode(), WideVecTy, Group->getFactor(), Indices, - Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); - - if (Group->isReverse()) { - // TODO: Add support for reversed masked interleaved access. - assert(!Legal->isMaskRequired(I) && - "Reverse masked interleaved access not supported."); - Cost += Group->getNumMembers() * - TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); - } - return Cost; -} - -unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, - unsigned VF) { - // Calculate scalar cost only. Vectorization cost should be ready at this - // moment. - if (VF == 1) { - Type *ValTy = getMemInstValueType(I); - unsigned Alignment = getLoadStoreAlignment(I); - unsigned AS = getLoadStoreAddressSpace(I); - - return TTI.getAddressComputationCost(ValTy) + - TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); - } - return getWideningCost(I, VF); -} - -LoopVectorizationCostModel::VectorizationCostTy -LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { - // If we know that this instruction will remain uniform, check the cost of - // the scalar version. - if (isUniformAfterVectorization(I, VF)) - VF = 1; - - if (VF > 1 && isProfitableToScalarize(I, VF)) - return VectorizationCostTy(InstsToScalarize[VF][I], false); - - // Forced scalars do not have any scalarization overhead. - auto ForcedScalar = ForcedScalars.find(VF); - if (VF > 1 && ForcedScalar != ForcedScalars.end()) { - auto InstSet = ForcedScalar->second; - if (InstSet.find(I) != InstSet.end()) - return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); - } - - Type *VectorTy; - unsigned C = getInstructionCost(I, VF, VectorTy); - - bool TypeNotScalarized = - VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; - return VectorizationCostTy(C, TypeNotScalarized); -} - -unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, - unsigned VF) { - - if (VF == 1) - return 0; - - unsigned Cost = 0; - Type *RetTy = ToVectorTy(I->getType(), VF); - if (!RetTy->isVoidTy() && - (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) - Cost += TTI.getScalarizationOverhead(RetTy, true, false); - - // Some targets keep addresses scalar. - if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) - return Cost; - - // Some targets support efficient element stores. - if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) - return Cost; - - // Collect operands to consider. - CallInst *CI = dyn_cast<CallInst>(I); - Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); - - // Skip operands that do not require extraction/scalarization and do not incur - // any overhead. - return Cost + TTI.getOperandsScalarizationOverhead( - filterExtractingOperands(Ops, VF), VF); -} - -void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { - if (VF == 1) - return; - NumPredStores = 0; - for (BasicBlock *BB : TheLoop->blocks()) { - // For each instruction in the old loop. - for (Instruction &I : *BB) { - Value *Ptr = getLoadStorePointerOperand(&I); - if (!Ptr) - continue; - - // TODO: We should generate better code and update the cost model for - // predicated uniform stores. Today they are treated as any other - // predicated store (see added test cases in - // invariant-store-vectorization.ll). - if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) - NumPredStores++; - - if (Legal->isUniform(Ptr) && - // Conditional loads and stores should be scalarized and predicated. - // isScalarWithPredication cannot be used here since masked - // gather/scatters are not considered scalar with predication. - !Legal->blockNeedsPredication(I.getParent())) { - // TODO: Avoid replicating loads and stores instead of - // relying on instcombine to remove them. - // Load: Scalar load + broadcast - // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract - unsigned Cost = getUniformMemOpCost(&I, VF); - setWideningDecision(&I, VF, CM_Scalarize, Cost); - continue; - } - - // We assume that widening is the best solution when possible. - if (memoryInstructionCanBeWidened(&I, VF)) { - unsigned Cost = getConsecutiveMemOpCost(&I, VF); - int ConsecutiveStride = - Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); - assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && - "Expected consecutive stride."); - InstWidening Decision = - ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; - setWideningDecision(&I, VF, Decision, Cost); - continue; - } - - // Choose between Interleaving, Gather/Scatter or Scalarization. - unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); - unsigned NumAccesses = 1; - if (isAccessInterleaved(&I)) { - auto Group = getInterleavedAccessGroup(&I); - assert(Group && "Fail to get an interleaved access group."); - - // Make one decision for the whole group. - if (getWideningDecision(&I, VF) != CM_Unknown) - continue; - - NumAccesses = Group->getNumMembers(); - if (interleavedAccessCanBeWidened(&I, VF)) - InterleaveCost = getInterleaveGroupCost(&I, VF); - } - - unsigned GatherScatterCost = - isLegalGatherOrScatter(&I) - ? getGatherScatterCost(&I, VF) * NumAccesses - : std::numeric_limits<unsigned>::max(); - - unsigned ScalarizationCost = - getMemInstScalarizationCost(&I, VF) * NumAccesses; - - // Choose better solution for the current VF, - // write down this decision and use it during vectorization. - unsigned Cost; - InstWidening Decision; - if (InterleaveCost <= GatherScatterCost && - InterleaveCost < ScalarizationCost) { - Decision = CM_Interleave; - Cost = InterleaveCost; - } else if (GatherScatterCost < ScalarizationCost) { - Decision = CM_GatherScatter; - Cost = GatherScatterCost; - } else { - Decision = CM_Scalarize; - Cost = ScalarizationCost; - } - // If the instructions belongs to an interleave group, the whole group - // receives the same decision. The whole group receives the cost, but - // the cost will actually be assigned to one instruction. - if (auto Group = getInterleavedAccessGroup(&I)) - setWideningDecision(Group, VF, Decision, Cost); - else - setWideningDecision(&I, VF, Decision, Cost); - } - } - - // Make sure that any load of address and any other address computation - // remains scalar unless there is gather/scatter support. This avoids - // inevitable extracts into address registers, and also has the benefit of - // activating LSR more, since that pass can't optimize vectorized - // addresses. - if (TTI.prefersVectorizedAddressing()) - return; - - // Start with all scalar pointer uses. - SmallPtrSet<Instruction *, 8> AddrDefs; - for (BasicBlock *BB : TheLoop->blocks()) - for (Instruction &I : *BB) { - Instruction *PtrDef = - dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); - if (PtrDef && TheLoop->contains(PtrDef) && - getWideningDecision(&I, VF) != CM_GatherScatter) - AddrDefs.insert(PtrDef); - } - - // Add all instructions used to generate the addresses. - SmallVector<Instruction *, 4> Worklist; - for (auto *I : AddrDefs) - Worklist.push_back(I); - while (!Worklist.empty()) { - Instruction *I = Worklist.pop_back_val(); - for (auto &Op : I->operands()) - if (auto *InstOp = dyn_cast<Instruction>(Op)) - if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && - AddrDefs.insert(InstOp).second) - Worklist.push_back(InstOp); - } - - for (auto *I : AddrDefs) { - if (isa<LoadInst>(I)) { - // Setting the desired widening decision should ideally be handled in - // by cost functions, but since this involves the task of finding out - // if the loaded register is involved in an address computation, it is - // instead changed here when we know this is the case. - InstWidening Decision = getWideningDecision(I, VF); - if (Decision == CM_Widen || Decision == CM_Widen_Reverse) - // Scalarize a widened load of address. - setWideningDecision(I, VF, CM_Scalarize, - (VF * getMemoryInstructionCost(I, 1))); - else if (auto Group = getInterleavedAccessGroup(I)) { - // Scalarize an interleave group of address loads. - for (unsigned I = 0; I < Group->getFactor(); ++I) { - if (Instruction *Member = Group->getMember(I)) - setWideningDecision(Member, VF, CM_Scalarize, - (VF * getMemoryInstructionCost(Member, 1))); - } - } - } else - // Make sure I gets scalarized and a cost estimate without - // scalarization overhead. - ForcedScalars[VF].insert(I); - } -} - -unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, - unsigned VF, - Type *&VectorTy) { - Type *RetTy = I->getType(); - if (canTruncateToMinimalBitwidth(I, VF)) - RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); - VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); - auto SE = PSE.getSE(); - - // TODO: We need to estimate the cost of intrinsic calls. - switch (I->getOpcode()) { - case Instruction::GetElementPtr: - // We mark this instruction as zero-cost because the cost of GEPs in - // vectorized code depends on whether the corresponding memory instruction - // is scalarized or not. Therefore, we handle GEPs with the memory - // instruction cost. - return 0; - case Instruction::Br: { - // In cases of scalarized and predicated instructions, there will be VF - // predicated blocks in the vectorized loop. Each branch around these - // blocks requires also an extract of its vector compare i1 element. - bool ScalarPredicatedBB = false; - BranchInst *BI = cast<BranchInst>(I); - if (VF > 1 && BI->isConditional() && - (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != - PredicatedBBsAfterVectorization.end() || - PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != - PredicatedBBsAfterVectorization.end())) - ScalarPredicatedBB = true; - - if (ScalarPredicatedBB) { - // Return cost for branches around scalarized and predicated blocks. - Type *Vec_i1Ty = - VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); - return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + - (TTI.getCFInstrCost(Instruction::Br) * VF)); - } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) - // The back-edge branch will remain, as will all scalar branches. - return TTI.getCFInstrCost(Instruction::Br); - else - // This branch will be eliminated by if-conversion. - return 0; - // Note: We currently assume zero cost for an unconditional branch inside - // a predicated block since it will become a fall-through, although we - // may decide in the future to call TTI for all branches. - } - case Instruction::PHI: { - auto *Phi = cast<PHINode>(I); - - // First-order recurrences are replaced by vector shuffles inside the loop. - // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. - if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) - return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, - VectorTy, VF - 1, VectorType::get(RetTy, 1)); - - // Phi nodes in non-header blocks (not inductions, reductions, etc.) are - // converted into select instructions. We require N - 1 selects per phi - // node, where N is the number of incoming values. - if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) - return (Phi->getNumIncomingValues() - 1) * - TTI.getCmpSelInstrCost( - Instruction::Select, ToVectorTy(Phi->getType(), VF), - ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); - - return TTI.getCFInstrCost(Instruction::PHI); - } - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::URem: - case Instruction::SRem: - // If we have a predicated instruction, it may not be executed for each - // vector lane. Get the scalarization cost and scale this amount by the - // probability of executing the predicated block. If the instruction is not - // predicated, we fall through to the next case. - if (VF > 1 && isScalarWithPredication(I)) { - unsigned Cost = 0; - - // These instructions have a non-void type, so account for the phi nodes - // that we will create. This cost is likely to be zero. The phi node - // cost, if any, should be scaled by the block probability because it - // models a copy at the end of each predicated block. - Cost += VF * TTI.getCFInstrCost(Instruction::PHI); - - // The cost of the non-predicated instruction. - Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); - - // The cost of insertelement and extractelement instructions needed for - // scalarization. - Cost += getScalarizationOverhead(I, VF); - - // Scale the cost by the probability of executing the predicated blocks. - // This assumes the predicated block for each vector lane is equally - // likely. - return Cost / getReciprocalPredBlockProb(); - } - LLVM_FALLTHROUGH; - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::FDiv: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - // Since we will replace the stride by 1 the multiplication should go away. - if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) - return 0; - // Certain instructions can be cheaper to vectorize if they have a constant - // second vector operand. One example of this are shifts on x86. - Value *Op2 = I->getOperand(1); - TargetTransformInfo::OperandValueProperties Op2VP; - TargetTransformInfo::OperandValueKind Op2VK = - TTI.getOperandInfo(Op2, Op2VP); - if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) - Op2VK = TargetTransformInfo::OK_UniformValue; - - SmallVector<const Value *, 4> Operands(I->operand_values()); - unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; - return N * TTI.getArithmeticInstrCost( - I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, - Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); - } - case Instruction::FNeg: { - unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; - return N * TTI.getArithmeticInstrCost( - I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, - TargetTransformInfo::OK_AnyValue, - TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, - I->getOperand(0)); - } - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(I); - const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); - bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); - Type *CondTy = SI->getCondition()->getType(); - if (!ScalarCond) - CondTy = VectorType::get(CondTy, VF); - - return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); - } - case Instruction::ICmp: - case Instruction::FCmp: { - Type *ValTy = I->getOperand(0)->getType(); - Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); - if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) - ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); - VectorTy = ToVectorTy(ValTy, VF); - return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); - } - case Instruction::Store: - case Instruction::Load: { - unsigned Width = VF; - if (Width > 1) { - InstWidening Decision = getWideningDecision(I, Width); - assert(Decision != CM_Unknown && - "CM decision should be taken at this point"); - if (Decision == CM_Scalarize) - Width = 1; - } - VectorTy = ToVectorTy(getMemInstValueType(I), Width); - return getMemoryInstructionCost(I, VF); - } - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - // We optimize the truncation of induction variables having constant - // integer steps. The cost of these truncations is the same as the scalar - // operation. - if (isOptimizableIVTruncate(I, VF)) { - auto *Trunc = cast<TruncInst>(I); - return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), - Trunc->getSrcTy(), Trunc); - } - - Type *SrcScalarTy = I->getOperand(0)->getType(); - Type *SrcVecTy = - VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; - if (canTruncateToMinimalBitwidth(I, VF)) { - // This cast is going to be shrunk. This may remove the cast or it might - // turn it into slightly different cast. For example, if MinBW == 16, - // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". - // - // Calculate the modified src and dest types. - Type *MinVecTy = VectorTy; - if (I->getOpcode() == Instruction::Trunc) { - SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); - VectorTy = - largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); - } else if (I->getOpcode() == Instruction::ZExt || - I->getOpcode() == Instruction::SExt) { - SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); - VectorTy = - smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); - } - } - - unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; - return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); - } - case Instruction::Call: { - bool NeedToScalarize; - CallInst *CI = cast<CallInst>(I); - unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); - if (getVectorIntrinsicIDForCall(CI, TLI)) - return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); - return CallCost; - } - default: - // The cost of executing VF copies of the scalar instruction. This opcode - // is unknown. Assume that it is the same as 'mul'. - return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + - getScalarizationOverhead(I, VF); - } // end of switch. -} - -char LoopVectorize::ID = 0; - -static const char lv_name[] = "Loop Vectorization"; - -INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) -INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) -INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) - -namespace llvm { - -Pass *createLoopVectorizePass() { return new LoopVectorize(); } - -Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, - bool VectorizeOnlyWhenForced) { - return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); -} - -} // end namespace llvm - -bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { - // Check if the pointer operand of a load or store instruction is - // consecutive. - if (auto *Ptr = getLoadStorePointerOperand(Inst)) - return Legal->isConsecutivePtr(Ptr); - return false; -} - -void LoopVectorizationCostModel::collectValuesToIgnore() { - // Ignore ephemeral values. - CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); - - // Ignore type-promoting instructions we identified during reduction - // detection. - for (auto &Reduction : *Legal->getReductionVars()) { - RecurrenceDescriptor &RedDes = Reduction.second; - SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); - VecValuesToIgnore.insert(Casts.begin(), Casts.end()); - } - // Ignore type-casting instructions we identified during induction - // detection. - for (auto &Induction : *Legal->getInductionVars()) { - InductionDescriptor &IndDes = Induction.second; - const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); - VecValuesToIgnore.insert(Casts.begin(), Casts.end()); - } -} - -// TODO: we could return a pair of values that specify the max VF and -// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of -// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment -// doesn't have a cost model that can choose which plan to execute if -// more than one is generated. -static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, - LoopVectorizationCostModel &CM) { - unsigned WidestType; - std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); - return WidestVectorRegBits / WidestType; -} - -VectorizationFactor -LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, - unsigned UserVF) { - unsigned VF = UserVF; - // Outer loop handling: They may require CFG and instruction level - // transformations before even evaluating whether vectorization is profitable. - // Since we cannot modify the incoming IR, we need to build VPlan upfront in - // the vectorization pipeline. - if (!OrigLoop->empty()) { - // If the user doesn't provide a vectorization factor, determine a - // reasonable one. - if (!UserVF) { - VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); - LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); - - // Make sure we have a VF > 1 for stress testing. - if (VPlanBuildStressTest && VF < 2) { - LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " - << "overriding computed VF.\n"); - VF = 4; - } - } - assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); - assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); - LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF - << " to build VPlans.\n"); - buildVPlans(VF, VF); - - // For VPlan build stress testing, we bail out after VPlan construction. - if (VPlanBuildStressTest) - return VectorizationFactor::Disabled(); - - return {VF, 0}; - } - - LLVM_DEBUG( - dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " - "VPlan-native path.\n"); - return VectorizationFactor::Disabled(); -} - -Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, - unsigned UserVF) { - assert(OrigLoop->empty() && "Inner loop expected."); - Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); - if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. - return None; - - // Invalidate interleave groups if all blocks of loop will be predicated. - if (CM.blockNeedsPredication(OrigLoop->getHeader()) && - !useMaskedInterleavedAccesses(*TTI)) { - LLVM_DEBUG( - dbgs() - << "LV: Invalidate all interleaved groups due to fold-tail by masking " - "which requires masked-interleaved support.\n"); - CM.InterleaveInfo.reset(); - } - - if (UserVF) { - LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); - assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); - // Collect the instructions (and their associated costs) that will be more - // profitable to scalarize. - CM.selectUserVectorizationFactor(UserVF); - buildVPlansWithVPRecipes(UserVF, UserVF); - LLVM_DEBUG(printPlans(dbgs())); - return {{UserVF, 0}}; - } - - unsigned MaxVF = MaybeMaxVF.getValue(); - assert(MaxVF != 0 && "MaxVF is zero."); - - for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { - // Collect Uniform and Scalar instructions after vectorization with VF. - CM.collectUniformsAndScalars(VF); - - // Collect the instructions (and their associated costs) that will be more - // profitable to scalarize. - if (VF > 1) - CM.collectInstsToScalarize(VF); - } - - buildVPlansWithVPRecipes(1, MaxVF); - LLVM_DEBUG(printPlans(dbgs())); - if (MaxVF == 1) - return VectorizationFactor::Disabled(); - - // Select the optimal vectorization factor. - return CM.selectVectorizationFactor(MaxVF); -} - -void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { - LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF - << '\n'); - BestVF = VF; - BestUF = UF; - - erase_if(VPlans, [VF](const VPlanPtr &Plan) { - return !Plan->hasVF(VF); - }); - assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); -} - -void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, - DominatorTree *DT) { - // Perform the actual loop transformation. - - // 1. Create a new empty loop. Unlink the old loop and connect the new one. - VPCallbackILV CallbackILV(ILV); - - VPTransformState State{BestVF, BestUF, LI, - DT, ILV.Builder, ILV.VectorLoopValueMap, - &ILV, CallbackILV}; - State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); - State.TripCount = ILV.getOrCreateTripCount(nullptr); - - //===------------------------------------------------===// - // - // Notice: any optimization or new instruction that go - // into the code below should also be implemented in - // the cost-model. - // - //===------------------------------------------------===// - - // 2. Copy and widen instructions from the old loop into the new loop. - assert(VPlans.size() == 1 && "Not a single VPlan to execute."); - VPlans.front()->execute(&State); - - // 3. Fix the vectorized code: take care of header phi's, live-outs, - // predication, updating analyses. - ILV.fixVectorizedLoop(); -} - -void LoopVectorizationPlanner::collectTriviallyDeadInstructions( - SmallPtrSetImpl<Instruction *> &DeadInstructions) { - BasicBlock *Latch = OrigLoop->getLoopLatch(); - - // We create new control-flow for the vectorized loop, so the original - // condition will be dead after vectorization if it's only used by the - // branch. - auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); - if (Cmp && Cmp->hasOneUse()) - DeadInstructions.insert(Cmp); - - // We create new "steps" for induction variable updates to which the original - // induction variables map. An original update instruction will be dead if - // all its users except the induction variable are dead. - for (auto &Induction : *Legal->getInductionVars()) { - PHINode *Ind = Induction.first; - auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); - if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { - return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != - DeadInstructions.end(); - })) - DeadInstructions.insert(IndUpdate); - - // We record as "Dead" also the type-casting instructions we had identified - // during induction analysis. We don't need any handling for them in the - // vectorized loop because we have proven that, under a proper runtime - // test guarding the vectorized loop, the value of the phi, and the casted - // value of the phi, are the same. The last instruction in this casting chain - // will get its scalar/vector/widened def from the scalar/vector/widened def - // of the respective phi node. Any other casts in the induction def-use chain - // have no other uses outside the phi update chain, and will be ignored. - InductionDescriptor &IndDes = Induction.second; - const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); - DeadInstructions.insert(Casts.begin(), Casts.end()); - } -} - -Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } - -Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } - -Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, - Instruction::BinaryOps BinOp) { - // When unrolling and the VF is 1, we only need to add a simple scalar. - Type *Ty = Val->getType(); - assert(!Ty->isVectorTy() && "Val must be a scalar"); - - if (Ty->isFloatingPointTy()) { - Constant *C = ConstantFP::get(Ty, (double)StartIdx); - - // Floating point operations had to be 'fast' to enable the unrolling. - Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); - return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); - } - Constant *C = ConstantInt::get(Ty, StartIdx); - return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); -} - -static void AddRuntimeUnrollDisableMetaData(Loop *L) { - SmallVector<Metadata *, 4> MDs; - // Reserve first location for self reference to the LoopID metadata node. - MDs.push_back(nullptr); - bool IsUnrollMetadata = false; - MDNode *LoopID = L->getLoopID(); - if (LoopID) { - // First find existing loop unrolling disable metadata. - for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { - auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); - if (MD) { - const auto *S = dyn_cast<MDString>(MD->getOperand(0)); - IsUnrollMetadata = - S && S->getString().startswith("llvm.loop.unroll.disable"); - } - MDs.push_back(LoopID->getOperand(i)); - } - } - - if (!IsUnrollMetadata) { - // Add runtime unroll disable metadata. - LLVMContext &Context = L->getHeader()->getContext(); - SmallVector<Metadata *, 1> DisableOperands; - DisableOperands.push_back( - MDString::get(Context, "llvm.loop.unroll.runtime.disable")); - MDNode *DisableNode = MDNode::get(Context, DisableOperands); - MDs.push_back(DisableNode); - MDNode *NewLoopID = MDNode::get(Context, MDs); - // Set operand 0 to refer to the loop id itself. - NewLoopID->replaceOperandWith(0, NewLoopID); - L->setLoopID(NewLoopID); - } -} - -bool LoopVectorizationPlanner::getDecisionAndClampRange( - const std::function<bool(unsigned)> &Predicate, VFRange &Range) { - assert(Range.End > Range.Start && "Trying to test an empty VF range."); - bool PredicateAtRangeStart = Predicate(Range.Start); - - for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) - if (Predicate(TmpVF) != PredicateAtRangeStart) { - Range.End = TmpVF; - break; - } - - return PredicateAtRangeStart; -} - -/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, -/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range -/// of VF's starting at a given VF and extending it as much as possible. Each -/// vectorization decision can potentially shorten this sub-range during -/// buildVPlan(). -void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { - for (unsigned VF = MinVF; VF < MaxVF + 1;) { - VFRange SubRange = {VF, MaxVF + 1}; - VPlans.push_back(buildVPlan(SubRange)); - VF = SubRange.End; - } -} - -VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, - VPlanPtr &Plan) { - assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); - - // Look for cached value. - std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); - EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); - if (ECEntryIt != EdgeMaskCache.end()) - return ECEntryIt->second; - - VPValue *SrcMask = createBlockInMask(Src, Plan); - - // The terminator has to be a branch inst! - BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); - assert(BI && "Unexpected terminator found"); - - if (!BI->isConditional()) - return EdgeMaskCache[Edge] = SrcMask; - - VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); - assert(EdgeMask && "No Edge Mask found for condition"); - - if (BI->getSuccessor(0) != Dst) - EdgeMask = Builder.createNot(EdgeMask); - - if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. - EdgeMask = Builder.createAnd(EdgeMask, SrcMask); - - return EdgeMaskCache[Edge] = EdgeMask; -} - -VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { - assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); - - // Look for cached value. - BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); - if (BCEntryIt != BlockMaskCache.end()) - return BCEntryIt->second; - - // All-one mask is modelled as no-mask following the convention for masked - // load/store/gather/scatter. Initialize BlockMask to no-mask. - VPValue *BlockMask = nullptr; - - if (OrigLoop->getHeader() == BB) { - if (!CM.blockNeedsPredication(BB)) - return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. - - // Introduce the early-exit compare IV <= BTC to form header block mask. - // This is used instead of IV < TC because TC may wrap, unlike BTC. - VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); - VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); - BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); - return BlockMaskCache[BB] = BlockMask; - } - - // This is the block mask. We OR all incoming edges. - for (auto *Predecessor : predecessors(BB)) { - VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); - if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. - return BlockMaskCache[BB] = EdgeMask; - - if (!BlockMask) { // BlockMask has its initialized nullptr value. - BlockMask = EdgeMask; - continue; - } - - BlockMask = Builder.createOr(BlockMask, EdgeMask); - } - - return BlockMaskCache[BB] = BlockMask; -} - -VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, - VFRange &Range, - VPlanPtr &Plan) { - const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); - if (!IG) - return nullptr; - - // Now check if IG is relevant for VF's in the given range. - auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { - return [=](unsigned VF) -> bool { - return (VF >= 2 && // Query is illegal for VF == 1 - CM.getWideningDecision(I, VF) == - LoopVectorizationCostModel::CM_Interleave); - }; - }; - if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) - return nullptr; - - // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) - // range. If it's the primary member of the IG construct a VPInterleaveRecipe. - // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. - assert(I == IG->getInsertPos() && - "Generating a recipe for an adjunct member of an interleave group"); - - VPValue *Mask = nullptr; - if (Legal->isMaskRequired(I)) - Mask = createBlockInMask(I->getParent(), Plan); - - return new VPInterleaveRecipe(IG, Mask); -} - -VPWidenMemoryInstructionRecipe * -VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, - VPlanPtr &Plan) { - if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) - return nullptr; - - auto willWiden = [&](unsigned VF) -> bool { - if (VF == 1) - return false; - if (CM.isScalarAfterVectorization(I, VF) || - CM.isProfitableToScalarize(I, VF)) - return false; - LoopVectorizationCostModel::InstWidening Decision = - CM.getWideningDecision(I, VF); - assert(Decision != LoopVectorizationCostModel::CM_Unknown && - "CM decision should be taken at this point."); - assert(Decision != LoopVectorizationCostModel::CM_Interleave && - "Interleave memory opportunity should be caught earlier."); - return Decision != LoopVectorizationCostModel::CM_Scalarize; - }; - - if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) - return nullptr; - - VPValue *Mask = nullptr; - if (Legal->isMaskRequired(I)) - Mask = createBlockInMask(I->getParent(), Plan); - - return new VPWidenMemoryInstructionRecipe(*I, Mask); -} - -VPWidenIntOrFpInductionRecipe * -VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { - if (PHINode *Phi = dyn_cast<PHINode>(I)) { - // Check if this is an integer or fp induction. If so, build the recipe that - // produces its scalar and vector values. - InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); - if (II.getKind() == InductionDescriptor::IK_IntInduction || - II.getKind() == InductionDescriptor::IK_FpInduction) - return new VPWidenIntOrFpInductionRecipe(Phi); - - return nullptr; - } - - // Optimize the special case where the source is a constant integer - // induction variable. Notice that we can only optimize the 'trunc' case - // because (a) FP conversions lose precision, (b) sext/zext may wrap, and - // (c) other casts depend on pointer size. - - // Determine whether \p K is a truncation based on an induction variable that - // can be optimized. - auto isOptimizableIVTruncate = - [&](Instruction *K) -> std::function<bool(unsigned)> { - return - [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; - }; - - if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( - isOptimizableIVTruncate(I), Range)) - return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), - cast<TruncInst>(I)); - return nullptr; -} - -VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { - PHINode *Phi = dyn_cast<PHINode>(I); - if (!Phi || Phi->getParent() == OrigLoop->getHeader()) - return nullptr; - - // We know that all PHIs in non-header blocks are converted into selects, so - // we don't have to worry about the insertion order and we can just use the - // builder. At this point we generate the predication tree. There may be - // duplications since this is a simple recursive scan, but future - // optimizations will clean it up. - - SmallVector<VPValue *, 2> Masks; - unsigned NumIncoming = Phi->getNumIncomingValues(); - for (unsigned In = 0; In < NumIncoming; In++) { - VPValue *EdgeMask = - createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); - assert((EdgeMask || NumIncoming == 1) && - "Multiple predecessors with one having a full mask"); - if (EdgeMask) - Masks.push_back(EdgeMask); - } - return new VPBlendRecipe(Phi, Masks); -} - -bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, - VFRange &Range) { - - bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( - [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); - - if (IsPredicated) - return false; - - auto IsVectorizableOpcode = [](unsigned Opcode) { - switch (Opcode) { - case Instruction::Add: - case Instruction::And: - case Instruction::AShr: - case Instruction::BitCast: - case Instruction::Br: - case Instruction::Call: - case Instruction::FAdd: - case Instruction::FCmp: - case Instruction::FDiv: - case Instruction::FMul: - case Instruction::FNeg: - case Instruction::FPExt: - case Instruction::FPToSI: - case Instruction::FPToUI: - case Instruction::FPTrunc: - case Instruction::FRem: - case Instruction::FSub: - case Instruction::GetElementPtr: - case Instruction::ICmp: - case Instruction::IntToPtr: - case Instruction::Load: - case Instruction::LShr: - case Instruction::Mul: - case Instruction::Or: - case Instruction::PHI: - case Instruction::PtrToInt: - case Instruction::SDiv: - case Instruction::Select: - case Instruction::SExt: - case Instruction::Shl: - case Instruction::SIToFP: - case Instruction::SRem: - case Instruction::Store: - case Instruction::Sub: - case Instruction::Trunc: - case Instruction::UDiv: - case Instruction::UIToFP: - case Instruction::URem: - case Instruction::Xor: - case Instruction::ZExt: - return true; - } - return false; - }; - - if (!IsVectorizableOpcode(I->getOpcode())) - return false; - - if (CallInst *CI = dyn_cast<CallInst>(I)) { - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || - ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) - return false; - } - - auto willWiden = [&](unsigned VF) -> bool { - if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || - CM.isProfitableToScalarize(I, VF))) - return false; - if (CallInst *CI = dyn_cast<CallInst>(I)) { - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - // The following case may be scalarized depending on the VF. - // The flag shows whether we use Intrinsic or a usual Call for vectorized - // version of the instruction. - // Is it beneficial to perform intrinsic call compared to lib call? - bool NeedToScalarize; - unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); - bool UseVectorIntrinsic = - ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; - return UseVectorIntrinsic || !NeedToScalarize; - } - if (isa<LoadInst>(I) || isa<StoreInst>(I)) { - assert(CM.getWideningDecision(I, VF) == - LoopVectorizationCostModel::CM_Scalarize && - "Memory widening decisions should have been taken care by now"); - return false; - } - return true; - }; - - if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) - return false; - - // Success: widen this instruction. We optimize the common case where - // consecutive instructions can be represented by a single recipe. - if (!VPBB->empty()) { - VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); - if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) - return true; - } - - VPBB->appendRecipe(new VPWidenRecipe(I)); - return true; -} - -VPBasicBlock *VPRecipeBuilder::handleReplication( - Instruction *I, VFRange &Range, VPBasicBlock *VPBB, - DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, - VPlanPtr &Plan) { - bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( - [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, - Range); - - bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( - [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); - - auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); - - // Find if I uses a predicated instruction. If so, it will use its scalar - // value. Avoid hoisting the insert-element which packs the scalar value into - // a vector value, as that happens iff all users use the vector value. - for (auto &Op : I->operands()) - if (auto *PredInst = dyn_cast<Instruction>(Op)) - if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) - PredInst2Recipe[PredInst]->setAlsoPack(false); - - // Finalize the recipe for Instr, first if it is not predicated. - if (!IsPredicated) { - LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); - VPBB->appendRecipe(Recipe); - return VPBB; - } - LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); - assert(VPBB->getSuccessors().empty() && - "VPBB has successors when handling predicated replication."); - // Record predicated instructions for above packing optimizations. - PredInst2Recipe[I] = Recipe; - VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); - VPBlockUtils::insertBlockAfter(Region, VPBB); - auto *RegSucc = new VPBasicBlock(); - VPBlockUtils::insertBlockAfter(RegSucc, Region); - return RegSucc; -} - -VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, - VPRecipeBase *PredRecipe, - VPlanPtr &Plan) { - // Instructions marked for predication are replicated and placed under an - // if-then construct to prevent side-effects. - - // Generate recipes to compute the block mask for this region. - VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); - - // Build the triangular if-then region. - std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); - assert(Instr->getParent() && "Predicated instruction not in any basic block"); - auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); - auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); - auto *PHIRecipe = - Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); - auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); - auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); - VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); - - // Note: first set Entry as region entry and then connect successors starting - // from it in order, to propagate the "parent" of each VPBasicBlock. - VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); - VPBlockUtils::connectBlocks(Pred, Exit); - - return Region; -} - -bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, - VPlanPtr &Plan, VPBasicBlock *VPBB) { - VPRecipeBase *Recipe = nullptr; - // Check if Instr should belong to an interleave memory recipe, or already - // does. In the latter case Instr is irrelevant. - if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { - VPBB->appendRecipe(Recipe); - return true; - } - - // Check if Instr is a memory operation that should be widened. - if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { - VPBB->appendRecipe(Recipe); - return true; - } - - // Check if Instr should form some PHI recipe. - if ((Recipe = tryToOptimizeInduction(Instr, Range))) { - VPBB->appendRecipe(Recipe); - return true; - } - if ((Recipe = tryToBlend(Instr, Plan))) { - VPBB->appendRecipe(Recipe); - return true; - } - if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { - VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); - return true; - } - - // Check if Instr is to be widened by a general VPWidenRecipe, after - // having first checked for specific widening recipes that deal with - // Interleave Groups, Inductions and Phi nodes. - if (tryToWiden(Instr, VPBB, Range)) - return true; - - return false; -} - -void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, - unsigned MaxVF) { - assert(OrigLoop->empty() && "Inner loop expected."); - - // Collect conditions feeding internal conditional branches; they need to be - // represented in VPlan for it to model masking. - SmallPtrSet<Value *, 1> NeedDef; - - auto *Latch = OrigLoop->getLoopLatch(); - for (BasicBlock *BB : OrigLoop->blocks()) { - if (BB == Latch) - continue; - BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); - if (Branch && Branch->isConditional()) - NeedDef.insert(Branch->getCondition()); - } - - // If the tail is to be folded by masking, the primary induction variable - // needs to be represented in VPlan for it to model early-exit masking. - if (CM.foldTailByMasking()) - NeedDef.insert(Legal->getPrimaryInduction()); - - // Collect instructions from the original loop that will become trivially dead - // in the vectorized loop. We don't need to vectorize these instructions. For - // example, original induction update instructions can become dead because we - // separately emit induction "steps" when generating code for the new loop. - // Similarly, we create a new latch condition when setting up the structure - // of the new loop, so the old one can become dead. - SmallPtrSet<Instruction *, 4> DeadInstructions; - collectTriviallyDeadInstructions(DeadInstructions); - - for (unsigned VF = MinVF; VF < MaxVF + 1;) { - VFRange SubRange = {VF, MaxVF + 1}; - VPlans.push_back( - buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); - VF = SubRange.End; - } -} - -VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( - VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, - SmallPtrSetImpl<Instruction *> &DeadInstructions) { - // Hold a mapping from predicated instructions to their recipes, in order to - // fix their AlsoPack behavior if a user is determined to replicate and use a - // scalar instead of vector value. - DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; - - DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); - DenseMap<Instruction *, Instruction *> SinkAfterInverse; - - // Create a dummy pre-entry VPBasicBlock to start building the VPlan. - VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); - auto Plan = llvm::make_unique<VPlan>(VPBB); - - VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); - // Represent values that will have defs inside VPlan. - for (Value *V : NeedDef) - Plan->addVPValue(V); - - // Scan the body of the loop in a topological order to visit each basic block - // after having visited its predecessor basic blocks. - LoopBlocksDFS DFS(OrigLoop); - DFS.perform(LI); - - for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { - // Relevant instructions from basic block BB will be grouped into VPRecipe - // ingredients and fill a new VPBasicBlock. - unsigned VPBBsForBB = 0; - auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); - VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); - VPBB = FirstVPBBForBB; - Builder.setInsertPoint(VPBB); - - std::vector<Instruction *> Ingredients; - - // Organize the ingredients to vectorize from current basic block in the - // right order. - for (Instruction &I : BB->instructionsWithoutDebug()) { - Instruction *Instr = &I; - - // First filter out irrelevant instructions, to ensure no recipes are - // built for them. - if (isa<BranchInst>(Instr) || - DeadInstructions.find(Instr) != DeadInstructions.end()) - continue; - - // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct - // member of the IG, do not construct any Recipe for it. - const InterleaveGroup<Instruction> *IG = - CM.getInterleavedAccessGroup(Instr); - if (IG && Instr != IG->getInsertPos() && - Range.Start >= 2 && // Query is illegal for VF == 1 - CM.getWideningDecision(Instr, Range.Start) == - LoopVectorizationCostModel::CM_Interleave) { - auto SinkCandidate = SinkAfterInverse.find(Instr); - if (SinkCandidate != SinkAfterInverse.end()) - Ingredients.push_back(SinkCandidate->second); - continue; - } - - // Move instructions to handle first-order recurrences, step 1: avoid - // handling this instruction until after we've handled the instruction it - // should follow. - auto SAIt = SinkAfter.find(Instr); - if (SAIt != SinkAfter.end()) { - LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" - << *SAIt->second - << " to vectorize a 1st order recurrence.\n"); - SinkAfterInverse[SAIt->second] = Instr; - continue; - } - - Ingredients.push_back(Instr); - - // Move instructions to handle first-order recurrences, step 2: push the - // instruction to be sunk at its insertion point. - auto SAInvIt = SinkAfterInverse.find(Instr); - if (SAInvIt != SinkAfterInverse.end()) - Ingredients.push_back(SAInvIt->second); - } - - // Introduce each ingredient into VPlan. - for (Instruction *Instr : Ingredients) { - if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) - continue; - - // Otherwise, if all widening options failed, Instruction is to be - // replicated. This may create a successor for VPBB. - VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( - Instr, Range, VPBB, PredInst2Recipe, Plan); - if (NextVPBB != VPBB) { - VPBB = NextVPBB; - VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) - : ""); - } - } - } - - // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks - // may also be empty, such as the last one VPBB, reflecting original - // basic-blocks with no recipes. - VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); - assert(PreEntry->empty() && "Expecting empty pre-entry block."); - VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); - VPBlockUtils::disconnectBlocks(PreEntry, Entry); - delete PreEntry; - - std::string PlanName; - raw_string_ostream RSO(PlanName); - unsigned VF = Range.Start; - Plan->addVF(VF); - RSO << "Initial VPlan for VF={" << VF; - for (VF *= 2; VF < Range.End; VF *= 2) { - Plan->addVF(VF); - RSO << "," << VF; - } - RSO << "},UF>=1"; - RSO.flush(); - Plan->setName(PlanName); - - return Plan; -} - -VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { - // Outer loop handling: They may require CFG and instruction level - // transformations before even evaluating whether vectorization is profitable. - // Since we cannot modify the incoming IR, we need to build VPlan upfront in - // the vectorization pipeline. - assert(!OrigLoop->empty()); - assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); - - // Create new empty VPlan - auto Plan = llvm::make_unique<VPlan>(); - - // Build hierarchical CFG - VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); - HCFGBuilder.buildHierarchicalCFG(); - - for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) - Plan->addVF(VF); - - if (EnableVPlanPredication) { - VPlanPredicator VPP(*Plan); - VPP.predicate(); - - // Avoid running transformation to recipes until masked code generation in - // VPlan-native path is in place. - return Plan; - } - - SmallPtrSet<Instruction *, 1> DeadInstructions; - VPlanHCFGTransforms::VPInstructionsToVPRecipes( - Plan, Legal->getInductionVars(), DeadInstructions); - - return Plan; -} - -Value* LoopVectorizationPlanner::VPCallbackILV:: -getOrCreateVectorValues(Value *V, unsigned Part) { - return ILV.getOrCreateVectorValue(V, Part); -} - -void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" - << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; - IG->getInsertPos()->printAsOperand(O, false); - if (User) { - O << ", "; - User->getOperand(0)->printAsOperand(O); - } - O << "\\l\""; - for (unsigned i = 0; i < IG->getFactor(); ++i) - if (Instruction *I = IG->getMember(i)) - O << " +\n" - << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; -} - -void VPWidenRecipe::execute(VPTransformState &State) { - for (auto &Instr : make_range(Begin, End)) - State.ILV->widenInstruction(Instr); -} - -void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { - assert(!State.Instance && "Int or FP induction being replicated."); - State.ILV->widenIntOrFpInduction(IV, Trunc); -} - -void VPWidenPHIRecipe::execute(VPTransformState &State) { - State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); -} - -void VPBlendRecipe::execute(VPTransformState &State) { - State.ILV->setDebugLocFromInst(State.Builder, Phi); - // We know that all PHIs in non-header blocks are converted into - // selects, so we don't have to worry about the insertion order and we - // can just use the builder. - // At this point we generate the predication tree. There may be - // duplications since this is a simple recursive scan, but future - // optimizations will clean it up. - - unsigned NumIncoming = Phi->getNumIncomingValues(); - - assert((User || NumIncoming == 1) && - "Multiple predecessors with predecessors having a full mask"); - // Generate a sequence of selects of the form: - // SELECT(Mask3, In3, - // SELECT(Mask2, In2, - // ( ...))) - InnerLoopVectorizer::VectorParts Entry(State.UF); - for (unsigned In = 0; In < NumIncoming; ++In) { - for (unsigned Part = 0; Part < State.UF; ++Part) { - // We might have single edge PHIs (blocks) - use an identity - // 'select' for the first PHI operand. - Value *In0 = - State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); - if (In == 0) - Entry[Part] = In0; // Initialize with the first incoming value. - else { - // Select between the current value and the previous incoming edge - // based on the incoming mask. - Value *Cond = State.get(User->getOperand(In), Part); - Entry[Part] = - State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); - } - } - } - for (unsigned Part = 0; Part < State.UF; ++Part) - State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); -} - -void VPInterleaveRecipe::execute(VPTransformState &State) { - assert(!State.Instance && "Interleave group being replicated."); - if (!User) - return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); - - // Last (and currently only) operand is a mask. - InnerLoopVectorizer::VectorParts MaskValues(State.UF); - VPValue *Mask = User->getOperand(User->getNumOperands() - 1); - for (unsigned Part = 0; Part < State.UF; ++Part) - MaskValues[Part] = State.get(Mask, Part); - State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); -} - -void VPReplicateRecipe::execute(VPTransformState &State) { - if (State.Instance) { // Generate a single instance. - State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); - // Insert scalar instance packing it into a vector. - if (AlsoPack && State.VF > 1) { - // If we're constructing lane 0, initialize to start from undef. - if (State.Instance->Lane == 0) { - Value *Undef = - UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); - State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); - } - State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); - } - return; - } - - // Generate scalar instances for all VF lanes of all UF parts, unless the - // instruction is uniform inwhich case generate only the first lane for each - // of the UF parts. - unsigned EndLane = IsUniform ? 1 : State.VF; - for (unsigned Part = 0; Part < State.UF; ++Part) - for (unsigned Lane = 0; Lane < EndLane; ++Lane) - State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); -} - -void VPBranchOnMaskRecipe::execute(VPTransformState &State) { - assert(State.Instance && "Branch on Mask works only on single instance."); - - unsigned Part = State.Instance->Part; - unsigned Lane = State.Instance->Lane; - - Value *ConditionBit = nullptr; - if (!User) // Block in mask is all-one. - ConditionBit = State.Builder.getTrue(); - else { - VPValue *BlockInMask = User->getOperand(0); - ConditionBit = State.get(BlockInMask, Part); - if (ConditionBit->getType()->isVectorTy()) - ConditionBit = State.Builder.CreateExtractElement( - ConditionBit, State.Builder.getInt32(Lane)); - } - - // Replace the temporary unreachable terminator with a new conditional branch, - // whose two destinations will be set later when they are created. - auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); - assert(isa<UnreachableInst>(CurrentTerminator) && - "Expected to replace unreachable terminator with conditional branch."); - auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); - CondBr->setSuccessor(0, nullptr); - ReplaceInstWithInst(CurrentTerminator, CondBr); -} - -void VPPredInstPHIRecipe::execute(VPTransformState &State) { - assert(State.Instance && "Predicated instruction PHI works per instance."); - Instruction *ScalarPredInst = cast<Instruction>( - State.ValueMap.getScalarValue(PredInst, *State.Instance)); - BasicBlock *PredicatedBB = ScalarPredInst->getParent(); - BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); - assert(PredicatingBB && "Predicated block has no single predecessor."); - - // By current pack/unpack logic we need to generate only a single phi node: if - // a vector value for the predicated instruction exists at this point it means - // the instruction has vector users only, and a phi for the vector value is - // needed. In this case the recipe of the predicated instruction is marked to - // also do that packing, thereby "hoisting" the insert-element sequence. - // Otherwise, a phi node for the scalar value is needed. - unsigned Part = State.Instance->Part; - if (State.ValueMap.hasVectorValue(PredInst, Part)) { - Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); - InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); - PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); - VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. - VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. - State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. - } else { - Type *PredInstType = PredInst->getType(); - PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); - Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); - Phi->addIncoming(ScalarPredInst, PredicatedBB); - State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); - } -} - -void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { - if (!User) - return State.ILV->vectorizeMemoryInstruction(&Instr); - - // Last (and currently only) operand is a mask. - InnerLoopVectorizer::VectorParts MaskValues(State.UF); - VPValue *Mask = User->getOperand(User->getNumOperands() - 1); - for (unsigned Part = 0; Part < State.UF; ++Part) - MaskValues[Part] = State.get(Mask, Part); - State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); -} - -// Process the loop in the VPlan-native vectorization path. This path builds -// VPlan upfront in the vectorization pipeline, which allows to apply -// VPlan-to-VPlan transformations from the very beginning without modifying the -// input LLVM IR. -static bool processLoopInVPlanNativePath( - Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, - LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, - TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, - OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, - ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { - - assert(EnableVPlanNativePath && "VPlan-native path is disabled."); - Function *F = L->getHeader()->getParent(); - InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); - LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, - &Hints, IAI); - // Use the planner for outer loop vectorization. - // TODO: CM is not used at this point inside the planner. Turn CM into an - // optional argument if we don't need it in the future. - LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); - - // Get user vectorization factor. - const unsigned UserVF = Hints.getWidth(); - - // Check the function attributes and profiles to find out if this function - // should be optimized for size. - bool OptForSize = - Hints.getForce() != LoopVectorizeHints::FK_Enabled && - (F->hasOptSize() || - llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); - - // Plan how to best vectorize, return the best VF and its cost. - const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); - - // If we are stress testing VPlan builds, do not attempt to generate vector - // code. Masked vector code generation support will follow soon. - // Also, do not attempt to vectorize if no vector code will be produced. - if (VPlanBuildStressTest || EnableVPlanPredication || - VectorizationFactor::Disabled() == VF) - return false; - - LVP.setBestPlan(VF.Width, 1); - - InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, - &CM); - LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" - << L->getHeader()->getParent()->getName() << "\"\n"); - LVP.executePlan(LB, DT); - - // Mark the loop as already vectorized to avoid vectorizing again. - Hints.setAlreadyVectorized(); - - LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); - return true; -} - -bool LoopVectorizePass::processLoop(Loop *L) { - assert((EnableVPlanNativePath || L->empty()) && - "VPlan-native path is not enabled. Only process inner loops."); - -#ifndef NDEBUG - const std::string DebugLocStr = getDebugLocString(L); -#endif /* NDEBUG */ - - LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" - << L->getHeader()->getParent()->getName() << "\" from " - << DebugLocStr << "\n"); - - LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); - - LLVM_DEBUG( - dbgs() << "LV: Loop hints:" - << " force=" - << (Hints.getForce() == LoopVectorizeHints::FK_Disabled - ? "disabled" - : (Hints.getForce() == LoopVectorizeHints::FK_Enabled - ? "enabled" - : "?")) - << " width=" << Hints.getWidth() - << " unroll=" << Hints.getInterleave() << "\n"); - - // Function containing loop - Function *F = L->getHeader()->getParent(); - - // Looking at the diagnostic output is the only way to determine if a loop - // was vectorized (other than looking at the IR or machine code), so it - // is important to generate an optimization remark for each loop. Most of - // these messages are generated as OptimizationRemarkAnalysis. Remarks - // generated as OptimizationRemark and OptimizationRemarkMissed are - // less verbose reporting vectorized loops and unvectorized loops that may - // benefit from vectorization, respectively. - - if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { - LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); - return false; - } - - PredicatedScalarEvolution PSE(*SE, *L); - - // Check if it is legal to vectorize the loop. - LoopVectorizationRequirements Requirements(*ORE); - LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, - &Requirements, &Hints, DB, AC); - if (!LVL.canVectorize(EnableVPlanNativePath)) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); - Hints.emitRemarkWithHints(); - return false; - } - - // Check the function attributes and profiles to find out if this function - // should be optimized for size. - bool OptForSize = - Hints.getForce() != LoopVectorizeHints::FK_Enabled && - (F->hasOptSize() || - llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); - - // Entrance to the VPlan-native vectorization path. Outer loops are processed - // here. They may require CFG and instruction level transformations before - // even evaluating whether vectorization is profitable. Since we cannot modify - // the incoming IR, we need to build VPlan upfront in the vectorization - // pipeline. - if (!L->empty()) - return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, - ORE, BFI, PSI, Hints); - - assert(L->empty() && "Inner loop expected."); - // Check the loop for a trip count threshold: vectorize loops with a tiny trip - // count by optimizing for size, to minimize overheads. - // Prefer constant trip counts over profile data, over upper bound estimate. - unsigned ExpectedTC = 0; - bool HasExpectedTC = false; - if (const SCEVConstant *ConstExits = - dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { - const APInt &ExitsCount = ConstExits->getAPInt(); - // We are interested in small values for ExpectedTC. Skip over those that - // can't fit an unsigned. - if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { - ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; - HasExpectedTC = true; - } - } - // ExpectedTC may be large because it's bound by a variable. Check - // profiling information to validate we should vectorize. - if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { - auto EstimatedTC = getLoopEstimatedTripCount(L); - if (EstimatedTC) { - ExpectedTC = *EstimatedTC; - HasExpectedTC = true; - } - } - if (!HasExpectedTC) { - ExpectedTC = SE->getSmallConstantMaxTripCount(L); - HasExpectedTC = (ExpectedTC > 0); - } - - if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { - LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " - << "This loop is worth vectorizing only if no scalar " - << "iteration overheads are incurred."); - if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) - LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); - else { - LLVM_DEBUG(dbgs() << "\n"); - // Loops with a very small trip count are considered for vectorization - // under OptForSize, thereby making sure the cost of their loop body is - // dominant, free of runtime guards and scalar iteration overheads. - OptForSize = true; - } - } - - // Check the function attributes to see if implicit floats are allowed. - // FIXME: This check doesn't seem possibly correct -- what if the loop is - // an integer loop and the vector instructions selected are purely integer - // vector instructions? - if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { - LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" - "attribute is used.\n"); - ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), - "NoImplicitFloat", L) - << "loop not vectorized due to NoImplicitFloat attribute"); - Hints.emitRemarkWithHints(); - return false; - } - - // Check if the target supports potentially unsafe FP vectorization. - // FIXME: Add a check for the type of safety issue (denormal, signaling) - // for the target we're vectorizing for, to make sure none of the - // additional fp-math flags can help. - if (Hints.isPotentiallyUnsafe() && - TTI->isFPVectorizationPotentiallyUnsafe()) { - LLVM_DEBUG( - dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); - ORE->emit( - createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) - << "loop not vectorized due to unsafe FP support."); - Hints.emitRemarkWithHints(); - return false; - } - - bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); - InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); - - // If an override option has been passed in for interleaved accesses, use it. - if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) - UseInterleaved = EnableInterleavedMemAccesses; - - // Analyze interleaved memory accesses. - if (UseInterleaved) { - IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); - } - - // Use the cost model. - LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, - &Hints, IAI); - CM.collectValuesToIgnore(); - - // Use the planner for vectorization. - LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); - - // Get user vectorization factor. - unsigned UserVF = Hints.getWidth(); - - // Plan how to best vectorize, return the best VF and its cost. - Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); - - VectorizationFactor VF = VectorizationFactor::Disabled(); - unsigned IC = 1; - unsigned UserIC = Hints.getInterleave(); - - if (MaybeVF) { - VF = *MaybeVF; - // Select the interleave count. - IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); - } - - // Identify the diagnostic messages that should be produced. - std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; - bool VectorizeLoop = true, InterleaveLoop = true; - if (Requirements.doesNotMeet(F, L, Hints)) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " - "requirements.\n"); - Hints.emitRemarkWithHints(); - return false; - } - - if (VF.Width == 1) { - LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); - VecDiagMsg = std::make_pair( - "VectorizationNotBeneficial", - "the cost-model indicates that vectorization is not beneficial"); - VectorizeLoop = false; - } - - if (!MaybeVF && UserIC > 1) { - // Tell the user interleaving was avoided up-front, despite being explicitly - // requested. - LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " - "interleaving should be avoided up front\n"); - IntDiagMsg = std::make_pair( - "InterleavingAvoided", - "Ignoring UserIC, because interleaving was avoided up front"); - InterleaveLoop = false; - } else if (IC == 1 && UserIC <= 1) { - // Tell the user interleaving is not beneficial. - LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); - IntDiagMsg = std::make_pair( - "InterleavingNotBeneficial", - "the cost-model indicates that interleaving is not beneficial"); - InterleaveLoop = false; - if (UserIC == 1) { - IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; - IntDiagMsg.second += - " and is explicitly disabled or interleave count is set to 1"; - } - } else if (IC > 1 && UserIC == 1) { - // Tell the user interleaving is beneficial, but it explicitly disabled. - LLVM_DEBUG( - dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); - IntDiagMsg = std::make_pair( - "InterleavingBeneficialButDisabled", - "the cost-model indicates that interleaving is beneficial " - "but is explicitly disabled or interleave count is set to 1"); - InterleaveLoop = false; - } - - // Override IC if user provided an interleave count. - IC = UserIC > 0 ? UserIC : IC; - - // Emit diagnostic messages, if any. - const char *VAPassName = Hints.vectorizeAnalysisPassName(); - if (!VectorizeLoop && !InterleaveLoop) { - // Do not vectorize or interleaving the loop. - ORE->emit([&]() { - return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, - L->getStartLoc(), L->getHeader()) - << VecDiagMsg.second; - }); - ORE->emit([&]() { - return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, - L->getStartLoc(), L->getHeader()) - << IntDiagMsg.second; - }); - return false; - } else if (!VectorizeLoop && InterleaveLoop) { - LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); - ORE->emit([&]() { - return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, - L->getStartLoc(), L->getHeader()) - << VecDiagMsg.second; - }); - } else if (VectorizeLoop && !InterleaveLoop) { - LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width - << ") in " << DebugLocStr << '\n'); - ORE->emit([&]() { - return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, - L->getStartLoc(), L->getHeader()) - << IntDiagMsg.second; - }); - } else if (VectorizeLoop && InterleaveLoop) { - LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width - << ") in " << DebugLocStr << '\n'); - LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); - } - - LVP.setBestPlan(VF.Width, IC); - - using namespace ore; - bool DisableRuntimeUnroll = false; - MDNode *OrigLoopID = L->getLoopID(); - - if (!VectorizeLoop) { - assert(IC > 1 && "interleave count should not be 1 or 0"); - // If we decided that it is not legal to vectorize the loop, then - // interleave it. - InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, - &CM); - LVP.executePlan(Unroller, DT); - - ORE->emit([&]() { - return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), - L->getHeader()) - << "interleaved loop (interleaved count: " - << NV("InterleaveCount", IC) << ")"; - }); - } else { - // If we decided that it is *legal* to vectorize the loop, then do it. - InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, - &LVL, &CM); - LVP.executePlan(LB, DT); - ++LoopsVectorized; - - // Add metadata to disable runtime unrolling a scalar loop when there are - // no runtime checks about strides and memory. A scalar loop that is - // rarely used is not worth unrolling. - if (!LB.areSafetyChecksAdded()) - DisableRuntimeUnroll = true; - - // Report the vectorization decision. - ORE->emit([&]() { - return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), - L->getHeader()) - << "vectorized loop (vectorization width: " - << NV("VectorizationFactor", VF.Width) - << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; - }); - } - - Optional<MDNode *> RemainderLoopID = - makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, - LLVMLoopVectorizeFollowupEpilogue}); - if (RemainderLoopID.hasValue()) { - L->setLoopID(RemainderLoopID.getValue()); - } else { - if (DisableRuntimeUnroll) - AddRuntimeUnrollDisableMetaData(L); - - // Mark the loop as already vectorized to avoid vectorizing again. - Hints.setAlreadyVectorized(); - } - - LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); - return true; -} - -bool LoopVectorizePass::runImpl( - Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, - DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, - DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, - std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, - OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { - SE = &SE_; - LI = &LI_; - TTI = &TTI_; - DT = &DT_; - BFI = &BFI_; - TLI = TLI_; - AA = &AA_; - AC = &AC_; - GetLAA = &GetLAA_; - DB = &DB_; - ORE = &ORE_; - PSI = PSI_; - - // Don't attempt if - // 1. the target claims to have no vector registers, and - // 2. interleaving won't help ILP. - // - // The second condition is necessary because, even if the target has no - // vector registers, loop vectorization may still enable scalar - // interleaving. - if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) - return false; - - bool Changed = false; - - // The vectorizer requires loops to be in simplified form. - // Since simplification may add new inner loops, it has to run before the - // legality and profitability checks. This means running the loop vectorizer - // will simplify all loops, regardless of whether anything end up being - // vectorized. - for (auto &L : *LI) - Changed |= - simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); - - // Build up a worklist of inner-loops to vectorize. This is necessary as - // the act of vectorizing or partially unrolling a loop creates new loops - // and can invalidate iterators across the loops. - SmallVector<Loop *, 8> Worklist; - - for (Loop *L : *LI) - collectSupportedLoops(*L, LI, ORE, Worklist); - - LoopsAnalyzed += Worklist.size(); - - // Now walk the identified inner loops. - while (!Worklist.empty()) { - Loop *L = Worklist.pop_back_val(); - - // For the inner loops we actually process, form LCSSA to simplify the - // transform. - Changed |= formLCSSARecursively(*L, *DT, LI, SE); - - Changed |= processLoop(L); - } - - // Process each loop nest in the function. - return Changed; -} - -PreservedAnalyses LoopVectorizePass::run(Function &F, - FunctionAnalysisManager &AM) { - auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); - auto &LI = AM.getResult<LoopAnalysis>(F); - auto &TTI = AM.getResult<TargetIRAnalysis>(F); - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); - auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); - auto &AA = AM.getResult<AAManager>(F); - auto &AC = AM.getResult<AssumptionAnalysis>(F); - auto &DB = AM.getResult<DemandedBitsAnalysis>(F); - auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); - MemorySSA *MSSA = EnableMSSALoopDependency - ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() - : nullptr; - - auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); - std::function<const LoopAccessInfo &(Loop &)> GetLAA = - [&](Loop &L) -> const LoopAccessInfo & { - LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; - return LAM.getResult<LoopAccessAnalysis>(L, AR); - }; - const ModuleAnalysisManager &MAM = - AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); - ProfileSummaryInfo *PSI = - MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); - bool Changed = - runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); - if (!Changed) - return PreservedAnalyses::all(); - PreservedAnalyses PA; - - // We currently do not preserve loopinfo/dominator analyses with outer loop - // vectorization. Until this is addressed, mark these analyses as preserved - // only for non-VPlan-native path. - // TODO: Preserve Loop and Dominator analyses for VPlan-native path. - if (!EnableVPlanNativePath) { - PA.preserve<LoopAnalysis>(); - PA.preserve<DominatorTreeAnalysis>(); - } - PA.preserve<BasicAA>(); - PA.preserve<GlobalsAA>(); - return PA; -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp deleted file mode 100644 index 27a86c0bca91..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp +++ /dev/null @@ -1,6923 +0,0 @@ -//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass implements the Bottom Up SLP vectorizer. It detects consecutive -// stores that can be put together into vector-stores. Next, it attempts to -// construct vectorizable tree using the use-def chains. If a profitable tree -// was found, the SLP vectorizer performs vectorization on the tree. -// -// The pass is inspired by the work described in the paper: -// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Vectorize/SLPVectorizer.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/iterator.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/DemandedBits.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/LoopAccessAnalysis.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/NoFolder.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/IR/Verifier.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/DOTGraphTraits.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Vectorize.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <memory> -#include <set> -#include <string> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace llvm::PatternMatch; -using namespace slpvectorizer; - -#define SV_NAME "slp-vectorizer" -#define DEBUG_TYPE "SLP" - -STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); - -cl::opt<bool> - llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, - cl::desc("Run the SLP vectorization passes")); - -static cl::opt<int> - SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, - cl::desc("Only vectorize if you gain more than this " - "number ")); - -static cl::opt<bool> -ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, - cl::desc("Attempt to vectorize horizontal reductions")); - -static cl::opt<bool> ShouldStartVectorizeHorAtStore( - "slp-vectorize-hor-store", cl::init(false), cl::Hidden, - cl::desc( - "Attempt to vectorize horizontal reductions feeding into a store")); - -static cl::opt<int> -MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, - cl::desc("Attempt to vectorize for this register size in bits")); - -/// Limits the size of scheduling regions in a block. -/// It avoid long compile times for _very_ large blocks where vector -/// instructions are spread over a wide range. -/// This limit is way higher than needed by real-world functions. -static cl::opt<int> -ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, - cl::desc("Limit the size of the SLP scheduling region per block")); - -static cl::opt<int> MinVectorRegSizeOption( - "slp-min-reg-size", cl::init(128), cl::Hidden, - cl::desc("Attempt to vectorize for this register size in bits")); - -static cl::opt<unsigned> RecursionMaxDepth( - "slp-recursion-max-depth", cl::init(12), cl::Hidden, - cl::desc("Limit the recursion depth when building a vectorizable tree")); - -static cl::opt<unsigned> MinTreeSize( - "slp-min-tree-size", cl::init(3), cl::Hidden, - cl::desc("Only vectorize small trees if they are fully vectorizable")); - -static cl::opt<bool> - ViewSLPTree("view-slp-tree", cl::Hidden, - cl::desc("Display the SLP trees with Graphviz")); - -// Limit the number of alias checks. The limit is chosen so that -// it has no negative effect on the llvm benchmarks. -static const unsigned AliasedCheckLimit = 10; - -// Another limit for the alias checks: The maximum distance between load/store -// instructions where alias checks are done. -// This limit is useful for very large basic blocks. -static const unsigned MaxMemDepDistance = 160; - -/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling -/// regions to be handled. -static const int MinScheduleRegionSize = 16; - -/// Predicate for the element types that the SLP vectorizer supports. -/// -/// The most important thing to filter here are types which are invalid in LLVM -/// vectors. We also filter target specific types which have absolutely no -/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just -/// avoids spending time checking the cost model and realizing that they will -/// be inevitably scalarized. -static bool isValidElementType(Type *Ty) { - return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && - !Ty->isPPC_FP128Ty(); -} - -/// \returns true if all of the instructions in \p VL are in the same block or -/// false otherwise. -static bool allSameBlock(ArrayRef<Value *> VL) { - Instruction *I0 = dyn_cast<Instruction>(VL[0]); - if (!I0) - return false; - BasicBlock *BB = I0->getParent(); - for (int i = 1, e = VL.size(); i < e; i++) { - Instruction *I = dyn_cast<Instruction>(VL[i]); - if (!I) - return false; - - if (BB != I->getParent()) - return false; - } - return true; -} - -/// \returns True if all of the values in \p VL are constants. -static bool allConstant(ArrayRef<Value *> VL) { - for (Value *i : VL) - if (!isa<Constant>(i)) - return false; - return true; -} - -/// \returns True if all of the values in \p VL are identical. -static bool isSplat(ArrayRef<Value *> VL) { - for (unsigned i = 1, e = VL.size(); i < e; ++i) - if (VL[i] != VL[0]) - return false; - return true; -} - -/// \returns True if \p I is commutative, handles CmpInst as well as Instruction. -static bool isCommutative(Instruction *I) { - if (auto *IC = dyn_cast<CmpInst>(I)) - return IC->isCommutative(); - return I->isCommutative(); -} - -/// Checks if the vector of instructions can be represented as a shuffle, like: -/// %x0 = extractelement <4 x i8> %x, i32 0 -/// %x3 = extractelement <4 x i8> %x, i32 3 -/// %y1 = extractelement <4 x i8> %y, i32 1 -/// %y2 = extractelement <4 x i8> %y, i32 2 -/// %x0x0 = mul i8 %x0, %x0 -/// %x3x3 = mul i8 %x3, %x3 -/// %y1y1 = mul i8 %y1, %y1 -/// %y2y2 = mul i8 %y2, %y2 -/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 -/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 -/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 -/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 -/// ret <4 x i8> %ins4 -/// can be transformed into: -/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, -/// i32 6> -/// %2 = mul <4 x i8> %1, %1 -/// ret <4 x i8> %2 -/// We convert this initially to something like: -/// %x0 = extractelement <4 x i8> %x, i32 0 -/// %x3 = extractelement <4 x i8> %x, i32 3 -/// %y1 = extractelement <4 x i8> %y, i32 1 -/// %y2 = extractelement <4 x i8> %y, i32 2 -/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 -/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 -/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 -/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 -/// %5 = mul <4 x i8> %4, %4 -/// %6 = extractelement <4 x i8> %5, i32 0 -/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 -/// %7 = extractelement <4 x i8> %5, i32 1 -/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 -/// %8 = extractelement <4 x i8> %5, i32 2 -/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 -/// %9 = extractelement <4 x i8> %5, i32 3 -/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 -/// ret <4 x i8> %ins4 -/// InstCombiner transforms this into a shuffle and vector mul -/// TODO: Can we split off and reuse the shuffle mask detection from -/// TargetTransformInfo::getInstructionThroughput? -static Optional<TargetTransformInfo::ShuffleKind> -isShuffle(ArrayRef<Value *> VL) { - auto *EI0 = cast<ExtractElementInst>(VL[0]); - unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); - Value *Vec1 = nullptr; - Value *Vec2 = nullptr; - enum ShuffleMode { Unknown, Select, Permute }; - ShuffleMode CommonShuffleMode = Unknown; - for (unsigned I = 0, E = VL.size(); I < E; ++I) { - auto *EI = cast<ExtractElementInst>(VL[I]); - auto *Vec = EI->getVectorOperand(); - // All vector operands must have the same number of vector elements. - if (Vec->getType()->getVectorNumElements() != Size) - return None; - auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); - if (!Idx) - return None; - // Undefined behavior if Idx is negative or >= Size. - if (Idx->getValue().uge(Size)) - continue; - unsigned IntIdx = Idx->getValue().getZExtValue(); - // We can extractelement from undef vector. - if (isa<UndefValue>(Vec)) - continue; - // For correct shuffling we have to have at most 2 different vector operands - // in all extractelement instructions. - if (!Vec1 || Vec1 == Vec) - Vec1 = Vec; - else if (!Vec2 || Vec2 == Vec) - Vec2 = Vec; - else - return None; - if (CommonShuffleMode == Permute) - continue; - // If the extract index is not the same as the operation number, it is a - // permutation. - if (IntIdx != I) { - CommonShuffleMode = Permute; - continue; - } - CommonShuffleMode = Select; - } - // If we're not crossing lanes in different vectors, consider it as blending. - if (CommonShuffleMode == Select && Vec2) - return TargetTransformInfo::SK_Select; - // If Vec2 was never used, we have a permutation of a single vector, otherwise - // we have permutation of 2 vectors. - return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc - : TargetTransformInfo::SK_PermuteSingleSrc; -} - -namespace { - -/// Main data required for vectorization of instructions. -struct InstructionsState { - /// The very first instruction in the list with the main opcode. - Value *OpValue = nullptr; - - /// The main/alternate instruction. - Instruction *MainOp = nullptr; - Instruction *AltOp = nullptr; - - /// The main/alternate opcodes for the list of instructions. - unsigned getOpcode() const { - return MainOp ? MainOp->getOpcode() : 0; - } - - unsigned getAltOpcode() const { - return AltOp ? AltOp->getOpcode() : 0; - } - - /// Some of the instructions in the list have alternate opcodes. - bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } - - bool isOpcodeOrAlt(Instruction *I) const { - unsigned CheckedOpcode = I->getOpcode(); - return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; - } - - InstructionsState() = delete; - InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) - : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} -}; - -} // end anonymous namespace - -/// Chooses the correct key for scheduling data. If \p Op has the same (or -/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p -/// OpValue. -static Value *isOneOf(const InstructionsState &S, Value *Op) { - auto *I = dyn_cast<Instruction>(Op); - if (I && S.isOpcodeOrAlt(I)) - return Op; - return S.OpValue; -} - -/// \returns analysis of the Instructions in \p VL described in -/// InstructionsState, the Opcode that we suppose the whole list -/// could be vectorized even if its structure is diverse. -static InstructionsState getSameOpcode(ArrayRef<Value *> VL, - unsigned BaseIndex = 0) { - // Make sure these are all Instructions. - if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) - return InstructionsState(VL[BaseIndex], nullptr, nullptr); - - bool IsCastOp = isa<CastInst>(VL[BaseIndex]); - bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); - unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); - unsigned AltOpcode = Opcode; - unsigned AltIndex = BaseIndex; - - // Check for one alternate opcode from another BinaryOperator. - // TODO - generalize to support all operators (types, calls etc.). - for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { - unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); - if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { - if (InstOpcode == Opcode || InstOpcode == AltOpcode) - continue; - if (Opcode == AltOpcode) { - AltOpcode = InstOpcode; - AltIndex = Cnt; - continue; - } - } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { - Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); - Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); - if (Ty0 == Ty1) { - if (InstOpcode == Opcode || InstOpcode == AltOpcode) - continue; - if (Opcode == AltOpcode) { - AltOpcode = InstOpcode; - AltIndex = Cnt; - continue; - } - } - } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) - continue; - return InstructionsState(VL[BaseIndex], nullptr, nullptr); - } - - return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), - cast<Instruction>(VL[AltIndex])); -} - -/// \returns true if all of the values in \p VL have the same type or false -/// otherwise. -static bool allSameType(ArrayRef<Value *> VL) { - Type *Ty = VL[0]->getType(); - for (int i = 1, e = VL.size(); i < e; i++) - if (VL[i]->getType() != Ty) - return false; - - return true; -} - -/// \returns True if Extract{Value,Element} instruction extracts element Idx. -static Optional<unsigned> getExtractIndex(Instruction *E) { - unsigned Opcode = E->getOpcode(); - assert((Opcode == Instruction::ExtractElement || - Opcode == Instruction::ExtractValue) && - "Expected extractelement or extractvalue instruction."); - if (Opcode == Instruction::ExtractElement) { - auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); - if (!CI) - return None; - return CI->getZExtValue(); - } - ExtractValueInst *EI = cast<ExtractValueInst>(E); - if (EI->getNumIndices() != 1) - return None; - return *EI->idx_begin(); -} - -/// \returns True if in-tree use also needs extract. This refers to -/// possible scalar operand in vectorized instruction. -static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, - TargetLibraryInfo *TLI) { - unsigned Opcode = UserInst->getOpcode(); - switch (Opcode) { - case Instruction::Load: { - LoadInst *LI = cast<LoadInst>(UserInst); - return (LI->getPointerOperand() == Scalar); - } - case Instruction::Store: { - StoreInst *SI = cast<StoreInst>(UserInst); - return (SI->getPointerOperand() == Scalar); - } - case Instruction::Call: { - CallInst *CI = cast<CallInst>(UserInst); - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { - if (hasVectorInstrinsicScalarOpd(ID, i)) - return (CI->getArgOperand(i) == Scalar); - } - LLVM_FALLTHROUGH; - } - default: - return false; - } -} - -/// \returns the AA location that is being access by the instruction. -static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return MemoryLocation::get(SI); - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return MemoryLocation::get(LI); - return MemoryLocation(); -} - -/// \returns True if the instruction is not a volatile or atomic load/store. -static bool isSimple(Instruction *I) { - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->isSimple(); - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return SI->isSimple(); - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) - return !MI->isVolatile(); - return true; -} - -namespace llvm { - -namespace slpvectorizer { - -/// Bottom Up SLP Vectorizer. -class BoUpSLP { - struct TreeEntry; - -public: - using ValueList = SmallVector<Value *, 8>; - using InstrList = SmallVector<Instruction *, 16>; - using ValueSet = SmallPtrSet<Value *, 16>; - using StoreList = SmallVector<StoreInst *, 8>; - using ExtraValueToDebugLocsMap = - MapVector<Value *, SmallVector<Instruction *, 2>>; - - BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, - TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, - DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, - const DataLayout *DL, OptimizationRemarkEmitter *ORE) - : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), - DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { - CodeMetrics::collectEphemeralValues(F, AC, EphValues); - // Use the vector register size specified by the target unless overridden - // by a command-line option. - // TODO: It would be better to limit the vectorization factor based on - // data type rather than just register size. For example, x86 AVX has - // 256-bit registers, but it does not support integer operations - // at that width (that requires AVX2). - if (MaxVectorRegSizeOption.getNumOccurrences()) - MaxVecRegSize = MaxVectorRegSizeOption; - else - MaxVecRegSize = TTI->getRegisterBitWidth(true); - - if (MinVectorRegSizeOption.getNumOccurrences()) - MinVecRegSize = MinVectorRegSizeOption; - else - MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); - } - - /// Vectorize the tree that starts with the elements in \p VL. - /// Returns the vectorized root. - Value *vectorizeTree(); - - /// Vectorize the tree but with the list of externally used values \p - /// ExternallyUsedValues. Values in this MapVector can be replaced but the - /// generated extractvalue instructions. - Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); - - /// \returns the cost incurred by unwanted spills and fills, caused by - /// holding live values over call sites. - int getSpillCost() const; - - /// \returns the vectorization cost of the subtree that starts at \p VL. - /// A negative number means that this is profitable. - int getTreeCost(); - - /// Construct a vectorizable tree that starts at \p Roots, ignoring users for - /// the purpose of scheduling and extraction in the \p UserIgnoreLst. - void buildTree(ArrayRef<Value *> Roots, - ArrayRef<Value *> UserIgnoreLst = None); - - /// Construct a vectorizable tree that starts at \p Roots, ignoring users for - /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking - /// into account (anf updating it, if required) list of externally used - /// values stored in \p ExternallyUsedValues. - void buildTree(ArrayRef<Value *> Roots, - ExtraValueToDebugLocsMap &ExternallyUsedValues, - ArrayRef<Value *> UserIgnoreLst = None); - - /// Clear the internal data structures that are created by 'buildTree'. - void deleteTree() { - VectorizableTree.clear(); - ScalarToTreeEntry.clear(); - MustGather.clear(); - ExternalUses.clear(); - NumOpsWantToKeepOrder.clear(); - NumOpsWantToKeepOriginalOrder = 0; - for (auto &Iter : BlocksSchedules) { - BlockScheduling *BS = Iter.second.get(); - BS->clear(); - } - MinBWs.clear(); - } - - unsigned getTreeSize() const { return VectorizableTree.size(); } - - /// Perform LICM and CSE on the newly generated gather sequences. - void optimizeGatherSequence(); - - /// \returns The best order of instructions for vectorization. - Optional<ArrayRef<unsigned>> bestOrder() const { - auto I = std::max_element( - NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), - [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, - const decltype(NumOpsWantToKeepOrder)::value_type &D2) { - return D1.second < D2.second; - }); - if (I == NumOpsWantToKeepOrder.end() || - I->getSecond() <= NumOpsWantToKeepOriginalOrder) - return None; - - return makeArrayRef(I->getFirst()); - } - - /// \return The vector element size in bits to use when vectorizing the - /// expression tree ending at \p V. If V is a store, the size is the width of - /// the stored value. Otherwise, the size is the width of the largest loaded - /// value reaching V. This method is used by the vectorizer to calculate - /// vectorization factors. - unsigned getVectorElementSize(Value *V) const; - - /// Compute the minimum type sizes required to represent the entries in a - /// vectorizable tree. - void computeMinimumValueSizes(); - - // \returns maximum vector register size as set by TTI or overridden by cl::opt. - unsigned getMaxVecRegSize() const { - return MaxVecRegSize; - } - - // \returns minimum vector register size as set by cl::opt. - unsigned getMinVecRegSize() const { - return MinVecRegSize; - } - - /// Check if ArrayType or StructType is isomorphic to some VectorType. - /// - /// \returns number of elements in vector if isomorphism exists, 0 otherwise. - unsigned canMapToVector(Type *T, const DataLayout &DL) const; - - /// \returns True if the VectorizableTree is both tiny and not fully - /// vectorizable. We do not vectorize such trees. - bool isTreeTinyAndNotFullyVectorizable() const; - - OptimizationRemarkEmitter *getORE() { return ORE; } - - /// This structure holds any data we need about the edges being traversed - /// during buildTree_rec(). We keep track of: - /// (i) the user TreeEntry index, and - /// (ii) the index of the edge. - struct EdgeInfo { - EdgeInfo() = default; - EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) - : UserTE(UserTE), EdgeIdx(EdgeIdx) {} - /// The user TreeEntry. - TreeEntry *UserTE = nullptr; - /// The operand index of the use. - unsigned EdgeIdx = UINT_MAX; -#ifndef NDEBUG - friend inline raw_ostream &operator<<(raw_ostream &OS, - const BoUpSLP::EdgeInfo &EI) { - EI.dump(OS); - return OS; - } - /// Debug print. - void dump(raw_ostream &OS) const { - OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") - << " EdgeIdx:" << EdgeIdx << "}"; - } - LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } -#endif - }; - - /// A helper data structure to hold the operands of a vector of instructions. - /// This supports a fixed vector length for all operand vectors. - class VLOperands { - /// For each operand we need (i) the value, and (ii) the opcode that it - /// would be attached to if the expression was in a left-linearized form. - /// This is required to avoid illegal operand reordering. - /// For example: - /// \verbatim - /// 0 Op1 - /// |/ - /// Op1 Op2 Linearized + Op2 - /// \ / ----------> |/ - /// - - - /// - /// Op1 - Op2 (0 + Op1) - Op2 - /// \endverbatim - /// - /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. - /// - /// Another way to think of this is to track all the operations across the - /// path from the operand all the way to the root of the tree and to - /// calculate the operation that corresponds to this path. For example, the - /// path from Op2 to the root crosses the RHS of the '-', therefore the - /// corresponding operation is a '-' (which matches the one in the - /// linearized tree, as shown above). - /// - /// For lack of a better term, we refer to this operation as Accumulated - /// Path Operation (APO). - struct OperandData { - OperandData() = default; - OperandData(Value *V, bool APO, bool IsUsed) - : V(V), APO(APO), IsUsed(IsUsed) {} - /// The operand value. - Value *V = nullptr; - /// TreeEntries only allow a single opcode, or an alternate sequence of - /// them (e.g, +, -). Therefore, we can safely use a boolean value for the - /// APO. It is set to 'true' if 'V' is attached to an inverse operation - /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise - /// (e.g., Add/Mul) - bool APO = false; - /// Helper data for the reordering function. - bool IsUsed = false; - }; - - /// During operand reordering, we are trying to select the operand at lane - /// that matches best with the operand at the neighboring lane. Our - /// selection is based on the type of value we are looking for. For example, - /// if the neighboring lane has a load, we need to look for a load that is - /// accessing a consecutive address. These strategies are summarized in the - /// 'ReorderingMode' enumerator. - enum class ReorderingMode { - Load, ///< Matching loads to consecutive memory addresses - Opcode, ///< Matching instructions based on opcode (same or alternate) - Constant, ///< Matching constants - Splat, ///< Matching the same instruction multiple times (broadcast) - Failed, ///< We failed to create a vectorizable group - }; - - using OperandDataVec = SmallVector<OperandData, 2>; - - /// A vector of operand vectors. - SmallVector<OperandDataVec, 4> OpsVec; - - const DataLayout &DL; - ScalarEvolution &SE; - - /// \returns the operand data at \p OpIdx and \p Lane. - OperandData &getData(unsigned OpIdx, unsigned Lane) { - return OpsVec[OpIdx][Lane]; - } - - /// \returns the operand data at \p OpIdx and \p Lane. Const version. - const OperandData &getData(unsigned OpIdx, unsigned Lane) const { - return OpsVec[OpIdx][Lane]; - } - - /// Clears the used flag for all entries. - void clearUsed() { - for (unsigned OpIdx = 0, NumOperands = getNumOperands(); - OpIdx != NumOperands; ++OpIdx) - for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; - ++Lane) - OpsVec[OpIdx][Lane].IsUsed = false; - } - - /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. - void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { - std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); - } - - // Search all operands in Ops[*][Lane] for the one that matches best - // Ops[OpIdx][LastLane] and return its opreand index. - // If no good match can be found, return None. - Optional<unsigned> - getBestOperand(unsigned OpIdx, int Lane, int LastLane, - ArrayRef<ReorderingMode> ReorderingModes) { - unsigned NumOperands = getNumOperands(); - - // The operand of the previous lane at OpIdx. - Value *OpLastLane = getData(OpIdx, LastLane).V; - - // Our strategy mode for OpIdx. - ReorderingMode RMode = ReorderingModes[OpIdx]; - - // The linearized opcode of the operand at OpIdx, Lane. - bool OpIdxAPO = getData(OpIdx, Lane).APO; - - const unsigned BestScore = 2; - const unsigned GoodScore = 1; - - // The best operand index and its score. - // Sometimes we have more than one option (e.g., Opcode and Undefs), so we - // are using the score to differentiate between the two. - struct BestOpData { - Optional<unsigned> Idx = None; - unsigned Score = 0; - } BestOp; - - // Iterate through all unused operands and look for the best. - for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { - // Get the operand at Idx and Lane. - OperandData &OpData = getData(Idx, Lane); - Value *Op = OpData.V; - bool OpAPO = OpData.APO; - - // Skip already selected operands. - if (OpData.IsUsed) - continue; - - // Skip if we are trying to move the operand to a position with a - // different opcode in the linearized tree form. This would break the - // semantics. - if (OpAPO != OpIdxAPO) - continue; - - // Look for an operand that matches the current mode. - switch (RMode) { - case ReorderingMode::Load: - if (isa<LoadInst>(Op)) { - // Figure out which is left and right, so that we can check for - // consecutive loads - bool LeftToRight = Lane > LastLane; - Value *OpLeft = (LeftToRight) ? OpLastLane : Op; - Value *OpRight = (LeftToRight) ? Op : OpLastLane; - if (isConsecutiveAccess(cast<LoadInst>(OpLeft), - cast<LoadInst>(OpRight), DL, SE)) - BestOp.Idx = Idx; - } - break; - case ReorderingMode::Opcode: - // We accept both Instructions and Undefs, but with different scores. - if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && - cast<Instruction>(Op)->getOpcode() == - cast<Instruction>(OpLastLane)->getOpcode()) || - (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || - isa<UndefValue>(Op)) { - // An instruction has a higher score than an undef. - unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; - if (Score > BestOp.Score) { - BestOp.Idx = Idx; - BestOp.Score = Score; - } - } - break; - case ReorderingMode::Constant: - if (isa<Constant>(Op)) { - unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; - if (Score > BestOp.Score) { - BestOp.Idx = Idx; - BestOp.Score = Score; - } - } - break; - case ReorderingMode::Splat: - if (Op == OpLastLane) - BestOp.Idx = Idx; - break; - case ReorderingMode::Failed: - return None; - } - } - - if (BestOp.Idx) { - getData(BestOp.Idx.getValue(), Lane).IsUsed = true; - return BestOp.Idx; - } - // If we could not find a good match return None. - return None; - } - - /// Helper for reorderOperandVecs. \Returns the lane that we should start - /// reordering from. This is the one which has the least number of operands - /// that can freely move about. - unsigned getBestLaneToStartReordering() const { - unsigned BestLane = 0; - unsigned Min = UINT_MAX; - for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; - ++Lane) { - unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); - if (NumFreeOps < Min) { - Min = NumFreeOps; - BestLane = Lane; - } - } - return BestLane; - } - - /// \Returns the maximum number of operands that are allowed to be reordered - /// for \p Lane. This is used as a heuristic for selecting the first lane to - /// start operand reordering. - unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { - unsigned CntTrue = 0; - unsigned NumOperands = getNumOperands(); - // Operands with the same APO can be reordered. We therefore need to count - // how many of them we have for each APO, like this: Cnt[APO] = x. - // Since we only have two APOs, namely true and false, we can avoid using - // a map. Instead we can simply count the number of operands that - // correspond to one of them (in this case the 'true' APO), and calculate - // the other by subtracting it from the total number of operands. - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) - if (getData(OpIdx, Lane).APO) - ++CntTrue; - unsigned CntFalse = NumOperands - CntTrue; - return std::max(CntTrue, CntFalse); - } - - /// Go through the instructions in VL and append their operands. - void appendOperandsOfVL(ArrayRef<Value *> VL) { - assert(!VL.empty() && "Bad VL"); - assert((empty() || VL.size() == getNumLanes()) && - "Expected same number of lanes"); - assert(isa<Instruction>(VL[0]) && "Expected instruction"); - unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); - OpsVec.resize(NumOperands); - unsigned NumLanes = VL.size(); - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { - OpsVec[OpIdx].resize(NumLanes); - for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { - assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); - // Our tree has just 3 nodes: the root and two operands. - // It is therefore trivial to get the APO. We only need to check the - // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or - // RHS operand. The LHS operand of both add and sub is never attached - // to an inversese operation in the linearized form, therefore its APO - // is false. The RHS is true only if VL[Lane] is an inverse operation. - - // Since operand reordering is performed on groups of commutative - // operations or alternating sequences (e.g., +, -), we can safely - // tell the inverse operations by checking commutativity. - bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); - bool APO = (OpIdx == 0) ? false : IsInverseOperation; - OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), - APO, false}; - } - } - } - - /// \returns the number of operands. - unsigned getNumOperands() const { return OpsVec.size(); } - - /// \returns the number of lanes. - unsigned getNumLanes() const { return OpsVec[0].size(); } - - /// \returns the operand value at \p OpIdx and \p Lane. - Value *getValue(unsigned OpIdx, unsigned Lane) const { - return getData(OpIdx, Lane).V; - } - - /// \returns true if the data structure is empty. - bool empty() const { return OpsVec.empty(); } - - /// Clears the data. - void clear() { OpsVec.clear(); } - - /// \Returns true if there are enough operands identical to \p Op to fill - /// the whole vector. - /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. - bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { - bool OpAPO = getData(OpIdx, Lane).APO; - for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { - if (Ln == Lane) - continue; - // This is set to true if we found a candidate for broadcast at Lane. - bool FoundCandidate = false; - for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { - OperandData &Data = getData(OpI, Ln); - if (Data.APO != OpAPO || Data.IsUsed) - continue; - if (Data.V == Op) { - FoundCandidate = true; - Data.IsUsed = true; - break; - } - } - if (!FoundCandidate) - return false; - } - return true; - } - - public: - /// Initialize with all the operands of the instruction vector \p RootVL. - VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, - ScalarEvolution &SE) - : DL(DL), SE(SE) { - // Append all the operands of RootVL. - appendOperandsOfVL(RootVL); - } - - /// \Returns a value vector with the operands across all lanes for the - /// opearnd at \p OpIdx. - ValueList getVL(unsigned OpIdx) const { - ValueList OpVL(OpsVec[OpIdx].size()); - assert(OpsVec[OpIdx].size() == getNumLanes() && - "Expected same num of lanes across all operands"); - for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) - OpVL[Lane] = OpsVec[OpIdx][Lane].V; - return OpVL; - } - - // Performs operand reordering for 2 or more operands. - // The original operands are in OrigOps[OpIdx][Lane]. - // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. - void reorder() { - unsigned NumOperands = getNumOperands(); - unsigned NumLanes = getNumLanes(); - // Each operand has its own mode. We are using this mode to help us select - // the instructions for each lane, so that they match best with the ones - // we have selected so far. - SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); - - // This is a greedy single-pass algorithm. We are going over each lane - // once and deciding on the best order right away with no back-tracking. - // However, in order to increase its effectiveness, we start with the lane - // that has operands that can move the least. For example, given the - // following lanes: - // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd - // Lane 1 : A[1] = C[1] - B[1] // Visited 1st - // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd - // Lane 3 : A[3] = C[3] - B[3] // Visited 4th - // we will start at Lane 1, since the operands of the subtraction cannot - // be reordered. Then we will visit the rest of the lanes in a circular - // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. - - // Find the first lane that we will start our search from. - unsigned FirstLane = getBestLaneToStartReordering(); - - // Initialize the modes. - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { - Value *OpLane0 = getValue(OpIdx, FirstLane); - // Keep track if we have instructions with all the same opcode on one - // side. - if (isa<LoadInst>(OpLane0)) - ReorderingModes[OpIdx] = ReorderingMode::Load; - else if (isa<Instruction>(OpLane0)) { - // Check if OpLane0 should be broadcast. - if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) - ReorderingModes[OpIdx] = ReorderingMode::Splat; - else - ReorderingModes[OpIdx] = ReorderingMode::Opcode; - } - else if (isa<Constant>(OpLane0)) - ReorderingModes[OpIdx] = ReorderingMode::Constant; - else if (isa<Argument>(OpLane0)) - // Our best hope is a Splat. It may save some cost in some cases. - ReorderingModes[OpIdx] = ReorderingMode::Splat; - else - // NOTE: This should be unreachable. - ReorderingModes[OpIdx] = ReorderingMode::Failed; - } - - // If the initial strategy fails for any of the operand indexes, then we - // perform reordering again in a second pass. This helps avoid assigning - // high priority to the failed strategy, and should improve reordering for - // the non-failed operand indexes. - for (int Pass = 0; Pass != 2; ++Pass) { - // Skip the second pass if the first pass did not fail. - bool StrategyFailed = false; - // Mark all operand data as free to use. - clearUsed(); - // We keep the original operand order for the FirstLane, so reorder the - // rest of the lanes. We are visiting the nodes in a circular fashion, - // using FirstLane as the center point and increasing the radius - // distance. - for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { - // Visit the lane on the right and then the lane on the left. - for (int Direction : {+1, -1}) { - int Lane = FirstLane + Direction * Distance; - if (Lane < 0 || Lane >= (int)NumLanes) - continue; - int LastLane = Lane - Direction; - assert(LastLane >= 0 && LastLane < (int)NumLanes && - "Out of bounds"); - // Look for a good match for each operand. - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { - // Search for the operand that matches SortedOps[OpIdx][Lane-1]. - Optional<unsigned> BestIdx = - getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); - // By not selecting a value, we allow the operands that follow to - // select a better matching value. We will get a non-null value in - // the next run of getBestOperand(). - if (BestIdx) { - // Swap the current operand with the one returned by - // getBestOperand(). - swap(OpIdx, BestIdx.getValue(), Lane); - } else { - // We failed to find a best operand, set mode to 'Failed'. - ReorderingModes[OpIdx] = ReorderingMode::Failed; - // Enable the second pass. - StrategyFailed = true; - } - } - } - } - // Skip second pass if the strategy did not fail. - if (!StrategyFailed) - break; - } - } - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) - LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { - switch (RMode) { - case ReorderingMode::Load: - return "Load"; - case ReorderingMode::Opcode: - return "Opcode"; - case ReorderingMode::Constant: - return "Constant"; - case ReorderingMode::Splat: - return "Splat"; - case ReorderingMode::Failed: - return "Failed"; - } - llvm_unreachable("Unimplemented Reordering Type"); - } - - LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, - raw_ostream &OS) { - return OS << getModeStr(RMode); - } - - /// Debug print. - LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { - printMode(RMode, dbgs()); - } - - friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { - return printMode(RMode, OS); - } - - LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { - const unsigned Indent = 2; - unsigned Cnt = 0; - for (const OperandDataVec &OpDataVec : OpsVec) { - OS << "Operand " << Cnt++ << "\n"; - for (const OperandData &OpData : OpDataVec) { - OS.indent(Indent) << "{"; - if (Value *V = OpData.V) - OS << *V; - else - OS << "null"; - OS << ", APO:" << OpData.APO << "}\n"; - } - OS << "\n"; - } - return OS; - } - - /// Debug print. - LLVM_DUMP_METHOD void dump() const { print(dbgs()); } -#endif - }; - -private: - /// Checks if all users of \p I are the part of the vectorization tree. - bool areAllUsersVectorized(Instruction *I) const; - - /// \returns the cost of the vectorizable entry. - int getEntryCost(TreeEntry *E); - - /// This is the recursive part of buildTree. - void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, - const EdgeInfo &EI); - - /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can - /// be vectorized to use the original vector (or aggregate "bitcast" to a - /// vector) and sets \p CurrentOrder to the identity permutation; otherwise - /// returns false, setting \p CurrentOrder to either an empty vector or a - /// non-identity permutation that allows to reuse extract instructions. - bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, - SmallVectorImpl<unsigned> &CurrentOrder) const; - - /// Vectorize a single entry in the tree. - Value *vectorizeTree(TreeEntry *E); - - /// Vectorize a single entry in the tree, starting in \p VL. - Value *vectorizeTree(ArrayRef<Value *> VL); - - /// \returns the scalarization cost for this type. Scalarization in this - /// context means the creation of vectors from a group of scalars. - int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; - - /// \returns the scalarization cost for this list of values. Assuming that - /// this subtree gets vectorized, we may need to extract the values from the - /// roots. This method calculates the cost of extracting the values. - int getGatherCost(ArrayRef<Value *> VL) const; - - /// Set the Builder insert point to one after the last instruction in - /// the bundle - void setInsertPointAfterBundle(ArrayRef<Value *> VL, - const InstructionsState &S); - - /// \returns a vector from a collection of scalars in \p VL. - Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); - - /// \returns whether the VectorizableTree is fully vectorizable and will - /// be beneficial even the tree height is tiny. - bool isFullyVectorizableTinyTree() const; - - /// Reorder commutative or alt operands to get better probability of - /// generating vectorized code. - static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, - SmallVectorImpl<Value *> &Left, - SmallVectorImpl<Value *> &Right, - const DataLayout &DL, - ScalarEvolution &SE); - struct TreeEntry { - using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; - TreeEntry(VecTreeTy &Container) : Container(Container) {} - - /// \returns true if the scalars in VL are equal to this entry. - bool isSame(ArrayRef<Value *> VL) const { - if (VL.size() == Scalars.size()) - return std::equal(VL.begin(), VL.end(), Scalars.begin()); - return VL.size() == ReuseShuffleIndices.size() && - std::equal( - VL.begin(), VL.end(), ReuseShuffleIndices.begin(), - [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); - } - - /// A vector of scalars. - ValueList Scalars; - - /// The Scalars are vectorized into this value. It is initialized to Null. - Value *VectorizedValue = nullptr; - - /// Do we need to gather this sequence ? - bool NeedToGather = false; - - /// Does this sequence require some shuffling? - SmallVector<unsigned, 4> ReuseShuffleIndices; - - /// Does this entry require reordering? - ArrayRef<unsigned> ReorderIndices; - - /// Points back to the VectorizableTree. - /// - /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has - /// to be a pointer and needs to be able to initialize the child iterator. - /// Thus we need a reference back to the container to translate the indices - /// to entries. - VecTreeTy &Container; - - /// The TreeEntry index containing the user of this entry. We can actually - /// have multiple users so the data structure is not truly a tree. - SmallVector<EdgeInfo, 1> UserTreeIndices; - - /// The index of this treeEntry in VectorizableTree. - int Idx = -1; - - private: - /// The operands of each instruction in each lane Operands[op_index][lane]. - /// Note: This helps avoid the replication of the code that performs the - /// reordering of operands during buildTree_rec() and vectorizeTree(). - SmallVector<ValueList, 2> Operands; - - public: - /// Set this bundle's \p OpIdx'th operand to \p OpVL. - void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, - ArrayRef<unsigned> ReuseShuffleIndices) { - if (Operands.size() < OpIdx + 1) - Operands.resize(OpIdx + 1); - assert(Operands[OpIdx].size() == 0 && "Already resized?"); - Operands[OpIdx].resize(Scalars.size()); - for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) - Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) - ? OpVL[ReuseShuffleIndices[Lane]] - : OpVL[Lane]; - } - - /// If there is a user TreeEntry, then set its operand. - void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, - ArrayRef<Value *> OpVL, - ArrayRef<unsigned> ReuseShuffleIndices) { - if (UserTreeIdx.UserTE) - UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL, - ReuseShuffleIndices); - } - - /// \returns the \p OpIdx operand of this TreeEntry. - ValueList &getOperand(unsigned OpIdx) { - assert(OpIdx < Operands.size() && "Off bounds"); - return Operands[OpIdx]; - } - - /// \return the single \p OpIdx operand. - Value *getSingleOperand(unsigned OpIdx) const { - assert(OpIdx < Operands.size() && "Off bounds"); - assert(!Operands[OpIdx].empty() && "No operand available"); - return Operands[OpIdx][0]; - } - -#ifndef NDEBUG - /// Debug printer. - LLVM_DUMP_METHOD void dump() const { - dbgs() << Idx << ".\n"; - for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { - dbgs() << "Operand " << OpI << ":\n"; - for (const Value *V : Operands[OpI]) - dbgs().indent(2) << *V << "\n"; - } - dbgs() << "Scalars: \n"; - for (Value *V : Scalars) - dbgs().indent(2) << *V << "\n"; - dbgs() << "NeedToGather: " << NeedToGather << "\n"; - dbgs() << "VectorizedValue: "; - if (VectorizedValue) - dbgs() << *VectorizedValue; - else - dbgs() << "NULL"; - dbgs() << "\n"; - dbgs() << "ReuseShuffleIndices: "; - if (ReuseShuffleIndices.empty()) - dbgs() << "Emtpy"; - else - for (unsigned Idx : ReuseShuffleIndices) - dbgs() << Idx << ", "; - dbgs() << "\n"; - dbgs() << "ReorderIndices: "; - for (unsigned Idx : ReorderIndices) - dbgs() << Idx << ", "; - dbgs() << "\n"; - dbgs() << "UserTreeIndices: "; - for (const auto &EInfo : UserTreeIndices) - dbgs() << EInfo << ", "; - dbgs() << "\n"; - } -#endif - }; - - /// Create a new VectorizableTree entry. - TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, - const EdgeInfo &UserTreeIdx, - ArrayRef<unsigned> ReuseShuffleIndices = None, - ArrayRef<unsigned> ReorderIndices = None) { - VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree)); - TreeEntry *Last = VectorizableTree.back().get(); - Last->Idx = VectorizableTree.size() - 1; - Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); - Last->NeedToGather = !Vectorized; - Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), - ReuseShuffleIndices.end()); - Last->ReorderIndices = ReorderIndices; - if (Vectorized) { - for (int i = 0, e = VL.size(); i != e; ++i) { - assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); - ScalarToTreeEntry[VL[i]] = Last->Idx; - } - } else { - MustGather.insert(VL.begin(), VL.end()); - } - - if (UserTreeIdx.UserTE) - Last->UserTreeIndices.push_back(UserTreeIdx); - - Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); - return Last; - } - - /// -- Vectorization State -- - /// Holds all of the tree entries. - TreeEntry::VecTreeTy VectorizableTree; - -#ifndef NDEBUG - /// Debug printer. - LLVM_DUMP_METHOD void dumpVectorizableTree() const { - for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { - VectorizableTree[Id]->dump(); - dbgs() << "\n"; - } - } -#endif - - TreeEntry *getTreeEntry(Value *V) { - auto I = ScalarToTreeEntry.find(V); - if (I != ScalarToTreeEntry.end()) - return VectorizableTree[I->second].get(); - return nullptr; - } - - const TreeEntry *getTreeEntry(Value *V) const { - auto I = ScalarToTreeEntry.find(V); - if (I != ScalarToTreeEntry.end()) - return VectorizableTree[I->second].get(); - return nullptr; - } - - /// Maps a specific scalar to its tree entry. - SmallDenseMap<Value*, int> ScalarToTreeEntry; - - /// A list of scalars that we found that we need to keep as scalars. - ValueSet MustGather; - - /// This POD struct describes one external user in the vectorized tree. - struct ExternalUser { - ExternalUser(Value *S, llvm::User *U, int L) - : Scalar(S), User(U), Lane(L) {} - - // Which scalar in our function. - Value *Scalar; - - // Which user that uses the scalar. - llvm::User *User; - - // Which lane does the scalar belong to. - int Lane; - }; - using UserList = SmallVector<ExternalUser, 16>; - - /// Checks if two instructions may access the same memory. - /// - /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it - /// is invariant in the calling loop. - bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, - Instruction *Inst2) { - // First check if the result is already in the cache. - AliasCacheKey key = std::make_pair(Inst1, Inst2); - Optional<bool> &result = AliasCache[key]; - if (result.hasValue()) { - return result.getValue(); - } - MemoryLocation Loc2 = getLocation(Inst2, AA); - bool aliased = true; - if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { - // Do the alias check. - aliased = AA->alias(Loc1, Loc2); - } - // Store the result in the cache. - result = aliased; - return aliased; - } - - using AliasCacheKey = std::pair<Instruction *, Instruction *>; - - /// Cache for alias results. - /// TODO: consider moving this to the AliasAnalysis itself. - DenseMap<AliasCacheKey, Optional<bool>> AliasCache; - - /// Removes an instruction from its block and eventually deletes it. - /// It's like Instruction::eraseFromParent() except that the actual deletion - /// is delayed until BoUpSLP is destructed. - /// This is required to ensure that there are no incorrect collisions in the - /// AliasCache, which can happen if a new instruction is allocated at the - /// same address as a previously deleted instruction. - void eraseInstruction(Instruction *I) { - I->removeFromParent(); - I->dropAllReferences(); - DeletedInstructions.emplace_back(I); - } - - /// Temporary store for deleted instructions. Instructions will be deleted - /// eventually when the BoUpSLP is destructed. - SmallVector<unique_value, 8> DeletedInstructions; - - /// A list of values that need to extracted out of the tree. - /// This list holds pairs of (Internal Scalar : External User). External User - /// can be nullptr, it means that this Internal Scalar will be used later, - /// after vectorization. - UserList ExternalUses; - - /// Values used only by @llvm.assume calls. - SmallPtrSet<const Value *, 32> EphValues; - - /// Holds all of the instructions that we gathered. - SetVector<Instruction *> GatherSeq; - - /// A list of blocks that we are going to CSE. - SetVector<BasicBlock *> CSEBlocks; - - /// Contains all scheduling relevant data for an instruction. - /// A ScheduleData either represents a single instruction or a member of an - /// instruction bundle (= a group of instructions which is combined into a - /// vector instruction). - struct ScheduleData { - // The initial value for the dependency counters. It means that the - // dependencies are not calculated yet. - enum { InvalidDeps = -1 }; - - ScheduleData() = default; - - void init(int BlockSchedulingRegionID, Value *OpVal) { - FirstInBundle = this; - NextInBundle = nullptr; - NextLoadStore = nullptr; - IsScheduled = false; - SchedulingRegionID = BlockSchedulingRegionID; - UnscheduledDepsInBundle = UnscheduledDeps; - clearDependencies(); - OpValue = OpVal; - } - - /// Returns true if the dependency information has been calculated. - bool hasValidDependencies() const { return Dependencies != InvalidDeps; } - - /// Returns true for single instructions and for bundle representatives - /// (= the head of a bundle). - bool isSchedulingEntity() const { return FirstInBundle == this; } - - /// Returns true if it represents an instruction bundle and not only a - /// single instruction. - bool isPartOfBundle() const { - return NextInBundle != nullptr || FirstInBundle != this; - } - - /// Returns true if it is ready for scheduling, i.e. it has no more - /// unscheduled depending instructions/bundles. - bool isReady() const { - assert(isSchedulingEntity() && - "can't consider non-scheduling entity for ready list"); - return UnscheduledDepsInBundle == 0 && !IsScheduled; - } - - /// Modifies the number of unscheduled dependencies, also updating it for - /// the whole bundle. - int incrementUnscheduledDeps(int Incr) { - UnscheduledDeps += Incr; - return FirstInBundle->UnscheduledDepsInBundle += Incr; - } - - /// Sets the number of unscheduled dependencies to the number of - /// dependencies. - void resetUnscheduledDeps() { - incrementUnscheduledDeps(Dependencies - UnscheduledDeps); - } - - /// Clears all dependency information. - void clearDependencies() { - Dependencies = InvalidDeps; - resetUnscheduledDeps(); - MemoryDependencies.clear(); - } - - void dump(raw_ostream &os) const { - if (!isSchedulingEntity()) { - os << "/ " << *Inst; - } else if (NextInBundle) { - os << '[' << *Inst; - ScheduleData *SD = NextInBundle; - while (SD) { - os << ';' << *SD->Inst; - SD = SD->NextInBundle; - } - os << ']'; - } else { - os << *Inst; - } - } - - Instruction *Inst = nullptr; - - /// Points to the head in an instruction bundle (and always to this for - /// single instructions). - ScheduleData *FirstInBundle = nullptr; - - /// Single linked list of all instructions in a bundle. Null if it is a - /// single instruction. - ScheduleData *NextInBundle = nullptr; - - /// Single linked list of all memory instructions (e.g. load, store, call) - /// in the block - until the end of the scheduling region. - ScheduleData *NextLoadStore = nullptr; - - /// The dependent memory instructions. - /// This list is derived on demand in calculateDependencies(). - SmallVector<ScheduleData *, 4> MemoryDependencies; - - /// This ScheduleData is in the current scheduling region if this matches - /// the current SchedulingRegionID of BlockScheduling. - int SchedulingRegionID = 0; - - /// Used for getting a "good" final ordering of instructions. - int SchedulingPriority = 0; - - /// The number of dependencies. Constitutes of the number of users of the - /// instruction plus the number of dependent memory instructions (if any). - /// This value is calculated on demand. - /// If InvalidDeps, the number of dependencies is not calculated yet. - int Dependencies = InvalidDeps; - - /// The number of dependencies minus the number of dependencies of scheduled - /// instructions. As soon as this is zero, the instruction/bundle gets ready - /// for scheduling. - /// Note that this is negative as long as Dependencies is not calculated. - int UnscheduledDeps = InvalidDeps; - - /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for - /// single instructions. - int UnscheduledDepsInBundle = InvalidDeps; - - /// True if this instruction is scheduled (or considered as scheduled in the - /// dry-run). - bool IsScheduled = false; - - /// Opcode of the current instruction in the schedule data. - Value *OpValue = nullptr; - }; - -#ifndef NDEBUG - friend inline raw_ostream &operator<<(raw_ostream &os, - const BoUpSLP::ScheduleData &SD) { - SD.dump(os); - return os; - } -#endif - - friend struct GraphTraits<BoUpSLP *>; - friend struct DOTGraphTraits<BoUpSLP *>; - - /// Contains all scheduling data for a basic block. - struct BlockScheduling { - BlockScheduling(BasicBlock *BB) - : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} - - void clear() { - ReadyInsts.clear(); - ScheduleStart = nullptr; - ScheduleEnd = nullptr; - FirstLoadStoreInRegion = nullptr; - LastLoadStoreInRegion = nullptr; - - // Reduce the maximum schedule region size by the size of the - // previous scheduling run. - ScheduleRegionSizeLimit -= ScheduleRegionSize; - if (ScheduleRegionSizeLimit < MinScheduleRegionSize) - ScheduleRegionSizeLimit = MinScheduleRegionSize; - ScheduleRegionSize = 0; - - // Make a new scheduling region, i.e. all existing ScheduleData is not - // in the new region yet. - ++SchedulingRegionID; - } - - ScheduleData *getScheduleData(Value *V) { - ScheduleData *SD = ScheduleDataMap[V]; - if (SD && SD->SchedulingRegionID == SchedulingRegionID) - return SD; - return nullptr; - } - - ScheduleData *getScheduleData(Value *V, Value *Key) { - if (V == Key) - return getScheduleData(V); - auto I = ExtraScheduleDataMap.find(V); - if (I != ExtraScheduleDataMap.end()) { - ScheduleData *SD = I->second[Key]; - if (SD && SD->SchedulingRegionID == SchedulingRegionID) - return SD; - } - return nullptr; - } - - bool isInSchedulingRegion(ScheduleData *SD) { - return SD->SchedulingRegionID == SchedulingRegionID; - } - - /// Marks an instruction as scheduled and puts all dependent ready - /// instructions into the ready-list. - template <typename ReadyListType> - void schedule(ScheduleData *SD, ReadyListType &ReadyList) { - SD->IsScheduled = true; - LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); - - ScheduleData *BundleMember = SD; - while (BundleMember) { - if (BundleMember->Inst != BundleMember->OpValue) { - BundleMember = BundleMember->NextInBundle; - continue; - } - // Handle the def-use chain dependencies. - for (Use &U : BundleMember->Inst->operands()) { - auto *I = dyn_cast<Instruction>(U.get()); - if (!I) - continue; - doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { - if (OpDef && OpDef->hasValidDependencies() && - OpDef->incrementUnscheduledDeps(-1) == 0) { - // There are no more unscheduled dependencies after - // decrementing, so we can put the dependent instruction - // into the ready list. - ScheduleData *DepBundle = OpDef->FirstInBundle; - assert(!DepBundle->IsScheduled && - "already scheduled bundle gets ready"); - ReadyList.insert(DepBundle); - LLVM_DEBUG(dbgs() - << "SLP: gets ready (def): " << *DepBundle << "\n"); - } - }); - } - // Handle the memory dependencies. - for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { - if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { - // There are no more unscheduled dependencies after decrementing, - // so we can put the dependent instruction into the ready list. - ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; - assert(!DepBundle->IsScheduled && - "already scheduled bundle gets ready"); - ReadyList.insert(DepBundle); - LLVM_DEBUG(dbgs() - << "SLP: gets ready (mem): " << *DepBundle << "\n"); - } - } - BundleMember = BundleMember->NextInBundle; - } - } - - void doForAllOpcodes(Value *V, - function_ref<void(ScheduleData *SD)> Action) { - if (ScheduleData *SD = getScheduleData(V)) - Action(SD); - auto I = ExtraScheduleDataMap.find(V); - if (I != ExtraScheduleDataMap.end()) - for (auto &P : I->second) - if (P.second->SchedulingRegionID == SchedulingRegionID) - Action(P.second); - } - - /// Put all instructions into the ReadyList which are ready for scheduling. - template <typename ReadyListType> - void initialFillReadyList(ReadyListType &ReadyList) { - for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { - doForAllOpcodes(I, [&](ScheduleData *SD) { - if (SD->isSchedulingEntity() && SD->isReady()) { - ReadyList.insert(SD); - LLVM_DEBUG(dbgs() - << "SLP: initially in ready list: " << *I << "\n"); - } - }); - } - } - - /// Checks if a bundle of instructions can be scheduled, i.e. has no - /// cyclic dependencies. This is only a dry-run, no instructions are - /// actually moved at this stage. - bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, - const InstructionsState &S); - - /// Un-bundles a group of instructions. - void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); - - /// Allocates schedule data chunk. - ScheduleData *allocateScheduleDataChunks(); - - /// Extends the scheduling region so that V is inside the region. - /// \returns true if the region size is within the limit. - bool extendSchedulingRegion(Value *V, const InstructionsState &S); - - /// Initialize the ScheduleData structures for new instructions in the - /// scheduling region. - void initScheduleData(Instruction *FromI, Instruction *ToI, - ScheduleData *PrevLoadStore, - ScheduleData *NextLoadStore); - - /// Updates the dependency information of a bundle and of all instructions/ - /// bundles which depend on the original bundle. - void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, - BoUpSLP *SLP); - - /// Sets all instruction in the scheduling region to un-scheduled. - void resetSchedule(); - - BasicBlock *BB; - - /// Simple memory allocation for ScheduleData. - std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; - - /// The size of a ScheduleData array in ScheduleDataChunks. - int ChunkSize; - - /// The allocator position in the current chunk, which is the last entry - /// of ScheduleDataChunks. - int ChunkPos; - - /// Attaches ScheduleData to Instruction. - /// Note that the mapping survives during all vectorization iterations, i.e. - /// ScheduleData structures are recycled. - DenseMap<Value *, ScheduleData *> ScheduleDataMap; - - /// Attaches ScheduleData to Instruction with the leading key. - DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> - ExtraScheduleDataMap; - - struct ReadyList : SmallVector<ScheduleData *, 8> { - void insert(ScheduleData *SD) { push_back(SD); } - }; - - /// The ready-list for scheduling (only used for the dry-run). - ReadyList ReadyInsts; - - /// The first instruction of the scheduling region. - Instruction *ScheduleStart = nullptr; - - /// The first instruction _after_ the scheduling region. - Instruction *ScheduleEnd = nullptr; - - /// The first memory accessing instruction in the scheduling region - /// (can be null). - ScheduleData *FirstLoadStoreInRegion = nullptr; - - /// The last memory accessing instruction in the scheduling region - /// (can be null). - ScheduleData *LastLoadStoreInRegion = nullptr; - - /// The current size of the scheduling region. - int ScheduleRegionSize = 0; - - /// The maximum size allowed for the scheduling region. - int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; - - /// The ID of the scheduling region. For a new vectorization iteration this - /// is incremented which "removes" all ScheduleData from the region. - // Make sure that the initial SchedulingRegionID is greater than the - // initial SchedulingRegionID in ScheduleData (which is 0). - int SchedulingRegionID = 1; - }; - - /// Attaches the BlockScheduling structures to basic blocks. - MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; - - /// Performs the "real" scheduling. Done before vectorization is actually - /// performed in a basic block. - void scheduleBlock(BlockScheduling *BS); - - /// List of users to ignore during scheduling and that don't need extracting. - ArrayRef<Value *> UserIgnoreList; - - using OrdersType = SmallVector<unsigned, 4>; - /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of - /// sorted SmallVectors of unsigned. - struct OrdersTypeDenseMapInfo { - static OrdersType getEmptyKey() { - OrdersType V; - V.push_back(~1U); - return V; - } - - static OrdersType getTombstoneKey() { - OrdersType V; - V.push_back(~2U); - return V; - } - - static unsigned getHashValue(const OrdersType &V) { - return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); - } - - static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { - return LHS == RHS; - } - }; - - /// Contains orders of operations along with the number of bundles that have - /// operations in this order. It stores only those orders that require - /// reordering, if reordering is not required it is counted using \a - /// NumOpsWantToKeepOriginalOrder. - DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; - /// Number of bundles that do not require reordering. - unsigned NumOpsWantToKeepOriginalOrder = 0; - - // Analysis and block reference. - Function *F; - ScalarEvolution *SE; - TargetTransformInfo *TTI; - TargetLibraryInfo *TLI; - AliasAnalysis *AA; - LoopInfo *LI; - DominatorTree *DT; - AssumptionCache *AC; - DemandedBits *DB; - const DataLayout *DL; - OptimizationRemarkEmitter *ORE; - - unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. - unsigned MinVecRegSize; // Set by cl::opt (default: 128). - - /// Instruction builder to construct the vectorized tree. - IRBuilder<> Builder; - - /// A map of scalar integer values to the smallest bit width with which they - /// can legally be represented. The values map to (width, signed) pairs, - /// where "width" indicates the minimum bit width and "signed" is True if the - /// value must be signed-extended, rather than zero-extended, back to its - /// original width. - MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; -}; - -} // end namespace slpvectorizer - -template <> struct GraphTraits<BoUpSLP *> { - using TreeEntry = BoUpSLP::TreeEntry; - - /// NodeRef has to be a pointer per the GraphWriter. - using NodeRef = TreeEntry *; - - using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; - - /// Add the VectorizableTree to the index iterator to be able to return - /// TreeEntry pointers. - struct ChildIteratorType - : public iterator_adaptor_base< - ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { - ContainerTy &VectorizableTree; - - ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, - ContainerTy &VT) - : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} - - NodeRef operator*() { return I->UserTE; } - }; - - static NodeRef getEntryNode(BoUpSLP &R) { - return R.VectorizableTree[0].get(); - } - - static ChildIteratorType child_begin(NodeRef N) { - return {N->UserTreeIndices.begin(), N->Container}; - } - - static ChildIteratorType child_end(NodeRef N) { - return {N->UserTreeIndices.end(), N->Container}; - } - - /// For the node iterator we just need to turn the TreeEntry iterator into a - /// TreeEntry* iterator so that it dereferences to NodeRef. - class nodes_iterator { - using ItTy = ContainerTy::iterator; - ItTy It; - - public: - nodes_iterator(const ItTy &It2) : It(It2) {} - NodeRef operator*() { return It->get(); } - nodes_iterator operator++() { - ++It; - return *this; - } - bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } - }; - - static nodes_iterator nodes_begin(BoUpSLP *R) { - return nodes_iterator(R->VectorizableTree.begin()); - } - - static nodes_iterator nodes_end(BoUpSLP *R) { - return nodes_iterator(R->VectorizableTree.end()); - } - - static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } -}; - -template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { - using TreeEntry = BoUpSLP::TreeEntry; - - DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} - - std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { - std::string Str; - raw_string_ostream OS(Str); - if (isSplat(Entry->Scalars)) { - OS << "<splat> " << *Entry->Scalars[0]; - return Str; - } - for (auto V : Entry->Scalars) { - OS << *V; - if (std::any_of( - R->ExternalUses.begin(), R->ExternalUses.end(), - [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) - OS << " <extract>"; - OS << "\n"; - } - return Str; - } - - static std::string getNodeAttributes(const TreeEntry *Entry, - const BoUpSLP *) { - if (Entry->NeedToGather) - return "color=red"; - return ""; - } -}; - -} // end namespace llvm - -void BoUpSLP::buildTree(ArrayRef<Value *> Roots, - ArrayRef<Value *> UserIgnoreLst) { - ExtraValueToDebugLocsMap ExternallyUsedValues; - buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); -} - -void BoUpSLP::buildTree(ArrayRef<Value *> Roots, - ExtraValueToDebugLocsMap &ExternallyUsedValues, - ArrayRef<Value *> UserIgnoreLst) { - deleteTree(); - UserIgnoreList = UserIgnoreLst; - if (!allSameType(Roots)) - return; - buildTree_rec(Roots, 0, EdgeInfo()); - - // Collect the values that we need to extract from the tree. - for (auto &TEPtr : VectorizableTree) { - TreeEntry *Entry = TEPtr.get(); - - // No need to handle users of gathered values. - if (Entry->NeedToGather) - continue; - - // For each lane: - for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { - Value *Scalar = Entry->Scalars[Lane]; - int FoundLane = Lane; - if (!Entry->ReuseShuffleIndices.empty()) { - FoundLane = - std::distance(Entry->ReuseShuffleIndices.begin(), - llvm::find(Entry->ReuseShuffleIndices, FoundLane)); - } - - // Check if the scalar is externally used as an extra arg. - auto ExtI = ExternallyUsedValues.find(Scalar); - if (ExtI != ExternallyUsedValues.end()) { - LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " - << Lane << " from " << *Scalar << ".\n"); - ExternalUses.emplace_back(Scalar, nullptr, FoundLane); - } - for (User *U : Scalar->users()) { - LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); - - Instruction *UserInst = dyn_cast<Instruction>(U); - if (!UserInst) - continue; - - // Skip in-tree scalars that become vectors - if (TreeEntry *UseEntry = getTreeEntry(U)) { - Value *UseScalar = UseEntry->Scalars[0]; - // Some in-tree scalars will remain as scalar in vectorized - // instructions. If that is the case, the one in Lane 0 will - // be used. - if (UseScalar != U || - !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { - LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U - << ".\n"); - assert(!UseEntry->NeedToGather && "Bad state"); - continue; - } - } - - // Ignore users in the user ignore list. - if (is_contained(UserIgnoreList, UserInst)) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " - << Lane << " from " << *Scalar << ".\n"); - ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); - } - } - } -} - -void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, - const EdgeInfo &UserTreeIdx) { - assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); - - InstructionsState S = getSameOpcode(VL); - if (Depth == RecursionMaxDepth) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // Don't handle vectors. - if (S.OpValue->getType()->isVectorTy()) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) - if (SI->getValueOperand()->getType()->isVectorTy()) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // If all of the operands are identical or constant we have a simple solution. - if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // We now know that this is a vector of instructions of the same type from - // the same block. - - // Don't vectorize ephemeral values. - for (unsigned i = 0, e = VL.size(); i != e; ++i) { - if (EphValues.count(VL[i])) { - LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] - << ") is ephemeral.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - } - - // Check if this is a duplicate of another entry. - if (TreeEntry *E = getTreeEntry(S.OpValue)) { - LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); - if (!E->isSame(VL)) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - // Record the reuse of the tree node. FIXME, currently this is only used to - // properly draw the graph rather than for the actual vectorization. - E->UserTreeIndices.push_back(UserTreeIdx); - LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue - << ".\n"); - E->trySetUserTEOperand(UserTreeIdx, VL, None); - return; - } - - // Check that none of the instructions in the bundle are already in the tree. - for (unsigned i = 0, e = VL.size(); i != e; ++i) { - auto *I = dyn_cast<Instruction>(VL[i]); - if (!I) - continue; - if (getTreeEntry(I)) { - LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] - << ") is already in tree.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - } - - // If any of the scalars is marked as a value that needs to stay scalar, then - // we need to gather the scalars. - // The reduction nodes (stored in UserIgnoreList) also should stay scalar. - for (unsigned i = 0, e = VL.size(); i != e; ++i) { - if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - } - - // Check that all of the users of the scalars that we want to vectorize are - // schedulable. - auto *VL0 = cast<Instruction>(S.OpValue); - BasicBlock *BB = VL0->getParent(); - - if (!DT->isReachableFromEntry(BB)) { - // Don't go into unreachable blocks. They may contain instructions with - // dependency cycles which confuse the final scheduling. - LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // Check that every instruction appears once in this bundle. - SmallVector<unsigned, 4> ReuseShuffleIndicies; - SmallVector<Value *, 4> UniqueValues; - DenseMap<Value *, unsigned> UniquePositions; - for (Value *V : VL) { - auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); - ReuseShuffleIndicies.emplace_back(Res.first->second); - if (Res.second) - UniqueValues.emplace_back(V); - } - if (UniqueValues.size() == VL.size()) { - ReuseShuffleIndicies.clear(); - } else { - LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); - if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { - LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - VL = UniqueValues; - } - - auto &BSRef = BlocksSchedules[BB]; - if (!BSRef) - BSRef = llvm::make_unique<BlockScheduling>(BB); - - BlockScheduling &BS = *BSRef.get(); - - if (!BS.tryScheduleBundle(VL, this, S)) { - LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); - assert((!BS.getScheduleData(VL0) || - !BS.getScheduleData(VL0)->isPartOfBundle()) && - "tryScheduleBundle should cancelScheduling on failure"); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); - - unsigned ShuffleOrOp = S.isAltShuffle() ? - (unsigned) Instruction::ShuffleVector : S.getOpcode(); - switch (ShuffleOrOp) { - case Instruction::PHI: { - PHINode *PH = dyn_cast<PHINode>(VL0); - - // Check for terminator values (e.g. invoke). - for (unsigned j = 0; j < VL.size(); ++j) - for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { - Instruction *Term = dyn_cast<Instruction>( - cast<PHINode>(VL[j])->getIncomingValueForBlock( - PH->getIncomingBlock(i))); - if (Term && Term->isTerminator()) { - LLVM_DEBUG(dbgs() - << "SLP: Need to swizzle PHINodes (terminator use).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); - - for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( - PH->getIncomingBlock(i))); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::ExtractValue: - case Instruction::ExtractElement: { - OrdersType CurrentOrder; - bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); - if (Reuse) { - LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); - ++NumOpsWantToKeepOriginalOrder; - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, - ReuseShuffleIndicies); - // This is a special case, as it does not gather, but at the same time - // we are not extending buildTree_rec() towards the operands. - ValueList Op0; - Op0.assign(VL.size(), VL0->getOperand(0)); - VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); - return; - } - if (!CurrentOrder.empty()) { - LLVM_DEBUG({ - dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " - "with order"; - for (unsigned Idx : CurrentOrder) - dbgs() << " " << Idx; - dbgs() << "\n"; - }); - // Insert new order with initial value 0, if it does not exist, - // otherwise return the iterator to the existing one. - auto StoredCurrentOrderAndNum = - NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; - ++StoredCurrentOrderAndNum->getSecond(); - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, - StoredCurrentOrderAndNum->getFirst()); - // This is a special case, as it does not gather, but at the same time - // we are not extending buildTree_rec() towards the operands. - ValueList Op0; - Op0.assign(VL.size(), VL0->getOperand(0)); - VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); - return; - } - LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); - newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); - BS.cancelScheduling(VL, VL0); - return; - } - case Instruction::Load: { - // Check that a vectorized load would load the same memory as a scalar - // load. For example, we don't want to vectorize loads that are smaller - // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM - // treats loading/storing it as an i8 struct. If we vectorize loads/stores - // from such a struct, we read/write packed bits disagreeing with the - // unvectorized version. - Type *ScalarTy = VL0->getType(); - - if (DL->getTypeSizeInBits(ScalarTy) != - DL->getTypeAllocSizeInBits(ScalarTy)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); - return; - } - - // Make sure all loads in the bundle are simple - we can't vectorize - // atomic or volatile loads. - SmallVector<Value *, 4> PointerOps(VL.size()); - auto POIter = PointerOps.begin(); - for (Value *V : VL) { - auto *L = cast<LoadInst>(V); - if (!L->isSimple()) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); - return; - } - *POIter = L->getPointerOperand(); - ++POIter; - } - - OrdersType CurrentOrder; - // Check the order of pointer operands. - if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { - Value *Ptr0; - Value *PtrN; - if (CurrentOrder.empty()) { - Ptr0 = PointerOps.front(); - PtrN = PointerOps.back(); - } else { - Ptr0 = PointerOps[CurrentOrder.front()]; - PtrN = PointerOps[CurrentOrder.back()]; - } - const SCEV *Scev0 = SE->getSCEV(Ptr0); - const SCEV *ScevN = SE->getSCEV(PtrN); - const auto *Diff = - dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); - uint64_t Size = DL->getTypeAllocSize(ScalarTy); - // Check that the sorted loads are consecutive. - if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { - if (CurrentOrder.empty()) { - // Original loads are consecutive and does not require reordering. - ++NumOpsWantToKeepOriginalOrder; - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, - ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); - } else { - // Need to reorder. - auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; - ++I->getSecond(); - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, - ReuseShuffleIndicies, I->getFirst()); - LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); - } - return; - } - } - - LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - Type *SrcTy = VL0->getOperand(0)->getType(); - for (unsigned i = 0; i < VL.size(); ++i) { - Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); - if (Ty != SrcTy || !isValidElementType(Ty)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() - << "SLP: Gathering casts with different src types.\n"); - return; - } - } - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); - - for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::ICmp: - case Instruction::FCmp: { - // Check that all of the compares have the same predicate. - CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); - CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); - Type *ComparedTy = VL0->getOperand(0)->getType(); - for (unsigned i = 1, e = VL.size(); i < e; ++i) { - CmpInst *Cmp = cast<CmpInst>(VL[i]); - if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || - Cmp->getOperand(0)->getType() != ComparedTy) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() - << "SLP: Gathering cmp with different predicate.\n"); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); - - ValueList Left, Right; - if (cast<CmpInst>(VL0)->isCommutative()) { - // Commutative predicate - collect + sort operands of the instructions - // so that each side is more likely to have the same opcode. - assert(P0 == SwapP0 && "Commutative Predicate mismatch"); - reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); - } else { - // Collect operands - commute if it uses the swapped predicate. - for (Value *V : VL) { - auto *Cmp = cast<CmpInst>(V); - Value *LHS = Cmp->getOperand(0); - Value *RHS = Cmp->getOperand(1); - if (Cmp->getPredicate() != P0) - std::swap(LHS, RHS); - Left.push_back(LHS); - Right.push_back(RHS); - } - } - - buildTree_rec(Left, Depth + 1, {TE, 0}); - buildTree_rec(Right, Depth + 1, {TE, 1}); - return; - } - case Instruction::Select: - case Instruction::FNeg: - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); - - // Sort operands of the instructions so that each side is more likely to - // have the same opcode. - if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { - ValueList Left, Right; - reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); - buildTree_rec(Left, Depth + 1, {TE, 0}); - buildTree_rec(Right, Depth + 1, {TE, 1}); - return; - } - - for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::GetElementPtr: { - // We don't combine GEPs with complicated (nested) indexing. - for (unsigned j = 0; j < VL.size(); ++j) { - if (cast<Instruction>(VL[j])->getNumOperands() != 2) { - LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - // We can't combine several GEPs into one vector if they operate on - // different types. - Type *Ty0 = VL0->getOperand(0)->getType(); - for (unsigned j = 0; j < VL.size(); ++j) { - Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); - if (Ty0 != CurTy) { - LLVM_DEBUG(dbgs() - << "SLP: not-vectorizable GEP (different types).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - // We don't combine GEPs with non-constant indexes. - for (unsigned j = 0; j < VL.size(); ++j) { - auto Op = cast<Instruction>(VL[j])->getOperand(1); - if (!isa<ConstantInt>(Op)) { - LLVM_DEBUG(dbgs() - << "SLP: not-vectorizable GEP (non-constant indexes).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); - for (unsigned i = 0, e = 2; i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::Store: { - // Check if the stores are consecutive or of we need to swizzle them. - for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) - if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); - return; - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); - - ValueList Operands; - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(0)); - - buildTree_rec(Operands, Depth + 1, {TE, 0}); - return; - } - case Instruction::Call: { - // Check if the calls are all to the same vectorizable intrinsic. - CallInst *CI = cast<CallInst>(VL0); - // Check if this is an Intrinsic call or something that can be - // represented by an intrinsic call - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - if (!isTriviallyVectorizable(ID)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); - return; - } - Function *Int = CI->getCalledFunction(); - unsigned NumArgs = CI->getNumArgOperands(); - SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); - for (unsigned j = 0; j != NumArgs; ++j) - if (hasVectorInstrinsicScalarOpd(ID, j)) - ScalarArgs[j] = CI->getArgOperand(j); - for (unsigned i = 1, e = VL.size(); i != e; ++i) { - CallInst *CI2 = dyn_cast<CallInst>(VL[i]); - if (!CI2 || CI2->getCalledFunction() != Int || - getVectorIntrinsicIDForCall(CI2, TLI) != ID || - !CI->hasIdenticalOperandBundleSchema(*CI2)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] - << "\n"); - return; - } - // Some intrinsics have scalar arguments and should be same in order for - // them to be vectorized. - for (unsigned j = 0; j != NumArgs; ++j) { - if (hasVectorInstrinsicScalarOpd(ID, j)) { - Value *A1J = CI2->getArgOperand(j); - if (ScalarArgs[j] != A1J) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI - << " argument " << ScalarArgs[j] << "!=" << A1J - << "\n"); - return; - } - } - } - // Verify that the bundle operands are identical between the two calls. - if (CI->hasOperandBundles() && - !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), - CI->op_begin() + CI->getBundleOperandsEndIndex(), - CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" - << *CI << "!=" << *VL[i] << '\n'); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) { - CallInst *CI2 = dyn_cast<CallInst>(j); - Operands.push_back(CI2->getArgOperand(i)); - } - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::ShuffleVector: { - // If this is not an alternate sequence of opcode like add-sub - // then do not vectorize this instruction. - if (!S.isAltShuffle()) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); - return; - } - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); - - // Reorder operands if reordering would enable vectorization. - if (isa<BinaryOperator>(VL0)) { - ValueList Left, Right; - reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); - buildTree_rec(Left, Depth + 1, {TE, 0}); - buildTree_rec(Right, Depth + 1, {TE, 1}); - return; - } - - for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - default: - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); - return; - } -} - -unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { - unsigned N; - Type *EltTy; - auto *ST = dyn_cast<StructType>(T); - if (ST) { - N = ST->getNumElements(); - EltTy = *ST->element_begin(); - } else { - N = cast<ArrayType>(T)->getNumElements(); - EltTy = cast<ArrayType>(T)->getElementType(); - } - if (!isValidElementType(EltTy)) - return 0; - uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); - if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) - return 0; - if (ST) { - // Check that struct is homogeneous. - for (const auto *Ty : ST->elements()) - if (Ty != EltTy) - return 0; - } - return N; -} - -bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, - SmallVectorImpl<unsigned> &CurrentOrder) const { - Instruction *E0 = cast<Instruction>(OpValue); - assert(E0->getOpcode() == Instruction::ExtractElement || - E0->getOpcode() == Instruction::ExtractValue); - assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); - // Check if all of the extracts come from the same vector and from the - // correct offset. - Value *Vec = E0->getOperand(0); - - CurrentOrder.clear(); - - // We have to extract from a vector/aggregate with the same number of elements. - unsigned NElts; - if (E0->getOpcode() == Instruction::ExtractValue) { - const DataLayout &DL = E0->getModule()->getDataLayout(); - NElts = canMapToVector(Vec->getType(), DL); - if (!NElts) - return false; - // Check if load can be rewritten as load of vector. - LoadInst *LI = dyn_cast<LoadInst>(Vec); - if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) - return false; - } else { - NElts = Vec->getType()->getVectorNumElements(); - } - - if (NElts != VL.size()) - return false; - - // Check that all of the indices extract from the correct offset. - bool ShouldKeepOrder = true; - unsigned E = VL.size(); - // Assign to all items the initial value E + 1 so we can check if the extract - // instruction index was used already. - // Also, later we can check that all the indices are used and we have a - // consecutive access in the extract instructions, by checking that no - // element of CurrentOrder still has value E + 1. - CurrentOrder.assign(E, E + 1); - unsigned I = 0; - for (; I < E; ++I) { - auto *Inst = cast<Instruction>(VL[I]); - if (Inst->getOperand(0) != Vec) - break; - Optional<unsigned> Idx = getExtractIndex(Inst); - if (!Idx) - break; - const unsigned ExtIdx = *Idx; - if (ExtIdx != I) { - if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) - break; - ShouldKeepOrder = false; - CurrentOrder[ExtIdx] = I; - } else { - if (CurrentOrder[I] != E + 1) - break; - CurrentOrder[I] = I; - } - } - if (I < E) { - CurrentOrder.clear(); - return false; - } - - return ShouldKeepOrder; -} - -bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { - return I->hasOneUse() || - std::all_of(I->user_begin(), I->user_end(), [this](User *U) { - return ScalarToTreeEntry.count(U) > 0; - }); -} - -int BoUpSLP::getEntryCost(TreeEntry *E) { - ArrayRef<Value*> VL = E->Scalars; - - Type *ScalarTy = VL[0]->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) - ScalarTy = SI->getValueOperand()->getType(); - else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) - ScalarTy = CI->getOperand(0)->getType(); - VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); - - // If we have computed a smaller type for the expression, update VecTy so - // that the costs will be accurate. - if (MinBWs.count(VL[0])) - VecTy = VectorType::get( - IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); - - unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); - bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); - int ReuseShuffleCost = 0; - if (NeedToShuffleReuses) { - ReuseShuffleCost = - TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); - } - if (E->NeedToGather) { - if (allConstant(VL)) - return 0; - if (isSplat(VL)) { - return ReuseShuffleCost + - TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); - } - if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && - allSameType(VL) && allSameBlock(VL)) { - Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); - if (ShuffleKind.hasValue()) { - int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); - for (auto *V : VL) { - // If all users of instruction are going to be vectorized and this - // instruction itself is not going to be vectorized, consider this - // instruction as dead and remove its cost from the final cost of the - // vectorized tree. - if (areAllUsersVectorized(cast<Instruction>(V)) && - !ScalarToTreeEntry.count(V)) { - auto *IO = cast<ConstantInt>( - cast<ExtractElementInst>(V)->getIndexOperand()); - Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, - IO->getZExtValue()); - } - } - return ReuseShuffleCost + Cost; - } - } - return ReuseShuffleCost + getGatherCost(VL); - } - InstructionsState S = getSameOpcode(VL); - assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); - Instruction *VL0 = cast<Instruction>(S.OpValue); - unsigned ShuffleOrOp = S.isAltShuffle() ? - (unsigned) Instruction::ShuffleVector : S.getOpcode(); - switch (ShuffleOrOp) { - case Instruction::PHI: - return 0; - - case Instruction::ExtractValue: - case Instruction::ExtractElement: - if (NeedToShuffleReuses) { - unsigned Idx = 0; - for (unsigned I : E->ReuseShuffleIndices) { - if (ShuffleOrOp == Instruction::ExtractElement) { - auto *IO = cast<ConstantInt>( - cast<ExtractElementInst>(VL[I])->getIndexOperand()); - Idx = IO->getZExtValue(); - ReuseShuffleCost -= TTI->getVectorInstrCost( - Instruction::ExtractElement, VecTy, Idx); - } else { - ReuseShuffleCost -= TTI->getVectorInstrCost( - Instruction::ExtractElement, VecTy, Idx); - ++Idx; - } - } - Idx = ReuseShuffleNumbers; - for (Value *V : VL) { - if (ShuffleOrOp == Instruction::ExtractElement) { - auto *IO = cast<ConstantInt>( - cast<ExtractElementInst>(V)->getIndexOperand()); - Idx = IO->getZExtValue(); - } else { - --Idx; - } - ReuseShuffleCost += - TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); - } - } - if (!E->NeedToGather) { - int DeadCost = ReuseShuffleCost; - if (!E->ReorderIndices.empty()) { - // TODO: Merge this shuffle with the ReuseShuffleCost. - DeadCost += TTI->getShuffleCost( - TargetTransformInfo::SK_PermuteSingleSrc, VecTy); - } - for (unsigned i = 0, e = VL.size(); i < e; ++i) { - Instruction *E = cast<Instruction>(VL[i]); - // If all users are going to be vectorized, instruction can be - // considered as dead. - // The same, if have only one user, it will be vectorized for sure. - if (areAllUsersVectorized(E)) { - // Take credit for instruction that will become dead. - if (E->hasOneUse()) { - Instruction *Ext = E->user_back(); - if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && - all_of(Ext->users(), - [](User *U) { return isa<GetElementPtrInst>(U); })) { - // Use getExtractWithExtendCost() to calculate the cost of - // extractelement/ext pair. - DeadCost -= TTI->getExtractWithExtendCost( - Ext->getOpcode(), Ext->getType(), VecTy, i); - // Add back the cost of s|zext which is subtracted separately. - DeadCost += TTI->getCastInstrCost( - Ext->getOpcode(), Ext->getType(), E->getType(), Ext); - continue; - } - } - DeadCost -= - TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); - } - } - return DeadCost; - } - return ReuseShuffleCost + getGatherCost(VL); - - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - Type *SrcTy = VL0->getOperand(0)->getType(); - int ScalarEltCost = - TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - - // Calculate the cost of this instruction. - int ScalarCost = VL.size() * ScalarEltCost; - - VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); - int VecCost = 0; - // Check if the values are candidates to demote. - if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { - VecCost = ReuseShuffleCost + - TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); - } - return VecCost - ScalarCost; - } - case Instruction::FCmp: - case Instruction::ICmp: - case Instruction::Select: { - // Calculate the cost of this instruction. - int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, - Builder.getInt1Ty(), VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); - int ScalarCost = VecTy->getNumElements() * ScalarEltCost; - int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); - return ReuseShuffleCost + VecCost - ScalarCost; - } - case Instruction::FNeg: - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - // Certain instructions can be cheaper to vectorize if they have a - // constant second vector operand. - TargetTransformInfo::OperandValueKind Op1VK = - TargetTransformInfo::OK_AnyValue; - TargetTransformInfo::OperandValueKind Op2VK = - TargetTransformInfo::OK_UniformConstantValue; - TargetTransformInfo::OperandValueProperties Op1VP = - TargetTransformInfo::OP_None; - TargetTransformInfo::OperandValueProperties Op2VP = - TargetTransformInfo::OP_PowerOf2; - - // If all operands are exactly the same ConstantInt then set the - // operand kind to OK_UniformConstantValue. - // If instead not all operands are constants, then set the operand kind - // to OK_AnyValue. If all operands are constants but not the same, - // then set the operand kind to OK_NonUniformConstantValue. - ConstantInt *CInt0 = nullptr; - for (unsigned i = 0, e = VL.size(); i < e; ++i) { - const Instruction *I = cast<Instruction>(VL[i]); - unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; - ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); - if (!CInt) { - Op2VK = TargetTransformInfo::OK_AnyValue; - Op2VP = TargetTransformInfo::OP_None; - break; - } - if (Op2VP == TargetTransformInfo::OP_PowerOf2 && - !CInt->getValue().isPowerOf2()) - Op2VP = TargetTransformInfo::OP_None; - if (i == 0) { - CInt0 = CInt; - continue; - } - if (CInt0 != CInt) - Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; - } - - SmallVector<const Value *, 4> Operands(VL0->operand_values()); - int ScalarEltCost = TTI->getArithmeticInstrCost( - S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarCost = VecTy->getNumElements() * ScalarEltCost; - int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, - Op2VK, Op1VP, Op2VP, Operands); - return ReuseShuffleCost + VecCost - ScalarCost; - } - case Instruction::GetElementPtr: { - TargetTransformInfo::OperandValueKind Op1VK = - TargetTransformInfo::OK_AnyValue; - TargetTransformInfo::OperandValueKind Op2VK = - TargetTransformInfo::OK_UniformConstantValue; - - int ScalarEltCost = - TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarCost = VecTy->getNumElements() * ScalarEltCost; - int VecCost = - TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); - return ReuseShuffleCost + VecCost - ScalarCost; - } - case Instruction::Load: { - // Cost of wide load - cost of scalar loads. - unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); - int ScalarEltCost = - TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; - int VecLdCost = - TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); - if (!E->ReorderIndices.empty()) { - // TODO: Merge this shuffle with the ReuseShuffleCost. - VecLdCost += TTI->getShuffleCost( - TargetTransformInfo::SK_PermuteSingleSrc, VecTy); - } - return ReuseShuffleCost + VecLdCost - ScalarLdCost; - } - case Instruction::Store: { - // We know that we can merge the stores. Calculate the cost. - unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); - int ScalarEltCost = - TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; - int VecStCost = - TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); - return ReuseShuffleCost + VecStCost - ScalarStCost; - } - case Instruction::Call: { - CallInst *CI = cast<CallInst>(VL0); - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - - // Calculate the cost of the scalar and vector calls. - SmallVector<Type *, 4> ScalarTys; - for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) - ScalarTys.push_back(CI->getArgOperand(op)->getType()); - - FastMathFlags FMF; - if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) - FMF = FPMO->getFastMathFlags(); - - int ScalarEltCost = - TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; - - SmallVector<Value *, 4> Args(CI->arg_operands()); - int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, - VecTy->getNumElements()); - - LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost - << " (" << VecCallCost << "-" << ScalarCallCost << ")" - << " for " << *CI << "\n"); - - return ReuseShuffleCost + VecCallCost - ScalarCallCost; - } - case Instruction::ShuffleVector: { - assert(S.isAltShuffle() && - ((Instruction::isBinaryOp(S.getOpcode()) && - Instruction::isBinaryOp(S.getAltOpcode())) || - (Instruction::isCast(S.getOpcode()) && - Instruction::isCast(S.getAltOpcode()))) && - "Invalid Shuffle Vector Operand"); - int ScalarCost = 0; - if (NeedToShuffleReuses) { - for (unsigned Idx : E->ReuseShuffleIndices) { - Instruction *I = cast<Instruction>(VL[Idx]); - ReuseShuffleCost -= TTI->getInstructionCost( - I, TargetTransformInfo::TCK_RecipThroughput); - } - for (Value *V : VL) { - Instruction *I = cast<Instruction>(V); - ReuseShuffleCost += TTI->getInstructionCost( - I, TargetTransformInfo::TCK_RecipThroughput); - } - } - for (Value *i : VL) { - Instruction *I = cast<Instruction>(i); - assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); - ScalarCost += TTI->getInstructionCost( - I, TargetTransformInfo::TCK_RecipThroughput); - } - // VecCost is equal to sum of the cost of creating 2 vectors - // and the cost of creating shuffle. - int VecCost = 0; - if (Instruction::isBinaryOp(S.getOpcode())) { - VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); - VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); - } else { - Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); - Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); - VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); - VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); - VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); - VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); - } - VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); - return ReuseShuffleCost + VecCost - ScalarCost; - } - default: - llvm_unreachable("Unknown instruction"); - } -} - -bool BoUpSLP::isFullyVectorizableTinyTree() const { - LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " - << VectorizableTree.size() << " is fully vectorizable .\n"); - - // We only handle trees of heights 1 and 2. - if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) - return true; - - if (VectorizableTree.size() != 2) - return false; - - // Handle splat and all-constants stores. - if (!VectorizableTree[0]->NeedToGather && - (allConstant(VectorizableTree[1]->Scalars) || - isSplat(VectorizableTree[1]->Scalars))) - return true; - - // Gathering cost would be too much for tiny trees. - if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) - return false; - - return true; -} - -bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { - // We can vectorize the tree if its size is greater than or equal to the - // minimum size specified by the MinTreeSize command line option. - if (VectorizableTree.size() >= MinTreeSize) - return false; - - // If we have a tiny tree (a tree whose size is less than MinTreeSize), we - // can vectorize it if we can prove it fully vectorizable. - if (isFullyVectorizableTinyTree()) - return false; - - assert(VectorizableTree.empty() - ? ExternalUses.empty() - : true && "We shouldn't have any external users"); - - // Otherwise, we can't vectorize the tree. It is both tiny and not fully - // vectorizable. - return true; -} - -int BoUpSLP::getSpillCost() const { - // Walk from the bottom of the tree to the top, tracking which values are - // live. When we see a call instruction that is not part of our tree, - // query TTI to see if there is a cost to keeping values live over it - // (for example, if spills and fills are required). - unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); - int Cost = 0; - - SmallPtrSet<Instruction*, 4> LiveValues; - Instruction *PrevInst = nullptr; - - for (const auto &TEPtr : VectorizableTree) { - Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); - if (!Inst) - continue; - - if (!PrevInst) { - PrevInst = Inst; - continue; - } - - // Update LiveValues. - LiveValues.erase(PrevInst); - for (auto &J : PrevInst->operands()) { - if (isa<Instruction>(&*J) && getTreeEntry(&*J)) - LiveValues.insert(cast<Instruction>(&*J)); - } - - LLVM_DEBUG({ - dbgs() << "SLP: #LV: " << LiveValues.size(); - for (auto *X : LiveValues) - dbgs() << " " << X->getName(); - dbgs() << ", Looking at "; - Inst->dump(); - }); - - // Now find the sequence of instructions between PrevInst and Inst. - unsigned NumCalls = 0; - BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), - PrevInstIt = - PrevInst->getIterator().getReverse(); - while (InstIt != PrevInstIt) { - if (PrevInstIt == PrevInst->getParent()->rend()) { - PrevInstIt = Inst->getParent()->rbegin(); - continue; - } - - // Debug informations don't impact spill cost. - if ((isa<CallInst>(&*PrevInstIt) && - !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && - &*PrevInstIt != PrevInst) - NumCalls++; - - ++PrevInstIt; - } - - if (NumCalls) { - SmallVector<Type*, 4> V; - for (auto *II : LiveValues) - V.push_back(VectorType::get(II->getType(), BundleWidth)); - Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); - } - - PrevInst = Inst; - } - - return Cost; -} - -int BoUpSLP::getTreeCost() { - int Cost = 0; - LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " - << VectorizableTree.size() << ".\n"); - - unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); - - for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { - TreeEntry &TE = *VectorizableTree[I].get(); - - // We create duplicate tree entries for gather sequences that have multiple - // uses. However, we should not compute the cost of duplicate sequences. - // For example, if we have a build vector (i.e., insertelement sequence) - // that is used by more than one vector instruction, we only need to - // compute the cost of the insertelement instructions once. The redundant - // instructions will be eliminated by CSE. - // - // We should consider not creating duplicate tree entries for gather - // sequences, and instead add additional edges to the tree representing - // their uses. Since such an approach results in fewer total entries, - // existing heuristics based on tree size may yield different results. - // - if (TE.NeedToGather && - std::any_of( - std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), - [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { - return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); - })) - continue; - - int C = getEntryCost(&TE); - LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C - << " for bundle that starts with " << *TE.Scalars[0] - << ".\n"); - Cost += C; - } - - SmallPtrSet<Value *, 16> ExtractCostCalculated; - int ExtractCost = 0; - for (ExternalUser &EU : ExternalUses) { - // We only add extract cost once for the same scalar. - if (!ExtractCostCalculated.insert(EU.Scalar).second) - continue; - - // Uses by ephemeral values are free (because the ephemeral value will be - // removed prior to code generation, and so the extraction will be - // removed as well). - if (EphValues.count(EU.User)) - continue; - - // If we plan to rewrite the tree in a smaller type, we will need to sign - // extend the extracted value back to the original type. Here, we account - // for the extract and the added cost of the sign extend if needed. - auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); - auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; - if (MinBWs.count(ScalarRoot)) { - auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); - auto Extend = - MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; - VecTy = VectorType::get(MinTy, BundleWidth); - ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), - VecTy, EU.Lane); - } else { - ExtractCost += - TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); - } - } - - int SpillCost = getSpillCost(); - Cost += SpillCost + ExtractCost; - - std::string Str; - { - raw_string_ostream OS(Str); - OS << "SLP: Spill Cost = " << SpillCost << ".\n" - << "SLP: Extract Cost = " << ExtractCost << ".\n" - << "SLP: Total Cost = " << Cost << ".\n"; - } - LLVM_DEBUG(dbgs() << Str); - - if (ViewSLPTree) - ViewGraph(this, "SLP" + F->getName(), false, Str); - - return Cost; -} - -int BoUpSLP::getGatherCost(Type *Ty, - const DenseSet<unsigned> &ShuffledIndices) const { - int Cost = 0; - for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) - if (!ShuffledIndices.count(i)) - Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); - if (!ShuffledIndices.empty()) - Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); - return Cost; -} - -int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { - // Find the type of the operands in VL. - Type *ScalarTy = VL[0]->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) - ScalarTy = SI->getValueOperand()->getType(); - VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); - // Find the cost of inserting/extracting values from the vector. - // Check if the same elements are inserted several times and count them as - // shuffle candidates. - DenseSet<unsigned> ShuffledElements; - DenseSet<Value *> UniqueElements; - // Iterate in reverse order to consider insert elements with the high cost. - for (unsigned I = VL.size(); I > 0; --I) { - unsigned Idx = I - 1; - if (!UniqueElements.insert(VL[Idx]).second) - ShuffledElements.insert(Idx); - } - return getGatherCost(VecTy, ShuffledElements); -} - -// Perform operand reordering on the instructions in VL and return the reordered -// operands in Left and Right. -void BoUpSLP::reorderInputsAccordingToOpcode( - ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, - SmallVectorImpl<Value *> &Right, const DataLayout &DL, - ScalarEvolution &SE) { - if (VL.empty()) - return; - VLOperands Ops(VL, DL, SE); - // Reorder the operands in place. - Ops.reorder(); - Left = Ops.getVL(0); - Right = Ops.getVL(1); -} - -void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, - const InstructionsState &S) { - // Get the basic block this bundle is in. All instructions in the bundle - // should be in this block. - auto *Front = cast<Instruction>(S.OpValue); - auto *BB = Front->getParent(); - assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { - auto *I = cast<Instruction>(V); - return !S.isOpcodeOrAlt(I) || I->getParent() == BB; - })); - - // The last instruction in the bundle in program order. - Instruction *LastInst = nullptr; - - // Find the last instruction. The common case should be that BB has been - // scheduled, and the last instruction is VL.back(). So we start with - // VL.back() and iterate over schedule data until we reach the end of the - // bundle. The end of the bundle is marked by null ScheduleData. - if (BlocksSchedules.count(BB)) { - auto *Bundle = - BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); - if (Bundle && Bundle->isPartOfBundle()) - for (; Bundle; Bundle = Bundle->NextInBundle) - if (Bundle->OpValue == Bundle->Inst) - LastInst = Bundle->Inst; - } - - // LastInst can still be null at this point if there's either not an entry - // for BB in BlocksSchedules or there's no ScheduleData available for - // VL.back(). This can be the case if buildTree_rec aborts for various - // reasons (e.g., the maximum recursion depth is reached, the maximum region - // size is reached, etc.). ScheduleData is initialized in the scheduling - // "dry-run". - // - // If this happens, we can still find the last instruction by brute force. We - // iterate forwards from Front (inclusive) until we either see all - // instructions in the bundle or reach the end of the block. If Front is the - // last instruction in program order, LastInst will be set to Front, and we - // will visit all the remaining instructions in the block. - // - // One of the reasons we exit early from buildTree_rec is to place an upper - // bound on compile-time. Thus, taking an additional compile-time hit here is - // not ideal. However, this should be exceedingly rare since it requires that - // we both exit early from buildTree_rec and that the bundle be out-of-order - // (causing us to iterate all the way to the end of the block). - if (!LastInst) { - SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); - for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { - if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) - LastInst = &I; - if (Bundle.empty()) - break; - } - } - - // Set the insertion point after the last instruction in the bundle. Set the - // debug location to Front. - Builder.SetInsertPoint(BB, ++LastInst->getIterator()); - Builder.SetCurrentDebugLocation(Front->getDebugLoc()); -} - -Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { - Value *Vec = UndefValue::get(Ty); - // Generate the 'InsertElement' instruction. - for (unsigned i = 0; i < Ty->getNumElements(); ++i) { - Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); - if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { - GatherSeq.insert(Insrt); - CSEBlocks.insert(Insrt->getParent()); - - // Add to our 'need-to-extract' list. - if (TreeEntry *E = getTreeEntry(VL[i])) { - // Find which lane we need to extract. - int FoundLane = -1; - for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { - // Is this the lane of the scalar that we are looking for ? - if (E->Scalars[Lane] == VL[i]) { - FoundLane = Lane; - break; - } - } - assert(FoundLane >= 0 && "Could not find the correct lane"); - if (!E->ReuseShuffleIndices.empty()) { - FoundLane = - std::distance(E->ReuseShuffleIndices.begin(), - llvm::find(E->ReuseShuffleIndices, FoundLane)); - } - ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); - } - } - } - - return Vec; -} - -Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { - InstructionsState S = getSameOpcode(VL); - if (S.getOpcode()) { - if (TreeEntry *E = getTreeEntry(S.OpValue)) { - if (E->isSame(VL)) { - Value *V = vectorizeTree(E); - if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { - // We need to get the vectorized value but without shuffle. - if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { - V = SV->getOperand(0); - } else { - // Reshuffle to get only unique values. - SmallVector<unsigned, 4> UniqueIdxs; - SmallSet<unsigned, 4> UsedIdxs; - for(unsigned Idx : E->ReuseShuffleIndices) - if (UsedIdxs.insert(Idx).second) - UniqueIdxs.emplace_back(Idx); - V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), - UniqueIdxs); - } - } - return V; - } - } - } - - Type *ScalarTy = S.OpValue->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) - ScalarTy = SI->getValueOperand()->getType(); - - // Check that every instruction appears once in this bundle. - SmallVector<unsigned, 4> ReuseShuffleIndicies; - SmallVector<Value *, 4> UniqueValues; - if (VL.size() > 2) { - DenseMap<Value *, unsigned> UniquePositions; - for (Value *V : VL) { - auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); - ReuseShuffleIndicies.emplace_back(Res.first->second); - if (Res.second || isa<Constant>(V)) - UniqueValues.emplace_back(V); - } - // Do not shuffle single element or if number of unique values is not power - // of 2. - if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || - !llvm::isPowerOf2_32(UniqueValues.size())) - ReuseShuffleIndicies.clear(); - else - VL = UniqueValues; - } - VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); - - Value *V = Gather(VL, VecTy); - if (!ReuseShuffleIndicies.empty()) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - ReuseShuffleIndicies, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - return V; -} - -static void inversePermutation(ArrayRef<unsigned> Indices, - SmallVectorImpl<unsigned> &Mask) { - Mask.clear(); - const unsigned E = Indices.size(); - Mask.resize(E); - for (unsigned I = 0; I < E; ++I) - Mask[Indices[I]] = I; -} - -Value *BoUpSLP::vectorizeTree(TreeEntry *E) { - IRBuilder<>::InsertPointGuard Guard(Builder); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); - return E->VectorizedValue; - } - - InstructionsState S = getSameOpcode(E->Scalars); - Instruction *VL0 = cast<Instruction>(S.OpValue); - Type *ScalarTy = VL0->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) - ScalarTy = SI->getValueOperand()->getType(); - VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); - - bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); - - if (E->NeedToGather) { - setInsertPointAfterBundle(E->Scalars, S); - auto *V = Gather(E->Scalars, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - E->VectorizedValue = V; - return V; - } - - unsigned ShuffleOrOp = S.isAltShuffle() ? - (unsigned) Instruction::ShuffleVector : S.getOpcode(); - switch (ShuffleOrOp) { - case Instruction::PHI: { - PHINode *PH = dyn_cast<PHINode>(VL0); - Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); - Builder.SetCurrentDebugLocation(PH->getDebugLoc()); - PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); - Value *V = NewPhi; - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - - // PHINodes may have multiple entries from the same block. We want to - // visit every block once. - SmallPtrSet<BasicBlock*, 4> VisitedBBs; - - for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { - ValueList Operands; - BasicBlock *IBB = PH->getIncomingBlock(i); - - if (!VisitedBBs.insert(IBB).second) { - NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); - continue; - } - - Builder.SetInsertPoint(IBB->getTerminator()); - Builder.SetCurrentDebugLocation(PH->getDebugLoc()); - Value *Vec = vectorizeTree(E->getOperand(i)); - NewPhi->addIncoming(Vec, IBB); - } - - assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && - "Invalid number of incoming values"); - return V; - } - - case Instruction::ExtractElement: { - if (!E->NeedToGather) { - Value *V = E->getSingleOperand(0); - if (!E->ReorderIndices.empty()) { - OrdersType Mask; - inversePermutation(E->ReorderIndices, Mask); - Builder.SetInsertPoint(VL0); - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, - "reorder_shuffle"); - } - if (NeedToShuffleReuses) { - // TODO: Merge this shuffle with the ReorderShuffleMask. - if (E->ReorderIndices.empty()) - Builder.SetInsertPoint(VL0); - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - return V; - } - setInsertPointAfterBundle(E->Scalars, S); - auto *V = Gather(E->Scalars, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - E->VectorizedValue = V; - return V; - } - case Instruction::ExtractValue: { - if (!E->NeedToGather) { - LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); - Builder.SetInsertPoint(LI); - PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); - Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); - LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); - Value *NewV = propagateMetadata(V, E->Scalars); - if (!E->ReorderIndices.empty()) { - OrdersType Mask; - inversePermutation(E->ReorderIndices, Mask); - NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, - "reorder_shuffle"); - } - if (NeedToShuffleReuses) { - // TODO: Merge this shuffle with the ReorderShuffleMask. - NewV = Builder.CreateShuffleVector( - NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = NewV; - return NewV; - } - setInsertPointAfterBundle(E->Scalars, S); - auto *V = Gather(E->Scalars, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - E->VectorizedValue = V; - return V; - } - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *InVec = vectorizeTree(E->getOperand(0)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - CastInst *CI = dyn_cast<CastInst>(VL0); - Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::FCmp: - case Instruction::ICmp: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *L = vectorizeTree(E->getOperand(0)); - Value *R = vectorizeTree(E->getOperand(1)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); - Value *V; - if (S.getOpcode() == Instruction::FCmp) - V = Builder.CreateFCmp(P0, L, R); - else - V = Builder.CreateICmp(P0, L, R); - - propagateIRFlags(V, E->Scalars, VL0); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::Select: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *Cond = vectorizeTree(E->getOperand(0)); - Value *True = vectorizeTree(E->getOperand(1)); - Value *False = vectorizeTree(E->getOperand(2)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V = Builder.CreateSelect(Cond, True, False); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::FNeg: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *Op = vectorizeTree(E->getOperand(0)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V = Builder.CreateUnOp( - static_cast<Instruction::UnaryOps>(S.getOpcode()), Op); - propagateIRFlags(V, E->Scalars, VL0); - if (auto *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *LHS = vectorizeTree(E->getOperand(0)); - Value *RHS = vectorizeTree(E->getOperand(1)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V = Builder.CreateBinOp( - static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); - propagateIRFlags(V, E->Scalars, VL0); - if (auto *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - case Instruction::Load: { - // Loads are inserted at the head of the tree because we don't want to - // sink them all the way down past store instructions. - bool IsReorder = !E->ReorderIndices.empty(); - if (IsReorder) { - S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); - VL0 = cast<Instruction>(S.OpValue); - } - setInsertPointAfterBundle(E->Scalars, S); - - LoadInst *LI = cast<LoadInst>(VL0); - Type *ScalarLoadTy = LI->getType(); - unsigned AS = LI->getPointerAddressSpace(); - - Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), - VecTy->getPointerTo(AS)); - - // The pointer operand uses an in-tree scalar so we add the new BitCast to - // ExternalUses list to make sure that an extract will be generated in the - // future. - Value *PO = LI->getPointerOperand(); - if (getTreeEntry(PO)) - ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); - - unsigned Alignment = LI->getAlignment(); - LI = Builder.CreateLoad(VecTy, VecPtr); - if (!Alignment) { - Alignment = DL->getABITypeAlignment(ScalarLoadTy); - } - LI->setAlignment(Alignment); - Value *V = propagateMetadata(LI, E->Scalars); - if (IsReorder) { - OrdersType Mask; - inversePermutation(E->ReorderIndices, Mask); - V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), - Mask, "reorder_shuffle"); - } - if (NeedToShuffleReuses) { - // TODO: Merge this shuffle with the ReorderShuffleMask. - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::Store: { - StoreInst *SI = cast<StoreInst>(VL0); - unsigned Alignment = SI->getAlignment(); - unsigned AS = SI->getPointerAddressSpace(); - - setInsertPointAfterBundle(E->Scalars, S); - - Value *VecValue = vectorizeTree(E->getOperand(0)); - Value *ScalarPtr = SI->getPointerOperand(); - Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); - StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); - - // The pointer operand uses an in-tree scalar, so add the new BitCast to - // ExternalUses to make sure that an extract will be generated in the - // future. - if (getTreeEntry(ScalarPtr)) - ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); - - if (!Alignment) - Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); - - ST->setAlignment(Alignment); - Value *V = propagateMetadata(ST, E->Scalars); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::GetElementPtr: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *Op0 = vectorizeTree(E->getOperand(0)); - - std::vector<Value *> OpVecs; - for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; - ++j) { - Value *OpVec = vectorizeTree(E->getOperand(j)); - OpVecs.push_back(OpVec); - } - - Value *V = Builder.CreateGEP( - cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); - if (Instruction *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - case Instruction::Call: { - CallInst *CI = cast<CallInst>(VL0); - setInsertPointAfterBundle(E->Scalars, S); - Function *FI; - Intrinsic::ID IID = Intrinsic::not_intrinsic; - Value *ScalarArg = nullptr; - if (CI && (FI = CI->getCalledFunction())) { - IID = FI->getIntrinsicID(); - } - std::vector<Value *> OpVecs; - for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { - ValueList OpVL; - // Some intrinsics have scalar arguments. This argument should not be - // vectorized. - if (hasVectorInstrinsicScalarOpd(IID, j)) { - CallInst *CEI = cast<CallInst>(VL0); - ScalarArg = CEI->getArgOperand(j); - OpVecs.push_back(CEI->getArgOperand(j)); - continue; - } - - Value *OpVec = vectorizeTree(E->getOperand(j)); - LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); - OpVecs.push_back(OpVec); - } - - Module *M = F->getParent(); - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; - Function *CF = Intrinsic::getDeclaration(M, ID, Tys); - SmallVector<OperandBundleDef, 1> OpBundles; - CI->getOperandBundlesAsDefs(OpBundles); - Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); - - // The scalar argument uses an in-tree scalar so we add the new vectorized - // call to ExternalUses list to make sure that an extract will be - // generated in the future. - if (ScalarArg && getTreeEntry(ScalarArg)) - ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); - - propagateIRFlags(V, E->Scalars, VL0); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::ShuffleVector: { - assert(S.isAltShuffle() && - ((Instruction::isBinaryOp(S.getOpcode()) && - Instruction::isBinaryOp(S.getAltOpcode())) || - (Instruction::isCast(S.getOpcode()) && - Instruction::isCast(S.getAltOpcode()))) && - "Invalid Shuffle Vector Operand"); - - Value *LHS, *RHS; - if (Instruction::isBinaryOp(S.getOpcode())) { - setInsertPointAfterBundle(E->Scalars, S); - LHS = vectorizeTree(E->getOperand(0)); - RHS = vectorizeTree(E->getOperand(1)); - } else { - setInsertPointAfterBundle(E->Scalars, S); - LHS = vectorizeTree(E->getOperand(0)); - } - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V0, *V1; - if (Instruction::isBinaryOp(S.getOpcode())) { - V0 = Builder.CreateBinOp( - static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); - V1 = Builder.CreateBinOp( - static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); - } else { - V0 = Builder.CreateCast( - static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); - V1 = Builder.CreateCast( - static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); - } - - // Create shuffle to take alternate operations from the vector. - // Also, gather up main and alt scalar ops to propagate IR flags to - // each vector operation. - ValueList OpScalars, AltScalars; - unsigned e = E->Scalars.size(); - SmallVector<Constant *, 8> Mask(e); - for (unsigned i = 0; i < e; ++i) { - auto *OpInst = cast<Instruction>(E->Scalars[i]); - assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); - if (OpInst->getOpcode() == S.getAltOpcode()) { - Mask[i] = Builder.getInt32(e + i); - AltScalars.push_back(E->Scalars[i]); - } else { - Mask[i] = Builder.getInt32(i); - OpScalars.push_back(E->Scalars[i]); - } - } - - Value *ShuffleMask = ConstantVector::get(Mask); - propagateIRFlags(V0, OpScalars); - propagateIRFlags(V1, AltScalars); - - Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); - if (Instruction *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - default: - llvm_unreachable("unknown inst"); - } - return nullptr; -} - -Value *BoUpSLP::vectorizeTree() { - ExtraValueToDebugLocsMap ExternallyUsedValues; - return vectorizeTree(ExternallyUsedValues); -} - -Value * -BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { - // All blocks must be scheduled before any instructions are inserted. - for (auto &BSIter : BlocksSchedules) { - scheduleBlock(BSIter.second.get()); - } - - Builder.SetInsertPoint(&F->getEntryBlock().front()); - auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); - - // If the vectorized tree can be rewritten in a smaller type, we truncate the - // vectorized root. InstCombine will then rewrite the entire expression. We - // sign extend the extracted values below. - auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; - if (MinBWs.count(ScalarRoot)) { - if (auto *I = dyn_cast<Instruction>(VectorRoot)) - Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); - auto BundleWidth = VectorizableTree[0]->Scalars.size(); - auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); - auto *VecTy = VectorType::get(MinTy, BundleWidth); - auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); - VectorizableTree[0]->VectorizedValue = Trunc; - } - - LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() - << " values .\n"); - - // If necessary, sign-extend or zero-extend ScalarRoot to the larger type - // specified by ScalarType. - auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { - if (!MinBWs.count(ScalarRoot)) - return Ex; - if (MinBWs[ScalarRoot].second) - return Builder.CreateSExt(Ex, ScalarType); - return Builder.CreateZExt(Ex, ScalarType); - }; - - // Extract all of the elements with the external uses. - for (const auto &ExternalUse : ExternalUses) { - Value *Scalar = ExternalUse.Scalar; - llvm::User *User = ExternalUse.User; - - // Skip users that we already RAUW. This happens when one instruction - // has multiple uses of the same value. - if (User && !is_contained(Scalar->users(), User)) - continue; - TreeEntry *E = getTreeEntry(Scalar); - assert(E && "Invalid scalar"); - assert(!E->NeedToGather && "Extracting from a gather list"); - - Value *Vec = E->VectorizedValue; - assert(Vec && "Can't find vectorizable value"); - - Value *Lane = Builder.getInt32(ExternalUse.Lane); - // If User == nullptr, the Scalar is used as extra arg. Generate - // ExtractElement instruction and update the record for this scalar in - // ExternallyUsedValues. - if (!User) { - assert(ExternallyUsedValues.count(Scalar) && - "Scalar with nullptr as an external user must be registered in " - "ExternallyUsedValues map"); - if (auto *VecI = dyn_cast<Instruction>(Vec)) { - Builder.SetInsertPoint(VecI->getParent(), - std::next(VecI->getIterator())); - } else { - Builder.SetInsertPoint(&F->getEntryBlock().front()); - } - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); - auto &Locs = ExternallyUsedValues[Scalar]; - ExternallyUsedValues.insert({Ex, Locs}); - ExternallyUsedValues.erase(Scalar); - // Required to update internally referenced instructions. - Scalar->replaceAllUsesWith(Ex); - continue; - } - - // Generate extracts for out-of-tree users. - // Find the insertion point for the extractelement lane. - if (auto *VecI = dyn_cast<Instruction>(Vec)) { - if (PHINode *PH = dyn_cast<PHINode>(User)) { - for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { - if (PH->getIncomingValue(i) == Scalar) { - Instruction *IncomingTerminator = - PH->getIncomingBlock(i)->getTerminator(); - if (isa<CatchSwitchInst>(IncomingTerminator)) { - Builder.SetInsertPoint(VecI->getParent(), - std::next(VecI->getIterator())); - } else { - Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); - } - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(PH->getIncomingBlock(i)); - PH->setOperand(i, Ex); - } - } - } else { - Builder.SetInsertPoint(cast<Instruction>(User)); - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(cast<Instruction>(User)->getParent()); - User->replaceUsesOfWith(Scalar, Ex); - } - } else { - Builder.SetInsertPoint(&F->getEntryBlock().front()); - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(&F->getEntryBlock()); - User->replaceUsesOfWith(Scalar, Ex); - } - - LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); - } - - // For each vectorized value: - for (auto &TEPtr : VectorizableTree) { - TreeEntry *Entry = TEPtr.get(); - - // No need to handle users of gathered values. - if (Entry->NeedToGather) - continue; - - assert(Entry->VectorizedValue && "Can't find vectorizable value"); - - // For each lane: - for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { - Value *Scalar = Entry->Scalars[Lane]; - - Type *Ty = Scalar->getType(); - if (!Ty->isVoidTy()) { -#ifndef NDEBUG - for (User *U : Scalar->users()) { - LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); - - // It is legal to replace users in the ignorelist by undef. - assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && - "Replacing out-of-tree value with undef"); - } -#endif - Value *Undef = UndefValue::get(Ty); - Scalar->replaceAllUsesWith(Undef); - } - LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); - eraseInstruction(cast<Instruction>(Scalar)); - } - } - - Builder.ClearInsertionPoint(); - - return VectorizableTree[0]->VectorizedValue; -} - -void BoUpSLP::optimizeGatherSequence() { - LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() - << " gather sequences instructions.\n"); - // LICM InsertElementInst sequences. - for (Instruction *I : GatherSeq) { - if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) - continue; - - // Check if this block is inside a loop. - Loop *L = LI->getLoopFor(I->getParent()); - if (!L) - continue; - - // Check if it has a preheader. - BasicBlock *PreHeader = L->getLoopPreheader(); - if (!PreHeader) - continue; - - // If the vector or the element that we insert into it are - // instructions that are defined in this basic block then we can't - // hoist this instruction. - auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); - auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); - if (Op0 && L->contains(Op0)) - continue; - if (Op1 && L->contains(Op1)) - continue; - - // We can hoist this instruction. Move it to the pre-header. - I->moveBefore(PreHeader->getTerminator()); - } - - // Make a list of all reachable blocks in our CSE queue. - SmallVector<const DomTreeNode *, 8> CSEWorkList; - CSEWorkList.reserve(CSEBlocks.size()); - for (BasicBlock *BB : CSEBlocks) - if (DomTreeNode *N = DT->getNode(BB)) { - assert(DT->isReachableFromEntry(N)); - CSEWorkList.push_back(N); - } - - // Sort blocks by domination. This ensures we visit a block after all blocks - // dominating it are visited. - llvm::stable_sort(CSEWorkList, - [this](const DomTreeNode *A, const DomTreeNode *B) { - return DT->properlyDominates(A, B); - }); - - // Perform O(N^2) search over the gather sequences and merge identical - // instructions. TODO: We can further optimize this scan if we split the - // instructions into different buckets based on the insert lane. - SmallVector<Instruction *, 16> Visited; - for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { - assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && - "Worklist not sorted properly!"); - BasicBlock *BB = (*I)->getBlock(); - // For all instructions in blocks containing gather sequences: - for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { - Instruction *In = &*it++; - if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) - continue; - - // Check if we can replace this instruction with any of the - // visited instructions. - for (Instruction *v : Visited) { - if (In->isIdenticalTo(v) && - DT->dominates(v->getParent(), In->getParent())) { - In->replaceAllUsesWith(v); - eraseInstruction(In); - In = nullptr; - break; - } - } - if (In) { - assert(!is_contained(Visited, In)); - Visited.push_back(In); - } - } - } - CSEBlocks.clear(); - GatherSeq.clear(); -} - -// Groups the instructions to a bundle (which is then a single scheduling entity) -// and schedules instructions until the bundle gets ready. -bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, - BoUpSLP *SLP, - const InstructionsState &S) { - if (isa<PHINode>(S.OpValue)) - return true; - - // Initialize the instruction bundle. - Instruction *OldScheduleEnd = ScheduleEnd; - ScheduleData *PrevInBundle = nullptr; - ScheduleData *Bundle = nullptr; - bool ReSchedule = false; - LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); - - // Make sure that the scheduling region contains all - // instructions of the bundle. - for (Value *V : VL) { - if (!extendSchedulingRegion(V, S)) - return false; - } - - for (Value *V : VL) { - ScheduleData *BundleMember = getScheduleData(V); - assert(BundleMember && - "no ScheduleData for bundle member (maybe not in same basic block)"); - if (BundleMember->IsScheduled) { - // A bundle member was scheduled as single instruction before and now - // needs to be scheduled as part of the bundle. We just get rid of the - // existing schedule. - LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember - << " was already scheduled\n"); - ReSchedule = true; - } - assert(BundleMember->isSchedulingEntity() && - "bundle member already part of other bundle"); - if (PrevInBundle) { - PrevInBundle->NextInBundle = BundleMember; - } else { - Bundle = BundleMember; - } - BundleMember->UnscheduledDepsInBundle = 0; - Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; - - // Group the instructions to a bundle. - BundleMember->FirstInBundle = Bundle; - PrevInBundle = BundleMember; - } - if (ScheduleEnd != OldScheduleEnd) { - // The scheduling region got new instructions at the lower end (or it is a - // new region for the first bundle). This makes it necessary to - // recalculate all dependencies. - // It is seldom that this needs to be done a second time after adding the - // initial bundle to the region. - for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { - doForAllOpcodes(I, [](ScheduleData *SD) { - SD->clearDependencies(); - }); - } - ReSchedule = true; - } - if (ReSchedule) { - resetSchedule(); - initialFillReadyList(ReadyInsts); - } - - LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " - << BB->getName() << "\n"); - - calculateDependencies(Bundle, true, SLP); - - // Now try to schedule the new bundle. As soon as the bundle is "ready" it - // means that there are no cyclic dependencies and we can schedule it. - // Note that's important that we don't "schedule" the bundle yet (see - // cancelScheduling). - while (!Bundle->isReady() && !ReadyInsts.empty()) { - - ScheduleData *pickedSD = ReadyInsts.back(); - ReadyInsts.pop_back(); - - if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { - schedule(pickedSD, ReadyInsts); - } - } - if (!Bundle->isReady()) { - cancelScheduling(VL, S.OpValue); - return false; - } - return true; -} - -void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, - Value *OpValue) { - if (isa<PHINode>(OpValue)) - return; - - ScheduleData *Bundle = getScheduleData(OpValue); - LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); - assert(!Bundle->IsScheduled && - "Can't cancel bundle which is already scheduled"); - assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && - "tried to unbundle something which is not a bundle"); - - // Un-bundle: make single instructions out of the bundle. - ScheduleData *BundleMember = Bundle; - while (BundleMember) { - assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); - BundleMember->FirstInBundle = BundleMember; - ScheduleData *Next = BundleMember->NextInBundle; - BundleMember->NextInBundle = nullptr; - BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; - if (BundleMember->UnscheduledDepsInBundle == 0) { - ReadyInsts.insert(BundleMember); - } - BundleMember = Next; - } -} - -BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { - // Allocate a new ScheduleData for the instruction. - if (ChunkPos >= ChunkSize) { - ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); - ChunkPos = 0; - } - return &(ScheduleDataChunks.back()[ChunkPos++]); -} - -bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, - const InstructionsState &S) { - if (getScheduleData(V, isOneOf(S, V))) - return true; - Instruction *I = dyn_cast<Instruction>(V); - assert(I && "bundle member must be an instruction"); - assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); - auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { - ScheduleData *ISD = getScheduleData(I); - if (!ISD) - return false; - assert(isInSchedulingRegion(ISD) && - "ScheduleData not in scheduling region"); - ScheduleData *SD = allocateScheduleDataChunks(); - SD->Inst = I; - SD->init(SchedulingRegionID, S.OpValue); - ExtraScheduleDataMap[I][S.OpValue] = SD; - return true; - }; - if (CheckSheduleForI(I)) - return true; - if (!ScheduleStart) { - // It's the first instruction in the new region. - initScheduleData(I, I->getNextNode(), nullptr, nullptr); - ScheduleStart = I; - ScheduleEnd = I->getNextNode(); - if (isOneOf(S, I) != I) - CheckSheduleForI(I); - assert(ScheduleEnd && "tried to vectorize a terminator?"); - LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); - return true; - } - // Search up and down at the same time, because we don't know if the new - // instruction is above or below the existing scheduling region. - BasicBlock::reverse_iterator UpIter = - ++ScheduleStart->getIterator().getReverse(); - BasicBlock::reverse_iterator UpperEnd = BB->rend(); - BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); - BasicBlock::iterator LowerEnd = BB->end(); - while (true) { - if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { - LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); - return false; - } - - if (UpIter != UpperEnd) { - if (&*UpIter == I) { - initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); - ScheduleStart = I; - if (isOneOf(S, I) != I) - CheckSheduleForI(I); - LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I - << "\n"); - return true; - } - ++UpIter; - } - if (DownIter != LowerEnd) { - if (&*DownIter == I) { - initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, - nullptr); - ScheduleEnd = I->getNextNode(); - if (isOneOf(S, I) != I) - CheckSheduleForI(I); - assert(ScheduleEnd && "tried to vectorize a terminator?"); - LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I - << "\n"); - return true; - } - ++DownIter; - } - assert((UpIter != UpperEnd || DownIter != LowerEnd) && - "instruction not found in block"); - } - return true; -} - -void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, - Instruction *ToI, - ScheduleData *PrevLoadStore, - ScheduleData *NextLoadStore) { - ScheduleData *CurrentLoadStore = PrevLoadStore; - for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { - ScheduleData *SD = ScheduleDataMap[I]; - if (!SD) { - SD = allocateScheduleDataChunks(); - ScheduleDataMap[I] = SD; - SD->Inst = I; - } - assert(!isInSchedulingRegion(SD) && - "new ScheduleData already in scheduling region"); - SD->init(SchedulingRegionID, I); - - if (I->mayReadOrWriteMemory() && - (!isa<IntrinsicInst>(I) || - cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { - // Update the linked list of memory accessing instructions. - if (CurrentLoadStore) { - CurrentLoadStore->NextLoadStore = SD; - } else { - FirstLoadStoreInRegion = SD; - } - CurrentLoadStore = SD; - } - } - if (NextLoadStore) { - if (CurrentLoadStore) - CurrentLoadStore->NextLoadStore = NextLoadStore; - } else { - LastLoadStoreInRegion = CurrentLoadStore; - } -} - -void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, - bool InsertInReadyList, - BoUpSLP *SLP) { - assert(SD->isSchedulingEntity()); - - SmallVector<ScheduleData *, 10> WorkList; - WorkList.push_back(SD); - - while (!WorkList.empty()) { - ScheduleData *SD = WorkList.back(); - WorkList.pop_back(); - - ScheduleData *BundleMember = SD; - while (BundleMember) { - assert(isInSchedulingRegion(BundleMember)); - if (!BundleMember->hasValidDependencies()) { - - LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember - << "\n"); - BundleMember->Dependencies = 0; - BundleMember->resetUnscheduledDeps(); - - // Handle def-use chain dependencies. - if (BundleMember->OpValue != BundleMember->Inst) { - ScheduleData *UseSD = getScheduleData(BundleMember->Inst); - if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { - BundleMember->Dependencies++; - ScheduleData *DestBundle = UseSD->FirstInBundle; - if (!DestBundle->IsScheduled) - BundleMember->incrementUnscheduledDeps(1); - if (!DestBundle->hasValidDependencies()) - WorkList.push_back(DestBundle); - } - } else { - for (User *U : BundleMember->Inst->users()) { - if (isa<Instruction>(U)) { - ScheduleData *UseSD = getScheduleData(U); - if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { - BundleMember->Dependencies++; - ScheduleData *DestBundle = UseSD->FirstInBundle; - if (!DestBundle->IsScheduled) - BundleMember->incrementUnscheduledDeps(1); - if (!DestBundle->hasValidDependencies()) - WorkList.push_back(DestBundle); - } - } else { - // I'm not sure if this can ever happen. But we need to be safe. - // This lets the instruction/bundle never be scheduled and - // eventually disable vectorization. - BundleMember->Dependencies++; - BundleMember->incrementUnscheduledDeps(1); - } - } - } - - // Handle the memory dependencies. - ScheduleData *DepDest = BundleMember->NextLoadStore; - if (DepDest) { - Instruction *SrcInst = BundleMember->Inst; - MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); - bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); - unsigned numAliased = 0; - unsigned DistToSrc = 1; - - while (DepDest) { - assert(isInSchedulingRegion(DepDest)); - - // We have two limits to reduce the complexity: - // 1) AliasedCheckLimit: It's a small limit to reduce calls to - // SLP->isAliased (which is the expensive part in this loop). - // 2) MaxMemDepDistance: It's for very large blocks and it aborts - // the whole loop (even if the loop is fast, it's quadratic). - // It's important for the loop break condition (see below) to - // check this limit even between two read-only instructions. - if (DistToSrc >= MaxMemDepDistance || - ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && - (numAliased >= AliasedCheckLimit || - SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { - - // We increment the counter only if the locations are aliased - // (instead of counting all alias checks). This gives a better - // balance between reduced runtime and accurate dependencies. - numAliased++; - - DepDest->MemoryDependencies.push_back(BundleMember); - BundleMember->Dependencies++; - ScheduleData *DestBundle = DepDest->FirstInBundle; - if (!DestBundle->IsScheduled) { - BundleMember->incrementUnscheduledDeps(1); - } - if (!DestBundle->hasValidDependencies()) { - WorkList.push_back(DestBundle); - } - } - DepDest = DepDest->NextLoadStore; - - // Example, explaining the loop break condition: Let's assume our - // starting instruction is i0 and MaxMemDepDistance = 3. - // - // +--------v--v--v - // i0,i1,i2,i3,i4,i5,i6,i7,i8 - // +--------^--^--^ - // - // MaxMemDepDistance let us stop alias-checking at i3 and we add - // dependencies from i0 to i3,i4,.. (even if they are not aliased). - // Previously we already added dependencies from i3 to i6,i7,i8 - // (because of MaxMemDepDistance). As we added a dependency from - // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 - // and we can abort this loop at i6. - if (DistToSrc >= 2 * MaxMemDepDistance) - break; - DistToSrc++; - } - } - } - BundleMember = BundleMember->NextInBundle; - } - if (InsertInReadyList && SD->isReady()) { - ReadyInsts.push_back(SD); - LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst - << "\n"); - } - } -} - -void BoUpSLP::BlockScheduling::resetSchedule() { - assert(ScheduleStart && - "tried to reset schedule on block which has not been scheduled"); - for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { - doForAllOpcodes(I, [&](ScheduleData *SD) { - assert(isInSchedulingRegion(SD) && - "ScheduleData not in scheduling region"); - SD->IsScheduled = false; - SD->resetUnscheduledDeps(); - }); - } - ReadyInsts.clear(); -} - -void BoUpSLP::scheduleBlock(BlockScheduling *BS) { - if (!BS->ScheduleStart) - return; - - LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); - - BS->resetSchedule(); - - // For the real scheduling we use a more sophisticated ready-list: it is - // sorted by the original instruction location. This lets the final schedule - // be as close as possible to the original instruction order. - struct ScheduleDataCompare { - bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { - return SD2->SchedulingPriority < SD1->SchedulingPriority; - } - }; - std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; - - // Ensure that all dependency data is updated and fill the ready-list with - // initial instructions. - int Idx = 0; - int NumToSchedule = 0; - for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; - I = I->getNextNode()) { - BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { - assert(SD->isPartOfBundle() == - (getTreeEntry(SD->Inst) != nullptr) && - "scheduler and vectorizer bundle mismatch"); - SD->FirstInBundle->SchedulingPriority = Idx++; - if (SD->isSchedulingEntity()) { - BS->calculateDependencies(SD, false, this); - NumToSchedule++; - } - }); - } - BS->initialFillReadyList(ReadyInsts); - - Instruction *LastScheduledInst = BS->ScheduleEnd; - - // Do the "real" scheduling. - while (!ReadyInsts.empty()) { - ScheduleData *picked = *ReadyInsts.begin(); - ReadyInsts.erase(ReadyInsts.begin()); - - // Move the scheduled instruction(s) to their dedicated places, if not - // there yet. - ScheduleData *BundleMember = picked; - while (BundleMember) { - Instruction *pickedInst = BundleMember->Inst; - if (LastScheduledInst->getNextNode() != pickedInst) { - BS->BB->getInstList().remove(pickedInst); - BS->BB->getInstList().insert(LastScheduledInst->getIterator(), - pickedInst); - } - LastScheduledInst = pickedInst; - BundleMember = BundleMember->NextInBundle; - } - - BS->schedule(picked, ReadyInsts); - NumToSchedule--; - } - assert(NumToSchedule == 0 && "could not schedule all instructions"); - - // Avoid duplicate scheduling of the block. - BS->ScheduleStart = nullptr; -} - -unsigned BoUpSLP::getVectorElementSize(Value *V) const { - // If V is a store, just return the width of the stored value without - // traversing the expression tree. This is the common case. - if (auto *Store = dyn_cast<StoreInst>(V)) - return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); - - // If V is not a store, we can traverse the expression tree to find loads - // that feed it. The type of the loaded value may indicate a more suitable - // width than V's type. We want to base the vector element size on the width - // of memory operations where possible. - SmallVector<Instruction *, 16> Worklist; - SmallPtrSet<Instruction *, 16> Visited; - if (auto *I = dyn_cast<Instruction>(V)) - Worklist.push_back(I); - - // Traverse the expression tree in bottom-up order looking for loads. If we - // encounter an instruction we don't yet handle, we give up. - auto MaxWidth = 0u; - auto FoundUnknownInst = false; - while (!Worklist.empty() && !FoundUnknownInst) { - auto *I = Worklist.pop_back_val(); - Visited.insert(I); - - // We should only be looking at scalar instructions here. If the current - // instruction has a vector type, give up. - auto *Ty = I->getType(); - if (isa<VectorType>(Ty)) - FoundUnknownInst = true; - - // If the current instruction is a load, update MaxWidth to reflect the - // width of the loaded value. - else if (isa<LoadInst>(I)) - MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); - - // Otherwise, we need to visit the operands of the instruction. We only - // handle the interesting cases from buildTree here. If an operand is an - // instruction we haven't yet visited, we add it to the worklist. - else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || - isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { - for (Use &U : I->operands()) - if (auto *J = dyn_cast<Instruction>(U.get())) - if (!Visited.count(J)) - Worklist.push_back(J); - } - - // If we don't yet handle the instruction, give up. - else - FoundUnknownInst = true; - } - - // If we didn't encounter a memory access in the expression tree, or if we - // gave up for some reason, just return the width of V. - if (!MaxWidth || FoundUnknownInst) - return DL->getTypeSizeInBits(V->getType()); - - // Otherwise, return the maximum width we found. - return MaxWidth; -} - -// Determine if a value V in a vectorizable expression Expr can be demoted to a -// smaller type with a truncation. We collect the values that will be demoted -// in ToDemote and additional roots that require investigating in Roots. -static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, - SmallVectorImpl<Value *> &ToDemote, - SmallVectorImpl<Value *> &Roots) { - // We can always demote constants. - if (isa<Constant>(V)) { - ToDemote.push_back(V); - return true; - } - - // If the value is not an instruction in the expression with only one use, it - // cannot be demoted. - auto *I = dyn_cast<Instruction>(V); - if (!I || !I->hasOneUse() || !Expr.count(I)) - return false; - - switch (I->getOpcode()) { - - // We can always demote truncations and extensions. Since truncations can - // seed additional demotion, we save the truncated value. - case Instruction::Trunc: - Roots.push_back(I->getOperand(0)); - break; - case Instruction::ZExt: - case Instruction::SExt: - break; - - // We can demote certain binary operations if we can demote both of their - // operands. - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || - !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) - return false; - break; - - // We can demote selects if we can demote their true and false values. - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(I); - if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || - !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) - return false; - break; - } - - // We can demote phis if we can demote all their incoming operands. Note that - // we don't need to worry about cycles since we ensure single use above. - case Instruction::PHI: { - PHINode *PN = cast<PHINode>(I); - for (Value *IncValue : PN->incoming_values()) - if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) - return false; - break; - } - - // Otherwise, conservatively give up. - default: - return false; - } - - // Record the value that we can demote. - ToDemote.push_back(V); - return true; -} - -void BoUpSLP::computeMinimumValueSizes() { - // If there are no external uses, the expression tree must be rooted by a - // store. We can't demote in-memory values, so there is nothing to do here. - if (ExternalUses.empty()) - return; - - // We only attempt to truncate integer expressions. - auto &TreeRoot = VectorizableTree[0]->Scalars; - auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); - if (!TreeRootIT) - return; - - // If the expression is not rooted by a store, these roots should have - // external uses. We will rely on InstCombine to rewrite the expression in - // the narrower type. However, InstCombine only rewrites single-use values. - // This means that if a tree entry other than a root is used externally, it - // must have multiple uses and InstCombine will not rewrite it. The code - // below ensures that only the roots are used externally. - SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); - for (auto &EU : ExternalUses) - if (!Expr.erase(EU.Scalar)) - return; - if (!Expr.empty()) - return; - - // Collect the scalar values of the vectorizable expression. We will use this - // context to determine which values can be demoted. If we see a truncation, - // we mark it as seeding another demotion. - for (auto &EntryPtr : VectorizableTree) - Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); - - // Ensure the roots of the vectorizable tree don't form a cycle. They must - // have a single external user that is not in the vectorizable tree. - for (auto *Root : TreeRoot) - if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) - return; - - // Conservatively determine if we can actually truncate the roots of the - // expression. Collect the values that can be demoted in ToDemote and - // additional roots that require investigating in Roots. - SmallVector<Value *, 32> ToDemote; - SmallVector<Value *, 4> Roots; - for (auto *Root : TreeRoot) - if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) - return; - - // The maximum bit width required to represent all the values that can be - // demoted without loss of precision. It would be safe to truncate the roots - // of the expression to this width. - auto MaxBitWidth = 8u; - - // We first check if all the bits of the roots are demanded. If they're not, - // we can truncate the roots to this narrower type. - for (auto *Root : TreeRoot) { - auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); - MaxBitWidth = std::max<unsigned>( - Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); - } - - // True if the roots can be zero-extended back to their original type, rather - // than sign-extended. We know that if the leading bits are not demanded, we - // can safely zero-extend. So we initialize IsKnownPositive to True. - bool IsKnownPositive = true; - - // If all the bits of the roots are demanded, we can try a little harder to - // compute a narrower type. This can happen, for example, if the roots are - // getelementptr indices. InstCombine promotes these indices to the pointer - // width. Thus, all their bits are technically demanded even though the - // address computation might be vectorized in a smaller type. - // - // We start by looking at each entry that can be demoted. We compute the - // maximum bit width required to store the scalar by using ValueTracking to - // compute the number of high-order bits we can truncate. - if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && - llvm::all_of(TreeRoot, [](Value *R) { - assert(R->hasOneUse() && "Root should have only one use!"); - return isa<GetElementPtrInst>(R->user_back()); - })) { - MaxBitWidth = 8u; - - // Determine if the sign bit of all the roots is known to be zero. If not, - // IsKnownPositive is set to False. - IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { - KnownBits Known = computeKnownBits(R, *DL); - return Known.isNonNegative(); - }); - - // Determine the maximum number of bits required to store the scalar - // values. - for (auto *Scalar : ToDemote) { - auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); - auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); - MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); - } - - // If we can't prove that the sign bit is zero, we must add one to the - // maximum bit width to account for the unknown sign bit. This preserves - // the existing sign bit so we can safely sign-extend the root back to the - // original type. Otherwise, if we know the sign bit is zero, we will - // zero-extend the root instead. - // - // FIXME: This is somewhat suboptimal, as there will be cases where adding - // one to the maximum bit width will yield a larger-than-necessary - // type. In general, we need to add an extra bit only if we can't - // prove that the upper bit of the original type is equal to the - // upper bit of the proposed smaller type. If these two bits are the - // same (either zero or one) we know that sign-extending from the - // smaller type will result in the same value. Here, since we can't - // yet prove this, we are just making the proposed smaller type - // larger to ensure correctness. - if (!IsKnownPositive) - ++MaxBitWidth; - } - - // Round MaxBitWidth up to the next power-of-two. - if (!isPowerOf2_64(MaxBitWidth)) - MaxBitWidth = NextPowerOf2(MaxBitWidth); - - // If the maximum bit width we compute is less than the with of the roots' - // type, we can proceed with the narrowing. Otherwise, do nothing. - if (MaxBitWidth >= TreeRootIT->getBitWidth()) - return; - - // If we can truncate the root, we must collect additional values that might - // be demoted as a result. That is, those seeded by truncations we will - // modify. - while (!Roots.empty()) - collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); - - // Finally, map the values we can demote to the maximum bit with we computed. - for (auto *Scalar : ToDemote) - MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); -} - -namespace { - -/// The SLPVectorizer Pass. -struct SLPVectorizer : public FunctionPass { - SLPVectorizerPass Impl; - - /// Pass identification, replacement for typeid - static char ID; - - explicit SLPVectorizer() : FunctionPass(ID) { - initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); - } - - bool doInitialization(Module &M) override { - return false; - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; - auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); - auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); - auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); - - return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - FunctionPass::getAnalysisUsage(AU); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<DemandedBitsWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - AU.addPreserved<LoopInfoWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<AAResultsWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.setPreservesCFG(); - } -}; - -} // end anonymous namespace - -PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { - auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); - auto *TTI = &AM.getResult<TargetIRAnalysis>(F); - auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); - auto *AA = &AM.getResult<AAManager>(F); - auto *LI = &AM.getResult<LoopAnalysis>(F); - auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); - auto *AC = &AM.getResult<AssumptionAnalysis>(F); - auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); - auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); - - bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); - if (!Changed) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserveSet<CFGAnalyses>(); - PA.preserve<AAManager>(); - PA.preserve<GlobalsAA>(); - return PA; -} - -bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, - TargetTransformInfo *TTI_, - TargetLibraryInfo *TLI_, AliasAnalysis *AA_, - LoopInfo *LI_, DominatorTree *DT_, - AssumptionCache *AC_, DemandedBits *DB_, - OptimizationRemarkEmitter *ORE_) { - SE = SE_; - TTI = TTI_; - TLI = TLI_; - AA = AA_; - LI = LI_; - DT = DT_; - AC = AC_; - DB = DB_; - DL = &F.getParent()->getDataLayout(); - - Stores.clear(); - GEPs.clear(); - bool Changed = false; - - // If the target claims to have no vector registers don't attempt - // vectorization. - if (!TTI->getNumberOfRegisters(true)) - return false; - - // Don't vectorize when the attribute NoImplicitFloat is used. - if (F.hasFnAttribute(Attribute::NoImplicitFloat)) - return false; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); - - // Use the bottom up slp vectorizer to construct chains that start with - // store instructions. - BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); - - // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to - // delete instructions. - - // Scan the blocks in the function in post order. - for (auto BB : post_order(&F.getEntryBlock())) { - collectSeedInstructions(BB); - - // Vectorize trees that end at stores. - if (!Stores.empty()) { - LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() - << " underlying objects.\n"); - Changed |= vectorizeStoreChains(R); - } - - // Vectorize trees that end at reductions. - Changed |= vectorizeChainsInBlock(BB, R); - - // Vectorize the index computations of getelementptr instructions. This - // is primarily intended to catch gather-like idioms ending at - // non-consecutive loads. - if (!GEPs.empty()) { - LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() - << " underlying objects.\n"); - Changed |= vectorizeGEPIndices(BB, R); - } - } - - if (Changed) { - R.optimizeGatherSequence(); - LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); - LLVM_DEBUG(verifyFunction(F)); - } - return Changed; -} - -/// Check that the Values in the slice in VL array are still existent in -/// the WeakTrackingVH array. -/// Vectorization of part of the VL array may cause later values in the VL array -/// to become invalid. We track when this has happened in the WeakTrackingVH -/// array. -static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, - ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, - unsigned SliceSize) { - VL = VL.slice(SliceBegin, SliceSize); - VH = VH.slice(SliceBegin, SliceSize); - return !std::equal(VL.begin(), VL.end(), VH.begin()); -} - -bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, - unsigned VecRegSize) { - const unsigned ChainLen = Chain.size(); - LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen - << "\n"); - const unsigned Sz = R.getVectorElementSize(Chain[0]); - const unsigned VF = VecRegSize / Sz; - - if (!isPowerOf2_32(Sz) || VF < 2) - return false; - - // Keep track of values that were deleted by vectorizing in the loop below. - const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); - - bool Changed = false; - // Look for profitable vectorizable trees at all offsets, starting at zero. - for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { - - // Check that a previous iteration of this loop did not delete the Value. - if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i - << "\n"); - ArrayRef<Value *> Operands = Chain.slice(i, VF); - - R.buildTree(Operands); - if (R.isTreeTinyAndNotFullyVectorizable()) - continue; - - R.computeMinimumValueSizes(); - - int Cost = R.getTreeCost(); - - LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF - << "\n"); - if (Cost < -SLPCostThreshold) { - LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); - - using namespace ore; - - R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", - cast<StoreInst>(Chain[i])) - << "Stores SLP vectorized with cost " << NV("Cost", Cost) - << " and with tree size " - << NV("TreeSize", R.getTreeSize())); - - R.vectorizeTree(); - - // Move to the next bundle. - i += VF - 1; - Changed = true; - } - } - - return Changed; -} - -bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, - BoUpSLP &R) { - SetVector<StoreInst *> Heads; - SmallDenseSet<StoreInst *> Tails; - SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; - - // We may run into multiple chains that merge into a single chain. We mark the - // stores that we vectorized so that we don't visit the same store twice. - BoUpSLP::ValueSet VectorizedStores; - bool Changed = false; - - auto &&FindConsecutiveAccess = - [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { - if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) - return false; - - Tails.insert(Stores[Idx]); - Heads.insert(Stores[K]); - ConsecutiveChain[Stores[K]] = Stores[Idx]; - return true; - }; - - // Do a quadratic search on all of the given stores in reverse order and find - // all of the pairs of stores that follow each other. - int E = Stores.size(); - for (int Idx = E - 1; Idx >= 0; --Idx) { - // If a store has multiple consecutive store candidates, search according - // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... - // This is because usually pairing with immediate succeeding or preceding - // candidate create the best chance to find slp vectorization opportunity. - for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) - if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || - (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) - break; - } - - // For stores that start but don't end a link in the chain: - for (auto *SI : llvm::reverse(Heads)) { - if (Tails.count(SI)) - continue; - - // We found a store instr that starts a chain. Now follow the chain and try - // to vectorize it. - BoUpSLP::ValueList Operands; - StoreInst *I = SI; - // Collect the chain into a list. - while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { - Operands.push_back(I); - // Move to the next value in the chain. - I = ConsecutiveChain[I]; - } - - // FIXME: Is division-by-2 the correct step? Should we assert that the - // register size is a power-of-2? - for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); - Size /= 2) { - if (vectorizeStoreChain(Operands, R, Size)) { - // Mark the vectorized stores so that we don't vectorize them again. - VectorizedStores.insert(Operands.begin(), Operands.end()); - Changed = true; - break; - } - } - } - - return Changed; -} - -void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { - // Initialize the collections. We will make a single pass over the block. - Stores.clear(); - GEPs.clear(); - - // Visit the store and getelementptr instructions in BB and organize them in - // Stores and GEPs according to the underlying objects of their pointer - // operands. - for (Instruction &I : *BB) { - // Ignore store instructions that are volatile or have a pointer operand - // that doesn't point to a scalar type. - if (auto *SI = dyn_cast<StoreInst>(&I)) { - if (!SI->isSimple()) - continue; - if (!isValidElementType(SI->getValueOperand()->getType())) - continue; - Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); - } - - // Ignore getelementptr instructions that have more than one index, a - // constant index, or a pointer operand that doesn't point to a scalar - // type. - else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { - auto Idx = GEP->idx_begin()->get(); - if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) - continue; - if (!isValidElementType(Idx->getType())) - continue; - if (GEP->getType()->isVectorTy()) - continue; - GEPs[GEP->getPointerOperand()].push_back(GEP); - } - } -} - -bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { - if (!A || !B) - return false; - Value *VL[] = { A, B }; - return tryToVectorizeList(VL, R, /*UserCost=*/0, true); -} - -bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, - int UserCost, bool AllowReorder) { - if (VL.size() < 2) - return false; - - LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " - << VL.size() << ".\n"); - - // Check that all of the parts are scalar instructions of the same type, - // we permit an alternate opcode via InstructionsState. - InstructionsState S = getSameOpcode(VL); - if (!S.getOpcode()) - return false; - - Instruction *I0 = cast<Instruction>(S.OpValue); - unsigned Sz = R.getVectorElementSize(I0); - unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); - unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); - if (MaxVF < 2) { - R.getORE()->emit([&]() { - return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) - << "Cannot SLP vectorize list: vectorization factor " - << "less than 2 is not supported"; - }); - return false; - } - - for (Value *V : VL) { - Type *Ty = V->getType(); - if (!isValidElementType(Ty)) { - // NOTE: the following will give user internal llvm type name, which may - // not be useful. - R.getORE()->emit([&]() { - std::string type_str; - llvm::raw_string_ostream rso(type_str); - Ty->print(rso); - return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) - << "Cannot SLP vectorize list: type " - << rso.str() + " is unsupported by vectorizer"; - }); - return false; - } - } - - bool Changed = false; - bool CandidateFound = false; - int MinCost = SLPCostThreshold; - - // Keep track of values that were deleted by vectorizing in the loop below. - SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); - - unsigned NextInst = 0, MaxInst = VL.size(); - for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; - VF /= 2) { - // No actual vectorization should happen, if number of parts is the same as - // provided vectorization factor (i.e. the scalar type is used for vector - // code during codegen). - auto *VecTy = VectorType::get(VL[0]->getType(), VF); - if (TTI->getNumberOfParts(VecTy) == VF) - continue; - for (unsigned I = NextInst; I < MaxInst; ++I) { - unsigned OpsWidth = 0; - - if (I + VF > MaxInst) - OpsWidth = MaxInst - I; - else - OpsWidth = VF; - - if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) - break; - - // Check that a previous iteration of this loop did not delete the Value. - if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " - << "\n"); - ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); - - R.buildTree(Ops); - Optional<ArrayRef<unsigned>> Order = R.bestOrder(); - // TODO: check if we can allow reordering for more cases. - if (AllowReorder && Order) { - // TODO: reorder tree nodes without tree rebuilding. - // Conceptually, there is nothing actually preventing us from trying to - // reorder a larger list. In fact, we do exactly this when vectorizing - // reductions. However, at this point, we only expect to get here when - // there are exactly two operations. - assert(Ops.size() == 2); - Value *ReorderedOps[] = {Ops[1], Ops[0]}; - R.buildTree(ReorderedOps, None); - } - if (R.isTreeTinyAndNotFullyVectorizable()) - continue; - - R.computeMinimumValueSizes(); - int Cost = R.getTreeCost() - UserCost; - CandidateFound = true; - MinCost = std::min(MinCost, Cost); - - if (Cost < -SLPCostThreshold) { - LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); - R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", - cast<Instruction>(Ops[0])) - << "SLP vectorized with cost " << ore::NV("Cost", Cost) - << " and with tree size " - << ore::NV("TreeSize", R.getTreeSize())); - - R.vectorizeTree(); - // Move to the next bundle. - I += VF - 1; - NextInst = I + 1; - Changed = true; - } - } - } - - if (!Changed && CandidateFound) { - R.getORE()->emit([&]() { - return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) - << "List vectorization was possible but not beneficial with cost " - << ore::NV("Cost", MinCost) << " >= " - << ore::NV("Treshold", -SLPCostThreshold); - }); - } else if (!Changed) { - R.getORE()->emit([&]() { - return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) - << "Cannot SLP vectorize list: vectorization was impossible" - << " with available vectorization factors"; - }); - } - return Changed; -} - -bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { - if (!I) - return false; - - if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) - return false; - - Value *P = I->getParent(); - - // Vectorize in current basic block only. - auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); - auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); - if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) - return false; - - // Try to vectorize V. - if (tryToVectorizePair(Op0, Op1, R)) - return true; - - auto *A = dyn_cast<BinaryOperator>(Op0); - auto *B = dyn_cast<BinaryOperator>(Op1); - // Try to skip B. - if (B && B->hasOneUse()) { - auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); - auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); - if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) - return true; - if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) - return true; - } - - // Try to skip A. - if (A && A->hasOneUse()) { - auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); - auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); - if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) - return true; - if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) - return true; - } - return false; -} - -/// Generate a shuffle mask to be used in a reduction tree. -/// -/// \param VecLen The length of the vector to be reduced. -/// \param NumEltsToRdx The number of elements that should be reduced in the -/// vector. -/// \param IsPairwise Whether the reduction is a pairwise or splitting -/// reduction. A pairwise reduction will generate a mask of -/// <0,2,...> or <1,3,..> while a splitting reduction will generate -/// <2,3, undef,undef> for a vector of 4 and NumElts = 2. -/// \param IsLeft True will generate a mask of even elements, odd otherwise. -static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, - bool IsPairwise, bool IsLeft, - IRBuilder<> &Builder) { - assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); - - SmallVector<Constant *, 32> ShuffleMask( - VecLen, UndefValue::get(Builder.getInt32Ty())); - - if (IsPairwise) - // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). - for (unsigned i = 0; i != NumEltsToRdx; ++i) - ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); - else - // Move the upper half of the vector to the lower half. - for (unsigned i = 0; i != NumEltsToRdx; ++i) - ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); - - return ConstantVector::get(ShuffleMask); -} - -namespace { - -/// Model horizontal reductions. -/// -/// A horizontal reduction is a tree of reduction operations (currently add and -/// fadd) that has operations that can be put into a vector as its leaf. -/// For example, this tree: -/// -/// mul mul mul mul -/// \ / \ / -/// + + -/// \ / -/// + -/// This tree has "mul" as its reduced values and "+" as its reduction -/// operations. A reduction might be feeding into a store or a binary operation -/// feeding a phi. -/// ... -/// \ / -/// + -/// | -/// phi += -/// -/// Or: -/// ... -/// \ / -/// + -/// | -/// *p = -/// -class HorizontalReduction { - using ReductionOpsType = SmallVector<Value *, 16>; - using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; - ReductionOpsListType ReductionOps; - SmallVector<Value *, 32> ReducedVals; - // Use map vector to make stable output. - MapVector<Instruction *, Value *> ExtraArgs; - - /// Kind of the reduction data. - enum ReductionKind { - RK_None, /// Not a reduction. - RK_Arithmetic, /// Binary reduction data. - RK_Min, /// Minimum reduction data. - RK_UMin, /// Unsigned minimum reduction data. - RK_Max, /// Maximum reduction data. - RK_UMax, /// Unsigned maximum reduction data. - }; - - /// Contains info about operation, like its opcode, left and right operands. - class OperationData { - /// Opcode of the instruction. - unsigned Opcode = 0; - - /// Left operand of the reduction operation. - Value *LHS = nullptr; - - /// Right operand of the reduction operation. - Value *RHS = nullptr; - - /// Kind of the reduction operation. - ReductionKind Kind = RK_None; - - /// True if float point min/max reduction has no NaNs. - bool NoNaN = false; - - /// Checks if the reduction operation can be vectorized. - bool isVectorizable() const { - return LHS && RHS && - // We currently only support add/mul/logical && min/max reductions. - ((Kind == RK_Arithmetic && - (Opcode == Instruction::Add || Opcode == Instruction::FAdd || - Opcode == Instruction::Mul || Opcode == Instruction::FMul || - Opcode == Instruction::And || Opcode == Instruction::Or || - Opcode == Instruction::Xor)) || - ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && - (Kind == RK_Min || Kind == RK_Max)) || - (Opcode == Instruction::ICmp && - (Kind == RK_UMin || Kind == RK_UMax))); - } - - /// Creates reduction operation with the current opcode. - Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { - assert(isVectorizable() && - "Expected add|fadd or min/max reduction operation."); - Value *Cmp; - switch (Kind) { - case RK_Arithmetic: - return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, - Name); - case RK_Min: - Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) - : Builder.CreateFCmpOLT(LHS, RHS); - break; - case RK_Max: - Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) - : Builder.CreateFCmpOGT(LHS, RHS); - break; - case RK_UMin: - assert(Opcode == Instruction::ICmp && "Expected integer types."); - Cmp = Builder.CreateICmpULT(LHS, RHS); - break; - case RK_UMax: - assert(Opcode == Instruction::ICmp && "Expected integer types."); - Cmp = Builder.CreateICmpUGT(LHS, RHS); - break; - case RK_None: - llvm_unreachable("Unknown reduction operation."); - } - return Builder.CreateSelect(Cmp, LHS, RHS, Name); - } - - public: - explicit OperationData() = default; - - /// Construction for reduced values. They are identified by opcode only and - /// don't have associated LHS/RHS values. - explicit OperationData(Value *V) { - if (auto *I = dyn_cast<Instruction>(V)) - Opcode = I->getOpcode(); - } - - /// Constructor for reduction operations with opcode and its left and - /// right operands. - OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, - bool NoNaN = false) - : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { - assert(Kind != RK_None && "One of the reduction operations is expected."); - } - - explicit operator bool() const { return Opcode; } - - /// Get the index of the first operand. - unsigned getFirstOperandIndex() const { - assert(!!*this && "The opcode is not set."); - switch (Kind) { - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - return 1; - case RK_Arithmetic: - case RK_None: - break; - } - return 0; - } - - /// Total number of operands in the reduction operation. - unsigned getNumberOfOperands() const { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - return 2; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - return 3; - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Checks if the operation has the same parent as \p P. - bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - if (!IsRedOp) - return I->getParent() == P; - switch (Kind) { - case RK_Arithmetic: - // Arithmetic reduction operation must be used once only. - return I->getParent() == P; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: { - // SelectInst must be used twice while the condition op must have single - // use only. - auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); - return I->getParent() == P && Cmp && Cmp->getParent() == P; - } - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - /// Expected number of uses for reduction operations/reduced values. - bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - return I->hasOneUse(); - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - return I->hasNUses(2) && - (!IsReductionOp || - cast<SelectInst>(I)->getCondition()->hasOneUse()); - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Initializes the list of reduction operations. - void initReductionOps(ReductionOpsListType &ReductionOps) { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - ReductionOps.assign(1, ReductionOpsType()); - break; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - ReductionOps.assign(2, ReductionOpsType()); - break; - case RK_None: - llvm_unreachable("Reduction kind is not set"); - } - } - /// Add all reduction operations for the reduction instruction \p I. - void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - ReductionOps[0].emplace_back(I); - break; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); - ReductionOps[1].emplace_back(I); - break; - case RK_None: - llvm_unreachable("Reduction kind is not set"); - } - } - - /// Checks if instruction is associative and can be vectorized. - bool isAssociative(Instruction *I) const { - assert(Kind != RK_None && *this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - return I->isAssociative(); - case RK_Min: - case RK_Max: - return Opcode == Instruction::ICmp || - cast<Instruction>(I->getOperand(0))->isFast(); - case RK_UMin: - case RK_UMax: - assert(Opcode == Instruction::ICmp && - "Only integer compare operation is expected."); - return true; - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Checks if the reduction operation can be vectorized. - bool isVectorizable(Instruction *I) const { - return isVectorizable() && isAssociative(I); - } - - /// Checks if two operation data are both a reduction op or both a reduced - /// value. - bool operator==(const OperationData &OD) { - assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && - "One of the comparing operations is incorrect."); - return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); - } - bool operator!=(const OperationData &OD) { return !(*this == OD); } - void clear() { - Opcode = 0; - LHS = nullptr; - RHS = nullptr; - Kind = RK_None; - NoNaN = false; - } - - /// Get the opcode of the reduction operation. - unsigned getOpcode() const { - assert(isVectorizable() && "Expected vectorizable operation."); - return Opcode; - } - - /// Get kind of reduction data. - ReductionKind getKind() const { return Kind; } - Value *getLHS() const { return LHS; } - Value *getRHS() const { return RHS; } - Type *getConditionType() const { - switch (Kind) { - case RK_Arithmetic: - return nullptr; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - return CmpInst::makeCmpResultType(LHS->getType()); - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Creates reduction operation with the current opcode with the IR flags - /// from \p ReductionOps. - Value *createOp(IRBuilder<> &Builder, const Twine &Name, - const ReductionOpsListType &ReductionOps) const { - assert(isVectorizable() && - "Expected add|fadd or min/max reduction operation."); - auto *Op = createOp(Builder, Name); - switch (Kind) { - case RK_Arithmetic: - propagateIRFlags(Op, ReductionOps[0]); - return Op; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - if (auto *SI = dyn_cast<SelectInst>(Op)) - propagateIRFlags(SI->getCondition(), ReductionOps[0]); - propagateIRFlags(Op, ReductionOps[1]); - return Op; - case RK_None: - break; - } - llvm_unreachable("Unknown reduction operation."); - } - /// Creates reduction operation with the current opcode with the IR flags - /// from \p I. - Value *createOp(IRBuilder<> &Builder, const Twine &Name, - Instruction *I) const { - assert(isVectorizable() && - "Expected add|fadd or min/max reduction operation."); - auto *Op = createOp(Builder, Name); - switch (Kind) { - case RK_Arithmetic: - propagateIRFlags(Op, I); - return Op; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - if (auto *SI = dyn_cast<SelectInst>(Op)) { - propagateIRFlags(SI->getCondition(), - cast<SelectInst>(I)->getCondition()); - } - propagateIRFlags(Op, I); - return Op; - case RK_None: - break; - } - llvm_unreachable("Unknown reduction operation."); - } - - TargetTransformInfo::ReductionFlags getFlags() const { - TargetTransformInfo::ReductionFlags Flags; - Flags.NoNaN = NoNaN; - switch (Kind) { - case RK_Arithmetic: - break; - case RK_Min: - Flags.IsSigned = Opcode == Instruction::ICmp; - Flags.IsMaxOp = false; - break; - case RK_Max: - Flags.IsSigned = Opcode == Instruction::ICmp; - Flags.IsMaxOp = true; - break; - case RK_UMin: - Flags.IsSigned = false; - Flags.IsMaxOp = false; - break; - case RK_UMax: - Flags.IsSigned = false; - Flags.IsMaxOp = true; - break; - case RK_None: - llvm_unreachable("Reduction kind is not set"); - } - return Flags; - } - }; - - WeakTrackingVH ReductionRoot; - - /// The operation data of the reduction operation. - OperationData ReductionData; - - /// The operation data of the values we perform a reduction on. - OperationData ReducedValueData; - - /// Should we model this reduction as a pairwise reduction tree or a tree that - /// splits the vector in halves and adds those halves. - bool IsPairwiseReduction = false; - - /// Checks if the ParentStackElem.first should be marked as a reduction - /// operation with an extra argument or as extra argument itself. - void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, - Value *ExtraArg) { - if (ExtraArgs.count(ParentStackElem.first)) { - ExtraArgs[ParentStackElem.first] = nullptr; - // We ran into something like: - // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. - // The whole ParentStackElem.first should be considered as an extra value - // in this case. - // Do not perform analysis of remaining operands of ParentStackElem.first - // instruction, this whole instruction is an extra argument. - ParentStackElem.second = ParentStackElem.first->getNumOperands(); - } else { - // We ran into something like: - // ParentStackElem.first += ... + ExtraArg + ... - ExtraArgs[ParentStackElem.first] = ExtraArg; - } - } - - static OperationData getOperationData(Value *V) { - if (!V) - return OperationData(); - - Value *LHS; - Value *RHS; - if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { - return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, - RK_Arithmetic); - } - if (auto *Select = dyn_cast<SelectInst>(V)) { - // Look for a min/max pattern. - if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); - } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); - } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || - m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData( - Instruction::FCmp, LHS, RHS, RK_Min, - cast<Instruction>(Select->getCondition())->hasNoNaNs()); - } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); - } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); - } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || - m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData( - Instruction::FCmp, LHS, RHS, RK_Max, - cast<Instruction>(Select->getCondition())->hasNoNaNs()); - } else { - // Try harder: look for min/max pattern based on instructions producing - // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). - // During the intermediate stages of SLP, it's very common to have - // pattern like this (since optimizeGatherSequence is run only once - // at the end): - // %1 = extractelement <2 x i32> %a, i32 0 - // %2 = extractelement <2 x i32> %a, i32 1 - // %cond = icmp sgt i32 %1, %2 - // %3 = extractelement <2 x i32> %a, i32 0 - // %4 = extractelement <2 x i32> %a, i32 1 - // %select = select i1 %cond, i32 %3, i32 %4 - CmpInst::Predicate Pred; - Instruction *L1; - Instruction *L2; - - LHS = Select->getTrueValue(); - RHS = Select->getFalseValue(); - Value *Cond = Select->getCondition(); - - // TODO: Support inverse predicates. - if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { - if (!isa<ExtractElementInst>(RHS) || - !L2->isIdenticalTo(cast<Instruction>(RHS))) - return OperationData(V); - } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { - if (!isa<ExtractElementInst>(LHS) || - !L1->isIdenticalTo(cast<Instruction>(LHS))) - return OperationData(V); - } else { - if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) - return OperationData(V); - if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || - !L1->isIdenticalTo(cast<Instruction>(LHS)) || - !L2->isIdenticalTo(cast<Instruction>(RHS))) - return OperationData(V); - } - switch (Pred) { - default: - return OperationData(V); - - case CmpInst::ICMP_ULT: - case CmpInst::ICMP_ULE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); - - case CmpInst::ICMP_SLT: - case CmpInst::ICMP_SLE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); - - case CmpInst::FCMP_OLT: - case CmpInst::FCMP_OLE: - case CmpInst::FCMP_ULT: - case CmpInst::FCMP_ULE: - return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, - cast<Instruction>(Cond)->hasNoNaNs()); - - case CmpInst::ICMP_UGT: - case CmpInst::ICMP_UGE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); - - case CmpInst::ICMP_SGT: - case CmpInst::ICMP_SGE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); - - case CmpInst::FCMP_OGT: - case CmpInst::FCMP_OGE: - case CmpInst::FCMP_UGT: - case CmpInst::FCMP_UGE: - return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, - cast<Instruction>(Cond)->hasNoNaNs()); - } - } - } - return OperationData(V); - } - -public: - HorizontalReduction() = default; - - /// Try to find a reduction tree. - bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { - assert((!Phi || is_contained(Phi->operands(), B)) && - "Thi phi needs to use the binary operator"); - - ReductionData = getOperationData(B); - - // We could have a initial reductions that is not an add. - // r *= v1 + v2 + v3 + v4 - // In such a case start looking for a tree rooted in the first '+'. - if (Phi) { - if (ReductionData.getLHS() == Phi) { - Phi = nullptr; - B = dyn_cast<Instruction>(ReductionData.getRHS()); - ReductionData = getOperationData(B); - } else if (ReductionData.getRHS() == Phi) { - Phi = nullptr; - B = dyn_cast<Instruction>(ReductionData.getLHS()); - ReductionData = getOperationData(B); - } - } - - if (!ReductionData.isVectorizable(B)) - return false; - - Type *Ty = B->getType(); - if (!isValidElementType(Ty)) - return false; - if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) - return false; - - ReducedValueData.clear(); - ReductionRoot = B; - - // Post order traverse the reduction tree starting at B. We only handle true - // trees containing only binary operators. - SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; - Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); - ReductionData.initReductionOps(ReductionOps); - while (!Stack.empty()) { - Instruction *TreeN = Stack.back().first; - unsigned EdgeToVist = Stack.back().second++; - OperationData OpData = getOperationData(TreeN); - bool IsReducedValue = OpData != ReductionData; - - // Postorder vist. - if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { - if (IsReducedValue) - ReducedVals.push_back(TreeN); - else { - auto I = ExtraArgs.find(TreeN); - if (I != ExtraArgs.end() && !I->second) { - // Check if TreeN is an extra argument of its parent operation. - if (Stack.size() <= 1) { - // TreeN can't be an extra argument as it is a root reduction - // operation. - return false; - } - // Yes, TreeN is an extra argument, do not add it to a list of - // reduction operations. - // Stack[Stack.size() - 2] always points to the parent operation. - markExtraArg(Stack[Stack.size() - 2], TreeN); - ExtraArgs.erase(TreeN); - } else - ReductionData.addReductionOps(TreeN, ReductionOps); - } - // Retract. - Stack.pop_back(); - continue; - } - - // Visit left or right. - Value *NextV = TreeN->getOperand(EdgeToVist); - if (NextV != Phi) { - auto *I = dyn_cast<Instruction>(NextV); - OpData = getOperationData(I); - // Continue analysis if the next operand is a reduction operation or - // (possibly) a reduced value. If the reduced value opcode is not set, - // the first met operation != reduction operation is considered as the - // reduced value class. - if (I && (!ReducedValueData || OpData == ReducedValueData || - OpData == ReductionData)) { - const bool IsReductionOperation = OpData == ReductionData; - // Only handle trees in the current basic block. - if (!ReductionData.hasSameParent(I, B->getParent(), - IsReductionOperation)) { - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } - - // Each tree node needs to have minimal number of users except for the - // ultimate reduction. - if (!ReductionData.hasRequiredNumberOfUses(I, - OpData == ReductionData) && - I != B) { - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } - - if (IsReductionOperation) { - // We need to be able to reassociate the reduction operations. - if (!OpData.isAssociative(I)) { - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } - } else if (ReducedValueData && - ReducedValueData != OpData) { - // Make sure that the opcodes of the operations that we are going to - // reduce match. - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } else if (!ReducedValueData) - ReducedValueData = OpData; - - Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); - continue; - } - } - // NextV is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), NextV); - } - return true; - } - - /// Attempt to vectorize the tree found by - /// matchAssociativeReduction. - bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { - if (ReducedVals.empty()) - return false; - - // If there is a sufficient number of reduction values, reduce - // to a nearby power-of-2. Can safely generate oversized - // vectors and rely on the backend to split them to legal sizes. - unsigned NumReducedVals = ReducedVals.size(); - if (NumReducedVals < 4) - return false; - - unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); - - Value *VectorizedTree = nullptr; - - // FIXME: Fast-math-flags should be set based on the instructions in the - // reduction (not all of 'fast' are required). - IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); - FastMathFlags Unsafe; - Unsafe.setFast(); - Builder.setFastMathFlags(Unsafe); - unsigned i = 0; - - BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; - // The same extra argument may be used several time, so log each attempt - // to use it. - for (auto &Pair : ExtraArgs) { - assert(Pair.first && "DebugLoc must be set."); - ExternallyUsedValues[Pair.second].push_back(Pair.first); - } - // The reduction root is used as the insertion point for new instructions, - // so set it as externally used to prevent it from being deleted. - ExternallyUsedValues[ReductionRoot]; - SmallVector<Value *, 16> IgnoreList; - for (auto &V : ReductionOps) - IgnoreList.append(V.begin(), V.end()); - while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { - auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); - V.buildTree(VL, ExternallyUsedValues, IgnoreList); - Optional<ArrayRef<unsigned>> Order = V.bestOrder(); - // TODO: Handle orders of size less than number of elements in the vector. - if (Order && Order->size() == VL.size()) { - // TODO: reorder tree nodes without tree rebuilding. - SmallVector<Value *, 4> ReorderedOps(VL.size()); - llvm::transform(*Order, ReorderedOps.begin(), - [VL](const unsigned Idx) { return VL[Idx]; }); - V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); - } - if (V.isTreeTinyAndNotFullyVectorizable()) - break; - - V.computeMinimumValueSizes(); - - // Estimate cost. - int TreeCost = V.getTreeCost(); - int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); - int Cost = TreeCost + ReductionCost; - if (Cost >= -SLPCostThreshold) { - V.getORE()->emit([&]() { - return OptimizationRemarkMissed( - SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) - << "Vectorizing horizontal reduction is possible" - << "but not beneficial with cost " - << ore::NV("Cost", Cost) << " and threshold " - << ore::NV("Threshold", -SLPCostThreshold); - }); - break; - } - - LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" - << Cost << ". (HorRdx)\n"); - V.getORE()->emit([&]() { - return OptimizationRemark( - SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) - << "Vectorized horizontal reduction with cost " - << ore::NV("Cost", Cost) << " and with tree size " - << ore::NV("TreeSize", V.getTreeSize()); - }); - - // Vectorize a tree. - DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); - Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); - - // Emit a reduction. - Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); - Value *ReducedSubTree = - emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); - if (VectorizedTree) { - Builder.SetCurrentDebugLocation(Loc); - OperationData VectReductionData(ReductionData.getOpcode(), - VectorizedTree, ReducedSubTree, - ReductionData.getKind()); - VectorizedTree = - VectReductionData.createOp(Builder, "op.rdx", ReductionOps); - } else - VectorizedTree = ReducedSubTree; - i += ReduxWidth; - ReduxWidth = PowerOf2Floor(NumReducedVals - i); - } - - if (VectorizedTree) { - // Finish the reduction. - for (; i < NumReducedVals; ++i) { - auto *I = cast<Instruction>(ReducedVals[i]); - Builder.SetCurrentDebugLocation(I->getDebugLoc()); - OperationData VectReductionData(ReductionData.getOpcode(), - VectorizedTree, I, - ReductionData.getKind()); - VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); - } - for (auto &Pair : ExternallyUsedValues) { - // Add each externally used value to the final reduction. - for (auto *I : Pair.second) { - Builder.SetCurrentDebugLocation(I->getDebugLoc()); - OperationData VectReductionData(ReductionData.getOpcode(), - VectorizedTree, Pair.first, - ReductionData.getKind()); - VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); - } - } - // Update users. - ReductionRoot->replaceAllUsesWith(VectorizedTree); - } - return VectorizedTree != nullptr; - } - - unsigned numReductionValues() const { - return ReducedVals.size(); - } - -private: - /// Calculate the cost of a reduction. - int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, - unsigned ReduxWidth) { - Type *ScalarTy = FirstReducedVal->getType(); - Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); - - int PairwiseRdxCost; - int SplittingRdxCost; - switch (ReductionData.getKind()) { - case RK_Arithmetic: - PairwiseRdxCost = - TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, - /*IsPairwiseForm=*/true); - SplittingRdxCost = - TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, - /*IsPairwiseForm=*/false); - break; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: { - Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); - bool IsUnsigned = ReductionData.getKind() == RK_UMin || - ReductionData.getKind() == RK_UMax; - PairwiseRdxCost = - TTI->getMinMaxReductionCost(VecTy, VecCondTy, - /*IsPairwiseForm=*/true, IsUnsigned); - SplittingRdxCost = - TTI->getMinMaxReductionCost(VecTy, VecCondTy, - /*IsPairwiseForm=*/false, IsUnsigned); - break; - } - case RK_None: - llvm_unreachable("Expected arithmetic or min/max reduction operation"); - } - - IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; - int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; - - int ScalarReduxCost; - switch (ReductionData.getKind()) { - case RK_Arithmetic: - ScalarReduxCost = - TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); - break; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - ScalarReduxCost = - TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + - TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, - CmpInst::makeCmpResultType(ScalarTy)); - break; - case RK_None: - llvm_unreachable("Expected arithmetic or min/max reduction operation"); - } - ScalarReduxCost *= (ReduxWidth - 1); - - LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost - << " for reduction that starts with " << *FirstReducedVal - << " (It is a " - << (IsPairwiseReduction ? "pairwise" : "splitting") - << " reduction)\n"); - - return VecReduxCost - ScalarReduxCost; - } - - /// Emit a horizontal reduction of the vectorized value. - Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, - unsigned ReduxWidth, const TargetTransformInfo *TTI) { - assert(VectorizedValue && "Need to have a vectorized tree node"); - assert(isPowerOf2_32(ReduxWidth) && - "We only handle power-of-two reductions for now"); - - if (!IsPairwiseReduction) { - // FIXME: The builder should use an FMF guard. It should not be hard-coded - // to 'fast'. - assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); - return createSimpleTargetReduction( - Builder, TTI, ReductionData.getOpcode(), VectorizedValue, - ReductionData.getFlags(), ReductionOps.back()); - } - - Value *TmpVec = VectorizedValue; - for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { - Value *LeftMask = - createRdxShuffleMask(ReduxWidth, i, true, true, Builder); - Value *RightMask = - createRdxShuffleMask(ReduxWidth, i, true, false, Builder); - - Value *LeftShuf = Builder.CreateShuffleVector( - TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); - Value *RightShuf = Builder.CreateShuffleVector( - TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), - "rdx.shuf.r"); - OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, - RightShuf, ReductionData.getKind()); - TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); - } - - // The result is in the first element of the vector. - return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); - } -}; - -} // end anonymous namespace - -/// Recognize construction of vectors like -/// %ra = insertelement <4 x float> undef, float %s0, i32 0 -/// %rb = insertelement <4 x float> %ra, float %s1, i32 1 -/// %rc = insertelement <4 x float> %rb, float %s2, i32 2 -/// %rd = insertelement <4 x float> %rc, float %s3, i32 3 -/// starting from the last insertelement instruction. -/// -/// Returns true if it matches -static bool findBuildVector(InsertElementInst *LastInsertElem, - TargetTransformInfo *TTI, - SmallVectorImpl<Value *> &BuildVectorOpds, - int &UserCost) { - UserCost = 0; - Value *V = nullptr; - do { - if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { - UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, - LastInsertElem->getType(), - CI->getZExtValue()); - } - BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); - V = LastInsertElem->getOperand(0); - if (isa<UndefValue>(V)) - break; - LastInsertElem = dyn_cast<InsertElementInst>(V); - if (!LastInsertElem || !LastInsertElem->hasOneUse()) - return false; - } while (true); - std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); - return true; -} - -/// Like findBuildVector, but looks for construction of aggregate. -/// -/// \return true if it matches. -static bool findBuildAggregate(InsertValueInst *IV, - SmallVectorImpl<Value *> &BuildVectorOpds) { - Value *V; - do { - BuildVectorOpds.push_back(IV->getInsertedValueOperand()); - V = IV->getAggregateOperand(); - if (isa<UndefValue>(V)) - break; - IV = dyn_cast<InsertValueInst>(V); - if (!IV || !IV->hasOneUse()) - return false; - } while (true); - std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); - return true; -} - -static bool PhiTypeSorterFunc(Value *V, Value *V2) { - return V->getType() < V2->getType(); -} - -/// Try and get a reduction value from a phi node. -/// -/// Given a phi node \p P in a block \p ParentBB, consider possible reductions -/// if they come from either \p ParentBB or a containing loop latch. -/// -/// \returns A candidate reduction value if possible, or \code nullptr \endcode -/// if not possible. -static Value *getReductionValue(const DominatorTree *DT, PHINode *P, - BasicBlock *ParentBB, LoopInfo *LI) { - // There are situations where the reduction value is not dominated by the - // reduction phi. Vectorizing such cases has been reported to cause - // miscompiles. See PR25787. - auto DominatedReduxValue = [&](Value *R) { - return isa<Instruction>(R) && - DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); - }; - - Value *Rdx = nullptr; - - // Return the incoming value if it comes from the same BB as the phi node. - if (P->getIncomingBlock(0) == ParentBB) { - Rdx = P->getIncomingValue(0); - } else if (P->getIncomingBlock(1) == ParentBB) { - Rdx = P->getIncomingValue(1); - } - - if (Rdx && DominatedReduxValue(Rdx)) - return Rdx; - - // Otherwise, check whether we have a loop latch to look at. - Loop *BBL = LI->getLoopFor(ParentBB); - if (!BBL) - return nullptr; - BasicBlock *BBLatch = BBL->getLoopLatch(); - if (!BBLatch) - return nullptr; - - // There is a loop latch, return the incoming value if it comes from - // that. This reduction pattern occasionally turns up. - if (P->getIncomingBlock(0) == BBLatch) { - Rdx = P->getIncomingValue(0); - } else if (P->getIncomingBlock(1) == BBLatch) { - Rdx = P->getIncomingValue(1); - } - - if (Rdx && DominatedReduxValue(Rdx)) - return Rdx; - - return nullptr; -} - -/// Attempt to reduce a horizontal reduction. -/// If it is legal to match a horizontal reduction feeding the phi node \a P -/// with reduction operators \a Root (or one of its operands) in a basic block -/// \a BB, then check if it can be done. If horizontal reduction is not found -/// and root instruction is a binary operation, vectorization of the operands is -/// attempted. -/// \returns true if a horizontal reduction was matched and reduced or operands -/// of one of the binary instruction were vectorized. -/// \returns false if a horizontal reduction was not matched (or not possible) -/// or no vectorization of any binary operation feeding \a Root instruction was -/// performed. -static bool tryToVectorizeHorReductionOrInstOperands( - PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, - TargetTransformInfo *TTI, - const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { - if (!ShouldVectorizeHor) - return false; - - if (!Root) - return false; - - if (Root->getParent() != BB || isa<PHINode>(Root)) - return false; - // Start analysis starting from Root instruction. If horizontal reduction is - // found, try to vectorize it. If it is not a horizontal reduction or - // vectorization is not possible or not effective, and currently analyzed - // instruction is a binary operation, try to vectorize the operands, using - // pre-order DFS traversal order. If the operands were not vectorized, repeat - // the same procedure considering each operand as a possible root of the - // horizontal reduction. - // Interrupt the process if the Root instruction itself was vectorized or all - // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. - SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); - SmallPtrSet<Value *, 8> VisitedInstrs; - bool Res = false; - while (!Stack.empty()) { - Value *V; - unsigned Level; - std::tie(V, Level) = Stack.pop_back_val(); - if (!V) - continue; - auto *Inst = dyn_cast<Instruction>(V); - if (!Inst) - continue; - auto *BI = dyn_cast<BinaryOperator>(Inst); - auto *SI = dyn_cast<SelectInst>(Inst); - if (BI || SI) { - HorizontalReduction HorRdx; - if (HorRdx.matchAssociativeReduction(P, Inst)) { - if (HorRdx.tryToReduce(R, TTI)) { - Res = true; - // Set P to nullptr to avoid re-analysis of phi node in - // matchAssociativeReduction function unless this is the root node. - P = nullptr; - continue; - } - } - if (P && BI) { - Inst = dyn_cast<Instruction>(BI->getOperand(0)); - if (Inst == P) - Inst = dyn_cast<Instruction>(BI->getOperand(1)); - if (!Inst) { - // Set P to nullptr to avoid re-analysis of phi node in - // matchAssociativeReduction function unless this is the root node. - P = nullptr; - continue; - } - } - } - // Set P to nullptr to avoid re-analysis of phi node in - // matchAssociativeReduction function unless this is the root node. - P = nullptr; - if (Vectorize(Inst, R)) { - Res = true; - continue; - } - - // Try to vectorize operands. - // Continue analysis for the instruction from the same basic block only to - // save compile time. - if (++Level < RecursionMaxDepth) - for (auto *Op : Inst->operand_values()) - if (VisitedInstrs.insert(Op).second) - if (auto *I = dyn_cast<Instruction>(Op)) - if (!isa<PHINode>(I) && I->getParent() == BB) - Stack.emplace_back(Op, Level); - } - return Res; -} - -bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, - BasicBlock *BB, BoUpSLP &R, - TargetTransformInfo *TTI) { - if (!V) - return false; - auto *I = dyn_cast<Instruction>(V); - if (!I) - return false; - - if (!isa<BinaryOperator>(I)) - P = nullptr; - // Try to match and vectorize a horizontal reduction. - auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { - return tryToVectorize(I, R); - }; - return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, - ExtraVectorization); -} - -bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, - BasicBlock *BB, BoUpSLP &R) { - const DataLayout &DL = BB->getModule()->getDataLayout(); - if (!R.canMapToVector(IVI->getType(), DL)) - return false; - - SmallVector<Value *, 16> BuildVectorOpds; - if (!findBuildAggregate(IVI, BuildVectorOpds)) - return false; - - LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); - // Aggregate value is unlikely to be processed in vector register, we need to - // extract scalars into scalar registers, so NeedExtraction is set true. - return tryToVectorizeList(BuildVectorOpds, R); -} - -bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, - BasicBlock *BB, BoUpSLP &R) { - int UserCost; - SmallVector<Value *, 16> BuildVectorOpds; - if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || - (llvm::all_of(BuildVectorOpds, - [](Value *V) { return isa<ExtractElementInst>(V); }) && - isShuffle(BuildVectorOpds))) - return false; - - // Vectorize starting with the build vector operands ignoring the BuildVector - // instructions for the purpose of scheduling and user extraction. - return tryToVectorizeList(BuildVectorOpds, R, UserCost); -} - -bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, - BoUpSLP &R) { - if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) - return true; - - bool OpsChanged = false; - for (int Idx = 0; Idx < 2; ++Idx) { - OpsChanged |= - vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); - } - return OpsChanged; -} - -bool SLPVectorizerPass::vectorizeSimpleInstructions( - SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { - bool OpsChanged = false; - for (auto &VH : reverse(Instructions)) { - auto *I = dyn_cast_or_null<Instruction>(VH); - if (!I) - continue; - if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) - OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); - else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) - OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); - else if (auto *CI = dyn_cast<CmpInst>(I)) - OpsChanged |= vectorizeCmpInst(CI, BB, R); - } - Instructions.clear(); - return OpsChanged; -} - -bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { - bool Changed = false; - SmallVector<Value *, 4> Incoming; - SmallPtrSet<Value *, 16> VisitedInstrs; - - bool HaveVectorizedPhiNodes = true; - while (HaveVectorizedPhiNodes) { - HaveVectorizedPhiNodes = false; - - // Collect the incoming values from the PHIs. - Incoming.clear(); - for (Instruction &I : *BB) { - PHINode *P = dyn_cast<PHINode>(&I); - if (!P) - break; - - if (!VisitedInstrs.count(P)) - Incoming.push_back(P); - } - - // Sort by type. - llvm::stable_sort(Incoming, PhiTypeSorterFunc); - - // Try to vectorize elements base on their type. - for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), - E = Incoming.end(); - IncIt != E;) { - - // Look for the next elements with the same type. - SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; - while (SameTypeIt != E && - (*SameTypeIt)->getType() == (*IncIt)->getType()) { - VisitedInstrs.insert(*SameTypeIt); - ++SameTypeIt; - } - - // Try to vectorize them. - unsigned NumElts = (SameTypeIt - IncIt); - LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" - << NumElts << ")\n"); - // The order in which the phi nodes appear in the program does not matter. - // So allow tryToVectorizeList to reorder them if it is beneficial. This - // is done when there are exactly two elements since tryToVectorizeList - // asserts that there are only two values when AllowReorder is true. - bool AllowReorder = NumElts == 2; - if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, - /*UserCost=*/0, AllowReorder)) { - // Success start over because instructions might have been changed. - HaveVectorizedPhiNodes = true; - Changed = true; - break; - } - - // Start over at the next instruction of a different type (or the end). - IncIt = SameTypeIt; - } - } - - VisitedInstrs.clear(); - - SmallVector<WeakVH, 8> PostProcessInstructions; - SmallDenseSet<Instruction *, 4> KeyNodes; - for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { - // We may go through BB multiple times so skip the one we have checked. - if (!VisitedInstrs.insert(&*it).second) { - if (it->use_empty() && KeyNodes.count(&*it) > 0 && - vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { - // We would like to start over since some instructions are deleted - // and the iterator may become invalid value. - Changed = true; - it = BB->begin(); - e = BB->end(); - } - continue; - } - - if (isa<DbgInfoIntrinsic>(it)) - continue; - - // Try to vectorize reductions that use PHINodes. - if (PHINode *P = dyn_cast<PHINode>(it)) { - // Check that the PHI is a reduction PHI. - if (P->getNumIncomingValues() != 2) - return Changed; - - // Try to match and vectorize a horizontal reduction. - if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, - TTI)) { - Changed = true; - it = BB->begin(); - e = BB->end(); - continue; - } - continue; - } - - // Ran into an instruction without users, like terminator, or function call - // with ignored return value, store. Ignore unused instructions (basing on - // instruction type, except for CallInst and InvokeInst). - if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || - isa<InvokeInst>(it))) { - KeyNodes.insert(&*it); - bool OpsChanged = false; - if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { - for (auto *V : it->operand_values()) { - // Try to match and vectorize a horizontal reduction. - OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); - } - } - // Start vectorization of post-process list of instructions from the - // top-tree instructions to try to vectorize as many instructions as - // possible. - OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); - if (OpsChanged) { - // We would like to start over since some instructions are deleted - // and the iterator may become invalid value. - Changed = true; - it = BB->begin(); - e = BB->end(); - continue; - } - } - - if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || - isa<InsertValueInst>(it)) - PostProcessInstructions.push_back(&*it); - } - - return Changed; -} - -bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { - auto Changed = false; - for (auto &Entry : GEPs) { - // If the getelementptr list has fewer than two elements, there's nothing - // to do. - if (Entry.second.size() < 2) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " - << Entry.second.size() << ".\n"); - - // We process the getelementptr list in chunks of 16 (like we do for - // stores) to minimize compile-time. - for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { - auto Len = std::min<unsigned>(BE - BI, 16); - auto GEPList = makeArrayRef(&Entry.second[BI], Len); - - // Initialize a set a candidate getelementptrs. Note that we use a - // SetVector here to preserve program order. If the index computations - // are vectorizable and begin with loads, we want to minimize the chance - // of having to reorder them later. - SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); - - // Some of the candidates may have already been vectorized after we - // initially collected them. If so, the WeakTrackingVHs will have - // nullified the - // values, so remove them from the set of candidates. - Candidates.remove(nullptr); - - // Remove from the set of candidates all pairs of getelementptrs with - // constant differences. Such getelementptrs are likely not good - // candidates for vectorization in a bottom-up phase since one can be - // computed from the other. We also ensure all candidate getelementptr - // indices are unique. - for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { - auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); - if (!Candidates.count(GEPI)) - continue; - auto *SCEVI = SE->getSCEV(GEPList[I]); - for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { - auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); - auto *SCEVJ = SE->getSCEV(GEPList[J]); - if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { - Candidates.remove(GEPList[I]); - Candidates.remove(GEPList[J]); - } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { - Candidates.remove(GEPList[J]); - } - } - } - - // We break out of the above computation as soon as we know there are - // fewer than two candidates remaining. - if (Candidates.size() < 2) - continue; - - // Add the single, non-constant index of each candidate to the bundle. We - // ensured the indices met these constraints when we originally collected - // the getelementptrs. - SmallVector<Value *, 16> Bundle(Candidates.size()); - auto BundleIndex = 0u; - for (auto *V : Candidates) { - auto *GEP = cast<GetElementPtrInst>(V); - auto *GEPIdx = GEP->idx_begin()->get(); - assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); - Bundle[BundleIndex++] = GEPIdx; - } - - // Try and vectorize the indices. We are currently only interested in - // gather-like cases of the form: - // - // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... - // - // where the loads of "a", the loads of "b", and the subtractions can be - // performed in parallel. It's likely that detecting this pattern in a - // bottom-up phase will be simpler and less costly than building a - // full-blown top-down phase beginning at the consecutive loads. - Changed |= tryToVectorizeList(Bundle, R); - } - } - return Changed; -} - -bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { - bool Changed = false; - // Attempt to sort and vectorize each of the store-groups. - for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; - ++it) { - if (it->second.size() < 2) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " - << it->second.size() << ".\n"); - - // Process the stores in chunks of 16. - // TODO: The limit of 16 inhibits greater vectorization factors. - // For example, AVX2 supports v32i8. Increasing this limit, however, - // may cause a significant compile-time increase. - for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { - unsigned Len = std::min<unsigned>(CE - CI, 16); - Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); - } - } - return Changed; -} - -char SLPVectorizer::ID = 0; - -static const char lv_name[] = "SLP Vectorizer"; - -INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopSimplify) -INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) -INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) - -Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h b/contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h deleted file mode 100644 index 0ca6a6b93cfd..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPRecipeBuilder.h +++ /dev/null @@ -1,126 +0,0 @@ -//===- VPRecipeBuilder.h - Helper class to build recipes --------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H -#define LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H - -#include "LoopVectorizationPlanner.h" -#include "VPlan.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/IR/IRBuilder.h" - -namespace llvm { - -class LoopVectorizationLegality; -class LoopVectorizationCostModel; -class TargetTransformInfo; -class TargetLibraryInfo; - -/// Helper class to create VPRecipies from IR instructions. -class VPRecipeBuilder { - /// The loop that we evaluate. - Loop *OrigLoop; - - /// Target Library Info. - const TargetLibraryInfo *TLI; - - /// The legality analysis. - LoopVectorizationLegality *Legal; - - /// The profitablity analysis. - LoopVectorizationCostModel &CM; - - VPBuilder &Builder; - - /// When we if-convert we need to create edge masks. We have to cache values - /// so that we don't end up with exponential recursion/IR. Note that - /// if-conversion currently takes place during VPlan-construction, so these - /// caches are only used at that stage. - using EdgeMaskCacheTy = - DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>; - using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>; - EdgeMaskCacheTy EdgeMaskCache; - BlockMaskCacheTy BlockMaskCache; - -public: - /// A helper function that computes the predicate of the block BB, assuming - /// that the header block of the loop is set to True. It returns the *entry* - /// mask for the block BB. - VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan); - - /// A helper function that computes the predicate of the edge between SRC - /// and DST. - VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan); - - /// Check if \I belongs to an Interleave Group within the given VF \p Range, - /// \return true in the first returned value if so and false otherwise. - /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG - /// for \p Range.Start, and provide it as the second returned value. - /// Note that if \I is an adjunct member of an IG for \p Range.Start, the - /// \return value is <true, nullptr>, as it is handled by another recipe. - /// \p Range.End may be decreased to ensure same decision from \p Range.Start - /// to \p Range.End. - VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range, - VPlanPtr &Plan); - - /// Check if \I is a memory instruction to be widened for \p Range.Start and - /// potentially masked. Such instructions are handled by a recipe that takes - /// an additional VPInstruction for the mask. - VPWidenMemoryInstructionRecipe * - tryToWidenMemory(Instruction *I, VFRange &Range, VPlanPtr &Plan); - - /// Check if an induction recipe should be constructed for \I within the given - /// VF \p Range. If so build and return it. If not, return null. \p Range.End - /// may be decreased to ensure same decision from \p Range.Start to - /// \p Range.End. - VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, - VFRange &Range); - - /// Handle non-loop phi nodes. Currently all such phi nodes are turned into - /// a sequence of select instructions as the vectorizer currently performs - /// full if-conversion. - VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan); - - /// Check if \p I can be widened within the given VF \p Range. If \p I can be - /// widened for \p Range.Start, check if the last recipe of \p VPBB can be - /// extended to include \p I or else build a new VPWidenRecipe for it and - /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, - /// false otherwise. Range.End may be decreased to ensure same decision from - /// \p Range.Start to \p Range.End. - bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); - - /// Create a replicating region for instruction \p I that requires - /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. - VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe, - VPlanPtr &Plan); - -public: - VPRecipeBuilder(Loop *OrigLoop, const TargetLibraryInfo *TLI, - LoopVectorizationLegality *Legal, - LoopVectorizationCostModel &CM, VPBuilder &Builder) - : OrigLoop(OrigLoop), TLI(TLI), Legal(Legal), CM(CM), Builder(Builder) {} - - /// Check if a recipe can be create for \p I withing the given VF \p Range. - /// If a recipe can be created, it adds it to \p VPBB. - bool tryToCreateRecipe(Instruction *Instr, VFRange &Range, VPlanPtr &Plan, - VPBasicBlock *VPBB); - - /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it - /// is predicated. \return \p VPBB augmented with this new recipe if \p I is - /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new - /// Region. Update the packing decision of predicated instructions if they - /// feed \p I. Range.End may be decreased to ensure same recipe behavior from - /// \p Range.Start to \p Range.End. - VPBasicBlock *handleReplication( - Instruction *I, VFRange &Range, VPBasicBlock *VPBB, - DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, - VPlanPtr &Plan); -}; -} // end namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_VPRECIPEBUILDER_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp deleted file mode 100644 index 517d759d7bfc..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlan.cpp +++ /dev/null @@ -1,751 +0,0 @@ -//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This is the LLVM vectorization plan. It represents a candidate for -/// vectorization, allowing to plan and optimize how to vectorize a given loop -/// before generating LLVM-IR. -/// The vectorizer uses vectorization plans to estimate the costs of potential -/// candidates and if profitable to execute the desired plan, generating vector -/// LLVM-IR code. -/// -//===----------------------------------------------------------------------===// - -#include "VPlan.h" -#include "VPlanDominatorTree.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GenericDomTreeConstruction.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include <cassert> -#include <iterator> -#include <string> -#include <vector> - -using namespace llvm; -extern cl::opt<bool> EnableVPlanNativePath; - -#define DEBUG_TYPE "vplan" - -raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { - if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) - Instr->print(OS); - else - V.printAsOperand(OS); - return OS; -} - -/// \return the VPBasicBlock that is the entry of Block, possibly indirectly. -const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { - const VPBlockBase *Block = this; - while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) - Block = Region->getEntry(); - return cast<VPBasicBlock>(Block); -} - -VPBasicBlock *VPBlockBase::getEntryBasicBlock() { - VPBlockBase *Block = this; - while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) - Block = Region->getEntry(); - return cast<VPBasicBlock>(Block); -} - -/// \return the VPBasicBlock that is the exit of Block, possibly indirectly. -const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { - const VPBlockBase *Block = this; - while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) - Block = Region->getExit(); - return cast<VPBasicBlock>(Block); -} - -VPBasicBlock *VPBlockBase::getExitBasicBlock() { - VPBlockBase *Block = this; - while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) - Block = Region->getExit(); - return cast<VPBasicBlock>(Block); -} - -VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { - if (!Successors.empty() || !Parent) - return this; - assert(Parent->getExit() == this && - "Block w/o successors not the exit of its parent."); - return Parent->getEnclosingBlockWithSuccessors(); -} - -VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { - if (!Predecessors.empty() || !Parent) - return this; - assert(Parent->getEntry() == this && - "Block w/o predecessors not the entry of its parent."); - return Parent->getEnclosingBlockWithPredecessors(); -} - -void VPBlockBase::deleteCFG(VPBlockBase *Entry) { - SmallVector<VPBlockBase *, 8> Blocks; - for (VPBlockBase *Block : depth_first(Entry)) - Blocks.push_back(Block); - - for (VPBlockBase *Block : Blocks) - delete Block; -} - -BasicBlock * -VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { - // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. - // Pred stands for Predessor. Prev stands for Previous - last visited/created. - BasicBlock *PrevBB = CFG.PrevBB; - BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), - PrevBB->getParent(), CFG.LastBB); - LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); - - // Hook up the new basic block to its predecessors. - for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { - VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); - auto &PredVPSuccessors = PredVPBB->getSuccessors(); - BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; - - // In outer loop vectorization scenario, the predecessor BBlock may not yet - // be visited(backedge). Mark the VPBasicBlock for fixup at the end of - // vectorization. We do not encounter this case in inner loop vectorization - // as we start out by building a loop skeleton with the vector loop header - // and latch blocks. As a result, we never enter this function for the - // header block in the non VPlan-native path. - if (!PredBB) { - assert(EnableVPlanNativePath && - "Unexpected null predecessor in non VPlan-native path"); - CFG.VPBBsToFix.push_back(PredVPBB); - continue; - } - - assert(PredBB && "Predecessor basic-block not found building successor."); - auto *PredBBTerminator = PredBB->getTerminator(); - LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); - if (isa<UnreachableInst>(PredBBTerminator)) { - assert(PredVPSuccessors.size() == 1 && - "Predecessor ending w/o branch must have single successor."); - PredBBTerminator->eraseFromParent(); - BranchInst::Create(NewBB, PredBB); - } else { - assert(PredVPSuccessors.size() == 2 && - "Predecessor ending with branch must have two successors."); - unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; - assert(!PredBBTerminator->getSuccessor(idx) && - "Trying to reset an existing successor block."); - PredBBTerminator->setSuccessor(idx, NewBB); - } - } - return NewBB; -} - -void VPBasicBlock::execute(VPTransformState *State) { - bool Replica = State->Instance && - !(State->Instance->Part == 0 && State->Instance->Lane == 0); - VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; - VPBlockBase *SingleHPred = nullptr; - BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. - - // 1. Create an IR basic block, or reuse the last one if possible. - // The last IR basic block is reused, as an optimization, in three cases: - // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; - // B. when the current VPBB has a single (hierarchical) predecessor which - // is PrevVPBB and the latter has a single (hierarchical) successor; and - // C. when the current VPBB is an entry of a region replica - where PrevVPBB - // is the exit of this region from a previous instance, or the predecessor - // of this region. - if (PrevVPBB && /* A */ - !((SingleHPred = getSingleHierarchicalPredecessor()) && - SingleHPred->getExitBasicBlock() == PrevVPBB && - PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ - !(Replica && getPredecessors().empty())) { /* C */ - NewBB = createEmptyBasicBlock(State->CFG); - State->Builder.SetInsertPoint(NewBB); - // Temporarily terminate with unreachable until CFG is rewired. - UnreachableInst *Terminator = State->Builder.CreateUnreachable(); - State->Builder.SetInsertPoint(Terminator); - // Register NewBB in its loop. In innermost loops its the same for all BB's. - Loop *L = State->LI->getLoopFor(State->CFG.LastBB); - L->addBasicBlockToLoop(NewBB, *State->LI); - State->CFG.PrevBB = NewBB; - } - - // 2. Fill the IR basic block with IR instructions. - LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() - << " in BB:" << NewBB->getName() << '\n'); - - State->CFG.VPBB2IRBB[this] = NewBB; - State->CFG.PrevVPBB = this; - - for (VPRecipeBase &Recipe : Recipes) - Recipe.execute(*State); - - VPValue *CBV; - if (EnableVPlanNativePath && (CBV = getCondBit())) { - Value *IRCBV = CBV->getUnderlyingValue(); - assert(IRCBV && "Unexpected null underlying value for condition bit"); - - // Condition bit value in a VPBasicBlock is used as the branch selector. In - // the VPlan-native path case, since all branches are uniform we generate a - // branch instruction using the condition value from vector lane 0 and dummy - // successors. The successors are fixed later when the successor blocks are - // visited. - Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); - NewCond = State->Builder.CreateExtractElement(NewCond, - State->Builder.getInt32(0)); - - // Replace the temporary unreachable terminator with the new conditional - // branch. - auto *CurrentTerminator = NewBB->getTerminator(); - assert(isa<UnreachableInst>(CurrentTerminator) && - "Expected to replace unreachable terminator with conditional " - "branch."); - auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); - CondBr->setSuccessor(0, nullptr); - ReplaceInstWithInst(CurrentTerminator, CondBr); - } - - LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); -} - -void VPRegionBlock::execute(VPTransformState *State) { - ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); - - if (!isReplicator()) { - // Visit the VPBlocks connected to "this", starting from it. - for (VPBlockBase *Block : RPOT) { - if (EnableVPlanNativePath) { - // The inner loop vectorization path does not represent loop preheader - // and exit blocks as part of the VPlan. In the VPlan-native path, skip - // vectorizing loop preheader block. In future, we may replace this - // check with the check for loop preheader. - if (Block->getNumPredecessors() == 0) - continue; - - // Skip vectorizing loop exit block. In future, we may replace this - // check with the check for loop exit. - if (Block->getNumSuccessors() == 0) - continue; - } - - LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); - Block->execute(State); - } - return; - } - - assert(!State->Instance && "Replicating a Region with non-null instance."); - - // Enter replicating mode. - State->Instance = {0, 0}; - - for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { - State->Instance->Part = Part; - for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { - State->Instance->Lane = Lane; - // Visit the VPBlocks connected to \p this, starting from it. - for (VPBlockBase *Block : RPOT) { - LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); - Block->execute(State); - } - } - } - - // Exit replicating mode. - State->Instance.reset(); -} - -void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { - Parent = InsertPos->getParent(); - Parent->getRecipeList().insert(InsertPos->getIterator(), this); -} - -iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { - return getParent()->getRecipeList().erase(getIterator()); -} - -void VPInstruction::generateInstruction(VPTransformState &State, - unsigned Part) { - IRBuilder<> &Builder = State.Builder; - - if (Instruction::isBinaryOp(getOpcode())) { - Value *A = State.get(getOperand(0), Part); - Value *B = State.get(getOperand(1), Part); - Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); - State.set(this, V, Part); - return; - } - - switch (getOpcode()) { - case VPInstruction::Not: { - Value *A = State.get(getOperand(0), Part); - Value *V = Builder.CreateNot(A); - State.set(this, V, Part); - break; - } - case VPInstruction::ICmpULE: { - Value *IV = State.get(getOperand(0), Part); - Value *TC = State.get(getOperand(1), Part); - Value *V = Builder.CreateICmpULE(IV, TC); - State.set(this, V, Part); - break; - } - default: - llvm_unreachable("Unsupported opcode for instruction"); - } -} - -void VPInstruction::execute(VPTransformState &State) { - assert(!State.Instance && "VPInstruction executing an Instance"); - for (unsigned Part = 0; Part < State.UF; ++Part) - generateInstruction(State, Part); -} - -void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" << Indent << "\"EMIT "; - print(O); - O << "\\l\""; -} - -void VPInstruction::print(raw_ostream &O) const { - printAsOperand(O); - O << " = "; - - switch (getOpcode()) { - case VPInstruction::Not: - O << "not"; - break; - case VPInstruction::ICmpULE: - O << "icmp ule"; - break; - case VPInstruction::SLPLoad: - O << "combined load"; - break; - case VPInstruction::SLPStore: - O << "combined store"; - break; - default: - O << Instruction::getOpcodeName(getOpcode()); - } - - for (const VPValue *Operand : operands()) { - O << " "; - Operand->printAsOperand(O); - } -} - -/// Generate the code inside the body of the vectorized loop. Assumes a single -/// LoopVectorBody basic-block was created for this. Introduce additional -/// basic-blocks as needed, and fill them all. -void VPlan::execute(VPTransformState *State) { - // -1. Check if the backedge taken count is needed, and if so build it. - if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { - Value *TC = State->TripCount; - IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); - auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), - "trip.count.minus.1"); - Value2VPValue[TCMO] = BackedgeTakenCount; - } - - // 0. Set the reverse mapping from VPValues to Values for code generation. - for (auto &Entry : Value2VPValue) - State->VPValue2Value[Entry.second] = Entry.first; - - BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; - BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); - assert(VectorHeaderBB && "Loop preheader does not have a single successor."); - - // 1. Make room to generate basic-blocks inside loop body if needed. - BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( - VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); - Loop *L = State->LI->getLoopFor(VectorHeaderBB); - L->addBasicBlockToLoop(VectorLatchBB, *State->LI); - // Remove the edge between Header and Latch to allow other connections. - // Temporarily terminate with unreachable until CFG is rewired. - // Note: this asserts the generated code's assumption that - // getFirstInsertionPt() can be dereferenced into an Instruction. - VectorHeaderBB->getTerminator()->eraseFromParent(); - State->Builder.SetInsertPoint(VectorHeaderBB); - UnreachableInst *Terminator = State->Builder.CreateUnreachable(); - State->Builder.SetInsertPoint(Terminator); - - // 2. Generate code in loop body. - State->CFG.PrevVPBB = nullptr; - State->CFG.PrevBB = VectorHeaderBB; - State->CFG.LastBB = VectorLatchBB; - - for (VPBlockBase *Block : depth_first(Entry)) - Block->execute(State); - - // Setup branch terminator successors for VPBBs in VPBBsToFix based on - // VPBB's successors. - for (auto VPBB : State->CFG.VPBBsToFix) { - assert(EnableVPlanNativePath && - "Unexpected VPBBsToFix in non VPlan-native path"); - BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; - assert(BB && "Unexpected null basic block for VPBB"); - - unsigned Idx = 0; - auto *BBTerminator = BB->getTerminator(); - - for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { - VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); - BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); - ++Idx; - } - } - - // 3. Merge the temporary latch created with the last basic-block filled. - BasicBlock *LastBB = State->CFG.PrevBB; - // Connect LastBB to VectorLatchBB to facilitate their merge. - assert((EnableVPlanNativePath || - isa<UnreachableInst>(LastBB->getTerminator())) && - "Expected InnerLoop VPlan CFG to terminate with unreachable"); - assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && - "Expected VPlan CFG to terminate with branch in NativePath"); - LastBB->getTerminator()->eraseFromParent(); - BranchInst::Create(VectorLatchBB, LastBB); - - // Merge LastBB with Latch. - bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); - (void)Merged; - assert(Merged && "Could not merge last basic block with latch."); - VectorLatchBB = LastBB; - - // We do not attempt to preserve DT for outer loop vectorization currently. - if (!EnableVPlanNativePath) - updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); -} - -void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, - BasicBlock *LoopLatchBB) { - BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); - assert(LoopHeaderBB && "Loop preheader does not have a single successor."); - DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); - // The vector body may be more than a single basic-block by this point. - // Update the dominator tree information inside the vector body by propagating - // it from header to latch, expecting only triangular control-flow, if any. - BasicBlock *PostDomSucc = nullptr; - for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { - // Get the list of successors of this block. - std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); - assert(Succs.size() <= 2 && - "Basic block in vector loop has more than 2 successors."); - PostDomSucc = Succs[0]; - if (Succs.size() == 1) { - assert(PostDomSucc->getSinglePredecessor() && - "PostDom successor has more than one predecessor."); - DT->addNewBlock(PostDomSucc, BB); - continue; - } - BasicBlock *InterimSucc = Succs[1]; - if (PostDomSucc->getSingleSuccessor() == InterimSucc) { - PostDomSucc = Succs[1]; - InterimSucc = Succs[0]; - } - assert(InterimSucc->getSingleSuccessor() == PostDomSucc && - "One successor of a basic block does not lead to the other."); - assert(InterimSucc->getSinglePredecessor() && - "Interim successor has more than one predecessor."); - assert(PostDomSucc->hasNPredecessors(2) && - "PostDom successor has more than two predecessors."); - DT->addNewBlock(InterimSucc, BB); - DT->addNewBlock(PostDomSucc, BB); - } -} - -const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { - return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + - Twine(getOrCreateBID(Block)); -} - -const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { - const std::string &Name = Block->getName(); - if (!Name.empty()) - return Name; - return "VPB" + Twine(getOrCreateBID(Block)); -} - -void VPlanPrinter::dump() { - Depth = 1; - bumpIndent(0); - OS << "digraph VPlan {\n"; - OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; - if (!Plan.getName().empty()) - OS << "\\n" << DOT::EscapeString(Plan.getName()); - if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) { - OS << ", where:"; - if (Plan.BackedgeTakenCount) - OS << "\\n" - << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount"; - for (auto Entry : Plan.Value2VPValue) { - OS << "\\n" << *Entry.second; - OS << DOT::EscapeString(" := "); - Entry.first->printAsOperand(OS, false); - } - } - OS << "\"]\n"; - OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; - OS << "edge [fontname=Courier, fontsize=30]\n"; - OS << "compound=true\n"; - - for (VPBlockBase *Block : depth_first(Plan.getEntry())) - dumpBlock(Block); - - OS << "}\n"; -} - -void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { - if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) - dumpBasicBlock(BasicBlock); - else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) - dumpRegion(Region); - else - llvm_unreachable("Unsupported kind of VPBlock."); -} - -void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, - bool Hidden, const Twine &Label) { - // Due to "dot" we print an edge between two regions as an edge between the - // exit basic block and the entry basic of the respective regions. - const VPBlockBase *Tail = From->getExitBasicBlock(); - const VPBlockBase *Head = To->getEntryBasicBlock(); - OS << Indent << getUID(Tail) << " -> " << getUID(Head); - OS << " [ label=\"" << Label << '\"'; - if (Tail != From) - OS << " ltail=" << getUID(From); - if (Head != To) - OS << " lhead=" << getUID(To); - if (Hidden) - OS << "; splines=none"; - OS << "]\n"; -} - -void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { - auto &Successors = Block->getSuccessors(); - if (Successors.size() == 1) - drawEdge(Block, Successors.front(), false, ""); - else if (Successors.size() == 2) { - drawEdge(Block, Successors.front(), false, "T"); - drawEdge(Block, Successors.back(), false, "F"); - } else { - unsigned SuccessorNumber = 0; - for (auto *Successor : Successors) - drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); - } -} - -void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { - OS << Indent << getUID(BasicBlock) << " [label =\n"; - bumpIndent(1); - OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; - bumpIndent(1); - - // Dump the block predicate. - const VPValue *Pred = BasicBlock->getPredicate(); - if (Pred) { - OS << " +\n" << Indent << " \"BlockPredicate: "; - if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { - PredI->printAsOperand(OS); - OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) - << ")\\l\""; - } else - Pred->printAsOperand(OS); - } - - for (const VPRecipeBase &Recipe : *BasicBlock) - Recipe.print(OS, Indent); - - // Dump the condition bit. - const VPValue *CBV = BasicBlock->getCondBit(); - if (CBV) { - OS << " +\n" << Indent << " \"CondBit: "; - if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { - CBI->printAsOperand(OS); - OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; - } else { - CBV->printAsOperand(OS); - OS << "\""; - } - } - - bumpIndent(-2); - OS << "\n" << Indent << "]\n"; - dumpEdges(BasicBlock); -} - -void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { - OS << Indent << "subgraph " << getUID(Region) << " {\n"; - bumpIndent(1); - OS << Indent << "fontname=Courier\n" - << Indent << "label=\"" - << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") - << DOT::EscapeString(Region->getName()) << "\"\n"; - // Dump the blocks of the region. - assert(Region->getEntry() && "Region contains no inner blocks."); - for (const VPBlockBase *Block : depth_first(Region->getEntry())) - dumpBlock(Block); - bumpIndent(-1); - OS << Indent << "}\n"; - dumpEdges(Region); -} - -void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { - std::string IngredientString; - raw_string_ostream RSO(IngredientString); - if (auto *Inst = dyn_cast<Instruction>(V)) { - if (!Inst->getType()->isVoidTy()) { - Inst->printAsOperand(RSO, false); - RSO << " = "; - } - RSO << Inst->getOpcodeName() << " "; - unsigned E = Inst->getNumOperands(); - if (E > 0) { - Inst->getOperand(0)->printAsOperand(RSO, false); - for (unsigned I = 1; I < E; ++I) - Inst->getOperand(I)->printAsOperand(RSO << ", ", false); - } - } else // !Inst - V->printAsOperand(RSO, false); - RSO.flush(); - O << DOT::EscapeString(IngredientString); -} - -void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" << Indent << "\"WIDEN\\l\""; - for (auto &Instr : make_range(Begin, End)) - O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; -} - -void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, - const Twine &Indent) const { - O << " +\n" << Indent << "\"WIDEN-INDUCTION"; - if (Trunc) { - O << "\\l\""; - O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; - O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; - } else - O << " " << VPlanIngredient(IV) << "\\l\""; -} - -void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; -} - -void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" << Indent << "\"BLEND "; - Phi->printAsOperand(O, false); - O << " ="; - if (!User) { - // Not a User of any mask: not really blending, this is a - // single-predecessor phi. - O << " "; - Phi->getIncomingValue(0)->printAsOperand(O, false); - } else { - for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { - O << " "; - Phi->getIncomingValue(I)->printAsOperand(O, false); - O << "/"; - User->getOperand(I)->printAsOperand(O); - } - } - O << "\\l\""; -} - -void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" - << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") - << VPlanIngredient(Ingredient); - if (AlsoPack) - O << " (S->V)"; - O << "\\l\""; -} - -void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { - O << " +\n" - << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) - << "\\l\""; -} - -void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, - const Twine &Indent) const { - O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); - if (User) { - O << ", "; - User->getOperand(0)->printAsOperand(O); - } - O << "\\l\""; -} - -template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); - -void VPValue::replaceAllUsesWith(VPValue *New) { - for (VPUser *User : users()) - for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) - if (User->getOperand(I) == this) - User->setOperand(I, New); -} - -void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, - Old2NewTy &Old2New, - InterleavedAccessInfo &IAI) { - ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); - for (VPBlockBase *Base : RPOT) { - visitBlock(Base, Old2New, IAI); - } -} - -void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, - InterleavedAccessInfo &IAI) { - if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { - for (VPRecipeBase &VPI : *VPBB) { - assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); - auto *VPInst = cast<VPInstruction>(&VPI); - auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); - auto *IG = IAI.getInterleaveGroup(Inst); - if (!IG) - continue; - - auto NewIGIter = Old2New.find(IG); - if (NewIGIter == Old2New.end()) - Old2New[IG] = new InterleaveGroup<VPInstruction>( - IG->getFactor(), IG->isReverse(), IG->getAlignment()); - - if (Inst == IG->getInsertPos()) - Old2New[IG]->setInsertPos(VPInst); - - InterleaveGroupMap[VPInst] = Old2New[IG]; - InterleaveGroupMap[VPInst]->insertMember( - VPInst, IG->getIndex(Inst), - IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor()); - } - } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) - visitRegion(Region, Old2New, IAI); - else - llvm_unreachable("Unsupported kind of VPBlock."); -} - -VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, - InterleavedAccessInfo &IAI) { - Old2NewTy Old2New; - visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlan.h b/contrib/llvm/lib/Transforms/Vectorize/VPlan.h deleted file mode 100644 index 8a06412ad590..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlan.h +++ /dev/null @@ -1,1688 +0,0 @@ -//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file contains the declarations of the Vectorization Plan base classes: -/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual -/// VPBlockBase, together implementing a Hierarchical CFG; -/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be -/// treated as proper graphs for generic algorithms; -/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained -/// within VPBasicBlocks; -/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned -/// instruction; -/// 5. The VPlan class holding a candidate for vectorization; -/// 6. The VPlanPrinter class providing a way to print a plan in dot format; -/// These are documented in docs/VectorizationPlan.rst. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H - -#include "VPlanLoopInfo.h" -#include "VPlanValue.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Twine.h" -#include "llvm/ADT/ilist.h" -#include "llvm/ADT/ilist_node.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/IRBuilder.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <map> -#include <string> - -namespace llvm { - -class LoopVectorizationLegality; -class LoopVectorizationCostModel; -class BasicBlock; -class DominatorTree; -class InnerLoopVectorizer; -template <class T> class InterleaveGroup; -class LoopInfo; -class raw_ostream; -class Value; -class VPBasicBlock; -class VPRegionBlock; -class VPlan; -class VPlanSlp; - -/// A range of powers-of-2 vectorization factors with fixed start and -/// adjustable end. The range includes start and excludes end, e.g.,: -/// [1, 9) = {1, 2, 4, 8} -struct VFRange { - // A power of 2. - const unsigned Start; - - // Need not be a power of 2. If End <= Start range is empty. - unsigned End; -}; - -using VPlanPtr = std::unique_ptr<VPlan>; - -/// In what follows, the term "input IR" refers to code that is fed into the -/// vectorizer whereas the term "output IR" refers to code that is generated by -/// the vectorizer. - -/// VPIteration represents a single point in the iteration space of the output -/// (vectorized and/or unrolled) IR loop. -struct VPIteration { - /// in [0..UF) - unsigned Part; - - /// in [0..VF) - unsigned Lane; -}; - -/// This is a helper struct for maintaining vectorization state. It's used for -/// mapping values from the original loop to their corresponding values in -/// the new loop. Two mappings are maintained: one for vectorized values and -/// one for scalarized values. Vectorized values are represented with UF -/// vector values in the new loop, and scalarized values are represented with -/// UF x VF scalar values in the new loop. UF and VF are the unroll and -/// vectorization factors, respectively. -/// -/// Entries can be added to either map with setVectorValue and setScalarValue, -/// which assert that an entry was not already added before. If an entry is to -/// replace an existing one, call resetVectorValue and resetScalarValue. This is -/// currently needed to modify the mapped values during "fix-up" operations that -/// occur once the first phase of widening is complete. These operations include -/// type truncation and the second phase of recurrence widening. -/// -/// Entries from either map can be retrieved using the getVectorValue and -/// getScalarValue functions, which assert that the desired value exists. -struct VectorizerValueMap { - friend struct VPTransformState; - -private: - /// The unroll factor. Each entry in the vector map contains UF vector values. - unsigned UF; - - /// The vectorization factor. Each entry in the scalar map contains UF x VF - /// scalar values. - unsigned VF; - - /// The vector and scalar map storage. We use std::map and not DenseMap - /// because insertions to DenseMap invalidate its iterators. - using VectorParts = SmallVector<Value *, 2>; - using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; - std::map<Value *, VectorParts> VectorMapStorage; - std::map<Value *, ScalarParts> ScalarMapStorage; - -public: - /// Construct an empty map with the given unroll and vectorization factors. - VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} - - /// \return True if the map has any vector entry for \p Key. - bool hasAnyVectorValue(Value *Key) const { - return VectorMapStorage.count(Key); - } - - /// \return True if the map has a vector entry for \p Key and \p Part. - bool hasVectorValue(Value *Key, unsigned Part) const { - assert(Part < UF && "Queried Vector Part is too large."); - if (!hasAnyVectorValue(Key)) - return false; - const VectorParts &Entry = VectorMapStorage.find(Key)->second; - assert(Entry.size() == UF && "VectorParts has wrong dimensions."); - return Entry[Part] != nullptr; - } - - /// \return True if the map has any scalar entry for \p Key. - bool hasAnyScalarValue(Value *Key) const { - return ScalarMapStorage.count(Key); - } - - /// \return True if the map has a scalar entry for \p Key and \p Instance. - bool hasScalarValue(Value *Key, const VPIteration &Instance) const { - assert(Instance.Part < UF && "Queried Scalar Part is too large."); - assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); - if (!hasAnyScalarValue(Key)) - return false; - const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; - assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); - assert(Entry[Instance.Part].size() == VF && - "ScalarParts has wrong dimensions."); - return Entry[Instance.Part][Instance.Lane] != nullptr; - } - - /// Retrieve the existing vector value that corresponds to \p Key and - /// \p Part. - Value *getVectorValue(Value *Key, unsigned Part) { - assert(hasVectorValue(Key, Part) && "Getting non-existent value."); - return VectorMapStorage[Key][Part]; - } - - /// Retrieve the existing scalar value that corresponds to \p Key and - /// \p Instance. - Value *getScalarValue(Value *Key, const VPIteration &Instance) { - assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); - return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; - } - - /// Set a vector value associated with \p Key and \p Part. Assumes such a - /// value is not already set. If it is, use resetVectorValue() instead. - void setVectorValue(Value *Key, unsigned Part, Value *Vector) { - assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); - if (!VectorMapStorage.count(Key)) { - VectorParts Entry(UF); - VectorMapStorage[Key] = Entry; - } - VectorMapStorage[Key][Part] = Vector; - } - - /// Set a scalar value associated with \p Key and \p Instance. Assumes such a - /// value is not already set. - void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { - assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); - if (!ScalarMapStorage.count(Key)) { - ScalarParts Entry(UF); - // TODO: Consider storing uniform values only per-part, as they occupy - // lane 0 only, keeping the other VF-1 redundant entries null. - for (unsigned Part = 0; Part < UF; ++Part) - Entry[Part].resize(VF, nullptr); - ScalarMapStorage[Key] = Entry; - } - ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; - } - - /// Reset the vector value associated with \p Key for the given \p Part. - /// This function can be used to update values that have already been - /// vectorized. This is the case for "fix-up" operations including type - /// truncation and the second phase of recurrence vectorization. - void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { - assert(hasVectorValue(Key, Part) && "Vector value not set for part"); - VectorMapStorage[Key][Part] = Vector; - } - - /// Reset the scalar value associated with \p Key for \p Part and \p Lane. - /// This function can be used to update values that have already been - /// scalarized. This is the case for "fix-up" operations including scalar phi - /// nodes for scalarized and predicated instructions. - void resetScalarValue(Value *Key, const VPIteration &Instance, - Value *Scalar) { - assert(hasScalarValue(Key, Instance) && - "Scalar value not set for part and lane"); - ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; - } -}; - -/// This class is used to enable the VPlan to invoke a method of ILV. This is -/// needed until the method is refactored out of ILV and becomes reusable. -struct VPCallback { - virtual ~VPCallback() {} - virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; -}; - -/// VPTransformState holds information passed down when "executing" a VPlan, -/// needed for generating the output IR. -struct VPTransformState { - VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, - IRBuilder<> &Builder, VectorizerValueMap &ValueMap, - InnerLoopVectorizer *ILV, VPCallback &Callback) - : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), - ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} - - /// The chosen Vectorization and Unroll Factors of the loop being vectorized. - unsigned VF; - unsigned UF; - - /// Hold the indices to generate specific scalar instructions. Null indicates - /// that all instances are to be generated, using either scalar or vector - /// instructions. - Optional<VPIteration> Instance; - - struct DataState { - /// A type for vectorized values in the new loop. Each value from the - /// original loop, when vectorized, is represented by UF vector values in - /// the new unrolled loop, where UF is the unroll factor. - typedef SmallVector<Value *, 2> PerPartValuesTy; - - DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; - } Data; - - /// Get the generated Value for a given VPValue and a given Part. Note that - /// as some Defs are still created by ILV and managed in its ValueMap, this - /// method will delegate the call to ILV in such cases in order to provide - /// callers a consistent API. - /// \see set. - Value *get(VPValue *Def, unsigned Part) { - // If Values have been set for this Def return the one relevant for \p Part. - if (Data.PerPartOutput.count(Def)) - return Data.PerPartOutput[Def][Part]; - // Def is managed by ILV: bring the Values from ValueMap. - return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); - } - - /// Set the generated Value for a given VPValue and a given Part. - void set(VPValue *Def, Value *V, unsigned Part) { - if (!Data.PerPartOutput.count(Def)) { - DataState::PerPartValuesTy Entry(UF); - Data.PerPartOutput[Def] = Entry; - } - Data.PerPartOutput[Def][Part] = V; - } - - /// Hold state information used when constructing the CFG of the output IR, - /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. - struct CFGState { - /// The previous VPBasicBlock visited. Initially set to null. - VPBasicBlock *PrevVPBB = nullptr; - - /// The previous IR BasicBlock created or used. Initially set to the new - /// header BasicBlock. - BasicBlock *PrevBB = nullptr; - - /// The last IR BasicBlock in the output IR. Set to the new latch - /// BasicBlock, used for placing the newly created BasicBlocks. - BasicBlock *LastBB = nullptr; - - /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case - /// of replication, maps the BasicBlock of the last replica created. - SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; - - /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed - /// up at the end of vector code generation. - SmallVector<VPBasicBlock *, 8> VPBBsToFix; - - CFGState() = default; - } CFG; - - /// Hold a pointer to LoopInfo to register new basic blocks in the loop. - LoopInfo *LI; - - /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. - DominatorTree *DT; - - /// Hold a reference to the IRBuilder used to generate output IR code. - IRBuilder<> &Builder; - - /// Hold a reference to the Value state information used when generating the - /// Values of the output IR. - VectorizerValueMap &ValueMap; - - /// Hold a reference to a mapping between VPValues in VPlan and original - /// Values they correspond to. - VPValue2ValueTy VPValue2Value; - - /// Hold the trip count of the scalar loop. - Value *TripCount = nullptr; - - /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. - InnerLoopVectorizer *ILV; - - VPCallback &Callback; -}; - -/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. -/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. -class VPBlockBase { - friend class VPBlockUtils; - -private: - const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). - - /// An optional name for the block. - std::string Name; - - /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if - /// it is a topmost VPBlockBase. - VPRegionBlock *Parent = nullptr; - - /// List of predecessor blocks. - SmallVector<VPBlockBase *, 1> Predecessors; - - /// List of successor blocks. - SmallVector<VPBlockBase *, 1> Successors; - - /// Successor selector, null for zero or single successor blocks. - VPValue *CondBit = nullptr; - - /// Current block predicate - null if the block does not need a predicate. - VPValue *Predicate = nullptr; - - /// Add \p Successor as the last successor to this block. - void appendSuccessor(VPBlockBase *Successor) { - assert(Successor && "Cannot add nullptr successor!"); - Successors.push_back(Successor); - } - - /// Add \p Predecessor as the last predecessor to this block. - void appendPredecessor(VPBlockBase *Predecessor) { - assert(Predecessor && "Cannot add nullptr predecessor!"); - Predecessors.push_back(Predecessor); - } - - /// Remove \p Predecessor from the predecessors of this block. - void removePredecessor(VPBlockBase *Predecessor) { - auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); - assert(Pos && "Predecessor does not exist"); - Predecessors.erase(Pos); - } - - /// Remove \p Successor from the successors of this block. - void removeSuccessor(VPBlockBase *Successor) { - auto Pos = std::find(Successors.begin(), Successors.end(), Successor); - assert(Pos && "Successor does not exist"); - Successors.erase(Pos); - } - -protected: - VPBlockBase(const unsigned char SC, const std::string &N) - : SubclassID(SC), Name(N) {} - -public: - /// An enumeration for keeping track of the concrete subclass of VPBlockBase - /// that are actually instantiated. Values of this enumeration are kept in the - /// SubclassID field of the VPBlockBase objects. They are used for concrete - /// type identification. - using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; - - using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; - - virtual ~VPBlockBase() = default; - - const std::string &getName() const { return Name; } - - void setName(const Twine &newName) { Name = newName.str(); } - - /// \return an ID for the concrete type of this object. - /// This is used to implement the classof checks. This should not be used - /// for any other purpose, as the values may change as LLVM evolves. - unsigned getVPBlockID() const { return SubclassID; } - - VPRegionBlock *getParent() { return Parent; } - const VPRegionBlock *getParent() const { return Parent; } - - void setParent(VPRegionBlock *P) { Parent = P; } - - /// \return the VPBasicBlock that is the entry of this VPBlockBase, - /// recursively, if the latter is a VPRegionBlock. Otherwise, if this - /// VPBlockBase is a VPBasicBlock, it is returned. - const VPBasicBlock *getEntryBasicBlock() const; - VPBasicBlock *getEntryBasicBlock(); - - /// \return the VPBasicBlock that is the exit of this VPBlockBase, - /// recursively, if the latter is a VPRegionBlock. Otherwise, if this - /// VPBlockBase is a VPBasicBlock, it is returned. - const VPBasicBlock *getExitBasicBlock() const; - VPBasicBlock *getExitBasicBlock(); - - const VPBlocksTy &getSuccessors() const { return Successors; } - VPBlocksTy &getSuccessors() { return Successors; } - - const VPBlocksTy &getPredecessors() const { return Predecessors; } - VPBlocksTy &getPredecessors() { return Predecessors; } - - /// \return the successor of this VPBlockBase if it has a single successor. - /// Otherwise return a null pointer. - VPBlockBase *getSingleSuccessor() const { - return (Successors.size() == 1 ? *Successors.begin() : nullptr); - } - - /// \return the predecessor of this VPBlockBase if it has a single - /// predecessor. Otherwise return a null pointer. - VPBlockBase *getSinglePredecessor() const { - return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); - } - - size_t getNumSuccessors() const { return Successors.size(); } - size_t getNumPredecessors() const { return Predecessors.size(); } - - /// An Enclosing Block of a block B is any block containing B, including B - /// itself. \return the closest enclosing block starting from "this", which - /// has successors. \return the root enclosing block if all enclosing blocks - /// have no successors. - VPBlockBase *getEnclosingBlockWithSuccessors(); - - /// \return the closest enclosing block starting from "this", which has - /// predecessors. \return the root enclosing block if all enclosing blocks - /// have no predecessors. - VPBlockBase *getEnclosingBlockWithPredecessors(); - - /// \return the successors either attached directly to this VPBlockBase or, if - /// this VPBlockBase is the exit block of a VPRegionBlock and has no - /// successors of its own, search recursively for the first enclosing - /// VPRegionBlock that has successors and return them. If no such - /// VPRegionBlock exists, return the (empty) successors of the topmost - /// VPBlockBase reached. - const VPBlocksTy &getHierarchicalSuccessors() { - return getEnclosingBlockWithSuccessors()->getSuccessors(); - } - - /// \return the hierarchical successor of this VPBlockBase if it has a single - /// hierarchical successor. Otherwise return a null pointer. - VPBlockBase *getSingleHierarchicalSuccessor() { - return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); - } - - /// \return the predecessors either attached directly to this VPBlockBase or, - /// if this VPBlockBase is the entry block of a VPRegionBlock and has no - /// predecessors of its own, search recursively for the first enclosing - /// VPRegionBlock that has predecessors and return them. If no such - /// VPRegionBlock exists, return the (empty) predecessors of the topmost - /// VPBlockBase reached. - const VPBlocksTy &getHierarchicalPredecessors() { - return getEnclosingBlockWithPredecessors()->getPredecessors(); - } - - /// \return the hierarchical predecessor of this VPBlockBase if it has a - /// single hierarchical predecessor. Otherwise return a null pointer. - VPBlockBase *getSingleHierarchicalPredecessor() { - return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); - } - - /// \return the condition bit selecting the successor. - VPValue *getCondBit() { return CondBit; } - - const VPValue *getCondBit() const { return CondBit; } - - void setCondBit(VPValue *CV) { CondBit = CV; } - - VPValue *getPredicate() { return Predicate; } - - const VPValue *getPredicate() const { return Predicate; } - - void setPredicate(VPValue *Pred) { Predicate = Pred; } - - /// Set a given VPBlockBase \p Successor as the single successor of this - /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. - /// This VPBlockBase must have no successors. - void setOneSuccessor(VPBlockBase *Successor) { - assert(Successors.empty() && "Setting one successor when others exist."); - appendSuccessor(Successor); - } - - /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two - /// successors of this VPBlockBase. \p Condition is set as the successor - /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p - /// IfFalse. This VPBlockBase must have no successors. - void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, - VPValue *Condition) { - assert(Successors.empty() && "Setting two successors when others exist."); - assert(Condition && "Setting two successors without condition!"); - CondBit = Condition; - appendSuccessor(IfTrue); - appendSuccessor(IfFalse); - } - - /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. - /// This VPBlockBase must have no predecessors. This VPBlockBase is not added - /// as successor of any VPBasicBlock in \p NewPreds. - void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { - assert(Predecessors.empty() && "Block predecessors already set."); - for (auto *Pred : NewPreds) - appendPredecessor(Pred); - } - - /// Remove all the predecessor of this block. - void clearPredecessors() { Predecessors.clear(); } - - /// Remove all the successors of this block and set to null its condition bit - void clearSuccessors() { - Successors.clear(); - CondBit = nullptr; - } - - /// The method which generates the output IR that correspond to this - /// VPBlockBase, thereby "executing" the VPlan. - virtual void execute(struct VPTransformState *State) = 0; - - /// Delete all blocks reachable from a given VPBlockBase, inclusive. - static void deleteCFG(VPBlockBase *Entry); - - void printAsOperand(raw_ostream &OS, bool PrintType) const { - OS << getName(); - } - - void print(raw_ostream &OS) const { - // TODO: Only printing VPBB name for now since we only have dot printing - // support for VPInstructions/Recipes. - printAsOperand(OS, false); - } - - /// Return true if it is legal to hoist instructions into this block. - bool isLegalToHoistInto() { - // There are currently no constraints that prevent an instruction to be - // hoisted into a VPBlockBase. - return true; - } -}; - -/// VPRecipeBase is a base class modeling a sequence of one or more output IR -/// instructions. -class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { - friend VPBasicBlock; - -private: - const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). - - /// Each VPRecipe belongs to a single VPBasicBlock. - VPBasicBlock *Parent = nullptr; - -public: - /// An enumeration for keeping track of the concrete subclass of VPRecipeBase - /// that is actually instantiated. Values of this enumeration are kept in the - /// SubclassID field of the VPRecipeBase objects. They are used for concrete - /// type identification. - using VPRecipeTy = enum { - VPBlendSC, - VPBranchOnMaskSC, - VPInstructionSC, - VPInterleaveSC, - VPPredInstPHISC, - VPReplicateSC, - VPWidenIntOrFpInductionSC, - VPWidenMemoryInstructionSC, - VPWidenPHISC, - VPWidenSC, - }; - - VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} - virtual ~VPRecipeBase() = default; - - /// \return an ID for the concrete type of this object. - /// This is used to implement the classof checks. This should not be used - /// for any other purpose, as the values may change as LLVM evolves. - unsigned getVPRecipeID() const { return SubclassID; } - - /// \return the VPBasicBlock which this VPRecipe belongs to. - VPBasicBlock *getParent() { return Parent; } - const VPBasicBlock *getParent() const { return Parent; } - - /// The method which generates the output IR instructions that correspond to - /// this VPRecipe, thereby "executing" the VPlan. - virtual void execute(struct VPTransformState &State) = 0; - - /// Each recipe prints itself. - virtual void print(raw_ostream &O, const Twine &Indent) const = 0; - - /// Insert an unlinked recipe into a basic block immediately before - /// the specified recipe. - void insertBefore(VPRecipeBase *InsertPos); - - /// This method unlinks 'this' from the containing basic block and deletes it. - /// - /// \returns an iterator pointing to the element after the erased one - iplist<VPRecipeBase>::iterator eraseFromParent(); -}; - -/// This is a concrete Recipe that models a single VPlan-level instruction. -/// While as any Recipe it may generate a sequence of IR instructions when -/// executed, these instructions would always form a single-def expression as -/// the VPInstruction is also a single def-use vertex. -class VPInstruction : public VPUser, public VPRecipeBase { - friend class VPlanHCFGTransforms; - friend class VPlanSlp; - -public: - /// VPlan opcodes, extending LLVM IR with idiomatics instructions. - enum { - Not = Instruction::OtherOpsEnd + 1, - ICmpULE, - SLPLoad, - SLPStore, - }; - -private: - typedef unsigned char OpcodeTy; - OpcodeTy Opcode; - - /// Utility method serving execute(): generates a single instance of the - /// modeled instruction. - void generateInstruction(VPTransformState &State, unsigned Part); - -protected: - Instruction *getUnderlyingInstr() { - return cast_or_null<Instruction>(getUnderlyingValue()); - } - - void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } - -public: - VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) - : VPUser(VPValue::VPInstructionSC, Operands), - VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} - - VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) - : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPValue *V) { - return V->getVPValueID() == VPValue::VPInstructionSC; - } - - VPInstruction *clone() const { - SmallVector<VPValue *, 2> Operands(operands()); - return new VPInstruction(Opcode, Operands); - } - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *R) { - return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; - } - - unsigned getOpcode() const { return Opcode; } - - /// Generate the instruction. - /// TODO: We currently execute only per-part unless a specific instance is - /// provided. - void execute(VPTransformState &State) override; - - /// Print the Recipe. - void print(raw_ostream &O, const Twine &Indent) const override; - - /// Print the VPInstruction. - void print(raw_ostream &O) const; - - /// Return true if this instruction may modify memory. - bool mayWriteToMemory() const { - // TODO: we can use attributes of the called function to rule out memory - // modifications. - return Opcode == Instruction::Store || Opcode == Instruction::Call || - Opcode == Instruction::Invoke || Opcode == SLPStore; - } -}; - -/// VPWidenRecipe is a recipe for producing a copy of vector type for each -/// Instruction in its ingredients independently, in order. This recipe covers -/// most of the traditional vectorization cases where each ingredient transforms -/// into a vectorized version of itself. -class VPWidenRecipe : public VPRecipeBase { -private: - /// Hold the ingredients by pointing to their original BasicBlock location. - BasicBlock::iterator Begin; - BasicBlock::iterator End; - -public: - VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { - End = I->getIterator(); - Begin = End++; - } - - ~VPWidenRecipe() override = default; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; - } - - /// Produce widened copies of all Ingredients. - void execute(VPTransformState &State) override; - - /// Augment the recipe to include Instr, if it lies at its End. - bool appendInstruction(Instruction *Instr) { - if (End != Instr->getIterator()) - return false; - End++; - return true; - } - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// A recipe for handling phi nodes of integer and floating-point inductions, -/// producing their vector and scalar values. -class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { -private: - PHINode *IV; - TruncInst *Trunc; - -public: - VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) - : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} - ~VPWidenIntOrFpInductionRecipe() override = default; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; - } - - /// Generate the vectorized and scalarized versions of the phi node as - /// needed by their users. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// A recipe for handling all phi nodes except for integer and FP inductions. -class VPWidenPHIRecipe : public VPRecipeBase { -private: - PHINode *Phi; - -public: - VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} - ~VPWidenPHIRecipe() override = default; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; - } - - /// Generate the phi/select nodes. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// A recipe for vectorizing a phi-node as a sequence of mask-based select -/// instructions. -class VPBlendRecipe : public VPRecipeBase { -private: - PHINode *Phi; - - /// The blend operation is a User of a mask, if not null. - std::unique_ptr<VPUser> User; - -public: - VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) - : VPRecipeBase(VPBlendSC), Phi(Phi) { - assert((Phi->getNumIncomingValues() == 1 || - Phi->getNumIncomingValues() == Masks.size()) && - "Expected the same number of incoming values and masks"); - if (!Masks.empty()) - User.reset(new VPUser(Masks)); - } - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; - } - - /// Generate the phi/select nodes. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// VPInterleaveRecipe is a recipe for transforming an interleave group of load -/// or stores into one wide load/store and shuffles. -class VPInterleaveRecipe : public VPRecipeBase { -private: - const InterleaveGroup<Instruction> *IG; - std::unique_ptr<VPUser> User; - -public: - VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask) - : VPRecipeBase(VPInterleaveSC), IG(IG) { - if (Mask) // Create a VPInstruction to register as a user of the mask. - User.reset(new VPUser({Mask})); - } - ~VPInterleaveRecipe() override = default; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; - } - - /// Generate the wide load or store, and shuffles. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; - - const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } -}; - -/// VPReplicateRecipe replicates a given instruction producing multiple scalar -/// copies of the original scalar type, one per lane, instead of producing a -/// single copy of widened type for all lanes. If the instruction is known to be -/// uniform only one copy, per lane zero, will be generated. -class VPReplicateRecipe : public VPRecipeBase { -private: - /// The instruction being replicated. - Instruction *Ingredient; - - /// Indicator if only a single replica per lane is needed. - bool IsUniform; - - /// Indicator if the replicas are also predicated. - bool IsPredicated; - - /// Indicator if the scalar values should also be packed into a vector. - bool AlsoPack; - -public: - VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) - : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), - IsPredicated(IsPredicated) { - // Retain the previous behavior of predicateInstructions(), where an - // insert-element of a predicated instruction got hoisted into the - // predicated basic block iff it was its only user. This is achieved by - // having predicated instructions also pack their values into a vector by - // default unless they have a replicated user which uses their scalar value. - AlsoPack = IsPredicated && !I->use_empty(); - } - - ~VPReplicateRecipe() override = default; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; - } - - /// Generate replicas of the desired Ingredient. Replicas will be generated - /// for all parts and lanes unless a specific part and lane are specified in - /// the \p State. - void execute(VPTransformState &State) override; - - void setAlsoPack(bool Pack) { AlsoPack = Pack; } - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// A recipe for generating conditional branches on the bits of a mask. -class VPBranchOnMaskRecipe : public VPRecipeBase { -private: - std::unique_ptr<VPUser> User; - -public: - VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { - if (BlockInMask) // nullptr means all-one mask. - User.reset(new VPUser({BlockInMask})); - } - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; - } - - /// Generate the extraction of the appropriate bit from the block mask and the - /// conditional branch. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override { - O << " +\n" << Indent << "\"BRANCH-ON-MASK "; - if (User) - O << *User->getOperand(0); - else - O << " All-One"; - O << "\\l\""; - } -}; - -/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when -/// control converges back from a Branch-on-Mask. The phi nodes are needed in -/// order to merge values that are set under such a branch and feed their uses. -/// The phi nodes can be scalar or vector depending on the users of the value. -/// This recipe works in concert with VPBranchOnMaskRecipe. -class VPPredInstPHIRecipe : public VPRecipeBase { -private: - Instruction *PredInst; - -public: - /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi - /// nodes after merging back from a Branch-on-Mask. - VPPredInstPHIRecipe(Instruction *PredInst) - : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} - ~VPPredInstPHIRecipe() override = default; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; - } - - /// Generates phi nodes for live-outs as needed to retain SSA form. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// A Recipe for widening load/store operations. -/// TODO: We currently execute only per-part unless a specific instance is -/// provided. -class VPWidenMemoryInstructionRecipe : public VPRecipeBase { -private: - Instruction &Instr; - std::unique_ptr<VPUser> User; - -public: - VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) - : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { - if (Mask) // Create a VPInstruction to register as a user of the mask. - User.reset(new VPUser({Mask})); - } - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPRecipeBase *V) { - return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; - } - - /// Generate the wide load/store. - void execute(VPTransformState &State) override; - - /// Print the recipe. - void print(raw_ostream &O, const Twine &Indent) const override; -}; - -/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It -/// holds a sequence of zero or more VPRecipe's each representing a sequence of -/// output IR instructions. -class VPBasicBlock : public VPBlockBase { -public: - using RecipeListTy = iplist<VPRecipeBase>; - -private: - /// The VPRecipes held in the order of output instructions to generate. - RecipeListTy Recipes; - -public: - VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) - : VPBlockBase(VPBasicBlockSC, Name.str()) { - if (Recipe) - appendRecipe(Recipe); - } - - ~VPBasicBlock() override { Recipes.clear(); } - - /// Instruction iterators... - using iterator = RecipeListTy::iterator; - using const_iterator = RecipeListTy::const_iterator; - using reverse_iterator = RecipeListTy::reverse_iterator; - using const_reverse_iterator = RecipeListTy::const_reverse_iterator; - - //===--------------------------------------------------------------------===// - /// Recipe iterator methods - /// - inline iterator begin() { return Recipes.begin(); } - inline const_iterator begin() const { return Recipes.begin(); } - inline iterator end() { return Recipes.end(); } - inline const_iterator end() const { return Recipes.end(); } - - inline reverse_iterator rbegin() { return Recipes.rbegin(); } - inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } - inline reverse_iterator rend() { return Recipes.rend(); } - inline const_reverse_iterator rend() const { return Recipes.rend(); } - - inline size_t size() const { return Recipes.size(); } - inline bool empty() const { return Recipes.empty(); } - inline const VPRecipeBase &front() const { return Recipes.front(); } - inline VPRecipeBase &front() { return Recipes.front(); } - inline const VPRecipeBase &back() const { return Recipes.back(); } - inline VPRecipeBase &back() { return Recipes.back(); } - - /// Returns a reference to the list of recipes. - RecipeListTy &getRecipeList() { return Recipes; } - - /// Returns a pointer to a member of the recipe list. - static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { - return &VPBasicBlock::Recipes; - } - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPBlockBase *V) { - return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; - } - - void insert(VPRecipeBase *Recipe, iterator InsertPt) { - assert(Recipe && "No recipe to append."); - assert(!Recipe->Parent && "Recipe already in VPlan"); - Recipe->Parent = this; - Recipes.insert(InsertPt, Recipe); - } - - /// Augment the existing recipes of a VPBasicBlock with an additional - /// \p Recipe as the last recipe. - void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } - - /// The method which generates the output IR instructions that correspond to - /// this VPBasicBlock, thereby "executing" the VPlan. - void execute(struct VPTransformState *State) override; - -private: - /// Create an IR BasicBlock to hold the output instructions generated by this - /// VPBasicBlock, and return it. Update the CFGState accordingly. - BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); -}; - -/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks -/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. -/// A VPRegionBlock may indicate that its contents are to be replicated several -/// times. This is designed to support predicated scalarization, in which a -/// scalar if-then code structure needs to be generated VF * UF times. Having -/// this replication indicator helps to keep a single model for multiple -/// candidate VF's. The actual replication takes place only once the desired VF -/// and UF have been determined. -class VPRegionBlock : public VPBlockBase { -private: - /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. - VPBlockBase *Entry; - - /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. - VPBlockBase *Exit; - - /// An indicator whether this region is to generate multiple replicated - /// instances of output IR corresponding to its VPBlockBases. - bool IsReplicator; - -public: - VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, - const std::string &Name = "", bool IsReplicator = false) - : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), - IsReplicator(IsReplicator) { - assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); - assert(Exit->getSuccessors().empty() && "Exit block has successors."); - Entry->setParent(this); - Exit->setParent(this); - } - VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) - : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), - IsReplicator(IsReplicator) {} - - ~VPRegionBlock() override { - if (Entry) - deleteCFG(Entry); - } - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPBlockBase *V) { - return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; - } - - const VPBlockBase *getEntry() const { return Entry; } - VPBlockBase *getEntry() { return Entry; } - - /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p - /// EntryBlock must have no predecessors. - void setEntry(VPBlockBase *EntryBlock) { - assert(EntryBlock->getPredecessors().empty() && - "Entry block cannot have predecessors."); - Entry = EntryBlock; - EntryBlock->setParent(this); - } - - // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a - // specific interface of llvm::Function, instead of using - // GraphTraints::getEntryNode. We should add a new template parameter to - // DominatorTreeBase representing the Graph type. - VPBlockBase &front() const { return *Entry; } - - const VPBlockBase *getExit() const { return Exit; } - VPBlockBase *getExit() { return Exit; } - - /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p - /// ExitBlock must have no successors. - void setExit(VPBlockBase *ExitBlock) { - assert(ExitBlock->getSuccessors().empty() && - "Exit block cannot have successors."); - Exit = ExitBlock; - ExitBlock->setParent(this); - } - - /// An indicator whether this region is to generate multiple replicated - /// instances of output IR corresponding to its VPBlockBases. - bool isReplicator() const { return IsReplicator; } - - /// The method which generates the output IR instructions that correspond to - /// this VPRegionBlock, thereby "executing" the VPlan. - void execute(struct VPTransformState *State) override; -}; - -/// VPlan models a candidate for vectorization, encoding various decisions take -/// to produce efficient output IR, including which branches, basic-blocks and -/// output IR instructions to generate, and their cost. VPlan holds a -/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry -/// VPBlock. -class VPlan { - friend class VPlanPrinter; - -private: - /// Hold the single entry to the Hierarchical CFG of the VPlan. - VPBlockBase *Entry; - - /// Holds the VFs applicable to this VPlan. - SmallSet<unsigned, 2> VFs; - - /// Holds the name of the VPlan, for printing. - std::string Name; - - /// Holds all the external definitions created for this VPlan. - // TODO: Introduce a specific representation for external definitions in - // VPlan. External definitions must be immutable and hold a pointer to its - // underlying IR that will be used to implement its structural comparison - // (operators '==' and '<'). - SmallPtrSet<VPValue *, 16> VPExternalDefs; - - /// Represents the backedge taken count of the original loop, for folding - /// the tail. - VPValue *BackedgeTakenCount = nullptr; - - /// Holds a mapping between Values and their corresponding VPValue inside - /// VPlan. - Value2VPValueTy Value2VPValue; - - /// Holds the VPLoopInfo analysis for this VPlan. - VPLoopInfo VPLInfo; - - /// Holds the condition bit values built during VPInstruction to VPRecipe transformation. - SmallVector<VPValue *, 4> VPCBVs; - -public: - VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} - - ~VPlan() { - if (Entry) - VPBlockBase::deleteCFG(Entry); - for (auto &MapEntry : Value2VPValue) - if (MapEntry.second != BackedgeTakenCount) - delete MapEntry.second; - if (BackedgeTakenCount) - delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not. - for (VPValue *Def : VPExternalDefs) - delete Def; - for (VPValue *CBV : VPCBVs) - delete CBV; - } - - /// Generate the IR code for this VPlan. - void execute(struct VPTransformState *State); - - VPBlockBase *getEntry() { return Entry; } - const VPBlockBase *getEntry() const { return Entry; } - - VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } - - /// The backedge taken count of the original loop. - VPValue *getOrCreateBackedgeTakenCount() { - if (!BackedgeTakenCount) - BackedgeTakenCount = new VPValue(); - return BackedgeTakenCount; - } - - void addVF(unsigned VF) { VFs.insert(VF); } - - bool hasVF(unsigned VF) { return VFs.count(VF); } - - const std::string &getName() const { return Name; } - - void setName(const Twine &newName) { Name = newName.str(); } - - /// Add \p VPVal to the pool of external definitions if it's not already - /// in the pool. - void addExternalDef(VPValue *VPVal) { - VPExternalDefs.insert(VPVal); - } - - /// Add \p CBV to the vector of condition bit values. - void addCBV(VPValue *CBV) { - VPCBVs.push_back(CBV); - } - - void addVPValue(Value *V) { - assert(V && "Trying to add a null Value to VPlan"); - assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); - Value2VPValue[V] = new VPValue(); - } - - VPValue *getVPValue(Value *V) { - assert(V && "Trying to get the VPValue of a null Value"); - assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); - return Value2VPValue[V]; - } - - /// Return the VPLoopInfo analysis for this VPlan. - VPLoopInfo &getVPLoopInfo() { return VPLInfo; } - const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } - -private: - /// Add to the given dominator tree the header block and every new basic block - /// that was created between it and the latch block, inclusive. - static void updateDominatorTree(DominatorTree *DT, - BasicBlock *LoopPreHeaderBB, - BasicBlock *LoopLatchBB); -}; - -/// VPlanPrinter prints a given VPlan to a given output stream. The printing is -/// indented and follows the dot format. -class VPlanPrinter { - friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); - friend inline raw_ostream &operator<<(raw_ostream &OS, - const struct VPlanIngredient &I); - -private: - raw_ostream &OS; - VPlan &Plan; - unsigned Depth; - unsigned TabWidth = 2; - std::string Indent; - unsigned BID = 0; - SmallDenseMap<const VPBlockBase *, unsigned> BlockID; - - VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} - - /// Handle indentation. - void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } - - /// Print a given \p Block of the Plan. - void dumpBlock(const VPBlockBase *Block); - - /// Print the information related to the CFG edges going out of a given - /// \p Block, followed by printing the successor blocks themselves. - void dumpEdges(const VPBlockBase *Block); - - /// Print a given \p BasicBlock, including its VPRecipes, followed by printing - /// its successor blocks. - void dumpBasicBlock(const VPBasicBlock *BasicBlock); - - /// Print a given \p Region of the Plan. - void dumpRegion(const VPRegionBlock *Region); - - unsigned getOrCreateBID(const VPBlockBase *Block) { - return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; - } - - const Twine getOrCreateName(const VPBlockBase *Block); - - const Twine getUID(const VPBlockBase *Block); - - /// Print the information related to a CFG edge between two VPBlockBases. - void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, - const Twine &Label); - - void dump(); - - static void printAsIngredient(raw_ostream &O, Value *V); -}; - -struct VPlanIngredient { - Value *V; - - VPlanIngredient(Value *V) : V(V) {} -}; - -inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { - VPlanPrinter::printAsIngredient(OS, I.V); - return OS; -} - -inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { - VPlanPrinter Printer(OS, Plan); - Printer.dump(); - return OS; -} - -//===----------------------------------------------------------------------===// -// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // -//===----------------------------------------------------------------------===// - -// The following set of template specializations implement GraphTraits to treat -// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note -// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the -// VPBlockBase is a VPRegionBlock, this specialization provides access to its -// successors/predecessors but not to the blocks inside the region. - -template <> struct GraphTraits<VPBlockBase *> { - using NodeRef = VPBlockBase *; - using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; - - static NodeRef getEntryNode(NodeRef N) { return N; } - - static inline ChildIteratorType child_begin(NodeRef N) { - return N->getSuccessors().begin(); - } - - static inline ChildIteratorType child_end(NodeRef N) { - return N->getSuccessors().end(); - } -}; - -template <> struct GraphTraits<const VPBlockBase *> { - using NodeRef = const VPBlockBase *; - using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; - - static NodeRef getEntryNode(NodeRef N) { return N; } - - static inline ChildIteratorType child_begin(NodeRef N) { - return N->getSuccessors().begin(); - } - - static inline ChildIteratorType child_end(NodeRef N) { - return N->getSuccessors().end(); - } -}; - -// Inverse order specialization for VPBasicBlocks. Predecessors are used instead -// of successors for the inverse traversal. -template <> struct GraphTraits<Inverse<VPBlockBase *>> { - using NodeRef = VPBlockBase *; - using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; - - static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } - - static inline ChildIteratorType child_begin(NodeRef N) { - return N->getPredecessors().begin(); - } - - static inline ChildIteratorType child_end(NodeRef N) { - return N->getPredecessors().end(); - } -}; - -// The following set of template specializations implement GraphTraits to -// treat VPRegionBlock as a graph and recurse inside its nodes. It's important -// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases -// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so -// there won't be automatic recursion into other VPBlockBases that turn to be -// VPRegionBlocks. - -template <> -struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { - using GraphRef = VPRegionBlock *; - using nodes_iterator = df_iterator<NodeRef>; - - static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } - - static nodes_iterator nodes_begin(GraphRef N) { - return nodes_iterator::begin(N->getEntry()); - } - - static nodes_iterator nodes_end(GraphRef N) { - // df_iterator::end() returns an empty iterator so the node used doesn't - // matter. - return nodes_iterator::end(N); - } -}; - -template <> -struct GraphTraits<const VPRegionBlock *> - : public GraphTraits<const VPBlockBase *> { - using GraphRef = const VPRegionBlock *; - using nodes_iterator = df_iterator<NodeRef>; - - static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } - - static nodes_iterator nodes_begin(GraphRef N) { - return nodes_iterator::begin(N->getEntry()); - } - - static nodes_iterator nodes_end(GraphRef N) { - // df_iterator::end() returns an empty iterator so the node used doesn't - // matter. - return nodes_iterator::end(N); - } -}; - -template <> -struct GraphTraits<Inverse<VPRegionBlock *>> - : public GraphTraits<Inverse<VPBlockBase *>> { - using GraphRef = VPRegionBlock *; - using nodes_iterator = df_iterator<NodeRef>; - - static NodeRef getEntryNode(Inverse<GraphRef> N) { - return N.Graph->getExit(); - } - - static nodes_iterator nodes_begin(GraphRef N) { - return nodes_iterator::begin(N->getExit()); - } - - static nodes_iterator nodes_end(GraphRef N) { - // df_iterator::end() returns an empty iterator so the node used doesn't - // matter. - return nodes_iterator::end(N); - } -}; - -//===----------------------------------------------------------------------===// -// VPlan Utilities -//===----------------------------------------------------------------------===// - -/// Class that provides utilities for VPBlockBases in VPlan. -class VPBlockUtils { -public: - VPBlockUtils() = delete; - - /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p - /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p - /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr - /// has more than one successor, its conditional bit is propagated to \p - /// NewBlock. \p NewBlock must have neither successors nor predecessors. - static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { - assert(NewBlock->getSuccessors().empty() && - "Can't insert new block with successors."); - // TODO: move successors from BlockPtr to NewBlock when this functionality - // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr - // already has successors. - BlockPtr->setOneSuccessor(NewBlock); - NewBlock->setPredecessors({BlockPtr}); - NewBlock->setParent(BlockPtr->getParent()); - } - - /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p - /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p - /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr - /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor - /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse - /// must have neither successors nor predecessors. - static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, - VPValue *Condition, VPBlockBase *BlockPtr) { - assert(IfTrue->getSuccessors().empty() && - "Can't insert IfTrue with successors."); - assert(IfFalse->getSuccessors().empty() && - "Can't insert IfFalse with successors."); - BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); - IfTrue->setPredecessors({BlockPtr}); - IfFalse->setPredecessors({BlockPtr}); - IfTrue->setParent(BlockPtr->getParent()); - IfFalse->setParent(BlockPtr->getParent()); - } - - /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to - /// the successors of \p From and \p From to the predecessors of \p To. Both - /// VPBlockBases must have the same parent, which can be null. Both - /// VPBlockBases can be already connected to other VPBlockBases. - static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { - assert((From->getParent() == To->getParent()) && - "Can't connect two block with different parents"); - assert(From->getNumSuccessors() < 2 && - "Blocks can't have more than two successors."); - From->appendSuccessor(To); - To->appendPredecessor(From); - } - - /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To - /// from the successors of \p From and \p From from the predecessors of \p To. - static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { - assert(To && "Successor to disconnect is null."); - From->removeSuccessor(To); - To->removePredecessor(From); - } - - /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. - static bool isBackEdge(const VPBlockBase *FromBlock, - const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { - assert(FromBlock->getParent() == ToBlock->getParent() && - FromBlock->getParent() && "Must be in same region"); - const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); - const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); - if (!FromLoop || !ToLoop || FromLoop != ToLoop) - return false; - - // A back-edge is a branch from the loop latch to its header. - return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); - } - - /// Returns true if \p Block is a loop latch - static bool blockIsLoopLatch(const VPBlockBase *Block, - const VPLoopInfo *VPLInfo) { - if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) - return ParentVPL->isLoopLatch(Block); - - return false; - } - - /// Count and return the number of succesors of \p PredBlock excluding any - /// backedges. - static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, - VPLoopInfo *VPLI) { - unsigned Count = 0; - for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { - if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) - Count++; - } - return Count; - } -}; - -class VPInterleavedAccessInfo { -private: - DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> - InterleaveGroupMap; - - /// Type for mapping of instruction based interleave groups to VPInstruction - /// interleave groups - using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, - InterleaveGroup<VPInstruction> *>; - - /// Recursively \p Region and populate VPlan based interleave groups based on - /// \p IAI. - void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, - InterleavedAccessInfo &IAI); - /// Recursively traverse \p Block and populate VPlan based interleave groups - /// based on \p IAI. - void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, - InterleavedAccessInfo &IAI); - -public: - VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); - - ~VPInterleavedAccessInfo() { - SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; - // Avoid releasing a pointer twice. - for (auto &I : InterleaveGroupMap) - DelSet.insert(I.second); - for (auto *Ptr : DelSet) - delete Ptr; - } - - /// Get the interleave group that \p Instr belongs to. - /// - /// \returns nullptr if doesn't have such group. - InterleaveGroup<VPInstruction> * - getInterleaveGroup(VPInstruction *Instr) const { - if (InterleaveGroupMap.count(Instr)) - return InterleaveGroupMap.find(Instr)->second; - return nullptr; - } -}; - -/// Class that maps (parts of) an existing VPlan to trees of combined -/// VPInstructions. -class VPlanSlp { -private: - enum class OpMode { Failed, Load, Opcode }; - - /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as - /// DenseMap keys. - struct BundleDenseMapInfo { - static SmallVector<VPValue *, 4> getEmptyKey() { - return {reinterpret_cast<VPValue *>(-1)}; - } - - static SmallVector<VPValue *, 4> getTombstoneKey() { - return {reinterpret_cast<VPValue *>(-2)}; - } - - static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { - return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); - } - - static bool isEqual(const SmallVector<VPValue *, 4> &LHS, - const SmallVector<VPValue *, 4> &RHS) { - return LHS == RHS; - } - }; - - /// Mapping of values in the original VPlan to a combined VPInstruction. - DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> - BundleToCombined; - - VPInterleavedAccessInfo &IAI; - - /// Basic block to operate on. For now, only instructions in a single BB are - /// considered. - const VPBasicBlock &BB; - - /// Indicates whether we managed to combine all visited instructions or not. - bool CompletelySLP = true; - - /// Width of the widest combined bundle in bits. - unsigned WidestBundleBits = 0; - - using MultiNodeOpTy = - typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; - - // Input operand bundles for the current multi node. Each multi node operand - // bundle contains values not matching the multi node's opcode. They will - // be reordered in reorderMultiNodeOps, once we completed building a - // multi node. - SmallVector<MultiNodeOpTy, 4> MultiNodeOps; - - /// Indicates whether we are building a multi node currently. - bool MultiNodeActive = false; - - /// Check if we can vectorize Operands together. - bool areVectorizable(ArrayRef<VPValue *> Operands) const; - - /// Add combined instruction \p New for the bundle \p Operands. - void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); - - /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. - VPInstruction *markFailed(); - - /// Reorder operands in the multi node to maximize sequential memory access - /// and commutative operations. - SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); - - /// Choose the best candidate to use for the lane after \p Last. The set of - /// candidates to choose from are values with an opcode matching \p Last's - /// or loads consecutive to \p Last. - std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, - SmallPtrSetImpl<VPValue *> &Candidates, - VPInterleavedAccessInfo &IAI); - - /// Print bundle \p Values to dbgs(). - void dumpBundle(ArrayRef<VPValue *> Values); - -public: - VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} - - ~VPlanSlp() { - for (auto &KV : BundleToCombined) - delete KV.second; - } - - /// Tries to build an SLP tree rooted at \p Operands and returns a - /// VPInstruction combining \p Operands, if they can be combined. - VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); - - /// Return the width of the widest combined bundle in bits. - unsigned getWidestBundleBits() const { return WidestBundleBits; } - - /// Return true if all visited instruction can be combined. - bool isCompletelySLP() const { return CompletelySLP; } -}; -} // end namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h deleted file mode 100644 index 19f5d2c00c60..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanDominatorTree.h +++ /dev/null @@ -1,40 +0,0 @@ -//===-- VPlanDominatorTree.h ------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file implements dominator tree analysis for a single level of a VPlan's -/// H-CFG. -/// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H - -#include "VPlan.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/IR/Dominators.h" - -namespace llvm { - -/// Template specialization of the standard LLVM dominator tree utility for -/// VPBlockBases. -using VPDominatorTree = DomTreeBase<VPBlockBase>; - -using VPDomTreeNode = DomTreeNodeBase<VPBlockBase>; - -/// Template specializations of GraphTraits for VPDomTreeNode. -template <> -struct GraphTraits<VPDomTreeNode *> - : public DomTreeGraphTraitsBase<VPDomTreeNode, VPDomTreeNode::iterator> {}; - -template <> -struct GraphTraits<const VPDomTreeNode *> - : public DomTreeGraphTraitsBase<const VPDomTreeNode, - VPDomTreeNode::const_iterator> {}; -} // namespace llvm -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLANDOMINATORTREE_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp deleted file mode 100644 index df96f67288f1..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp +++ /dev/null @@ -1,354 +0,0 @@ -//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file implements the construction of a VPlan-based Hierarchical CFG -/// (H-CFG) for an incoming IR. This construction comprises the following -/// components and steps: -// -/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that -/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top -/// Region) is created to enclose and serve as parent of all the VPBasicBlocks -/// in the plain CFG. -/// NOTE: At this point, there is a direct correspondence between all the -/// VPBasicBlocks created for the initial plain CFG and the incoming -/// BasicBlocks. However, this might change in the future. -/// -//===----------------------------------------------------------------------===// - -#include "VPlanHCFGBuilder.h" -#include "LoopVectorizationPlanner.h" -#include "llvm/Analysis/LoopIterator.h" - -#define DEBUG_TYPE "loop-vectorize" - -using namespace llvm; - -namespace { -// Class that is used to build the plain CFG for the incoming IR. -class PlainCFGBuilder { -private: - // The outermost loop of the input loop nest considered for vectorization. - Loop *TheLoop; - - // Loop Info analysis. - LoopInfo *LI; - - // Vectorization plan that we are working on. - VPlan &Plan; - - // Output Top Region. - VPRegionBlock *TopRegion = nullptr; - - // Builder of the VPlan instruction-level representation. - VPBuilder VPIRBuilder; - - // NOTE: The following maps are intentionally destroyed after the plain CFG - // construction because subsequent VPlan-to-VPlan transformation may - // invalidate them. - // Map incoming BasicBlocks to their newly-created VPBasicBlocks. - DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; - // Map incoming Value definitions to their newly-created VPValues. - DenseMap<Value *, VPValue *> IRDef2VPValue; - - // Hold phi node's that need to be fixed once the plain CFG has been built. - SmallVector<PHINode *, 8> PhisToFix; - - // Utility functions. - void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); - void fixPhiNodes(); - VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); -#ifndef NDEBUG - bool isExternalDef(Value *Val); -#endif - VPValue *getOrCreateVPOperand(Value *IRVal); - void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); - -public: - PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) - : TheLoop(Lp), LI(LI), Plan(P) {} - - // Build the plain CFG and return its Top Region. - VPRegionBlock *buildPlainCFG(); -}; -} // anonymous namespace - -// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB -// must have no predecessors. -void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { - SmallVector<VPBlockBase *, 8> VPBBPreds; - // Collect VPBB predecessors. - for (BasicBlock *Pred : predecessors(BB)) - VPBBPreds.push_back(getOrCreateVPBB(Pred)); - - VPBB->setPredecessors(VPBBPreds); -} - -// Add operands to VPInstructions representing phi nodes from the input IR. -void PlainCFGBuilder::fixPhiNodes() { - for (auto *Phi : PhisToFix) { - assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); - VPValue *VPVal = IRDef2VPValue[Phi]; - assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node."); - auto *VPPhi = cast<VPInstruction>(VPVal); - assert(VPPhi->getNumOperands() == 0 && - "Expected VPInstruction with no operands."); - - for (Value *Op : Phi->operands()) - VPPhi->addOperand(getOrCreateVPOperand(Op)); - } -} - -// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an -// existing one if it was already created. -VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { - auto BlockIt = BB2VPBB.find(BB); - if (BlockIt != BB2VPBB.end()) - // Retrieve existing VPBB. - return BlockIt->second; - - // Create new VPBB. - LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); - VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); - BB2VPBB[BB] = VPBB; - VPBB->setParent(TopRegion); - return VPBB; -} - -#ifndef NDEBUG -// Return true if \p Val is considered an external definition. An external -// definition is either: -// 1. A Value that is not an Instruction. This will be refined in the future. -// 2. An Instruction that is outside of the CFG snippet represented in VPlan, -// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) -// outermost loop exits. -bool PlainCFGBuilder::isExternalDef(Value *Val) { - // All the Values that are not Instructions are considered external - // definitions for now. - Instruction *Inst = dyn_cast<Instruction>(Val); - if (!Inst) - return true; - - BasicBlock *InstParent = Inst->getParent(); - assert(InstParent && "Expected instruction parent."); - - // Check whether Instruction definition is in loop PH. - BasicBlock *PH = TheLoop->getLoopPreheader(); - assert(PH && "Expected loop pre-header."); - - if (InstParent == PH) - // Instruction definition is in outermost loop PH. - return false; - - // Check whether Instruction definition is in the loop exit. - BasicBlock *Exit = TheLoop->getUniqueExitBlock(); - assert(Exit && "Expected loop with single exit."); - if (InstParent == Exit) { - // Instruction definition is in outermost loop exit. - return false; - } - - // Check whether Instruction definition is in loop body. - return !TheLoop->contains(Inst); -} -#endif - -// Create a new VPValue or retrieve an existing one for the Instruction's -// operand \p IRVal. This function must only be used to create/retrieve VPValues -// for *Instruction's operands* and not to create regular VPInstruction's. For -// the latter, please, look at 'createVPInstructionsForVPBB'. -VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { - auto VPValIt = IRDef2VPValue.find(IRVal); - if (VPValIt != IRDef2VPValue.end()) - // Operand has an associated VPInstruction or VPValue that was previously - // created. - return VPValIt->second; - - // Operand doesn't have a previously created VPInstruction/VPValue. This - // means that operand is: - // A) a definition external to VPlan, - // B) any other Value without specific representation in VPlan. - // For now, we use VPValue to represent A and B and classify both as external - // definitions. We may introduce specific VPValue subclasses for them in the - // future. - assert(isExternalDef(IRVal) && "Expected external definition as operand."); - - // A and B: Create VPValue and add it to the pool of external definitions and - // to the Value->VPValue map. - VPValue *NewVPVal = new VPValue(IRVal); - Plan.addExternalDef(NewVPVal); - IRDef2VPValue[IRVal] = NewVPVal; - return NewVPVal; -} - -// Create new VPInstructions in a VPBasicBlock, given its BasicBlock -// counterpart. This function must be invoked in RPO so that the operands of a -// VPInstruction in \p BB have been visited before (except for Phi nodes). -void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, - BasicBlock *BB) { - VPIRBuilder.setInsertPoint(VPBB); - for (Instruction &InstRef : *BB) { - Instruction *Inst = &InstRef; - - // There shouldn't be any VPValue for Inst at this point. Otherwise, we - // visited Inst when we shouldn't, breaking the RPO traversal order. - assert(!IRDef2VPValue.count(Inst) && - "Instruction shouldn't have been visited."); - - if (auto *Br = dyn_cast<BranchInst>(Inst)) { - // Branch instruction is not explicitly represented in VPlan but we need - // to represent its condition bit when it's conditional. - if (Br->isConditional()) - getOrCreateVPOperand(Br->getCondition()); - - // Skip the rest of the Instruction processing for Branch instructions. - continue; - } - - VPInstruction *NewVPInst; - if (auto *Phi = dyn_cast<PHINode>(Inst)) { - // Phi node's operands may have not been visited at this point. We create - // an empty VPInstruction that we will fix once the whole plain CFG has - // been built. - NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp( - Inst->getOpcode(), {} /*No operands*/, Inst)); - PhisToFix.push_back(Phi); - } else { - // Translate LLVM-IR operands into VPValue operands and set them in the - // new VPInstruction. - SmallVector<VPValue *, 4> VPOperands; - for (Value *Op : Inst->operands()) - VPOperands.push_back(getOrCreateVPOperand(Op)); - - // Build VPInstruction for any arbitraty Instruction without specific - // representation in VPlan. - NewVPInst = cast<VPInstruction>( - VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); - } - - IRDef2VPValue[Inst] = NewVPInst; - } -} - -// Main interface to build the plain CFG. -VPRegionBlock *PlainCFGBuilder::buildPlainCFG() { - // 1. Create the Top Region. It will be the parent of all VPBBs. - TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/); - - // 2. Scan the body of the loop in a topological order to visit each basic - // block after having visited its predecessor basic blocks. Create a VPBB for - // each BB and link it to its successor and predecessor VPBBs. Note that - // predecessors must be set in the same order as they are in the incomming IR. - // Otherwise, there might be problems with existing phi nodes and algorithm - // based on predecessors traversal. - - // Loop PH needs to be explicitly visited since it's not taken into account by - // LoopBlocksDFS. - BasicBlock *PreheaderBB = TheLoop->getLoopPreheader(); - assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) && - "Unexpected loop preheader"); - VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB); - createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB); - // Create empty VPBB for Loop H so that we can link PH->H. - VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); - // Preheader's predecessors will be set during the loop RPO traversal below. - PreheaderVPBB->setOneSuccessor(HeaderVPBB); - - LoopBlocksRPO RPO(TheLoop); - RPO.perform(LI); - - for (BasicBlock *BB : RPO) { - // Create or retrieve the VPBasicBlock for this BB and create its - // VPInstructions. - VPBasicBlock *VPBB = getOrCreateVPBB(BB); - createVPInstructionsForVPBB(VPBB, BB); - - // Set VPBB successors. We create empty VPBBs for successors if they don't - // exist already. Recipes will be created when the successor is visited - // during the RPO traversal. - Instruction *TI = BB->getTerminator(); - assert(TI && "Terminator expected."); - unsigned NumSuccs = TI->getNumSuccessors(); - - if (NumSuccs == 1) { - VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); - assert(SuccVPBB && "VPBB Successor not found."); - VPBB->setOneSuccessor(SuccVPBB); - } else if (NumSuccs == 2) { - VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); - assert(SuccVPBB0 && "Successor 0 not found."); - VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); - assert(SuccVPBB1 && "Successor 1 not found."); - - // Get VPBB's condition bit. - assert(isa<BranchInst>(TI) && "Unsupported terminator!"); - auto *Br = cast<BranchInst>(TI); - Value *BrCond = Br->getCondition(); - // Look up the branch condition to get the corresponding VPValue - // representing the condition bit in VPlan (which may be in another VPBB). - assert(IRDef2VPValue.count(BrCond) && - "Missing condition bit in IRDef2VPValue!"); - VPValue *VPCondBit = IRDef2VPValue[BrCond]; - - // Link successors using condition bit. - VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit); - } else - llvm_unreachable("Number of successors not supported."); - - // Set VPBB predecessors in the same order as they are in the incoming BB. - setVPBBPredsFromBB(VPBB, BB); - } - - // 3. Process outermost loop exit. We created an empty VPBB for the loop - // single exit BB during the RPO traversal of the loop body but Instructions - // weren't visited because it's not part of the the loop. - BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); - assert(LoopExitBB && "Loops with multiple exits are not supported."); - VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; - createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB); - // Loop exit was already set as successor of the loop exiting BB. - // We only set its predecessor VPBB now. - setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); - - // 4. The whole CFG has been built at this point so all the input Values must - // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding - // VPlan operands. - fixPhiNodes(); - - // 5. Final Top Region setup. Set outermost loop pre-header and single exit as - // Top Region entry and exit. - TopRegion->setEntry(PreheaderVPBB); - TopRegion->setExit(LoopExitVPBB); - return TopRegion; -} - -VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() { - PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); - return PCFGBuilder.buildPlainCFG(); -} - -// Public interface to build a H-CFG. -void VPlanHCFGBuilder::buildHierarchicalCFG() { - // Build Top Region enclosing the plain CFG and set it as VPlan entry. - VPRegionBlock *TopRegion = buildPlainCFG(); - Plan.setEntry(TopRegion); - LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); - - Verifier.verifyHierarchicalCFG(TopRegion); - - // Compute plain CFG dom tree for VPLInfo. - VPDomTree.recalculate(*TopRegion); - LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; - VPDomTree.print(dbgs())); - - // Compute VPLInfo and keep it in Plan. - VPLoopInfo &VPLInfo = Plan.getVPLoopInfo(); - VPLInfo.analyze(VPDomTree); - LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n"; - VPLInfo.print(dbgs())); -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h deleted file mode 100644 index 238ee7e6347c..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.h +++ /dev/null @@ -1,71 +0,0 @@ -//===-- VPlanHCFGBuilder.h --------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file defines the VPlanHCFGBuilder class which contains the public -/// interface (buildHierarchicalCFG) to build a VPlan-based Hierarchical CFG -/// (H-CFG) for an incoming IR. -/// -/// A H-CFG in VPlan is a control-flow graph whose nodes are VPBasicBlocks -/// and/or VPRegionBlocks (i.e., other H-CFGs). The outermost H-CFG of a VPlan -/// consists of a VPRegionBlock, denoted Top Region, which encloses any other -/// VPBlockBase in the H-CFG. This guarantees that any VPBlockBase in the H-CFG -/// other than the Top Region will have a parent VPRegionBlock and allows us -/// to easily add more nodes before/after the main vector loop (such as the -/// reduction epilogue). -/// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H - -#include "VPlan.h" -#include "VPlanDominatorTree.h" -#include "VPlanVerifier.h" - -namespace llvm { - -class Loop; -class VPlanTestBase; - -/// Main class to build the VPlan H-CFG for an incoming IR. -class VPlanHCFGBuilder { - friend VPlanTestBase; - -private: - // The outermost loop of the input loop nest considered for vectorization. - Loop *TheLoop; - - // Loop Info analysis. - LoopInfo *LI; - - // The VPlan that will contain the H-CFG we are building. - VPlan &Plan; - - // VPlan verifier utility. - VPlanVerifier Verifier; - - // Dominator analysis for VPlan plain CFG to be used in the - // construction of the H-CFG. This analysis is no longer valid once regions - // are introduced. - VPDominatorTree VPDomTree; - - /// Build plain CFG for TheLoop. Return a new VPRegionBlock (TopRegion) - /// enclosing the plain CFG. - VPRegionBlock *buildPlainCFG(); - -public: - VPlanHCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) - : TheLoop(Lp), LI(LI), Plan(P) {} - - /// Build H-CFG for TheLoop and update Plan accordingly. - void buildHierarchicalCFG(); -}; -} // namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp deleted file mode 100644 index 7ed7d21b6caa..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.cpp +++ /dev/null @@ -1,84 +0,0 @@ -//===-- VPlanHCFGTransforms.cpp - Utility VPlan to VPlan transforms -------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file implements a set of utility VPlan to VPlan transformations. -/// -//===----------------------------------------------------------------------===// - -#include "VPlanHCFGTransforms.h" -#include "llvm/ADT/PostOrderIterator.h" - -using namespace llvm; - -void VPlanHCFGTransforms::VPInstructionsToVPRecipes( - VPlanPtr &Plan, - LoopVectorizationLegality::InductionList *Inductions, - SmallPtrSetImpl<Instruction *> &DeadInstructions) { - - VPRegionBlock *TopRegion = dyn_cast<VPRegionBlock>(Plan->getEntry()); - ReversePostOrderTraversal<VPBlockBase *> RPOT(TopRegion->getEntry()); - - // Condition bit VPValues get deleted during transformation to VPRecipes. - // Create new VPValues and save away as condition bits. These will be deleted - // after finalizing the vector IR basic blocks. - for (VPBlockBase *Base : RPOT) { - VPBasicBlock *VPBB = Base->getEntryBasicBlock(); - if (auto *CondBit = VPBB->getCondBit()) { - auto *NCondBit = new VPValue(CondBit->getUnderlyingValue()); - VPBB->setCondBit(NCondBit); - Plan->addCBV(NCondBit); - } - } - for (VPBlockBase *Base : RPOT) { - // Do not widen instructions in pre-header and exit blocks. - if (Base->getNumPredecessors() == 0 || Base->getNumSuccessors() == 0) - continue; - - VPBasicBlock *VPBB = Base->getEntryBasicBlock(); - VPRecipeBase *LastRecipe = nullptr; - // Introduce each ingredient into VPlan. - for (auto I = VPBB->begin(), E = VPBB->end(); I != E;) { - VPRecipeBase *Ingredient = &*I++; - // Can only handle VPInstructions. - VPInstruction *VPInst = cast<VPInstruction>(Ingredient); - Instruction *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); - if (DeadInstructions.count(Inst)) { - Ingredient->eraseFromParent(); - continue; - } - - VPRecipeBase *NewRecipe = nullptr; - // Create VPWidenMemoryInstructionRecipe for loads and stores. - if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) - NewRecipe = new VPWidenMemoryInstructionRecipe(*Inst, nullptr /*Mask*/); - else if (PHINode *Phi = dyn_cast<PHINode>(Inst)) { - InductionDescriptor II = Inductions->lookup(Phi); - if (II.getKind() == InductionDescriptor::IK_IntInduction || - II.getKind() == InductionDescriptor::IK_FpInduction) { - NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi); - } else - NewRecipe = new VPWidenPHIRecipe(Phi); - } else { - // If the last recipe is a VPWidenRecipe, add Inst to it instead of - // creating a new recipe. - if (VPWidenRecipe *WidenRecipe = - dyn_cast_or_null<VPWidenRecipe>(LastRecipe)) { - WidenRecipe->appendInstruction(Inst); - Ingredient->eraseFromParent(); - continue; - } - NewRecipe = new VPWidenRecipe(Inst); - } - - NewRecipe->insertBefore(Ingredient); - LastRecipe = NewRecipe; - Ingredient->eraseFromParent(); - } - } -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h deleted file mode 100644 index 79a23c33184f..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanHCFGTransforms.h +++ /dev/null @@ -1,35 +0,0 @@ -//===- VPlanHCFGTransforms.h - Utility VPlan to VPlan transforms ----------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file provides utility VPlan to VPlan transformations. -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANHCFGTRANSFORMS_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLANHCFGTRANSFORMS_H - -#include "VPlan.h" -#include "llvm/IR/Instruction.h" -#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" - -namespace llvm { - -class VPlanHCFGTransforms { - -public: - /// Replaces the VPInstructions in \p Plan with corresponding - /// widen recipes. - static void VPInstructionsToVPRecipes( - VPlanPtr &Plan, - LoopVectorizationLegality::InductionList *Inductions, - SmallPtrSetImpl<Instruction *> &DeadInstructions); -}; - -} // namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLANHCFGTRANSFORMS_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h deleted file mode 100644 index 5208f2d58e2b..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanLoopInfo.h +++ /dev/null @@ -1,44 +0,0 @@ -//===-- VPLoopInfo.h --------------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file defines VPLoopInfo analysis and VPLoop class. VPLoopInfo is a -/// specialization of LoopInfoBase for VPBlockBase. VPLoops is a specialization -/// of LoopBase that is used to hold loop metadata from VPLoopInfo. Further -/// information can be found in VectorizationPlanner.rst. -/// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLOOPINFO_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLOOPINFO_H - -#include "llvm/Analysis/LoopInfoImpl.h" - -namespace llvm { -class VPBlockBase; - -/// Hold analysis information for every loop detected by VPLoopInfo. It is an -/// instantiation of LoopBase. -class VPLoop : public LoopBase<VPBlockBase, VPLoop> { -private: - friend class LoopInfoBase<VPBlockBase, VPLoop>; - explicit VPLoop(VPBlockBase *VPB) : LoopBase<VPBlockBase, VPLoop>(VPB) {} -}; - -/// VPLoopInfo provides analysis of natural loop for VPBlockBase-based -/// Hierarchical CFG. It is a specialization of LoopInfoBase class. -// TODO: VPLoopInfo is initially computed on top of the VPlan plain CFG, which -// is the same as the incoming IR CFG. If it's more efficient than running the -// whole loop detection algorithm, we may want to create a mechanism to -// translate LoopInfo into VPLoopInfo. However, that would require significant -// changes in LoopInfoBase class. -typedef LoopInfoBase<VPBlockBase, VPLoop> VPLoopInfo; - -} // namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLOOPINFO_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp deleted file mode 100644 index 7a80f3ff80a5..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.cpp +++ /dev/null @@ -1,248 +0,0 @@ -//===-- VPlanPredicator.cpp -------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file implements the VPlanPredicator class which contains the public -/// interfaces to predicate and linearize the VPlan region. -/// -//===----------------------------------------------------------------------===// - -#include "VPlanPredicator.h" -#include "VPlan.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" - -#define DEBUG_TYPE "VPlanPredicator" - -using namespace llvm; - -// Generate VPInstructions at the beginning of CurrBB that calculate the -// predicate being propagated from PredBB to CurrBB depending on the edge type -// between them. For example if: -// i. PredBB is controlled by predicate %BP, and -// ii. The edge PredBB->CurrBB is the false edge, controlled by the condition -// bit value %CBV then this function will generate the following two -// VPInstructions at the start of CurrBB: -// %IntermediateVal = not %CBV -// %FinalVal = and %BP %IntermediateVal -// It returns %FinalVal. -VPValue *VPlanPredicator::getOrCreateNotPredicate(VPBasicBlock *PredBB, - VPBasicBlock *CurrBB) { - VPValue *CBV = PredBB->getCondBit(); - - // Set the intermediate value - this is either 'CBV', or 'not CBV' - // depending on the edge type. - EdgeType ET = getEdgeTypeBetween(PredBB, CurrBB); - VPValue *IntermediateVal = nullptr; - switch (ET) { - case EdgeType::TRUE_EDGE: - // CurrBB is the true successor of PredBB - nothing to do here. - IntermediateVal = CBV; - break; - - case EdgeType::FALSE_EDGE: - // CurrBB is the False successor of PredBB - compute not of CBV. - IntermediateVal = Builder.createNot(CBV); - break; - } - - // Now AND intermediate value with PredBB's block predicate if it has one. - VPValue *BP = PredBB->getPredicate(); - if (BP) - return Builder.createAnd(BP, IntermediateVal); - else - return IntermediateVal; -} - -// Generate a tree of ORs for all IncomingPredicates in WorkList. -// Note: This function destroys the original Worklist. -// -// P1 P2 P3 P4 P5 -// \ / \ / / -// OR1 OR2 / -// \ | / -// \ +/-+ -// \ / | -// OR3 | -// \ | -// OR4 <- Returns this -// | -// -// The algorithm uses a worklist of predicates as its main data structure. -// We pop a pair of values from the front (e.g. P1 and P2), generate an OR -// (in this example OR1), and push it back. In this example the worklist -// contains {P3, P4, P5, OR1}. -// The process iterates until we have only one element in the Worklist (OR4). -// The last element is the root predicate which is returned. -VPValue *VPlanPredicator::genPredicateTree(std::list<VPValue *> &Worklist) { - if (Worklist.empty()) - return nullptr; - - // The worklist initially contains all the leaf nodes. Initialize the tree - // using them. - while (Worklist.size() >= 2) { - // Pop a pair of values from the front. - VPValue *LHS = Worklist.front(); - Worklist.pop_front(); - VPValue *RHS = Worklist.front(); - Worklist.pop_front(); - - // Create an OR of these values. - VPValue *Or = Builder.createOr(LHS, RHS); - - // Push OR to the back of the worklist. - Worklist.push_back(Or); - } - - assert(Worklist.size() == 1 && "Expected 1 item in worklist"); - - // The root is the last node in the worklist. - VPValue *Root = Worklist.front(); - - // This root needs to replace the existing block predicate. This is done in - // the caller function. - return Root; -} - -// Return whether the edge FromBlock -> ToBlock is a TRUE_EDGE or FALSE_EDGE -VPlanPredicator::EdgeType -VPlanPredicator::getEdgeTypeBetween(VPBlockBase *FromBlock, - VPBlockBase *ToBlock) { - unsigned Count = 0; - for (VPBlockBase *SuccBlock : FromBlock->getSuccessors()) { - if (SuccBlock == ToBlock) { - assert(Count < 2 && "Switch not supported currently"); - return (Count == 0) ? EdgeType::TRUE_EDGE : EdgeType::FALSE_EDGE; - } - Count++; - } - - llvm_unreachable("Broken getEdgeTypeBetween"); -} - -// Generate all predicates needed for CurrBlock by going through its immediate -// predecessor blocks. -void VPlanPredicator::createOrPropagatePredicates(VPBlockBase *CurrBlock, - VPRegionBlock *Region) { - // Blocks that dominate region exit inherit the predicate from the region. - // Return after setting the predicate. - if (VPDomTree.dominates(CurrBlock, Region->getExit())) { - VPValue *RegionBP = Region->getPredicate(); - CurrBlock->setPredicate(RegionBP); - return; - } - - // Collect all incoming predicates in a worklist. - std::list<VPValue *> IncomingPredicates; - - // Set the builder's insertion point to the top of the current BB - VPBasicBlock *CurrBB = cast<VPBasicBlock>(CurrBlock->getEntryBasicBlock()); - Builder.setInsertPoint(CurrBB, CurrBB->begin()); - - // For each predecessor, generate the VPInstructions required for - // computing 'BP AND (not) CBV" at the top of CurrBB. - // Collect the outcome of this calculation for all predecessors - // into IncomingPredicates. - for (VPBlockBase *PredBlock : CurrBlock->getPredecessors()) { - // Skip back-edges - if (VPBlockUtils::isBackEdge(PredBlock, CurrBlock, VPLI)) - continue; - - VPValue *IncomingPredicate = nullptr; - unsigned NumPredSuccsNoBE = - VPBlockUtils::countSuccessorsNoBE(PredBlock, VPLI); - - // If there is an unconditional branch to the currBB, then we don't create - // edge predicates. We use the predecessor's block predicate instead. - if (NumPredSuccsNoBE == 1) - IncomingPredicate = PredBlock->getPredicate(); - else if (NumPredSuccsNoBE == 2) { - // Emit recipes into CurrBlock if required - assert(isa<VPBasicBlock>(PredBlock) && "Only BBs have multiple exits"); - IncomingPredicate = - getOrCreateNotPredicate(cast<VPBasicBlock>(PredBlock), CurrBB); - } else - llvm_unreachable("FIXME: switch statement ?"); - - if (IncomingPredicate) - IncomingPredicates.push_back(IncomingPredicate); - } - - // Logically OR all incoming predicates by building the Predicate Tree. - VPValue *Predicate = genPredicateTree(IncomingPredicates); - - // Now update the block's predicate with the new one. - CurrBlock->setPredicate(Predicate); -} - -// Generate all predicates needed for Region. -void VPlanPredicator::predicateRegionRec(VPRegionBlock *Region) { - VPBasicBlock *EntryBlock = cast<VPBasicBlock>(Region->getEntry()); - ReversePostOrderTraversal<VPBlockBase *> RPOT(EntryBlock); - - // Generate edge predicates and append them to the block predicate. RPO is - // necessary since the predecessor blocks' block predicate needs to be set - // before the current block's block predicate can be computed. - for (VPBlockBase *Block : make_range(RPOT.begin(), RPOT.end())) { - // TODO: Handle nested regions once we start generating the same. - assert(!isa<VPRegionBlock>(Block) && "Nested region not expected"); - createOrPropagatePredicates(Block, Region); - } -} - -// Linearize the CFG within Region. -// TODO: Predication and linearization need RPOT for every region. -// This traversal is expensive. Since predication is not adding new -// blocks, we should be able to compute RPOT once in predication and -// reuse it here. This becomes even more important once we have nested -// regions. -void VPlanPredicator::linearizeRegionRec(VPRegionBlock *Region) { - ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); - VPBlockBase *PrevBlock = nullptr; - - for (VPBlockBase *CurrBlock : make_range(RPOT.begin(), RPOT.end())) { - // TODO: Handle nested regions once we start generating the same. - assert(!isa<VPRegionBlock>(CurrBlock) && "Nested region not expected"); - - // Linearize control flow by adding an unconditional edge between PrevBlock - // and CurrBlock skipping loop headers and latches to keep intact loop - // header predecessors and loop latch successors. - if (PrevBlock && !VPLI->isLoopHeader(CurrBlock) && - !VPBlockUtils::blockIsLoopLatch(PrevBlock, VPLI)) { - - LLVM_DEBUG(dbgs() << "Linearizing: " << PrevBlock->getName() << "->" - << CurrBlock->getName() << "\n"); - - PrevBlock->clearSuccessors(); - CurrBlock->clearPredecessors(); - VPBlockUtils::connectBlocks(PrevBlock, CurrBlock); - } - - PrevBlock = CurrBlock; - } -} - -// Entry point. The driver function for the predicator. -void VPlanPredicator::predicate(void) { - // Predicate the blocks within Region. - predicateRegionRec(cast<VPRegionBlock>(Plan.getEntry())); - - // Linearlize the blocks with Region. - linearizeRegionRec(cast<VPRegionBlock>(Plan.getEntry())); -} - -VPlanPredicator::VPlanPredicator(VPlan &Plan) - : Plan(Plan), VPLI(&(Plan.getVPLoopInfo())) { - // FIXME: Predicator is currently computing the dominator information for the - // top region. Once we start storing dominator information in a VPRegionBlock, - // we can avoid this recalculation. - VPDomTree.recalculate(*(cast<VPRegionBlock>(Plan.getEntry()))); -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h deleted file mode 100644 index 692afd2978d5..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanPredicator.h +++ /dev/null @@ -1,74 +0,0 @@ -//===-- VPlanPredicator.h ---------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file defines the VPlanPredicator class which contains the public -/// interfaces to predicate and linearize the VPlan region. -/// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_PREDICATOR_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_PREDICATOR_H - -#include "LoopVectorizationPlanner.h" -#include "VPlan.h" -#include "VPlanDominatorTree.h" - -namespace llvm { - -class VPlanPredicator { -private: - enum class EdgeType { - TRUE_EDGE, - FALSE_EDGE, - }; - - // VPlan being predicated. - VPlan &Plan; - - // VPLoopInfo for Plan's HCFG. - VPLoopInfo *VPLI; - - // Dominator tree for Plan's HCFG. - VPDominatorTree VPDomTree; - - // VPlan builder used to generate VPInstructions for block predicates. - VPBuilder Builder; - - /// Get the type of edge from \p FromBlock to \p ToBlock. Returns TRUE_EDGE if - /// \p ToBlock is either the unconditional successor or the conditional true - /// successor of \p FromBlock and FALSE_EDGE otherwise. - EdgeType getEdgeTypeBetween(VPBlockBase *FromBlock, VPBlockBase *ToBlock); - - /// Create and return VPValue corresponding to the predicate for the edge from - /// \p PredBB to \p CurrentBlock. - VPValue *getOrCreateNotPredicate(VPBasicBlock *PredBB, VPBasicBlock *CurrBB); - - /// Generate and return the result of ORing all the predicate VPValues in \p - /// Worklist. - VPValue *genPredicateTree(std::list<VPValue *> &Worklist); - - /// Create or propagate predicate for \p CurrBlock in region \p Region using - /// predicate(s) of its predecessor(s) - void createOrPropagatePredicates(VPBlockBase *CurrBlock, - VPRegionBlock *Region); - - /// Predicate the CFG within \p Region. - void predicateRegionRec(VPRegionBlock *Region); - - /// Linearize the CFG within \p Region. - void linearizeRegionRec(VPRegionBlock *Region); - -public: - VPlanPredicator(VPlan &Plan); - - /// Predicate Plan's HCFG. - void predicate(void); -}; -} // end namespace llvm -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_PREDICATOR_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp deleted file mode 100644 index e5ab24e52df6..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanSLP.cpp +++ /dev/null @@ -1,467 +0,0 @@ -//===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// This file implements SLP analysis based on VPlan. The analysis is based on -/// the ideas described in -/// -/// Look-ahead SLP: auto-vectorization in the presence of commutative -/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, -/// Luís F. W. Góes -/// -//===----------------------------------------------------------------------===// - -#include "VPlan.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include <cassert> -#include <iterator> -#include <string> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "vplan-slp" - -// Number of levels to look ahead when re-ordering multi node operands. -static unsigned LookaheadMaxDepth = 5; - -VPInstruction *VPlanSlp::markFailed() { - // FIXME: Currently this is used to signal we hit instructions we cannot - // trivially SLP'ize. - CompletelySLP = false; - return nullptr; -} - -void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) { - if (all_of(Operands, [](VPValue *V) { - return cast<VPInstruction>(V)->getUnderlyingInstr(); - })) { - unsigned BundleSize = 0; - for (VPValue *V : Operands) { - Type *T = cast<VPInstruction>(V)->getUnderlyingInstr()->getType(); - assert(!T->isVectorTy() && "Only scalar types supported for now"); - BundleSize += T->getScalarSizeInBits(); - } - WidestBundleBits = std::max(WidestBundleBits, BundleSize); - } - - auto Res = BundleToCombined.try_emplace(to_vector<4>(Operands), New); - assert(Res.second && - "Already created a combined instruction for the operand bundle"); - (void)Res; -} - -bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const { - // Currently we only support VPInstructions. - if (!all_of(Operands, [](VPValue *Op) { - return Op && isa<VPInstruction>(Op) && - cast<VPInstruction>(Op)->getUnderlyingInstr(); - })) { - LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n"); - return false; - } - - // Check if opcodes and type width agree for all instructions in the bundle. - // FIXME: Differing widths/opcodes can be handled by inserting additional - // instructions. - // FIXME: Deal with non-primitive types. - const Instruction *OriginalInstr = - cast<VPInstruction>(Operands[0])->getUnderlyingInstr(); - unsigned Opcode = OriginalInstr->getOpcode(); - unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits(); - if (!all_of(Operands, [Opcode, Width](VPValue *Op) { - const Instruction *I = cast<VPInstruction>(Op)->getUnderlyingInstr(); - return I->getOpcode() == Opcode && - I->getType()->getPrimitiveSizeInBits() == Width; - })) { - LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n"); - return false; - } - - // For now, all operands must be defined in the same BB. - if (any_of(Operands, [this](VPValue *Op) { - return cast<VPInstruction>(Op)->getParent() != &this->BB; - })) { - LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n"); - return false; - } - - if (any_of(Operands, - [](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) { - LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n"); - return false; - } - - // For loads, check that there are no instructions writing to memory in - // between them. - // TODO: we only have to forbid instructions writing to memory that could - // interfere with any of the loads in the bundle - if (Opcode == Instruction::Load) { - unsigned LoadsSeen = 0; - VPBasicBlock *Parent = cast<VPInstruction>(Operands[0])->getParent(); - for (auto &I : *Parent) { - auto *VPI = cast<VPInstruction>(&I); - if (VPI->getOpcode() == Instruction::Load && - std::find(Operands.begin(), Operands.end(), VPI) != Operands.end()) - LoadsSeen++; - - if (LoadsSeen == Operands.size()) - break; - if (LoadsSeen > 0 && VPI->mayWriteToMemory()) { - LLVM_DEBUG( - dbgs() << "VPSLP: instruction modifying memory between loads\n"); - return false; - } - } - - if (!all_of(Operands, [](VPValue *Op) { - return cast<LoadInst>(cast<VPInstruction>(Op)->getUnderlyingInstr()) - ->isSimple(); - })) { - LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n"); - return false; - } - } - - if (Opcode == Instruction::Store) - if (!all_of(Operands, [](VPValue *Op) { - return cast<StoreInst>(cast<VPInstruction>(Op)->getUnderlyingInstr()) - ->isSimple(); - })) { - LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n"); - return false; - } - - return true; -} - -static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values, - unsigned OperandIndex) { - SmallVector<VPValue *, 4> Operands; - for (VPValue *V : Values) { - auto *U = cast<VPUser>(V); - Operands.push_back(U->getOperand(OperandIndex)); - } - return Operands; -} - -static bool areCommutative(ArrayRef<VPValue *> Values) { - return Instruction::isCommutative( - cast<VPInstruction>(Values[0])->getOpcode()); -} - -static SmallVector<SmallVector<VPValue *, 4>, 4> -getOperands(ArrayRef<VPValue *> Values) { - SmallVector<SmallVector<VPValue *, 4>, 4> Result; - auto *VPI = cast<VPInstruction>(Values[0]); - - switch (VPI->getOpcode()) { - case Instruction::Load: - llvm_unreachable("Loads terminate a tree, no need to get operands"); - case Instruction::Store: - Result.push_back(getOperands(Values, 0)); - break; - default: - for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I) - Result.push_back(getOperands(Values, I)); - break; - } - - return Result; -} - -/// Returns the opcode of Values or ~0 if they do not all agree. -static Optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) { - unsigned Opcode = cast<VPInstruction>(Values[0])->getOpcode(); - if (any_of(Values, [Opcode](VPValue *V) { - return cast<VPInstruction>(V)->getOpcode() != Opcode; - })) - return None; - return {Opcode}; -} - -/// Returns true if A and B access sequential memory if they are loads or -/// stores or if they have identical opcodes otherwise. -static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B, - VPInterleavedAccessInfo &IAI) { - if (A->getOpcode() != B->getOpcode()) - return false; - - if (A->getOpcode() != Instruction::Load && - A->getOpcode() != Instruction::Store) - return true; - auto *GA = IAI.getInterleaveGroup(A); - auto *GB = IAI.getInterleaveGroup(B); - - return GA && GB && GA == GB && GA->getIndex(A) + 1 == GB->getIndex(B); -} - -/// Implements getLAScore from Listing 7 in the paper. -/// Traverses and compares operands of V1 and V2 to MaxLevel. -static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel, - VPInterleavedAccessInfo &IAI) { - if (!isa<VPInstruction>(V1) || !isa<VPInstruction>(V2)) - return 0; - - if (MaxLevel == 0) - return (unsigned)areConsecutiveOrMatch(cast<VPInstruction>(V1), - cast<VPInstruction>(V2), IAI); - - unsigned Score = 0; - for (unsigned I = 0, EV1 = cast<VPUser>(V1)->getNumOperands(); I < EV1; ++I) - for (unsigned J = 0, EV2 = cast<VPUser>(V2)->getNumOperands(); J < EV2; ++J) - Score += getLAScore(cast<VPUser>(V1)->getOperand(I), - cast<VPUser>(V2)->getOperand(J), MaxLevel - 1, IAI); - return Score; -} - -std::pair<VPlanSlp::OpMode, VPValue *> -VPlanSlp::getBest(OpMode Mode, VPValue *Last, - SmallPtrSetImpl<VPValue *> &Candidates, - VPInterleavedAccessInfo &IAI) { - assert((Mode == OpMode::Load || Mode == OpMode::Opcode) && - "Currently we only handle load and commutative opcodes"); - LLVM_DEBUG(dbgs() << " getBest\n"); - - SmallVector<VPValue *, 4> BestCandidates; - LLVM_DEBUG(dbgs() << " Candidates for " - << *cast<VPInstruction>(Last)->getUnderlyingInstr() << " "); - for (auto *Candidate : Candidates) { - auto *LastI = cast<VPInstruction>(Last); - auto *CandidateI = cast<VPInstruction>(Candidate); - if (areConsecutiveOrMatch(LastI, CandidateI, IAI)) { - LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr() - << " "); - BestCandidates.push_back(Candidate); - } - } - LLVM_DEBUG(dbgs() << "\n"); - - if (BestCandidates.empty()) - return {OpMode::Failed, nullptr}; - - if (BestCandidates.size() == 1) - return {Mode, BestCandidates[0]}; - - VPValue *Best = nullptr; - unsigned BestScore = 0; - for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) { - unsigned PrevScore = ~0u; - bool AllSame = true; - - // FIXME: Avoid visiting the same operands multiple times. - for (auto *Candidate : BestCandidates) { - unsigned Score = getLAScore(Last, Candidate, Depth, IAI); - if (PrevScore == ~0u) - PrevScore = Score; - if (PrevScore != Score) - AllSame = false; - PrevScore = Score; - - if (Score > BestScore) { - BestScore = Score; - Best = Candidate; - } - } - if (!AllSame) - break; - } - LLVM_DEBUG(dbgs() << "Found best " - << *cast<VPInstruction>(Best)->getUnderlyingInstr() - << "\n"); - Candidates.erase(Best); - - return {Mode, Best}; -} - -SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() { - SmallVector<MultiNodeOpTy, 4> FinalOrder; - SmallVector<OpMode, 4> Mode; - FinalOrder.reserve(MultiNodeOps.size()); - Mode.reserve(MultiNodeOps.size()); - - LLVM_DEBUG(dbgs() << "Reordering multinode\n"); - - for (auto &Operands : MultiNodeOps) { - FinalOrder.push_back({Operands.first, {Operands.second[0]}}); - if (cast<VPInstruction>(Operands.second[0])->getOpcode() == - Instruction::Load) - Mode.push_back(OpMode::Load); - else - Mode.push_back(OpMode::Opcode); - } - - for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) { - LLVM_DEBUG(dbgs() << " Finding best value for lane " << Lane << "\n"); - SmallPtrSet<VPValue *, 4> Candidates; - LLVM_DEBUG(dbgs() << " Candidates "); - for (auto Ops : MultiNodeOps) { - LLVM_DEBUG( - dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr() - << " "); - Candidates.insert(Ops.second[Lane]); - } - LLVM_DEBUG(dbgs() << "\n"); - - for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) { - LLVM_DEBUG(dbgs() << " Checking " << Op << "\n"); - if (Mode[Op] == OpMode::Failed) - continue; - - VPValue *Last = FinalOrder[Op].second[Lane - 1]; - std::pair<OpMode, VPValue *> Res = - getBest(Mode[Op], Last, Candidates, IAI); - if (Res.second) - FinalOrder[Op].second.push_back(Res.second); - else - // TODO: handle this case - FinalOrder[Op].second.push_back(markFailed()); - } - } - - return FinalOrder; -} - -void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) { - dbgs() << " Ops: "; - for (auto Op : Values) - if (auto *Instr = cast_or_null<VPInstruction>(Op)->getUnderlyingInstr()) - dbgs() << *Instr << " | "; - else - dbgs() << " nullptr | "; - dbgs() << "\n"; -} - -VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) { - assert(!Values.empty() && "Need some operands!"); - - // If we already visited this instruction bundle, re-use the existing node - auto I = BundleToCombined.find(to_vector<4>(Values)); - if (I != BundleToCombined.end()) { -#ifndef NDEBUG - // Check that the resulting graph is a tree. If we re-use a node, this means - // its values have multiple users. We only allow this, if all users of each - // value are the same instruction. - for (auto *V : Values) { - auto UI = V->user_begin(); - auto *FirstUser = *UI++; - while (UI != V->user_end()) { - assert(*UI == FirstUser && "Currently we only support SLP trees."); - UI++; - } - } -#endif - return I->second; - } - - // Dump inputs - LLVM_DEBUG({ - dbgs() << "buildGraph: "; - dumpBundle(Values); - }); - - if (!areVectorizable(Values)) - return markFailed(); - - assert(getOpcode(Values) && "Opcodes for all values must match"); - unsigned ValuesOpcode = getOpcode(Values).getValue(); - - SmallVector<VPValue *, 4> CombinedOperands; - if (areCommutative(Values)) { - bool MultiNodeRoot = !MultiNodeActive; - MultiNodeActive = true; - for (auto &Operands : getOperands(Values)) { - LLVM_DEBUG({ - dbgs() << " Visiting Commutative"; - dumpBundle(Operands); - }); - - auto OperandsOpcode = getOpcode(Operands); - if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) { - LLVM_DEBUG(dbgs() << " Same opcode, continue building\n"); - CombinedOperands.push_back(buildGraph(Operands)); - } else { - LLVM_DEBUG(dbgs() << " Adding multinode Ops\n"); - // Create dummy VPInstruction, which will we replace later by the - // re-ordered operand. - VPInstruction *Op = new VPInstruction(0, {}); - CombinedOperands.push_back(Op); - MultiNodeOps.emplace_back(Op, Operands); - } - } - - if (MultiNodeRoot) { - LLVM_DEBUG(dbgs() << "Reorder \n"); - MultiNodeActive = false; - - auto FinalOrder = reorderMultiNodeOps(); - - MultiNodeOps.clear(); - for (auto &Ops : FinalOrder) { - VPInstruction *NewOp = buildGraph(Ops.second); - Ops.first->replaceAllUsesWith(NewOp); - for (unsigned i = 0; i < CombinedOperands.size(); i++) - if (CombinedOperands[i] == Ops.first) - CombinedOperands[i] = NewOp; - delete Ops.first; - Ops.first = NewOp; - } - LLVM_DEBUG(dbgs() << "Found final order\n"); - } - } else { - LLVM_DEBUG(dbgs() << " NonCommuntative\n"); - if (ValuesOpcode == Instruction::Load) - for (VPValue *V : Values) - CombinedOperands.push_back(cast<VPInstruction>(V)->getOperand(0)); - else - for (auto &Operands : getOperands(Values)) - CombinedOperands.push_back(buildGraph(Operands)); - } - - unsigned Opcode; - switch (ValuesOpcode) { - case Instruction::Load: - Opcode = VPInstruction::SLPLoad; - break; - case Instruction::Store: - Opcode = VPInstruction::SLPStore; - break; - default: - Opcode = ValuesOpcode; - break; - } - - if (!CompletelySLP) - return markFailed(); - - assert(CombinedOperands.size() > 0 && "Need more some operands"); - auto *VPI = new VPInstruction(Opcode, CombinedOperands); - VPI->setUnderlyingInstr(cast<VPInstruction>(Values[0])->getUnderlyingInstr()); - - LLVM_DEBUG(dbgs() << "Create VPInstruction "; VPI->print(dbgs()); - cast<VPInstruction>(Values[0])->print(dbgs()); dbgs() << "\n"); - addCombined(Values, VPI); - return VPI; -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h deleted file mode 100644 index 7b6c228c229e..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanValue.h +++ /dev/null @@ -1,186 +0,0 @@ -//===- VPlanValue.h - Represent Values in Vectorizer Plan -----------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file contains the declarations of the entities induced by Vectorization -/// Plans, e.g. the instructions the VPlan intends to generate if executed. -/// VPlan models the following entities: -/// VPValue -/// |-- VPUser -/// | |-- VPInstruction -/// These are documented in docs/VectorizationPlan.rst. -/// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" - -namespace llvm { - -// Forward declarations. -class VPUser; - -// This is the base class of the VPlan Def/Use graph, used for modeling the data -// flow into, within and out of the VPlan. VPValues can stand for live-ins -// coming from the input IR, instructions which VPlan will generate if executed -// and live-outs which the VPlan will need to fix accordingly. -class VPValue { - friend class VPBuilder; - friend class VPlanHCFGTransforms; - friend class VPBasicBlock; - friend class VPInterleavedAccessInfo; - -private: - const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). - - SmallVector<VPUser *, 1> Users; - -protected: - // Hold the underlying Value, if any, attached to this VPValue. - Value *UnderlyingVal; - - VPValue(const unsigned char SC, Value *UV = nullptr) - : SubclassID(SC), UnderlyingVal(UV) {} - - // DESIGN PRINCIPLE: Access to the underlying IR must be strictly limited to - // the front-end and back-end of VPlan so that the middle-end is as - // independent as possible of the underlying IR. We grant access to the - // underlying IR using friendship. In that way, we should be able to use VPlan - // for multiple underlying IRs (Polly?) by providing a new VPlan front-end, - // back-end and analysis information for the new IR. - - /// Return the underlying Value attached to this VPValue. - Value *getUnderlyingValue() { return UnderlyingVal; } - - // Set \p Val as the underlying Value of this VPValue. - void setUnderlyingValue(Value *Val) { - assert(!UnderlyingVal && "Underlying Value is already set."); - UnderlyingVal = Val; - } - -public: - /// An enumeration for keeping track of the concrete subclass of VPValue that - /// are actually instantiated. Values of this enumeration are kept in the - /// SubclassID field of the VPValue objects. They are used for concrete - /// type identification. - enum { VPValueSC, VPUserSC, VPInstructionSC }; - - VPValue(Value *UV = nullptr) : VPValue(VPValueSC, UV) {} - VPValue(const VPValue &) = delete; - VPValue &operator=(const VPValue &) = delete; - - /// \return an ID for the concrete type of this object. - /// This is used to implement the classof checks. This should not be used - /// for any other purpose, as the values may change as LLVM evolves. - unsigned getVPValueID() const { return SubclassID; } - - void printAsOperand(raw_ostream &OS) const { - OS << "%vp" << (unsigned short)(unsigned long long)this; - } - - unsigned getNumUsers() const { return Users.size(); } - void addUser(VPUser &User) { Users.push_back(&User); } - - typedef SmallVectorImpl<VPUser *>::iterator user_iterator; - typedef SmallVectorImpl<VPUser *>::const_iterator const_user_iterator; - typedef iterator_range<user_iterator> user_range; - typedef iterator_range<const_user_iterator> const_user_range; - - user_iterator user_begin() { return Users.begin(); } - const_user_iterator user_begin() const { return Users.begin(); } - user_iterator user_end() { return Users.end(); } - const_user_iterator user_end() const { return Users.end(); } - user_range users() { return user_range(user_begin(), user_end()); } - const_user_range users() const { - return const_user_range(user_begin(), user_end()); - } - - /// Returns true if the value has more than one unique user. - bool hasMoreThanOneUniqueUser() { - if (getNumUsers() == 0) - return false; - - // Check if all users match the first user. - auto Current = std::next(user_begin()); - while (Current != user_end() && *user_begin() == *Current) - Current++; - return Current != user_end(); - } - - void replaceAllUsesWith(VPValue *New); -}; - -typedef DenseMap<Value *, VPValue *> Value2VPValueTy; -typedef DenseMap<VPValue *, Value *> VPValue2ValueTy; - -raw_ostream &operator<<(raw_ostream &OS, const VPValue &V); - -/// This class augments VPValue with operands which provide the inverse def-use -/// edges from VPValue's users to their defs. -class VPUser : public VPValue { -private: - SmallVector<VPValue *, 2> Operands; - -protected: - VPUser(const unsigned char SC) : VPValue(SC) {} - VPUser(const unsigned char SC, ArrayRef<VPValue *> Operands) : VPValue(SC) { - for (VPValue *Operand : Operands) - addOperand(Operand); - } - -public: - VPUser() : VPValue(VPValue::VPUserSC) {} - VPUser(ArrayRef<VPValue *> Operands) : VPUser(VPValue::VPUserSC, Operands) {} - VPUser(std::initializer_list<VPValue *> Operands) - : VPUser(ArrayRef<VPValue *>(Operands)) {} - VPUser(const VPUser &) = delete; - VPUser &operator=(const VPUser &) = delete; - - /// Method to support type inquiry through isa, cast, and dyn_cast. - static inline bool classof(const VPValue *V) { - return V->getVPValueID() >= VPUserSC && - V->getVPValueID() <= VPInstructionSC; - } - - void addOperand(VPValue *Operand) { - Operands.push_back(Operand); - Operand->addUser(*this); - } - - unsigned getNumOperands() const { return Operands.size(); } - inline VPValue *getOperand(unsigned N) const { - assert(N < Operands.size() && "Operand index out of bounds"); - return Operands[N]; - } - - void setOperand(unsigned I, VPValue *New) { Operands[I] = New; } - - typedef SmallVectorImpl<VPValue *>::iterator operand_iterator; - typedef SmallVectorImpl<VPValue *>::const_iterator const_operand_iterator; - typedef iterator_range<operand_iterator> operand_range; - typedef iterator_range<const_operand_iterator> const_operand_range; - - operand_iterator op_begin() { return Operands.begin(); } - const_operand_iterator op_begin() const { return Operands.begin(); } - operand_iterator op_end() { return Operands.end(); } - const_operand_iterator op_end() const { return Operands.end(); } - operand_range operands() { return operand_range(op_begin(), op_end()); } - const_operand_range operands() const { - return const_operand_range(op_begin(), op_end()); - } -}; - -} // namespace llvm - -#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp b/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp deleted file mode 100644 index 394b1b93113b..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.cpp +++ /dev/null @@ -1,132 +0,0 @@ -//===-- VPlanVerifier.cpp -------------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file defines the class VPlanVerifier, which contains utility functions -/// to check the consistency and invariants of a VPlan. -/// -//===----------------------------------------------------------------------===// - -#include "VPlanVerifier.h" -#include "llvm/ADT/DepthFirstIterator.h" - -#define DEBUG_TYPE "loop-vectorize" - -using namespace llvm; - -static cl::opt<bool> EnableHCFGVerifier("vplan-verify-hcfg", cl::init(false), - cl::Hidden, - cl::desc("Verify VPlan H-CFG.")); - -#ifndef NDEBUG -/// Utility function that checks whether \p VPBlockVec has duplicate -/// VPBlockBases. -static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) { - SmallDenseSet<const VPBlockBase *, 8> VPBlockSet; - for (const auto *Block : VPBlockVec) { - if (VPBlockSet.count(Block)) - return true; - VPBlockSet.insert(Block); - } - return false; -} -#endif - -/// Helper function that verifies the CFG invariants of the VPBlockBases within -/// \p Region. Checks in this function are generic for VPBlockBases. They are -/// not specific for VPBasicBlocks or VPRegionBlocks. -static void verifyBlocksInRegion(const VPRegionBlock *Region) { - for (const VPBlockBase *VPB : - make_range(df_iterator<const VPBlockBase *>::begin(Region->getEntry()), - df_iterator<const VPBlockBase *>::end(Region->getExit()))) { - // Check block's parent. - assert(VPB->getParent() == Region && "VPBlockBase has wrong parent"); - - // Check block's condition bit. - if (VPB->getNumSuccessors() > 1) - assert(VPB->getCondBit() && "Missing condition bit!"); - else - assert(!VPB->getCondBit() && "Unexpected condition bit!"); - - // Check block's successors. - const auto &Successors = VPB->getSuccessors(); - // There must be only one instance of a successor in block's successor list. - // TODO: This won't work for switch statements. - assert(!hasDuplicates(Successors) && - "Multiple instances of the same successor."); - - for (const VPBlockBase *Succ : Successors) { - // There must be a bi-directional link between block and successor. - const auto &SuccPreds = Succ->getPredecessors(); - assert(std::find(SuccPreds.begin(), SuccPreds.end(), VPB) != - SuccPreds.end() && - "Missing predecessor link."); - (void)SuccPreds; - } - - // Check block's predecessors. - const auto &Predecessors = VPB->getPredecessors(); - // There must be only one instance of a predecessor in block's predecessor - // list. - // TODO: This won't work for switch statements. - assert(!hasDuplicates(Predecessors) && - "Multiple instances of the same predecessor."); - - for (const VPBlockBase *Pred : Predecessors) { - // Block and predecessor must be inside the same region. - assert(Pred->getParent() == VPB->getParent() && - "Predecessor is not in the same region."); - - // There must be a bi-directional link between block and predecessor. - const auto &PredSuccs = Pred->getSuccessors(); - assert(std::find(PredSuccs.begin(), PredSuccs.end(), VPB) != - PredSuccs.end() && - "Missing successor link."); - (void)PredSuccs; - } - } -} - -/// Verify the CFG invariants of VPRegionBlock \p Region and its nested -/// VPBlockBases. Do not recurse inside nested VPRegionBlocks. -static void verifyRegion(const VPRegionBlock *Region) { - const VPBlockBase *Entry = Region->getEntry(); - const VPBlockBase *Exit = Region->getExit(); - - // Entry and Exit shouldn't have any predecessor/successor, respectively. - assert(!Entry->getNumPredecessors() && "Region entry has predecessors."); - assert(!Exit->getNumSuccessors() && "Region exit has successors."); - (void)Entry; - (void)Exit; - - verifyBlocksInRegion(Region); -} - -/// Verify the CFG invariants of VPRegionBlock \p Region and its nested -/// VPBlockBases. Recurse inside nested VPRegionBlocks. -static void verifyRegionRec(const VPRegionBlock *Region) { - verifyRegion(Region); - - // Recurse inside nested regions. - for (const VPBlockBase *VPB : - make_range(df_iterator<const VPBlockBase *>::begin(Region->getEntry()), - df_iterator<const VPBlockBase *>::end(Region->getExit()))) { - if (const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB)) - verifyRegionRec(SubRegion); - } -} - -void VPlanVerifier::verifyHierarchicalCFG( - const VPRegionBlock *TopRegion) const { - if (!EnableHCFGVerifier) - return; - - LLVM_DEBUG(dbgs() << "Verifying VPlan H-CFG.\n"); - assert(!TopRegion->getParent() && "VPlan Top Region should have no parent."); - verifyRegionRec(TopRegion); -} diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h b/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h deleted file mode 100644 index 7d2b26252172..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/VPlanVerifier.h +++ /dev/null @@ -1,43 +0,0 @@ -//===-- VPlanVerifier.h -----------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file declares the class VPlanVerifier, which contains utility functions -/// to check the consistency of a VPlan. This includes the following kinds of -/// invariants: -/// -/// 1. Region/Block invariants: -/// - Region's entry/exit block must have no predecessors/successors, -/// respectively. -/// - Block's parent must be the region immediately containing the block. -/// - Linked blocks must have a bi-directional link (successor/predecessor). -/// - All predecessors/successors of a block must belong to the same region. -/// - Blocks must have no duplicated successor/predecessor. -/// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H -#define LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H - -#include "VPlan.h" - -namespace llvm { - -/// Class with utility functions that can be used to check the consistency and -/// invariants of a VPlan, including the components of its H-CFG. -class VPlanVerifier { -public: - /// Verify the invariants of the H-CFG starting from \p TopRegion. The - /// verification process comprises the following steps: - /// 1. Region/Block verification: Check the Region/Block verification - /// invariants for every region in the H-CFG. - void verifyHierarchicalCFG(const VPRegionBlock *TopRegion) const; -}; -} // namespace llvm - -#endif //LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H diff --git a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp deleted file mode 100644 index 6a4f9169c2af..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/Vectorize.cpp +++ /dev/null @@ -1,42 +0,0 @@ -//===-- Vectorize.cpp -----------------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements common infrastructure for libLLVMVectorizeOpts.a, which -// implements several vectorization transformations over the LLVM intermediate -// representation, including the C bindings for that library. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Vectorize.h" -#include "llvm-c/Initialization.h" -#include "llvm-c/Transforms/Vectorize.h" -#include "llvm/Analysis/Passes.h" -#include "llvm/IR/LegacyPassManager.h" -#include "llvm/InitializePasses.h" - -using namespace llvm; - -/// initializeVectorizationPasses - Initialize all passes linked into the -/// Vectorization library. -void llvm::initializeVectorization(PassRegistry &Registry) { - initializeLoopVectorizePass(Registry); - initializeSLPVectorizerPass(Registry); - initializeLoadStoreVectorizerLegacyPassPass(Registry); -} - -void LLVMInitializeVectorization(LLVMPassRegistryRef R) { - initializeVectorization(*unwrap(R)); -} - -void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) { - unwrap(PM)->add(createLoopVectorizePass()); -} - -void LLVMAddSLPVectorizePass(LLVMPassManagerRef PM) { - unwrap(PM)->add(createSLPVectorizerPass()); -} |
