diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-10-23 17:51:42 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-10-23 17:51:42 +0000 |
commit | 1d5ae1026e831016fc29fd927877c86af904481f (patch) | |
tree | 2cdfd12620fcfa5d9e4a0389f85368e8e36f63f9 /include/llvm/CodeGen/ModuloSchedule.h | |
parent | e6d1592492a3a379186bfb02bd0f4eda0669c0d5 (diff) |
Notes
Diffstat (limited to 'include/llvm/CodeGen/ModuloSchedule.h')
-rw-r--r-- | include/llvm/CodeGen/ModuloSchedule.h | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/ModuloSchedule.h b/include/llvm/CodeGen/ModuloSchedule.h new file mode 100644 index 000000000000..81a9b63b64ca --- /dev/null +++ b/include/llvm/CodeGen/ModuloSchedule.h @@ -0,0 +1,367 @@ +//===- ModuloSchedule.h - Software pipeline schedule expansion ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Software pipelining (SWP) is an instruction scheduling technique for loops +// that overlaps loop iterations and exploits ILP via compiler transformations. +// +// There are multiple methods for analyzing a loop and creating a schedule. +// An example algorithm is Swing Modulo Scheduling (implemented by the +// MachinePipeliner). The details of how a schedule is arrived at are irrelevant +// for the task of actually rewriting a loop to adhere to the schedule, which +// is what this file does. +// +// A schedule is, for every instruction in a block, a Cycle and a Stage. Note +// that we only support single-block loops, so "block" and "loop" can be used +// interchangably. +// +// The Cycle of an instruction defines a partial order of the instructions in +// the remapped loop. Instructions within a cycle must not consume the output +// of any instruction in the same cycle. Cycle information is assumed to have +// been calculated such that the processor will execute instructions in +// lock-step (for example in a VLIW ISA). +// +// The Stage of an instruction defines the mapping between logical loop +// iterations and pipelined loop iterations. An example (unrolled) pipeline +// may look something like: +// +// I0[0] Execute instruction I0 of iteration 0 +// I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1 +// I1[1], I0[2] +// I1[2], I0[3] +// +// In the schedule for this unrolled sequence we would say that I0 was scheduled +// in stage 0 and I1 in stage 1: +// +// loop: +// [stage 0] x = I0 +// [stage 1] I1 x (from stage 0) +// +// And to actually generate valid code we must insert a phi: +// +// loop: +// x' = phi(x) +// x = I0 +// I1 x' +// +// This is a simple example; the rules for how to generate correct code given +// an arbitrary schedule containing loop-carried values are complex. +// +// Note that these examples only mention the steady-state kernel of the +// generated loop; prologs and epilogs must be generated also that prime and +// flush the pipeline. Doing so is nontrivial. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_CODEGEN_MODULOSCHEDULE_H +#define LLVM_LIB_CODEGEN_MODULOSCHEDULE_H + +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineLoopUtils.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include <deque> +#include <vector> + +namespace llvm { +class MachineBasicBlock; +class MachineInstr; +class LiveIntervals; + +/// Represents a schedule for a single-block loop. For every instruction we +/// maintain a Cycle and Stage. +class ModuloSchedule { +private: + /// The block containing the loop instructions. + MachineLoop *Loop; + + /// The instructions to be generated, in total order. Cycle provides a partial + /// order; the total order within cycles has been decided by the schedule + /// producer. + std::vector<MachineInstr *> ScheduledInstrs; + + /// The cycle for each instruction. + DenseMap<MachineInstr *, int> Cycle; + + /// The stage for each instruction. + DenseMap<MachineInstr *, int> Stage; + + /// The number of stages in this schedule (Max(Stage) + 1). + int NumStages; + +public: + /// Create a new ModuloSchedule. + /// \arg ScheduledInstrs The new loop instructions, in total resequenced + /// order. + /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does + /// not need to start at zero. ScheduledInstrs must be partially ordered by + /// Cycle. + /// \arg Stage Stage index for all instructions in ScheduleInstrs. + ModuloSchedule(MachineFunction &MF, MachineLoop *Loop, + std::vector<MachineInstr *> ScheduledInstrs, + DenseMap<MachineInstr *, int> Cycle, + DenseMap<MachineInstr *, int> Stage) + : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)), + Stage(std::move(Stage)) { + NumStages = 0; + for (auto &KV : this->Stage) + NumStages = std::max(NumStages, KV.second); + ++NumStages; + } + + /// Return the single-block loop being scheduled. + MachineLoop *getLoop() const { return Loop; } + + /// Return the number of stages contained in this schedule, which is the + /// largest stage index + 1. + int getNumStages() const { return NumStages; } + + /// Return the first cycle in the schedule, which is the cycle index of the + /// first instruction. + int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; } + + /// Return the final cycle in the schedule, which is the cycle index of the + /// last instruction. + int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; } + + /// Return the stage that MI is scheduled in, or -1. + int getStage(MachineInstr *MI) { + auto I = Stage.find(MI); + return I == Stage.end() ? -1 : I->second; + } + + /// Return the cycle that MI is scheduled at, or -1. + int getCycle(MachineInstr *MI) { + auto I = Cycle.find(MI); + return I == Cycle.end() ? -1 : I->second; + } + + /// Return the rescheduled instructions in order. + ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; } + + void dump() { print(dbgs()); } + void print(raw_ostream &OS); +}; + +/// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, +/// rewriting the old loop and inserting prologs and epilogs as required. +class ModuloScheduleExpander { +public: + using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>; + +private: + using ValueMapTy = DenseMap<unsigned, unsigned>; + using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; + using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; + + ModuloSchedule &Schedule; + MachineFunction &MF; + const TargetSubtargetInfo &ST; + MachineRegisterInfo &MRI; + const TargetInstrInfo *TII; + LiveIntervals &LIS; + + MachineBasicBlock *BB; + MachineBasicBlock *Preheader; + MachineBasicBlock *NewKernel = nullptr; + std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; + + /// Map for each register and the max difference between its uses and def. + /// The first element in the pair is the max difference in stages. The + /// second is true if the register defines a Phi value and loop value is + /// scheduled before the Phi. + std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; + + /// Instructions to change when emitting the final schedule. + InstrChangesTy InstrChanges; + + void generatePipelinedLoop(); + void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB, + ValueMapTy *VRMap, MBBVectorTy &PrologBBs); + void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB, + ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, + MBBVectorTy &PrologBBs); + void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, + MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, + ValueMapTy *VRMap, InstrMapTy &InstrMap, + unsigned LastStageNum, unsigned CurStageNum, + bool IsLast); + void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, + MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, + ValueMapTy *VRMap, InstrMapTy &InstrMap, + unsigned LastStageNum, unsigned CurStageNum, bool IsLast); + void removeDeadInstructions(MachineBasicBlock *KernelBB, + MBBVectorTy &EpilogBBs); + void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs); + void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs, + MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, + ValueMapTy *VRMap); + bool computeDelta(MachineInstr &MI, unsigned &Delta); + void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, + unsigned Num); + MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, + unsigned InstStageNum); + MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, + unsigned InstStageNum); + void updateInstruction(MachineInstr *NewMI, bool LastDef, + unsigned CurStageNum, unsigned InstrStageNum, + ValueMapTy *VRMap); + MachineInstr *findDefInLoop(unsigned Reg); + unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, + unsigned LoopStage, ValueMapTy *VRMap, + MachineBasicBlock *BB); + void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, + ValueMapTy *VRMap, InstrMapTy &InstrMap); + void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap, + unsigned CurStageNum, unsigned PhiNum, + MachineInstr *Phi, unsigned OldReg, + unsigned NewReg, unsigned PrevReg = 0); + bool isLoopCarried(MachineInstr &Phi); + + /// Return the max. number of stages/iterations that can occur between a + /// register definition and its uses. + unsigned getStagesForReg(int Reg, unsigned CurStage) { + std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; + if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 && + Stages.second) + return 1; + return Stages.first; + } + + /// The number of stages for a Phi is a little different than other + /// instructions. The minimum value computed in RegToStageDiff is 1 + /// because we assume the Phi is needed for at least 1 iteration. + /// This is not the case if the loop value is scheduled prior to the + /// Phi in the same stage. This function returns the number of stages + /// or iterations needed between the Phi definition and any uses. + unsigned getStagesForPhi(int Reg) { + std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; + if (Stages.second) + return Stages.first; + return Stages.first - 1; + } + +public: + /// Create a new ModuloScheduleExpander. + /// \arg InstrChanges Modifications to make to instructions with memory + /// operands. + /// FIXME: InstrChanges is opaque and is an implementation detail of an + /// optimization in MachinePipeliner that crosses abstraction boundaries. + ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, + LiveIntervals &LIS, InstrChangesTy InstrChanges) + : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), + TII(ST.getInstrInfo()), LIS(LIS), + InstrChanges(std::move(InstrChanges)) {} + + /// Performs the actual expansion. + void expand(); + /// Performs final cleanup after expansion. + void cleanup(); + + /// Returns the newly rewritten kernel block, or nullptr if this was + /// optimized away. + MachineBasicBlock *getRewrittenKernel() { return NewKernel; } +}; + +/// A reimplementation of ModuloScheduleExpander. It works by generating a +/// standalone kernel loop and peeling out the prologs and epilogs. +class PeelingModuloScheduleExpander { + ModuloSchedule &Schedule; + MachineFunction &MF; + const TargetSubtargetInfo &ST; + MachineRegisterInfo &MRI; + const TargetInstrInfo *TII; + LiveIntervals *LIS; + + /// The original loop block that gets rewritten in-place. + MachineBasicBlock *BB; + /// The original loop preheader. + MachineBasicBlock *Preheader; + /// All prolog and epilog blocks. + SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs; + /// For every block, the stages that are produced. + DenseMap<MachineBasicBlock *, BitVector> LiveStages; + /// For every block, the stages that are available. A stage can be available + /// but not produced (in the epilog) or produced but not available (in the + /// prolog). + DenseMap<MachineBasicBlock *, BitVector> AvailableStages; + + /// CanonicalMIs and BlockMIs form a bidirectional map between any of the + /// loop kernel clones. + DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs; + DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *> + BlockMIs; + + /// State passed from peelKernel to peelPrologAndEpilogs(). + std::deque<MachineBasicBlock *> PeeledFront, PeeledBack; + +public: + PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, + LiveIntervals *LIS) + : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), + TII(ST.getInstrInfo()), LIS(LIS) {} + + void expand(); + + /// Runs ModuloScheduleExpander and treats it as a golden input to validate + /// aspects of the code generated by PeelingModuloScheduleExpander. + void validateAgainstModuloScheduleExpander(); + +protected: + /// Converts BB from the original loop body to the rewritten, pipelined + /// steady-state. + void rewriteKernel(); + +private: + /// Peels one iteration of the rewritten kernel (BB) in the specified + /// direction. + MachineBasicBlock *peelKernel(LoopPeelDirection LPD); + /// Peel the kernel forwards and backwards to produce prologs and epilogs, + /// and stitch them together. + void peelPrologAndEpilogs(); + /// All prolog and epilog blocks are clones of the kernel, so any produced + /// register in one block has an corollary in all other blocks. + Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB); + /// Change all users of MI, if MI is predicated out + /// (LiveStages[MI->getParent()] == false). + void rewriteUsesOf(MachineInstr *MI); + /// Insert branches between prologs, kernel and epilogs. + void fixupBranches(); + /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block + /// to a block dominated by all prologs and epilogs. This allows us to treat + /// the loop exiting block as any other kernel clone. + MachineBasicBlock *CreateLCSSAExitingBlock(); + /// Helper to get the stage of an instruction in the schedule. + unsigned getStage(MachineInstr *MI) { + if (CanonicalMIs.count(MI)) + MI = CanonicalMIs[MI]; + return Schedule.getStage(MI); + } +}; + +/// Expander that simply annotates each scheduled instruction with a post-instr +/// symbol that can be consumed by the ModuloScheduleTest pass. +/// +/// The post-instr symbol is a way of annotating an instruction that can be +/// roundtripped in MIR. The syntax is: +/// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5> +class ModuloScheduleTestAnnotater { + MachineFunction &MF; + ModuloSchedule &S; + +public: + ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S) + : MF(MF), S(S) {} + + /// Performs the annotation. + void annotate(); +}; + +} // end namespace llvm + +#endif // LLVM_LIB_CODEGEN_MODULOSCHEDULE_H |