aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Transforms/IPO/LowerBitSets.h
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2015-05-27 18:44:32 +0000
committerDimitry Andric <dim@FreeBSD.org>2015-05-27 18:44:32 +0000
commit5a5ac124e1efaf208671f01c46edb15f29ed2a0b (patch)
treea6140557876943cdd800ee997c9317283394b22c /include/llvm/Transforms/IPO/LowerBitSets.h
parentf03b5bed27d0d2eafd68562ce14f8b5e3f1f0801 (diff)
Diffstat (limited to 'include/llvm/Transforms/IPO/LowerBitSets.h')
-rw-r--r--include/llvm/Transforms/IPO/LowerBitSets.h198
1 files changed, 198 insertions, 0 deletions
diff --git a/include/llvm/Transforms/IPO/LowerBitSets.h b/include/llvm/Transforms/IPO/LowerBitSets.h
new file mode 100644
index 000000000000..55d7d84560a0
--- /dev/null
+++ b/include/llvm/Transforms/IPO/LowerBitSets.h
@@ -0,0 +1,198 @@
+//===- LowerBitSets.h - Bitset lowering pass --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines parts of the bitset lowering pass implementation that may
+// be usefully unit tested.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_IPO_LOWERBITSETS_H
+#define LLVM_TRANSFORMS_IPO_LOWERBITSETS_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+
+#include <stdint.h>
+#include <limits>
+#include <set>
+#include <vector>
+
+namespace llvm {
+
+class DataLayout;
+class GlobalVariable;
+class Value;
+
+struct BitSetInfo {
+ // The indices of the set bits in the bitset.
+ std::set<uint64_t> Bits;
+
+ // The byte offset into the combined global represented by the bitset.
+ uint64_t ByteOffset;
+
+ // The size of the bitset in bits.
+ uint64_t BitSize;
+
+ // Log2 alignment of the bit set relative to the combined global.
+ // For example, a log2 alignment of 3 means that bits in the bitset
+ // represent addresses 8 bytes apart.
+ unsigned AlignLog2;
+
+ bool isSingleOffset() const {
+ return Bits.size() == 1;
+ }
+
+ bool isAllOnes() const {
+ return Bits.size() == BitSize;
+ }
+
+ bool containsGlobalOffset(uint64_t Offset) const;
+
+ bool containsValue(const DataLayout &DL,
+ const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout,
+ Value *V, uint64_t COffset = 0) const;
+};
+
+struct BitSetBuilder {
+ SmallVector<uint64_t, 16> Offsets;
+ uint64_t Min, Max;
+
+ BitSetBuilder() : Min(std::numeric_limits<uint64_t>::max()), Max(0) {}
+
+ void addOffset(uint64_t Offset) {
+ if (Min > Offset)
+ Min = Offset;
+ if (Max < Offset)
+ Max = Offset;
+
+ Offsets.push_back(Offset);
+ }
+
+ BitSetInfo build();
+};
+
+/// This class implements a layout algorithm for globals referenced by bit sets
+/// that tries to keep members of small bit sets together. This can
+/// significantly reduce bit set sizes in many cases.
+///
+/// It works by assembling fragments of layout from sets of referenced globals.
+/// Each set of referenced globals causes the algorithm to create a new
+/// fragment, which is assembled by appending each referenced global in the set
+/// into the fragment. If a referenced global has already been referenced by an
+/// fragment created earlier, we instead delete that fragment and append its
+/// contents into the fragment we are assembling.
+///
+/// By starting with the smallest fragments, we minimize the size of the
+/// fragments that are copied into larger fragments. This is most intuitively
+/// thought about when considering the case where the globals are virtual tables
+/// and the bit sets represent their derived classes: in a single inheritance
+/// hierarchy, the optimum layout would involve a depth-first search of the
+/// class hierarchy (and in fact the computed layout ends up looking a lot like
+/// a DFS), but a naive DFS would not work well in the presence of multiple
+/// inheritance. This aspect of the algorithm ends up fitting smaller
+/// hierarchies inside larger ones where that would be beneficial.
+///
+/// For example, consider this class hierarchy:
+///
+/// A B
+/// \ / | \
+/// C D E
+///
+/// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
+/// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
+/// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
+/// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
+/// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
+///
+/// Add bsC, fragments {{C}}
+/// Add bsD, fragments {{C}, {D}}
+/// Add bsE, fragments {{C}, {D}, {E}}
+/// Add bsA, fragments {{A, C}, {D}, {E}}
+/// Add bsB, fragments {{B, A, C, D, E}}
+///
+/// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
+/// fewer) objects, at the cost of bsB needing to cover 1 more object.
+///
+/// The bit set lowering pass assigns an object index to each object that needs
+/// to be laid out, and calls addFragment for each bit set passing the object
+/// indices of its referenced globals. It then assembles a layout from the
+/// computed layout in the Fragments field.
+struct GlobalLayoutBuilder {
+ /// The computed layout. Each element of this vector contains a fragment of
+ /// layout (which may be empty) consisting of object indices.
+ std::vector<std::vector<uint64_t>> Fragments;
+
+ /// Mapping from object index to fragment index.
+ std::vector<uint64_t> FragmentMap;
+
+ GlobalLayoutBuilder(uint64_t NumObjects)
+ : Fragments(1), FragmentMap(NumObjects) {}
+
+ /// Add F to the layout while trying to keep its indices contiguous.
+ /// If a previously seen fragment uses any of F's indices, that
+ /// fragment will be laid out inside F.
+ void addFragment(const std::set<uint64_t> &F);
+};
+
+/// This class is used to build a byte array containing overlapping bit sets. By
+/// loading from indexed offsets into the byte array and applying a mask, a
+/// program can test bits from the bit set with a relatively short instruction
+/// sequence. For example, suppose we have 15 bit sets to lay out:
+///
+/// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
+/// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
+/// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
+///
+/// These bits can be laid out in a 16-byte array like this:
+///
+/// Byte Offset
+/// 0123456789ABCDEF
+/// Bit
+/// 7 HHHHHHHHHIIIIIII
+/// 6 GGGGGGGGGGJJJJJJ
+/// 5 FFFFFFFFFFFKKKKK
+/// 4 EEEEEEEEEEEELLLL
+/// 3 DDDDDDDDDDDDDMMM
+/// 2 CCCCCCCCCCCCCCNN
+/// 1 BBBBBBBBBBBBBBBO
+/// 0 AAAAAAAAAAAAAAAA
+///
+/// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
+/// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
+/// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
+///
+/// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
+/// because for one thing it gives us better packing (the more bins there are,
+/// the less evenly they will be filled), and for another, the instruction
+/// sequences can be slightly shorter, both on x86 and ARM.
+struct ByteArrayBuilder {
+ /// The byte array built so far.
+ std::vector<uint8_t> Bytes;
+
+ enum { BitsPerByte = 8 };
+
+ /// The number of bytes allocated so far for each of the bits.
+ uint64_t BitAllocs[BitsPerByte];
+
+ ByteArrayBuilder() {
+ memset(BitAllocs, 0, sizeof(BitAllocs));
+ }
+
+ /// Allocate BitSize bits in the byte array where Bits contains the bits to
+ /// set. AllocByteOffset is set to the offset within the byte array and
+ /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
+ /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
+ /// efficiently; the pass allocates bit sets in decreasing size order.
+ void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
+ uint64_t &AllocByteOffset, uint8_t &AllocMask);
+};
+
+} // namespace llvm
+
+#endif