diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 | 
| commit | 4a16efa3e43e35f0cc9efe3a67f620f0017c3d36 (patch) | |
| tree | 06099edc18d30894081a822b756f117cbe0b8207 /lib/IR/Constants.cpp | |
| parent | 482e7bddf617ae804dc47133cb07eb4aa81e45de (diff) | |
Diffstat (limited to 'lib/IR/Constants.cpp')
| -rw-r--r-- | lib/IR/Constants.cpp | 2779 | 
1 files changed, 2779 insertions, 0 deletions
| diff --git a/lib/IR/Constants.cpp b/lib/IR/Constants.cpp new file mode 100644 index 000000000000..1abb65643559 --- /dev/null +++ b/lib/IR/Constants.cpp @@ -0,0 +1,2779 @@ +//===-- Constants.cpp - Implement Constant nodes --------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Constant* classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Constants.h" +#include "ConstantFold.h" +#include "LLVMContextImpl.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstdarg> +using namespace llvm; + +//===----------------------------------------------------------------------===// +//                              Constant Class +//===----------------------------------------------------------------------===// + +void Constant::anchor() { } + +bool Constant::isNegativeZeroValue() const { +  // Floating point values have an explicit -0.0 value. +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) +    return CFP->isZero() && CFP->isNegative(); + +  // Equivalent for a vector of -0.0's. +  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) +    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) +      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) +        return true; + +  // We've already handled true FP case; any other FP vectors can't represent -0.0. +  if (getType()->isFPOrFPVectorTy()) +    return false; + +  // Otherwise, just use +0.0. +  return isNullValue(); +} + +// Return true iff this constant is positive zero (floating point), negative +// zero (floating point), or a null value. +bool Constant::isZeroValue() const { +  // Floating point values have an explicit -0.0 value. +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) +    return CFP->isZero(); + +  // Otherwise, just use +0.0. +  return isNullValue(); +} + +bool Constant::isNullValue() const { +  // 0 is null. +  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) +    return CI->isZero(); + +  // +0.0 is null. +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) +    return CFP->isZero() && !CFP->isNegative(); + +  // constant zero is zero for aggregates and cpnull is null for pointers. +  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); +} + +bool Constant::isAllOnesValue() const { +  // Check for -1 integers +  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) +    return CI->isMinusOne(); + +  // Check for FP which are bitcasted from -1 integers +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) +    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); + +  // Check for constant vectors which are splats of -1 values. +  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) +    if (Constant *Splat = CV->getSplatValue()) +      return Splat->isAllOnesValue(); + +  // Check for constant vectors which are splats of -1 values. +  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) +    if (Constant *Splat = CV->getSplatValue()) +      return Splat->isAllOnesValue(); + +  return false; +} + +// Constructor to create a '0' constant of arbitrary type... +Constant *Constant::getNullValue(Type *Ty) { +  switch (Ty->getTypeID()) { +  case Type::IntegerTyID: +    return ConstantInt::get(Ty, 0); +  case Type::HalfTyID: +    return ConstantFP::get(Ty->getContext(), +                           APFloat::getZero(APFloat::IEEEhalf)); +  case Type::FloatTyID: +    return ConstantFP::get(Ty->getContext(), +                           APFloat::getZero(APFloat::IEEEsingle)); +  case Type::DoubleTyID: +    return ConstantFP::get(Ty->getContext(), +                           APFloat::getZero(APFloat::IEEEdouble)); +  case Type::X86_FP80TyID: +    return ConstantFP::get(Ty->getContext(), +                           APFloat::getZero(APFloat::x87DoubleExtended)); +  case Type::FP128TyID: +    return ConstantFP::get(Ty->getContext(), +                           APFloat::getZero(APFloat::IEEEquad)); +  case Type::PPC_FP128TyID: +    return ConstantFP::get(Ty->getContext(), +                           APFloat(APFloat::PPCDoubleDouble, +                                   APInt::getNullValue(128))); +  case Type::PointerTyID: +    return ConstantPointerNull::get(cast<PointerType>(Ty)); +  case Type::StructTyID: +  case Type::ArrayTyID: +  case Type::VectorTyID: +    return ConstantAggregateZero::get(Ty); +  default: +    // Function, Label, or Opaque type? +    llvm_unreachable("Cannot create a null constant of that type!"); +  } +} + +Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { +  Type *ScalarTy = Ty->getScalarType(); + +  // Create the base integer constant. +  Constant *C = ConstantInt::get(Ty->getContext(), V); + +  // Convert an integer to a pointer, if necessary. +  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) +    C = ConstantExpr::getIntToPtr(C, PTy); + +  // Broadcast a scalar to a vector, if necessary. +  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) +    C = ConstantVector::getSplat(VTy->getNumElements(), C); + +  return C; +} + +Constant *Constant::getAllOnesValue(Type *Ty) { +  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) +    return ConstantInt::get(Ty->getContext(), +                            APInt::getAllOnesValue(ITy->getBitWidth())); + +  if (Ty->isFloatingPointTy()) { +    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), +                                          !Ty->isPPC_FP128Ty()); +    return ConstantFP::get(Ty->getContext(), FL); +  } + +  VectorType *VTy = cast<VectorType>(Ty); +  return ConstantVector::getSplat(VTy->getNumElements(), +                                  getAllOnesValue(VTy->getElementType())); +} + +/// getAggregateElement - For aggregates (struct/array/vector) return the +/// constant that corresponds to the specified element if possible, or null if +/// not.  This can return null if the element index is a ConstantExpr, or if +/// 'this' is a constant expr. +Constant *Constant::getAggregateElement(unsigned Elt) const { +  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) +    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; + +  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) +    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; + +  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) +    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; + +  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) +    return CAZ->getElementValue(Elt); + +  if (const UndefValue *UV = dyn_cast<UndefValue>(this)) +    return UV->getElementValue(Elt); + +  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) +    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; +  return 0; +} + +Constant *Constant::getAggregateElement(Constant *Elt) const { +  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) +    return getAggregateElement(CI->getZExtValue()); +  return 0; +} + + +void Constant::destroyConstantImpl() { +  // When a Constant is destroyed, there may be lingering +  // references to the constant by other constants in the constant pool.  These +  // constants are implicitly dependent on the module that is being deleted, +  // but they don't know that.  Because we only find out when the CPV is +  // deleted, we must now notify all of our users (that should only be +  // Constants) that they are, in fact, invalid now and should be deleted. +  // +  while (!use_empty()) { +    Value *V = use_back(); +#ifndef NDEBUG      // Only in -g mode... +    if (!isa<Constant>(V)) { +      dbgs() << "While deleting: " << *this +             << "\n\nUse still stuck around after Def is destroyed: " +             << *V << "\n\n"; +    } +#endif +    assert(isa<Constant>(V) && "References remain to Constant being destroyed"); +    cast<Constant>(V)->destroyConstant(); + +    // The constant should remove itself from our use list... +    assert((use_empty() || use_back() != V) && "Constant not removed!"); +  } + +  // Value has no outstanding references it is safe to delete it now... +  delete this; +} + +/// canTrap - Return true if evaluation of this constant could trap.  This is +/// true for things like constant expressions that could divide by zero. +bool Constant::canTrap() const { +  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); +  // The only thing that could possibly trap are constant exprs. +  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); +  if (!CE) return false; + +  // ConstantExpr traps if any operands can trap. +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) +    if (CE->getOperand(i)->canTrap()) +      return true; + +  // Otherwise, only specific operations can trap. +  switch (CE->getOpcode()) { +  default: +    return false; +  case Instruction::UDiv: +  case Instruction::SDiv: +  case Instruction::FDiv: +  case Instruction::URem: +  case Instruction::SRem: +  case Instruction::FRem: +    // Div and rem can trap if the RHS is not known to be non-zero. +    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) +      return true; +    return false; +  } +} + +/// isThreadDependent - Return true if the value can vary between threads. +bool Constant::isThreadDependent() const { +  SmallPtrSet<const Constant*, 64> Visited; +  SmallVector<const Constant*, 64> WorkList; +  WorkList.push_back(this); +  Visited.insert(this); + +  while (!WorkList.empty()) { +    const Constant *C = WorkList.pop_back_val(); + +    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { +      if (GV->isThreadLocal()) +        return true; +    } + +    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { +      const Constant *D = dyn_cast<Constant>(C->getOperand(I)); +      if (!D) +        continue; +      if (Visited.insert(D)) +        WorkList.push_back(D); +    } +  } + +  return false; +} + +/// isConstantUsed - Return true if the constant has users other than constant +/// exprs and other dangling things. +bool Constant::isConstantUsed() const { +  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { +    const Constant *UC = dyn_cast<Constant>(*UI); +    if (UC == 0 || isa<GlobalValue>(UC)) +      return true; + +    if (UC->isConstantUsed()) +      return true; +  } +  return false; +} + + + +/// getRelocationInfo - This method classifies the entry according to +/// whether or not it may generate a relocation entry.  This must be +/// conservative, so if it might codegen to a relocatable entry, it should say +/// so.  The return values are: +///  +///  NoRelocation: This constant pool entry is guaranteed to never have a +///     relocation applied to it (because it holds a simple constant like +///     '4'). +///  LocalRelocation: This entry has relocations, but the entries are +///     guaranteed to be resolvable by the static linker, so the dynamic +///     linker will never see them. +///  GlobalRelocations: This entry may have arbitrary relocations. +/// +/// FIXME: This really should not be in IR. +Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { +  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { +    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) +      return LocalRelocation;  // Local to this file/library. +    return GlobalRelocations;    // Global reference. +  } +   +  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) +    return BA->getFunction()->getRelocationInfo(); +   +  // While raw uses of blockaddress need to be relocated, differences between +  // two of them don't when they are for labels in the same function.  This is a +  // common idiom when creating a table for the indirect goto extension, so we +  // handle it efficiently here. +  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) +    if (CE->getOpcode() == Instruction::Sub) { +      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); +      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); +      if (LHS && RHS && +          LHS->getOpcode() == Instruction::PtrToInt && +          RHS->getOpcode() == Instruction::PtrToInt && +          isa<BlockAddress>(LHS->getOperand(0)) && +          isa<BlockAddress>(RHS->getOperand(0)) && +          cast<BlockAddress>(LHS->getOperand(0))->getFunction() == +            cast<BlockAddress>(RHS->getOperand(0))->getFunction()) +        return NoRelocation; +    } + +  PossibleRelocationsTy Result = NoRelocation; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) +    Result = std::max(Result, +                      cast<Constant>(getOperand(i))->getRelocationInfo()); + +  return Result; +} + +/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove +/// it.  This involves recursively eliminating any dead users of the +/// constantexpr. +static bool removeDeadUsersOfConstant(const Constant *C) { +  if (isa<GlobalValue>(C)) return false; // Cannot remove this + +  while (!C->use_empty()) { +    const Constant *User = dyn_cast<Constant>(C->use_back()); +    if (!User) return false; // Non-constant usage; +    if (!removeDeadUsersOfConstant(User)) +      return false; // Constant wasn't dead +  } + +  const_cast<Constant*>(C)->destroyConstant(); +  return true; +} + + +/// removeDeadConstantUsers - If there are any dead constant users dangling +/// off of this constant, remove them.  This method is useful for clients +/// that want to check to see if a global is unused, but don't want to deal +/// with potentially dead constants hanging off of the globals. +void Constant::removeDeadConstantUsers() const { +  Value::const_use_iterator I = use_begin(), E = use_end(); +  Value::const_use_iterator LastNonDeadUser = E; +  while (I != E) { +    const Constant *User = dyn_cast<Constant>(*I); +    if (User == 0) { +      LastNonDeadUser = I; +      ++I; +      continue; +    } + +    if (!removeDeadUsersOfConstant(User)) { +      // If the constant wasn't dead, remember that this was the last live use +      // and move on to the next constant. +      LastNonDeadUser = I; +      ++I; +      continue; +    } + +    // If the constant was dead, then the iterator is invalidated. +    if (LastNonDeadUser == E) { +      I = use_begin(); +      if (I == E) break; +    } else { +      I = LastNonDeadUser; +      ++I; +    } +  } +} + + + +//===----------------------------------------------------------------------===// +//                                ConstantInt +//===----------------------------------------------------------------------===// + +void ConstantInt::anchor() { } + +ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) +  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { +  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); +} + +ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { +  LLVMContextImpl *pImpl = Context.pImpl; +  if (!pImpl->TheTrueVal) +    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); +  return pImpl->TheTrueVal; +} + +ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { +  LLVMContextImpl *pImpl = Context.pImpl; +  if (!pImpl->TheFalseVal) +    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); +  return pImpl->TheFalseVal; +} + +Constant *ConstantInt::getTrue(Type *Ty) { +  VectorType *VTy = dyn_cast<VectorType>(Ty); +  if (!VTy) { +    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); +    return ConstantInt::getTrue(Ty->getContext()); +  } +  assert(VTy->getElementType()->isIntegerTy(1) && +         "True must be vector of i1 or i1."); +  return ConstantVector::getSplat(VTy->getNumElements(), +                                  ConstantInt::getTrue(Ty->getContext())); +} + +Constant *ConstantInt::getFalse(Type *Ty) { +  VectorType *VTy = dyn_cast<VectorType>(Ty); +  if (!VTy) { +    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); +    return ConstantInt::getFalse(Ty->getContext()); +  } +  assert(VTy->getElementType()->isIntegerTy(1) && +         "False must be vector of i1 or i1."); +  return ConstantVector::getSplat(VTy->getNumElements(), +                                  ConstantInt::getFalse(Ty->getContext())); +} + + +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap  +// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { +  // Get the corresponding integer type for the bit width of the value. +  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); +  // get an existing value or the insertion position +  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); +  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];  +  if (!Slot) Slot = new ConstantInt(ITy, V); +  return Slot; +} + +Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { +  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); + +  // For vectors, broadcast the value. +  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) +    return ConstantVector::getSplat(VTy->getNumElements(), C); + +  return C; +} + +ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,  +                              bool isSigned) { +  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); +} + +ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { +  return get(Ty, V, true); +} + +Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { +  return get(Ty, V, true); +} + +Constant *ConstantInt::get(Type *Ty, const APInt& V) { +  ConstantInt *C = get(Ty->getContext(), V); +  assert(C->getType() == Ty->getScalarType() && +         "ConstantInt type doesn't match the type implied by its value!"); + +  // For vectors, broadcast the value. +  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) +    return ConstantVector::getSplat(VTy->getNumElements(), C); + +  return C; +} + +ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, +                              uint8_t radix) { +  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); +} + +//===----------------------------------------------------------------------===// +//                                ConstantFP +//===----------------------------------------------------------------------===// + +static const fltSemantics *TypeToFloatSemantics(Type *Ty) { +  if (Ty->isHalfTy()) +    return &APFloat::IEEEhalf; +  if (Ty->isFloatTy()) +    return &APFloat::IEEEsingle; +  if (Ty->isDoubleTy()) +    return &APFloat::IEEEdouble; +  if (Ty->isX86_FP80Ty()) +    return &APFloat::x87DoubleExtended; +  else if (Ty->isFP128Ty()) +    return &APFloat::IEEEquad; + +  assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); +  return &APFloat::PPCDoubleDouble; +} + +void ConstantFP::anchor() { } + +/// get() - This returns a constant fp for the specified value in the +/// specified type.  This should only be used for simple constant values like +/// 2.0/1.0 etc, that are known-valid both as double and as the target format. +Constant *ConstantFP::get(Type *Ty, double V) { +  LLVMContext &Context = Ty->getContext(); + +  APFloat FV(V); +  bool ignored; +  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), +             APFloat::rmNearestTiesToEven, &ignored); +  Constant *C = get(Context, FV); + +  // For vectors, broadcast the value. +  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) +    return ConstantVector::getSplat(VTy->getNumElements(), C); + +  return C; +} + + +Constant *ConstantFP::get(Type *Ty, StringRef Str) { +  LLVMContext &Context = Ty->getContext(); + +  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); +  Constant *C = get(Context, FV); + +  // For vectors, broadcast the value. +  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) +    return ConstantVector::getSplat(VTy->getNumElements(), C); + +  return C;  +} + + +ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { +  LLVMContext &Context = Ty->getContext(); +  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); +  apf.changeSign(); +  return get(Context, apf); +} + + +Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { +  Type *ScalarTy = Ty->getScalarType(); +  if (ScalarTy->isFloatingPointTy()) { +    Constant *C = getNegativeZero(ScalarTy); +    if (VectorType *VTy = dyn_cast<VectorType>(Ty)) +      return ConstantVector::getSplat(VTy->getNumElements(), C); +    return C; +  } + +  return Constant::getNullValue(Ty); +} + + +// ConstantFP accessors. +ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { +  DenseMapAPFloatKeyInfo::KeyTy Key(V); + +  LLVMContextImpl* pImpl = Context.pImpl; + +  ConstantFP *&Slot = pImpl->FPConstants[Key]; + +  if (!Slot) { +    Type *Ty; +    if (&V.getSemantics() == &APFloat::IEEEhalf) +      Ty = Type::getHalfTy(Context); +    else if (&V.getSemantics() == &APFloat::IEEEsingle) +      Ty = Type::getFloatTy(Context); +    else if (&V.getSemantics() == &APFloat::IEEEdouble) +      Ty = Type::getDoubleTy(Context); +    else if (&V.getSemantics() == &APFloat::x87DoubleExtended) +      Ty = Type::getX86_FP80Ty(Context); +    else if (&V.getSemantics() == &APFloat::IEEEquad) +      Ty = Type::getFP128Ty(Context); +    else { +      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&  +             "Unknown FP format"); +      Ty = Type::getPPC_FP128Ty(Context); +    } +    Slot = new ConstantFP(Ty, V); +  } + +  return Slot; +} + +ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { +  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); +  return ConstantFP::get(Ty->getContext(), +                         APFloat::getInf(Semantics, Negative)); +} + +ConstantFP::ConstantFP(Type *Ty, const APFloat& V) +  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { +  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && +         "FP type Mismatch"); +} + +bool ConstantFP::isExactlyValue(const APFloat &V) const { +  return Val.bitwiseIsEqual(V); +} + +//===----------------------------------------------------------------------===// +//                   ConstantAggregateZero Implementation +//===----------------------------------------------------------------------===// + +/// getSequentialElement - If this CAZ has array or vector type, return a zero +/// with the right element type. +Constant *ConstantAggregateZero::getSequentialElement() const { +  return Constant::getNullValue(getType()->getSequentialElementType()); +} + +/// getStructElement - If this CAZ has struct type, return a zero with the +/// right element type for the specified element. +Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { +  return Constant::getNullValue(getType()->getStructElementType(Elt)); +} + +/// getElementValue - Return a zero of the right value for the specified GEP +/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). +Constant *ConstantAggregateZero::getElementValue(Constant *C) const { +  if (isa<SequentialType>(getType())) +    return getSequentialElement(); +  return getStructElement(cast<ConstantInt>(C)->getZExtValue()); +} + +/// getElementValue - Return a zero of the right value for the specified GEP +/// index. +Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { +  if (isa<SequentialType>(getType())) +    return getSequentialElement(); +  return getStructElement(Idx); +} + + +//===----------------------------------------------------------------------===// +//                         UndefValue Implementation +//===----------------------------------------------------------------------===// + +/// getSequentialElement - If this undef has array or vector type, return an +/// undef with the right element type. +UndefValue *UndefValue::getSequentialElement() const { +  return UndefValue::get(getType()->getSequentialElementType()); +} + +/// getStructElement - If this undef has struct type, return a zero with the +/// right element type for the specified element. +UndefValue *UndefValue::getStructElement(unsigned Elt) const { +  return UndefValue::get(getType()->getStructElementType(Elt)); +} + +/// getElementValue - Return an undef of the right value for the specified GEP +/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). +UndefValue *UndefValue::getElementValue(Constant *C) const { +  if (isa<SequentialType>(getType())) +    return getSequentialElement(); +  return getStructElement(cast<ConstantInt>(C)->getZExtValue()); +} + +/// getElementValue - Return an undef of the right value for the specified GEP +/// index. +UndefValue *UndefValue::getElementValue(unsigned Idx) const { +  if (isa<SequentialType>(getType())) +    return getSequentialElement(); +  return getStructElement(Idx); +} + + + +//===----------------------------------------------------------------------===// +//                            ConstantXXX Classes +//===----------------------------------------------------------------------===// + +template <typename ItTy, typename EltTy> +static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { +  for (; Start != End; ++Start) +    if (*Start != Elt) +      return false; +  return true; +} + +ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) +  : Constant(T, ConstantArrayVal, +             OperandTraits<ConstantArray>::op_end(this) - V.size(), +             V.size()) { +  assert(V.size() == T->getNumElements() && +         "Invalid initializer vector for constant array"); +  for (unsigned i = 0, e = V.size(); i != e; ++i) +    assert(V[i]->getType() == T->getElementType() && +           "Initializer for array element doesn't match array element type!"); +  std::copy(V.begin(), V.end(), op_begin()); +} + +Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { +  // Empty arrays are canonicalized to ConstantAggregateZero. +  if (V.empty()) +    return ConstantAggregateZero::get(Ty); + +  for (unsigned i = 0, e = V.size(); i != e; ++i) { +    assert(V[i]->getType() == Ty->getElementType() && +           "Wrong type in array element initializer"); +  } +  LLVMContextImpl *pImpl = Ty->getContext().pImpl; + +  // If this is an all-zero array, return a ConstantAggregateZero object.  If +  // all undef, return an UndefValue, if "all simple", then return a +  // ConstantDataArray. +  Constant *C = V[0]; +  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) +    return UndefValue::get(Ty); + +  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) +    return ConstantAggregateZero::get(Ty); + +  // Check to see if all of the elements are ConstantFP or ConstantInt and if +  // the element type is compatible with ConstantDataVector.  If so, use it. +  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { +    // We speculatively build the elements here even if it turns out that there +    // is a constantexpr or something else weird in the array, since it is so +    // uncommon for that to happen. +    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { +      if (CI->getType()->isIntegerTy(8)) { +        SmallVector<uint8_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataArray::get(C->getContext(), Elts); +      } else if (CI->getType()->isIntegerTy(16)) { +        SmallVector<uint16_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataArray::get(C->getContext(), Elts); +      } else if (CI->getType()->isIntegerTy(32)) { +        SmallVector<uint32_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataArray::get(C->getContext(), Elts); +      } else if (CI->getType()->isIntegerTy(64)) { +        SmallVector<uint64_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataArray::get(C->getContext(), Elts); +      } +    } + +    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { +      if (CFP->getType()->isFloatTy()) { +        SmallVector<float, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) +            Elts.push_back(CFP->getValueAPF().convertToFloat()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataArray::get(C->getContext(), Elts); +      } else if (CFP->getType()->isDoubleTy()) { +        SmallVector<double, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) +            Elts.push_back(CFP->getValueAPF().convertToDouble()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataArray::get(C->getContext(), Elts); +      } +    } +  } + +  // Otherwise, we really do want to create a ConstantArray. +  return pImpl->ArrayConstants.getOrCreate(Ty, V); +} + +/// getTypeForElements - Return an anonymous struct type to use for a constant +/// with the specified set of elements.  The list must not be empty. +StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, +                                               ArrayRef<Constant*> V, +                                               bool Packed) { +  unsigned VecSize = V.size(); +  SmallVector<Type*, 16> EltTypes(VecSize); +  for (unsigned i = 0; i != VecSize; ++i) +    EltTypes[i] = V[i]->getType(); + +  return StructType::get(Context, EltTypes, Packed); +} + + +StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, +                                               bool Packed) { +  assert(!V.empty() && +         "ConstantStruct::getTypeForElements cannot be called on empty list"); +  return getTypeForElements(V[0]->getContext(), V, Packed); +} + + +ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) +  : Constant(T, ConstantStructVal, +             OperandTraits<ConstantStruct>::op_end(this) - V.size(), +             V.size()) { +  assert(V.size() == T->getNumElements() && +         "Invalid initializer vector for constant structure"); +  for (unsigned i = 0, e = V.size(); i != e; ++i) +    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && +           "Initializer for struct element doesn't match struct element type!"); +  std::copy(V.begin(), V.end(), op_begin()); +} + +// ConstantStruct accessors. +Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { +  assert((ST->isOpaque() || ST->getNumElements() == V.size()) && +         "Incorrect # elements specified to ConstantStruct::get"); + +  // Create a ConstantAggregateZero value if all elements are zeros. +  bool isZero = true; +  bool isUndef = false; +   +  if (!V.empty()) { +    isUndef = isa<UndefValue>(V[0]); +    isZero = V[0]->isNullValue(); +    if (isUndef || isZero) { +      for (unsigned i = 0, e = V.size(); i != e; ++i) { +        if (!V[i]->isNullValue()) +          isZero = false; +        if (!isa<UndefValue>(V[i])) +          isUndef = false; +      } +    } +  } +  if (isZero) +    return ConstantAggregateZero::get(ST); +  if (isUndef) +    return UndefValue::get(ST); + +  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); +} + +Constant *ConstantStruct::get(StructType *T, ...) { +  va_list ap; +  SmallVector<Constant*, 8> Values; +  va_start(ap, T); +  while (Constant *Val = va_arg(ap, llvm::Constant*)) +    Values.push_back(Val); +  va_end(ap); +  return get(T, Values); +} + +ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) +  : Constant(T, ConstantVectorVal, +             OperandTraits<ConstantVector>::op_end(this) - V.size(), +             V.size()) { +  for (size_t i = 0, e = V.size(); i != e; i++) +    assert(V[i]->getType() == T->getElementType() && +           "Initializer for vector element doesn't match vector element type!"); +  std::copy(V.begin(), V.end(), op_begin()); +} + +// ConstantVector accessors. +Constant *ConstantVector::get(ArrayRef<Constant*> V) { +  assert(!V.empty() && "Vectors can't be empty"); +  VectorType *T = VectorType::get(V.front()->getType(), V.size()); +  LLVMContextImpl *pImpl = T->getContext().pImpl; + +  // If this is an all-undef or all-zero vector, return a +  // ConstantAggregateZero or UndefValue. +  Constant *C = V[0]; +  bool isZero = C->isNullValue(); +  bool isUndef = isa<UndefValue>(C); + +  if (isZero || isUndef) { +    for (unsigned i = 1, e = V.size(); i != e; ++i) +      if (V[i] != C) { +        isZero = isUndef = false; +        break; +      } +  } + +  if (isZero) +    return ConstantAggregateZero::get(T); +  if (isUndef) +    return UndefValue::get(T); + +  // Check to see if all of the elements are ConstantFP or ConstantInt and if +  // the element type is compatible with ConstantDataVector.  If so, use it. +  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { +    // We speculatively build the elements here even if it turns out that there +    // is a constantexpr or something else weird in the array, since it is so +    // uncommon for that to happen. +    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { +      if (CI->getType()->isIntegerTy(8)) { +        SmallVector<uint8_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataVector::get(C->getContext(), Elts); +      } else if (CI->getType()->isIntegerTy(16)) { +        SmallVector<uint16_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataVector::get(C->getContext(), Elts); +      } else if (CI->getType()->isIntegerTy(32)) { +        SmallVector<uint32_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataVector::get(C->getContext(), Elts); +      } else if (CI->getType()->isIntegerTy(64)) { +        SmallVector<uint64_t, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) +            Elts.push_back(CI->getZExtValue()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataVector::get(C->getContext(), Elts); +      } +    } + +    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { +      if (CFP->getType()->isFloatTy()) { +        SmallVector<float, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) +            Elts.push_back(CFP->getValueAPF().convertToFloat()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataVector::get(C->getContext(), Elts); +      } else if (CFP->getType()->isDoubleTy()) { +        SmallVector<double, 16> Elts; +        for (unsigned i = 0, e = V.size(); i != e; ++i) +          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) +            Elts.push_back(CFP->getValueAPF().convertToDouble()); +          else +            break; +        if (Elts.size() == V.size()) +          return ConstantDataVector::get(C->getContext(), Elts); +      } +    } +  } + +  // Otherwise, the element type isn't compatible with ConstantDataVector, or +  // the operand list constants a ConstantExpr or something else strange. +  return pImpl->VectorConstants.getOrCreate(T, V); +} + +Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { +  // If this splat is compatible with ConstantDataVector, use it instead of +  // ConstantVector. +  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && +      ConstantDataSequential::isElementTypeCompatible(V->getType())) +    return ConstantDataVector::getSplat(NumElts, V); + +  SmallVector<Constant*, 32> Elts(NumElts, V); +  return get(Elts); +} + + +// Utility function for determining if a ConstantExpr is a CastOp or not. This +// can't be inline because we don't want to #include Instruction.h into +// Constant.h +bool ConstantExpr::isCast() const { +  return Instruction::isCast(getOpcode()); +} + +bool ConstantExpr::isCompare() const { +  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; +} + +bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { +  if (getOpcode() != Instruction::GetElementPtr) return false; + +  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); +  User::const_op_iterator OI = llvm::next(this->op_begin()); + +  // Skip the first index, as it has no static limit. +  ++GEPI; +  ++OI; + +  // The remaining indices must be compile-time known integers within the +  // bounds of the corresponding notional static array types. +  for (; GEPI != E; ++GEPI, ++OI) { +    ConstantInt *CI = dyn_cast<ConstantInt>(*OI); +    if (!CI) return false; +    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) +      if (CI->getValue().getActiveBits() > 64 || +          CI->getZExtValue() >= ATy->getNumElements()) +        return false; +  } + +  // All the indices checked out. +  return true; +} + +bool ConstantExpr::hasIndices() const { +  return getOpcode() == Instruction::ExtractValue || +         getOpcode() == Instruction::InsertValue; +} + +ArrayRef<unsigned> ConstantExpr::getIndices() const { +  if (const ExtractValueConstantExpr *EVCE = +        dyn_cast<ExtractValueConstantExpr>(this)) +    return EVCE->Indices; + +  return cast<InsertValueConstantExpr>(this)->Indices; +} + +unsigned ConstantExpr::getPredicate() const { +  assert(isCompare()); +  return ((const CompareConstantExpr*)this)->predicate; +} + +/// getWithOperandReplaced - Return a constant expression identical to this +/// one, but with the specified operand set to the specified value. +Constant * +ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { +  assert(Op->getType() == getOperand(OpNo)->getType() && +         "Replacing operand with value of different type!"); +  if (getOperand(OpNo) == Op) +    return const_cast<ConstantExpr*>(this); + +  SmallVector<Constant*, 8> NewOps; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) +    NewOps.push_back(i == OpNo ? Op : getOperand(i)); + +  return getWithOperands(NewOps); +} + +/// getWithOperands - This returns the current constant expression with the +/// operands replaced with the specified values.  The specified array must +/// have the same number of operands as our current one. +Constant *ConstantExpr:: +getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { +  assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); +  bool AnyChange = Ty != getType(); +  for (unsigned i = 0; i != Ops.size(); ++i) +    AnyChange |= Ops[i] != getOperand(i); + +  if (!AnyChange)  // No operands changed, return self. +    return const_cast<ConstantExpr*>(this); + +  switch (getOpcode()) { +  case Instruction::Trunc: +  case Instruction::ZExt: +  case Instruction::SExt: +  case Instruction::FPTrunc: +  case Instruction::FPExt: +  case Instruction::UIToFP: +  case Instruction::SIToFP: +  case Instruction::FPToUI: +  case Instruction::FPToSI: +  case Instruction::PtrToInt: +  case Instruction::IntToPtr: +  case Instruction::BitCast: +    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); +  case Instruction::Select: +    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); +  case Instruction::InsertElement: +    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); +  case Instruction::ExtractElement: +    return ConstantExpr::getExtractElement(Ops[0], Ops[1]); +  case Instruction::InsertValue: +    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); +  case Instruction::ExtractValue: +    return ConstantExpr::getExtractValue(Ops[0], getIndices()); +  case Instruction::ShuffleVector: +    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); +  case Instruction::GetElementPtr: +    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), +                                      cast<GEPOperator>(this)->isInBounds()); +  case Instruction::ICmp: +  case Instruction::FCmp: +    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); +  default: +    assert(getNumOperands() == 2 && "Must be binary operator?"); +    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); +  } +} + + +//===----------------------------------------------------------------------===// +//                      isValueValidForType implementations + +bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { +  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay +  if (Ty->isIntegerTy(1)) +    return Val == 0 || Val == 1; +  if (NumBits >= 64) +    return true; // always true, has to fit in largest type +  uint64_t Max = (1ll << NumBits) - 1; +  return Val <= Max; +} + +bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { +  unsigned NumBits = Ty->getIntegerBitWidth(); +  if (Ty->isIntegerTy(1)) +    return Val == 0 || Val == 1 || Val == -1; +  if (NumBits >= 64) +    return true; // always true, has to fit in largest type +  int64_t Min = -(1ll << (NumBits-1)); +  int64_t Max = (1ll << (NumBits-1)) - 1; +  return (Val >= Min && Val <= Max); +} + +bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { +  // convert modifies in place, so make a copy. +  APFloat Val2 = APFloat(Val); +  bool losesInfo; +  switch (Ty->getTypeID()) { +  default: +    return false;         // These can't be represented as floating point! + +  // FIXME rounding mode needs to be more flexible +  case Type::HalfTyID: { +    if (&Val2.getSemantics() == &APFloat::IEEEhalf) +      return true; +    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); +    return !losesInfo; +  } +  case Type::FloatTyID: { +    if (&Val2.getSemantics() == &APFloat::IEEEsingle) +      return true; +    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); +    return !losesInfo; +  } +  case Type::DoubleTyID: { +    if (&Val2.getSemantics() == &APFloat::IEEEhalf || +        &Val2.getSemantics() == &APFloat::IEEEsingle || +        &Val2.getSemantics() == &APFloat::IEEEdouble) +      return true; +    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); +    return !losesInfo; +  } +  case Type::X86_FP80TyID: +    return &Val2.getSemantics() == &APFloat::IEEEhalf || +           &Val2.getSemantics() == &APFloat::IEEEsingle ||  +           &Val2.getSemantics() == &APFloat::IEEEdouble || +           &Val2.getSemantics() == &APFloat::x87DoubleExtended; +  case Type::FP128TyID: +    return &Val2.getSemantics() == &APFloat::IEEEhalf || +           &Val2.getSemantics() == &APFloat::IEEEsingle ||  +           &Val2.getSemantics() == &APFloat::IEEEdouble || +           &Val2.getSemantics() == &APFloat::IEEEquad; +  case Type::PPC_FP128TyID: +    return &Val2.getSemantics() == &APFloat::IEEEhalf || +           &Val2.getSemantics() == &APFloat::IEEEsingle ||  +           &Val2.getSemantics() == &APFloat::IEEEdouble || +           &Val2.getSemantics() == &APFloat::PPCDoubleDouble; +  } +} + + +//===----------------------------------------------------------------------===// +//                      Factory Function Implementation + +ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { +  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && +         "Cannot create an aggregate zero of non-aggregate type!"); +   +  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; +  if (Entry == 0) +    Entry = new ConstantAggregateZero(Ty); + +  return Entry; +} + +/// destroyConstant - Remove the constant from the constant table. +/// +void ConstantAggregateZero::destroyConstant() { +  getContext().pImpl->CAZConstants.erase(getType()); +  destroyConstantImpl(); +} + +/// destroyConstant - Remove the constant from the constant table... +/// +void ConstantArray::destroyConstant() { +  getType()->getContext().pImpl->ArrayConstants.remove(this); +  destroyConstantImpl(); +} + + +//---- ConstantStruct::get() implementation... +// + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantStruct::destroyConstant() { +  getType()->getContext().pImpl->StructConstants.remove(this); +  destroyConstantImpl(); +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantVector::destroyConstant() { +  getType()->getContext().pImpl->VectorConstants.remove(this); +  destroyConstantImpl(); +} + +/// getSplatValue - If this is a splat vector constant, meaning that all of +/// the elements have the same value, return that value. Otherwise return 0. +Constant *Constant::getSplatValue() const { +  assert(this->getType()->isVectorTy() && "Only valid for vectors!"); +  if (isa<ConstantAggregateZero>(this)) +    return getNullValue(this->getType()->getVectorElementType()); +  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) +    return CV->getSplatValue(); +  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) +    return CV->getSplatValue(); +  return 0; +} + +/// getSplatValue - If this is a splat constant, where all of the +/// elements have the same value, return that value. Otherwise return null. +Constant *ConstantVector::getSplatValue() const { +  // Check out first element. +  Constant *Elt = getOperand(0); +  // Then make sure all remaining elements point to the same value. +  for (unsigned I = 1, E = getNumOperands(); I < E; ++I) +    if (getOperand(I) != Elt) +      return 0; +  return Elt; +} + +/// If C is a constant integer then return its value, otherwise C must be a +/// vector of constant integers, all equal, and the common value is returned. +const APInt &Constant::getUniqueInteger() const { +  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) +    return CI->getValue(); +  assert(this->getSplatValue() && "Doesn't contain a unique integer!"); +  const Constant *C = this->getAggregateElement(0U); +  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); +  return cast<ConstantInt>(C)->getValue(); +} + + +//---- ConstantPointerNull::get() implementation. +// + +ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { +  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; +  if (Entry == 0) +    Entry = new ConstantPointerNull(Ty); + +  return Entry; +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantPointerNull::destroyConstant() { +  getContext().pImpl->CPNConstants.erase(getType()); +  // Free the constant and any dangling references to it. +  destroyConstantImpl(); +} + + +//---- UndefValue::get() implementation. +// + +UndefValue *UndefValue::get(Type *Ty) { +  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; +  if (Entry == 0) +    Entry = new UndefValue(Ty); + +  return Entry; +} + +// destroyConstant - Remove the constant from the constant table. +// +void UndefValue::destroyConstant() { +  // Free the constant and any dangling references to it. +  getContext().pImpl->UVConstants.erase(getType()); +  destroyConstantImpl(); +} + +//---- BlockAddress::get() implementation. +// + +BlockAddress *BlockAddress::get(BasicBlock *BB) { +  assert(BB->getParent() != 0 && "Block must have a parent"); +  return get(BB->getParent(), BB); +} + +BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { +  BlockAddress *&BA = +    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; +  if (BA == 0) +    BA = new BlockAddress(F, BB); + +  assert(BA->getFunction() == F && "Basic block moved between functions"); +  return BA; +} + +BlockAddress::BlockAddress(Function *F, BasicBlock *BB) +: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, +           &Op<0>(), 2) { +  setOperand(0, F); +  setOperand(1, BB); +  BB->AdjustBlockAddressRefCount(1); +} + + +// destroyConstant - Remove the constant from the constant table. +// +void BlockAddress::destroyConstant() { +  getFunction()->getType()->getContext().pImpl +    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); +  getBasicBlock()->AdjustBlockAddressRefCount(-1); +  destroyConstantImpl(); +} + +void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { +  // This could be replacing either the Basic Block or the Function.  In either +  // case, we have to remove the map entry. +  Function *NewF = getFunction(); +  BasicBlock *NewBB = getBasicBlock(); + +  if (U == &Op<0>()) +    NewF = cast<Function>(To); +  else +    NewBB = cast<BasicBlock>(To); + +  // See if the 'new' entry already exists, if not, just update this in place +  // and return early. +  BlockAddress *&NewBA = +    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; +  if (NewBA == 0) { +    getBasicBlock()->AdjustBlockAddressRefCount(-1); + +    // Remove the old entry, this can't cause the map to rehash (just a +    // tombstone will get added). +    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), +                                                            getBasicBlock())); +    NewBA = this; +    setOperand(0, NewF); +    setOperand(1, NewBB); +    getBasicBlock()->AdjustBlockAddressRefCount(1); +    return; +  } + +  // Otherwise, I do need to replace this with an existing value. +  assert(NewBA != this && "I didn't contain From!"); + +  // Everyone using this now uses the replacement. +  replaceAllUsesWith(NewBA); + +  destroyConstant(); +} + +//---- ConstantExpr::get() implementations. +// + +/// This is a utility function to handle folding of casts and lookup of the +/// cast in the ExprConstants map. It is used by the various get* methods below. +static inline Constant *getFoldedCast( +  Instruction::CastOps opc, Constant *C, Type *Ty) { +  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); +  // Fold a few common cases +  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) +    return FC; + +  LLVMContextImpl *pImpl = Ty->getContext().pImpl; + +  // Look up the constant in the table first to ensure uniqueness. +  ExprMapKeyType Key(opc, C); + +  return pImpl->ExprConstants.getOrCreate(Ty, Key); +} + +Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { +  Instruction::CastOps opc = Instruction::CastOps(oc); +  assert(Instruction::isCast(opc) && "opcode out of range"); +  assert(C && Ty && "Null arguments to getCast"); +  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); + +  switch (opc) { +  default: +    llvm_unreachable("Invalid cast opcode"); +  case Instruction::Trunc:    return getTrunc(C, Ty); +  case Instruction::ZExt:     return getZExt(C, Ty); +  case Instruction::SExt:     return getSExt(C, Ty); +  case Instruction::FPTrunc:  return getFPTrunc(C, Ty); +  case Instruction::FPExt:    return getFPExtend(C, Ty); +  case Instruction::UIToFP:   return getUIToFP(C, Ty); +  case Instruction::SIToFP:   return getSIToFP(C, Ty); +  case Instruction::FPToUI:   return getFPToUI(C, Ty); +  case Instruction::FPToSI:   return getFPToSI(C, Ty); +  case Instruction::PtrToInt: return getPtrToInt(C, Ty); +  case Instruction::IntToPtr: return getIntToPtr(C, Ty); +  case Instruction::BitCast:  return getBitCast(C, Ty); +  } +} + +Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { +  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return getBitCast(C, Ty); +  return getZExt(C, Ty); +} + +Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { +  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return getBitCast(C, Ty); +  return getSExt(C, Ty); +} + +Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { +  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return getBitCast(C, Ty); +  return getTrunc(C, Ty); +} + +Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { +  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); +  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && +          "Invalid cast"); + +  if (Ty->isIntOrIntVectorTy()) +    return getPtrToInt(S, Ty); +  return getBitCast(S, Ty); +} + +Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,  +                                       bool isSigned) { +  assert(C->getType()->isIntOrIntVectorTy() && +         Ty->isIntOrIntVectorTy() && "Invalid cast"); +  unsigned SrcBits = C->getType()->getScalarSizeInBits(); +  unsigned DstBits = Ty->getScalarSizeInBits(); +  Instruction::CastOps opcode = +    (SrcBits == DstBits ? Instruction::BitCast : +     (SrcBits > DstBits ? Instruction::Trunc : +      (isSigned ? Instruction::SExt : Instruction::ZExt))); +  return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && +         "Invalid cast"); +  unsigned SrcBits = C->getType()->getScalarSizeInBits(); +  unsigned DstBits = Ty->getScalarSizeInBits(); +  if (SrcBits == DstBits) +    return C; // Avoid a useless cast +  Instruction::CastOps opcode = +    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); +  return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); +  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); +  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& +         "SrcTy must be larger than DestTy for Trunc!"); + +  return getFoldedCast(Instruction::Trunc, C, Ty); +} + +Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); +  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); +  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& +         "SrcTy must be smaller than DestTy for SExt!"); + +  return getFoldedCast(Instruction::SExt, C, Ty); +} + +Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); +  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); +  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& +         "SrcTy must be smaller than DestTy for ZExt!"); + +  return getFoldedCast(Instruction::ZExt, C, Ty); +} + +Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && +         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& +         "This is an illegal floating point truncation!"); +  return getFoldedCast(Instruction::FPTrunc, C, Ty); +} + +Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && +         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& +         "This is an illegal floating point extension!"); +  return getFoldedCast(Instruction::FPExt, C, Ty); +} + +Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && +         "This is an illegal uint to floating point cast!"); +  return getFoldedCast(Instruction::UIToFP, C, Ty); +} + +Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && +         "This is an illegal sint to floating point cast!"); +  return getFoldedCast(Instruction::SIToFP, C, Ty); +} + +Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && +         "This is an illegal floating point to uint cast!"); +  return getFoldedCast(Instruction::FPToUI, C, Ty); +} + +Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { +#ifndef NDEBUG +  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; +  bool toVec = Ty->getTypeID() == Type::VectorTyID; +#endif +  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && +         "This is an illegal floating point to sint cast!"); +  return getFoldedCast(Instruction::FPToSI, C, Ty); +} + +Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { +  assert(C->getType()->getScalarType()->isPointerTy() && +         "PtrToInt source must be pointer or pointer vector"); +  assert(DstTy->getScalarType()->isIntegerTy() &&  +         "PtrToInt destination must be integer or integer vector"); +  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); +  if (isa<VectorType>(C->getType())) +    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& +           "Invalid cast between a different number of vector elements"); +  return getFoldedCast(Instruction::PtrToInt, C, DstTy); +} + +Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { +  assert(C->getType()->getScalarType()->isIntegerTy() && +         "IntToPtr source must be integer or integer vector"); +  assert(DstTy->getScalarType()->isPointerTy() && +         "IntToPtr destination must be a pointer or pointer vector"); +  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); +  if (isa<VectorType>(C->getType())) +    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& +           "Invalid cast between a different number of vector elements"); +  return getFoldedCast(Instruction::IntToPtr, C, DstTy); +} + +Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { +  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && +         "Invalid constantexpr bitcast!"); + +  // It is common to ask for a bitcast of a value to its own type, handle this +  // speedily. +  if (C->getType() == DstTy) return C; + +  return getFoldedCast(Instruction::BitCast, C, DstTy); +} + +Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, +                            unsigned Flags) { +  // Check the operands for consistency first. +  assert(Opcode >= Instruction::BinaryOpsBegin && +         Opcode <  Instruction::BinaryOpsEnd   && +         "Invalid opcode in binary constant expression"); +  assert(C1->getType() == C2->getType() && +         "Operand types in binary constant expression should match"); + +#ifndef NDEBUG +  switch (Opcode) { +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isIntOrIntVectorTy() && +           "Tried to create an integer operation on a non-integer type!"); +    break; +  case Instruction::FAdd: +  case Instruction::FSub: +  case Instruction::FMul: +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isFPOrFPVectorTy() && +           "Tried to create a floating-point operation on a " +           "non-floating-point type!"); +    break; +  case Instruction::UDiv:  +  case Instruction::SDiv:  +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isIntOrIntVectorTy() && +           "Tried to create an arithmetic operation on a non-arithmetic type!"); +    break; +  case Instruction::FDiv: +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isFPOrFPVectorTy() && +           "Tried to create an arithmetic operation on a non-arithmetic type!"); +    break; +  case Instruction::URem:  +  case Instruction::SRem:  +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isIntOrIntVectorTy() && +           "Tried to create an arithmetic operation on a non-arithmetic type!"); +    break; +  case Instruction::FRem: +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isFPOrFPVectorTy() && +           "Tried to create an arithmetic operation on a non-arithmetic type!"); +    break; +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isIntOrIntVectorTy() && +           "Tried to create a logical operation on a non-integral type!"); +    break; +  case Instruction::Shl: +  case Instruction::LShr: +  case Instruction::AShr: +    assert(C1->getType() == C2->getType() && "Op types should be identical!"); +    assert(C1->getType()->isIntOrIntVectorTy() && +           "Tried to create a shift operation on a non-integer type!"); +    break; +  default: +    break; +  } +#endif + +  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) +    return FC;          // Fold a few common cases. + +  Constant *ArgVec[] = { C1, C2 }; +  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags); + +  LLVMContextImpl *pImpl = C1->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); +} + +Constant *ConstantExpr::getSizeOf(Type* Ty) { +  // sizeof is implemented as: (i64) gep (Ty*)null, 1 +  // Note that a non-inbounds gep is used, as null isn't within any object. +  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); +  Constant *GEP = getGetElementPtr( +                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); +  return getPtrToInt(GEP,  +                     Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getAlignOf(Type* Ty) { +  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 +  // Note that a non-inbounds gep is used, as null isn't within any object. +  Type *AligningTy =  +    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); +  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); +  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); +  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); +  Constant *Indices[2] = { Zero, One }; +  Constant *GEP = getGetElementPtr(NullPtr, Indices); +  return getPtrToInt(GEP, +                     Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { +  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), +                                           FieldNo)); +} + +Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { +  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo +  // Note that a non-inbounds gep is used, as null isn't within any object. +  Constant *GEPIdx[] = { +    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), +    FieldNo +  }; +  Constant *GEP = getGetElementPtr( +                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); +  return getPtrToInt(GEP, +                     Type::getInt64Ty(Ty->getContext())); +} + +Constant *ConstantExpr::getCompare(unsigned short Predicate,  +                                   Constant *C1, Constant *C2) { +  assert(C1->getType() == C2->getType() && "Op types should be identical!"); + +  switch (Predicate) { +  default: llvm_unreachable("Invalid CmpInst predicate"); +  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: +  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: +  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: +  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: +  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: +  case CmpInst::FCMP_TRUE: +    return getFCmp(Predicate, C1, C2); + +  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT: +  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: +  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: +  case CmpInst::ICMP_SLE: +    return getICmp(Predicate, C1, C2); +  } +} + +Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { +  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); + +  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) +    return SC;        // Fold common cases + +  Constant *ArgVec[] = { C, V1, V2 }; +  ExprMapKeyType Key(Instruction::Select, ArgVec); + +  LLVMContextImpl *pImpl = C->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); +} + +Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, +                                         bool InBounds) { +  assert(C->getType()->isPtrOrPtrVectorTy() && +         "Non-pointer type for constant GetElementPtr expression"); + +  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) +    return FC;          // Fold a few common cases. + +  // Get the result type of the getelementptr! +  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); +  assert(Ty && "GEP indices invalid!"); +  unsigned AS = C->getType()->getPointerAddressSpace(); +  Type *ReqTy = Ty->getPointerTo(AS); +  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) +    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements()); + +  // Look up the constant in the table first to ensure uniqueness +  std::vector<Constant*> ArgVec; +  ArgVec.reserve(1 + Idxs.size()); +  ArgVec.push_back(C); +  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { +    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() && +           "getelementptr index type missmatch"); +    assert((!Idxs[i]->getType()->isVectorTy() || +            ReqTy->getVectorNumElements() == +            Idxs[i]->getType()->getVectorNumElements()) && +           "getelementptr index type missmatch"); +    ArgVec.push_back(cast<Constant>(Idxs[i])); +  } +  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, +                           InBounds ? GEPOperator::IsInBounds : 0); + +  LLVMContextImpl *pImpl = C->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant * +ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { +  assert(LHS->getType() == RHS->getType()); +  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&  +         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); + +  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) +    return FC;          // Fold a few common cases... + +  // Look up the constant in the table first to ensure uniqueness +  Constant *ArgVec[] = { LHS, RHS }; +  // Get the key type with both the opcode and predicate +  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); + +  Type *ResultTy = Type::getInt1Ty(LHS->getContext()); +  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) +    ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + +  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(ResultTy, Key); +} + +Constant * +ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { +  assert(LHS->getType() == RHS->getType()); +  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); + +  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) +    return FC;          // Fold a few common cases... + +  // Look up the constant in the table first to ensure uniqueness +  Constant *ArgVec[] = { LHS, RHS }; +  // Get the key type with both the opcode and predicate +  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); + +  Type *ResultTy = Type::getInt1Ty(LHS->getContext()); +  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) +    ResultTy = VectorType::get(ResultTy, VT->getNumElements()); + +  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(ResultTy, Key); +} + +Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { +  assert(Val->getType()->isVectorTy() && +         "Tried to create extractelement operation on non-vector type!"); +  assert(Idx->getType()->isIntegerTy(32) && +         "Extractelement index must be i32 type!"); + +  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) +    return FC;          // Fold a few common cases. + +  // Look up the constant in the table first to ensure uniqueness +  Constant *ArgVec[] = { Val, Idx }; +  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec); + +  LLVMContextImpl *pImpl = Val->getContext().pImpl; +  Type *ReqTy = Val->getType()->getVectorElementType(); +  return pImpl->ExprConstants.getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,  +                                         Constant *Idx) { +  assert(Val->getType()->isVectorTy() && +         "Tried to create insertelement operation on non-vector type!"); +  assert(Elt->getType() == Val->getType()->getVectorElementType() && +         "Insertelement types must match!"); +  assert(Idx->getType()->isIntegerTy(32) && +         "Insertelement index must be i32 type!"); + +  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) +    return FC;          // Fold a few common cases. +  // Look up the constant in the table first to ensure uniqueness +  Constant *ArgVec[] = { Val, Elt, Idx }; +  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec); + +  LLVMContextImpl *pImpl = Val->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); +} + +Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,  +                                         Constant *Mask) { +  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && +         "Invalid shuffle vector constant expr operands!"); + +  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) +    return FC;          // Fold a few common cases. + +  unsigned NElts = Mask->getType()->getVectorNumElements(); +  Type *EltTy = V1->getType()->getVectorElementType(); +  Type *ShufTy = VectorType::get(EltTy, NElts); + +  // Look up the constant in the table first to ensure uniqueness +  Constant *ArgVec[] = { V1, V2, Mask }; +  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec); + +  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; +  return pImpl->ExprConstants.getOrCreate(ShufTy, Key); +} + +Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, +                                       ArrayRef<unsigned> Idxs) { +  assert(ExtractValueInst::getIndexedType(Agg->getType(), +                                          Idxs) == Val->getType() && +         "insertvalue indices invalid!"); +  assert(Agg->getType()->isFirstClassType() && +         "Non-first-class type for constant insertvalue expression"); +  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); +  assert(FC && "insertvalue constant expr couldn't be folded!"); +  return FC; +} + +Constant *ConstantExpr::getExtractValue(Constant *Agg, +                                        ArrayRef<unsigned> Idxs) { +  assert(Agg->getType()->isFirstClassType() && +         "Tried to create extractelement operation on non-first-class type!"); + +  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); +  (void)ReqTy; +  assert(ReqTy && "extractvalue indices invalid!"); + +  assert(Agg->getType()->isFirstClassType() && +         "Non-first-class type for constant extractvalue expression"); +  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); +  assert(FC && "ExtractValue constant expr couldn't be folded!"); +  return FC; +} + +Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { +  assert(C->getType()->isIntOrIntVectorTy() && +         "Cannot NEG a nonintegral value!"); +  return getSub(ConstantFP::getZeroValueForNegation(C->getType()), +                C, HasNUW, HasNSW); +} + +Constant *ConstantExpr::getFNeg(Constant *C) { +  assert(C->getType()->isFPOrFPVectorTy() && +         "Cannot FNEG a non-floating-point value!"); +  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); +} + +Constant *ConstantExpr::getNot(Constant *C) { +  assert(C->getType()->isIntOrIntVectorTy() && +         "Cannot NOT a nonintegral value!"); +  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); +} + +Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, +                               bool HasNUW, bool HasNSW) { +  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | +                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); +  return get(Instruction::Add, C1, C2, Flags); +} + +Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { +  return get(Instruction::FAdd, C1, C2); +} + +Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, +                               bool HasNUW, bool HasNSW) { +  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | +                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); +  return get(Instruction::Sub, C1, C2, Flags); +} + +Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { +  return get(Instruction::FSub, C1, C2); +} + +Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, +                               bool HasNUW, bool HasNSW) { +  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | +                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); +  return get(Instruction::Mul, C1, C2, Flags); +} + +Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { +  return get(Instruction::FMul, C1, C2); +} + +Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { +  return get(Instruction::UDiv, C1, C2, +             isExact ? PossiblyExactOperator::IsExact : 0); +} + +Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { +  return get(Instruction::SDiv, C1, C2, +             isExact ? PossiblyExactOperator::IsExact : 0); +} + +Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { +  return get(Instruction::FDiv, C1, C2); +} + +Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { +  return get(Instruction::URem, C1, C2); +} + +Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { +  return get(Instruction::SRem, C1, C2); +} + +Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { +  return get(Instruction::FRem, C1, C2); +} + +Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { +  return get(Instruction::And, C1, C2); +} + +Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { +  return get(Instruction::Or, C1, C2); +} + +Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { +  return get(Instruction::Xor, C1, C2); +} + +Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, +                               bool HasNUW, bool HasNSW) { +  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | +                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); +  return get(Instruction::Shl, C1, C2, Flags); +} + +Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { +  return get(Instruction::LShr, C1, C2, +             isExact ? PossiblyExactOperator::IsExact : 0); +} + +Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { +  return get(Instruction::AShr, C1, C2, +             isExact ? PossiblyExactOperator::IsExact : 0); +} + +/// getBinOpIdentity - Return the identity for the given binary operation, +/// i.e. a constant C such that X op C = X and C op X = X for every X.  It +/// returns null if the operator doesn't have an identity. +Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { +  switch (Opcode) { +  default: +    // Doesn't have an identity. +    return 0; + +  case Instruction::Add: +  case Instruction::Or: +  case Instruction::Xor: +    return Constant::getNullValue(Ty); + +  case Instruction::Mul: +    return ConstantInt::get(Ty, 1); + +  case Instruction::And: +    return Constant::getAllOnesValue(Ty); +  } +} + +/// getBinOpAbsorber - Return the absorbing element for the given binary +/// operation, i.e. a constant C such that X op C = C and C op X = C for +/// every X.  For example, this returns zero for integer multiplication. +/// It returns null if the operator doesn't have an absorbing element. +Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { +  switch (Opcode) { +  default: +    // Doesn't have an absorber. +    return 0; + +  case Instruction::Or: +    return Constant::getAllOnesValue(Ty); + +  case Instruction::And: +  case Instruction::Mul: +    return Constant::getNullValue(Ty); +  } +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantExpr::destroyConstant() { +  getType()->getContext().pImpl->ExprConstants.remove(this); +  destroyConstantImpl(); +} + +const char *ConstantExpr::getOpcodeName() const { +  return Instruction::getOpcodeName(getOpcode()); +} + + + +GetElementPtrConstantExpr:: +GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, +                          Type *DestTy) +  : ConstantExpr(DestTy, Instruction::GetElementPtr, +                 OperandTraits<GetElementPtrConstantExpr>::op_end(this) +                 - (IdxList.size()+1), IdxList.size()+1) { +  OperandList[0] = C; +  for (unsigned i = 0, E = IdxList.size(); i != E; ++i) +    OperandList[i+1] = IdxList[i]; +} + +//===----------------------------------------------------------------------===// +//                       ConstantData* implementations + +void ConstantDataArray::anchor() {} +void ConstantDataVector::anchor() {} + +/// getElementType - Return the element type of the array/vector. +Type *ConstantDataSequential::getElementType() const { +  return getType()->getElementType(); +} + +StringRef ConstantDataSequential::getRawDataValues() const { +  return StringRef(DataElements, getNumElements()*getElementByteSize()); +} + +/// isElementTypeCompatible - Return true if a ConstantDataSequential can be +/// formed with a vector or array of the specified element type. +/// ConstantDataArray only works with normal float and int types that are +/// stored densely in memory, not with things like i42 or x86_f80. +bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { +  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; +  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { +    switch (IT->getBitWidth()) { +    case 8: +    case 16: +    case 32: +    case 64: +      return true; +    default: break; +    } +  } +  return false; +} + +/// getNumElements - Return the number of elements in the array or vector. +unsigned ConstantDataSequential::getNumElements() const { +  if (ArrayType *AT = dyn_cast<ArrayType>(getType())) +    return AT->getNumElements(); +  return getType()->getVectorNumElements(); +} + + +/// getElementByteSize - Return the size in bytes of the elements in the data. +uint64_t ConstantDataSequential::getElementByteSize() const { +  return getElementType()->getPrimitiveSizeInBits()/8; +} + +/// getElementPointer - Return the start of the specified element. +const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { +  assert(Elt < getNumElements() && "Invalid Elt"); +  return DataElements+Elt*getElementByteSize(); +} + + +/// isAllZeros - return true if the array is empty or all zeros. +static bool isAllZeros(StringRef Arr) { +  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) +    if (*I != 0) +      return false; +  return true; +} + +/// getImpl - This is the underlying implementation of all of the +/// ConstantDataSequential::get methods.  They all thunk down to here, providing +/// the correct element type.  We take the bytes in as a StringRef because +/// we *want* an underlying "char*" to avoid TBAA type punning violations. +Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { +  assert(isElementTypeCompatible(Ty->getSequentialElementType())); +  // If the elements are all zero or there are no elements, return a CAZ, which +  // is more dense and canonical. +  if (isAllZeros(Elements)) +    return ConstantAggregateZero::get(Ty); + +  // Do a lookup to see if we have already formed one of these. +  StringMap<ConstantDataSequential*>::MapEntryTy &Slot = +    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); + +  // The bucket can point to a linked list of different CDS's that have the same +  // body but different types.  For example, 0,0,0,1 could be a 4 element array +  // of i8, or a 1-element array of i32.  They'll both end up in the same +  /// StringMap bucket, linked up by their Next pointers.  Walk the list. +  ConstantDataSequential **Entry = &Slot.getValue(); +  for (ConstantDataSequential *Node = *Entry; Node != 0; +       Entry = &Node->Next, Node = *Entry) +    if (Node->getType() == Ty) +      return Node; + +  // Okay, we didn't get a hit.  Create a node of the right class, link it in, +  // and return it. +  if (isa<ArrayType>(Ty)) +    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); + +  assert(isa<VectorType>(Ty)); +  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); +} + +void ConstantDataSequential::destroyConstant() { +  // Remove the constant from the StringMap. +  StringMap<ConstantDataSequential*> &CDSConstants =  +    getType()->getContext().pImpl->CDSConstants; + +  StringMap<ConstantDataSequential*>::iterator Slot = +    CDSConstants.find(getRawDataValues()); + +  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); + +  ConstantDataSequential **Entry = &Slot->getValue(); + +  // Remove the entry from the hash table. +  if ((*Entry)->Next == 0) { +    // If there is only one value in the bucket (common case) it must be this +    // entry, and removing the entry should remove the bucket completely. +    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); +    getContext().pImpl->CDSConstants.erase(Slot); +  } else { +    // Otherwise, there are multiple entries linked off the bucket, unlink the  +    // node we care about but keep the bucket around. +    for (ConstantDataSequential *Node = *Entry; ; +         Entry = &Node->Next, Node = *Entry) { +      assert(Node && "Didn't find entry in its uniquing hash table!"); +      // If we found our entry, unlink it from the list and we're done. +      if (Node == this) { +        *Entry = Node->Next; +        break; +      } +    } +  } + +  // If we were part of a list, make sure that we don't delete the list that is +  // still owned by the uniquing map. +  Next = 0; + +  // Finally, actually delete it. +  destroyConstantImpl(); +} + +/// get() constructors - Return a constant with array type with an element +/// count and element type matching the ArrayRef passed in.  Note that this +/// can return a ConstantAggregateZero object. +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { +  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ +  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ +  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ +  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { +  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { +  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} + +/// getString - This method constructs a CDS and initializes it with a text +/// string. The default behavior (AddNull==true) causes a null terminator to +/// be placed at the end of the array (increasing the length of the string by +/// one more than the StringRef would normally indicate.  Pass AddNull=false +/// to disable this behavior. +Constant *ConstantDataArray::getString(LLVMContext &Context, +                                       StringRef Str, bool AddNull) { +  if (!AddNull) { +    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); +    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data), +               Str.size())); +  } + +  SmallVector<uint8_t, 64> ElementVals; +  ElementVals.append(Str.begin(), Str.end()); +  ElementVals.push_back(0); +  return get(Context, ElementVals); +} + +/// get() constructors - Return a constant with vector type with an element +/// count and element type matching the ArrayRef passed in.  Note that this +/// can return a ConstantAggregateZero object. +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ +  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ +  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ +  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ +  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { +  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { +  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); +  const char *Data = reinterpret_cast<const char *>(Elts.data()); +  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); +} + +Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { +  assert(isElementTypeCompatible(V->getType()) && +         "Element type not compatible with ConstantData"); +  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +    if (CI->getType()->isIntegerTy(8)) { +      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); +      return get(V->getContext(), Elts); +    } +    if (CI->getType()->isIntegerTy(16)) { +      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); +      return get(V->getContext(), Elts); +    } +    if (CI->getType()->isIntegerTy(32)) { +      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); +      return get(V->getContext(), Elts); +    } +    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); +    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); +    return get(V->getContext(), Elts); +  } + +  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { +    if (CFP->getType()->isFloatTy()) { +      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); +      return get(V->getContext(), Elts); +    } +    if (CFP->getType()->isDoubleTy()) { +      SmallVector<double, 16> Elts(NumElts, +                                   CFP->getValueAPF().convertToDouble()); +      return get(V->getContext(), Elts); +    } +  } +  return ConstantVector::getSplat(NumElts, V); +} + + +/// getElementAsInteger - If this is a sequential container of integers (of +/// any size), return the specified element in the low bits of a uint64_t. +uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { +  assert(isa<IntegerType>(getElementType()) && +         "Accessor can only be used when element is an integer"); +  const char *EltPtr = getElementPointer(Elt); + +  // The data is stored in host byte order, make sure to cast back to the right +  // type to load with the right endianness. +  switch (getElementType()->getIntegerBitWidth()) { +  default: llvm_unreachable("Invalid bitwidth for CDS"); +  case 8: +    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); +  case 16: +    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); +  case 32: +    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); +  case 64: +    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); +  } +} + +/// getElementAsAPFloat - If this is a sequential container of floating point +/// type, return the specified element as an APFloat. +APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { +  const char *EltPtr = getElementPointer(Elt); + +  switch (getElementType()->getTypeID()) { +  default: +    llvm_unreachable("Accessor can only be used when element is float/double!"); +  case Type::FloatTyID: { +      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr); +      return APFloat(*const_cast<float *>(FloatPrt)); +    } +  case Type::DoubleTyID: { +      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr); +      return APFloat(*const_cast<double *>(DoublePtr)); +    } +  } +} + +/// getElementAsFloat - If this is an sequential container of floats, return +/// the specified element as a float. +float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { +  assert(getElementType()->isFloatTy() && +         "Accessor can only be used when element is a 'float'"); +  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); +  return *const_cast<float *>(EltPtr); +} + +/// getElementAsDouble - If this is an sequential container of doubles, return +/// the specified element as a float. +double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { +  assert(getElementType()->isDoubleTy() && +         "Accessor can only be used when element is a 'float'"); +  const double *EltPtr = +      reinterpret_cast<const double *>(getElementPointer(Elt)); +  return *const_cast<double *>(EltPtr); +} + +/// getElementAsConstant - Return a Constant for a specified index's element. +/// Note that this has to compute a new constant to return, so it isn't as +/// efficient as getElementAsInteger/Float/Double. +Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { +  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) +    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); + +  return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); +} + +/// isString - This method returns true if this is an array of i8. +bool ConstantDataSequential::isString() const { +  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); +} + +/// isCString - This method returns true if the array "isString", ends with a +/// nul byte, and does not contains any other nul bytes. +bool ConstantDataSequential::isCString() const { +  if (!isString()) +    return false; + +  StringRef Str = getAsString(); + +  // The last value must be nul. +  if (Str.back() != 0) return false; + +  // Other elements must be non-nul. +  return Str.drop_back().find(0) == StringRef::npos; +} + +/// getSplatValue - If this is a splat constant, meaning that all of the +/// elements have the same value, return that value. Otherwise return NULL. +Constant *ConstantDataVector::getSplatValue() const { +  const char *Base = getRawDataValues().data(); + +  // Compare elements 1+ to the 0'th element. +  unsigned EltSize = getElementByteSize(); +  for (unsigned i = 1, e = getNumElements(); i != e; ++i) +    if (memcmp(Base, Base+i*EltSize, EltSize)) +      return 0; + +  // If they're all the same, return the 0th one as a representative. +  return getElementAsConstant(0); +} + +//===----------------------------------------------------------------------===// +//                replaceUsesOfWithOnConstant implementations + +/// replaceUsesOfWithOnConstant - Update this constant array to change uses of +/// 'From' to be uses of 'To'.  This must update the uniquing data structures +/// etc. +/// +/// Note that we intentionally replace all uses of From with To here.  Consider +/// a large array that uses 'From' 1000 times.  By handling this case all here, +/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that +/// single invocation handles all 1000 uses.  Handling them one at a time would +/// work, but would be really slow because it would have to unique each updated +/// array instance. +/// +void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, +                                                Use *U) { +  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); +  Constant *ToC = cast<Constant>(To); + +  LLVMContextImpl *pImpl = getType()->getContext().pImpl; + +  SmallVector<Constant*, 8> Values; +  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; +  Lookup.first = cast<ArrayType>(getType()); +  Values.reserve(getNumOperands());  // Build replacement array. + +  // Fill values with the modified operands of the constant array.  Also, +  // compute whether this turns into an all-zeros array. +  unsigned NumUpdated = 0; + +  // Keep track of whether all the values in the array are "ToC". +  bool AllSame = true; +  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { +    Constant *Val = cast<Constant>(O->get()); +    if (Val == From) { +      Val = ToC; +      ++NumUpdated; +    } +    Values.push_back(Val); +    AllSame &= Val == ToC; +  } + +  Constant *Replacement = 0; +  if (AllSame && ToC->isNullValue()) { +    Replacement = ConstantAggregateZero::get(getType()); +  } else if (AllSame && isa<UndefValue>(ToC)) { +    Replacement = UndefValue::get(getType()); +  } else { +    // Check to see if we have this array type already. +    Lookup.second = makeArrayRef(Values); +    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = +      pImpl->ArrayConstants.find(Lookup); + +    if (I != pImpl->ArrayConstants.map_end()) { +      Replacement = I->first; +    } else { +      // Okay, the new shape doesn't exist in the system yet.  Instead of +      // creating a new constant array, inserting it, replaceallusesof'ing the +      // old with the new, then deleting the old... just update the current one +      // in place! +      pImpl->ArrayConstants.remove(this); + +      // Update to the new value.  Optimize for the case when we have a single +      // operand that we're changing, but handle bulk updates efficiently. +      if (NumUpdated == 1) { +        unsigned OperandToUpdate = U - OperandList; +        assert(getOperand(OperandToUpdate) == From && +               "ReplaceAllUsesWith broken!"); +        setOperand(OperandToUpdate, ToC); +      } else { +        for (unsigned i = 0, e = getNumOperands(); i != e; ++i) +          if (getOperand(i) == From) +            setOperand(i, ToC); +      } +      pImpl->ArrayConstants.insert(this); +      return; +    } +  } + +  // Otherwise, I do need to replace this with an existing value. +  assert(Replacement != this && "I didn't contain From!"); + +  // Everyone using this now uses the replacement. +  replaceAllUsesWith(Replacement); + +  // Delete the old constant! +  destroyConstant(); +} + +void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, +                                                 Use *U) { +  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); +  Constant *ToC = cast<Constant>(To); + +  unsigned OperandToUpdate = U-OperandList; +  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); + +  SmallVector<Constant*, 8> Values; +  LLVMContextImpl::StructConstantsTy::LookupKey Lookup; +  Lookup.first = cast<StructType>(getType()); +  Values.reserve(getNumOperands());  // Build replacement struct. + +  // Fill values with the modified operands of the constant struct.  Also, +  // compute whether this turns into an all-zeros struct. +  bool isAllZeros = false; +  bool isAllUndef = false; +  if (ToC->isNullValue()) { +    isAllZeros = true; +    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { +      Constant *Val = cast<Constant>(O->get()); +      Values.push_back(Val); +      if (isAllZeros) isAllZeros = Val->isNullValue(); +    } +  } else if (isa<UndefValue>(ToC)) { +    isAllUndef = true; +    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { +      Constant *Val = cast<Constant>(O->get()); +      Values.push_back(Val); +      if (isAllUndef) isAllUndef = isa<UndefValue>(Val); +    } +  } else { +    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) +      Values.push_back(cast<Constant>(O->get())); +  } +  Values[OperandToUpdate] = ToC; + +  LLVMContextImpl *pImpl = getContext().pImpl; + +  Constant *Replacement = 0; +  if (isAllZeros) { +    Replacement = ConstantAggregateZero::get(getType()); +  } else if (isAllUndef) { +    Replacement = UndefValue::get(getType()); +  } else { +    // Check to see if we have this struct type already. +    Lookup.second = makeArrayRef(Values); +    LLVMContextImpl::StructConstantsTy::MapTy::iterator I = +      pImpl->StructConstants.find(Lookup); + +    if (I != pImpl->StructConstants.map_end()) { +      Replacement = I->first; +    } else { +      // Okay, the new shape doesn't exist in the system yet.  Instead of +      // creating a new constant struct, inserting it, replaceallusesof'ing the +      // old with the new, then deleting the old... just update the current one +      // in place! +      pImpl->StructConstants.remove(this); + +      // Update to the new value. +      setOperand(OperandToUpdate, ToC); +      pImpl->StructConstants.insert(this); +      return; +    } +  } + +  assert(Replacement != this && "I didn't contain From!"); + +  // Everyone using this now uses the replacement. +  replaceAllUsesWith(Replacement); + +  // Delete the old constant! +  destroyConstant(); +} + +void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, +                                                 Use *U) { +  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); + +  SmallVector<Constant*, 8> Values; +  Values.reserve(getNumOperands());  // Build replacement array... +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    Constant *Val = getOperand(i); +    if (Val == From) Val = cast<Constant>(To); +    Values.push_back(Val); +  } + +  Constant *Replacement = get(Values); +  assert(Replacement != this && "I didn't contain From!"); + +  // Everyone using this now uses the replacement. +  replaceAllUsesWith(Replacement); + +  // Delete the old constant! +  destroyConstant(); +} + +void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, +                                               Use *U) { +  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); +  Constant *To = cast<Constant>(ToV); + +  SmallVector<Constant*, 8> NewOps; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    Constant *Op = getOperand(i); +    NewOps.push_back(Op == From ? To : Op); +  } + +  Constant *Replacement = getWithOperands(NewOps); +  assert(Replacement != this && "I didn't contain From!"); + +  // Everyone using this now uses the replacement. +  replaceAllUsesWith(Replacement); + +  // Delete the old constant! +  destroyConstant(); +} + +Instruction *ConstantExpr::getAsInstruction() { +  SmallVector<Value*,4> ValueOperands; +  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) +    ValueOperands.push_back(cast<Value>(I)); + +  ArrayRef<Value*> Ops(ValueOperands); + +  switch (getOpcode()) { +  case Instruction::Trunc: +  case Instruction::ZExt: +  case Instruction::SExt: +  case Instruction::FPTrunc: +  case Instruction::FPExt: +  case Instruction::UIToFP: +  case Instruction::SIToFP: +  case Instruction::FPToUI: +  case Instruction::FPToSI: +  case Instruction::PtrToInt: +  case Instruction::IntToPtr: +  case Instruction::BitCast: +    return CastInst::Create((Instruction::CastOps)getOpcode(), +                            Ops[0], getType()); +  case Instruction::Select: +    return SelectInst::Create(Ops[0], Ops[1], Ops[2]); +  case Instruction::InsertElement: +    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); +  case Instruction::ExtractElement: +    return ExtractElementInst::Create(Ops[0], Ops[1]); +  case Instruction::InsertValue: +    return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); +  case Instruction::ExtractValue: +    return ExtractValueInst::Create(Ops[0], getIndices()); +  case Instruction::ShuffleVector: +    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); + +  case Instruction::GetElementPtr: +    if (cast<GEPOperator>(this)->isInBounds()) +      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1)); +    else +      return GetElementPtrInst::Create(Ops[0], Ops.slice(1)); + +  case Instruction::ICmp: +  case Instruction::FCmp: +    return CmpInst::Create((Instruction::OtherOps)getOpcode(), +                           getPredicate(), Ops[0], Ops[1]); + +  default: +    assert(getNumOperands() == 2 && "Must be binary operator?"); +    BinaryOperator *BO = +      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), +                             Ops[0], Ops[1]); +    if (isa<OverflowingBinaryOperator>(BO)) { +      BO->setHasNoUnsignedWrap(SubclassOptionalData & +                               OverflowingBinaryOperator::NoUnsignedWrap); +      BO->setHasNoSignedWrap(SubclassOptionalData & +                             OverflowingBinaryOperator::NoSignedWrap); +    } +    if (isa<PossiblyExactOperator>(BO)) +      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); +    return BO; +  } +} | 
