diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-08-20 20:50:12 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-08-20 20:50:12 +0000 |
commit | e6d1592492a3a379186bfb02bd0f4eda0669c0d5 (patch) | |
tree | 599ab169a01f1c86eda9adc774edaedde2f2db5b /lib/Target/ARM/ARMParallelDSP.cpp | |
parent | 1a56a5ead7a2e84bee8240f5f6b033b5f1707154 (diff) |
Diffstat (limited to 'lib/Target/ARM/ARMParallelDSP.cpp')
-rw-r--r-- | lib/Target/ARM/ARMParallelDSP.cpp | 889 |
1 files changed, 475 insertions, 414 deletions
diff --git a/lib/Target/ARM/ARMParallelDSP.cpp b/lib/Target/ARM/ARMParallelDSP.cpp index fc3258914f92..5389d09bf7d7 100644 --- a/lib/Target/ARM/ARMParallelDSP.cpp +++ b/lib/Target/ARM/ARMParallelDSP.cpp @@ -1,9 +1,8 @@ //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// // -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // @@ -49,12 +48,12 @@ DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), namespace { struct OpChain; struct BinOpChain; - struct Reduction; + class Reduction; using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; using ReductionList = SmallVector<Reduction, 8>; using ValueList = SmallVector<Value*, 8>; - using MemInstList = SmallVector<Instruction*, 8>; + using MemInstList = SmallVector<LoadInst*, 8>; using PMACPair = std::pair<BinOpChain*,BinOpChain*>; using PMACPairList = SmallVector<PMACPair, 8>; using Instructions = SmallVector<Instruction*,16>; @@ -64,31 +63,24 @@ namespace { Instruction *Root; ValueList AllValues; MemInstList VecLd; // List of all load instructions. - MemLocList MemLocs; // All memory locations read by this tree. + MemInstList Loads; bool ReadOnly = true; OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } virtual ~OpChain() = default; - void SetMemoryLocations() { - const auto Size = LocationSize::unknown(); + void PopulateLoads() { for (auto *V : AllValues) { - if (auto *I = dyn_cast<Instruction>(V)) { - if (I->mayWriteToMemory()) - ReadOnly = false; - if (auto *Ld = dyn_cast<LoadInst>(V)) - MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); - } + if (auto *Ld = dyn_cast<LoadInst>(V)) + Loads.push_back(Ld); } } unsigned size() const { return AllValues.size(); } }; - // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. - // 'Reduction' contains the phi-node and accumulator statement from where we - // start pattern matching, and 'BinOpChain' the multiplication - // instructions that are candidates for parallel execution. + // 'BinOpChain' holds the multiplication instructions that are candidates + // for parallel execution. struct BinOpChain : public OpChain { ValueList LHS; // List of all (narrow) left hand operands. ValueList RHS; // List of all (narrow) right hand operands. @@ -103,15 +95,85 @@ namespace { bool AreSymmetrical(BinOpChain *Other); }; - struct Reduction { - PHINode *Phi; // The Phi-node from where we start - // pattern matching. - Instruction *AccIntAdd; // The accumulating integer add statement, - // i.e, the reduction statement. - OpChainList MACCandidates; // The MAC candidates associated with - // this reduction statement. - PMACPairList PMACPairs; - Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; + /// Represent a sequence of multiply-accumulate operations with the aim to + /// perform the multiplications in parallel. + class Reduction { + Instruction *Root = nullptr; + Value *Acc = nullptr; + OpChainList Muls; + PMACPairList MulPairs; + SmallPtrSet<Instruction*, 4> Adds; + + public: + Reduction() = delete; + + Reduction (Instruction *Add) : Root(Add) { } + + /// Record an Add instruction that is a part of the this reduction. + void InsertAdd(Instruction *I) { Adds.insert(I); } + + /// Record a BinOpChain, rooted at a Mul instruction, that is a part of + /// this reduction. + void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) { + Muls.push_back(make_unique<BinOpChain>(I, LHS, RHS)); + } + + /// Add the incoming accumulator value, returns true if a value had not + /// already been added. Returning false signals to the user that this + /// reduction already has a value to initialise the accumulator. + bool InsertAcc(Value *V) { + if (Acc) + return false; + Acc = V; + return true; + } + + /// Set two BinOpChains, rooted at muls, that can be executed as a single + /// parallel operation. + void AddMulPair(BinOpChain *Mul0, BinOpChain *Mul1) { + MulPairs.push_back(std::make_pair(Mul0, Mul1)); + } + + /// Return true if enough mul operations are found that can be executed in + /// parallel. + bool CreateParallelPairs(); + + /// Return the add instruction which is the root of the reduction. + Instruction *getRoot() { return Root; } + + /// Return the incoming value to be accumulated. This maybe null. + Value *getAccumulator() { return Acc; } + + /// Return the set of adds that comprise the reduction. + SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; } + + /// Return the BinOpChain, rooted at mul instruction, that comprise the + /// the reduction. + OpChainList &getMuls() { return Muls; } + + /// Return the BinOpChain, rooted at mul instructions, that have been + /// paired for parallel execution. + PMACPairList &getMulPairs() { return MulPairs; } + + /// To finalise, replace the uses of the root with the intrinsic call. + void UpdateRoot(Instruction *SMLAD) { + Root->replaceAllUsesWith(SMLAD); + } + }; + + class WidenedLoad { + LoadInst *NewLd = nullptr; + SmallVector<LoadInst*, 4> Loads; + + public: + WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) + : NewLd(Wide) { + for (auto *I : Lds) + Loads.push_back(I); + } + LoadInst *getLoad() { + return NewLd; + } }; class ARMParallelDSP : public LoopPass { @@ -124,28 +186,37 @@ namespace { const DataLayout *DL; Module *M; std::map<LoadInst*, LoadInst*> LoadPairs; - std::map<LoadInst*, SmallVector<LoadInst*, 4>> SequentialLoads; + SmallPtrSet<LoadInst*, 4> OffsetLoads; + std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; + + template<unsigned> + bool IsNarrowSequence(Value *V, ValueList &VL); - bool RecordSequentialLoads(BasicBlock *Header); - bool InsertParallelMACs(Reduction &Reduction); + bool RecordMemoryOps(BasicBlock *BB); + void InsertParallelMACs(Reduction &Reduction); bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); - void CreateParallelMACPairs(Reduction &R); - Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, - Instruction *Acc, bool Exchange, - Instruction *InsertAfter); + LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, + IntegerType *LoadTy); + bool CreateParallelPairs(Reduction &R); /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate /// Dual performs two signed 16x16-bit multiplications. It adds the /// products to a 32-bit accumulate operand. Optionally, the instruction can /// exchange the halfwords of the second operand before performing the /// arithmetic. - bool MatchSMLAD(Function &F); + bool MatchSMLAD(Loop *L); public: static char ID; ARMParallelDSP() : LoopPass(ID) { } + bool doInitialization(Loop *L, LPPassManager &LPM) override { + LoadPairs.clear(); + WideLoads.clear(); + return true; + } + void getAnalysisUsage(AnalysisUsage &AU) const override { LoopPass::getAnalysisUsage(AU); AU.addRequired<AssumptionCacheTracker>(); @@ -183,6 +254,9 @@ namespace { return false; } + if (!TheLoop->getLoopPreheader()) + InsertPreheaderForLoop(L, DT, LI, nullptr, true); + Function &F = *Header->getParent(); M = F.getParent(); DL = &M->getDataLayout(); @@ -202,31 +276,62 @@ namespace { return false; } + if (!ST->isLittle()) { + LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " + << "ARMParallelDSP\n"); + return false; + } + LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); - bool Changes = false; LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); - if (!RecordSequentialLoads(Header)) { + if (!RecordMemoryOps(Header)) { LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); return false; } - Changes = MatchSMLAD(F); + bool Changes = MatchSMLAD(L); return Changes; } }; } +template<typename MemInst> +static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, + const DataLayout &DL, ScalarEvolution &SE) { + if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) + return true; + return false; +} + +bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, + MemInstList &VecMem) { + if (!Ld0 || !Ld1) + return false; + + if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) + return false; + + LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; + dbgs() << "Ld0:"; Ld0->dump(); + dbgs() << "Ld1:"; Ld1->dump(); + ); + + VecMem.clear(); + VecMem.push_back(Ld0); + VecMem.push_back(Ld1); + return true; +} + // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP // instructions, which is set to 16. So here we should collect all i8 and i16 // narrow operations. // TODO: we currently only collect i16, and will support i8 later, so that's // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. template<unsigned MaxBitWidth> -static bool IsNarrowSequence(Value *V, ValueList &VL) { - LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); +bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) { ConstantInt *CInt; if (match(V, m_ConstantInt(CInt))) { @@ -236,7 +341,7 @@ static bool IsNarrowSequence(Value *V, ValueList &VL) { auto *I = dyn_cast<Instruction>(V); if (!I) - return false; + return false; Value *Val, *LHS, *RHS; if (match(V, m_Trunc(m_Value(Val)))) { @@ -245,108 +350,253 @@ static bool IsNarrowSequence(Value *V, ValueList &VL) { } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { // TODO: we need to implement sadd16/sadd8 for this, which enables to // also do the rewrite for smlad8.ll, but it is unsupported for now. - LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); return false; } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { - if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { - LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << - cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); + if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) return false; - } if (match(Val, m_Load(m_Value()))) { - LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); + auto *Ld = cast<LoadInst>(Val); + + // Check that these load could be paired. + if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld)) + return false; + VL.push_back(Val); VL.push_back(I); return true; } } - LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); return false; } -template<typename MemInst> -static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, - const DataLayout &DL, ScalarEvolution &SE) { - if (!MemOp0->isSimple() || !MemOp1->isSimple()) { - LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); - return false; - } - if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { - LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); - return true; +/// Iterate through the block and record base, offset pairs of loads which can +/// be widened into a single load. +bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { + SmallVector<LoadInst*, 8> Loads; + SmallVector<Instruction*, 8> Writes; + + // Collect loads and instruction that may write to memory. For now we only + // record loads which are simple, sign-extended and have a single user. + // TODO: Allow zero-extended loads. + for (auto &I : *BB) { + if (I.mayWriteToMemory()) + Writes.push_back(&I); + auto *Ld = dyn_cast<LoadInst>(&I); + if (!Ld || !Ld->isSimple() || + !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) + continue; + Loads.push_back(Ld); } - LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); - return false; -} -bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, - MemInstList &VecMem) { - if (!Ld0 || !Ld1) - return false; + using InstSet = std::set<Instruction*>; + using DepMap = std::map<Instruction*, InstSet>; + DepMap RAWDeps; - LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; - dbgs() << "Ld0:"; Ld0->dump(); - dbgs() << "Ld1:"; Ld1->dump(); - ); + // Record any writes that may alias a load. + const auto Size = LocationSize::unknown(); + for (auto Read : Loads) { + for (auto Write : Writes) { + MemoryLocation ReadLoc = + MemoryLocation(Read->getPointerOperand(), Size); - if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { - LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); - return false; + if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), + ModRefInfo::ModRef))) + continue; + if (DT->dominates(Write, Read)) + RAWDeps[Read].insert(Write); + } } - if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) - return false; + // Check whether there's not a write between the two loads which would + // prevent them from being safely merged. + auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { + LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; + LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; - VecMem.clear(); - VecMem.push_back(Ld0); - VecMem.push_back(Ld1); - return true; -} + if (RAWDeps.count(Dominated)) { + InstSet &WritesBefore = RAWDeps[Dominated]; -/// Iterate through the block and record base, offset pairs of loads as well as -/// maximal sequences of sequential loads. -bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *Header) { - SmallVector<LoadInst*, 8> Loads; - for (auto &I : *Header) { - auto *Ld = dyn_cast<LoadInst>(&I); - if (!Ld) - continue; - Loads.push_back(Ld); - } + for (auto Before : WritesBefore) { - std::map<LoadInst*, LoadInst*> BaseLoads; + // We can't move the second load backward, past a write, to merge + // with the first load. + if (DT->dominates(Dominator, Before)) + return false; + } + } + return true; + }; - for (auto *Ld0 : Loads) { - for (auto *Ld1 : Loads) { - if (Ld0 == Ld1) + // Record base, offset load pairs. + for (auto *Base : Loads) { + for (auto *Offset : Loads) { + if (Base == Offset) continue; - if (AreSequentialAccesses<LoadInst>(Ld0, Ld1, *DL, *SE)) { - LoadPairs[Ld0] = Ld1; - if (BaseLoads.count(Ld0)) { - LoadInst *Base = BaseLoads[Ld0]; - BaseLoads[Ld1] = Base; - SequentialLoads[Base].push_back(Ld1); - } else { - BaseLoads[Ld1] = Ld0; - SequentialLoads[Ld0].push_back(Ld1); - } + if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && + SafeToPair(Base, Offset)) { + LoadPairs[Base] = Offset; + OffsetLoads.insert(Offset); + break; } } } + + LLVM_DEBUG(if (!LoadPairs.empty()) { + dbgs() << "Consecutive load pairs:\n"; + for (auto &MapIt : LoadPairs) { + LLVM_DEBUG(dbgs() << *MapIt.first << ", " + << *MapIt.second << "\n"); + } + }); return LoadPairs.size() > 1; } -void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { - OpChainList &Candidates = R.MACCandidates; - PMACPairList &PMACPairs = R.PMACPairs; - const unsigned Elems = Candidates.size(); +// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector +// multiplications. +// To use SMLAD: +// 1) we first need to find integer add then look for this pattern: +// +// acc0 = ... +// ld0 = load i16 +// sext0 = sext i16 %ld0 to i32 +// ld1 = load i16 +// sext1 = sext i16 %ld1 to i32 +// mul0 = mul %sext0, %sext1 +// ld2 = load i16 +// sext2 = sext i16 %ld2 to i32 +// ld3 = load i16 +// sext3 = sext i16 %ld3 to i32 +// mul1 = mul i32 %sext2, %sext3 +// add0 = add i32 %mul0, %acc0 +// acc1 = add i32 %add0, %mul1 +// +// Which can be selected to: +// +// ldr r0 +// ldr r1 +// smlad r2, r0, r1, r2 +// +// If constants are used instead of loads, these will need to be hoisted +// out and into a register. +// +// If loop invariants are used instead of loads, these need to be packed +// before the loop begins. +// +bool ARMParallelDSP::MatchSMLAD(Loop *L) { + // Search recursively back through the operands to find a tree of values that + // form a multiply-accumulate chain. The search records the Add and Mul + // instructions that form the reduction and allows us to find a single value + // to be used as the initial input to the accumlator. + std::function<bool(Value*, Reduction&)> Search = [&] + (Value *V, Reduction &R) -> bool { + + // If we find a non-instruction, try to use it as the initial accumulator + // value. This may have already been found during the search in which case + // this function will return false, signaling a search fail. + auto *I = dyn_cast<Instruction>(V); + if (!I) + return R.InsertAcc(V); + + switch (I->getOpcode()) { + default: + break; + case Instruction::PHI: + // Could be the accumulator value. + return R.InsertAcc(V); + case Instruction::Add: { + // Adds should be adding together two muls, or another add and a mul to + // be within the mac chain. One of the operands may also be the + // accumulator value at which point we should stop searching. + bool ValidLHS = Search(I->getOperand(0), R); + bool ValidRHS = Search(I->getOperand(1), R); + if (!ValidLHS && !ValidLHS) + return false; + else if (ValidLHS && ValidRHS) { + R.InsertAdd(I); + return true; + } else { + R.InsertAdd(I); + return R.InsertAcc(I); + } + } + case Instruction::Mul: { + Value *MulOp0 = I->getOperand(0); + Value *MulOp1 = I->getOperand(1); + if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) { + ValueList LHS; + ValueList RHS; + if (IsNarrowSequence<16>(MulOp0, LHS) && + IsNarrowSequence<16>(MulOp1, RHS)) { + R.InsertMul(I, LHS, RHS); + return true; + } + } + return false; + } + case Instruction::SExt: + return Search(I->getOperand(0), R); + } + return false; + }; + + bool Changed = false; + SmallPtrSet<Instruction*, 4> AllAdds; + BasicBlock *Latch = L->getLoopLatch(); + + for (Instruction &I : reverse(*Latch)) { + if (I.getOpcode() != Instruction::Add) + continue; + + if (AllAdds.count(&I)) + continue; + + const auto *Ty = I.getType(); + if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) + continue; + + Reduction R(&I); + if (!Search(&I, R)) + continue; + + if (!CreateParallelPairs(R)) + continue; + + InsertParallelMACs(R); + Changed = true; + AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); + } + + return Changed; +} + +bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { + + // Not enough mul operations to make a pair. + if (R.getMuls().size() < 2) + return false; - if (Elems < 2) - return; + // Check that the muls operate directly upon sign extended loads. + for (auto &MulChain : R.getMuls()) { + // A mul has 2 operands, and a narrow op consist of sext and a load; thus + // we expect at least 4 items in this operand value list. + if (MulChain->size() < 4) { + LLVM_DEBUG(dbgs() << "Operand list too short.\n"); + return false; + } + MulChain->PopulateLoads(); + ValueList &LHS = static_cast<BinOpChain*>(MulChain.get())->LHS; + ValueList &RHS = static_cast<BinOpChain*>(MulChain.get())->RHS; + + // Use +=2 to skip over the expected extend instructions. + for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { + if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) + return false; + } + } - auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { + auto CanPair = [&](Reduction &R, BinOpChain *PMul0, BinOpChain *PMul1) { if (!PMul0->AreSymmetrical(PMul1)) return false; @@ -363,23 +613,22 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { if (!Ld0 || !Ld1 || !Ld2 || !Ld3) return false; - LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n" - << "\t Ld0: " << *Ld0 << "\n" - << "\t Ld1: " << *Ld1 << "\n" - << "and operands " << x + 2 << ":\n" - << "\t Ld2: " << *Ld2 << "\n" - << "\t Ld3: " << *Ld3 << "\n"); + LLVM_DEBUG(dbgs() << "Loads:\n" + << " - " << *Ld0 << "\n" + << " - " << *Ld1 << "\n" + << " - " << *Ld2 << "\n" + << " - " << *Ld3 << "\n"); if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); - PMACPairs.push_back(std::make_pair(PMul0, PMul1)); + R.AddMulPair(PMul0, PMul1); return true; } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); PMul1->Exchange = true; - PMACPairs.push_back(std::make_pair(PMul0, PMul1)); + R.AddMulPair(PMul0, PMul1); return true; } } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && @@ -389,16 +638,18 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { LLVM_DEBUG(dbgs() << " and swapping muls\n"); PMul0->Exchange = true; // Only the second operand can be exchanged, so swap the muls. - PMACPairs.push_back(std::make_pair(PMul1, PMul0)); + R.AddMulPair(PMul1, PMul0); return true; } } return false; }; + OpChainList &Muls = R.getMuls(); + const unsigned Elems = Muls.size(); SmallPtrSet<const Instruction*, 4> Paired; for (unsigned i = 0; i < Elems; ++i) { - BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); + BinOpChain *PMul0 = static_cast<BinOpChain*>(Muls[i].get()); if (Paired.count(PMul0->Root)) continue; @@ -406,7 +657,7 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { if (i == j) continue; - BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); + BinOpChain *PMul1 = static_cast<BinOpChain*>(Muls[j].get()); if (Paired.count(PMul1->Root)) continue; @@ -417,315 +668,133 @@ void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { assert(PMul0 != PMul1 && "expected different chains"); - LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; - dbgs() << "- "; Mul0->dump(); - dbgs() << "- "; Mul1->dump()); - - LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); - if (CanPair(PMul0, PMul1)) { + if (CanPair(R, PMul0, PMul1)) { Paired.insert(Mul0); Paired.insert(Mul1); break; } } } + return !R.getMulPairs().empty(); } -bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { - Instruction *Acc = Reduction.Phi; - Instruction *InsertAfter = Reduction.AccIntAdd; - - for (auto &Pair : Reduction.PMACPairs) { - BinOpChain *PMul0 = Pair.first; - BinOpChain *PMul1 = Pair.second; - LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; - dbgs() << "- "; PMul0->Root->dump(); - dbgs() << "- "; PMul1->Root->dump()); - - auto *VecLd0 = cast<LoadInst>(PMul0->VecLd[0]); - auto *VecLd1 = cast<LoadInst>(PMul1->VecLd[0]); - Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, PMul1->Exchange, InsertAfter); - InsertAfter = Acc; - } - - if (Acc != Reduction.Phi) { - LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); - Reduction.AccIntAdd->replaceAllUsesWith(Acc); - return true; - } - return false; -} - -static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, - ReductionList &Reductions) { - RecurrenceDescriptor RecDesc; - const bool HasFnNoNaNAttr = - F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; - const BasicBlock *Latch = TheLoop->getLoopLatch(); - - // We need a preheader as getIncomingValueForBlock assumes there is one. - if (!TheLoop->getLoopPreheader()) { - LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); - return; - } - - for (PHINode &Phi : Header->phis()) { - const auto *Ty = Phi.getType(); - if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) - continue; - - const bool IsReduction = - RecurrenceDescriptor::AddReductionVar(&Phi, - RecurrenceDescriptor::RK_IntegerAdd, - TheLoop, HasFnNoNaNAttr, RecDesc); - if (!IsReduction) - continue; - - Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); - if (!Acc) - continue; - - Reductions.push_back(Reduction(&Phi, Acc)); - } - - LLVM_DEBUG( - dbgs() << "\nAccumulating integer additions (reductions) found:\n"; - for (auto &R : Reductions) { - dbgs() << "- "; R.Phi->dump(); - dbgs() << "-> "; R.AccIntAdd->dump(); - } - ); -} - -static void AddMACCandidate(OpChainList &Candidates, - Instruction *Mul, - Value *MulOp0, Value *MulOp1) { - LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); - assert(Mul->getOpcode() == Instruction::Mul && - "expected mul instruction"); - ValueList LHS; - ValueList RHS; - if (IsNarrowSequence<16>(MulOp0, LHS) && - IsNarrowSequence<16>(MulOp1, RHS)) { - LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); - Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); - } -} - -static void MatchParallelMACSequences(Reduction &R, - OpChainList &Candidates) { - Instruction *Acc = R.AccIntAdd; - LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc); - - // Returns false to signal the search should be stopped. - std::function<bool(Value*)> Match = - [&Candidates, &Match](Value *V) -> bool { - auto *I = dyn_cast<Instruction>(V); - if (!I) - return false; - - switch (I->getOpcode()) { - case Instruction::Add: - if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) - return true; - break; - case Instruction::Mul: { - Value *MulOp0 = I->getOperand(0); - Value *MulOp1 = I->getOperand(1); - if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) - AddMACCandidate(Candidates, I, MulOp0, MulOp1); - return false; - } - case Instruction::SExt: - return Match(I->getOperand(0)); - } - return false; +void ARMParallelDSP::InsertParallelMACs(Reduction &R) { + + auto CreateSMLADCall = [&](SmallVectorImpl<LoadInst*> &VecLd0, + SmallVectorImpl<LoadInst*> &VecLd1, + Value *Acc, bool Exchange, + Instruction *InsertAfter) { + // Replace the reduction chain with an intrinsic call + IntegerType *Ty = IntegerType::get(M->getContext(), 32); + LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? + WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); + LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? + WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); + + Value* Args[] = { WideLd0, WideLd1, Acc }; + Function *SMLAD = nullptr; + if (Exchange) + SMLAD = Acc->getType()->isIntegerTy(32) ? + Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : + Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); + else + SMLAD = Acc->getType()->isIntegerTy(32) ? + Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : + Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); + + IRBuilder<NoFolder> Builder(InsertAfter->getParent(), + ++BasicBlock::iterator(InsertAfter)); + Instruction *Call = Builder.CreateCall(SMLAD, Args); + NumSMLAD++; + return Call; }; - while (Match (Acc)); - LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " - << Candidates.size() << " candidates.\n"); -} - -// Collects all instructions that are not part of the MAC chains, which is the -// set of instructions that can potentially alias with the MAC operands. -static void AliasCandidates(BasicBlock *Header, Instructions &Reads, - Instructions &Writes) { - for (auto &I : *Header) { - if (I.mayReadFromMemory()) - Reads.push_back(&I); - if (I.mayWriteToMemory()) - Writes.push_back(&I); - } -} - -// Check whether statements in the basic block that write to memory alias with -// the memory locations accessed by the MAC-chains. -// TODO: we need the read statements when we accept more complicated chains. -static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, - Instructions &Writes, OpChainList &MACCandidates) { - LLVM_DEBUG(dbgs() << "Alias checks:\n"); - for (auto &MAC : MACCandidates) { - LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); - - // At the moment, we allow only simple chains that only consist of reads, - // accumulate their result with an integer add, and thus that don't write - // memory, and simply bail if they do. - if (!MAC->ReadOnly) - return true; - - // Now for all writes in the basic block, check that they don't alias with - // the memory locations accessed by our MAC-chain: - for (auto *I : Writes) { - LLVM_DEBUG(dbgs() << "- "; I->dump()); - assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); - for (auto &MemLoc : MAC->MemLocs) { - if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), - ModRefInfo::ModRef))) { - LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); - return true; - } - } - } - } - - LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); - return false; -} + Instruction *InsertAfter = R.getRoot(); + Value *Acc = R.getAccumulator(); + if (!Acc) + Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); -static bool CheckMACMemory(OpChainList &Candidates) { - for (auto &C : Candidates) { - // A mul has 2 operands, and a narrow op consist of sext and a load; thus - // we expect at least 4 items in this operand value list. - if (C->size() < 4) { - LLVM_DEBUG(dbgs() << "Operand list too short.\n"); - return false; - } - C->SetMemoryLocations(); - ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; - ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; + LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n" + << "Acc: " << *Acc << "\n"); + for (auto &Pair : R.getMulPairs()) { + BinOpChain *PMul0 = Pair.first; + BinOpChain *PMul1 = Pair.second; + LLVM_DEBUG(dbgs() << "Muls:\n" + << "- " << *PMul0->Root << "\n" + << "- " << *PMul1->Root << "\n"); - // Use +=2 to skip over the expected extend instructions. - for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { - if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) - return false; - } + Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, + InsertAfter); + InsertAfter = cast<Instruction>(Acc); } - return true; + R.UpdateRoot(cast<Instruction>(Acc)); } -// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector -// multiplications. -// To use SMLAD: -// 1) we first need to find integer add reduction PHIs, -// 2) then from the PHI, look for this pattern: -// -// acc0 = phi i32 [0, %entry], [%acc1, %loop.body] -// ld0 = load i16 -// sext0 = sext i16 %ld0 to i32 -// ld1 = load i16 -// sext1 = sext i16 %ld1 to i32 -// mul0 = mul %sext0, %sext1 -// ld2 = load i16 -// sext2 = sext i16 %ld2 to i32 -// ld3 = load i16 -// sext3 = sext i16 %ld3 to i32 -// mul1 = mul i32 %sext2, %sext3 -// add0 = add i32 %mul0, %acc0 -// acc1 = add i32 %add0, %mul1 -// -// Which can be selected to: -// -// ldr.h r0 -// ldr.h r1 -// smlad r2, r0, r1, r2 -// -// If constants are used instead of loads, these will need to be hoisted -// out and into a register. -// -// If loop invariants are used instead of loads, these need to be packed -// before the loop begins. -// -bool ARMParallelDSP::MatchSMLAD(Function &F) { - BasicBlock *Header = L->getHeader(); - LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; - dbgs() << "Header block:\n"; Header->dump(); - dbgs() << "Loop info:\n\n"; L->dump()); +LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, + IntegerType *LoadTy) { + assert(Loads.size() == 2 && "currently only support widening two loads"); - bool Changed = false; - ReductionList Reductions; - MatchReductions(F, L, Header, Reductions); + LoadInst *Base = Loads[0]; + LoadInst *Offset = Loads[1]; - for (auto &R : Reductions) { - OpChainList MACCandidates; - MatchParallelMACSequences(R, MACCandidates); - if (!CheckMACMemory(MACCandidates)) - continue; + Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); + Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); - R.MACCandidates = std::move(MACCandidates); + assert((BaseSExt && OffsetSExt) + && "Loads should have a single, extending, user"); - LLVM_DEBUG(dbgs() << "MAC candidates:\n"; - for (auto &M : R.MACCandidates) - M->Root->dump(); - dbgs() << "\n";); - } + std::function<void(Value*, Value*)> MoveBefore = + [&](Value *A, Value *B) -> void { + if (!isa<Instruction>(A) || !isa<Instruction>(B)) + return; - // Collect all instructions that may read or write memory. Our alias - // analysis checks bail out if any of these instructions aliases with an - // instruction from the MAC-chain. - Instructions Reads, Writes; - AliasCandidates(Header, Reads, Writes); + auto *Source = cast<Instruction>(A); + auto *Sink = cast<Instruction>(B); - for (auto &R : Reductions) { - if (AreAliased(AA, Reads, Writes, R.MACCandidates)) - return false; - CreateParallelMACPairs(R); - Changed |= InsertParallelMACs(R); - } + if (DT->dominates(Source, Sink) || + Source->getParent() != Sink->getParent() || + isa<PHINode>(Source) || isa<PHINode>(Sink)) + return; - LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); - return Changed; -} + Source->moveBefore(Sink); + for (auto &U : Source->uses()) + MoveBefore(Source, U.getUser()); + }; -static LoadInst *CreateLoadIns(IRBuilder<NoFolder> &IRB, LoadInst &BaseLoad, - const Type *LoadTy) { - const unsigned AddrSpace = BaseLoad.getPointerAddressSpace(); + // Insert the load at the point of the original dominating load. + LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; + IRBuilder<NoFolder> IRB(DomLoad->getParent(), + ++BasicBlock::iterator(DomLoad)); - Value *VecPtr = IRB.CreateBitCast(BaseLoad.getPointerOperand(), + // Bitcast the pointer to a wider type and create the wide load, while making + // sure to maintain the original alignment as this prevents ldrd from being + // generated when it could be illegal due to memory alignment. + const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); + Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), LoadTy->getPointerTo(AddrSpace)); - return IRB.CreateAlignedLoad(VecPtr, BaseLoad.getAlignment()); -} - -Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, - Instruction *Acc, bool Exchange, - Instruction *InsertAfter) { - LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" - << "- " << *VecLd0 << "\n" - << "- " << *VecLd1 << "\n" - << "- " << *Acc << "\n" - << "Exchange: " << Exchange << "\n"); - - IRBuilder<NoFolder> Builder(InsertAfter->getParent(), - ++BasicBlock::iterator(InsertAfter)); - - // Replace the reduction chain with an intrinsic call - const Type *Ty = IntegerType::get(M->getContext(), 32); - LoadInst *NewLd0 = CreateLoadIns(Builder, VecLd0[0], Ty); - LoadInst *NewLd1 = CreateLoadIns(Builder, VecLd1[0], Ty); - Value* Args[] = { NewLd0, NewLd1, Acc }; - Function *SMLAD = nullptr; - if (Exchange) - SMLAD = Acc->getType()->isIntegerTy(32) ? - Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : - Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); - else - SMLAD = Acc->getType()->isIntegerTy(32) ? - Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : - Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); - CallInst *Call = Builder.CreateCall(SMLAD, Args); - NumSMLAD++; - return Call; + LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, + Base->getAlignment()); + + // Make sure everything is in the correct order in the basic block. + MoveBefore(Base->getPointerOperand(), VecPtr); + MoveBefore(VecPtr, WideLoad); + + // From the wide load, create two values that equal the original two loads. + // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. + // TODO: Support big-endian as well. + Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); + BaseSExt->setOperand(0, Bottom); + + IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); + Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); + Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); + Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); + OffsetSExt->setOperand(0, Trunc); + + WideLoads.emplace(std::make_pair(Base, + make_unique<WidenedLoad>(Loads, WideLoad))); + return WideLoad; } // Compare the value lists in Other to this chain. @@ -741,7 +810,6 @@ bool BinOpChain::AreSymmetrical(BinOpChain *Other) { } const unsigned Pairs = VL0.size(); - LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); for (unsigned i = 0; i < Pairs; ++i) { const Value *V0 = VL0[i]; @@ -749,24 +817,17 @@ bool BinOpChain::AreSymmetrical(BinOpChain *Other) { const auto *Inst0 = dyn_cast<Instruction>(V0); const auto *Inst1 = dyn_cast<Instruction>(V1); - LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; - dbgs() << "mul1: "; V0->dump(); - dbgs() << "mul2: "; V1->dump()); - if (!Inst0 || !Inst1) return false; - if (Inst0->isSameOperationAs(Inst1)) { - LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); + if (Inst0->isSameOperationAs(Inst1)) continue; - } const APInt *C0, *C1; if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) return false; } - LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); return true; }; |