diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 | 
| commit | 4a16efa3e43e35f0cc9efe3a67f620f0017c3d36 (patch) | |
| tree | 06099edc18d30894081a822b756f117cbe0b8207 /lib/VMCore/Constants.cpp | |
| parent | 482e7bddf617ae804dc47133cb07eb4aa81e45de (diff) | |
Diffstat (limited to 'lib/VMCore/Constants.cpp')
| -rw-r--r-- | lib/VMCore/Constants.cpp | 2671 | 
1 files changed, 0 insertions, 2671 deletions
| diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp deleted file mode 100644 index edd6a73b0867..000000000000 --- a/lib/VMCore/Constants.cpp +++ /dev/null @@ -1,2671 +0,0 @@ -//===-- Constants.cpp - Implement Constant nodes --------------------------===// -// -//                     The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the Constant* classes. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Constants.h" -#include "LLVMContextImpl.h" -#include "ConstantFold.h" -#include "llvm/DerivedTypes.h" -#include "llvm/GlobalValue.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/Operator.h" -#include "llvm/ADT/FoldingSet.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/ManagedStatic.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/STLExtras.h" -#include <algorithm> -#include <cstdarg> -using namespace llvm; - -//===----------------------------------------------------------------------===// -//                              Constant Class -//===----------------------------------------------------------------------===// - -void Constant::anchor() { } - -bool Constant::isNegativeZeroValue() const { -  // Floating point values have an explicit -0.0 value. -  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) -    return CFP->isZero() && CFP->isNegative(); - -  // Otherwise, just use +0.0. -  return isNullValue(); -} - -bool Constant::isNullValue() const { -  // 0 is null. -  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) -    return CI->isZero(); - -  // +0.0 is null. -  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) -    return CFP->isZero() && !CFP->isNegative(); - -  // constant zero is zero for aggregates and cpnull is null for pointers. -  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); -} - -bool Constant::isAllOnesValue() const { -  // Check for -1 integers -  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) -    return CI->isMinusOne(); - -  // Check for FP which are bitcasted from -1 integers -  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) -    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); - -  // Check for constant vectors which are splats of -1 values. -  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) -    if (Constant *Splat = CV->getSplatValue()) -      return Splat->isAllOnesValue(); - -  // Check for constant vectors which are splats of -1 values. -  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) -    if (Constant *Splat = CV->getSplatValue()) -      return Splat->isAllOnesValue(); - -  return false; -} - -// Constructor to create a '0' constant of arbitrary type... -Constant *Constant::getNullValue(Type *Ty) { -  switch (Ty->getTypeID()) { -  case Type::IntegerTyID: -    return ConstantInt::get(Ty, 0); -  case Type::HalfTyID: -    return ConstantFP::get(Ty->getContext(), -                           APFloat::getZero(APFloat::IEEEhalf)); -  case Type::FloatTyID: -    return ConstantFP::get(Ty->getContext(), -                           APFloat::getZero(APFloat::IEEEsingle)); -  case Type::DoubleTyID: -    return ConstantFP::get(Ty->getContext(), -                           APFloat::getZero(APFloat::IEEEdouble)); -  case Type::X86_FP80TyID: -    return ConstantFP::get(Ty->getContext(), -                           APFloat::getZero(APFloat::x87DoubleExtended)); -  case Type::FP128TyID: -    return ConstantFP::get(Ty->getContext(), -                           APFloat::getZero(APFloat::IEEEquad)); -  case Type::PPC_FP128TyID: -    return ConstantFP::get(Ty->getContext(), -                           APFloat(APInt::getNullValue(128))); -  case Type::PointerTyID: -    return ConstantPointerNull::get(cast<PointerType>(Ty)); -  case Type::StructTyID: -  case Type::ArrayTyID: -  case Type::VectorTyID: -    return ConstantAggregateZero::get(Ty); -  default: -    // Function, Label, or Opaque type? -    llvm_unreachable("Cannot create a null constant of that type!"); -  } -} - -Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { -  Type *ScalarTy = Ty->getScalarType(); - -  // Create the base integer constant. -  Constant *C = ConstantInt::get(Ty->getContext(), V); - -  // Convert an integer to a pointer, if necessary. -  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) -    C = ConstantExpr::getIntToPtr(C, PTy); - -  // Broadcast a scalar to a vector, if necessary. -  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) -    C = ConstantVector::getSplat(VTy->getNumElements(), C); - -  return C; -} - -Constant *Constant::getAllOnesValue(Type *Ty) { -  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) -    return ConstantInt::get(Ty->getContext(), -                            APInt::getAllOnesValue(ITy->getBitWidth())); - -  if (Ty->isFloatingPointTy()) { -    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), -                                          !Ty->isPPC_FP128Ty()); -    return ConstantFP::get(Ty->getContext(), FL); -  } - -  VectorType *VTy = cast<VectorType>(Ty); -  return ConstantVector::getSplat(VTy->getNumElements(), -                                  getAllOnesValue(VTy->getElementType())); -} - -/// getAggregateElement - For aggregates (struct/array/vector) return the -/// constant that corresponds to the specified element if possible, or null if -/// not.  This can return null if the element index is a ConstantExpr, or if -/// 'this' is a constant expr. -Constant *Constant::getAggregateElement(unsigned Elt) const { -  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) -    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; - -  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) -    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; - -  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) -    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; - -  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) -    return CAZ->getElementValue(Elt); - -  if (const UndefValue *UV = dyn_cast<UndefValue>(this)) -    return UV->getElementValue(Elt); - -  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) -    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; -  return 0; -} - -Constant *Constant::getAggregateElement(Constant *Elt) const { -  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); -  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) -    return getAggregateElement(CI->getZExtValue()); -  return 0; -} - - -void Constant::destroyConstantImpl() { -  // When a Constant is destroyed, there may be lingering -  // references to the constant by other constants in the constant pool.  These -  // constants are implicitly dependent on the module that is being deleted, -  // but they don't know that.  Because we only find out when the CPV is -  // deleted, we must now notify all of our users (that should only be -  // Constants) that they are, in fact, invalid now and should be deleted. -  // -  while (!use_empty()) { -    Value *V = use_back(); -#ifndef NDEBUG      // Only in -g mode... -    if (!isa<Constant>(V)) { -      dbgs() << "While deleting: " << *this -             << "\n\nUse still stuck around after Def is destroyed: " -             << *V << "\n\n"; -    } -#endif -    assert(isa<Constant>(V) && "References remain to Constant being destroyed"); -    cast<Constant>(V)->destroyConstant(); - -    // The constant should remove itself from our use list... -    assert((use_empty() || use_back() != V) && "Constant not removed!"); -  } - -  // Value has no outstanding references it is safe to delete it now... -  delete this; -} - -/// canTrap - Return true if evaluation of this constant could trap.  This is -/// true for things like constant expressions that could divide by zero. -bool Constant::canTrap() const { -  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); -  // The only thing that could possibly trap are constant exprs. -  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); -  if (!CE) return false; - -  // ConstantExpr traps if any operands can trap. -  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) -    if (CE->getOperand(i)->canTrap()) -      return true; - -  // Otherwise, only specific operations can trap. -  switch (CE->getOpcode()) { -  default: -    return false; -  case Instruction::UDiv: -  case Instruction::SDiv: -  case Instruction::FDiv: -  case Instruction::URem: -  case Instruction::SRem: -  case Instruction::FRem: -    // Div and rem can trap if the RHS is not known to be non-zero. -    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) -      return true; -    return false; -  } -} - -/// isThreadDependent - Return true if the value can vary between threads. -bool Constant::isThreadDependent() const { -  SmallPtrSet<const Constant*, 64> Visited; -  SmallVector<const Constant*, 64> WorkList; -  WorkList.push_back(this); -  Visited.insert(this); - -  while (!WorkList.empty()) { -    const Constant *C = WorkList.pop_back_val(); - -    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { -      if (GV->isThreadLocal()) -        return true; -    } - -    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { -      const Constant *D = dyn_cast<Constant>(C->getOperand(I)); -      if (!D) -        continue; -      if (Visited.insert(D)) -        WorkList.push_back(D); -    } -  } - -  return false; -} - -/// isConstantUsed - Return true if the constant has users other than constant -/// exprs and other dangling things. -bool Constant::isConstantUsed() const { -  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { -    const Constant *UC = dyn_cast<Constant>(*UI); -    if (UC == 0 || isa<GlobalValue>(UC)) -      return true; - -    if (UC->isConstantUsed()) -      return true; -  } -  return false; -} - - - -/// getRelocationInfo - This method classifies the entry according to -/// whether or not it may generate a relocation entry.  This must be -/// conservative, so if it might codegen to a relocatable entry, it should say -/// so.  The return values are: -///  -///  NoRelocation: This constant pool entry is guaranteed to never have a -///     relocation applied to it (because it holds a simple constant like -///     '4'). -///  LocalRelocation: This entry has relocations, but the entries are -///     guaranteed to be resolvable by the static linker, so the dynamic -///     linker will never see them. -///  GlobalRelocations: This entry may have arbitrary relocations. -/// -/// FIXME: This really should not be in VMCore. -Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { -  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { -    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) -      return LocalRelocation;  // Local to this file/library. -    return GlobalRelocations;    // Global reference. -  } -   -  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) -    return BA->getFunction()->getRelocationInfo(); -   -  // While raw uses of blockaddress need to be relocated, differences between -  // two of them don't when they are for labels in the same function.  This is a -  // common idiom when creating a table for the indirect goto extension, so we -  // handle it efficiently here. -  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) -    if (CE->getOpcode() == Instruction::Sub) { -      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); -      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); -      if (LHS && RHS && -          LHS->getOpcode() == Instruction::PtrToInt && -          RHS->getOpcode() == Instruction::PtrToInt && -          isa<BlockAddress>(LHS->getOperand(0)) && -          isa<BlockAddress>(RHS->getOperand(0)) && -          cast<BlockAddress>(LHS->getOperand(0))->getFunction() == -            cast<BlockAddress>(RHS->getOperand(0))->getFunction()) -        return NoRelocation; -    } - -  PossibleRelocationsTy Result = NoRelocation; -  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) -    Result = std::max(Result, -                      cast<Constant>(getOperand(i))->getRelocationInfo()); - -  return Result; -} - -/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove -/// it.  This involves recursively eliminating any dead users of the -/// constantexpr. -static bool removeDeadUsersOfConstant(const Constant *C) { -  if (isa<GlobalValue>(C)) return false; // Cannot remove this - -  while (!C->use_empty()) { -    const Constant *User = dyn_cast<Constant>(C->use_back()); -    if (!User) return false; // Non-constant usage; -    if (!removeDeadUsersOfConstant(User)) -      return false; // Constant wasn't dead -  } - -  const_cast<Constant*>(C)->destroyConstant(); -  return true; -} - - -/// removeDeadConstantUsers - If there are any dead constant users dangling -/// off of this constant, remove them.  This method is useful for clients -/// that want to check to see if a global is unused, but don't want to deal -/// with potentially dead constants hanging off of the globals. -void Constant::removeDeadConstantUsers() const { -  Value::const_use_iterator I = use_begin(), E = use_end(); -  Value::const_use_iterator LastNonDeadUser = E; -  while (I != E) { -    const Constant *User = dyn_cast<Constant>(*I); -    if (User == 0) { -      LastNonDeadUser = I; -      ++I; -      continue; -    } - -    if (!removeDeadUsersOfConstant(User)) { -      // If the constant wasn't dead, remember that this was the last live use -      // and move on to the next constant. -      LastNonDeadUser = I; -      ++I; -      continue; -    } - -    // If the constant was dead, then the iterator is invalidated. -    if (LastNonDeadUser == E) { -      I = use_begin(); -      if (I == E) break; -    } else { -      I = LastNonDeadUser; -      ++I; -    } -  } -} - - - -//===----------------------------------------------------------------------===// -//                                ConstantInt -//===----------------------------------------------------------------------===// - -void ConstantInt::anchor() { } - -ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) -  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { -  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); -} - -ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { -  LLVMContextImpl *pImpl = Context.pImpl; -  if (!pImpl->TheTrueVal) -    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); -  return pImpl->TheTrueVal; -} - -ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { -  LLVMContextImpl *pImpl = Context.pImpl; -  if (!pImpl->TheFalseVal) -    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); -  return pImpl->TheFalseVal; -} - -Constant *ConstantInt::getTrue(Type *Ty) { -  VectorType *VTy = dyn_cast<VectorType>(Ty); -  if (!VTy) { -    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); -    return ConstantInt::getTrue(Ty->getContext()); -  } -  assert(VTy->getElementType()->isIntegerTy(1) && -         "True must be vector of i1 or i1."); -  return ConstantVector::getSplat(VTy->getNumElements(), -                                  ConstantInt::getTrue(Ty->getContext())); -} - -Constant *ConstantInt::getFalse(Type *Ty) { -  VectorType *VTy = dyn_cast<VectorType>(Ty); -  if (!VTy) { -    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); -    return ConstantInt::getFalse(Ty->getContext()); -  } -  assert(VTy->getElementType()->isIntegerTy(1) && -         "False must be vector of i1 or i1."); -  return ConstantVector::getSplat(VTy->getNumElements(), -                                  ConstantInt::getFalse(Ty->getContext())); -} - - -// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap  -// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the -// operator== and operator!= to ensure that the DenseMap doesn't attempt to -// compare APInt's of different widths, which would violate an APInt class -// invariant which generates an assertion. -ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { -  // Get the corresponding integer type for the bit width of the value. -  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); -  // get an existing value or the insertion position -  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); -  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];  -  if (!Slot) Slot = new ConstantInt(ITy, V); -  return Slot; -} - -Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { -  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); - -  // For vectors, broadcast the value. -  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) -    return ConstantVector::getSplat(VTy->getNumElements(), C); - -  return C; -} - -ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,  -                              bool isSigned) { -  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); -} - -ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { -  return get(Ty, V, true); -} - -Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { -  return get(Ty, V, true); -} - -Constant *ConstantInt::get(Type *Ty, const APInt& V) { -  ConstantInt *C = get(Ty->getContext(), V); -  assert(C->getType() == Ty->getScalarType() && -         "ConstantInt type doesn't match the type implied by its value!"); - -  // For vectors, broadcast the value. -  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) -    return ConstantVector::getSplat(VTy->getNumElements(), C); - -  return C; -} - -ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, -                              uint8_t radix) { -  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); -} - -//===----------------------------------------------------------------------===// -//                                ConstantFP -//===----------------------------------------------------------------------===// - -static const fltSemantics *TypeToFloatSemantics(Type *Ty) { -  if (Ty->isHalfTy()) -    return &APFloat::IEEEhalf; -  if (Ty->isFloatTy()) -    return &APFloat::IEEEsingle; -  if (Ty->isDoubleTy()) -    return &APFloat::IEEEdouble; -  if (Ty->isX86_FP80Ty()) -    return &APFloat::x87DoubleExtended; -  else if (Ty->isFP128Ty()) -    return &APFloat::IEEEquad; - -  assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); -  return &APFloat::PPCDoubleDouble; -} - -void ConstantFP::anchor() { } - -/// get() - This returns a constant fp for the specified value in the -/// specified type.  This should only be used for simple constant values like -/// 2.0/1.0 etc, that are known-valid both as double and as the target format. -Constant *ConstantFP::get(Type *Ty, double V) { -  LLVMContext &Context = Ty->getContext(); - -  APFloat FV(V); -  bool ignored; -  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), -             APFloat::rmNearestTiesToEven, &ignored); -  Constant *C = get(Context, FV); - -  // For vectors, broadcast the value. -  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) -    return ConstantVector::getSplat(VTy->getNumElements(), C); - -  return C; -} - - -Constant *ConstantFP::get(Type *Ty, StringRef Str) { -  LLVMContext &Context = Ty->getContext(); - -  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); -  Constant *C = get(Context, FV); - -  // For vectors, broadcast the value. -  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) -    return ConstantVector::getSplat(VTy->getNumElements(), C); - -  return C;  -} - - -ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { -  LLVMContext &Context = Ty->getContext(); -  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); -  apf.changeSign(); -  return get(Context, apf); -} - - -Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { -  Type *ScalarTy = Ty->getScalarType(); -  if (ScalarTy->isFloatingPointTy()) { -    Constant *C = getNegativeZero(ScalarTy); -    if (VectorType *VTy = dyn_cast<VectorType>(Ty)) -      return ConstantVector::getSplat(VTy->getNumElements(), C); -    return C; -  } - -  return Constant::getNullValue(Ty); -} - - -// ConstantFP accessors. -ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { -  DenseMapAPFloatKeyInfo::KeyTy Key(V); - -  LLVMContextImpl* pImpl = Context.pImpl; - -  ConstantFP *&Slot = pImpl->FPConstants[Key]; - -  if (!Slot) { -    Type *Ty; -    if (&V.getSemantics() == &APFloat::IEEEhalf) -      Ty = Type::getHalfTy(Context); -    else if (&V.getSemantics() == &APFloat::IEEEsingle) -      Ty = Type::getFloatTy(Context); -    else if (&V.getSemantics() == &APFloat::IEEEdouble) -      Ty = Type::getDoubleTy(Context); -    else if (&V.getSemantics() == &APFloat::x87DoubleExtended) -      Ty = Type::getX86_FP80Ty(Context); -    else if (&V.getSemantics() == &APFloat::IEEEquad) -      Ty = Type::getFP128Ty(Context); -    else { -      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&  -             "Unknown FP format"); -      Ty = Type::getPPC_FP128Ty(Context); -    } -    Slot = new ConstantFP(Ty, V); -  } - -  return Slot; -} - -ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { -  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); -  return ConstantFP::get(Ty->getContext(), -                         APFloat::getInf(Semantics, Negative)); -} - -ConstantFP::ConstantFP(Type *Ty, const APFloat& V) -  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { -  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && -         "FP type Mismatch"); -} - -bool ConstantFP::isExactlyValue(const APFloat &V) const { -  return Val.bitwiseIsEqual(V); -} - -//===----------------------------------------------------------------------===// -//                   ConstantAggregateZero Implementation -//===----------------------------------------------------------------------===// - -/// getSequentialElement - If this CAZ has array or vector type, return a zero -/// with the right element type. -Constant *ConstantAggregateZero::getSequentialElement() const { -  return Constant::getNullValue(getType()->getSequentialElementType()); -} - -/// getStructElement - If this CAZ has struct type, return a zero with the -/// right element type for the specified element. -Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { -  return Constant::getNullValue(getType()->getStructElementType(Elt)); -} - -/// getElementValue - Return a zero of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). -Constant *ConstantAggregateZero::getElementValue(Constant *C) const { -  if (isa<SequentialType>(getType())) -    return getSequentialElement(); -  return getStructElement(cast<ConstantInt>(C)->getZExtValue()); -} - -/// getElementValue - Return a zero of the right value for the specified GEP -/// index. -Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { -  if (isa<SequentialType>(getType())) -    return getSequentialElement(); -  return getStructElement(Idx); -} - - -//===----------------------------------------------------------------------===// -//                         UndefValue Implementation -//===----------------------------------------------------------------------===// - -/// getSequentialElement - If this undef has array or vector type, return an -/// undef with the right element type. -UndefValue *UndefValue::getSequentialElement() const { -  return UndefValue::get(getType()->getSequentialElementType()); -} - -/// getStructElement - If this undef has struct type, return a zero with the -/// right element type for the specified element. -UndefValue *UndefValue::getStructElement(unsigned Elt) const { -  return UndefValue::get(getType()->getStructElementType(Elt)); -} - -/// getElementValue - Return an undef of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). -UndefValue *UndefValue::getElementValue(Constant *C) const { -  if (isa<SequentialType>(getType())) -    return getSequentialElement(); -  return getStructElement(cast<ConstantInt>(C)->getZExtValue()); -} - -/// getElementValue - Return an undef of the right value for the specified GEP -/// index. -UndefValue *UndefValue::getElementValue(unsigned Idx) const { -  if (isa<SequentialType>(getType())) -    return getSequentialElement(); -  return getStructElement(Idx); -} - - - -//===----------------------------------------------------------------------===// -//                            ConstantXXX Classes -//===----------------------------------------------------------------------===// - -template <typename ItTy, typename EltTy> -static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { -  for (; Start != End; ++Start) -    if (*Start != Elt) -      return false; -  return true; -} - -ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) -  : Constant(T, ConstantArrayVal, -             OperandTraits<ConstantArray>::op_end(this) - V.size(), -             V.size()) { -  assert(V.size() == T->getNumElements() && -         "Invalid initializer vector for constant array"); -  for (unsigned i = 0, e = V.size(); i != e; ++i) -    assert(V[i]->getType() == T->getElementType() && -           "Initializer for array element doesn't match array element type!"); -  std::copy(V.begin(), V.end(), op_begin()); -} - -Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { -  // Empty arrays are canonicalized to ConstantAggregateZero. -  if (V.empty()) -    return ConstantAggregateZero::get(Ty); - -  for (unsigned i = 0, e = V.size(); i != e; ++i) { -    assert(V[i]->getType() == Ty->getElementType() && -           "Wrong type in array element initializer"); -  } -  LLVMContextImpl *pImpl = Ty->getContext().pImpl; - -  // If this is an all-zero array, return a ConstantAggregateZero object.  If -  // all undef, return an UndefValue, if "all simple", then return a -  // ConstantDataArray. -  Constant *C = V[0]; -  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) -    return UndefValue::get(Ty); - -  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) -    return ConstantAggregateZero::get(Ty); - -  // Check to see if all of the elements are ConstantFP or ConstantInt and if -  // the element type is compatible with ConstantDataVector.  If so, use it. -  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { -    // We speculatively build the elements here even if it turns out that there -    // is a constantexpr or something else weird in the array, since it is so -    // uncommon for that to happen. -    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { -      if (CI->getType()->isIntegerTy(8)) { -        SmallVector<uint8_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataArray::get(C->getContext(), Elts); -      } else if (CI->getType()->isIntegerTy(16)) { -        SmallVector<uint16_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataArray::get(C->getContext(), Elts); -      } else if (CI->getType()->isIntegerTy(32)) { -        SmallVector<uint32_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataArray::get(C->getContext(), Elts); -      } else if (CI->getType()->isIntegerTy(64)) { -        SmallVector<uint64_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataArray::get(C->getContext(), Elts); -      } -    } - -    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { -      if (CFP->getType()->isFloatTy()) { -        SmallVector<float, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) -            Elts.push_back(CFP->getValueAPF().convertToFloat()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataArray::get(C->getContext(), Elts); -      } else if (CFP->getType()->isDoubleTy()) { -        SmallVector<double, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) -            Elts.push_back(CFP->getValueAPF().convertToDouble()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataArray::get(C->getContext(), Elts); -      } -    } -  } - -  // Otherwise, we really do want to create a ConstantArray. -  return pImpl->ArrayConstants.getOrCreate(Ty, V); -} - -/// getTypeForElements - Return an anonymous struct type to use for a constant -/// with the specified set of elements.  The list must not be empty. -StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, -                                               ArrayRef<Constant*> V, -                                               bool Packed) { -  unsigned VecSize = V.size(); -  SmallVector<Type*, 16> EltTypes(VecSize); -  for (unsigned i = 0; i != VecSize; ++i) -    EltTypes[i] = V[i]->getType(); - -  return StructType::get(Context, EltTypes, Packed); -} - - -StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, -                                               bool Packed) { -  assert(!V.empty() && -         "ConstantStruct::getTypeForElements cannot be called on empty list"); -  return getTypeForElements(V[0]->getContext(), V, Packed); -} - - -ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) -  : Constant(T, ConstantStructVal, -             OperandTraits<ConstantStruct>::op_end(this) - V.size(), -             V.size()) { -  assert(V.size() == T->getNumElements() && -         "Invalid initializer vector for constant structure"); -  for (unsigned i = 0, e = V.size(); i != e; ++i) -    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && -           "Initializer for struct element doesn't match struct element type!"); -  std::copy(V.begin(), V.end(), op_begin()); -} - -// ConstantStruct accessors. -Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { -  assert((ST->isOpaque() || ST->getNumElements() == V.size()) && -         "Incorrect # elements specified to ConstantStruct::get"); - -  // Create a ConstantAggregateZero value if all elements are zeros. -  bool isZero = true; -  bool isUndef = false; -   -  if (!V.empty()) { -    isUndef = isa<UndefValue>(V[0]); -    isZero = V[0]->isNullValue(); -    if (isUndef || isZero) { -      for (unsigned i = 0, e = V.size(); i != e; ++i) { -        if (!V[i]->isNullValue()) -          isZero = false; -        if (!isa<UndefValue>(V[i])) -          isUndef = false; -      } -    } -  } -  if (isZero) -    return ConstantAggregateZero::get(ST); -  if (isUndef) -    return UndefValue::get(ST); - -  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); -} - -Constant *ConstantStruct::get(StructType *T, ...) { -  va_list ap; -  SmallVector<Constant*, 8> Values; -  va_start(ap, T); -  while (Constant *Val = va_arg(ap, llvm::Constant*)) -    Values.push_back(Val); -  va_end(ap); -  return get(T, Values); -} - -ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) -  : Constant(T, ConstantVectorVal, -             OperandTraits<ConstantVector>::op_end(this) - V.size(), -             V.size()) { -  for (size_t i = 0, e = V.size(); i != e; i++) -    assert(V[i]->getType() == T->getElementType() && -           "Initializer for vector element doesn't match vector element type!"); -  std::copy(V.begin(), V.end(), op_begin()); -} - -// ConstantVector accessors. -Constant *ConstantVector::get(ArrayRef<Constant*> V) { -  assert(!V.empty() && "Vectors can't be empty"); -  VectorType *T = VectorType::get(V.front()->getType(), V.size()); -  LLVMContextImpl *pImpl = T->getContext().pImpl; - -  // If this is an all-undef or all-zero vector, return a -  // ConstantAggregateZero or UndefValue. -  Constant *C = V[0]; -  bool isZero = C->isNullValue(); -  bool isUndef = isa<UndefValue>(C); - -  if (isZero || isUndef) { -    for (unsigned i = 1, e = V.size(); i != e; ++i) -      if (V[i] != C) { -        isZero = isUndef = false; -        break; -      } -  } - -  if (isZero) -    return ConstantAggregateZero::get(T); -  if (isUndef) -    return UndefValue::get(T); - -  // Check to see if all of the elements are ConstantFP or ConstantInt and if -  // the element type is compatible with ConstantDataVector.  If so, use it. -  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { -    // We speculatively build the elements here even if it turns out that there -    // is a constantexpr or something else weird in the array, since it is so -    // uncommon for that to happen. -    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { -      if (CI->getType()->isIntegerTy(8)) { -        SmallVector<uint8_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataVector::get(C->getContext(), Elts); -      } else if (CI->getType()->isIntegerTy(16)) { -        SmallVector<uint16_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataVector::get(C->getContext(), Elts); -      } else if (CI->getType()->isIntegerTy(32)) { -        SmallVector<uint32_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataVector::get(C->getContext(), Elts); -      } else if (CI->getType()->isIntegerTy(64)) { -        SmallVector<uint64_t, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) -            Elts.push_back(CI->getZExtValue()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataVector::get(C->getContext(), Elts); -      } -    } - -    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { -      if (CFP->getType()->isFloatTy()) { -        SmallVector<float, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) -            Elts.push_back(CFP->getValueAPF().convertToFloat()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataVector::get(C->getContext(), Elts); -      } else if (CFP->getType()->isDoubleTy()) { -        SmallVector<double, 16> Elts; -        for (unsigned i = 0, e = V.size(); i != e; ++i) -          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) -            Elts.push_back(CFP->getValueAPF().convertToDouble()); -          else -            break; -        if (Elts.size() == V.size()) -          return ConstantDataVector::get(C->getContext(), Elts); -      } -    } -  } - -  // Otherwise, the element type isn't compatible with ConstantDataVector, or -  // the operand list constants a ConstantExpr or something else strange. -  return pImpl->VectorConstants.getOrCreate(T, V); -} - -Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { -  // If this splat is compatible with ConstantDataVector, use it instead of -  // ConstantVector. -  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && -      ConstantDataSequential::isElementTypeCompatible(V->getType())) -    return ConstantDataVector::getSplat(NumElts, V); - -  SmallVector<Constant*, 32> Elts(NumElts, V); -  return get(Elts); -} - - -// Utility function for determining if a ConstantExpr is a CastOp or not. This -// can't be inline because we don't want to #include Instruction.h into -// Constant.h -bool ConstantExpr::isCast() const { -  return Instruction::isCast(getOpcode()); -} - -bool ConstantExpr::isCompare() const { -  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; -} - -bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { -  if (getOpcode() != Instruction::GetElementPtr) return false; - -  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); -  User::const_op_iterator OI = llvm::next(this->op_begin()); - -  // Skip the first index, as it has no static limit. -  ++GEPI; -  ++OI; - -  // The remaining indices must be compile-time known integers within the -  // bounds of the corresponding notional static array types. -  for (; GEPI != E; ++GEPI, ++OI) { -    ConstantInt *CI = dyn_cast<ConstantInt>(*OI); -    if (!CI) return false; -    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) -      if (CI->getValue().getActiveBits() > 64 || -          CI->getZExtValue() >= ATy->getNumElements()) -        return false; -  } - -  // All the indices checked out. -  return true; -} - -bool ConstantExpr::hasIndices() const { -  return getOpcode() == Instruction::ExtractValue || -         getOpcode() == Instruction::InsertValue; -} - -ArrayRef<unsigned> ConstantExpr::getIndices() const { -  if (const ExtractValueConstantExpr *EVCE = -        dyn_cast<ExtractValueConstantExpr>(this)) -    return EVCE->Indices; - -  return cast<InsertValueConstantExpr>(this)->Indices; -} - -unsigned ConstantExpr::getPredicate() const { -  assert(isCompare()); -  return ((const CompareConstantExpr*)this)->predicate; -} - -/// getWithOperandReplaced - Return a constant expression identical to this -/// one, but with the specified operand set to the specified value. -Constant * -ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { -  assert(Op->getType() == getOperand(OpNo)->getType() && -         "Replacing operand with value of different type!"); -  if (getOperand(OpNo) == Op) -    return const_cast<ConstantExpr*>(this); - -  SmallVector<Constant*, 8> NewOps; -  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) -    NewOps.push_back(i == OpNo ? Op : getOperand(i)); - -  return getWithOperands(NewOps); -} - -/// getWithOperands - This returns the current constant expression with the -/// operands replaced with the specified values.  The specified array must -/// have the same number of operands as our current one. -Constant *ConstantExpr:: -getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { -  assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); -  bool AnyChange = Ty != getType(); -  for (unsigned i = 0; i != Ops.size(); ++i) -    AnyChange |= Ops[i] != getOperand(i); - -  if (!AnyChange)  // No operands changed, return self. -    return const_cast<ConstantExpr*>(this); - -  switch (getOpcode()) { -  case Instruction::Trunc: -  case Instruction::ZExt: -  case Instruction::SExt: -  case Instruction::FPTrunc: -  case Instruction::FPExt: -  case Instruction::UIToFP: -  case Instruction::SIToFP: -  case Instruction::FPToUI: -  case Instruction::FPToSI: -  case Instruction::PtrToInt: -  case Instruction::IntToPtr: -  case Instruction::BitCast: -    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); -  case Instruction::Select: -    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); -  case Instruction::InsertElement: -    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); -  case Instruction::ExtractElement: -    return ConstantExpr::getExtractElement(Ops[0], Ops[1]); -  case Instruction::InsertValue: -    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); -  case Instruction::ExtractValue: -    return ConstantExpr::getExtractValue(Ops[0], getIndices()); -  case Instruction::ShuffleVector: -    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); -  case Instruction::GetElementPtr: -    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), -                                      cast<GEPOperator>(this)->isInBounds()); -  case Instruction::ICmp: -  case Instruction::FCmp: -    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); -  default: -    assert(getNumOperands() == 2 && "Must be binary operator?"); -    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); -  } -} - - -//===----------------------------------------------------------------------===// -//                      isValueValidForType implementations - -bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { -  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay -  if (Ty->isIntegerTy(1)) -    return Val == 0 || Val == 1; -  if (NumBits >= 64) -    return true; // always true, has to fit in largest type -  uint64_t Max = (1ll << NumBits) - 1; -  return Val <= Max; -} - -bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { -  unsigned NumBits = Ty->getIntegerBitWidth(); -  if (Ty->isIntegerTy(1)) -    return Val == 0 || Val == 1 || Val == -1; -  if (NumBits >= 64) -    return true; // always true, has to fit in largest type -  int64_t Min = -(1ll << (NumBits-1)); -  int64_t Max = (1ll << (NumBits-1)) - 1; -  return (Val >= Min && Val <= Max); -} - -bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { -  // convert modifies in place, so make a copy. -  APFloat Val2 = APFloat(Val); -  bool losesInfo; -  switch (Ty->getTypeID()) { -  default: -    return false;         // These can't be represented as floating point! - -  // FIXME rounding mode needs to be more flexible -  case Type::HalfTyID: { -    if (&Val2.getSemantics() == &APFloat::IEEEhalf) -      return true; -    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); -    return !losesInfo; -  } -  case Type::FloatTyID: { -    if (&Val2.getSemantics() == &APFloat::IEEEsingle) -      return true; -    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); -    return !losesInfo; -  } -  case Type::DoubleTyID: { -    if (&Val2.getSemantics() == &APFloat::IEEEhalf || -        &Val2.getSemantics() == &APFloat::IEEEsingle || -        &Val2.getSemantics() == &APFloat::IEEEdouble) -      return true; -    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); -    return !losesInfo; -  } -  case Type::X86_FP80TyID: -    return &Val2.getSemantics() == &APFloat::IEEEhalf || -           &Val2.getSemantics() == &APFloat::IEEEsingle ||  -           &Val2.getSemantics() == &APFloat::IEEEdouble || -           &Val2.getSemantics() == &APFloat::x87DoubleExtended; -  case Type::FP128TyID: -    return &Val2.getSemantics() == &APFloat::IEEEhalf || -           &Val2.getSemantics() == &APFloat::IEEEsingle ||  -           &Val2.getSemantics() == &APFloat::IEEEdouble || -           &Val2.getSemantics() == &APFloat::IEEEquad; -  case Type::PPC_FP128TyID: -    return &Val2.getSemantics() == &APFloat::IEEEhalf || -           &Val2.getSemantics() == &APFloat::IEEEsingle ||  -           &Val2.getSemantics() == &APFloat::IEEEdouble || -           &Val2.getSemantics() == &APFloat::PPCDoubleDouble; -  } -} - - -//===----------------------------------------------------------------------===// -//                      Factory Function Implementation - -ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { -  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && -         "Cannot create an aggregate zero of non-aggregate type!"); -   -  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; -  if (Entry == 0) -    Entry = new ConstantAggregateZero(Ty); - -  return Entry; -} - -/// destroyConstant - Remove the constant from the constant table. -/// -void ConstantAggregateZero::destroyConstant() { -  getContext().pImpl->CAZConstants.erase(getType()); -  destroyConstantImpl(); -} - -/// destroyConstant - Remove the constant from the constant table... -/// -void ConstantArray::destroyConstant() { -  getType()->getContext().pImpl->ArrayConstants.remove(this); -  destroyConstantImpl(); -} - - -//---- ConstantStruct::get() implementation... -// - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantStruct::destroyConstant() { -  getType()->getContext().pImpl->StructConstants.remove(this); -  destroyConstantImpl(); -} - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantVector::destroyConstant() { -  getType()->getContext().pImpl->VectorConstants.remove(this); -  destroyConstantImpl(); -} - -/// getSplatValue - If this is a splat constant, where all of the -/// elements have the same value, return that value. Otherwise return null. -Constant *ConstantVector::getSplatValue() const { -  // Check out first element. -  Constant *Elt = getOperand(0); -  // Then make sure all remaining elements point to the same value. -  for (unsigned I = 1, E = getNumOperands(); I < E; ++I) -    if (getOperand(I) != Elt) -      return 0; -  return Elt; -} - -//---- ConstantPointerNull::get() implementation. -// - -ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { -  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; -  if (Entry == 0) -    Entry = new ConstantPointerNull(Ty); - -  return Entry; -} - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantPointerNull::destroyConstant() { -  getContext().pImpl->CPNConstants.erase(getType()); -  // Free the constant and any dangling references to it. -  destroyConstantImpl(); -} - - -//---- UndefValue::get() implementation. -// - -UndefValue *UndefValue::get(Type *Ty) { -  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; -  if (Entry == 0) -    Entry = new UndefValue(Ty); - -  return Entry; -} - -// destroyConstant - Remove the constant from the constant table. -// -void UndefValue::destroyConstant() { -  // Free the constant and any dangling references to it. -  getContext().pImpl->UVConstants.erase(getType()); -  destroyConstantImpl(); -} - -//---- BlockAddress::get() implementation. -// - -BlockAddress *BlockAddress::get(BasicBlock *BB) { -  assert(BB->getParent() != 0 && "Block must have a parent"); -  return get(BB->getParent(), BB); -} - -BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { -  BlockAddress *&BA = -    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; -  if (BA == 0) -    BA = new BlockAddress(F, BB); - -  assert(BA->getFunction() == F && "Basic block moved between functions"); -  return BA; -} - -BlockAddress::BlockAddress(Function *F, BasicBlock *BB) -: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, -           &Op<0>(), 2) { -  setOperand(0, F); -  setOperand(1, BB); -  BB->AdjustBlockAddressRefCount(1); -} - - -// destroyConstant - Remove the constant from the constant table. -// -void BlockAddress::destroyConstant() { -  getFunction()->getType()->getContext().pImpl -    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); -  getBasicBlock()->AdjustBlockAddressRefCount(-1); -  destroyConstantImpl(); -} - -void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { -  // This could be replacing either the Basic Block or the Function.  In either -  // case, we have to remove the map entry. -  Function *NewF = getFunction(); -  BasicBlock *NewBB = getBasicBlock(); - -  if (U == &Op<0>()) -    NewF = cast<Function>(To); -  else -    NewBB = cast<BasicBlock>(To); - -  // See if the 'new' entry already exists, if not, just update this in place -  // and return early. -  BlockAddress *&NewBA = -    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; -  if (NewBA == 0) { -    getBasicBlock()->AdjustBlockAddressRefCount(-1); - -    // Remove the old entry, this can't cause the map to rehash (just a -    // tombstone will get added). -    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), -                                                            getBasicBlock())); -    NewBA = this; -    setOperand(0, NewF); -    setOperand(1, NewBB); -    getBasicBlock()->AdjustBlockAddressRefCount(1); -    return; -  } - -  // Otherwise, I do need to replace this with an existing value. -  assert(NewBA != this && "I didn't contain From!"); - -  // Everyone using this now uses the replacement. -  replaceAllUsesWith(NewBA); - -  destroyConstant(); -} - -//---- ConstantExpr::get() implementations. -// - -/// This is a utility function to handle folding of casts and lookup of the -/// cast in the ExprConstants map. It is used by the various get* methods below. -static inline Constant *getFoldedCast( -  Instruction::CastOps opc, Constant *C, Type *Ty) { -  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); -  // Fold a few common cases -  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) -    return FC; - -  LLVMContextImpl *pImpl = Ty->getContext().pImpl; - -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> argVec(1, C); -  ExprMapKeyType Key(opc, argVec); - -  return pImpl->ExprConstants.getOrCreate(Ty, Key); -} - -Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { -  Instruction::CastOps opc = Instruction::CastOps(oc); -  assert(Instruction::isCast(opc) && "opcode out of range"); -  assert(C && Ty && "Null arguments to getCast"); -  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); - -  switch (opc) { -  default: -    llvm_unreachable("Invalid cast opcode"); -  case Instruction::Trunc:    return getTrunc(C, Ty); -  case Instruction::ZExt:     return getZExt(C, Ty); -  case Instruction::SExt:     return getSExt(C, Ty); -  case Instruction::FPTrunc:  return getFPTrunc(C, Ty); -  case Instruction::FPExt:    return getFPExtend(C, Ty); -  case Instruction::UIToFP:   return getUIToFP(C, Ty); -  case Instruction::SIToFP:   return getSIToFP(C, Ty); -  case Instruction::FPToUI:   return getFPToUI(C, Ty); -  case Instruction::FPToSI:   return getFPToSI(C, Ty); -  case Instruction::PtrToInt: return getPtrToInt(C, Ty); -  case Instruction::IntToPtr: return getIntToPtr(C, Ty); -  case Instruction::BitCast:  return getBitCast(C, Ty); -  } -} - -Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { -  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) -    return getBitCast(C, Ty); -  return getZExt(C, Ty); -} - -Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { -  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) -    return getBitCast(C, Ty); -  return getSExt(C, Ty); -} - -Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { -  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) -    return getBitCast(C, Ty); -  return getTrunc(C, Ty); -} - -Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { -  assert(S->getType()->isPointerTy() && "Invalid cast"); -  assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); - -  if (Ty->isIntegerTy()) -    return getPtrToInt(S, Ty); -  return getBitCast(S, Ty); -} - -Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,  -                                       bool isSigned) { -  assert(C->getType()->isIntOrIntVectorTy() && -         Ty->isIntOrIntVectorTy() && "Invalid cast"); -  unsigned SrcBits = C->getType()->getScalarSizeInBits(); -  unsigned DstBits = Ty->getScalarSizeInBits(); -  Instruction::CastOps opcode = -    (SrcBits == DstBits ? Instruction::BitCast : -     (SrcBits > DstBits ? Instruction::Trunc : -      (isSigned ? Instruction::SExt : Instruction::ZExt))); -  return getCast(opcode, C, Ty); -} - -Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { -  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && -         "Invalid cast"); -  unsigned SrcBits = C->getType()->getScalarSizeInBits(); -  unsigned DstBits = Ty->getScalarSizeInBits(); -  if (SrcBits == DstBits) -    return C; // Avoid a useless cast -  Instruction::CastOps opcode = -    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); -  return getCast(opcode, C, Ty); -} - -Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); -  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); -  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& -         "SrcTy must be larger than DestTy for Trunc!"); - -  return getFoldedCast(Instruction::Trunc, C, Ty); -} - -Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); -  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); -  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& -         "SrcTy must be smaller than DestTy for SExt!"); - -  return getFoldedCast(Instruction::SExt, C, Ty); -} - -Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); -  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); -  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& -         "SrcTy must be smaller than DestTy for ZExt!"); - -  return getFoldedCast(Instruction::ZExt, C, Ty); -} - -Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && -         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& -         "This is an illegal floating point truncation!"); -  return getFoldedCast(Instruction::FPTrunc, C, Ty); -} - -Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && -         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& -         "This is an illegal floating point extension!"); -  return getFoldedCast(Instruction::FPExt, C, Ty); -} - -Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && -         "This is an illegal uint to floating point cast!"); -  return getFoldedCast(Instruction::UIToFP, C, Ty); -} - -Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && -         "This is an illegal sint to floating point cast!"); -  return getFoldedCast(Instruction::SIToFP, C, Ty); -} - -Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && -         "This is an illegal floating point to uint cast!"); -  return getFoldedCast(Instruction::FPToUI, C, Ty); -} - -Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { -#ifndef NDEBUG -  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; -  bool toVec = Ty->getTypeID() == Type::VectorTyID; -#endif -  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); -  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && -         "This is an illegal floating point to sint cast!"); -  return getFoldedCast(Instruction::FPToSI, C, Ty); -} - -Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { -  assert(C->getType()->getScalarType()->isPointerTy() && -         "PtrToInt source must be pointer or pointer vector"); -  assert(DstTy->getScalarType()->isIntegerTy() &&  -         "PtrToInt destination must be integer or integer vector"); -  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); -  if (isa<VectorType>(C->getType())) -    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& -           "Invalid cast between a different number of vector elements"); -  return getFoldedCast(Instruction::PtrToInt, C, DstTy); -} - -Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { -  assert(C->getType()->getScalarType()->isIntegerTy() && -         "IntToPtr source must be integer or integer vector"); -  assert(DstTy->getScalarType()->isPointerTy() && -         "IntToPtr destination must be a pointer or pointer vector"); -  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); -  if (isa<VectorType>(C->getType())) -    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& -           "Invalid cast between a different number of vector elements"); -  return getFoldedCast(Instruction::IntToPtr, C, DstTy); -} - -Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { -  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && -         "Invalid constantexpr bitcast!"); - -  // It is common to ask for a bitcast of a value to its own type, handle this -  // speedily. -  if (C->getType() == DstTy) return C; - -  return getFoldedCast(Instruction::BitCast, C, DstTy); -} - -Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, -                            unsigned Flags) { -  // Check the operands for consistency first. -  assert(Opcode >= Instruction::BinaryOpsBegin && -         Opcode <  Instruction::BinaryOpsEnd   && -         "Invalid opcode in binary constant expression"); -  assert(C1->getType() == C2->getType() && -         "Operand types in binary constant expression should match"); - -#ifndef NDEBUG -  switch (Opcode) { -  case Instruction::Add: -  case Instruction::Sub: -  case Instruction::Mul: -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isIntOrIntVectorTy() && -           "Tried to create an integer operation on a non-integer type!"); -    break; -  case Instruction::FAdd: -  case Instruction::FSub: -  case Instruction::FMul: -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isFPOrFPVectorTy() && -           "Tried to create a floating-point operation on a " -           "non-floating-point type!"); -    break; -  case Instruction::UDiv:  -  case Instruction::SDiv:  -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isIntOrIntVectorTy() && -           "Tried to create an arithmetic operation on a non-arithmetic type!"); -    break; -  case Instruction::FDiv: -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isFPOrFPVectorTy() && -           "Tried to create an arithmetic operation on a non-arithmetic type!"); -    break; -  case Instruction::URem:  -  case Instruction::SRem:  -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isIntOrIntVectorTy() && -           "Tried to create an arithmetic operation on a non-arithmetic type!"); -    break; -  case Instruction::FRem: -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isFPOrFPVectorTy() && -           "Tried to create an arithmetic operation on a non-arithmetic type!"); -    break; -  case Instruction::And: -  case Instruction::Or: -  case Instruction::Xor: -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isIntOrIntVectorTy() && -           "Tried to create a logical operation on a non-integral type!"); -    break; -  case Instruction::Shl: -  case Instruction::LShr: -  case Instruction::AShr: -    assert(C1->getType() == C2->getType() && "Op types should be identical!"); -    assert(C1->getType()->isIntOrIntVectorTy() && -           "Tried to create a shift operation on a non-integer type!"); -    break; -  default: -    break; -  } -#endif - -  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) -    return FC;          // Fold a few common cases. - -  std::vector<Constant*> argVec(1, C1); -  argVec.push_back(C2); -  ExprMapKeyType Key(Opcode, argVec, 0, Flags); - -  LLVMContextImpl *pImpl = C1->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); -} - -Constant *ConstantExpr::getSizeOf(Type* Ty) { -  // sizeof is implemented as: (i64) gep (Ty*)null, 1 -  // Note that a non-inbounds gep is used, as null isn't within any object. -  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); -  Constant *GEP = getGetElementPtr( -                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); -  return getPtrToInt(GEP,  -                     Type::getInt64Ty(Ty->getContext())); -} - -Constant *ConstantExpr::getAlignOf(Type* Ty) { -  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 -  // Note that a non-inbounds gep is used, as null isn't within any object. -  Type *AligningTy =  -    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); -  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); -  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); -  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); -  Constant *Indices[2] = { Zero, One }; -  Constant *GEP = getGetElementPtr(NullPtr, Indices); -  return getPtrToInt(GEP, -                     Type::getInt64Ty(Ty->getContext())); -} - -Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { -  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), -                                           FieldNo)); -} - -Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { -  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo -  // Note that a non-inbounds gep is used, as null isn't within any object. -  Constant *GEPIdx[] = { -    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), -    FieldNo -  }; -  Constant *GEP = getGetElementPtr( -                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); -  return getPtrToInt(GEP, -                     Type::getInt64Ty(Ty->getContext())); -} - -Constant *ConstantExpr::getCompare(unsigned short Predicate,  -                                   Constant *C1, Constant *C2) { -  assert(C1->getType() == C2->getType() && "Op types should be identical!"); - -  switch (Predicate) { -  default: llvm_unreachable("Invalid CmpInst predicate"); -  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: -  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: -  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: -  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: -  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: -  case CmpInst::FCMP_TRUE: -    return getFCmp(Predicate, C1, C2); - -  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT: -  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: -  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: -  case CmpInst::ICMP_SLE: -    return getICmp(Predicate, C1, C2); -  } -} - -Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { -  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); - -  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) -    return SC;        // Fold common cases - -  std::vector<Constant*> argVec(3, C); -  argVec[1] = V1; -  argVec[2] = V2; -  ExprMapKeyType Key(Instruction::Select, argVec); - -  LLVMContextImpl *pImpl = C->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); -} - -Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, -                                         bool InBounds) { -  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) -    return FC;          // Fold a few common cases. - -  // Get the result type of the getelementptr! -  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); -  assert(Ty && "GEP indices invalid!"); -  unsigned AS = C->getType()->getPointerAddressSpace(); -  Type *ReqTy = Ty->getPointerTo(AS); - -  assert(C->getType()->isPointerTy() && -         "Non-pointer type for constant GetElementPtr expression"); -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> ArgVec; -  ArgVec.reserve(1 + Idxs.size()); -  ArgVec.push_back(C); -  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) -    ArgVec.push_back(cast<Constant>(Idxs[i])); -  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, -                           InBounds ? GEPOperator::IsInBounds : 0); - -  LLVMContextImpl *pImpl = C->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(ReqTy, Key); -} - -Constant * -ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { -  assert(LHS->getType() == RHS->getType()); -  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&  -         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); - -  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) -    return FC;          // Fold a few common cases... - -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> ArgVec; -  ArgVec.push_back(LHS); -  ArgVec.push_back(RHS); -  // Get the key type with both the opcode and predicate -  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); - -  Type *ResultTy = Type::getInt1Ty(LHS->getContext()); -  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) -    ResultTy = VectorType::get(ResultTy, VT->getNumElements()); - -  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(ResultTy, Key); -} - -Constant * -ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { -  assert(LHS->getType() == RHS->getType()); -  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); - -  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) -    return FC;          // Fold a few common cases... - -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> ArgVec; -  ArgVec.push_back(LHS); -  ArgVec.push_back(RHS); -  // Get the key type with both the opcode and predicate -  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); - -  Type *ResultTy = Type::getInt1Ty(LHS->getContext()); -  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) -    ResultTy = VectorType::get(ResultTy, VT->getNumElements()); - -  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(ResultTy, Key); -} - -Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { -  assert(Val->getType()->isVectorTy() && -         "Tried to create extractelement operation on non-vector type!"); -  assert(Idx->getType()->isIntegerTy(32) && -         "Extractelement index must be i32 type!"); - -  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) -    return FC;          // Fold a few common cases. - -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> ArgVec(1, Val); -  ArgVec.push_back(Idx); -  const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); - -  LLVMContextImpl *pImpl = Val->getContext().pImpl; -  Type *ReqTy = Val->getType()->getVectorElementType(); -  return pImpl->ExprConstants.getOrCreate(ReqTy, Key); -} - -Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,  -                                         Constant *Idx) { -  assert(Val->getType()->isVectorTy() && -         "Tried to create insertelement operation on non-vector type!"); -  assert(Elt->getType() == Val->getType()->getVectorElementType() && -         "Insertelement types must match!"); -  assert(Idx->getType()->isIntegerTy(32) && -         "Insertelement index must be i32 type!"); - -  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) -    return FC;          // Fold a few common cases. -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> ArgVec(1, Val); -  ArgVec.push_back(Elt); -  ArgVec.push_back(Idx); -  const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); - -  LLVMContextImpl *pImpl = Val->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); -} - -Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,  -                                         Constant *Mask) { -  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && -         "Invalid shuffle vector constant expr operands!"); - -  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) -    return FC;          // Fold a few common cases. - -  unsigned NElts = Mask->getType()->getVectorNumElements(); -  Type *EltTy = V1->getType()->getVectorElementType(); -  Type *ShufTy = VectorType::get(EltTy, NElts); - -  // Look up the constant in the table first to ensure uniqueness -  std::vector<Constant*> ArgVec(1, V1); -  ArgVec.push_back(V2); -  ArgVec.push_back(Mask); -  const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); - -  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; -  return pImpl->ExprConstants.getOrCreate(ShufTy, Key); -} - -Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, -                                       ArrayRef<unsigned> Idxs) { -  assert(ExtractValueInst::getIndexedType(Agg->getType(), -                                          Idxs) == Val->getType() && -         "insertvalue indices invalid!"); -  assert(Agg->getType()->isFirstClassType() && -         "Non-first-class type for constant insertvalue expression"); -  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); -  assert(FC && "insertvalue constant expr couldn't be folded!"); -  return FC; -} - -Constant *ConstantExpr::getExtractValue(Constant *Agg, -                                        ArrayRef<unsigned> Idxs) { -  assert(Agg->getType()->isFirstClassType() && -         "Tried to create extractelement operation on non-first-class type!"); - -  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); -  (void)ReqTy; -  assert(ReqTy && "extractvalue indices invalid!"); - -  assert(Agg->getType()->isFirstClassType() && -         "Non-first-class type for constant extractvalue expression"); -  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); -  assert(FC && "ExtractValue constant expr couldn't be folded!"); -  return FC; -} - -Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { -  assert(C->getType()->isIntOrIntVectorTy() && -         "Cannot NEG a nonintegral value!"); -  return getSub(ConstantFP::getZeroValueForNegation(C->getType()), -                C, HasNUW, HasNSW); -} - -Constant *ConstantExpr::getFNeg(Constant *C) { -  assert(C->getType()->isFPOrFPVectorTy() && -         "Cannot FNEG a non-floating-point value!"); -  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); -} - -Constant *ConstantExpr::getNot(Constant *C) { -  assert(C->getType()->isIntOrIntVectorTy() && -         "Cannot NOT a nonintegral value!"); -  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); -} - -Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, -                               bool HasNUW, bool HasNSW) { -  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | -                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); -  return get(Instruction::Add, C1, C2, Flags); -} - -Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { -  return get(Instruction::FAdd, C1, C2); -} - -Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, -                               bool HasNUW, bool HasNSW) { -  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | -                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); -  return get(Instruction::Sub, C1, C2, Flags); -} - -Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { -  return get(Instruction::FSub, C1, C2); -} - -Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, -                               bool HasNUW, bool HasNSW) { -  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | -                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); -  return get(Instruction::Mul, C1, C2, Flags); -} - -Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { -  return get(Instruction::FMul, C1, C2); -} - -Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { -  return get(Instruction::UDiv, C1, C2, -             isExact ? PossiblyExactOperator::IsExact : 0); -} - -Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { -  return get(Instruction::SDiv, C1, C2, -             isExact ? PossiblyExactOperator::IsExact : 0); -} - -Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { -  return get(Instruction::FDiv, C1, C2); -} - -Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { -  return get(Instruction::URem, C1, C2); -} - -Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { -  return get(Instruction::SRem, C1, C2); -} - -Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { -  return get(Instruction::FRem, C1, C2); -} - -Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { -  return get(Instruction::And, C1, C2); -} - -Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { -  return get(Instruction::Or, C1, C2); -} - -Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { -  return get(Instruction::Xor, C1, C2); -} - -Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, -                               bool HasNUW, bool HasNSW) { -  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | -                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); -  return get(Instruction::Shl, C1, C2, Flags); -} - -Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { -  return get(Instruction::LShr, C1, C2, -             isExact ? PossiblyExactOperator::IsExact : 0); -} - -Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { -  return get(Instruction::AShr, C1, C2, -             isExact ? PossiblyExactOperator::IsExact : 0); -} - -/// getBinOpIdentity - Return the identity for the given binary operation, -/// i.e. a constant C such that X op C = X and C op X = X for every X.  It -/// returns null if the operator doesn't have an identity. -Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { -  switch (Opcode) { -  default: -    // Doesn't have an identity. -    return 0; - -  case Instruction::Add: -  case Instruction::Or: -  case Instruction::Xor: -    return Constant::getNullValue(Ty); - -  case Instruction::Mul: -    return ConstantInt::get(Ty, 1); - -  case Instruction::And: -    return Constant::getAllOnesValue(Ty); -  } -} - -/// getBinOpAbsorber - Return the absorbing element for the given binary -/// operation, i.e. a constant C such that X op C = C and C op X = C for -/// every X.  For example, this returns zero for integer multiplication. -/// It returns null if the operator doesn't have an absorbing element. -Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { -  switch (Opcode) { -  default: -    // Doesn't have an absorber. -    return 0; - -  case Instruction::Or: -    return Constant::getAllOnesValue(Ty); - -  case Instruction::And: -  case Instruction::Mul: -    return Constant::getNullValue(Ty); -  } -} - -// destroyConstant - Remove the constant from the constant table... -// -void ConstantExpr::destroyConstant() { -  getType()->getContext().pImpl->ExprConstants.remove(this); -  destroyConstantImpl(); -} - -const char *ConstantExpr::getOpcodeName() const { -  return Instruction::getOpcodeName(getOpcode()); -} - - - -GetElementPtrConstantExpr:: -GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, -                          Type *DestTy) -  : ConstantExpr(DestTy, Instruction::GetElementPtr, -                 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -                 - (IdxList.size()+1), IdxList.size()+1) { -  OperandList[0] = C; -  for (unsigned i = 0, E = IdxList.size(); i != E; ++i) -    OperandList[i+1] = IdxList[i]; -} - -//===----------------------------------------------------------------------===// -//                       ConstantData* implementations - -void ConstantDataArray::anchor() {} -void ConstantDataVector::anchor() {} - -/// getElementType - Return the element type of the array/vector. -Type *ConstantDataSequential::getElementType() const { -  return getType()->getElementType(); -} - -StringRef ConstantDataSequential::getRawDataValues() const { -  return StringRef(DataElements, getNumElements()*getElementByteSize()); -} - -/// isElementTypeCompatible - Return true if a ConstantDataSequential can be -/// formed with a vector or array of the specified element type. -/// ConstantDataArray only works with normal float and int types that are -/// stored densely in memory, not with things like i42 or x86_f80. -bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { -  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; -  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { -    switch (IT->getBitWidth()) { -    case 8: -    case 16: -    case 32: -    case 64: -      return true; -    default: break; -    } -  } -  return false; -} - -/// getNumElements - Return the number of elements in the array or vector. -unsigned ConstantDataSequential::getNumElements() const { -  if (ArrayType *AT = dyn_cast<ArrayType>(getType())) -    return AT->getNumElements(); -  return getType()->getVectorNumElements(); -} - - -/// getElementByteSize - Return the size in bytes of the elements in the data. -uint64_t ConstantDataSequential::getElementByteSize() const { -  return getElementType()->getPrimitiveSizeInBits()/8; -} - -/// getElementPointer - Return the start of the specified element. -const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { -  assert(Elt < getNumElements() && "Invalid Elt"); -  return DataElements+Elt*getElementByteSize(); -} - - -/// isAllZeros - return true if the array is empty or all zeros. -static bool isAllZeros(StringRef Arr) { -  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) -    if (*I != 0) -      return false; -  return true; -} - -/// getImpl - This is the underlying implementation of all of the -/// ConstantDataSequential::get methods.  They all thunk down to here, providing -/// the correct element type.  We take the bytes in as a StringRef because -/// we *want* an underlying "char*" to avoid TBAA type punning violations. -Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { -  assert(isElementTypeCompatible(Ty->getSequentialElementType())); -  // If the elements are all zero or there are no elements, return a CAZ, which -  // is more dense and canonical. -  if (isAllZeros(Elements)) -    return ConstantAggregateZero::get(Ty); - -  // Do a lookup to see if we have already formed one of these. -  StringMap<ConstantDataSequential*>::MapEntryTy &Slot = -    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); - -  // The bucket can point to a linked list of different CDS's that have the same -  // body but different types.  For example, 0,0,0,1 could be a 4 element array -  // of i8, or a 1-element array of i32.  They'll both end up in the same -  /// StringMap bucket, linked up by their Next pointers.  Walk the list. -  ConstantDataSequential **Entry = &Slot.getValue(); -  for (ConstantDataSequential *Node = *Entry; Node != 0; -       Entry = &Node->Next, Node = *Entry) -    if (Node->getType() == Ty) -      return Node; - -  // Okay, we didn't get a hit.  Create a node of the right class, link it in, -  // and return it. -  if (isa<ArrayType>(Ty)) -    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); - -  assert(isa<VectorType>(Ty)); -  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); -} - -void ConstantDataSequential::destroyConstant() { -  // Remove the constant from the StringMap. -  StringMap<ConstantDataSequential*> &CDSConstants =  -    getType()->getContext().pImpl->CDSConstants; - -  StringMap<ConstantDataSequential*>::iterator Slot = -    CDSConstants.find(getRawDataValues()); - -  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); - -  ConstantDataSequential **Entry = &Slot->getValue(); - -  // Remove the entry from the hash table. -  if ((*Entry)->Next == 0) { -    // If there is only one value in the bucket (common case) it must be this -    // entry, and removing the entry should remove the bucket completely. -    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); -    getContext().pImpl->CDSConstants.erase(Slot); -  } else { -    // Otherwise, there are multiple entries linked off the bucket, unlink the  -    // node we care about but keep the bucket around. -    for (ConstantDataSequential *Node = *Entry; ; -         Entry = &Node->Next, Node = *Entry) { -      assert(Node && "Didn't find entry in its uniquing hash table!"); -      // If we found our entry, unlink it from the list and we're done. -      if (Node == this) { -        *Entry = Node->Next; -        break; -      } -    } -  } - -  // If we were part of a list, make sure that we don't delete the list that is -  // still owned by the uniquing map. -  Next = 0; - -  // Finally, actually delete it. -  destroyConstantImpl(); -} - -/// get() constructors - Return a constant with array type with an element -/// count and element type matching the ArrayRef passed in.  Note that this -/// can return a ConstantAggregateZero object. -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { -  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ -  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ -  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ -  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { -  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { -  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} - -/// getString - This method constructs a CDS and initializes it with a text -/// string. The default behavior (AddNull==true) causes a null terminator to -/// be placed at the end of the array (increasing the length of the string by -/// one more than the StringRef would normally indicate.  Pass AddNull=false -/// to disable this behavior. -Constant *ConstantDataArray::getString(LLVMContext &Context, -                                       StringRef Str, bool AddNull) { -  if (!AddNull) { -    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); -    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data), -               Str.size())); -  } - -  SmallVector<uint8_t, 64> ElementVals; -  ElementVals.append(Str.begin(), Str.end()); -  ElementVals.push_back(0); -  return get(Context, ElementVals); -} - -/// get() constructors - Return a constant with vector type with an element -/// count and element type matching the ArrayRef passed in.  Note that this -/// can return a ConstantAggregateZero object. -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ -  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ -  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ -  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ -  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { -  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); -} -Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { -  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); -  const char *Data = reinterpret_cast<const char *>(Elts.data()); -  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); -} - -Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { -  assert(isElementTypeCompatible(V->getType()) && -         "Element type not compatible with ConstantData"); -  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { -    if (CI->getType()->isIntegerTy(8)) { -      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); -      return get(V->getContext(), Elts); -    } -    if (CI->getType()->isIntegerTy(16)) { -      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); -      return get(V->getContext(), Elts); -    } -    if (CI->getType()->isIntegerTy(32)) { -      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); -      return get(V->getContext(), Elts); -    } -    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); -    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); -    return get(V->getContext(), Elts); -  } - -  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { -    if (CFP->getType()->isFloatTy()) { -      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); -      return get(V->getContext(), Elts); -    } -    if (CFP->getType()->isDoubleTy()) { -      SmallVector<double, 16> Elts(NumElts, -                                   CFP->getValueAPF().convertToDouble()); -      return get(V->getContext(), Elts); -    } -  } -  return ConstantVector::getSplat(NumElts, V); -} - - -/// getElementAsInteger - If this is a sequential container of integers (of -/// any size), return the specified element in the low bits of a uint64_t. -uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { -  assert(isa<IntegerType>(getElementType()) && -         "Accessor can only be used when element is an integer"); -  const char *EltPtr = getElementPointer(Elt); - -  // The data is stored in host byte order, make sure to cast back to the right -  // type to load with the right endianness. -  switch (getElementType()->getIntegerBitWidth()) { -  default: llvm_unreachable("Invalid bitwidth for CDS"); -  case 8: -    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); -  case 16: -    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); -  case 32: -    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); -  case 64: -    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); -  } -} - -/// getElementAsAPFloat - If this is a sequential container of floating point -/// type, return the specified element as an APFloat. -APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { -  const char *EltPtr = getElementPointer(Elt); - -  switch (getElementType()->getTypeID()) { -  default: -    llvm_unreachable("Accessor can only be used when element is float/double!"); -  case Type::FloatTyID: { -      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr); -      return APFloat(*const_cast<float *>(FloatPrt)); -    } -  case Type::DoubleTyID: { -      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr); -      return APFloat(*const_cast<double *>(DoublePtr)); -    } -  } -} - -/// getElementAsFloat - If this is an sequential container of floats, return -/// the specified element as a float. -float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { -  assert(getElementType()->isFloatTy() && -         "Accessor can only be used when element is a 'float'"); -  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); -  return *const_cast<float *>(EltPtr); -} - -/// getElementAsDouble - If this is an sequential container of doubles, return -/// the specified element as a float. -double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { -  assert(getElementType()->isDoubleTy() && -         "Accessor can only be used when element is a 'float'"); -  const double *EltPtr = -      reinterpret_cast<const double *>(getElementPointer(Elt)); -  return *const_cast<double *>(EltPtr); -} - -/// getElementAsConstant - Return a Constant for a specified index's element. -/// Note that this has to compute a new constant to return, so it isn't as -/// efficient as getElementAsInteger/Float/Double. -Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { -  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) -    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); - -  return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); -} - -/// isString - This method returns true if this is an array of i8. -bool ConstantDataSequential::isString() const { -  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); -} - -/// isCString - This method returns true if the array "isString", ends with a -/// nul byte, and does not contains any other nul bytes. -bool ConstantDataSequential::isCString() const { -  if (!isString()) -    return false; - -  StringRef Str = getAsString(); - -  // The last value must be nul. -  if (Str.back() != 0) return false; - -  // Other elements must be non-nul. -  return Str.drop_back().find(0) == StringRef::npos; -} - -/// getSplatValue - If this is a splat constant, meaning that all of the -/// elements have the same value, return that value. Otherwise return NULL. -Constant *ConstantDataVector::getSplatValue() const { -  const char *Base = getRawDataValues().data(); - -  // Compare elements 1+ to the 0'th element. -  unsigned EltSize = getElementByteSize(); -  for (unsigned i = 1, e = getNumElements(); i != e; ++i) -    if (memcmp(Base, Base+i*EltSize, EltSize)) -      return 0; - -  // If they're all the same, return the 0th one as a representative. -  return getElementAsConstant(0); -} - -//===----------------------------------------------------------------------===// -//                replaceUsesOfWithOnConstant implementations - -/// replaceUsesOfWithOnConstant - Update this constant array to change uses of -/// 'From' to be uses of 'To'.  This must update the uniquing data structures -/// etc. -/// -/// Note that we intentionally replace all uses of From with To here.  Consider -/// a large array that uses 'From' 1000 times.  By handling this case all here, -/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that -/// single invocation handles all 1000 uses.  Handling them one at a time would -/// work, but would be really slow because it would have to unique each updated -/// array instance. -/// -void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, -                                                Use *U) { -  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); -  Constant *ToC = cast<Constant>(To); - -  LLVMContextImpl *pImpl = getType()->getContext().pImpl; - -  SmallVector<Constant*, 8> Values; -  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; -  Lookup.first = cast<ArrayType>(getType()); -  Values.reserve(getNumOperands());  // Build replacement array. - -  // Fill values with the modified operands of the constant array.  Also, -  // compute whether this turns into an all-zeros array. -  unsigned NumUpdated = 0; - -  // Keep track of whether all the values in the array are "ToC". -  bool AllSame = true; -  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { -    Constant *Val = cast<Constant>(O->get()); -    if (Val == From) { -      Val = ToC; -      ++NumUpdated; -    } -    Values.push_back(Val); -    AllSame &= Val == ToC; -  } - -  Constant *Replacement = 0; -  if (AllSame && ToC->isNullValue()) { -    Replacement = ConstantAggregateZero::get(getType()); -  } else if (AllSame && isa<UndefValue>(ToC)) { -    Replacement = UndefValue::get(getType()); -  } else { -    // Check to see if we have this array type already. -    Lookup.second = makeArrayRef(Values); -    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = -      pImpl->ArrayConstants.find(Lookup); - -    if (I != pImpl->ArrayConstants.map_end()) { -      Replacement = I->first; -    } else { -      // Okay, the new shape doesn't exist in the system yet.  Instead of -      // creating a new constant array, inserting it, replaceallusesof'ing the -      // old with the new, then deleting the old... just update the current one -      // in place! -      pImpl->ArrayConstants.remove(this); - -      // Update to the new value.  Optimize for the case when we have a single -      // operand that we're changing, but handle bulk updates efficiently. -      if (NumUpdated == 1) { -        unsigned OperandToUpdate = U - OperandList; -        assert(getOperand(OperandToUpdate) == From && -               "ReplaceAllUsesWith broken!"); -        setOperand(OperandToUpdate, ToC); -      } else { -        for (unsigned i = 0, e = getNumOperands(); i != e; ++i) -          if (getOperand(i) == From) -            setOperand(i, ToC); -      } -      pImpl->ArrayConstants.insert(this); -      return; -    } -  } - -  // Otherwise, I do need to replace this with an existing value. -  assert(Replacement != this && "I didn't contain From!"); - -  // Everyone using this now uses the replacement. -  replaceAllUsesWith(Replacement); - -  // Delete the old constant! -  destroyConstant(); -} - -void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, -                                                 Use *U) { -  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); -  Constant *ToC = cast<Constant>(To); - -  unsigned OperandToUpdate = U-OperandList; -  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - -  SmallVector<Constant*, 8> Values; -  LLVMContextImpl::StructConstantsTy::LookupKey Lookup; -  Lookup.first = cast<StructType>(getType()); -  Values.reserve(getNumOperands());  // Build replacement struct. - -  // Fill values with the modified operands of the constant struct.  Also, -  // compute whether this turns into an all-zeros struct. -  bool isAllZeros = false; -  bool isAllUndef = false; -  if (ToC->isNullValue()) { -    isAllZeros = true; -    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { -      Constant *Val = cast<Constant>(O->get()); -      Values.push_back(Val); -      if (isAllZeros) isAllZeros = Val->isNullValue(); -    } -  } else if (isa<UndefValue>(ToC)) { -    isAllUndef = true; -    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { -      Constant *Val = cast<Constant>(O->get()); -      Values.push_back(Val); -      if (isAllUndef) isAllUndef = isa<UndefValue>(Val); -    } -  } else { -    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) -      Values.push_back(cast<Constant>(O->get())); -  } -  Values[OperandToUpdate] = ToC; - -  LLVMContextImpl *pImpl = getContext().pImpl; - -  Constant *Replacement = 0; -  if (isAllZeros) { -    Replacement = ConstantAggregateZero::get(getType()); -  } else if (isAllUndef) { -    Replacement = UndefValue::get(getType()); -  } else { -    // Check to see if we have this struct type already. -    Lookup.second = makeArrayRef(Values); -    LLVMContextImpl::StructConstantsTy::MapTy::iterator I = -      pImpl->StructConstants.find(Lookup); - -    if (I != pImpl->StructConstants.map_end()) { -      Replacement = I->first; -    } else { -      // Okay, the new shape doesn't exist in the system yet.  Instead of -      // creating a new constant struct, inserting it, replaceallusesof'ing the -      // old with the new, then deleting the old... just update the current one -      // in place! -      pImpl->StructConstants.remove(this); - -      // Update to the new value. -      setOperand(OperandToUpdate, ToC); -      pImpl->StructConstants.insert(this); -      return; -    } -  } - -  assert(Replacement != this && "I didn't contain From!"); - -  // Everyone using this now uses the replacement. -  replaceAllUsesWith(Replacement); - -  // Delete the old constant! -  destroyConstant(); -} - -void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, -                                                 Use *U) { -  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); - -  SmallVector<Constant*, 8> Values; -  Values.reserve(getNumOperands());  // Build replacement array... -  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { -    Constant *Val = getOperand(i); -    if (Val == From) Val = cast<Constant>(To); -    Values.push_back(Val); -  } - -  Constant *Replacement = get(Values); -  assert(Replacement != this && "I didn't contain From!"); - -  // Everyone using this now uses the replacement. -  replaceAllUsesWith(Replacement); - -  // Delete the old constant! -  destroyConstant(); -} - -void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, -                                               Use *U) { -  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); -  Constant *To = cast<Constant>(ToV); - -  SmallVector<Constant*, 8> NewOps; -  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { -    Constant *Op = getOperand(i); -    NewOps.push_back(Op == From ? To : Op); -  } - -  Constant *Replacement = getWithOperands(NewOps); -  assert(Replacement != this && "I didn't contain From!"); - -  // Everyone using this now uses the replacement. -  replaceAllUsesWith(Replacement); - -  // Delete the old constant! -  destroyConstant(); -} | 
