aboutsummaryrefslogtreecommitdiff
path: root/pl/math/v_log1pf_2u1.c
diff options
context:
space:
mode:
authorAndrew Turner <andrew@FreeBSD.org>2024-02-20 09:02:15 +0000
committerAndrew Turner <andrew@FreeBSD.org>2024-02-20 09:02:15 +0000
commitedc5c0de794f521eb620d2b6cbaee2434442a8f3 (patch)
tree64dfc547c0b6398e9cf94bd8175b21db8a74c814 /pl/math/v_log1pf_2u1.c
parent29866ecb89620f1c798b7f5ff6710255f13aa52e (diff)
Diffstat (limited to 'pl/math/v_log1pf_2u1.c')
-rw-r--r--pl/math/v_log1pf_2u1.c174
1 files changed, 70 insertions, 104 deletions
diff --git a/pl/math/v_log1pf_2u1.c b/pl/math/v_log1pf_2u1.c
index 4a7732b403ec..153c88da9c88 100644
--- a/pl/math/v_log1pf_2u1.c
+++ b/pl/math/v_log1pf_2u1.c
@@ -8,104 +8,72 @@
#include "v_math.h"
#include "pl_sig.h"
#include "pl_test.h"
+#include "poly_advsimd_f32.h"
-#if V_SUPPORTED
-
-#define AbsMask 0x7fffffff
-#define TinyBound 0x340 /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */
-#define MinusOne 0xbf800000
-#define Ln2 (0x1.62e43p-1f)
-#define Four 0x40800000
-#define ThreeQuarters v_u32 (0x3f400000)
-
-#define C(i) v_f32 (__log1pf_data.coeffs[i])
-
-static inline v_f32_t
-eval_poly (v_f32_t m)
+const static struct data
{
-#ifdef V_LOG1PF_1U3
-
- /* Approximate log(1+m) on [-0.25, 0.5] using Horner scheme. */
- v_f32_t p = v_fma_f32 (C (8), m, C (7));
- p = v_fma_f32 (p, m, C (6));
- p = v_fma_f32 (p, m, C (5));
- p = v_fma_f32 (p, m, C (4));
- p = v_fma_f32 (p, m, C (3));
- p = v_fma_f32 (p, m, C (2));
- p = v_fma_f32 (p, m, C (1));
- p = v_fma_f32 (p, m, C (0));
- return v_fma_f32 (m, m * p, m);
-
-#elif defined(V_LOG1PF_2U5)
-
- /* Approximate log(1+m) on [-0.25, 0.5] using Estrin scheme. */
- v_f32_t p_12 = v_fma_f32 (m, C (1), C (0));
- v_f32_t p_34 = v_fma_f32 (m, C (3), C (2));
- v_f32_t p_56 = v_fma_f32 (m, C (5), C (4));
- v_f32_t p_78 = v_fma_f32 (m, C (7), C (6));
-
- v_f32_t m2 = m * m;
- v_f32_t p_02 = v_fma_f32 (m2, p_12, m);
- v_f32_t p_36 = v_fma_f32 (m2, p_56, p_34);
- v_f32_t p_79 = v_fma_f32 (m2, C (8), p_78);
-
- v_f32_t m4 = m2 * m2;
- v_f32_t p_06 = v_fma_f32 (m4, p_36, p_02);
-
- return v_fma_f32 (m4, m4 * p_79, p_06);
-
-#else
-#error No precision specified for v_log1pf
-#endif
+ float32x4_t poly[8], ln2;
+ uint32x4_t tiny_bound, minus_one, four, thresh;
+ int32x4_t three_quarters;
+} data = {
+ .poly = { /* Generated using FPMinimax in [-0.25, 0.5]. First two coefficients
+ (1, -0.5) are not stored as they can be generated more
+ efficiently. */
+ V4 (0x1.5555aap-2f), V4 (-0x1.000038p-2f), V4 (0x1.99675cp-3f),
+ V4 (-0x1.54ef78p-3f), V4 (0x1.28a1f4p-3f), V4 (-0x1.0da91p-3f),
+ V4 (0x1.abcb6p-4f), V4 (-0x1.6f0d5ep-5f) },
+ .ln2 = V4 (0x1.62e43p-1f),
+ .tiny_bound = V4 (0x34000000), /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */
+ .thresh = V4 (0x4b800000), /* asuint32(INFINITY) - tiny_bound. */
+ .minus_one = V4 (0xbf800000),
+ .four = V4 (0x40800000),
+ .three_quarters = V4 (0x3f400000)
+};
+
+static inline float32x4_t
+eval_poly (float32x4_t m, const float32x4_t *p)
+{
+ /* Approximate log(1+m) on [-0.25, 0.5] using split Estrin scheme. */
+ float32x4_t p_12 = vfmaq_f32 (v_f32 (-0.5), m, p[0]);
+ float32x4_t p_34 = vfmaq_f32 (p[1], m, p[2]);
+ float32x4_t p_56 = vfmaq_f32 (p[3], m, p[4]);
+ float32x4_t p_78 = vfmaq_f32 (p[5], m, p[6]);
+
+ float32x4_t m2 = vmulq_f32 (m, m);
+ float32x4_t p_02 = vfmaq_f32 (m, m2, p_12);
+ float32x4_t p_36 = vfmaq_f32 (p_34, m2, p_56);
+ float32x4_t p_79 = vfmaq_f32 (p_78, m2, p[7]);
+
+ float32x4_t m4 = vmulq_f32 (m2, m2);
+ float32x4_t p_06 = vfmaq_f32 (p_02, m4, p_36);
+ return vfmaq_f32 (p_06, m4, vmulq_f32 (m4, p_79));
}
-static inline float
-handle_special (float x)
+static float32x4_t NOINLINE VPCS_ATTR
+special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
{
- uint32_t ix = asuint (x);
- uint32_t ia = ix & AbsMask;
- if (ix == 0xff800000 || ia > 0x7f800000 || ix > 0xbf800000)
- {
- /* x == -Inf => log1pf(x) = NaN.
- x < -1.0 => log1pf(x) = NaN.
- x == +/-NaN => log1pf(x) = NaN. */
-#if WANT_SIMD_EXCEPT
- return __math_invalidf (asfloat (ia));
-#else
- return NAN;
-#endif
- }
- if (ix == 0xbf800000)
- {
- /* x == -1.0 => log1pf(x) = -Inf. */
-#if WANT_SIMD_EXCEPT
- return __math_divzerof (ix);
-#else
- return -INFINITY;
-#endif
- }
- /* |x| < TinyBound => log1p(x) = x. */
- return x;
+ return v_call_f32 (log1pf, x, y, special);
}
-/* Vector log1pf approximation using polynomial on reduced interval. Accuracy is
- the same as for the scalar algorithm, i.e. worst-case error when using Estrin
+/* Vector log1pf approximation using polynomial on reduced interval. Accuracy
is roughly 2.02 ULP:
log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */
-VPCS_ATTR v_f32_t V_NAME (log1pf) (v_f32_t x)
+VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x)
{
- v_u32_t ix = v_as_u32_f32 (x);
- v_u32_t ia12 = (ix >> 20) & v_u32 (0x7f8);
- v_u32_t special_cases
- = v_cond_u32 (ia12 - v_u32 (TinyBound) >= (0x7f8 - TinyBound))
- | v_cond_u32 (ix >= MinusOne);
- v_f32_t special_arg = x;
+ const struct data *d = ptr_barrier (&data);
+
+ uint32x4_t ix = vreinterpretq_u32_f32 (x);
+ uint32x4_t ia = vreinterpretq_u32_f32 (vabsq_f32 (x));
+ uint32x4_t special_cases
+ = vorrq_u32 (vcgeq_u32 (vsubq_u32 (ia, d->tiny_bound), d->thresh),
+ vcgeq_u32 (ix, d->minus_one));
+ float32x4_t special_arg = x;
#if WANT_SIMD_EXCEPT
if (unlikely (v_any_u32 (special_cases)))
/* Side-step special lanes so fenv exceptions are not triggered
inadvertently. */
- x = v_sel_f32 (special_cases, v_f32 (1), x);
+ x = v_zerofy_f32 (x, special_cases);
#endif
/* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
@@ -117,44 +85,42 @@ VPCS_ATTR v_f32_t V_NAME (log1pf) (v_f32_t x)
scale factor s = 4*k*log(2) to ensure the scale is representable
as a normalised fp32 number. */
- v_f32_t m = x + v_f32 (1.0f);
+ float32x4_t m = vaddq_f32 (x, v_f32 (1.0f));
/* Choose k to scale x to the range [-1/4, 1/2]. */
- v_s32_t k = (v_as_s32_f32 (m) - ThreeQuarters) & v_u32 (0xff800000);
+ int32x4_t k
+ = vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters),
+ v_s32 (0xff800000));
+ uint32x4_t ku = vreinterpretq_u32_s32 (k);
/* Scale x by exponent manipulation. */
- v_f32_t m_scale = v_as_f32_u32 (v_as_u32_f32 (x) - v_as_u32_s32 (k));
+ float32x4_t m_scale
+ = vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku));
/* Scale up to ensure that the scale factor is representable as normalised
fp32 number, and scale m down accordingly. */
- v_f32_t s = v_as_f32_u32 (v_u32 (Four) - k);
- m_scale = m_scale + v_fma_f32 (v_f32 (0.25f), s, v_f32 (-1.0f));
+ float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku));
+ m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s));
/* Evaluate polynomial on the reduced interval. */
- v_f32_t p = eval_poly (m_scale);
+ float32x4_t p = eval_poly (m_scale, d->poly);
/* The scale factor to be applied back at the end - by multiplying float(k)
by 2^-23 we get the unbiased exponent of k. */
- v_f32_t scale_back = v_to_f32_s32 (k) * v_f32 (0x1p-23f);
+ float32x4_t scale_back = vcvtq_f32_s32 (vshrq_n_s32 (k, 23));
/* Apply the scaling back. */
- v_f32_t y = v_fma_f32 (scale_back, v_f32 (Ln2), p);
+ float32x4_t y = vfmaq_f32 (p, scale_back, d->ln2);
if (unlikely (v_any_u32 (special_cases)))
- return v_call_f32 (handle_special, special_arg, y, special_cases);
+ return special_case (special_arg, y, special_cases);
return y;
}
-VPCS_ALIAS
PL_SIG (V, F, 1, log1p, -0.9, 10.0)
-PL_TEST_ULP (V_NAME (log1pf), 1.53)
-PL_TEST_EXPECT_FENV (V_NAME (log1pf), WANT_SIMD_EXCEPT)
-PL_TEST_INTERVAL (V_NAME (log1pf), -10.0, 10.0, 10000)
-PL_TEST_INTERVAL (V_NAME (log1pf), 0.0, 0x1p-23, 30000)
-PL_TEST_INTERVAL (V_NAME (log1pf), 0x1p-23, 0.001, 50000)
-PL_TEST_INTERVAL (V_NAME (log1pf), 0.001, 1.0, 50000)
-PL_TEST_INTERVAL (V_NAME (log1pf), 0.0, -0x1p-23, 30000)
-PL_TEST_INTERVAL (V_NAME (log1pf), -0x1p-23, -0.001, 30000)
-PL_TEST_INTERVAL (V_NAME (log1pf), -0.001, -1.0, 50000)
-PL_TEST_INTERVAL (V_NAME (log1pf), -1.0, inf, 1000)
-#endif
+PL_TEST_ULP (V_NAME_F1 (log1p), 1.53)
+PL_TEST_EXPECT_FENV (V_NAME_F1 (log1p), WANT_SIMD_EXCEPT)
+PL_TEST_SYM_INTERVAL (V_NAME_F1 (log1p), 0.0, 0x1p-23, 30000)
+PL_TEST_SYM_INTERVAL (V_NAME_F1 (log1p), 0x1p-23, 1, 50000)
+PL_TEST_INTERVAL (V_NAME_F1 (log1p), 1, inf, 50000)
+PL_TEST_INTERVAL (V_NAME_F1 (log1p), -1.0, -inf, 1000)