diff options
Diffstat (limited to 'MdePkg/Library/BasePeCoffLib/BasePeCoff.c')
-rw-r--r-- | MdePkg/Library/BasePeCoffLib/BasePeCoff.c | 1957 |
1 files changed, 1957 insertions, 0 deletions
diff --git a/MdePkg/Library/BasePeCoffLib/BasePeCoff.c b/MdePkg/Library/BasePeCoffLib/BasePeCoff.c new file mode 100644 index 000000000000..82e78737a958 --- /dev/null +++ b/MdePkg/Library/BasePeCoffLib/BasePeCoff.c @@ -0,0 +1,1957 @@ +/** @file + Base PE/COFF loader supports loading any PE32/PE32+ or TE image, but + only supports relocating IA32, x64, IPF, and EBC images. + + Caution: This file requires additional review when modified. + This library will have external input - PE/COFF image. + This external input must be validated carefully to avoid security issue like + buffer overflow, integer overflow. + + The basic guideline is that caller need provide ImageContext->ImageRead () with the + necessary data range check, to make sure when this library reads PE/COFF image, the + PE image buffer is always in valid range. + This library will also do some additional check for PE header fields. + + PeCoffLoaderGetPeHeader() routine will do basic check for PE/COFF header. + PeCoffLoaderGetImageInfo() routine will do basic check for whole PE/COFF image. + + Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR> + Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR> + This program and the accompanying materials + are licensed and made available under the terms and conditions of the BSD License + which accompanies this distribution. The full text of the license may be found at + http://opensource.org/licenses/bsd-license.php. + + THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, + WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + +**/ + +#include "BasePeCoffLibInternals.h" + +/** + Adjust some fields in section header for TE image. + + @param SectionHeader Pointer to the section header. + @param TeStrippedOffset Size adjust for the TE image. + +**/ +VOID +PeCoffLoaderAdjustOffsetForTeImage ( + EFI_IMAGE_SECTION_HEADER *SectionHeader, + UINT32 TeStrippedOffset + ) +{ + SectionHeader->VirtualAddress -= TeStrippedOffset; + SectionHeader->PointerToRawData -= TeStrippedOffset; +} + +/** + Retrieves the magic value from the PE/COFF header. + + @param Hdr The buffer in which to return the PE32, PE32+, or TE header. + + @return EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC - Image is PE32 + @return EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC - Image is PE32+ + +**/ +UINT16 +PeCoffLoaderGetPeHeaderMagicValue ( + IN EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr + ) +{ + // + // NOTE: Some versions of Linux ELILO for Itanium have an incorrect magic value + // in the PE/COFF Header. If the MachineType is Itanium(IA64) and the + // Magic value in the OptionalHeader is EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC + // then override the returned value to EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC + // + if (Hdr.Pe32->FileHeader.Machine == IMAGE_FILE_MACHINE_IA64 && Hdr.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + return EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC; + } + // + // Return the magic value from the PC/COFF Optional Header + // + return Hdr.Pe32->OptionalHeader.Magic; +} + + +/** + Retrieves the PE or TE Header from a PE/COFF or TE image. + + Caution: This function may receive untrusted input. + PE/COFF image is external input, so this routine will + also done many checks in PE image to make sure PE image DosHeader, PeOptionHeader, + SizeOfHeader, Section Data Region and Security Data Region be in PE image range. + + @param ImageContext The context of the image being loaded. + @param Hdr The buffer in which to return the PE32, PE32+, or TE header. + + @retval RETURN_SUCCESS The PE or TE Header is read. + @retval Other The error status from reading the PE/COFF or TE image using the ImageRead function. + +**/ +RETURN_STATUS +PeCoffLoaderGetPeHeader ( + IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, + OUT EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr + ) +{ + RETURN_STATUS Status; + EFI_IMAGE_DOS_HEADER DosHdr; + UINTN Size; + UINTN ReadSize; + UINT16 Magic; + UINT32 SectionHeaderOffset; + UINT32 Index; + UINT32 HeaderWithoutDataDir; + CHAR8 BufferData; + UINTN NumberOfSections; + EFI_IMAGE_SECTION_HEADER SectionHeader; + + // + // Read the DOS image header to check for its existence + // + Size = sizeof (EFI_IMAGE_DOS_HEADER); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + 0, + &Size, + &DosHdr + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + ImageContext->PeCoffHeaderOffset = 0; + if (DosHdr.e_magic == EFI_IMAGE_DOS_SIGNATURE) { + // + // DOS image header is present, so read the PE header after the DOS image + // header + // + ImageContext->PeCoffHeaderOffset = DosHdr.e_lfanew; + } + + // + // Read the PE/COFF Header. For PE32 (32-bit) this will read in too much + // data, but that should not hurt anything. Hdr.Pe32->OptionalHeader.Magic + // determines if this is a PE32 or PE32+ image. The magic is in the same + // location in both images. + // + Size = sizeof (EFI_IMAGE_OPTIONAL_HEADER_UNION); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + ImageContext->PeCoffHeaderOffset, + &Size, + Hdr.Pe32 + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + // + // Use Signature to figure out if we understand the image format + // + if (Hdr.Te->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) { + ImageContext->IsTeImage = TRUE; + ImageContext->Machine = Hdr.Te->Machine; + ImageContext->ImageType = (UINT16)(Hdr.Te->Subsystem); + // + // For TeImage, SectionAlignment is undefined to be set to Zero + // ImageSize can be calculated. + // + ImageContext->ImageSize = 0; + ImageContext->SectionAlignment = 0; + ImageContext->SizeOfHeaders = sizeof (EFI_TE_IMAGE_HEADER) + (UINTN)Hdr.Te->BaseOfCode - (UINTN)Hdr.Te->StrippedSize; + + // + // Check the StrippedSize. + // + if (sizeof (EFI_TE_IMAGE_HEADER) >= (UINT32)Hdr.Te->StrippedSize) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // Check the SizeOfHeaders field. + // + if (Hdr.Te->BaseOfCode <= Hdr.Te->StrippedSize) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // Read last byte of Hdr.Te->SizeOfHeaders from the file. + // + Size = 1; + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + ImageContext->SizeOfHeaders - 1, + &Size, + &BufferData + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + // + // TE Image Data Directory Entry size is non-zero, but the Data Directory Virtual Address is zero. + // This case is not a valid TE image. + // + if ((Hdr.Te->DataDirectory[0].Size != 0 && Hdr.Te->DataDirectory[0].VirtualAddress == 0) || + (Hdr.Te->DataDirectory[1].Size != 0 && Hdr.Te->DataDirectory[1].VirtualAddress == 0)) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + } else if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) { + ImageContext->IsTeImage = FALSE; + ImageContext->Machine = Hdr.Pe32->FileHeader.Machine; + + Magic = PeCoffLoaderGetPeHeaderMagicValue (Hdr); + + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // 1. Check OptionalHeader.NumberOfRvaAndSizes filed. + // + if (EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES < Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // 2. Check the FileHeader.SizeOfOptionalHeader field. + // OptionalHeader.NumberOfRvaAndSizes is not bigger than 16, so + // OptionalHeader.NumberOfRvaAndSizes * sizeof (EFI_IMAGE_DATA_DIRECTORY) will not overflow. + // + HeaderWithoutDataDir = sizeof (EFI_IMAGE_OPTIONAL_HEADER32) - sizeof (EFI_IMAGE_DATA_DIRECTORY) * EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES; + if (((UINT32)Hdr.Pe32->FileHeader.SizeOfOptionalHeader - HeaderWithoutDataDir) != + Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes * sizeof (EFI_IMAGE_DATA_DIRECTORY)) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) + Hdr.Pe32->FileHeader.SizeOfOptionalHeader; + // + // 3. Check the FileHeader.NumberOfSections field. + // + if (Hdr.Pe32->OptionalHeader.SizeOfImage <= SectionHeaderOffset) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + if ((Hdr.Pe32->OptionalHeader.SizeOfImage - SectionHeaderOffset) / EFI_IMAGE_SIZEOF_SECTION_HEADER <= Hdr.Pe32->FileHeader.NumberOfSections) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // 4. Check the OptionalHeader.SizeOfHeaders field. + // + if (Hdr.Pe32->OptionalHeader.SizeOfHeaders <= SectionHeaderOffset) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + if (Hdr.Pe32->OptionalHeader.SizeOfHeaders >= Hdr.Pe32->OptionalHeader.SizeOfImage) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + if ((Hdr.Pe32->OptionalHeader.SizeOfHeaders - SectionHeaderOffset) / EFI_IMAGE_SIZEOF_SECTION_HEADER < (UINT32)Hdr.Pe32->FileHeader.NumberOfSections) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // 4.2 Read last byte of Hdr.Pe32.OptionalHeader.SizeOfHeaders from the file. + // + Size = 1; + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + Hdr.Pe32->OptionalHeader.SizeOfHeaders - 1, + &Size, + &BufferData + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + // + // Check the EFI_IMAGE_DIRECTORY_ENTRY_SECURITY data. + // Read the last byte to make sure the data is in the image region. + // The DataDirectory array begin with 1, not 0, so here use < to compare not <=. + // + if (EFI_IMAGE_DIRECTORY_ENTRY_SECURITY < Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes) { + if (Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size != 0) { + // + // Check the member data to avoid overflow. + // + if ((UINT32) (~0) - Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].VirtualAddress < + Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // Read last byte of section header from file + // + Size = 1; + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].VirtualAddress + + Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size - 1, + &Size, + &BufferData + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + } + } + + // + // Use PE32 offset + // + ImageContext->ImageType = Hdr.Pe32->OptionalHeader.Subsystem; + ImageContext->ImageSize = (UINT64)Hdr.Pe32->OptionalHeader.SizeOfImage; + ImageContext->SectionAlignment = Hdr.Pe32->OptionalHeader.SectionAlignment; + ImageContext->SizeOfHeaders = Hdr.Pe32->OptionalHeader.SizeOfHeaders; + + } else if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) { + // + // 1. Check FileHeader.NumberOfRvaAndSizes filed. + // + if (EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES < Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + // + // 2. Check the FileHeader.SizeOfOptionalHeader field. + // OptionalHeader.NumberOfRvaAndSizes is not bigger than 16, so + // OptionalHeader.NumberOfRvaAndSizes * sizeof (EFI_IMAGE_DATA_DIRECTORY) will not overflow. + // + HeaderWithoutDataDir = sizeof (EFI_IMAGE_OPTIONAL_HEADER64) - sizeof (EFI_IMAGE_DATA_DIRECTORY) * EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES; + if (((UINT32)Hdr.Pe32Plus->FileHeader.SizeOfOptionalHeader - HeaderWithoutDataDir) != + Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes * sizeof (EFI_IMAGE_DATA_DIRECTORY)) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) + Hdr.Pe32Plus->FileHeader.SizeOfOptionalHeader; + // + // 3. Check the FileHeader.NumberOfSections field. + // + if (Hdr.Pe32Plus->OptionalHeader.SizeOfImage <= SectionHeaderOffset) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + if ((Hdr.Pe32Plus->OptionalHeader.SizeOfImage - SectionHeaderOffset) / EFI_IMAGE_SIZEOF_SECTION_HEADER <= Hdr.Pe32Plus->FileHeader.NumberOfSections) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // 4. Check the OptionalHeader.SizeOfHeaders field. + // + if (Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders <= SectionHeaderOffset) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + if (Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders >= Hdr.Pe32Plus->OptionalHeader.SizeOfImage) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + if ((Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders - SectionHeaderOffset) / EFI_IMAGE_SIZEOF_SECTION_HEADER < (UINT32)Hdr.Pe32Plus->FileHeader.NumberOfSections) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // 4.2 Read last byte of Hdr.Pe32Plus.OptionalHeader.SizeOfHeaders from the file. + // + Size = 1; + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders - 1, + &Size, + &BufferData + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + // + // Check the EFI_IMAGE_DIRECTORY_ENTRY_SECURITY data. + // Read the last byte to make sure the data is in the image region. + // The DataDirectory array begin with 1, not 0, so here use < to compare not <=. + // + if (EFI_IMAGE_DIRECTORY_ENTRY_SECURITY < Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes) { + if (Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size != 0) { + // + // Check the member data to avoid overflow. + // + if ((UINT32) (~0) - Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].VirtualAddress < + Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // Read last byte of section header from file + // + Size = 1; + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].VirtualAddress + + Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size - 1, + &Size, + &BufferData + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + } + } + + // + // Use PE32+ offset + // + ImageContext->ImageType = Hdr.Pe32Plus->OptionalHeader.Subsystem; + ImageContext->ImageSize = (UINT64) Hdr.Pe32Plus->OptionalHeader.SizeOfImage; + ImageContext->SectionAlignment = Hdr.Pe32Plus->OptionalHeader.SectionAlignment; + ImageContext->SizeOfHeaders = Hdr.Pe32Plus->OptionalHeader.SizeOfHeaders; + } else { + ImageContext->ImageError = IMAGE_ERROR_INVALID_MACHINE_TYPE; + return RETURN_UNSUPPORTED; + } + } else { + ImageContext->ImageError = IMAGE_ERROR_INVALID_MACHINE_TYPE; + return RETURN_UNSUPPORTED; + } + + if (!PeCoffLoaderImageFormatSupported (ImageContext->Machine)) { + // + // If the PE/COFF loader does not support the image type return + // unsupported. This library can support lots of types of images + // this does not mean the user of this library can call the entry + // point of the image. + // + return RETURN_UNSUPPORTED; + } + + // + // Check each section field. + // + if (ImageContext->IsTeImage) { + SectionHeaderOffset = sizeof(EFI_TE_IMAGE_HEADER); + NumberOfSections = (UINTN) (Hdr.Te->NumberOfSections); + } else { + SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) + Hdr.Pe32->FileHeader.SizeOfOptionalHeader; + NumberOfSections = (UINTN) (Hdr.Pe32->FileHeader.NumberOfSections); + } + + for (Index = 0; Index < NumberOfSections; Index++) { + // + // Read section header from file + // + Size = sizeof (EFI_IMAGE_SECTION_HEADER); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + SectionHeaderOffset, + &Size, + &SectionHeader + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + // + // Adjust some field in Section Header for TE image. + // + if (ImageContext->IsTeImage) { + PeCoffLoaderAdjustOffsetForTeImage (&SectionHeader, (UINT32)Hdr.Te->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER)); + } + + if (SectionHeader.SizeOfRawData > 0) { + // + // Section data should bigger than the Pe header. + // + if (SectionHeader.VirtualAddress < ImageContext->SizeOfHeaders || + SectionHeader.PointerToRawData < ImageContext->SizeOfHeaders) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // Check the member data to avoid overflow. + // + if ((UINT32) (~0) - SectionHeader.PointerToRawData < SectionHeader.SizeOfRawData) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + + // + // Base on the ImageRead function to check the section data field. + // Read the last byte to make sure the data is in the image region. + // + Size = 1; + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + SectionHeader.PointerToRawData + SectionHeader.SizeOfRawData - 1, + &Size, + &BufferData + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + } + + // + // Check next section. + // + SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER); + } + + return RETURN_SUCCESS; +} + + +/** + Retrieves information about a PE/COFF image. + + Computes the PeCoffHeaderOffset, IsTeImage, ImageType, ImageAddress, ImageSize, + DestinationAddress, RelocationsStripped, SectionAlignment, SizeOfHeaders, and + DebugDirectoryEntryRva fields of the ImageContext structure. + If ImageContext is NULL, then return RETURN_INVALID_PARAMETER. + If the PE/COFF image accessed through the ImageRead service in the ImageContext + structure is not a supported PE/COFF image type, then return RETURN_UNSUPPORTED. + If any errors occur while computing the fields of ImageContext, + then the error status is returned in the ImageError field of ImageContext. + If the image is a TE image, then SectionAlignment is set to 0. + The ImageRead and Handle fields of ImageContext structure must be valid prior + to invoking this service. + + Caution: This function may receive untrusted input. + PE/COFF image is external input, so this routine will + also done many checks in PE image to make sure PE image DosHeader, PeOptionHeader, + SizeOfHeader, Section Data Region and Security Data Region be in PE image range. + + @param ImageContext The pointer to the image context structure that describes the PE/COFF + image that needs to be examined by this function. + + @retval RETURN_SUCCESS The information on the PE/COFF image was collected. + @retval RETURN_INVALID_PARAMETER ImageContext is NULL. + @retval RETURN_UNSUPPORTED The PE/COFF image is not supported. + +**/ +RETURN_STATUS +EFIAPI +PeCoffLoaderGetImageInfo ( + IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext + ) +{ + RETURN_STATUS Status; + EFI_IMAGE_OPTIONAL_HEADER_UNION HdrData; + EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; + EFI_IMAGE_DATA_DIRECTORY *DebugDirectoryEntry; + UINTN Size; + UINTN ReadSize; + UINTN Index; + UINTN DebugDirectoryEntryRva; + UINTN DebugDirectoryEntryFileOffset; + UINTN SectionHeaderOffset; + EFI_IMAGE_SECTION_HEADER SectionHeader; + EFI_IMAGE_DEBUG_DIRECTORY_ENTRY DebugEntry; + UINT32 NumberOfRvaAndSizes; + UINT16 Magic; + UINT32 TeStrippedOffset; + + if (ImageContext == NULL) { + return RETURN_INVALID_PARAMETER; + } + // + // Assume success + // + ImageContext->ImageError = IMAGE_ERROR_SUCCESS; + + Hdr.Union = &HdrData; + Status = PeCoffLoaderGetPeHeader (ImageContext, Hdr); + if (RETURN_ERROR (Status)) { + return Status; + } + + Magic = PeCoffLoaderGetPeHeaderMagicValue (Hdr); + + // + // Retrieve the base address of the image + // + if (!(ImageContext->IsTeImage)) { + TeStrippedOffset = 0; + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + ImageContext->ImageAddress = Hdr.Pe32->OptionalHeader.ImageBase; + } else { + // + // Use PE32+ offset + // + ImageContext->ImageAddress = Hdr.Pe32Plus->OptionalHeader.ImageBase; + } + } else { + TeStrippedOffset = (UINT32)Hdr.Te->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER); + ImageContext->ImageAddress = (PHYSICAL_ADDRESS)(Hdr.Te->ImageBase + TeStrippedOffset); + } + + // + // Initialize the alternate destination address to 0 indicating that it + // should not be used. + // + ImageContext->DestinationAddress = 0; + + // + // Initialize the debug codeview pointer. + // + ImageContext->DebugDirectoryEntryRva = 0; + ImageContext->CodeView = NULL; + ImageContext->PdbPointer = NULL; + + // + // Three cases with regards to relocations: + // - Image has base relocs, RELOCS_STRIPPED==0 => image is relocatable + // - Image has no base relocs, RELOCS_STRIPPED==1 => Image is not relocatable + // - Image has no base relocs, RELOCS_STRIPPED==0 => Image is relocatable but + // has no base relocs to apply + // Obviously having base relocations with RELOCS_STRIPPED==1 is invalid. + // + // Look at the file header to determine if relocations have been stripped, and + // save this information in the image context for later use. + // + if ((!(ImageContext->IsTeImage)) && ((Hdr.Pe32->FileHeader.Characteristics & EFI_IMAGE_FILE_RELOCS_STRIPPED) != 0)) { + ImageContext->RelocationsStripped = TRUE; + } else if ((ImageContext->IsTeImage) && (Hdr.Te->DataDirectory[0].Size == 0) && (Hdr.Te->DataDirectory[0].VirtualAddress == 0)) { + ImageContext->RelocationsStripped = TRUE; + } else { + ImageContext->RelocationsStripped = FALSE; + } + + if (!(ImageContext->IsTeImage)) { + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; + DebugDirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&(Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG]); + } else { + // + // Use PE32+ offset + // + NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; + DebugDirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&(Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG]); + } + + if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_DEBUG) { + + DebugDirectoryEntryRva = DebugDirectoryEntry->VirtualAddress; + + // + // Determine the file offset of the debug directory... This means we walk + // the sections to find which section contains the RVA of the debug + // directory + // + DebugDirectoryEntryFileOffset = 0; + + SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + + sizeof (UINT32) + + sizeof (EFI_IMAGE_FILE_HEADER) + + Hdr.Pe32->FileHeader.SizeOfOptionalHeader; + + for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) { + // + // Read section header from file + // + Size = sizeof (EFI_IMAGE_SECTION_HEADER); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + SectionHeaderOffset, + &Size, + &SectionHeader + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + if (DebugDirectoryEntryRva >= SectionHeader.VirtualAddress && + DebugDirectoryEntryRva < SectionHeader.VirtualAddress + SectionHeader.Misc.VirtualSize) { + + DebugDirectoryEntryFileOffset = DebugDirectoryEntryRva - SectionHeader.VirtualAddress + SectionHeader.PointerToRawData; + break; + } + + SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER); + } + + if (DebugDirectoryEntryFileOffset != 0) { + for (Index = 0; Index < DebugDirectoryEntry->Size; Index += sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY)) { + // + // Read next debug directory entry + // + Size = sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + DebugDirectoryEntryFileOffset + Index, + &Size, + &DebugEntry + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + // + // From PeCoff spec, when DebugEntry.RVA == 0 means this debug info will not load into memory. + // Here we will always load EFI_IMAGE_DEBUG_TYPE_CODEVIEW type debug info. so need adjust the + // ImageContext->ImageSize when DebugEntry.RVA == 0. + // + if (DebugEntry.Type == EFI_IMAGE_DEBUG_TYPE_CODEVIEW) { + ImageContext->DebugDirectoryEntryRva = (UINT32) (DebugDirectoryEntryRva + Index); + if (DebugEntry.RVA == 0 && DebugEntry.FileOffset != 0) { + ImageContext->ImageSize += DebugEntry.SizeOfData; + } + + return RETURN_SUCCESS; + } + } + } + } + } else { + + DebugDirectoryEntry = &Hdr.Te->DataDirectory[1]; + DebugDirectoryEntryRva = DebugDirectoryEntry->VirtualAddress; + SectionHeaderOffset = (UINTN)(sizeof (EFI_TE_IMAGE_HEADER)); + + DebugDirectoryEntryFileOffset = 0; + + for (Index = 0; Index < Hdr.Te->NumberOfSections;) { + // + // Read section header from file + // + Size = sizeof (EFI_IMAGE_SECTION_HEADER); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + SectionHeaderOffset, + &Size, + &SectionHeader + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + if (DebugDirectoryEntryRva >= SectionHeader.VirtualAddress && + DebugDirectoryEntryRva < SectionHeader.VirtualAddress + SectionHeader.Misc.VirtualSize) { + DebugDirectoryEntryFileOffset = DebugDirectoryEntryRva - + SectionHeader.VirtualAddress + + SectionHeader.PointerToRawData - + TeStrippedOffset; + + // + // File offset of the debug directory was found, if this is not the last + // section, then skip to the last section for calculating the image size. + // + if (Index < (UINTN) Hdr.Te->NumberOfSections - 1) { + SectionHeaderOffset += (Hdr.Te->NumberOfSections - 1 - Index) * sizeof (EFI_IMAGE_SECTION_HEADER); + Index = Hdr.Te->NumberOfSections - 1; + continue; + } + } + + // + // In Te image header there is not a field to describe the ImageSize. + // Actually, the ImageSize equals the RVA plus the VirtualSize of + // the last section mapped into memory (Must be rounded up to + // a multiple of Section Alignment). Per the PE/COFF specification, the + // section headers in the Section Table must appear in order of the RVA + // values for the corresponding sections. So the ImageSize can be determined + // by the RVA and the VirtualSize of the last section header in the + // Section Table. + // + if ((++Index) == (UINTN)Hdr.Te->NumberOfSections) { + ImageContext->ImageSize = (SectionHeader.VirtualAddress + SectionHeader.Misc.VirtualSize) - TeStrippedOffset; + } + + SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER); + } + + if (DebugDirectoryEntryFileOffset != 0) { + for (Index = 0; Index < DebugDirectoryEntry->Size; Index += sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY)) { + // + // Read next debug directory entry + // + Size = sizeof (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY); + ReadSize = Size; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + DebugDirectoryEntryFileOffset + Index, + &Size, + &DebugEntry + ); + if (RETURN_ERROR (Status) || (Size != ReadSize)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + if (Size != ReadSize) { + Status = RETURN_UNSUPPORTED; + } + return Status; + } + + if (DebugEntry.Type == EFI_IMAGE_DEBUG_TYPE_CODEVIEW) { + ImageContext->DebugDirectoryEntryRva = (UINT32) (DebugDirectoryEntryRva + Index); + return RETURN_SUCCESS; + } + } + } + } + + return RETURN_SUCCESS; +} + + +/** + Converts an image address to the loaded address. + + @param ImageContext The context of the image being loaded. + @param Address The address to be converted to the loaded address. + @param TeStrippedOffset Stripped offset for TE image. + + @return The converted address or NULL if the address can not be converted. + +**/ +VOID * +PeCoffLoaderImageAddress ( + IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, + IN UINTN Address, + IN UINTN TeStrippedOffset + ) +{ + // + // Make sure that Address and ImageSize is correct for the loaded image. + // + if (Address >= ImageContext->ImageSize + TeStrippedOffset) { + ImageContext->ImageError = IMAGE_ERROR_INVALID_IMAGE_ADDRESS; + return NULL; + } + + return (CHAR8 *)((UINTN) ImageContext->ImageAddress + Address - TeStrippedOffset); +} + +/** + Applies relocation fixups to a PE/COFF image that was loaded with PeCoffLoaderLoadImage(). + + If the DestinationAddress field of ImageContext is 0, then use the ImageAddress field of + ImageContext as the relocation base address. Otherwise, use the DestinationAddress field + of ImageContext as the relocation base address. The caller must allocate the relocation + fixup log buffer and fill in the FixupData field of ImageContext prior to calling this function. + + The ImageRead, Handle, PeCoffHeaderOffset, IsTeImage, Machine, ImageType, ImageAddress, + ImageSize, DestinationAddress, RelocationsStripped, SectionAlignment, SizeOfHeaders, + DebugDirectoryEntryRva, EntryPoint, FixupDataSize, CodeView, PdbPointer, and FixupData of + the ImageContext structure must be valid prior to invoking this service. + + If ImageContext is NULL, then ASSERT(). + + Note that if the platform does not maintain coherency between the instruction cache(s) and the data + cache(s) in hardware, then the caller is responsible for performing cache maintenance operations + prior to transferring control to a PE/COFF image that is loaded using this library. + + @param ImageContext The pointer to the image context structure that describes the PE/COFF + image that is being relocated. + + @retval RETURN_SUCCESS The PE/COFF image was relocated. + Extended status information is in the ImageError field of ImageContext. + @retval RETURN_LOAD_ERROR The image in not a valid PE/COFF image. + Extended status information is in the ImageError field of ImageContext. + @retval RETURN_UNSUPPORTED A relocation record type is not supported. + Extended status information is in the ImageError field of ImageContext. + +**/ +RETURN_STATUS +EFIAPI +PeCoffLoaderRelocateImage ( + IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext + ) +{ + RETURN_STATUS Status; + EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; + EFI_IMAGE_DATA_DIRECTORY *RelocDir; + UINT64 Adjust; + EFI_IMAGE_BASE_RELOCATION *RelocBaseOrg; + EFI_IMAGE_BASE_RELOCATION *RelocBase; + EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd; + UINT16 *Reloc; + UINT16 *RelocEnd; + CHAR8 *Fixup; + CHAR8 *FixupBase; + UINT16 *Fixup16; + UINT32 *Fixup32; + UINT64 *Fixup64; + CHAR8 *FixupData; + PHYSICAL_ADDRESS BaseAddress; + UINT32 NumberOfRvaAndSizes; + UINT16 Magic; + UINT32 TeStrippedOffset; + + ASSERT (ImageContext != NULL); + + // + // Assume success + // + ImageContext->ImageError = IMAGE_ERROR_SUCCESS; + + // + // If there are no relocation entries, then we are done + // + if (ImageContext->RelocationsStripped) { + // Applies additional environment specific actions to relocate fixups + // to a PE/COFF image if needed + PeCoffLoaderRelocateImageExtraAction (ImageContext); + return RETURN_SUCCESS; + } + + // + // If the destination address is not 0, use that rather than the + // image address as the relocation target. + // + if (ImageContext->DestinationAddress != 0) { + BaseAddress = ImageContext->DestinationAddress; + } else { + BaseAddress = ImageContext->ImageAddress; + } + + if (!(ImageContext->IsTeImage)) { + Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINTN)ImageContext->ImageAddress + ImageContext->PeCoffHeaderOffset); + TeStrippedOffset = 0; + Magic = PeCoffLoaderGetPeHeaderMagicValue (Hdr); + + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + Adjust = (UINT64)BaseAddress - Hdr.Pe32->OptionalHeader.ImageBase; + if (Adjust != 0) { + Hdr.Pe32->OptionalHeader.ImageBase = (UINT32)BaseAddress; + } + + NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; + RelocDir = &Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; + } else { + // + // Use PE32+ offset + // + Adjust = (UINT64) BaseAddress - Hdr.Pe32Plus->OptionalHeader.ImageBase; + if (Adjust != 0) { + Hdr.Pe32Plus->OptionalHeader.ImageBase = (UINT64)BaseAddress; + } + + NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; + RelocDir = &Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; + } + + // + // Find the relocation block + // Per the PE/COFF spec, you can't assume that a given data directory + // is present in the image. You have to check the NumberOfRvaAndSizes in + // the optional header to verify a desired directory entry is there. + // + if ((NumberOfRvaAndSizes < EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC)) { + RelocDir = NULL; + } + } else { + Hdr.Te = (EFI_TE_IMAGE_HEADER *)(UINTN)(ImageContext->ImageAddress); + TeStrippedOffset = (UINT32)Hdr.Te->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER); + Adjust = (UINT64) (BaseAddress - (Hdr.Te->ImageBase + TeStrippedOffset)); + if (Adjust != 0) { + Hdr.Te->ImageBase = (UINT64) (BaseAddress - TeStrippedOffset); + } + + // + // Find the relocation block + // + RelocDir = &Hdr.Te->DataDirectory[0]; + } + + if ((RelocDir != NULL) && (RelocDir->Size > 0)) { + RelocBase = (EFI_IMAGE_BASE_RELOCATION *) PeCoffLoaderImageAddress (ImageContext, RelocDir->VirtualAddress, TeStrippedOffset); + RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION *) PeCoffLoaderImageAddress (ImageContext, + RelocDir->VirtualAddress + RelocDir->Size - 1, + TeStrippedOffset + ); + if (RelocBase == NULL || RelocBaseEnd == NULL || RelocBaseEnd < RelocBase) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + } else { + // + // Set base and end to bypass processing below. + // + RelocBase = RelocBaseEnd = NULL; + } + RelocBaseOrg = RelocBase; + + // + // If Adjust is not zero, then apply fix ups to the image + // + if (Adjust != 0) { + // + // Run the relocation information and apply the fixups + // + FixupData = ImageContext->FixupData; + while (RelocBase < RelocBaseEnd) { + + Reloc = (UINT16 *) ((CHAR8 *) RelocBase + sizeof (EFI_IMAGE_BASE_RELOCATION)); + // + // Add check for RelocBase->SizeOfBlock field. + // + if (RelocBase->SizeOfBlock == 0) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + if ((UINTN)RelocBase > MAX_ADDRESS - RelocBase->SizeOfBlock) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + + RelocEnd = (UINT16 *) ((CHAR8 *) RelocBase + RelocBase->SizeOfBlock); + if ((UINTN)RelocEnd > (UINTN)RelocBaseOrg + RelocDir->Size) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + FixupBase = PeCoffLoaderImageAddress (ImageContext, RelocBase->VirtualAddress, TeStrippedOffset); + if (FixupBase == NULL) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + + // + // Run this relocation record + // + while (Reloc < RelocEnd) { + Fixup = PeCoffLoaderImageAddress (ImageContext, RelocBase->VirtualAddress + (*Reloc & 0xFFF), TeStrippedOffset); + if (Fixup == NULL) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + switch ((*Reloc) >> 12) { + case EFI_IMAGE_REL_BASED_ABSOLUTE: + break; + + case EFI_IMAGE_REL_BASED_HIGH: + Fixup16 = (UINT16 *) Fixup; + *Fixup16 = (UINT16) (*Fixup16 + ((UINT16) ((UINT32) Adjust >> 16))); + if (FixupData != NULL) { + *(UINT16 *) FixupData = *Fixup16; + FixupData = FixupData + sizeof (UINT16); + } + break; + + case EFI_IMAGE_REL_BASED_LOW: + Fixup16 = (UINT16 *) Fixup; + *Fixup16 = (UINT16) (*Fixup16 + (UINT16) Adjust); + if (FixupData != NULL) { + *(UINT16 *) FixupData = *Fixup16; + FixupData = FixupData + sizeof (UINT16); + } + break; + + case EFI_IMAGE_REL_BASED_HIGHLOW: + Fixup32 = (UINT32 *) Fixup; + *Fixup32 = *Fixup32 + (UINT32) Adjust; + if (FixupData != NULL) { + FixupData = ALIGN_POINTER (FixupData, sizeof (UINT32)); + *(UINT32 *)FixupData = *Fixup32; + FixupData = FixupData + sizeof (UINT32); + } + break; + + case EFI_IMAGE_REL_BASED_DIR64: + Fixup64 = (UINT64 *) Fixup; + *Fixup64 = *Fixup64 + (UINT64) Adjust; + if (FixupData != NULL) { + FixupData = ALIGN_POINTER (FixupData, sizeof(UINT64)); + *(UINT64 *)(FixupData) = *Fixup64; + FixupData = FixupData + sizeof(UINT64); + } + break; + + default: + // + // The common code does not handle some of the stranger IPF relocations + // PeCoffLoaderRelocateImageEx () adds support for these complex fixups + // on IPF and is a No-Op on other architectures. + // + Status = PeCoffLoaderRelocateImageEx (Reloc, Fixup, &FixupData, Adjust); + if (RETURN_ERROR (Status)) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return Status; + } + } + + // + // Next relocation record + // + Reloc += 1; + } + + // + // Next reloc block + // + RelocBase = (EFI_IMAGE_BASE_RELOCATION *) RelocEnd; + } + ASSERT ((UINTN)FixupData <= (UINTN)ImageContext->FixupData + ImageContext->FixupDataSize); + + // + // Adjust the EntryPoint to match the linked-to address + // + if (ImageContext->DestinationAddress != 0) { + ImageContext->EntryPoint -= (UINT64) ImageContext->ImageAddress; + ImageContext->EntryPoint += (UINT64) ImageContext->DestinationAddress; + } + } + + // Applies additional environment specific actions to relocate fixups + // to a PE/COFF image if needed + PeCoffLoaderRelocateImageExtraAction (ImageContext); + + return RETURN_SUCCESS; +} + +/** + Loads a PE/COFF image into memory. + + Loads the PE/COFF image accessed through the ImageRead service of ImageContext into the buffer + specified by the ImageAddress and ImageSize fields of ImageContext. The caller must allocate + the load buffer and fill in the ImageAddress and ImageSize fields prior to calling this function. + The EntryPoint, FixupDataSize, CodeView, PdbPointer and HiiResourceData fields of ImageContext are computed. + The ImageRead, Handle, PeCoffHeaderOffset, IsTeImage, Machine, ImageType, ImageAddress, ImageSize, + DestinationAddress, RelocationsStripped, SectionAlignment, SizeOfHeaders, and DebugDirectoryEntryRva + fields of the ImageContext structure must be valid prior to invoking this service. + + If ImageContext is NULL, then ASSERT(). + + Note that if the platform does not maintain coherency between the instruction cache(s) and the data + cache(s) in hardware, then the caller is responsible for performing cache maintenance operations + prior to transferring control to a PE/COFF image that is loaded using this library. + + @param ImageContext The pointer to the image context structure that describes the PE/COFF + image that is being loaded. + + @retval RETURN_SUCCESS The PE/COFF image was loaded into the buffer specified by + the ImageAddress and ImageSize fields of ImageContext. + Extended status information is in the ImageError field of ImageContext. + @retval RETURN_BUFFER_TOO_SMALL The caller did not provide a large enough buffer. + Extended status information is in the ImageError field of ImageContext. + @retval RETURN_LOAD_ERROR The PE/COFF image is an EFI Runtime image with no relocations. + Extended status information is in the ImageError field of ImageContext. + @retval RETURN_INVALID_PARAMETER The image address is invalid. + Extended status information is in the ImageError field of ImageContext. + +**/ +RETURN_STATUS +EFIAPI +PeCoffLoaderLoadImage ( + IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext + ) +{ + RETURN_STATUS Status; + EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; + PE_COFF_LOADER_IMAGE_CONTEXT CheckContext; + EFI_IMAGE_SECTION_HEADER *FirstSection; + EFI_IMAGE_SECTION_HEADER *Section; + UINTN NumberOfSections; + UINTN Index; + CHAR8 *Base; + CHAR8 *End; + EFI_IMAGE_DATA_DIRECTORY *DirectoryEntry; + EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *DebugEntry; + UINTN Size; + UINT32 TempDebugEntryRva; + UINT32 NumberOfRvaAndSizes; + UINT16 Magic; + EFI_IMAGE_RESOURCE_DIRECTORY *ResourceDirectory; + EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *ResourceDirectoryEntry; + EFI_IMAGE_RESOURCE_DIRECTORY_STRING *ResourceDirectoryString; + EFI_IMAGE_RESOURCE_DATA_ENTRY *ResourceDataEntry; + CHAR16 *String; + UINT32 Offset; + UINT32 TeStrippedOffset; + + ASSERT (ImageContext != NULL); + + // + // Assume success + // + ImageContext->ImageError = IMAGE_ERROR_SUCCESS; + + // + // Copy the provided context information into our local version, get what we + // can from the original image, and then use that to make sure everything + // is legit. + // + CopyMem (&CheckContext, ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT)); + + Status = PeCoffLoaderGetImageInfo (&CheckContext); + if (RETURN_ERROR (Status)) { + return Status; + } + + // + // Make sure there is enough allocated space for the image being loaded + // + if (ImageContext->ImageSize < CheckContext.ImageSize) { + ImageContext->ImageError = IMAGE_ERROR_INVALID_IMAGE_SIZE; + return RETURN_BUFFER_TOO_SMALL; + } + if (ImageContext->ImageAddress == 0) { + // + // Image cannot be loaded into 0 address. + // + ImageContext->ImageError = IMAGE_ERROR_INVALID_IMAGE_ADDRESS; + return RETURN_INVALID_PARAMETER; + } + // + // If there's no relocations, then make sure it's not a runtime driver, + // and that it's being loaded at the linked address. + // + if (CheckContext.RelocationsStripped) { + // + // If the image does not contain relocations and it is a runtime driver + // then return an error. + // + if (CheckContext.ImageType == EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER) { + ImageContext->ImageError = IMAGE_ERROR_INVALID_SUBSYSTEM; + return RETURN_LOAD_ERROR; + } + // + // If the image does not contain relocations, and the requested load address + // is not the linked address, then return an error. + // + if (CheckContext.ImageAddress != ImageContext->ImageAddress) { + ImageContext->ImageError = IMAGE_ERROR_INVALID_IMAGE_ADDRESS; + return RETURN_INVALID_PARAMETER; + } + } + // + // Make sure the allocated space has the proper section alignment + // + if (!(ImageContext->IsTeImage)) { + if ((ImageContext->ImageAddress & (CheckContext.SectionAlignment - 1)) != 0) { + ImageContext->ImageError = IMAGE_ERROR_INVALID_SECTION_ALIGNMENT; + return RETURN_INVALID_PARAMETER; + } + } + // + // Read the entire PE/COFF or TE header into memory + // + if (!(ImageContext->IsTeImage)) { + Status = ImageContext->ImageRead ( + ImageContext->Handle, + 0, + &ImageContext->SizeOfHeaders, + (VOID *) (UINTN) ImageContext->ImageAddress + ); + + Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINTN)ImageContext->ImageAddress + ImageContext->PeCoffHeaderOffset); + + FirstSection = (EFI_IMAGE_SECTION_HEADER *) ( + (UINTN)ImageContext->ImageAddress + + ImageContext->PeCoffHeaderOffset + + sizeof(UINT32) + + sizeof(EFI_IMAGE_FILE_HEADER) + + Hdr.Pe32->FileHeader.SizeOfOptionalHeader + ); + NumberOfSections = (UINTN) (Hdr.Pe32->FileHeader.NumberOfSections); + TeStrippedOffset = 0; + } else { + Status = ImageContext->ImageRead ( + ImageContext->Handle, + 0, + &ImageContext->SizeOfHeaders, + (void *)(UINTN)ImageContext->ImageAddress + ); + + Hdr.Te = (EFI_TE_IMAGE_HEADER *)(UINTN)(ImageContext->ImageAddress); + FirstSection = (EFI_IMAGE_SECTION_HEADER *) ( + (UINTN)ImageContext->ImageAddress + + sizeof(EFI_TE_IMAGE_HEADER) + ); + NumberOfSections = (UINTN) (Hdr.Te->NumberOfSections); + TeStrippedOffset = (UINT32) Hdr.Te->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER); + } + + if (RETURN_ERROR (Status)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + return RETURN_LOAD_ERROR; + } + + // + // Load each section of the image + // + Section = FirstSection; + for (Index = 0; Index < NumberOfSections; Index++) { + // + // Read the section + // + Size = (UINTN) Section->Misc.VirtualSize; + if ((Size == 0) || (Size > Section->SizeOfRawData)) { + Size = (UINTN) Section->SizeOfRawData; + } + + // + // Compute sections address + // + Base = PeCoffLoaderImageAddress (ImageContext, Section->VirtualAddress, TeStrippedOffset); + End = PeCoffLoaderImageAddress (ImageContext, Section->VirtualAddress + Section->Misc.VirtualSize - 1, TeStrippedOffset); + + // + // If the size of the section is non-zero and the base address or end address resolved to 0, then fail. + // + if ((Size > 0) && ((Base == NULL) || (End == NULL))) { + ImageContext->ImageError = IMAGE_ERROR_SECTION_NOT_LOADED; + return RETURN_LOAD_ERROR; + } + + if (Section->SizeOfRawData > 0) { + Status = ImageContext->ImageRead ( + ImageContext->Handle, + Section->PointerToRawData - TeStrippedOffset, + &Size, + Base + ); + if (RETURN_ERROR (Status)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + return Status; + } + } + + // + // If raw size is less then virtual size, zero fill the remaining + // + + if (Size < Section->Misc.VirtualSize) { + ZeroMem (Base + Size, Section->Misc.VirtualSize - Size); + } + + // + // Next Section + // + Section += 1; + } + + // + // Get image's entry point + // + Magic = PeCoffLoaderGetPeHeaderMagicValue (Hdr); + if (!(ImageContext->IsTeImage)) { + // + // Sizes of AddressOfEntryPoint are different so we need to do this safely + // + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + ImageContext->EntryPoint = (PHYSICAL_ADDRESS)(UINTN)PeCoffLoaderImageAddress ( + ImageContext, + (UINTN)Hdr.Pe32->OptionalHeader.AddressOfEntryPoint, + 0 + ); + } else { + // + // Use PE32+ offset + // + ImageContext->EntryPoint = (PHYSICAL_ADDRESS)(UINTN)PeCoffLoaderImageAddress ( + ImageContext, + (UINTN)Hdr.Pe32Plus->OptionalHeader.AddressOfEntryPoint, + 0 + ); + } + } else { + ImageContext->EntryPoint = (PHYSICAL_ADDRESS)(UINTN)PeCoffLoaderImageAddress ( + ImageContext, + (UINTN)Hdr.Te->AddressOfEntryPoint, + TeStrippedOffset + ); + } + + // + // Determine the size of the fixup data + // + // Per the PE/COFF spec, you can't assume that a given data directory + // is present in the image. You have to check the NumberOfRvaAndSizes in + // the optional header to verify a desired directory entry is there. + // + if (!(ImageContext->IsTeImage)) { + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; + DirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; + } else { + // + // Use PE32+ offset + // + NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; + DirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; + } + + // + // Must use UINT64 here, because there might a case that 32bit loader to load 64bit image. + // + if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) { + ImageContext->FixupDataSize = DirectoryEntry->Size / sizeof (UINT16) * sizeof (UINT64); + } else { + ImageContext->FixupDataSize = 0; + } + } else { + DirectoryEntry = &Hdr.Te->DataDirectory[0]; + ImageContext->FixupDataSize = DirectoryEntry->Size / sizeof (UINT16) * sizeof (UINT64); + } + // + // Consumer must allocate a buffer for the relocation fixup log. + // Only used for runtime drivers. + // + ImageContext->FixupData = NULL; + + // + // Load the Codeview information if present + // + if (ImageContext->DebugDirectoryEntryRva != 0) { + DebugEntry = PeCoffLoaderImageAddress ( + ImageContext, + ImageContext->DebugDirectoryEntryRva, + TeStrippedOffset + ); + if (DebugEntry == NULL) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + + TempDebugEntryRva = DebugEntry->RVA; + if (DebugEntry->RVA == 0 && DebugEntry->FileOffset != 0) { + Section--; + if ((UINTN)Section->SizeOfRawData < Section->Misc.VirtualSize) { + TempDebugEntryRva = Section->VirtualAddress + Section->Misc.VirtualSize; + } else { + TempDebugEntryRva = Section->VirtualAddress + Section->SizeOfRawData; + } + } + + if (TempDebugEntryRva != 0) { + ImageContext->CodeView = PeCoffLoaderImageAddress (ImageContext, TempDebugEntryRva, TeStrippedOffset); + if (ImageContext->CodeView == NULL) { + ImageContext->ImageError = IMAGE_ERROR_FAILED_RELOCATION; + return RETURN_LOAD_ERROR; + } + + if (DebugEntry->RVA == 0) { + Size = DebugEntry->SizeOfData; + Status = ImageContext->ImageRead ( + ImageContext->Handle, + DebugEntry->FileOffset - TeStrippedOffset, + &Size, + ImageContext->CodeView + ); + // + // Should we apply fix up to this field according to the size difference between PE and TE? + // Because now we maintain TE header fields unfixed, this field will also remain as they are + // in original PE image. + // + + if (RETURN_ERROR (Status)) { + ImageContext->ImageError = IMAGE_ERROR_IMAGE_READ; + return RETURN_LOAD_ERROR; + } + + DebugEntry->RVA = TempDebugEntryRva; + } + + switch (*(UINT32 *) ImageContext->CodeView) { + case CODEVIEW_SIGNATURE_NB10: + if (DebugEntry->SizeOfData < sizeof (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY)) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ImageContext->PdbPointer = (CHAR8 *)ImageContext->CodeView + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY); + break; + + case CODEVIEW_SIGNATURE_RSDS: + if (DebugEntry->SizeOfData < sizeof (EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY)) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ImageContext->PdbPointer = (CHAR8 *)ImageContext->CodeView + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY); + break; + + case CODEVIEW_SIGNATURE_MTOC: + if (DebugEntry->SizeOfData < sizeof (EFI_IMAGE_DEBUG_CODEVIEW_MTOC_ENTRY)) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ImageContext->PdbPointer = (CHAR8 *)ImageContext->CodeView + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_MTOC_ENTRY); + break; + + default: + break; + } + } + } + + // + // Get Image's HII resource section + // + ImageContext->HiiResourceData = 0; + if (!(ImageContext->IsTeImage)) { + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; + DirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&Hdr.Pe32->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE]; + } else { + // + // Use PE32+ offset + // + NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; + DirectoryEntry = (EFI_IMAGE_DATA_DIRECTORY *)&Hdr.Pe32Plus->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE]; + } + + if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE && DirectoryEntry->Size != 0) { + Base = PeCoffLoaderImageAddress (ImageContext, DirectoryEntry->VirtualAddress, 0); + if (Base != NULL) { + ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) Base; + Offset = sizeof (EFI_IMAGE_RESOURCE_DIRECTORY) + sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY) * + (ResourceDirectory->NumberOfNamedEntries + ResourceDirectory->NumberOfIdEntries); + if (Offset > DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (ResourceDirectory + 1); + + for (Index = 0; Index < ResourceDirectory->NumberOfNamedEntries; Index++) { + if (ResourceDirectoryEntry->u1.s.NameIsString) { + // + // Check the ResourceDirectoryEntry->u1.s.NameOffset before use it. + // + if (ResourceDirectoryEntry->u1.s.NameOffset >= DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDirectoryString = (EFI_IMAGE_RESOURCE_DIRECTORY_STRING *) (Base + ResourceDirectoryEntry->u1.s.NameOffset); + String = &ResourceDirectoryString->String[0]; + + if (ResourceDirectoryString->Length == 3 && + String[0] == L'H' && + String[1] == L'I' && + String[2] == L'I') { + // + // Resource Type "HII" found + // + if (ResourceDirectoryEntry->u2.s.DataIsDirectory) { + // + // Move to next level - resource Name + // + if (ResourceDirectoryEntry->u2.s.OffsetToDirectory >= DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (Base + ResourceDirectoryEntry->u2.s.OffsetToDirectory); + Offset = ResourceDirectoryEntry->u2.s.OffsetToDirectory + sizeof (EFI_IMAGE_RESOURCE_DIRECTORY) + + sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY) * (ResourceDirectory->NumberOfNamedEntries + ResourceDirectory->NumberOfIdEntries); + if (Offset > DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (ResourceDirectory + 1); + + if (ResourceDirectoryEntry->u2.s.DataIsDirectory) { + // + // Move to next level - resource Language + // + if (ResourceDirectoryEntry->u2.s.OffsetToDirectory >= DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDirectory = (EFI_IMAGE_RESOURCE_DIRECTORY *) (Base + ResourceDirectoryEntry->u2.s.OffsetToDirectory); + Offset = ResourceDirectoryEntry->u2.s.OffsetToDirectory + sizeof (EFI_IMAGE_RESOURCE_DIRECTORY) + + sizeof (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY) * (ResourceDirectory->NumberOfNamedEntries + ResourceDirectory->NumberOfIdEntries); + if (Offset > DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDirectoryEntry = (EFI_IMAGE_RESOURCE_DIRECTORY_ENTRY *) (ResourceDirectory + 1); + } + } + + // + // Now it ought to be resource Data + // + if (!ResourceDirectoryEntry->u2.s.DataIsDirectory) { + if (ResourceDirectoryEntry->u2.OffsetToData >= DirectoryEntry->Size) { + ImageContext->ImageError = IMAGE_ERROR_UNSUPPORTED; + return RETURN_UNSUPPORTED; + } + ResourceDataEntry = (EFI_IMAGE_RESOURCE_DATA_ENTRY *) (Base + ResourceDirectoryEntry->u2.OffsetToData); + ImageContext->HiiResourceData = (PHYSICAL_ADDRESS) (UINTN) PeCoffLoaderImageAddress (ImageContext, ResourceDataEntry->OffsetToData, 0); + break; + } + } + } + ResourceDirectoryEntry++; + } + } + } + } + + return Status; +} + + +/** + Reapply fixups on a fixed up PE32/PE32+ image to allow virutal calling at EFI + runtime. + + This function reapplies relocation fixups to the PE/COFF image specified by ImageBase + and ImageSize so the image will execute correctly when the PE/COFF image is mapped + to the address specified by VirtualImageBase. RelocationData must be identical + to the FiuxupData buffer from the PE_COFF_LOADER_IMAGE_CONTEXT structure + after this PE/COFF image was relocated with PeCoffLoaderRelocateImage(). + + Note that if the platform does not maintain coherency between the instruction cache(s) and the data + cache(s) in hardware, then the caller is responsible for performing cache maintenance operations + prior to transferring control to a PE/COFF image that is loaded using this library. + + @param ImageBase The base address of a PE/COFF image that has been loaded + and relocated into system memory. + @param VirtImageBase The request virtual address that the PE/COFF image is to + be fixed up for. + @param ImageSize The size, in bytes, of the PE/COFF image. + @param RelocationData A pointer to the relocation data that was collected when the PE/COFF + image was relocated using PeCoffLoaderRelocateImage(). + +**/ +VOID +EFIAPI +PeCoffLoaderRelocateImageForRuntime ( + IN PHYSICAL_ADDRESS ImageBase, + IN PHYSICAL_ADDRESS VirtImageBase, + IN UINTN ImageSize, + IN VOID *RelocationData + ) +{ + CHAR8 *OldBase; + CHAR8 *NewBase; + EFI_IMAGE_DOS_HEADER *DosHdr; + EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; + UINT32 NumberOfRvaAndSizes; + EFI_IMAGE_DATA_DIRECTORY *DataDirectory; + EFI_IMAGE_DATA_DIRECTORY *RelocDir; + EFI_IMAGE_BASE_RELOCATION *RelocBase; + EFI_IMAGE_BASE_RELOCATION *RelocBaseEnd; + UINT16 *Reloc; + UINT16 *RelocEnd; + CHAR8 *Fixup; + CHAR8 *FixupBase; + UINT16 *Fixup16; + UINT32 *Fixup32; + UINT64 *Fixup64; + CHAR8 *FixupData; + UINTN Adjust; + RETURN_STATUS Status; + UINT16 Magic; + + OldBase = (CHAR8 *)((UINTN)ImageBase); + NewBase = (CHAR8 *)((UINTN)VirtImageBase); + Adjust = (UINTN) NewBase - (UINTN) OldBase; + + // + // Find the image's relocate dir info + // + DosHdr = (EFI_IMAGE_DOS_HEADER *)OldBase; + if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) { + // + // Valid DOS header so get address of PE header + // + Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(((CHAR8 *)DosHdr) + DosHdr->e_lfanew); + } else { + // + // No Dos header so assume image starts with PE header. + // + Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)OldBase; + } + + if (Hdr.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) { + // + // Not a valid PE image so Exit + // + return ; + } + + Magic = PeCoffLoaderGetPeHeaderMagicValue (Hdr); + + if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { + // + // Use PE32 offset + // + NumberOfRvaAndSizes = Hdr.Pe32->OptionalHeader.NumberOfRvaAndSizes; + DataDirectory = (EFI_IMAGE_DATA_DIRECTORY *)&(Hdr.Pe32->OptionalHeader.DataDirectory[0]); + } else { + // + // Use PE32+ offset + // + NumberOfRvaAndSizes = Hdr.Pe32Plus->OptionalHeader.NumberOfRvaAndSizes; + DataDirectory = (EFI_IMAGE_DATA_DIRECTORY *)&(Hdr.Pe32Plus->OptionalHeader.DataDirectory[0]); + } + + // + // Find the relocation block + // + // Per the PE/COFF spec, you can't assume that a given data directory + // is present in the image. You have to check the NumberOfRvaAndSizes in + // the optional header to verify a desired directory entry is there. + // + if (NumberOfRvaAndSizes > EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) { + RelocDir = DataDirectory + EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC; + RelocBase = (EFI_IMAGE_BASE_RELOCATION *)(UINTN)(ImageBase + RelocDir->VirtualAddress); + RelocBaseEnd = (EFI_IMAGE_BASE_RELOCATION *)(UINTN)(ImageBase + RelocDir->VirtualAddress + RelocDir->Size); + } else { + // + // Cannot find relocations, cannot continue to relocate the image, ASSERT for this invalid image. + // + ASSERT (FALSE); + return ; + } + + // + // ASSERT for the invalid image when RelocBase and RelocBaseEnd are both NULL. + // + ASSERT (RelocBase != NULL && RelocBaseEnd != NULL); + + // + // Run the whole relocation block. And re-fixup data that has not been + // modified. The FixupData is used to see if the image has been modified + // since it was relocated. This is so data sections that have been updated + // by code will not be fixed up, since that would set them back to + // defaults. + // + FixupData = RelocationData; + while (RelocBase < RelocBaseEnd) { + // + // Add check for RelocBase->SizeOfBlock field. + // + if ((RelocBase->SizeOfBlock == 0) || (RelocBase->SizeOfBlock > RelocDir->Size)) { + // + // Data invalid, cannot continue to relocate the image, just return. + // + return; + } + + Reloc = (UINT16 *) ((UINT8 *) RelocBase + sizeof (EFI_IMAGE_BASE_RELOCATION)); + RelocEnd = (UINT16 *) ((UINT8 *) RelocBase + RelocBase->SizeOfBlock); + FixupBase = (CHAR8 *) ((UINTN)ImageBase) + RelocBase->VirtualAddress; + + // + // Run this relocation record + // + while (Reloc < RelocEnd) { + + Fixup = FixupBase + (*Reloc & 0xFFF); + switch ((*Reloc) >> 12) { + + case EFI_IMAGE_REL_BASED_ABSOLUTE: + break; + + case EFI_IMAGE_REL_BASED_HIGH: + Fixup16 = (UINT16 *) Fixup; + if (*(UINT16 *) FixupData == *Fixup16) { + *Fixup16 = (UINT16) (*Fixup16 + ((UINT16) ((UINT32) Adjust >> 16))); + } + + FixupData = FixupData + sizeof (UINT16); + break; + + case EFI_IMAGE_REL_BASED_LOW: + Fixup16 = (UINT16 *) Fixup; + if (*(UINT16 *) FixupData == *Fixup16) { + *Fixup16 = (UINT16) (*Fixup16 + ((UINT16) Adjust & 0xffff)); + } + + FixupData = FixupData + sizeof (UINT16); + break; + + case EFI_IMAGE_REL_BASED_HIGHLOW: + Fixup32 = (UINT32 *) Fixup; + FixupData = ALIGN_POINTER (FixupData, sizeof (UINT32)); + if (*(UINT32 *) FixupData == *Fixup32) { + *Fixup32 = *Fixup32 + (UINT32) Adjust; + } + + FixupData = FixupData + sizeof (UINT32); + break; + + case EFI_IMAGE_REL_BASED_DIR64: + Fixup64 = (UINT64 *)Fixup; + FixupData = ALIGN_POINTER (FixupData, sizeof (UINT64)); + if (*(UINT64 *) FixupData == *Fixup64) { + *Fixup64 = *Fixup64 + (UINT64)Adjust; + } + + FixupData = FixupData + sizeof (UINT64); + break; + + default: + // + // Only Itanium requires ConvertPeImage_Ex + // + Status = PeHotRelocateImageEx (Reloc, Fixup, &FixupData, Adjust); + if (RETURN_ERROR (Status)) { + return ; + } + } + // + // Next relocation record + // + Reloc += 1; + } + // + // next reloc block + // + RelocBase = (EFI_IMAGE_BASE_RELOCATION *) RelocEnd; + } +} + + +/** + Reads contents of a PE/COFF image from a buffer in system memory. + + This is the default implementation of a PE_COFF_LOADER_READ_FILE function + that assumes FileHandle pointer to the beginning of a PE/COFF image. + This function reads contents of the PE/COFF image that starts at the system memory + address specified by FileHandle. The read operation copies ReadSize bytes from the + PE/COFF image starting at byte offset FileOffset into the buffer specified by Buffer. + The size of the buffer actually read is returned in ReadSize. + + The caller must make sure the FileOffset and ReadSize within the file scope. + + If FileHandle is NULL, then ASSERT(). + If ReadSize is NULL, then ASSERT(). + If Buffer is NULL, then ASSERT(). + + @param FileHandle The pointer to base of the input stream + @param FileOffset Offset into the PE/COFF image to begin the read operation. + @param ReadSize On input, the size in bytes of the requested read operation. + On output, the number of bytes actually read. + @param Buffer Output buffer that contains the data read from the PE/COFF image. + + @retval RETURN_SUCCESS Data is read from FileOffset from the Handle into + the buffer. +**/ +RETURN_STATUS +EFIAPI +PeCoffLoaderImageReadFromMemory ( + IN VOID *FileHandle, + IN UINTN FileOffset, + IN OUT UINTN *ReadSize, + OUT VOID *Buffer + ) +{ + ASSERT (ReadSize != NULL); + ASSERT (FileHandle != NULL); + ASSERT (Buffer != NULL); + + CopyMem (Buffer, ((UINT8 *)FileHandle) + FileOffset, *ReadSize); + return RETURN_SUCCESS; +} + +/** + Unloads a loaded PE/COFF image from memory and releases its taken resource. + Releases any environment specific resources that were allocated when the image + specified by ImageContext was loaded using PeCoffLoaderLoadImage(). + + For NT32 emulator, the PE/COFF image loaded by system needs to release. + For real platform, the PE/COFF image loaded by Core doesn't needs to be unloaded, + this function can simply return RETURN_SUCCESS. + + If ImageContext is NULL, then ASSERT(). + + @param ImageContext The pointer to the image context structure that describes the PE/COFF + image to be unloaded. + + @retval RETURN_SUCCESS The PE/COFF image was unloaded successfully. +**/ +RETURN_STATUS +EFIAPI +PeCoffLoaderUnloadImage ( + IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext + ) +{ + // + // Applies additional environment specific actions to unload a + // PE/COFF image if needed + // + PeCoffLoaderUnloadImageExtraAction (ImageContext); + return RETURN_SUCCESS; +} |