diff options
Diffstat (limited to 'clang/lib/Analysis/ReachableCode.cpp')
| -rw-r--r-- | clang/lib/Analysis/ReachableCode.cpp | 720 | 
1 files changed, 720 insertions, 0 deletions
| diff --git a/clang/lib/Analysis/ReachableCode.cpp b/clang/lib/Analysis/ReachableCode.cpp new file mode 100644 index 000000000000..1dab8e309f59 --- /dev/null +++ b/clang/lib/Analysis/ReachableCode.cpp @@ -0,0 +1,720 @@ +//===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a flow-sensitive, path-insensitive analysis of +// determining reachable blocks within a CFG. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/Analyses/ReachableCode.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/ParentMap.h" +#include "clang/AST/StmtCXX.h" +#include "clang/Analysis/AnalysisDeclContext.h" +#include "clang/Analysis/CFG.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Lex/Preprocessor.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SmallVector.h" + +using namespace clang; + +//===----------------------------------------------------------------------===// +// Core Reachability Analysis routines. +//===----------------------------------------------------------------------===// + +static bool isEnumConstant(const Expr *Ex) { +  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); +  if (!DR) +    return false; +  return isa<EnumConstantDecl>(DR->getDecl()); +} + +static bool isTrivialExpression(const Expr *Ex) { +  Ex = Ex->IgnoreParenCasts(); +  return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || +         isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || +         isa<CharacterLiteral>(Ex) || +         isEnumConstant(Ex); +} + +static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { +  // Check if the block ends with a do...while() and see if 'S' is the +  // condition. +  if (const Stmt *Term = B->getTerminatorStmt()) { +    if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { +      const Expr *Cond = DS->getCond()->IgnoreParenCasts(); +      return Cond == S && isTrivialExpression(Cond); +    } +  } +  return false; +} + +static bool isBuiltinUnreachable(const Stmt *S) { +  if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) +    if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) +      return FDecl->getIdentifier() && +             FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; +  return false; +} + +static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, +                                 ASTContext &C) { +  if (B->empty())  { +    // Happens if S is B's terminator and B contains nothing else +    // (e.g. a CFGBlock containing only a goto). +    return false; +  } +  if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { +    if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { +      return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); +    } +  } +  return false; +} + +static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { +  // Look to see if the current control flow ends with a 'return', and see if +  // 'S' is a substatement. The 'return' may not be the last element in the +  // block, or may be in a subsequent block because of destructors. +  const CFGBlock *Current = B; +  while (true) { +    for (CFGBlock::const_reverse_iterator I = Current->rbegin(), +                                          E = Current->rend(); +         I != E; ++I) { +      if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { +        if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { +          if (RS == S) +            return true; +          if (const Expr *RE = RS->getRetValue()) { +            RE = RE->IgnoreParenCasts(); +            if (RE == S) +              return true; +            ParentMap PM(const_cast<Expr *>(RE)); +            // If 'S' is in the ParentMap, it is a subexpression of +            // the return statement. +            return PM.getParent(S); +          } +        } +        break; +      } +    } +    // Note also that we are restricting the search for the return statement +    // to stop at control-flow; only part of a return statement may be dead, +    // without the whole return statement being dead. +    if (Current->getTerminator().isTemporaryDtorsBranch()) { +      // Temporary destructors have a predictable control flow, thus we want to +      // look into the next block for the return statement. +      // We look into the false branch, as we know the true branch only contains +      // the call to the destructor. +      assert(Current->succ_size() == 2); +      Current = *(Current->succ_begin() + 1); +    } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { +      // If there is only one successor, we're not dealing with outgoing control +      // flow. Thus, look into the next block. +      Current = *Current->succ_begin(); +      if (Current->pred_size() > 1) { +        // If there is more than one predecessor, we're dealing with incoming +        // control flow - if the return statement is in that block, it might +        // well be reachable via a different control flow, thus it's not dead. +        return false; +      } +    } else { +      // We hit control flow or a dead end. Stop searching. +      return false; +    } +  } +  llvm_unreachable("Broke out of infinite loop."); +} + +static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { +  assert(Loc.isMacroID()); +  SourceLocation Last; +  while (Loc.isMacroID()) { +    Last = Loc; +    Loc = SM.getImmediateMacroCallerLoc(Loc); +  } +  return Last; +} + +/// Returns true if the statement is expanded from a configuration macro. +static bool isExpandedFromConfigurationMacro(const Stmt *S, +                                             Preprocessor &PP, +                                             bool IgnoreYES_NO = false) { +  // FIXME: This is not very precise.  Here we just check to see if the +  // value comes from a macro, but we can do much better.  This is likely +  // to be over conservative.  This logic is factored into a separate function +  // so that we can refine it later. +  SourceLocation L = S->getBeginLoc(); +  if (L.isMacroID()) { +    SourceManager &SM = PP.getSourceManager(); +    if (IgnoreYES_NO) { +      // The Objective-C constant 'YES' and 'NO' +      // are defined as macros.  Do not treat them +      // as configuration values. +      SourceLocation TopL = getTopMostMacro(L, SM); +      StringRef MacroName = PP.getImmediateMacroName(TopL); +      if (MacroName == "YES" || MacroName == "NO") +        return false; +    } else if (!PP.getLangOpts().CPlusPlus) { +      // Do not treat C 'false' and 'true' macros as configuration values. +      SourceLocation TopL = getTopMostMacro(L, SM); +      StringRef MacroName = PP.getImmediateMacroName(TopL); +      if (MacroName == "false" || MacroName == "true") +        return false; +    } +    return true; +  } +  return false; +} + +static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); + +/// Returns true if the statement represents a configuration value. +/// +/// A configuration value is something usually determined at compile-time +/// to conditionally always execute some branch.  Such guards are for +/// "sometimes unreachable" code.  Such code is usually not interesting +/// to report as unreachable, and may mask truly unreachable code within +/// those blocks. +static bool isConfigurationValue(const Stmt *S, +                                 Preprocessor &PP, +                                 SourceRange *SilenceableCondVal = nullptr, +                                 bool IncludeIntegers = true, +                                 bool WrappedInParens = false) { +  if (!S) +    return false; + +  if (const auto *Ex = dyn_cast<Expr>(S)) +    S = Ex->IgnoreImplicit(); + +  if (const auto *Ex = dyn_cast<Expr>(S)) +    S = Ex->IgnoreCasts(); + +  // Special case looking for the sigil '()' around an integer literal. +  if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) +    if (!PE->getBeginLoc().isMacroID()) +      return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, +                                  IncludeIntegers, true); + +  if (const Expr *Ex = dyn_cast<Expr>(S)) +    S = Ex->IgnoreCasts(); + +  bool IgnoreYES_NO = false; + +  switch (S->getStmtClass()) { +    case Stmt::CallExprClass: { +      const FunctionDecl *Callee = +        dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); +      return Callee ? Callee->isConstexpr() : false; +    } +    case Stmt::DeclRefExprClass: +      return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); +    case Stmt::ObjCBoolLiteralExprClass: +      IgnoreYES_NO = true; +      LLVM_FALLTHROUGH; +    case Stmt::CXXBoolLiteralExprClass: +    case Stmt::IntegerLiteralClass: { +      const Expr *E = cast<Expr>(S); +      if (IncludeIntegers) { +        if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) +          *SilenceableCondVal = E->getSourceRange(); +        return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); +      } +      return false; +    } +    case Stmt::MemberExprClass: +      return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); +    case Stmt::UnaryExprOrTypeTraitExprClass: +      return true; +    case Stmt::BinaryOperatorClass: { +      const BinaryOperator *B = cast<BinaryOperator>(S); +      // Only include raw integers (not enums) as configuration +      // values if they are used in a logical or comparison operator +      // (not arithmetic). +      IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); +      return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, +                                  IncludeIntegers) || +             isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, +                                  IncludeIntegers); +    } +    case Stmt::UnaryOperatorClass: { +      const UnaryOperator *UO = cast<UnaryOperator>(S); +      if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus) +        return false; +      bool SilenceableCondValNotSet = +          SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); +      bool IsSubExprConfigValue = +          isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, +                               IncludeIntegers, WrappedInParens); +      // Update the silenceable condition value source range only if the range +      // was set directly by the child expression. +      if (SilenceableCondValNotSet && +          SilenceableCondVal->getBegin().isValid() && +          *SilenceableCondVal == +              UO->getSubExpr()->IgnoreCasts()->getSourceRange()) +        *SilenceableCondVal = UO->getSourceRange(); +      return IsSubExprConfigValue; +    } +    default: +      return false; +  } +} + +static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { +  if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) +    return isConfigurationValue(ED->getInitExpr(), PP); +  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { +    // As a heuristic, treat globals as configuration values.  Note +    // that we only will get here if Sema evaluated this +    // condition to a constant expression, which means the global +    // had to be declared in a way to be a truly constant value. +    // We could generalize this to local variables, but it isn't +    // clear if those truly represent configuration values that +    // gate unreachable code. +    if (!VD->hasLocalStorage()) +      return true; + +    // As a heuristic, locals that have been marked 'const' explicitly +    // can be treated as configuration values as well. +    return VD->getType().isLocalConstQualified(); +  } +  return false; +} + +/// Returns true if we should always explore all successors of a block. +static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, +                                             Preprocessor &PP) { +  if (const Stmt *Term = B->getTerminatorStmt()) { +    if (isa<SwitchStmt>(Term)) +      return true; +    // Specially handle '||' and '&&'. +    if (isa<BinaryOperator>(Term)) { +      return isConfigurationValue(Term, PP); +    } +  } + +  const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); +  return isConfigurationValue(Cond, PP); +} + +static unsigned scanFromBlock(const CFGBlock *Start, +                              llvm::BitVector &Reachable, +                              Preprocessor *PP, +                              bool IncludeSometimesUnreachableEdges) { +  unsigned count = 0; + +  // Prep work queue +  SmallVector<const CFGBlock*, 32> WL; + +  // The entry block may have already been marked reachable +  // by the caller. +  if (!Reachable[Start->getBlockID()]) { +    ++count; +    Reachable[Start->getBlockID()] = true; +  } + +  WL.push_back(Start); + +  // Find the reachable blocks from 'Start'. +  while (!WL.empty()) { +    const CFGBlock *item = WL.pop_back_val(); + +    // There are cases where we want to treat all successors as reachable. +    // The idea is that some "sometimes unreachable" code is not interesting, +    // and that we should forge ahead and explore those branches anyway. +    // This allows us to potentially uncover some "always unreachable" code +    // within the "sometimes unreachable" code. +    // Look at the successors and mark then reachable. +    Optional<bool> TreatAllSuccessorsAsReachable; +    if (!IncludeSometimesUnreachableEdges) +      TreatAllSuccessorsAsReachable = false; + +    for (CFGBlock::const_succ_iterator I = item->succ_begin(), +         E = item->succ_end(); I != E; ++I) { +      const CFGBlock *B = *I; +      if (!B) do { +        const CFGBlock *UB = I->getPossiblyUnreachableBlock(); +        if (!UB) +          break; + +        if (!TreatAllSuccessorsAsReachable.hasValue()) { +          assert(PP); +          TreatAllSuccessorsAsReachable = +            shouldTreatSuccessorsAsReachable(item, *PP); +        } + +        if (TreatAllSuccessorsAsReachable.getValue()) { +          B = UB; +          break; +        } +      } +      while (false); + +      if (B) { +        unsigned blockID = B->getBlockID(); +        if (!Reachable[blockID]) { +          Reachable.set(blockID); +          WL.push_back(B); +          ++count; +        } +      } +    } +  } +  return count; +} + +static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, +                                            Preprocessor &PP, +                                            llvm::BitVector &Reachable) { +  return scanFromBlock(Start, Reachable, &PP, true); +} + +//===----------------------------------------------------------------------===// +// Dead Code Scanner. +//===----------------------------------------------------------------------===// + +namespace { +  class DeadCodeScan { +    llvm::BitVector Visited; +    llvm::BitVector &Reachable; +    SmallVector<const CFGBlock *, 10> WorkList; +    Preprocessor &PP; +    ASTContext &C; + +    typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> +    DeferredLocsTy; + +    DeferredLocsTy DeferredLocs; + +  public: +    DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) +    : Visited(reachable.size()), +      Reachable(reachable), +      PP(PP), C(C) {} + +    void enqueue(const CFGBlock *block); +    unsigned scanBackwards(const CFGBlock *Start, +    clang::reachable_code::Callback &CB); + +    bool isDeadCodeRoot(const CFGBlock *Block); + +    const Stmt *findDeadCode(const CFGBlock *Block); + +    void reportDeadCode(const CFGBlock *B, +                        const Stmt *S, +                        clang::reachable_code::Callback &CB); +  }; +} + +void DeadCodeScan::enqueue(const CFGBlock *block) { +  unsigned blockID = block->getBlockID(); +  if (Reachable[blockID] || Visited[blockID]) +    return; +  Visited[blockID] = true; +  WorkList.push_back(block); +} + +bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { +  bool isDeadRoot = true; + +  for (CFGBlock::const_pred_iterator I = Block->pred_begin(), +       E = Block->pred_end(); I != E; ++I) { +    if (const CFGBlock *PredBlock = *I) { +      unsigned blockID = PredBlock->getBlockID(); +      if (Visited[blockID]) { +        isDeadRoot = false; +        continue; +      } +      if (!Reachable[blockID]) { +        isDeadRoot = false; +        Visited[blockID] = true; +        WorkList.push_back(PredBlock); +        continue; +      } +    } +  } + +  return isDeadRoot; +} + +static bool isValidDeadStmt(const Stmt *S) { +  if (S->getBeginLoc().isInvalid()) +    return false; +  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) +    return BO->getOpcode() != BO_Comma; +  return true; +} + +const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { +  for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) +    if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { +      const Stmt *S = CS->getStmt(); +      if (isValidDeadStmt(S)) +        return S; +    } + +  CFGTerminator T = Block->getTerminator(); +  if (T.isStmtBranch()) { +    const Stmt *S = T.getStmt(); +    if (S && isValidDeadStmt(S)) +      return S; +  } + +  return nullptr; +} + +static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, +                  const std::pair<const CFGBlock *, const Stmt *> *p2) { +  if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) +    return -1; +  if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) +    return 1; +  return 0; +} + +unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, +                                     clang::reachable_code::Callback &CB) { + +  unsigned count = 0; +  enqueue(Start); + +  while (!WorkList.empty()) { +    const CFGBlock *Block = WorkList.pop_back_val(); + +    // It is possible that this block has been marked reachable after +    // it was enqueued. +    if (Reachable[Block->getBlockID()]) +      continue; + +    // Look for any dead code within the block. +    const Stmt *S = findDeadCode(Block); + +    if (!S) { +      // No dead code.  Possibly an empty block.  Look at dead predecessors. +      for (CFGBlock::const_pred_iterator I = Block->pred_begin(), +           E = Block->pred_end(); I != E; ++I) { +        if (const CFGBlock *predBlock = *I) +          enqueue(predBlock); +      } +      continue; +    } + +    // Specially handle macro-expanded code. +    if (S->getBeginLoc().isMacroID()) { +      count += scanMaybeReachableFromBlock(Block, PP, Reachable); +      continue; +    } + +    if (isDeadCodeRoot(Block)) { +      reportDeadCode(Block, S, CB); +      count += scanMaybeReachableFromBlock(Block, PP, Reachable); +    } +    else { +      // Record this statement as the possibly best location in a +      // strongly-connected component of dead code for emitting a +      // warning. +      DeferredLocs.push_back(std::make_pair(Block, S)); +    } +  } + +  // If we didn't find a dead root, then report the dead code with the +  // earliest location. +  if (!DeferredLocs.empty()) { +    llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); +    for (DeferredLocsTy::iterator I = DeferredLocs.begin(), +         E = DeferredLocs.end(); I != E; ++I) { +      const CFGBlock *Block = I->first; +      if (Reachable[Block->getBlockID()]) +        continue; +      reportDeadCode(Block, I->second, CB); +      count += scanMaybeReachableFromBlock(Block, PP, Reachable); +    } +  } + +  return count; +} + +static SourceLocation GetUnreachableLoc(const Stmt *S, +                                        SourceRange &R1, +                                        SourceRange &R2) { +  R1 = R2 = SourceRange(); + +  if (const Expr *Ex = dyn_cast<Expr>(S)) +    S = Ex->IgnoreParenImpCasts(); + +  switch (S->getStmtClass()) { +    case Expr::BinaryOperatorClass: { +      const BinaryOperator *BO = cast<BinaryOperator>(S); +      return BO->getOperatorLoc(); +    } +    case Expr::UnaryOperatorClass: { +      const UnaryOperator *UO = cast<UnaryOperator>(S); +      R1 = UO->getSubExpr()->getSourceRange(); +      return UO->getOperatorLoc(); +    } +    case Expr::CompoundAssignOperatorClass: { +      const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); +      R1 = CAO->getLHS()->getSourceRange(); +      R2 = CAO->getRHS()->getSourceRange(); +      return CAO->getOperatorLoc(); +    } +    case Expr::BinaryConditionalOperatorClass: +    case Expr::ConditionalOperatorClass: { +      const AbstractConditionalOperator *CO = +      cast<AbstractConditionalOperator>(S); +      return CO->getQuestionLoc(); +    } +    case Expr::MemberExprClass: { +      const MemberExpr *ME = cast<MemberExpr>(S); +      R1 = ME->getSourceRange(); +      return ME->getMemberLoc(); +    } +    case Expr::ArraySubscriptExprClass: { +      const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); +      R1 = ASE->getLHS()->getSourceRange(); +      R2 = ASE->getRHS()->getSourceRange(); +      return ASE->getRBracketLoc(); +    } +    case Expr::CStyleCastExprClass: { +      const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); +      R1 = CSC->getSubExpr()->getSourceRange(); +      return CSC->getLParenLoc(); +    } +    case Expr::CXXFunctionalCastExprClass: { +      const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); +      R1 = CE->getSubExpr()->getSourceRange(); +      return CE->getBeginLoc(); +    } +    case Stmt::CXXTryStmtClass: { +      return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); +    } +    case Expr::ObjCBridgedCastExprClass: { +      const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); +      R1 = CSC->getSubExpr()->getSourceRange(); +      return CSC->getLParenLoc(); +    } +    default: ; +  } +  R1 = S->getSourceRange(); +  return S->getBeginLoc(); +} + +void DeadCodeScan::reportDeadCode(const CFGBlock *B, +                                  const Stmt *S, +                                  clang::reachable_code::Callback &CB) { +  // Classify the unreachable code found, or suppress it in some cases. +  reachable_code::UnreachableKind UK = reachable_code::UK_Other; + +  if (isa<BreakStmt>(S)) { +    UK = reachable_code::UK_Break; +  } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || +             isBuiltinAssumeFalse(B, S, C)) { +    return; +  } +  else if (isDeadReturn(B, S)) { +    UK = reachable_code::UK_Return; +  } + +  SourceRange SilenceableCondVal; + +  if (UK == reachable_code::UK_Other) { +    // Check if the dead code is part of the "loop target" of +    // a for/for-range loop.  This is the block that contains +    // the increment code. +    if (const Stmt *LoopTarget = B->getLoopTarget()) { +      SourceLocation Loc = LoopTarget->getBeginLoc(); +      SourceRange R1(Loc, Loc), R2; + +      if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { +        const Expr *Inc = FS->getInc(); +        Loc = Inc->getBeginLoc(); +        R2 = Inc->getSourceRange(); +      } + +      CB.HandleUnreachable(reachable_code::UK_Loop_Increment, +                           Loc, SourceRange(), SourceRange(Loc, Loc), R2); +      return; +    } + +    // Check if the dead block has a predecessor whose branch has +    // a configuration value that *could* be modified to +    // silence the warning. +    CFGBlock::const_pred_iterator PI = B->pred_begin(); +    if (PI != B->pred_end()) { +      if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { +        const Stmt *TermCond = +            PredBlock->getTerminatorCondition(/* strip parens */ false); +        isConfigurationValue(TermCond, PP, &SilenceableCondVal); +      } +    } +  } + +  SourceRange R1, R2; +  SourceLocation Loc = GetUnreachableLoc(S, R1, R2); +  CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); +} + +//===----------------------------------------------------------------------===// +// Reachability APIs. +//===----------------------------------------------------------------------===// + +namespace clang { namespace reachable_code { + +void Callback::anchor() { } + +unsigned ScanReachableFromBlock(const CFGBlock *Start, +                                llvm::BitVector &Reachable) { +  return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); +} + +void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, +                         Callback &CB) { + +  CFG *cfg = AC.getCFG(); +  if (!cfg) +    return; + +  // Scan for reachable blocks from the entrance of the CFG. +  // If there are no unreachable blocks, we're done. +  llvm::BitVector reachable(cfg->getNumBlockIDs()); +  unsigned numReachable = +    scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); +  if (numReachable == cfg->getNumBlockIDs()) +    return; + +  // If there aren't explicit EH edges, we should include the 'try' dispatch +  // blocks as roots. +  if (!AC.getCFGBuildOptions().AddEHEdges) { +    for (CFG::try_block_iterator I = cfg->try_blocks_begin(), +         E = cfg->try_blocks_end() ; I != E; ++I) { +      numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); +    } +    if (numReachable == cfg->getNumBlockIDs()) +      return; +  } + +  // There are some unreachable blocks.  We need to find the root blocks that +  // contain code that should be considered unreachable. +  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { +    const CFGBlock *block = *I; +    // A block may have been marked reachable during this loop. +    if (reachable[block->getBlockID()]) +      continue; + +    DeadCodeScan DS(reachable, PP, AC.getASTContext()); +    numReachable += DS.scanBackwards(block, CB); + +    if (numReachable == cfg->getNumBlockIDs()) +      return; +  } +} + +}} // end namespace clang::reachable_code | 
