diff options
Diffstat (limited to 'clang/lib/CodeGen/CodeGenModule.cpp')
| -rw-r--r-- | clang/lib/CodeGen/CodeGenModule.cpp | 5825 | 
1 files changed, 5825 insertions, 0 deletions
| diff --git a/clang/lib/CodeGen/CodeGenModule.cpp b/clang/lib/CodeGen/CodeGenModule.cpp new file mode 100644 index 000000000000..1fd4e4cf8b8f --- /dev/null +++ b/clang/lib/CodeGen/CodeGenModule.cpp @@ -0,0 +1,5825 @@ +//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This coordinates the per-module state used while generating code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenModule.h" +#include "CGBlocks.h" +#include "CGCUDARuntime.h" +#include "CGCXXABI.h" +#include "CGCall.h" +#include "CGDebugInfo.h" +#include "CGObjCRuntime.h" +#include "CGOpenCLRuntime.h" +#include "CGOpenMPRuntime.h" +#include "CGOpenMPRuntimeNVPTX.h" +#include "CodeGenFunction.h" +#include "CodeGenPGO.h" +#include "ConstantEmitter.h" +#include "CoverageMappingGen.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/Mangle.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/RecursiveASTVisitor.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/CharInfo.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Basic/Module.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Basic/Version.h" +#include "clang/CodeGen/ConstantInitBuilder.h" +#include "clang/Frontend/FrontendDiagnostic.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ProfileSummary.h" +#include "llvm/ProfileData/InstrProfReader.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/ConvertUTF.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MD5.h" +#include "llvm/Support/TimeProfiler.h" + +using namespace clang; +using namespace CodeGen; + +static llvm::cl::opt<bool> LimitedCoverage( +    "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, +    llvm::cl::desc("Emit limited coverage mapping information (experimental)"), +    llvm::cl::init(false)); + +static const char AnnotationSection[] = "llvm.metadata"; + +static CGCXXABI *createCXXABI(CodeGenModule &CGM) { +  switch (CGM.getTarget().getCXXABI().getKind()) { +  case TargetCXXABI::GenericAArch64: +  case TargetCXXABI::GenericARM: +  case TargetCXXABI::iOS: +  case TargetCXXABI::iOS64: +  case TargetCXXABI::WatchOS: +  case TargetCXXABI::GenericMIPS: +  case TargetCXXABI::GenericItanium: +  case TargetCXXABI::WebAssembly: +    return CreateItaniumCXXABI(CGM); +  case TargetCXXABI::Microsoft: +    return CreateMicrosoftCXXABI(CGM); +  } + +  llvm_unreachable("invalid C++ ABI kind"); +} + +CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, +                             const PreprocessorOptions &PPO, +                             const CodeGenOptions &CGO, llvm::Module &M, +                             DiagnosticsEngine &diags, +                             CoverageSourceInfo *CoverageInfo) +    : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), +      PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), +      Target(C.getTargetInfo()), ABI(createCXXABI(*this)), +      VMContext(M.getContext()), Types(*this), VTables(*this), +      SanitizerMD(new SanitizerMetadata(*this)) { + +  // Initialize the type cache. +  llvm::LLVMContext &LLVMContext = M.getContext(); +  VoidTy = llvm::Type::getVoidTy(LLVMContext); +  Int8Ty = llvm::Type::getInt8Ty(LLVMContext); +  Int16Ty = llvm::Type::getInt16Ty(LLVMContext); +  Int32Ty = llvm::Type::getInt32Ty(LLVMContext); +  Int64Ty = llvm::Type::getInt64Ty(LLVMContext); +  HalfTy = llvm::Type::getHalfTy(LLVMContext); +  FloatTy = llvm::Type::getFloatTy(LLVMContext); +  DoubleTy = llvm::Type::getDoubleTy(LLVMContext); +  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); +  PointerAlignInBytes = +    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); +  SizeSizeInBytes = +    C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); +  IntAlignInBytes = +    C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); +  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); +  IntPtrTy = llvm::IntegerType::get(LLVMContext, +    C.getTargetInfo().getMaxPointerWidth()); +  Int8PtrTy = Int8Ty->getPointerTo(0); +  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); +  AllocaInt8PtrTy = Int8Ty->getPointerTo( +      M.getDataLayout().getAllocaAddrSpace()); +  ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); + +  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); + +  if (LangOpts.ObjC) +    createObjCRuntime(); +  if (LangOpts.OpenCL) +    createOpenCLRuntime(); +  if (LangOpts.OpenMP) +    createOpenMPRuntime(); +  if (LangOpts.CUDA) +    createCUDARuntime(); + +  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. +  if (LangOpts.Sanitize.has(SanitizerKind::Thread) || +      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) +    TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), +                               getCXXABI().getMangleContext())); + +  // If debug info or coverage generation is enabled, create the CGDebugInfo +  // object. +  if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || +      CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) +    DebugInfo.reset(new CGDebugInfo(*this)); + +  Block.GlobalUniqueCount = 0; + +  if (C.getLangOpts().ObjC) +    ObjCData.reset(new ObjCEntrypoints()); + +  if (CodeGenOpts.hasProfileClangUse()) { +    auto ReaderOrErr = llvm::IndexedInstrProfReader::create( +        CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); +    if (auto E = ReaderOrErr.takeError()) { +      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, +                                              "Could not read profile %0: %1"); +      llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { +        getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath +                                  << EI.message(); +      }); +    } else +      PGOReader = std::move(ReaderOrErr.get()); +  } + +  // If coverage mapping generation is enabled, create the +  // CoverageMappingModuleGen object. +  if (CodeGenOpts.CoverageMapping) +    CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); +} + +CodeGenModule::~CodeGenModule() {} + +void CodeGenModule::createObjCRuntime() { +  // This is just isGNUFamily(), but we want to force implementors of +  // new ABIs to decide how best to do this. +  switch (LangOpts.ObjCRuntime.getKind()) { +  case ObjCRuntime::GNUstep: +  case ObjCRuntime::GCC: +  case ObjCRuntime::ObjFW: +    ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); +    return; + +  case ObjCRuntime::FragileMacOSX: +  case ObjCRuntime::MacOSX: +  case ObjCRuntime::iOS: +  case ObjCRuntime::WatchOS: +    ObjCRuntime.reset(CreateMacObjCRuntime(*this)); +    return; +  } +  llvm_unreachable("bad runtime kind"); +} + +void CodeGenModule::createOpenCLRuntime() { +  OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); +} + +void CodeGenModule::createOpenMPRuntime() { +  // Select a specialized code generation class based on the target, if any. +  // If it does not exist use the default implementation. +  switch (getTriple().getArch()) { +  case llvm::Triple::nvptx: +  case llvm::Triple::nvptx64: +    assert(getLangOpts().OpenMPIsDevice && +           "OpenMP NVPTX is only prepared to deal with device code."); +    OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); +    break; +  default: +    if (LangOpts.OpenMPSimd) +      OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); +    else +      OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); +    break; +  } +} + +void CodeGenModule::createCUDARuntime() { +  CUDARuntime.reset(CreateNVCUDARuntime(*this)); +} + +void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { +  Replacements[Name] = C; +} + +void CodeGenModule::applyReplacements() { +  for (auto &I : Replacements) { +    StringRef MangledName = I.first(); +    llvm::Constant *Replacement = I.second; +    llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +    if (!Entry) +      continue; +    auto *OldF = cast<llvm::Function>(Entry); +    auto *NewF = dyn_cast<llvm::Function>(Replacement); +    if (!NewF) { +      if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { +        NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); +      } else { +        auto *CE = cast<llvm::ConstantExpr>(Replacement); +        assert(CE->getOpcode() == llvm::Instruction::BitCast || +               CE->getOpcode() == llvm::Instruction::GetElementPtr); +        NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); +      } +    } + +    // Replace old with new, but keep the old order. +    OldF->replaceAllUsesWith(Replacement); +    if (NewF) { +      NewF->removeFromParent(); +      OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), +                                                       NewF); +    } +    OldF->eraseFromParent(); +  } +} + +void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { +  GlobalValReplacements.push_back(std::make_pair(GV, C)); +} + +void CodeGenModule::applyGlobalValReplacements() { +  for (auto &I : GlobalValReplacements) { +    llvm::GlobalValue *GV = I.first; +    llvm::Constant *C = I.second; + +    GV->replaceAllUsesWith(C); +    GV->eraseFromParent(); +  } +} + +// This is only used in aliases that we created and we know they have a +// linear structure. +static const llvm::GlobalObject *getAliasedGlobal( +    const llvm::GlobalIndirectSymbol &GIS) { +  llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; +  const llvm::Constant *C = &GIS; +  for (;;) { +    C = C->stripPointerCasts(); +    if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) +      return GO; +    // stripPointerCasts will not walk over weak aliases. +    auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); +    if (!GIS2) +      return nullptr; +    if (!Visited.insert(GIS2).second) +      return nullptr; +    C = GIS2->getIndirectSymbol(); +  } +} + +void CodeGenModule::checkAliases() { +  // Check if the constructed aliases are well formed. It is really unfortunate +  // that we have to do this in CodeGen, but we only construct mangled names +  // and aliases during codegen. +  bool Error = false; +  DiagnosticsEngine &Diags = getDiags(); +  for (const GlobalDecl &GD : Aliases) { +    const auto *D = cast<ValueDecl>(GD.getDecl()); +    SourceLocation Location; +    bool IsIFunc = D->hasAttr<IFuncAttr>(); +    if (const Attr *A = D->getDefiningAttr()) +      Location = A->getLocation(); +    else +      llvm_unreachable("Not an alias or ifunc?"); +    StringRef MangledName = getMangledName(GD); +    llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +    auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry); +    const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); +    if (!GV) { +      Error = true; +      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; +    } else if (GV->isDeclaration()) { +      Error = true; +      Diags.Report(Location, diag::err_alias_to_undefined) +          << IsIFunc << IsIFunc; +    } else if (IsIFunc) { +      // Check resolver function type. +      llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( +          GV->getType()->getPointerElementType()); +      assert(FTy); +      if (!FTy->getReturnType()->isPointerTy()) +        Diags.Report(Location, diag::err_ifunc_resolver_return); +    } + +    llvm::Constant *Aliasee = Alias->getIndirectSymbol(); +    llvm::GlobalValue *AliaseeGV; +    if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) +      AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); +    else +      AliaseeGV = cast<llvm::GlobalValue>(Aliasee); + +    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { +      StringRef AliasSection = SA->getName(); +      if (AliasSection != AliaseeGV->getSection()) +        Diags.Report(SA->getLocation(), diag::warn_alias_with_section) +            << AliasSection << IsIFunc << IsIFunc; +    } + +    // We have to handle alias to weak aliases in here. LLVM itself disallows +    // this since the object semantics would not match the IL one. For +    // compatibility with gcc we implement it by just pointing the alias +    // to its aliasee's aliasee. We also warn, since the user is probably +    // expecting the link to be weak. +    if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { +      if (GA->isInterposable()) { +        Diags.Report(Location, diag::warn_alias_to_weak_alias) +            << GV->getName() << GA->getName() << IsIFunc; +        Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( +            GA->getIndirectSymbol(), Alias->getType()); +        Alias->setIndirectSymbol(Aliasee); +      } +    } +  } +  if (!Error) +    return; + +  for (const GlobalDecl &GD : Aliases) { +    StringRef MangledName = getMangledName(GD); +    llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +    auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); +    Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); +    Alias->eraseFromParent(); +  } +} + +void CodeGenModule::clear() { +  DeferredDeclsToEmit.clear(); +  if (OpenMPRuntime) +    OpenMPRuntime->clear(); +} + +void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, +                                       StringRef MainFile) { +  if (!hasDiagnostics()) +    return; +  if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { +    if (MainFile.empty()) +      MainFile = "<stdin>"; +    Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; +  } else { +    if (Mismatched > 0) +      Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; + +    if (Missing > 0) +      Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; +  } +} + +void CodeGenModule::Release() { +  EmitDeferred(); +  EmitVTablesOpportunistically(); +  applyGlobalValReplacements(); +  applyReplacements(); +  checkAliases(); +  emitMultiVersionFunctions(); +  EmitCXXGlobalInitFunc(); +  EmitCXXGlobalDtorFunc(); +  registerGlobalDtorsWithAtExit(); +  EmitCXXThreadLocalInitFunc(); +  if (ObjCRuntime) +    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) +      AddGlobalCtor(ObjCInitFunction); +  if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && +      CUDARuntime) { +    if (llvm::Function *CudaCtorFunction = +            CUDARuntime->makeModuleCtorFunction()) +      AddGlobalCtor(CudaCtorFunction); +  } +  if (OpenMPRuntime) { +    if (llvm::Function *OpenMPRequiresDirectiveRegFun = +            OpenMPRuntime->emitRequiresDirectiveRegFun()) { +      AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); +    } +    if (llvm::Function *OpenMPRegistrationFunction = +            OpenMPRuntime->emitRegistrationFunction()) { +      auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? +        OpenMPRegistrationFunction : nullptr; +      AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); +    } +    OpenMPRuntime->clear(); +  } +  if (PGOReader) { +    getModule().setProfileSummary( +        PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), +        llvm::ProfileSummary::PSK_Instr); +    if (PGOStats.hasDiagnostics()) +      PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); +  } +  EmitCtorList(GlobalCtors, "llvm.global_ctors"); +  EmitCtorList(GlobalDtors, "llvm.global_dtors"); +  EmitGlobalAnnotations(); +  EmitStaticExternCAliases(); +  EmitDeferredUnusedCoverageMappings(); +  if (CoverageMapping) +    CoverageMapping->emit(); +  if (CodeGenOpts.SanitizeCfiCrossDso) { +    CodeGenFunction(*this).EmitCfiCheckFail(); +    CodeGenFunction(*this).EmitCfiCheckStub(); +  } +  emitAtAvailableLinkGuard(); +  emitLLVMUsed(); +  if (SanStats) +    SanStats->finish(); + +  if (CodeGenOpts.Autolink && +      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { +    EmitModuleLinkOptions(); +  } + +  // On ELF we pass the dependent library specifiers directly to the linker +  // without manipulating them. This is in contrast to other platforms where +  // they are mapped to a specific linker option by the compiler. This +  // difference is a result of the greater variety of ELF linkers and the fact +  // that ELF linkers tend to handle libraries in a more complicated fashion +  // than on other platforms. This forces us to defer handling the dependent +  // libs to the linker. +  // +  // CUDA/HIP device and host libraries are different. Currently there is no +  // way to differentiate dependent libraries for host or device. Existing +  // usage of #pragma comment(lib, *) is intended for host libraries on +  // Windows. Therefore emit llvm.dependent-libraries only for host. +  if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { +    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); +    for (auto *MD : ELFDependentLibraries) +      NMD->addOperand(MD); +  } + +  // Record mregparm value now so it is visible through rest of codegen. +  if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) +    getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", +                              CodeGenOpts.NumRegisterParameters); + +  if (CodeGenOpts.DwarfVersion) { +    // We actually want the latest version when there are conflicts. +    // We can change from Warning to Latest if such mode is supported. +    getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", +                              CodeGenOpts.DwarfVersion); +  } +  if (CodeGenOpts.EmitCodeView) { +    // Indicate that we want CodeView in the metadata. +    getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); +  } +  if (CodeGenOpts.CodeViewGHash) { +    getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); +  } +  if (CodeGenOpts.ControlFlowGuard) { +    // We want function ID tables for Control Flow Guard. +    getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); +  } +  if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { +    // We don't support LTO with 2 with different StrictVTablePointers +    // FIXME: we could support it by stripping all the information introduced +    // by StrictVTablePointers. + +    getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); + +    llvm::Metadata *Ops[2] = { +              llvm::MDString::get(VMContext, "StrictVTablePointers"), +              llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +                  llvm::Type::getInt32Ty(VMContext), 1))}; + +    getModule().addModuleFlag(llvm::Module::Require, +                              "StrictVTablePointersRequirement", +                              llvm::MDNode::get(VMContext, Ops)); +  } +  if (DebugInfo) +    // We support a single version in the linked module. The LLVM +    // parser will drop debug info with a different version number +    // (and warn about it, too). +    getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", +                              llvm::DEBUG_METADATA_VERSION); + +  // We need to record the widths of enums and wchar_t, so that we can generate +  // the correct build attributes in the ARM backend. wchar_size is also used by +  // TargetLibraryInfo. +  uint64_t WCharWidth = +      Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); +  getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); + +  llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); +  if (   Arch == llvm::Triple::arm +      || Arch == llvm::Triple::armeb +      || Arch == llvm::Triple::thumb +      || Arch == llvm::Triple::thumbeb) { +    // The minimum width of an enum in bytes +    uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; +    getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); +  } + +  if (CodeGenOpts.SanitizeCfiCrossDso) { +    // Indicate that we want cross-DSO control flow integrity checks. +    getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); +  } + +  if (CodeGenOpts.CFProtectionReturn && +      Target.checkCFProtectionReturnSupported(getDiags())) { +    // Indicate that we want to instrument return control flow protection. +    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", +                              1); +  } + +  if (CodeGenOpts.CFProtectionBranch && +      Target.checkCFProtectionBranchSupported(getDiags())) { +    // Indicate that we want to instrument branch control flow protection. +    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", +                              1); +  } + +  if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { +    // Indicate whether __nvvm_reflect should be configured to flush denormal +    // floating point values to 0.  (This corresponds to its "__CUDA_FTZ" +    // property.) +    getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", +                              CodeGenOpts.FlushDenorm ? 1 : 0); +  } + +  // Emit OpenCL specific module metadata: OpenCL/SPIR version. +  if (LangOpts.OpenCL) { +    EmitOpenCLMetadata(); +    // Emit SPIR version. +    if (getTriple().isSPIR()) { +      // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the +      // opencl.spir.version named metadata. +      // C++ is backwards compatible with OpenCL v2.0. +      auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; +      llvm::Metadata *SPIRVerElts[] = { +          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +              Int32Ty, Version / 100)), +          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +              Int32Ty, (Version / 100 > 1) ? 0 : 2))}; +      llvm::NamedMDNode *SPIRVerMD = +          TheModule.getOrInsertNamedMetadata("opencl.spir.version"); +      llvm::LLVMContext &Ctx = TheModule.getContext(); +      SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); +    } +  } + +  if (uint32_t PLevel = Context.getLangOpts().PICLevel) { +    assert(PLevel < 3 && "Invalid PIC Level"); +    getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); +    if (Context.getLangOpts().PIE) +      getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); +  } + +  if (getCodeGenOpts().CodeModel.size() > 0) { +    unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) +                  .Case("tiny", llvm::CodeModel::Tiny) +                  .Case("small", llvm::CodeModel::Small) +                  .Case("kernel", llvm::CodeModel::Kernel) +                  .Case("medium", llvm::CodeModel::Medium) +                  .Case("large", llvm::CodeModel::Large) +                  .Default(~0u); +    if (CM != ~0u) { +      llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); +      getModule().setCodeModel(codeModel); +    } +  } + +  if (CodeGenOpts.NoPLT) +    getModule().setRtLibUseGOT(); + +  SimplifyPersonality(); + +  if (getCodeGenOpts().EmitDeclMetadata) +    EmitDeclMetadata(); + +  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) +    EmitCoverageFile(); + +  if (DebugInfo) +    DebugInfo->finalize(); + +  if (getCodeGenOpts().EmitVersionIdentMetadata) +    EmitVersionIdentMetadata(); + +  if (!getCodeGenOpts().RecordCommandLine.empty()) +    EmitCommandLineMetadata(); + +  EmitTargetMetadata(); +} + +void CodeGenModule::EmitOpenCLMetadata() { +  // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the +  // opencl.ocl.version named metadata node. +  // C++ is backwards compatible with OpenCL v2.0. +  // FIXME: We might need to add CXX version at some point too? +  auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; +  llvm::Metadata *OCLVerElts[] = { +      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +          Int32Ty, Version / 100)), +      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +          Int32Ty, (Version % 100) / 10))}; +  llvm::NamedMDNode *OCLVerMD = +      TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); +  llvm::LLVMContext &Ctx = TheModule.getContext(); +  OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); +} + +void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { +  // Make sure that this type is translated. +  Types.UpdateCompletedType(TD); +} + +void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { +  // Make sure that this type is translated. +  Types.RefreshTypeCacheForClass(RD); +} + +llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { +  if (!TBAA) +    return nullptr; +  return TBAA->getTypeInfo(QTy); +} + +TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { +  if (!TBAA) +    return TBAAAccessInfo(); +  return TBAA->getAccessInfo(AccessType); +} + +TBAAAccessInfo +CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { +  if (!TBAA) +    return TBAAAccessInfo(); +  return TBAA->getVTablePtrAccessInfo(VTablePtrType); +} + +llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { +  if (!TBAA) +    return nullptr; +  return TBAA->getTBAAStructInfo(QTy); +} + +llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { +  if (!TBAA) +    return nullptr; +  return TBAA->getBaseTypeInfo(QTy); +} + +llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { +  if (!TBAA) +    return nullptr; +  return TBAA->getAccessTagInfo(Info); +} + +TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, +                                                   TBAAAccessInfo TargetInfo) { +  if (!TBAA) +    return TBAAAccessInfo(); +  return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); +} + +TBAAAccessInfo +CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, +                                                   TBAAAccessInfo InfoB) { +  if (!TBAA) +    return TBAAAccessInfo(); +  return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); +} + +TBAAAccessInfo +CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, +                                              TBAAAccessInfo SrcInfo) { +  if (!TBAA) +    return TBAAAccessInfo(); +  return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); +} + +void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, +                                                TBAAAccessInfo TBAAInfo) { +  if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) +    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); +} + +void CodeGenModule::DecorateInstructionWithInvariantGroup( +    llvm::Instruction *I, const CXXRecordDecl *RD) { +  I->setMetadata(llvm::LLVMContext::MD_invariant_group, +                 llvm::MDNode::get(getLLVMContext(), {})); +} + +void CodeGenModule::Error(SourceLocation loc, StringRef message) { +  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); +  getDiags().Report(Context.getFullLoc(loc), diagID) << message; +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified stmt yet. +void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { +  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, +                                               "cannot compile this %0 yet"); +  std::string Msg = Type; +  getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) +      << Msg << S->getSourceRange(); +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified decl yet. +void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { +  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, +                                               "cannot compile this %0 yet"); +  std::string Msg = Type; +  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; +} + +llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { +  return llvm::ConstantInt::get(SizeTy, size.getQuantity()); +} + +void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, +                                        const NamedDecl *D) const { +  if (GV->hasDLLImportStorageClass()) +    return; +  // Internal definitions always have default visibility. +  if (GV->hasLocalLinkage()) { +    GV->setVisibility(llvm::GlobalValue::DefaultVisibility); +    return; +  } +  if (!D) +    return; +  // Set visibility for definitions, and for declarations if requested globally +  // or set explicitly. +  LinkageInfo LV = D->getLinkageAndVisibility(); +  if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || +      !GV->isDeclarationForLinker()) +    GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); +} + +static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, +                                 llvm::GlobalValue *GV) { +  if (GV->hasLocalLinkage()) +    return true; + +  if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) +    return true; + +  // DLLImport explicitly marks the GV as external. +  if (GV->hasDLLImportStorageClass()) +    return false; + +  const llvm::Triple &TT = CGM.getTriple(); +  if (TT.isWindowsGNUEnvironment()) { +    // In MinGW, variables without DLLImport can still be automatically +    // imported from a DLL by the linker; don't mark variables that +    // potentially could come from another DLL as DSO local. +    if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && +        !GV->isThreadLocal()) +      return false; +  } + +  // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols +  // remain unresolved in the link, they can be resolved to zero, which is +  // outside the current DSO. +  if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) +    return false; + +  // Every other GV is local on COFF. +  // Make an exception for windows OS in the triple: Some firmware builds use +  // *-win32-macho triples. This (accidentally?) produced windows relocations +  // without GOT tables in older clang versions; Keep this behaviour. +  // FIXME: even thread local variables? +  if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) +    return true; + +  // Only handle COFF and ELF for now. +  if (!TT.isOSBinFormatELF()) +    return false; + +  // If this is not an executable, don't assume anything is local. +  const auto &CGOpts = CGM.getCodeGenOpts(); +  llvm::Reloc::Model RM = CGOpts.RelocationModel; +  const auto &LOpts = CGM.getLangOpts(); +  if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice) +    return false; + +  // A definition cannot be preempted from an executable. +  if (!GV->isDeclarationForLinker()) +    return true; + +  // Most PIC code sequences that assume that a symbol is local cannot produce a +  // 0 if it turns out the symbol is undefined. While this is ABI and relocation +  // depended, it seems worth it to handle it here. +  if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) +    return false; + +  // PPC has no copy relocations and cannot use a plt entry as a symbol address. +  llvm::Triple::ArchType Arch = TT.getArch(); +  if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || +      Arch == llvm::Triple::ppc64le) +    return false; + +  // If we can use copy relocations we can assume it is local. +  if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) +    if (!Var->isThreadLocal() && +        (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) +      return true; + +  // If we can use a plt entry as the symbol address we can assume it +  // is local. +  // FIXME: This should work for PIE, but the gold linker doesn't support it. +  if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) +    return true; + +  // Otherwise don't assue it is local. +  return false; +} + +void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { +  GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); +} + +void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, +                                          GlobalDecl GD) const { +  const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); +  // C++ destructors have a few C++ ABI specific special cases. +  if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { +    getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); +    return; +  } +  setDLLImportDLLExport(GV, D); +} + +void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, +                                          const NamedDecl *D) const { +  if (D && D->isExternallyVisible()) { +    if (D->hasAttr<DLLImportAttr>()) +      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); +    else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) +      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); +  } +} + +void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, +                                    GlobalDecl GD) const { +  setDLLImportDLLExport(GV, GD); +  setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); +} + +void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, +                                    const NamedDecl *D) const { +  setDLLImportDLLExport(GV, D); +  setGVPropertiesAux(GV, D); +} + +void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, +                                       const NamedDecl *D) const { +  setGlobalVisibility(GV, D); +  setDSOLocal(GV); +  GV->setPartition(CodeGenOpts.SymbolPartition); +} + +static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { +  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) +      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) +      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) +      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) +      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); +} + +static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( +    CodeGenOptions::TLSModel M) { +  switch (M) { +  case CodeGenOptions::GeneralDynamicTLSModel: +    return llvm::GlobalVariable::GeneralDynamicTLSModel; +  case CodeGenOptions::LocalDynamicTLSModel: +    return llvm::GlobalVariable::LocalDynamicTLSModel; +  case CodeGenOptions::InitialExecTLSModel: +    return llvm::GlobalVariable::InitialExecTLSModel; +  case CodeGenOptions::LocalExecTLSModel: +    return llvm::GlobalVariable::LocalExecTLSModel; +  } +  llvm_unreachable("Invalid TLS model!"); +} + +void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { +  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); + +  llvm::GlobalValue::ThreadLocalMode TLM; +  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); + +  // Override the TLS model if it is explicitly specified. +  if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { +    TLM = GetLLVMTLSModel(Attr->getModel()); +  } + +  GV->setThreadLocalMode(TLM); +} + +static std::string getCPUSpecificMangling(const CodeGenModule &CGM, +                                          StringRef Name) { +  const TargetInfo &Target = CGM.getTarget(); +  return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); +} + +static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, +                                                 const CPUSpecificAttr *Attr, +                                                 unsigned CPUIndex, +                                                 raw_ostream &Out) { +  // cpu_specific gets the current name, dispatch gets the resolver if IFunc is +  // supported. +  if (Attr) +    Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); +  else if (CGM.getTarget().supportsIFunc()) +    Out << ".resolver"; +} + +static void AppendTargetMangling(const CodeGenModule &CGM, +                                 const TargetAttr *Attr, raw_ostream &Out) { +  if (Attr->isDefaultVersion()) +    return; + +  Out << '.'; +  const TargetInfo &Target = CGM.getTarget(); +  TargetAttr::ParsedTargetAttr Info = +      Attr->parse([&Target](StringRef LHS, StringRef RHS) { +        // Multiversioning doesn't allow "no-${feature}", so we can +        // only have "+" prefixes here. +        assert(LHS.startswith("+") && RHS.startswith("+") && +               "Features should always have a prefix."); +        return Target.multiVersionSortPriority(LHS.substr(1)) > +               Target.multiVersionSortPriority(RHS.substr(1)); +      }); + +  bool IsFirst = true; + +  if (!Info.Architecture.empty()) { +    IsFirst = false; +    Out << "arch_" << Info.Architecture; +  } + +  for (StringRef Feat : Info.Features) { +    if (!IsFirst) +      Out << '_'; +    IsFirst = false; +    Out << Feat.substr(1); +  } +} + +static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, +                                      const NamedDecl *ND, +                                      bool OmitMultiVersionMangling = false) { +  SmallString<256> Buffer; +  llvm::raw_svector_ostream Out(Buffer); +  MangleContext &MC = CGM.getCXXABI().getMangleContext(); +  if (MC.shouldMangleDeclName(ND)) { +    llvm::raw_svector_ostream Out(Buffer); +    if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) +      MC.mangleCXXCtor(D, GD.getCtorType(), Out); +    else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) +      MC.mangleCXXDtor(D, GD.getDtorType(), Out); +    else +      MC.mangleName(ND, Out); +  } else { +    IdentifierInfo *II = ND->getIdentifier(); +    assert(II && "Attempt to mangle unnamed decl."); +    const auto *FD = dyn_cast<FunctionDecl>(ND); + +    if (FD && +        FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { +      llvm::raw_svector_ostream Out(Buffer); +      Out << "__regcall3__" << II->getName(); +    } else { +      Out << II->getName(); +    } +  } + +  if (const auto *FD = dyn_cast<FunctionDecl>(ND)) +    if (FD->isMultiVersion() && !OmitMultiVersionMangling) { +      switch (FD->getMultiVersionKind()) { +      case MultiVersionKind::CPUDispatch: +      case MultiVersionKind::CPUSpecific: +        AppendCPUSpecificCPUDispatchMangling(CGM, +                                             FD->getAttr<CPUSpecificAttr>(), +                                             GD.getMultiVersionIndex(), Out); +        break; +      case MultiVersionKind::Target: +        AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); +        break; +      case MultiVersionKind::None: +        llvm_unreachable("None multiversion type isn't valid here"); +      } +    } + +  return Out.str(); +} + +void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, +                                            const FunctionDecl *FD) { +  if (!FD->isMultiVersion()) +    return; + +  // Get the name of what this would be without the 'target' attribute.  This +  // allows us to lookup the version that was emitted when this wasn't a +  // multiversion function. +  std::string NonTargetName = +      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); +  GlobalDecl OtherGD; +  if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { +    assert(OtherGD.getCanonicalDecl() +               .getDecl() +               ->getAsFunction() +               ->isMultiVersion() && +           "Other GD should now be a multiversioned function"); +    // OtherFD is the version of this function that was mangled BEFORE +    // becoming a MultiVersion function.  It potentially needs to be updated. +    const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() +                                      .getDecl() +                                      ->getAsFunction() +                                      ->getMostRecentDecl(); +    std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); +    // This is so that if the initial version was already the 'default' +    // version, we don't try to update it. +    if (OtherName != NonTargetName) { +      // Remove instead of erase, since others may have stored the StringRef +      // to this. +      const auto ExistingRecord = Manglings.find(NonTargetName); +      if (ExistingRecord != std::end(Manglings)) +        Manglings.remove(&(*ExistingRecord)); +      auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); +      MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); +      if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) +        Entry->setName(OtherName); +    } +  } +} + +StringRef CodeGenModule::getMangledName(GlobalDecl GD) { +  GlobalDecl CanonicalGD = GD.getCanonicalDecl(); + +  // Some ABIs don't have constructor variants.  Make sure that base and +  // complete constructors get mangled the same. +  if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { +    if (!getTarget().getCXXABI().hasConstructorVariants()) { +      CXXCtorType OrigCtorType = GD.getCtorType(); +      assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); +      if (OrigCtorType == Ctor_Base) +        CanonicalGD = GlobalDecl(CD, Ctor_Complete); +    } +  } + +  auto FoundName = MangledDeclNames.find(CanonicalGD); +  if (FoundName != MangledDeclNames.end()) +    return FoundName->second; + +  // Keep the first result in the case of a mangling collision. +  const auto *ND = cast<NamedDecl>(GD.getDecl()); +  std::string MangledName = getMangledNameImpl(*this, GD, ND); + +  // Adjust kernel stub mangling as we may need to be able to differentiate +  // them from the kernel itself (e.g., for HIP). +  if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) +    if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) +      MangledName = getCUDARuntime().getDeviceStubName(MangledName); + +  auto Result = Manglings.insert(std::make_pair(MangledName, GD)); +  return MangledDeclNames[CanonicalGD] = Result.first->first(); +} + +StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, +                                             const BlockDecl *BD) { +  MangleContext &MangleCtx = getCXXABI().getMangleContext(); +  const Decl *D = GD.getDecl(); + +  SmallString<256> Buffer; +  llvm::raw_svector_ostream Out(Buffer); +  if (!D) +    MangleCtx.mangleGlobalBlock(BD, +      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); +  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) +    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); +  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) +    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); +  else +    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); + +  auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); +  return Result.first->first(); +} + +llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { +  return getModule().getNamedValue(Name); +} + +/// AddGlobalCtor - Add a function to the list that will be called before +/// main() runs. +void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, +                                  llvm::Constant *AssociatedData) { +  // FIXME: Type coercion of void()* types. +  GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); +} + +/// AddGlobalDtor - Add a function to the list that will be called +/// when the module is unloaded. +void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { +  if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { +    DtorsUsingAtExit[Priority].push_back(Dtor); +    return; +  } + +  // FIXME: Type coercion of void()* types. +  GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); +} + +void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { +  if (Fns.empty()) return; + +  // Ctor function type is void()*. +  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); +  llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, +      TheModule.getDataLayout().getProgramAddressSpace()); + +  // Get the type of a ctor entry, { i32, void ()*, i8* }. +  llvm::StructType *CtorStructTy = llvm::StructType::get( +      Int32Ty, CtorPFTy, VoidPtrTy); + +  // Construct the constructor and destructor arrays. +  ConstantInitBuilder builder(*this); +  auto ctors = builder.beginArray(CtorStructTy); +  for (const auto &I : Fns) { +    auto ctor = ctors.beginStruct(CtorStructTy); +    ctor.addInt(Int32Ty, I.Priority); +    ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); +    if (I.AssociatedData) +      ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); +    else +      ctor.addNullPointer(VoidPtrTy); +    ctor.finishAndAddTo(ctors); +  } + +  auto list = +    ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), +                                /*constant*/ false, +                                llvm::GlobalValue::AppendingLinkage); + +  // The LTO linker doesn't seem to like it when we set an alignment +  // on appending variables.  Take it off as a workaround. +  list->setAlignment(0); + +  Fns.clear(); +} + +llvm::GlobalValue::LinkageTypes +CodeGenModule::getFunctionLinkage(GlobalDecl GD) { +  const auto *D = cast<FunctionDecl>(GD.getDecl()); + +  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); + +  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) +    return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); + +  if (isa<CXXConstructorDecl>(D) && +      cast<CXXConstructorDecl>(D)->isInheritingConstructor() && +      Context.getTargetInfo().getCXXABI().isMicrosoft()) { +    // Our approach to inheriting constructors is fundamentally different from +    // that used by the MS ABI, so keep our inheriting constructor thunks +    // internal rather than trying to pick an unambiguous mangling for them. +    return llvm::GlobalValue::InternalLinkage; +  } + +  return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); +} + +llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { +  llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); +  if (!MDS) return nullptr; + +  return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); +} + +void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, +                                              const CGFunctionInfo &Info, +                                              llvm::Function *F) { +  unsigned CallingConv; +  llvm::AttributeList PAL; +  ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); +  F->setAttributes(PAL); +  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); +} + +static void removeImageAccessQualifier(std::string& TyName) { +  std::string ReadOnlyQual("__read_only"); +  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); +  if (ReadOnlyPos != std::string::npos) +    // "+ 1" for the space after access qualifier. +    TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); +  else { +    std::string WriteOnlyQual("__write_only"); +    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); +    if (WriteOnlyPos != std::string::npos) +      TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); +    else { +      std::string ReadWriteQual("__read_write"); +      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); +      if (ReadWritePos != std::string::npos) +        TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); +    } +  } +} + +// Returns the address space id that should be produced to the +// kernel_arg_addr_space metadata. This is always fixed to the ids +// as specified in the SPIR 2.0 specification in order to differentiate +// for example in clGetKernelArgInfo() implementation between the address +// spaces with targets without unique mapping to the OpenCL address spaces +// (basically all single AS CPUs). +static unsigned ArgInfoAddressSpace(LangAS AS) { +  switch (AS) { +  case LangAS::opencl_global:   return 1; +  case LangAS::opencl_constant: return 2; +  case LangAS::opencl_local:    return 3; +  case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs. +  default: +    return 0; // Assume private. +  } +} + +void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, +                                         const FunctionDecl *FD, +                                         CodeGenFunction *CGF) { +  assert(((FD && CGF) || (!FD && !CGF)) && +         "Incorrect use - FD and CGF should either be both null or not!"); +  // Create MDNodes that represent the kernel arg metadata. +  // Each MDNode is a list in the form of "key", N number of values which is +  // the same number of values as their are kernel arguments. + +  const PrintingPolicy &Policy = Context.getPrintingPolicy(); + +  // MDNode for the kernel argument address space qualifiers. +  SmallVector<llvm::Metadata *, 8> addressQuals; + +  // MDNode for the kernel argument access qualifiers (images only). +  SmallVector<llvm::Metadata *, 8> accessQuals; + +  // MDNode for the kernel argument type names. +  SmallVector<llvm::Metadata *, 8> argTypeNames; + +  // MDNode for the kernel argument base type names. +  SmallVector<llvm::Metadata *, 8> argBaseTypeNames; + +  // MDNode for the kernel argument type qualifiers. +  SmallVector<llvm::Metadata *, 8> argTypeQuals; + +  // MDNode for the kernel argument names. +  SmallVector<llvm::Metadata *, 8> argNames; + +  if (FD && CGF) +    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { +      const ParmVarDecl *parm = FD->getParamDecl(i); +      QualType ty = parm->getType(); +      std::string typeQuals; + +      if (ty->isPointerType()) { +        QualType pointeeTy = ty->getPointeeType(); + +        // Get address qualifier. +        addressQuals.push_back( +            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( +                ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); + +        // Get argument type name. +        std::string typeName = +            pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; + +        // Turn "unsigned type" to "utype" +        std::string::size_type pos = typeName.find("unsigned"); +        if (pointeeTy.isCanonical() && pos != std::string::npos) +          typeName.erase(pos + 1, 8); + +        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); + +        std::string baseTypeName = +            pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( +                Policy) + +            "*"; + +        // Turn "unsigned type" to "utype" +        pos = baseTypeName.find("unsigned"); +        if (pos != std::string::npos) +          baseTypeName.erase(pos + 1, 8); + +        argBaseTypeNames.push_back( +            llvm::MDString::get(VMContext, baseTypeName)); + +        // Get argument type qualifiers: +        if (ty.isRestrictQualified()) +          typeQuals = "restrict"; +        if (pointeeTy.isConstQualified() || +            (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) +          typeQuals += typeQuals.empty() ? "const" : " const"; +        if (pointeeTy.isVolatileQualified()) +          typeQuals += typeQuals.empty() ? "volatile" : " volatile"; +      } else { +        uint32_t AddrSpc = 0; +        bool isPipe = ty->isPipeType(); +        if (ty->isImageType() || isPipe) +          AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); + +        addressQuals.push_back( +            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); + +        // Get argument type name. +        std::string typeName; +        if (isPipe) +          typeName = ty.getCanonicalType() +                         ->getAs<PipeType>() +                         ->getElementType() +                         .getAsString(Policy); +        else +          typeName = ty.getUnqualifiedType().getAsString(Policy); + +        // Turn "unsigned type" to "utype" +        std::string::size_type pos = typeName.find("unsigned"); +        if (ty.isCanonical() && pos != std::string::npos) +          typeName.erase(pos + 1, 8); + +        std::string baseTypeName; +        if (isPipe) +          baseTypeName = ty.getCanonicalType() +                             ->getAs<PipeType>() +                             ->getElementType() +                             .getCanonicalType() +                             .getAsString(Policy); +        else +          baseTypeName = +              ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); + +        // Remove access qualifiers on images +        // (as they are inseparable from type in clang implementation, +        // but OpenCL spec provides a special query to get access qualifier +        // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): +        if (ty->isImageType()) { +          removeImageAccessQualifier(typeName); +          removeImageAccessQualifier(baseTypeName); +        } + +        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); + +        // Turn "unsigned type" to "utype" +        pos = baseTypeName.find("unsigned"); +        if (pos != std::string::npos) +          baseTypeName.erase(pos + 1, 8); + +        argBaseTypeNames.push_back( +            llvm::MDString::get(VMContext, baseTypeName)); + +        if (isPipe) +          typeQuals = "pipe"; +      } + +      argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); + +      // Get image and pipe access qualifier: +      if (ty->isImageType() || ty->isPipeType()) { +        const Decl *PDecl = parm; +        if (auto *TD = dyn_cast<TypedefType>(ty)) +          PDecl = TD->getDecl(); +        const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); +        if (A && A->isWriteOnly()) +          accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); +        else if (A && A->isReadWrite()) +          accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); +        else +          accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); +      } else +        accessQuals.push_back(llvm::MDString::get(VMContext, "none")); + +      // Get argument name. +      argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); +    } + +  Fn->setMetadata("kernel_arg_addr_space", +                  llvm::MDNode::get(VMContext, addressQuals)); +  Fn->setMetadata("kernel_arg_access_qual", +                  llvm::MDNode::get(VMContext, accessQuals)); +  Fn->setMetadata("kernel_arg_type", +                  llvm::MDNode::get(VMContext, argTypeNames)); +  Fn->setMetadata("kernel_arg_base_type", +                  llvm::MDNode::get(VMContext, argBaseTypeNames)); +  Fn->setMetadata("kernel_arg_type_qual", +                  llvm::MDNode::get(VMContext, argTypeQuals)); +  if (getCodeGenOpts().EmitOpenCLArgMetadata) +    Fn->setMetadata("kernel_arg_name", +                    llvm::MDNode::get(VMContext, argNames)); +} + +/// Determines whether the language options require us to model +/// unwind exceptions.  We treat -fexceptions as mandating this +/// except under the fragile ObjC ABI with only ObjC exceptions +/// enabled.  This means, for example, that C with -fexceptions +/// enables this. +static bool hasUnwindExceptions(const LangOptions &LangOpts) { +  // If exceptions are completely disabled, obviously this is false. +  if (!LangOpts.Exceptions) return false; + +  // If C++ exceptions are enabled, this is true. +  if (LangOpts.CXXExceptions) return true; + +  // If ObjC exceptions are enabled, this depends on the ABI. +  if (LangOpts.ObjCExceptions) { +    return LangOpts.ObjCRuntime.hasUnwindExceptions(); +  } + +  return true; +} + +static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, +                                                      const CXXMethodDecl *MD) { +  // Check that the type metadata can ever actually be used by a call. +  if (!CGM.getCodeGenOpts().LTOUnit || +      !CGM.HasHiddenLTOVisibility(MD->getParent())) +    return false; + +  // Only functions whose address can be taken with a member function pointer +  // need this sort of type metadata. +  return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && +         !isa<CXXDestructorDecl>(MD); +} + +std::vector<const CXXRecordDecl *> +CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { +  llvm::SetVector<const CXXRecordDecl *> MostBases; + +  std::function<void (const CXXRecordDecl *)> CollectMostBases; +  CollectMostBases = [&](const CXXRecordDecl *RD) { +    if (RD->getNumBases() == 0) +      MostBases.insert(RD); +    for (const CXXBaseSpecifier &B : RD->bases()) +      CollectMostBases(B.getType()->getAsCXXRecordDecl()); +  }; +  CollectMostBases(RD); +  return MostBases.takeVector(); +} + +void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, +                                                           llvm::Function *F) { +  llvm::AttrBuilder B; + +  if (CodeGenOpts.UnwindTables) +    B.addAttribute(llvm::Attribute::UWTable); + +  if (!hasUnwindExceptions(LangOpts)) +    B.addAttribute(llvm::Attribute::NoUnwind); + +  if (!D || !D->hasAttr<NoStackProtectorAttr>()) { +    if (LangOpts.getStackProtector() == LangOptions::SSPOn) +      B.addAttribute(llvm::Attribute::StackProtect); +    else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) +      B.addAttribute(llvm::Attribute::StackProtectStrong); +    else if (LangOpts.getStackProtector() == LangOptions::SSPReq) +      B.addAttribute(llvm::Attribute::StackProtectReq); +  } + +  if (!D) { +    // If we don't have a declaration to control inlining, the function isn't +    // explicitly marked as alwaysinline for semantic reasons, and inlining is +    // disabled, mark the function as noinline. +    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && +        CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) +      B.addAttribute(llvm::Attribute::NoInline); + +    F->addAttributes(llvm::AttributeList::FunctionIndex, B); +    return; +  } + +  // Track whether we need to add the optnone LLVM attribute, +  // starting with the default for this optimization level. +  bool ShouldAddOptNone = +      !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; +  // We can't add optnone in the following cases, it won't pass the verifier. +  ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); +  ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); +  ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); + +  if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { +    B.addAttribute(llvm::Attribute::OptimizeNone); + +    // OptimizeNone implies noinline; we should not be inlining such functions. +    B.addAttribute(llvm::Attribute::NoInline); +    assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && +           "OptimizeNone and AlwaysInline on same function!"); + +    // We still need to handle naked functions even though optnone subsumes +    // much of their semantics. +    if (D->hasAttr<NakedAttr>()) +      B.addAttribute(llvm::Attribute::Naked); + +    // OptimizeNone wins over OptimizeForSize and MinSize. +    F->removeFnAttr(llvm::Attribute::OptimizeForSize); +    F->removeFnAttr(llvm::Attribute::MinSize); +  } else if (D->hasAttr<NakedAttr>()) { +    // Naked implies noinline: we should not be inlining such functions. +    B.addAttribute(llvm::Attribute::Naked); +    B.addAttribute(llvm::Attribute::NoInline); +  } else if (D->hasAttr<NoDuplicateAttr>()) { +    B.addAttribute(llvm::Attribute::NoDuplicate); +  } else if (D->hasAttr<NoInlineAttr>()) { +    B.addAttribute(llvm::Attribute::NoInline); +  } else if (D->hasAttr<AlwaysInlineAttr>() && +             !F->hasFnAttribute(llvm::Attribute::NoInline)) { +    // (noinline wins over always_inline, and we can't specify both in IR) +    B.addAttribute(llvm::Attribute::AlwaysInline); +  } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { +    // If we're not inlining, then force everything that isn't always_inline to +    // carry an explicit noinline attribute. +    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) +      B.addAttribute(llvm::Attribute::NoInline); +  } else { +    // Otherwise, propagate the inline hint attribute and potentially use its +    // absence to mark things as noinline. +    if (auto *FD = dyn_cast<FunctionDecl>(D)) { +      // Search function and template pattern redeclarations for inline. +      auto CheckForInline = [](const FunctionDecl *FD) { +        auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { +          return Redecl->isInlineSpecified(); +        }; +        if (any_of(FD->redecls(), CheckRedeclForInline)) +          return true; +        const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); +        if (!Pattern) +          return false; +        return any_of(Pattern->redecls(), CheckRedeclForInline); +      }; +      if (CheckForInline(FD)) { +        B.addAttribute(llvm::Attribute::InlineHint); +      } else if (CodeGenOpts.getInlining() == +                     CodeGenOptions::OnlyHintInlining && +                 !FD->isInlined() && +                 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { +        B.addAttribute(llvm::Attribute::NoInline); +      } +    } +  } + +  // Add other optimization related attributes if we are optimizing this +  // function. +  if (!D->hasAttr<OptimizeNoneAttr>()) { +    if (D->hasAttr<ColdAttr>()) { +      if (!ShouldAddOptNone) +        B.addAttribute(llvm::Attribute::OptimizeForSize); +      B.addAttribute(llvm::Attribute::Cold); +    } + +    if (D->hasAttr<MinSizeAttr>()) +      B.addAttribute(llvm::Attribute::MinSize); +  } + +  F->addAttributes(llvm::AttributeList::FunctionIndex, B); + +  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); +  if (alignment) +    F->setAlignment(alignment); + +  if (!D->hasAttr<AlignedAttr>()) +    if (LangOpts.FunctionAlignment) +      F->setAlignment(1 << LangOpts.FunctionAlignment); + +  // Some C++ ABIs require 2-byte alignment for member functions, in order to +  // reserve a bit for differentiating between virtual and non-virtual member +  // functions. If the current target's C++ ABI requires this and this is a +  // member function, set its alignment accordingly. +  if (getTarget().getCXXABI().areMemberFunctionsAligned()) { +    if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) +      F->setAlignment(2); +  } + +  // In the cross-dso CFI mode, we want !type attributes on definitions only. +  if (CodeGenOpts.SanitizeCfiCrossDso) +    if (auto *FD = dyn_cast<FunctionDecl>(D)) +      CreateFunctionTypeMetadataForIcall(FD, F); + +  // Emit type metadata on member functions for member function pointer checks. +  // These are only ever necessary on definitions; we're guaranteed that the +  // definition will be present in the LTO unit as a result of LTO visibility. +  auto *MD = dyn_cast<CXXMethodDecl>(D); +  if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { +    for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { +      llvm::Metadata *Id = +          CreateMetadataIdentifierForType(Context.getMemberPointerType( +              MD->getType(), Context.getRecordType(Base).getTypePtr())); +      F->addTypeMetadata(0, Id); +    } +  } +} + +void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { +  const Decl *D = GD.getDecl(); +  if (dyn_cast_or_null<NamedDecl>(D)) +    setGVProperties(GV, GD); +  else +    GV->setVisibility(llvm::GlobalValue::DefaultVisibility); + +  if (D && D->hasAttr<UsedAttr>()) +    addUsedGlobal(GV); + +  if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { +    const auto *VD = cast<VarDecl>(D); +    if (VD->getType().isConstQualified() && +        VD->getStorageDuration() == SD_Static) +      addUsedGlobal(GV); +  } +} + +bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, +                                                llvm::AttrBuilder &Attrs) { +  // Add target-cpu and target-features attributes to functions. If +  // we have a decl for the function and it has a target attribute then +  // parse that and add it to the feature set. +  StringRef TargetCPU = getTarget().getTargetOpts().CPU; +  std::vector<std::string> Features; +  const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); +  FD = FD ? FD->getMostRecentDecl() : FD; +  const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; +  const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; +  bool AddedAttr = false; +  if (TD || SD) { +    llvm::StringMap<bool> FeatureMap; +    getFunctionFeatureMap(FeatureMap, GD); + +    // Produce the canonical string for this set of features. +    for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) +      Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); + +    // Now add the target-cpu and target-features to the function. +    // While we populated the feature map above, we still need to +    // get and parse the target attribute so we can get the cpu for +    // the function. +    if (TD) { +      TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); +      if (ParsedAttr.Architecture != "" && +          getTarget().isValidCPUName(ParsedAttr.Architecture)) +        TargetCPU = ParsedAttr.Architecture; +    } +  } else { +    // Otherwise just add the existing target cpu and target features to the +    // function. +    Features = getTarget().getTargetOpts().Features; +  } + +  if (TargetCPU != "") { +    Attrs.addAttribute("target-cpu", TargetCPU); +    AddedAttr = true; +  } +  if (!Features.empty()) { +    llvm::sort(Features); +    Attrs.addAttribute("target-features", llvm::join(Features, ",")); +    AddedAttr = true; +  } + +  return AddedAttr; +} + +void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, +                                          llvm::GlobalObject *GO) { +  const Decl *D = GD.getDecl(); +  SetCommonAttributes(GD, GO); + +  if (D) { +    if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { +      if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) +        GV->addAttribute("bss-section", SA->getName()); +      if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) +        GV->addAttribute("data-section", SA->getName()); +      if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) +        GV->addAttribute("rodata-section", SA->getName()); +    } + +    if (auto *F = dyn_cast<llvm::Function>(GO)) { +      if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) +        if (!D->getAttr<SectionAttr>()) +          F->addFnAttr("implicit-section-name", SA->getName()); + +      llvm::AttrBuilder Attrs; +      if (GetCPUAndFeaturesAttributes(GD, Attrs)) { +        // We know that GetCPUAndFeaturesAttributes will always have the +        // newest set, since it has the newest possible FunctionDecl, so the +        // new ones should replace the old. +        F->removeFnAttr("target-cpu"); +        F->removeFnAttr("target-features"); +        F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); +      } +    } + +    if (const auto *CSA = D->getAttr<CodeSegAttr>()) +      GO->setSection(CSA->getName()); +    else if (const auto *SA = D->getAttr<SectionAttr>()) +      GO->setSection(SA->getName()); +  } + +  getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); +} + +void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, +                                                  llvm::Function *F, +                                                  const CGFunctionInfo &FI) { +  const Decl *D = GD.getDecl(); +  SetLLVMFunctionAttributes(GD, FI, F); +  SetLLVMFunctionAttributesForDefinition(D, F); + +  F->setLinkage(llvm::Function::InternalLinkage); + +  setNonAliasAttributes(GD, F); +} + +static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { +  // Set linkage and visibility in case we never see a definition. +  LinkageInfo LV = ND->getLinkageAndVisibility(); +  // Don't set internal linkage on declarations. +  // "extern_weak" is overloaded in LLVM; we probably should have +  // separate linkage types for this. +  if (isExternallyVisible(LV.getLinkage()) && +      (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) +    GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); +} + +void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, +                                                       llvm::Function *F) { +  // Only if we are checking indirect calls. +  if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) +    return; + +  // Non-static class methods are handled via vtable or member function pointer +  // checks elsewhere. +  if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) +    return; + +  // Additionally, if building with cross-DSO support... +  if (CodeGenOpts.SanitizeCfiCrossDso) { +    // Skip available_externally functions. They won't be codegen'ed in the +    // current module anyway. +    if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) +      return; +  } + +  llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); +  F->addTypeMetadata(0, MD); +  F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); + +  // Emit a hash-based bit set entry for cross-DSO calls. +  if (CodeGenOpts.SanitizeCfiCrossDso) +    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) +      F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); +} + +void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, +                                          bool IsIncompleteFunction, +                                          bool IsThunk) { + +  if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { +    // If this is an intrinsic function, set the function's attributes +    // to the intrinsic's attributes. +    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); +    return; +  } + +  const auto *FD = cast<FunctionDecl>(GD.getDecl()); + +  if (!IsIncompleteFunction) +    SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); + +  // Add the Returned attribute for "this", except for iOS 5 and earlier +  // where substantial code, including the libstdc++ dylib, was compiled with +  // GCC and does not actually return "this". +  if (!IsThunk && getCXXABI().HasThisReturn(GD) && +      !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { +    assert(!F->arg_empty() && +           F->arg_begin()->getType() +             ->canLosslesslyBitCastTo(F->getReturnType()) && +           "unexpected this return"); +    F->addAttribute(1, llvm::Attribute::Returned); +  } + +  // Only a few attributes are set on declarations; these may later be +  // overridden by a definition. + +  setLinkageForGV(F, FD); +  setGVProperties(F, FD); + +  // Setup target-specific attributes. +  if (!IsIncompleteFunction && F->isDeclaration()) +    getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); + +  if (const auto *CSA = FD->getAttr<CodeSegAttr>()) +    F->setSection(CSA->getName()); +  else if (const auto *SA = FD->getAttr<SectionAttr>()) +     F->setSection(SA->getName()); + +  if (FD->isReplaceableGlobalAllocationFunction()) { +    // A replaceable global allocation function does not act like a builtin by +    // default, only if it is invoked by a new-expression or delete-expression. +    F->addAttribute(llvm::AttributeList::FunctionIndex, +                    llvm::Attribute::NoBuiltin); + +    // A sane operator new returns a non-aliasing pointer. +    // FIXME: Also add NonNull attribute to the return value +    // for the non-nothrow forms? +    auto Kind = FD->getDeclName().getCXXOverloadedOperator(); +    if (getCodeGenOpts().AssumeSaneOperatorNew && +        (Kind == OO_New || Kind == OO_Array_New)) +      F->addAttribute(llvm::AttributeList::ReturnIndex, +                      llvm::Attribute::NoAlias); +  } + +  if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) +    F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) +    if (MD->isVirtual()) +      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + +  // Don't emit entries for function declarations in the cross-DSO mode. This +  // is handled with better precision by the receiving DSO. +  if (!CodeGenOpts.SanitizeCfiCrossDso) +    CreateFunctionTypeMetadataForIcall(FD, F); + +  if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) +    getOpenMPRuntime().emitDeclareSimdFunction(FD, F); + +  if (const auto *CB = FD->getAttr<CallbackAttr>()) { +    // Annotate the callback behavior as metadata: +    //  - The callback callee (as argument number). +    //  - The callback payloads (as argument numbers). +    llvm::LLVMContext &Ctx = F->getContext(); +    llvm::MDBuilder MDB(Ctx); + +    // The payload indices are all but the first one in the encoding. The first +    // identifies the callback callee. +    int CalleeIdx = *CB->encoding_begin(); +    ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); +    F->addMetadata(llvm::LLVMContext::MD_callback, +                   *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( +                                               CalleeIdx, PayloadIndices, +                                               /* VarArgsArePassed */ false)})); +  } +} + +void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { +  assert(!GV->isDeclaration() && +         "Only globals with definition can force usage."); +  LLVMUsed.emplace_back(GV); +} + +void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { +  assert(!GV->isDeclaration() && +         "Only globals with definition can force usage."); +  LLVMCompilerUsed.emplace_back(GV); +} + +static void emitUsed(CodeGenModule &CGM, StringRef Name, +                     std::vector<llvm::WeakTrackingVH> &List) { +  // Don't create llvm.used if there is no need. +  if (List.empty()) +    return; + +  // Convert List to what ConstantArray needs. +  SmallVector<llvm::Constant*, 8> UsedArray; +  UsedArray.resize(List.size()); +  for (unsigned i = 0, e = List.size(); i != e; ++i) { +    UsedArray[i] = +        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( +            cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); +  } + +  if (UsedArray.empty()) +    return; +  llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); + +  auto *GV = new llvm::GlobalVariable( +      CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, +      llvm::ConstantArray::get(ATy, UsedArray), Name); + +  GV->setSection("llvm.metadata"); +} + +void CodeGenModule::emitLLVMUsed() { +  emitUsed(*this, "llvm.used", LLVMUsed); +  emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); +} + +void CodeGenModule::AppendLinkerOptions(StringRef Opts) { +  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); +  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); +} + +void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { +  llvm::SmallString<32> Opt; +  getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); +  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); +  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); +} + +void CodeGenModule::AddDependentLib(StringRef Lib) { +  auto &C = getLLVMContext(); +  if (getTarget().getTriple().isOSBinFormatELF()) { +      ELFDependentLibraries.push_back( +        llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); +    return; +  } + +  llvm::SmallString<24> Opt; +  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); +  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); +  LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); +} + +/// Add link options implied by the given module, including modules +/// it depends on, using a postorder walk. +static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, +                                    SmallVectorImpl<llvm::MDNode *> &Metadata, +                                    llvm::SmallPtrSet<Module *, 16> &Visited) { +  // Import this module's parent. +  if (Mod->Parent && Visited.insert(Mod->Parent).second) { +    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); +  } + +  // Import this module's dependencies. +  for (unsigned I = Mod->Imports.size(); I > 0; --I) { +    if (Visited.insert(Mod->Imports[I - 1]).second) +      addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); +  } + +  // Add linker options to link against the libraries/frameworks +  // described by this module. +  llvm::LLVMContext &Context = CGM.getLLVMContext(); +  bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); + +  // For modules that use export_as for linking, use that module +  // name instead. +  if (Mod->UseExportAsModuleLinkName) +    return; + +  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { +    // Link against a framework.  Frameworks are currently Darwin only, so we +    // don't to ask TargetCodeGenInfo for the spelling of the linker option. +    if (Mod->LinkLibraries[I-1].IsFramework) { +      llvm::Metadata *Args[2] = { +          llvm::MDString::get(Context, "-framework"), +          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; + +      Metadata.push_back(llvm::MDNode::get(Context, Args)); +      continue; +    } + +    // Link against a library. +    if (IsELF) { +      llvm::Metadata *Args[2] = { +          llvm::MDString::get(Context, "lib"), +          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), +      }; +      Metadata.push_back(llvm::MDNode::get(Context, Args)); +    } else { +      llvm::SmallString<24> Opt; +      CGM.getTargetCodeGenInfo().getDependentLibraryOption( +          Mod->LinkLibraries[I - 1].Library, Opt); +      auto *OptString = llvm::MDString::get(Context, Opt); +      Metadata.push_back(llvm::MDNode::get(Context, OptString)); +    } +  } +} + +void CodeGenModule::EmitModuleLinkOptions() { +  // Collect the set of all of the modules we want to visit to emit link +  // options, which is essentially the imported modules and all of their +  // non-explicit child modules. +  llvm::SetVector<clang::Module *> LinkModules; +  llvm::SmallPtrSet<clang::Module *, 16> Visited; +  SmallVector<clang::Module *, 16> Stack; + +  // Seed the stack with imported modules. +  for (Module *M : ImportedModules) { +    // Do not add any link flags when an implementation TU of a module imports +    // a header of that same module. +    if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && +        !getLangOpts().isCompilingModule()) +      continue; +    if (Visited.insert(M).second) +      Stack.push_back(M); +  } + +  // Find all of the modules to import, making a little effort to prune +  // non-leaf modules. +  while (!Stack.empty()) { +    clang::Module *Mod = Stack.pop_back_val(); + +    bool AnyChildren = false; + +    // Visit the submodules of this module. +    for (const auto &SM : Mod->submodules()) { +      // Skip explicit children; they need to be explicitly imported to be +      // linked against. +      if (SM->IsExplicit) +        continue; + +      if (Visited.insert(SM).second) { +        Stack.push_back(SM); +        AnyChildren = true; +      } +    } + +    // We didn't find any children, so add this module to the list of +    // modules to link against. +    if (!AnyChildren) { +      LinkModules.insert(Mod); +    } +  } + +  // Add link options for all of the imported modules in reverse topological +  // order.  We don't do anything to try to order import link flags with respect +  // to linker options inserted by things like #pragma comment(). +  SmallVector<llvm::MDNode *, 16> MetadataArgs; +  Visited.clear(); +  for (Module *M : LinkModules) +    if (Visited.insert(M).second) +      addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); +  std::reverse(MetadataArgs.begin(), MetadataArgs.end()); +  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); + +  // Add the linker options metadata flag. +  auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); +  for (auto *MD : LinkerOptionsMetadata) +    NMD->addOperand(MD); +} + +void CodeGenModule::EmitDeferred() { +  // Emit deferred declare target declarations. +  if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) +    getOpenMPRuntime().emitDeferredTargetDecls(); + +  // Emit code for any potentially referenced deferred decls.  Since a +  // previously unused static decl may become used during the generation of code +  // for a static function, iterate until no changes are made. + +  if (!DeferredVTables.empty()) { +    EmitDeferredVTables(); + +    // Emitting a vtable doesn't directly cause more vtables to +    // become deferred, although it can cause functions to be +    // emitted that then need those vtables. +    assert(DeferredVTables.empty()); +  } + +  // Stop if we're out of both deferred vtables and deferred declarations. +  if (DeferredDeclsToEmit.empty()) +    return; + +  // Grab the list of decls to emit. If EmitGlobalDefinition schedules more +  // work, it will not interfere with this. +  std::vector<GlobalDecl> CurDeclsToEmit; +  CurDeclsToEmit.swap(DeferredDeclsToEmit); + +  for (GlobalDecl &D : CurDeclsToEmit) { +    // We should call GetAddrOfGlobal with IsForDefinition set to true in order +    // to get GlobalValue with exactly the type we need, not something that +    // might had been created for another decl with the same mangled name but +    // different type. +    llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( +        GetAddrOfGlobal(D, ForDefinition)); + +    // In case of different address spaces, we may still get a cast, even with +    // IsForDefinition equal to true. Query mangled names table to get +    // GlobalValue. +    if (!GV) +      GV = GetGlobalValue(getMangledName(D)); + +    // Make sure GetGlobalValue returned non-null. +    assert(GV); + +    // Check to see if we've already emitted this.  This is necessary +    // for a couple of reasons: first, decls can end up in the +    // deferred-decls queue multiple times, and second, decls can end +    // up with definitions in unusual ways (e.g. by an extern inline +    // function acquiring a strong function redefinition).  Just +    // ignore these cases. +    if (!GV->isDeclaration()) +      continue; + +    // Otherwise, emit the definition and move on to the next one. +    EmitGlobalDefinition(D, GV); + +    // If we found out that we need to emit more decls, do that recursively. +    // This has the advantage that the decls are emitted in a DFS and related +    // ones are close together, which is convenient for testing. +    if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { +      EmitDeferred(); +      assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); +    } +  } +} + +void CodeGenModule::EmitVTablesOpportunistically() { +  // Try to emit external vtables as available_externally if they have emitted +  // all inlined virtual functions.  It runs after EmitDeferred() and therefore +  // is not allowed to create new references to things that need to be emitted +  // lazily. Note that it also uses fact that we eagerly emitting RTTI. + +  assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) +         && "Only emit opportunistic vtables with optimizations"); + +  for (const CXXRecordDecl *RD : OpportunisticVTables) { +    assert(getVTables().isVTableExternal(RD) && +           "This queue should only contain external vtables"); +    if (getCXXABI().canSpeculativelyEmitVTable(RD)) +      VTables.GenerateClassData(RD); +  } +  OpportunisticVTables.clear(); +} + +void CodeGenModule::EmitGlobalAnnotations() { +  if (Annotations.empty()) +    return; + +  // Create a new global variable for the ConstantStruct in the Module. +  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( +    Annotations[0]->getType(), Annotations.size()), Annotations); +  auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, +                                      llvm::GlobalValue::AppendingLinkage, +                                      Array, "llvm.global.annotations"); +  gv->setSection(AnnotationSection); +} + +llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { +  llvm::Constant *&AStr = AnnotationStrings[Str]; +  if (AStr) +    return AStr; + +  // Not found yet, create a new global. +  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); +  auto *gv = +      new llvm::GlobalVariable(getModule(), s->getType(), true, +                               llvm::GlobalValue::PrivateLinkage, s, ".str"); +  gv->setSection(AnnotationSection); +  gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  AStr = gv; +  return gv; +} + +llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { +  SourceManager &SM = getContext().getSourceManager(); +  PresumedLoc PLoc = SM.getPresumedLoc(Loc); +  if (PLoc.isValid()) +    return EmitAnnotationString(PLoc.getFilename()); +  return EmitAnnotationString(SM.getBufferName(Loc)); +} + +llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { +  SourceManager &SM = getContext().getSourceManager(); +  PresumedLoc PLoc = SM.getPresumedLoc(L); +  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : +    SM.getExpansionLineNumber(L); +  return llvm::ConstantInt::get(Int32Ty, LineNo); +} + +llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, +                                                const AnnotateAttr *AA, +                                                SourceLocation L) { +  // Get the globals for file name, annotation, and the line number. +  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), +                 *UnitGV = EmitAnnotationUnit(L), +                 *LineNoCst = EmitAnnotationLineNo(L); + +  // Create the ConstantStruct for the global annotation. +  llvm::Constant *Fields[4] = { +    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), +    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), +    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), +    LineNoCst +  }; +  return llvm::ConstantStruct::getAnon(Fields); +} + +void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, +                                         llvm::GlobalValue *GV) { +  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); +  // Get the struct elements for these annotations. +  for (const auto *I : D->specific_attrs<AnnotateAttr>()) +    Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); +} + +bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, +                                           llvm::Function *Fn, +                                           SourceLocation Loc) const { +  const auto &SanitizerBL = getContext().getSanitizerBlacklist(); +  // Blacklist by function name. +  if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) +    return true; +  // Blacklist by location. +  if (Loc.isValid()) +    return SanitizerBL.isBlacklistedLocation(Kind, Loc); +  // If location is unknown, this may be a compiler-generated function. Assume +  // it's located in the main file. +  auto &SM = Context.getSourceManager(); +  if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { +    return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); +  } +  return false; +} + +bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, +                                           SourceLocation Loc, QualType Ty, +                                           StringRef Category) const { +  // For now globals can be blacklisted only in ASan and KASan. +  const SanitizerMask EnabledAsanMask = +      LangOpts.Sanitize.Mask & +      (SanitizerKind::Address | SanitizerKind::KernelAddress | +       SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | +       SanitizerKind::MemTag); +  if (!EnabledAsanMask) +    return false; +  const auto &SanitizerBL = getContext().getSanitizerBlacklist(); +  if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) +    return true; +  if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) +    return true; +  // Check global type. +  if (!Ty.isNull()) { +    // Drill down the array types: if global variable of a fixed type is +    // blacklisted, we also don't instrument arrays of them. +    while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) +      Ty = AT->getElementType(); +    Ty = Ty.getCanonicalType().getUnqualifiedType(); +    // We allow to blacklist only record types (classes, structs etc.) +    if (Ty->isRecordType()) { +      std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); +      if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) +        return true; +    } +  } +  return false; +} + +bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, +                                   StringRef Category) const { +  const auto &XRayFilter = getContext().getXRayFilter(); +  using ImbueAttr = XRayFunctionFilter::ImbueAttribute; +  auto Attr = ImbueAttr::NONE; +  if (Loc.isValid()) +    Attr = XRayFilter.shouldImbueLocation(Loc, Category); +  if (Attr == ImbueAttr::NONE) +    Attr = XRayFilter.shouldImbueFunction(Fn->getName()); +  switch (Attr) { +  case ImbueAttr::NONE: +    return false; +  case ImbueAttr::ALWAYS: +    Fn->addFnAttr("function-instrument", "xray-always"); +    break; +  case ImbueAttr::ALWAYS_ARG1: +    Fn->addFnAttr("function-instrument", "xray-always"); +    Fn->addFnAttr("xray-log-args", "1"); +    break; +  case ImbueAttr::NEVER: +    Fn->addFnAttr("function-instrument", "xray-never"); +    break; +  } +  return true; +} + +bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { +  // Never defer when EmitAllDecls is specified. +  if (LangOpts.EmitAllDecls) +    return true; + +  if (CodeGenOpts.KeepStaticConsts) { +    const auto *VD = dyn_cast<VarDecl>(Global); +    if (VD && VD->getType().isConstQualified() && +        VD->getStorageDuration() == SD_Static) +      return true; +  } + +  return getContext().DeclMustBeEmitted(Global); +} + +bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { +  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) +    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) +      // Implicit template instantiations may change linkage if they are later +      // explicitly instantiated, so they should not be emitted eagerly. +      return false; +  if (const auto *VD = dyn_cast<VarDecl>(Global)) +    if (Context.getInlineVariableDefinitionKind(VD) == +        ASTContext::InlineVariableDefinitionKind::WeakUnknown) +      // A definition of an inline constexpr static data member may change +      // linkage later if it's redeclared outside the class. +      return false; +  // If OpenMP is enabled and threadprivates must be generated like TLS, delay +  // codegen for global variables, because they may be marked as threadprivate. +  if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && +      getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && +      !isTypeConstant(Global->getType(), false) && +      !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) +    return false; + +  return true; +} + +ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( +    const CXXUuidofExpr* E) { +  // Sema has verified that IIDSource has a __declspec(uuid()), and that its +  // well-formed. +  StringRef Uuid = E->getUuidStr(); +  std::string Name = "_GUID_" + Uuid.lower(); +  std::replace(Name.begin(), Name.end(), '-', '_'); + +  // The UUID descriptor should be pointer aligned. +  CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); + +  // Look for an existing global. +  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) +    return ConstantAddress(GV, Alignment); + +  llvm::Constant *Init = EmitUuidofInitializer(Uuid); +  assert(Init && "failed to initialize as constant"); + +  auto *GV = new llvm::GlobalVariable( +      getModule(), Init->getType(), +      /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); +  if (supportsCOMDAT()) +    GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); +  setDSOLocal(GV); +  return ConstantAddress(GV, Alignment); +} + +ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { +  const AliasAttr *AA = VD->getAttr<AliasAttr>(); +  assert(AA && "No alias?"); + +  CharUnits Alignment = getContext().getDeclAlign(VD); +  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); + +  // See if there is already something with the target's name in the module. +  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); +  if (Entry) { +    unsigned AS = getContext().getTargetAddressSpace(VD->getType()); +    auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); +    return ConstantAddress(Ptr, Alignment); +  } + +  llvm::Constant *Aliasee; +  if (isa<llvm::FunctionType>(DeclTy)) +    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, +                                      GlobalDecl(cast<FunctionDecl>(VD)), +                                      /*ForVTable=*/false); +  else +    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), +                                    llvm::PointerType::getUnqual(DeclTy), +                                    nullptr); + +  auto *F = cast<llvm::GlobalValue>(Aliasee); +  F->setLinkage(llvm::Function::ExternalWeakLinkage); +  WeakRefReferences.insert(F); + +  return ConstantAddress(Aliasee, Alignment); +} + +void CodeGenModule::EmitGlobal(GlobalDecl GD) { +  const auto *Global = cast<ValueDecl>(GD.getDecl()); + +  // Weak references don't produce any output by themselves. +  if (Global->hasAttr<WeakRefAttr>()) +    return; + +  // If this is an alias definition (which otherwise looks like a declaration) +  // emit it now. +  if (Global->hasAttr<AliasAttr>()) +    return EmitAliasDefinition(GD); + +  // IFunc like an alias whose value is resolved at runtime by calling resolver. +  if (Global->hasAttr<IFuncAttr>()) +    return emitIFuncDefinition(GD); + +  // If this is a cpu_dispatch multiversion function, emit the resolver. +  if (Global->hasAttr<CPUDispatchAttr>()) +    return emitCPUDispatchDefinition(GD); + +  // If this is CUDA, be selective about which declarations we emit. +  if (LangOpts.CUDA) { +    if (LangOpts.CUDAIsDevice) { +      if (!Global->hasAttr<CUDADeviceAttr>() && +          !Global->hasAttr<CUDAGlobalAttr>() && +          !Global->hasAttr<CUDAConstantAttr>() && +          !Global->hasAttr<CUDASharedAttr>() && +          !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) +        return; +    } else { +      // We need to emit host-side 'shadows' for all global +      // device-side variables because the CUDA runtime needs their +      // size and host-side address in order to provide access to +      // their device-side incarnations. + +      // So device-only functions are the only things we skip. +      if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && +          Global->hasAttr<CUDADeviceAttr>()) +        return; + +      assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && +             "Expected Variable or Function"); +    } +  } + +  if (LangOpts.OpenMP) { +    // If this is OpenMP device, check if it is legal to emit this global +    // normally. +    if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) +      return; +    if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { +      if (MustBeEmitted(Global)) +        EmitOMPDeclareReduction(DRD); +      return; +    } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { +      if (MustBeEmitted(Global)) +        EmitOMPDeclareMapper(DMD); +      return; +    } +  } + +  // Ignore declarations, they will be emitted on their first use. +  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { +    // Forward declarations are emitted lazily on first use. +    if (!FD->doesThisDeclarationHaveABody()) { +      if (!FD->doesDeclarationForceExternallyVisibleDefinition()) +        return; + +      StringRef MangledName = getMangledName(GD); + +      // Compute the function info and LLVM type. +      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); +      llvm::Type *Ty = getTypes().GetFunctionType(FI); + +      GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, +                              /*DontDefer=*/false); +      return; +    } +  } else { +    const auto *VD = cast<VarDecl>(Global); +    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); +    if (VD->isThisDeclarationADefinition() != VarDecl::Definition && +        !Context.isMSStaticDataMemberInlineDefinition(VD)) { +      if (LangOpts.OpenMP) { +        // Emit declaration of the must-be-emitted declare target variable. +        if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = +                OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { +          bool UnifiedMemoryEnabled = +              getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); +          if (*Res == OMPDeclareTargetDeclAttr::MT_To && +              !UnifiedMemoryEnabled) { +            (void)GetAddrOfGlobalVar(VD); +          } else { +            assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || +                    (*Res == OMPDeclareTargetDeclAttr::MT_To && +                     UnifiedMemoryEnabled)) && +                   "Link clause or to clause with unified memory expected."); +            (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); +          } + +          return; +        } +      } +      // If this declaration may have caused an inline variable definition to +      // change linkage, make sure that it's emitted. +      if (Context.getInlineVariableDefinitionKind(VD) == +          ASTContext::InlineVariableDefinitionKind::Strong) +        GetAddrOfGlobalVar(VD); +      return; +    } +  } + +  // Defer code generation to first use when possible, e.g. if this is an inline +  // function. If the global must always be emitted, do it eagerly if possible +  // to benefit from cache locality. +  if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { +    // Emit the definition if it can't be deferred. +    EmitGlobalDefinition(GD); +    return; +  } + +  // If we're deferring emission of a C++ variable with an +  // initializer, remember the order in which it appeared in the file. +  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && +      cast<VarDecl>(Global)->hasInit()) { +    DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); +    CXXGlobalInits.push_back(nullptr); +  } + +  StringRef MangledName = getMangledName(GD); +  if (GetGlobalValue(MangledName) != nullptr) { +    // The value has already been used and should therefore be emitted. +    addDeferredDeclToEmit(GD); +  } else if (MustBeEmitted(Global)) { +    // The value must be emitted, but cannot be emitted eagerly. +    assert(!MayBeEmittedEagerly(Global)); +    addDeferredDeclToEmit(GD); +  } else { +    // Otherwise, remember that we saw a deferred decl with this name.  The +    // first use of the mangled name will cause it to move into +    // DeferredDeclsToEmit. +    DeferredDecls[MangledName] = GD; +  } +} + +// Check if T is a class type with a destructor that's not dllimport. +static bool HasNonDllImportDtor(QualType T) { +  if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) +    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) +      if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) +        return true; + +  return false; +} + +namespace { +  struct FunctionIsDirectlyRecursive +      : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { +    const StringRef Name; +    const Builtin::Context &BI; +    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) +        : Name(N), BI(C) {} + +    bool VisitCallExpr(const CallExpr *E) { +      const FunctionDecl *FD = E->getDirectCallee(); +      if (!FD) +        return false; +      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); +      if (Attr && Name == Attr->getLabel()) +        return true; +      unsigned BuiltinID = FD->getBuiltinID(); +      if (!BuiltinID || !BI.isLibFunction(BuiltinID)) +        return false; +      StringRef BuiltinName = BI.getName(BuiltinID); +      if (BuiltinName.startswith("__builtin_") && +          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { +        return true; +      } +      return false; +    } + +    bool VisitStmt(const Stmt *S) { +      for (const Stmt *Child : S->children()) +        if (Child && this->Visit(Child)) +          return true; +      return false; +    } +  }; + +  // Make sure we're not referencing non-imported vars or functions. +  struct DLLImportFunctionVisitor +      : public RecursiveASTVisitor<DLLImportFunctionVisitor> { +    bool SafeToInline = true; + +    bool shouldVisitImplicitCode() const { return true; } + +    bool VisitVarDecl(VarDecl *VD) { +      if (VD->getTLSKind()) { +        // A thread-local variable cannot be imported. +        SafeToInline = false; +        return SafeToInline; +      } + +      // A variable definition might imply a destructor call. +      if (VD->isThisDeclarationADefinition()) +        SafeToInline = !HasNonDllImportDtor(VD->getType()); + +      return SafeToInline; +    } + +    bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { +      if (const auto *D = E->getTemporary()->getDestructor()) +        SafeToInline = D->hasAttr<DLLImportAttr>(); +      return SafeToInline; +    } + +    bool VisitDeclRefExpr(DeclRefExpr *E) { +      ValueDecl *VD = E->getDecl(); +      if (isa<FunctionDecl>(VD)) +        SafeToInline = VD->hasAttr<DLLImportAttr>(); +      else if (VarDecl *V = dyn_cast<VarDecl>(VD)) +        SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); +      return SafeToInline; +    } + +    bool VisitCXXConstructExpr(CXXConstructExpr *E) { +      SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); +      return SafeToInline; +    } + +    bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { +      CXXMethodDecl *M = E->getMethodDecl(); +      if (!M) { +        // Call through a pointer to member function. This is safe to inline. +        SafeToInline = true; +      } else { +        SafeToInline = M->hasAttr<DLLImportAttr>(); +      } +      return SafeToInline; +    } + +    bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { +      SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); +      return SafeToInline; +    } + +    bool VisitCXXNewExpr(CXXNewExpr *E) { +      SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); +      return SafeToInline; +    } +  }; +} + +// isTriviallyRecursive - Check if this function calls another +// decl that, because of the asm attribute or the other decl being a builtin, +// ends up pointing to itself. +bool +CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { +  StringRef Name; +  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { +    // asm labels are a special kind of mangling we have to support. +    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); +    if (!Attr) +      return false; +    Name = Attr->getLabel(); +  } else { +    Name = FD->getName(); +  } + +  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); +  const Stmt *Body = FD->getBody(); +  return Body ? Walker.Visit(Body) : false; +} + +bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { +  if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) +    return true; +  const auto *F = cast<FunctionDecl>(GD.getDecl()); +  if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) +    return false; + +  if (F->hasAttr<DLLImportAttr>()) { +    // Check whether it would be safe to inline this dllimport function. +    DLLImportFunctionVisitor Visitor; +    Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); +    if (!Visitor.SafeToInline) +      return false; + +    if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { +      // Implicit destructor invocations aren't captured in the AST, so the +      // check above can't see them. Check for them manually here. +      for (const Decl *Member : Dtor->getParent()->decls()) +        if (isa<FieldDecl>(Member)) +          if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) +            return false; +      for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) +        if (HasNonDllImportDtor(B.getType())) +          return false; +    } +  } + +  // PR9614. Avoid cases where the source code is lying to us. An available +  // externally function should have an equivalent function somewhere else, +  // but a function that calls itself is clearly not equivalent to the real +  // implementation. +  // This happens in glibc's btowc and in some configure checks. +  return !isTriviallyRecursive(F); +} + +bool CodeGenModule::shouldOpportunisticallyEmitVTables() { +  return CodeGenOpts.OptimizationLevel > 0; +} + +void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, +                                                       llvm::GlobalValue *GV) { +  const auto *FD = cast<FunctionDecl>(GD.getDecl()); + +  if (FD->isCPUSpecificMultiVersion()) { +    auto *Spec = FD->getAttr<CPUSpecificAttr>(); +    for (unsigned I = 0; I < Spec->cpus_size(); ++I) +      EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); +    // Requires multiple emits. +  } else +    EmitGlobalFunctionDefinition(GD, GV); +} + +void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { +  const auto *D = cast<ValueDecl>(GD.getDecl()); + +  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), +                                 Context.getSourceManager(), +                                 "Generating code for declaration"); + +  if (const auto *FD = dyn_cast<FunctionDecl>(D)) { +    // At -O0, don't generate IR for functions with available_externally +    // linkage. +    if (!shouldEmitFunction(GD)) +      return; + +    llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { +      std::string Name; +      llvm::raw_string_ostream OS(Name); +      FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), +                               /*Qualified=*/true); +      return Name; +    }); + +    if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { +      // Make sure to emit the definition(s) before we emit the thunks. +      // This is necessary for the generation of certain thunks. +      if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) +        ABI->emitCXXStructor(GD); +      else if (FD->isMultiVersion()) +        EmitMultiVersionFunctionDefinition(GD, GV); +      else +        EmitGlobalFunctionDefinition(GD, GV); + +      if (Method->isVirtual()) +        getVTables().EmitThunks(GD); + +      return; +    } + +    if (FD->isMultiVersion()) +      return EmitMultiVersionFunctionDefinition(GD, GV); +    return EmitGlobalFunctionDefinition(GD, GV); +  } + +  if (const auto *VD = dyn_cast<VarDecl>(D)) +    return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); + +  llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); +} + +static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, +                                                      llvm::Function *NewFn); + +static unsigned +TargetMVPriority(const TargetInfo &TI, +                 const CodeGenFunction::MultiVersionResolverOption &RO) { +  unsigned Priority = 0; +  for (StringRef Feat : RO.Conditions.Features) +    Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); + +  if (!RO.Conditions.Architecture.empty()) +    Priority = std::max( +        Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); +  return Priority; +} + +void CodeGenModule::emitMultiVersionFunctions() { +  for (GlobalDecl GD : MultiVersionFuncs) { +    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; +    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); +    getContext().forEachMultiversionedFunctionVersion( +        FD, [this, &GD, &Options](const FunctionDecl *CurFD) { +          GlobalDecl CurGD{ +              (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; +          StringRef MangledName = getMangledName(CurGD); +          llvm::Constant *Func = GetGlobalValue(MangledName); +          if (!Func) { +            if (CurFD->isDefined()) { +              EmitGlobalFunctionDefinition(CurGD, nullptr); +              Func = GetGlobalValue(MangledName); +            } else { +              const CGFunctionInfo &FI = +                  getTypes().arrangeGlobalDeclaration(GD); +              llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); +              Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, +                                       /*DontDefer=*/false, ForDefinition); +            } +            assert(Func && "This should have just been created"); +          } + +          const auto *TA = CurFD->getAttr<TargetAttr>(); +          llvm::SmallVector<StringRef, 8> Feats; +          TA->getAddedFeatures(Feats); + +          Options.emplace_back(cast<llvm::Function>(Func), +                               TA->getArchitecture(), Feats); +        }); + +    llvm::Function *ResolverFunc; +    const TargetInfo &TI = getTarget(); + +    if (TI.supportsIFunc() || FD->isTargetMultiVersion()) +      ResolverFunc = cast<llvm::Function>( +          GetGlobalValue((getMangledName(GD) + ".resolver").str())); +    else +      ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); + +    if (supportsCOMDAT()) +      ResolverFunc->setComdat( +          getModule().getOrInsertComdat(ResolverFunc->getName())); + +    llvm::stable_sort( +        Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, +                       const CodeGenFunction::MultiVersionResolverOption &RHS) { +          return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); +        }); +    CodeGenFunction CGF(*this); +    CGF.EmitMultiVersionResolver(ResolverFunc, Options); +  } +} + +void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { +  const auto *FD = cast<FunctionDecl>(GD.getDecl()); +  assert(FD && "Not a FunctionDecl?"); +  const auto *DD = FD->getAttr<CPUDispatchAttr>(); +  assert(DD && "Not a cpu_dispatch Function?"); +  llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); + +  if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { +    const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); +    DeclTy = getTypes().GetFunctionType(FInfo); +  } + +  StringRef ResolverName = getMangledName(GD); + +  llvm::Type *ResolverType; +  GlobalDecl ResolverGD; +  if (getTarget().supportsIFunc()) +    ResolverType = llvm::FunctionType::get( +        llvm::PointerType::get(DeclTy, +                               Context.getTargetAddressSpace(FD->getType())), +        false); +  else { +    ResolverType = DeclTy; +    ResolverGD = GD; +  } + +  auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( +      ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); + +  SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; +  const TargetInfo &Target = getTarget(); +  unsigned Index = 0; +  for (const IdentifierInfo *II : DD->cpus()) { +    // Get the name of the target function so we can look it up/create it. +    std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + +                              getCPUSpecificMangling(*this, II->getName()); + +    llvm::Constant *Func = GetGlobalValue(MangledName); + +    if (!Func) { +      GlobalDecl ExistingDecl = Manglings.lookup(MangledName); +      if (ExistingDecl.getDecl() && +          ExistingDecl.getDecl()->getAsFunction()->isDefined()) { +        EmitGlobalFunctionDefinition(ExistingDecl, nullptr); +        Func = GetGlobalValue(MangledName); +      } else { +        if (!ExistingDecl.getDecl()) +          ExistingDecl = GD.getWithMultiVersionIndex(Index); + +      Func = GetOrCreateLLVMFunction( +          MangledName, DeclTy, ExistingDecl, +          /*ForVTable=*/false, /*DontDefer=*/true, +          /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); +      } +    } + +    llvm::SmallVector<StringRef, 32> Features; +    Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); +    llvm::transform(Features, Features.begin(), +                    [](StringRef Str) { return Str.substr(1); }); +    Features.erase(std::remove_if( +        Features.begin(), Features.end(), [&Target](StringRef Feat) { +          return !Target.validateCpuSupports(Feat); +        }), Features.end()); +    Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); +    ++Index; +  } + +  llvm::sort( +      Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, +                  const CodeGenFunction::MultiVersionResolverOption &RHS) { +        return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > +               CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); +      }); + +  // If the list contains multiple 'default' versions, such as when it contains +  // 'pentium' and 'generic', don't emit the call to the generic one (since we +  // always run on at least a 'pentium'). We do this by deleting the 'least +  // advanced' (read, lowest mangling letter). +  while (Options.size() > 1 && +         CodeGenFunction::GetX86CpuSupportsMask( +             (Options.end() - 2)->Conditions.Features) == 0) { +    StringRef LHSName = (Options.end() - 2)->Function->getName(); +    StringRef RHSName = (Options.end() - 1)->Function->getName(); +    if (LHSName.compare(RHSName) < 0) +      Options.erase(Options.end() - 2); +    else +      Options.erase(Options.end() - 1); +  } + +  CodeGenFunction CGF(*this); +  CGF.EmitMultiVersionResolver(ResolverFunc, Options); +} + +/// If a dispatcher for the specified mangled name is not in the module, create +/// and return an llvm Function with the specified type. +llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( +    GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { +  std::string MangledName = +      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); + +  // Holds the name of the resolver, in ifunc mode this is the ifunc (which has +  // a separate resolver). +  std::string ResolverName = MangledName; +  if (getTarget().supportsIFunc()) +    ResolverName += ".ifunc"; +  else if (FD->isTargetMultiVersion()) +    ResolverName += ".resolver"; + +  // If this already exists, just return that one. +  if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) +    return ResolverGV; + +  // Since this is the first time we've created this IFunc, make sure +  // that we put this multiversioned function into the list to be +  // replaced later if necessary (target multiversioning only). +  if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) +    MultiVersionFuncs.push_back(GD); + +  if (getTarget().supportsIFunc()) { +    llvm::Type *ResolverType = llvm::FunctionType::get( +        llvm::PointerType::get( +            DeclTy, getContext().getTargetAddressSpace(FD->getType())), +        false); +    llvm::Constant *Resolver = GetOrCreateLLVMFunction( +        MangledName + ".resolver", ResolverType, GlobalDecl{}, +        /*ForVTable=*/false); +    llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( +        DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); +    GIF->setName(ResolverName); +    SetCommonAttributes(FD, GIF); + +    return GIF; +  } + +  llvm::Constant *Resolver = GetOrCreateLLVMFunction( +      ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); +  assert(isa<llvm::GlobalValue>(Resolver) && +         "Resolver should be created for the first time"); +  SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); +  return Resolver; +} + +/// GetOrCreateLLVMFunction - If the specified mangled name is not in the +/// module, create and return an llvm Function with the specified type. If there +/// is something in the module with the specified name, return it potentially +/// bitcasted to the right type. +/// +/// If D is non-null, it specifies a decl that correspond to this.  This is used +/// to set the attributes on the function when it is first created. +llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( +    StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, +    bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, +    ForDefinition_t IsForDefinition) { +  const Decl *D = GD.getDecl(); + +  // Any attempts to use a MultiVersion function should result in retrieving +  // the iFunc instead. Name Mangling will handle the rest of the changes. +  if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { +    // For the device mark the function as one that should be emitted. +    if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && +        !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && +        !DontDefer && !IsForDefinition) { +      if (const FunctionDecl *FDDef = FD->getDefinition()) { +        GlobalDecl GDDef; +        if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) +          GDDef = GlobalDecl(CD, GD.getCtorType()); +        else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) +          GDDef = GlobalDecl(DD, GD.getDtorType()); +        else +          GDDef = GlobalDecl(FDDef); +        EmitGlobal(GDDef); +      } +    } + +    if (FD->isMultiVersion()) { +      const auto *TA = FD->getAttr<TargetAttr>(); +      if (TA && TA->isDefaultVersion()) +        UpdateMultiVersionNames(GD, FD); +      if (!IsForDefinition) +        return GetOrCreateMultiVersionResolver(GD, Ty, FD); +    } +  } + +  // Lookup the entry, lazily creating it if necessary. +  llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +  if (Entry) { +    if (WeakRefReferences.erase(Entry)) { +      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); +      if (FD && !FD->hasAttr<WeakAttr>()) +        Entry->setLinkage(llvm::Function::ExternalLinkage); +    } + +    // Handle dropped DLL attributes. +    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { +      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); +      setDSOLocal(Entry); +    } + +    // If there are two attempts to define the same mangled name, issue an +    // error. +    if (IsForDefinition && !Entry->isDeclaration()) { +      GlobalDecl OtherGD; +      // Check that GD is not yet in DiagnosedConflictingDefinitions is required +      // to make sure that we issue an error only once. +      if (lookupRepresentativeDecl(MangledName, OtherGD) && +          (GD.getCanonicalDecl().getDecl() != +           OtherGD.getCanonicalDecl().getDecl()) && +          DiagnosedConflictingDefinitions.insert(GD).second) { +        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) +            << MangledName; +        getDiags().Report(OtherGD.getDecl()->getLocation(), +                          diag::note_previous_definition); +      } +    } + +    if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && +        (Entry->getType()->getElementType() == Ty)) { +      return Entry; +    } + +    // Make sure the result is of the correct type. +    // (If function is requested for a definition, we always need to create a new +    // function, not just return a bitcast.) +    if (!IsForDefinition) +      return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); +  } + +  // This function doesn't have a complete type (for example, the return +  // type is an incomplete struct). Use a fake type instead, and make +  // sure not to try to set attributes. +  bool IsIncompleteFunction = false; + +  llvm::FunctionType *FTy; +  if (isa<llvm::FunctionType>(Ty)) { +    FTy = cast<llvm::FunctionType>(Ty); +  } else { +    FTy = llvm::FunctionType::get(VoidTy, false); +    IsIncompleteFunction = true; +  } + +  llvm::Function *F = +      llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, +                             Entry ? StringRef() : MangledName, &getModule()); + +  // If we already created a function with the same mangled name (but different +  // type) before, take its name and add it to the list of functions to be +  // replaced with F at the end of CodeGen. +  // +  // This happens if there is a prototype for a function (e.g. "int f()") and +  // then a definition of a different type (e.g. "int f(int x)"). +  if (Entry) { +    F->takeName(Entry); + +    // This might be an implementation of a function without a prototype, in +    // which case, try to do special replacement of calls which match the new +    // prototype.  The really key thing here is that we also potentially drop +    // arguments from the call site so as to make a direct call, which makes the +    // inliner happier and suppresses a number of optimizer warnings (!) about +    // dropping arguments. +    if (!Entry->use_empty()) { +      ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); +      Entry->removeDeadConstantUsers(); +    } + +    llvm::Constant *BC = llvm::ConstantExpr::getBitCast( +        F, Entry->getType()->getElementType()->getPointerTo()); +    addGlobalValReplacement(Entry, BC); +  } + +  assert(F->getName() == MangledName && "name was uniqued!"); +  if (D) +    SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); +  if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { +    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); +    F->addAttributes(llvm::AttributeList::FunctionIndex, B); +  } + +  if (!DontDefer) { +    // All MSVC dtors other than the base dtor are linkonce_odr and delegate to +    // each other bottoming out with the base dtor.  Therefore we emit non-base +    // dtors on usage, even if there is no dtor definition in the TU. +    if (D && isa<CXXDestructorDecl>(D) && +        getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), +                                           GD.getDtorType())) +      addDeferredDeclToEmit(GD); + +    // This is the first use or definition of a mangled name.  If there is a +    // deferred decl with this name, remember that we need to emit it at the end +    // of the file. +    auto DDI = DeferredDecls.find(MangledName); +    if (DDI != DeferredDecls.end()) { +      // Move the potentially referenced deferred decl to the +      // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we +      // don't need it anymore). +      addDeferredDeclToEmit(DDI->second); +      DeferredDecls.erase(DDI); + +      // Otherwise, there are cases we have to worry about where we're +      // using a declaration for which we must emit a definition but where +      // we might not find a top-level definition: +      //   - member functions defined inline in their classes +      //   - friend functions defined inline in some class +      //   - special member functions with implicit definitions +      // If we ever change our AST traversal to walk into class methods, +      // this will be unnecessary. +      // +      // We also don't emit a definition for a function if it's going to be an +      // entry in a vtable, unless it's already marked as used. +    } else if (getLangOpts().CPlusPlus && D) { +      // Look for a declaration that's lexically in a record. +      for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; +           FD = FD->getPreviousDecl()) { +        if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { +          if (FD->doesThisDeclarationHaveABody()) { +            addDeferredDeclToEmit(GD.getWithDecl(FD)); +            break; +          } +        } +      } +    } +  } + +  // Make sure the result is of the requested type. +  if (!IsIncompleteFunction) { +    assert(F->getType()->getElementType() == Ty); +    return F; +  } + +  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); +  return llvm::ConstantExpr::getBitCast(F, PTy); +} + +/// GetAddrOfFunction - Return the address of the given function.  If Ty is +/// non-null, then this function will use the specified type if it has to +/// create it (this occurs when we see a definition of the function). +llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, +                                                 llvm::Type *Ty, +                                                 bool ForVTable, +                                                 bool DontDefer, +                                              ForDefinition_t IsForDefinition) { +  // If there was no specific requested type, just convert it now. +  if (!Ty) { +    const auto *FD = cast<FunctionDecl>(GD.getDecl()); +    Ty = getTypes().ConvertType(FD->getType()); +  } + +  // Devirtualized destructor calls may come through here instead of via +  // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead +  // of the complete destructor when necessary. +  if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { +    if (getTarget().getCXXABI().isMicrosoft() && +        GD.getDtorType() == Dtor_Complete && +        DD->getParent()->getNumVBases() == 0) +      GD = GlobalDecl(DD, Dtor_Base); +  } + +  StringRef MangledName = getMangledName(GD); +  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, +                                 /*IsThunk=*/false, llvm::AttributeList(), +                                 IsForDefinition); +} + +static const FunctionDecl * +GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { +  TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); +  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); + +  IdentifierInfo &CII = C.Idents.get(Name); +  for (const auto &Result : DC->lookup(&CII)) +    if (const auto FD = dyn_cast<FunctionDecl>(Result)) +      return FD; + +  if (!C.getLangOpts().CPlusPlus) +    return nullptr; + +  // Demangle the premangled name from getTerminateFn() +  IdentifierInfo &CXXII = +      (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") +          ? C.Idents.get("terminate") +          : C.Idents.get(Name); + +  for (const auto &N : {"__cxxabiv1", "std"}) { +    IdentifierInfo &NS = C.Idents.get(N); +    for (const auto &Result : DC->lookup(&NS)) { +      NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); +      if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) +        for (const auto &Result : LSD->lookup(&NS)) +          if ((ND = dyn_cast<NamespaceDecl>(Result))) +            break; + +      if (ND) +        for (const auto &Result : ND->lookup(&CXXII)) +          if (const auto *FD = dyn_cast<FunctionDecl>(Result)) +            return FD; +    } +  } + +  return nullptr; +} + +/// CreateRuntimeFunction - Create a new runtime function with the specified +/// type and name. +llvm::FunctionCallee +CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, +                                     llvm::AttributeList ExtraAttrs, +                                     bool Local) { +  llvm::Constant *C = +      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, +                              /*DontDefer=*/false, /*IsThunk=*/false, +                              ExtraAttrs); + +  if (auto *F = dyn_cast<llvm::Function>(C)) { +    if (F->empty()) { +      F->setCallingConv(getRuntimeCC()); + +      // In Windows Itanium environments, try to mark runtime functions +      // dllimport. For Mingw and MSVC, don't. We don't really know if the user +      // will link their standard library statically or dynamically. Marking +      // functions imported when they are not imported can cause linker errors +      // and warnings. +      if (!Local && getTriple().isWindowsItaniumEnvironment() && +          !getCodeGenOpts().LTOVisibilityPublicStd) { +        const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); +        if (!FD || FD->hasAttr<DLLImportAttr>()) { +          F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); +          F->setLinkage(llvm::GlobalValue::ExternalLinkage); +        } +      } +      setDSOLocal(F); +    } +  } + +  return {FTy, C}; +} + +/// isTypeConstant - Determine whether an object of this type can be emitted +/// as a constant. +/// +/// If ExcludeCtor is true, the duration when the object's constructor runs +/// will not be considered. The caller will need to verify that the object is +/// not written to during its construction. +bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { +  if (!Ty.isConstant(Context) && !Ty->isReferenceType()) +    return false; + +  if (Context.getLangOpts().CPlusPlus) { +    if (const CXXRecordDecl *Record +          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) +      return ExcludeCtor && !Record->hasMutableFields() && +             Record->hasTrivialDestructor(); +  } + +  return true; +} + +/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, +/// create and return an llvm GlobalVariable with the specified type.  If there +/// is something in the module with the specified name, return it potentially +/// bitcasted to the right type. +/// +/// If D is non-null, it specifies a decl that correspond to this.  This is used +/// to set the attributes on the global when it is first created. +/// +/// If IsForDefinition is true, it is guaranteed that an actual global with +/// type Ty will be returned, not conversion of a variable with the same +/// mangled name but some other type. +llvm::Constant * +CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, +                                     llvm::PointerType *Ty, +                                     const VarDecl *D, +                                     ForDefinition_t IsForDefinition) { +  // Lookup the entry, lazily creating it if necessary. +  llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +  if (Entry) { +    if (WeakRefReferences.erase(Entry)) { +      if (D && !D->hasAttr<WeakAttr>()) +        Entry->setLinkage(llvm::Function::ExternalLinkage); +    } + +    // Handle dropped DLL attributes. +    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) +      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); + +    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) +      getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); + +    if (Entry->getType() == Ty) +      return Entry; + +    // If there are two attempts to define the same mangled name, issue an +    // error. +    if (IsForDefinition && !Entry->isDeclaration()) { +      GlobalDecl OtherGD; +      const VarDecl *OtherD; + +      // Check that D is not yet in DiagnosedConflictingDefinitions is required +      // to make sure that we issue an error only once. +      if (D && lookupRepresentativeDecl(MangledName, OtherGD) && +          (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && +          (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && +          OtherD->hasInit() && +          DiagnosedConflictingDefinitions.insert(D).second) { +        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) +            << MangledName; +        getDiags().Report(OtherGD.getDecl()->getLocation(), +                          diag::note_previous_definition); +      } +    } + +    // Make sure the result is of the correct type. +    if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) +      return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); + +    // (If global is requested for a definition, we always need to create a new +    // global, not just return a bitcast.) +    if (!IsForDefinition) +      return llvm::ConstantExpr::getBitCast(Entry, Ty); +  } + +  auto AddrSpace = GetGlobalVarAddressSpace(D); +  auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); + +  auto *GV = new llvm::GlobalVariable( +      getModule(), Ty->getElementType(), false, +      llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, +      llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); + +  // If we already created a global with the same mangled name (but different +  // type) before, take its name and remove it from its parent. +  if (Entry) { +    GV->takeName(Entry); + +    if (!Entry->use_empty()) { +      llvm::Constant *NewPtrForOldDecl = +          llvm::ConstantExpr::getBitCast(GV, Entry->getType()); +      Entry->replaceAllUsesWith(NewPtrForOldDecl); +    } + +    Entry->eraseFromParent(); +  } + +  // This is the first use or definition of a mangled name.  If there is a +  // deferred decl with this name, remember that we need to emit it at the end +  // of the file. +  auto DDI = DeferredDecls.find(MangledName); +  if (DDI != DeferredDecls.end()) { +    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit +    // list, and remove it from DeferredDecls (since we don't need it anymore). +    addDeferredDeclToEmit(DDI->second); +    DeferredDecls.erase(DDI); +  } + +  // Handle things which are present even on external declarations. +  if (D) { +    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) +      getOpenMPRuntime().registerTargetGlobalVariable(D, GV); + +    // FIXME: This code is overly simple and should be merged with other global +    // handling. +    GV->setConstant(isTypeConstant(D->getType(), false)); + +    GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); + +    setLinkageForGV(GV, D); + +    if (D->getTLSKind()) { +      if (D->getTLSKind() == VarDecl::TLS_Dynamic) +        CXXThreadLocals.push_back(D); +      setTLSMode(GV, *D); +    } + +    setGVProperties(GV, D); + +    // If required by the ABI, treat declarations of static data members with +    // inline initializers as definitions. +    if (getContext().isMSStaticDataMemberInlineDefinition(D)) { +      EmitGlobalVarDefinition(D); +    } + +    // Emit section information for extern variables. +    if (D->hasExternalStorage()) { +      if (const SectionAttr *SA = D->getAttr<SectionAttr>()) +        GV->setSection(SA->getName()); +    } + +    // Handle XCore specific ABI requirements. +    if (getTriple().getArch() == llvm::Triple::xcore && +        D->getLanguageLinkage() == CLanguageLinkage && +        D->getType().isConstant(Context) && +        isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) +      GV->setSection(".cp.rodata"); + +    // Check if we a have a const declaration with an initializer, we may be +    // able to emit it as available_externally to expose it's value to the +    // optimizer. +    if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && +        D->getType().isConstQualified() && !GV->hasInitializer() && +        !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { +      const auto *Record = +          Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); +      bool HasMutableFields = Record && Record->hasMutableFields(); +      if (!HasMutableFields) { +        const VarDecl *InitDecl; +        const Expr *InitExpr = D->getAnyInitializer(InitDecl); +        if (InitExpr) { +          ConstantEmitter emitter(*this); +          llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); +          if (Init) { +            auto *InitType = Init->getType(); +            if (GV->getType()->getElementType() != InitType) { +              // The type of the initializer does not match the definition. +              // This happens when an initializer has a different type from +              // the type of the global (because of padding at the end of a +              // structure for instance). +              GV->setName(StringRef()); +              // Make a new global with the correct type, this is now guaranteed +              // to work. +              auto *NewGV = cast<llvm::GlobalVariable>( +                  GetAddrOfGlobalVar(D, InitType, IsForDefinition)); + +              // Erase the old global, since it is no longer used. +              GV->eraseFromParent(); +              GV = NewGV; +            } else { +              GV->setInitializer(Init); +              GV->setConstant(true); +              GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); +            } +            emitter.finalize(GV); +          } +        } +      } +    } +  } + +  LangAS ExpectedAS = +      D ? D->getType().getAddressSpace() +        : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); +  assert(getContext().getTargetAddressSpace(ExpectedAS) == +         Ty->getPointerAddressSpace()); +  if (AddrSpace != ExpectedAS) +    return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, +                                                       ExpectedAS, Ty); + +  if (GV->isDeclaration()) +    getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); + +  return GV; +} + +llvm::Constant * +CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, +                               ForDefinition_t IsForDefinition) { +  const Decl *D = GD.getDecl(); +  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) +    return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, +                                /*DontDefer=*/false, IsForDefinition); +  else if (isa<CXXMethodDecl>(D)) { +    auto FInfo = &getTypes().arrangeCXXMethodDeclaration( +        cast<CXXMethodDecl>(D)); +    auto Ty = getTypes().GetFunctionType(*FInfo); +    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, +                             IsForDefinition); +  } else if (isa<FunctionDecl>(D)) { +    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); +    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); +    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, +                             IsForDefinition); +  } else +    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, +                              IsForDefinition); +} + +llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( +    StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, +    unsigned Alignment) { +  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); +  llvm::GlobalVariable *OldGV = nullptr; + +  if (GV) { +    // Check if the variable has the right type. +    if (GV->getType()->getElementType() == Ty) +      return GV; + +    // Because C++ name mangling, the only way we can end up with an already +    // existing global with the same name is if it has been declared extern "C". +    assert(GV->isDeclaration() && "Declaration has wrong type!"); +    OldGV = GV; +  } + +  // Create a new variable. +  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, +                                Linkage, nullptr, Name); + +  if (OldGV) { +    // Replace occurrences of the old variable if needed. +    GV->takeName(OldGV); + +    if (!OldGV->use_empty()) { +      llvm::Constant *NewPtrForOldDecl = +      llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); +      OldGV->replaceAllUsesWith(NewPtrForOldDecl); +    } + +    OldGV->eraseFromParent(); +  } + +  if (supportsCOMDAT() && GV->isWeakForLinker() && +      !GV->hasAvailableExternallyLinkage()) +    GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); + +  GV->setAlignment(Alignment); + +  return GV; +} + +/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the +/// given global variable.  If Ty is non-null and if the global doesn't exist, +/// then it will be created with the specified type instead of whatever the +/// normal requested type would be. If IsForDefinition is true, it is guaranteed +/// that an actual global with type Ty will be returned, not conversion of a +/// variable with the same mangled name but some other type. +llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, +                                                  llvm::Type *Ty, +                                           ForDefinition_t IsForDefinition) { +  assert(D->hasGlobalStorage() && "Not a global variable"); +  QualType ASTTy = D->getType(); +  if (!Ty) +    Ty = getTypes().ConvertTypeForMem(ASTTy); + +  llvm::PointerType *PTy = +    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); + +  StringRef MangledName = getMangledName(D); +  return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); +} + +/// CreateRuntimeVariable - Create a new runtime global variable with the +/// specified type and name. +llvm::Constant * +CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, +                                     StringRef Name) { +  auto PtrTy = +      getContext().getLangOpts().OpenCL +          ? llvm::PointerType::get( +                Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) +          : llvm::PointerType::getUnqual(Ty); +  auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); +  setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); +  return Ret; +} + +void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { +  assert(!D->getInit() && "Cannot emit definite definitions here!"); + +  StringRef MangledName = getMangledName(D); +  llvm::GlobalValue *GV = GetGlobalValue(MangledName); + +  // We already have a definition, not declaration, with the same mangled name. +  // Emitting of declaration is not required (and actually overwrites emitted +  // definition). +  if (GV && !GV->isDeclaration()) +    return; + +  // If we have not seen a reference to this variable yet, place it into the +  // deferred declarations table to be emitted if needed later. +  if (!MustBeEmitted(D) && !GV) { +      DeferredDecls[MangledName] = D; +      return; +  } + +  // The tentative definition is the only definition. +  EmitGlobalVarDefinition(D); +} + +CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { +  return Context.toCharUnitsFromBits( +      getDataLayout().getTypeStoreSizeInBits(Ty)); +} + +LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { +  LangAS AddrSpace = LangAS::Default; +  if (LangOpts.OpenCL) { +    AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; +    assert(AddrSpace == LangAS::opencl_global || +           AddrSpace == LangAS::opencl_constant || +           AddrSpace == LangAS::opencl_local || +           AddrSpace >= LangAS::FirstTargetAddressSpace); +    return AddrSpace; +  } + +  if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { +    if (D && D->hasAttr<CUDAConstantAttr>()) +      return LangAS::cuda_constant; +    else if (D && D->hasAttr<CUDASharedAttr>()) +      return LangAS::cuda_shared; +    else if (D && D->hasAttr<CUDADeviceAttr>()) +      return LangAS::cuda_device; +    else if (D && D->getType().isConstQualified()) +      return LangAS::cuda_constant; +    else +      return LangAS::cuda_device; +  } + +  if (LangOpts.OpenMP) { +    LangAS AS; +    if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) +      return AS; +  } +  return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); +} + +LangAS CodeGenModule::getStringLiteralAddressSpace() const { +  // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. +  if (LangOpts.OpenCL) +    return LangAS::opencl_constant; +  if (auto AS = getTarget().getConstantAddressSpace()) +    return AS.getValue(); +  return LangAS::Default; +} + +// In address space agnostic languages, string literals are in default address +// space in AST. However, certain targets (e.g. amdgcn) request them to be +// emitted in constant address space in LLVM IR. To be consistent with other +// parts of AST, string literal global variables in constant address space +// need to be casted to default address space before being put into address +// map and referenced by other part of CodeGen. +// In OpenCL, string literals are in constant address space in AST, therefore +// they should not be casted to default address space. +static llvm::Constant * +castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, +                                       llvm::GlobalVariable *GV) { +  llvm::Constant *Cast = GV; +  if (!CGM.getLangOpts().OpenCL) { +    if (auto AS = CGM.getTarget().getConstantAddressSpace()) { +      if (AS != LangAS::Default) +        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( +            CGM, GV, AS.getValue(), LangAS::Default, +            GV->getValueType()->getPointerTo( +                CGM.getContext().getTargetAddressSpace(LangAS::Default))); +    } +  } +  return Cast; +} + +template<typename SomeDecl> +void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, +                                               llvm::GlobalValue *GV) { +  if (!getLangOpts().CPlusPlus) +    return; + +  // Must have 'used' attribute, or else inline assembly can't rely on +  // the name existing. +  if (!D->template hasAttr<UsedAttr>()) +    return; + +  // Must have internal linkage and an ordinary name. +  if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) +    return; + +  // Must be in an extern "C" context. Entities declared directly within +  // a record are not extern "C" even if the record is in such a context. +  const SomeDecl *First = D->getFirstDecl(); +  if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) +    return; + +  // OK, this is an internal linkage entity inside an extern "C" linkage +  // specification. Make a note of that so we can give it the "expected" +  // mangled name if nothing else is using that name. +  std::pair<StaticExternCMap::iterator, bool> R = +      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); + +  // If we have multiple internal linkage entities with the same name +  // in extern "C" regions, none of them gets that name. +  if (!R.second) +    R.first->second = nullptr; +} + +static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { +  if (!CGM.supportsCOMDAT()) +    return false; + +  // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent +  // them being "merged" by the COMDAT Folding linker optimization. +  if (D.hasAttr<CUDAGlobalAttr>()) +    return false; + +  if (D.hasAttr<SelectAnyAttr>()) +    return true; + +  GVALinkage Linkage; +  if (auto *VD = dyn_cast<VarDecl>(&D)) +    Linkage = CGM.getContext().GetGVALinkageForVariable(VD); +  else +    Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); + +  switch (Linkage) { +  case GVA_Internal: +  case GVA_AvailableExternally: +  case GVA_StrongExternal: +    return false; +  case GVA_DiscardableODR: +  case GVA_StrongODR: +    return true; +  } +  llvm_unreachable("No such linkage"); +} + +void CodeGenModule::maybeSetTrivialComdat(const Decl &D, +                                          llvm::GlobalObject &GO) { +  if (!shouldBeInCOMDAT(*this, D)) +    return; +  GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); +} + +/// Pass IsTentative as true if you want to create a tentative definition. +void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, +                                            bool IsTentative) { +  // OpenCL global variables of sampler type are translated to function calls, +  // therefore no need to be translated. +  QualType ASTTy = D->getType(); +  if (getLangOpts().OpenCL && ASTTy->isSamplerT()) +    return; + +  // If this is OpenMP device, check if it is legal to emit this global +  // normally. +  if (LangOpts.OpenMPIsDevice && OpenMPRuntime && +      OpenMPRuntime->emitTargetGlobalVariable(D)) +    return; + +  llvm::Constant *Init = nullptr; +  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); +  bool NeedsGlobalCtor = false; +  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); + +  const VarDecl *InitDecl; +  const Expr *InitExpr = D->getAnyInitializer(InitDecl); + +  Optional<ConstantEmitter> emitter; + +  // CUDA E.2.4.1 "__shared__ variables cannot have an initialization +  // as part of their declaration."  Sema has already checked for +  // error cases, so we just need to set Init to UndefValue. +  bool IsCUDASharedVar = +      getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); +  // Shadows of initialized device-side global variables are also left +  // undefined. +  bool IsCUDAShadowVar = +      !getLangOpts().CUDAIsDevice && +      (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || +       D->hasAttr<CUDASharedAttr>()); +  // HIP pinned shadow of initialized host-side global variables are also +  // left undefined. +  bool IsHIPPinnedShadowVar = +      getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); +  if (getLangOpts().CUDA && +      (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) +    Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); +  else if (!InitExpr) { +    // This is a tentative definition; tentative definitions are +    // implicitly initialized with { 0 }. +    // +    // Note that tentative definitions are only emitted at the end of +    // a translation unit, so they should never have incomplete +    // type. In addition, EmitTentativeDefinition makes sure that we +    // never attempt to emit a tentative definition if a real one +    // exists. A use may still exists, however, so we still may need +    // to do a RAUW. +    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); +    Init = EmitNullConstant(D->getType()); +  } else { +    initializedGlobalDecl = GlobalDecl(D); +    emitter.emplace(*this); +    Init = emitter->tryEmitForInitializer(*InitDecl); + +    if (!Init) { +      QualType T = InitExpr->getType(); +      if (D->getType()->isReferenceType()) +        T = D->getType(); + +      if (getLangOpts().CPlusPlus) { +        Init = EmitNullConstant(T); +        NeedsGlobalCtor = true; +      } else { +        ErrorUnsupported(D, "static initializer"); +        Init = llvm::UndefValue::get(getTypes().ConvertType(T)); +      } +    } else { +      // We don't need an initializer, so remove the entry for the delayed +      // initializer position (just in case this entry was delayed) if we +      // also don't need to register a destructor. +      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) +        DelayedCXXInitPosition.erase(D); +    } +  } + +  llvm::Type* InitType = Init->getType(); +  llvm::Constant *Entry = +      GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); + +  // Strip off a bitcast if we got one back. +  if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { +    assert(CE->getOpcode() == llvm::Instruction::BitCast || +           CE->getOpcode() == llvm::Instruction::AddrSpaceCast || +           // All zero index gep. +           CE->getOpcode() == llvm::Instruction::GetElementPtr); +    Entry = CE->getOperand(0); +  } + +  // Entry is now either a Function or GlobalVariable. +  auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); + +  // We have a definition after a declaration with the wrong type. +  // We must make a new GlobalVariable* and update everything that used OldGV +  // (a declaration or tentative definition) with the new GlobalVariable* +  // (which will be a definition). +  // +  // This happens if there is a prototype for a global (e.g. +  // "extern int x[];") and then a definition of a different type (e.g. +  // "int x[10];"). This also happens when an initializer has a different type +  // from the type of the global (this happens with unions). +  if (!GV || GV->getType()->getElementType() != InitType || +      GV->getType()->getAddressSpace() != +          getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { + +    // Move the old entry aside so that we'll create a new one. +    Entry->setName(StringRef()); + +    // Make a new global with the correct type, this is now guaranteed to work. +    GV = cast<llvm::GlobalVariable>( +        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); + +    // Replace all uses of the old global with the new global +    llvm::Constant *NewPtrForOldDecl = +        llvm::ConstantExpr::getBitCast(GV, Entry->getType()); +    Entry->replaceAllUsesWith(NewPtrForOldDecl); + +    // Erase the old global, since it is no longer used. +    cast<llvm::GlobalValue>(Entry)->eraseFromParent(); +  } + +  MaybeHandleStaticInExternC(D, GV); + +  if (D->hasAttr<AnnotateAttr>()) +    AddGlobalAnnotations(D, GV); + +  // Set the llvm linkage type as appropriate. +  llvm::GlobalValue::LinkageTypes Linkage = +      getLLVMLinkageVarDefinition(D, GV->isConstant()); + +  // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on +  // the device. [...]" +  // CUDA B.2.2 "The __constant__ qualifier, optionally used together with +  // __device__, declares a variable that: [...] +  // Is accessible from all the threads within the grid and from the host +  // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() +  // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." +  if (GV && LangOpts.CUDA) { +    if (LangOpts.CUDAIsDevice) { +      if (Linkage != llvm::GlobalValue::InternalLinkage && +          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) +        GV->setExternallyInitialized(true); +    } else { +      // Host-side shadows of external declarations of device-side +      // global variables become internal definitions. These have to +      // be internal in order to prevent name conflicts with global +      // host variables with the same name in a different TUs. +      if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || +          D->hasAttr<HIPPinnedShadowAttr>()) { +        Linkage = llvm::GlobalValue::InternalLinkage; + +        // Shadow variables and their properties must be registered +        // with CUDA runtime. +        unsigned Flags = 0; +        if (!D->hasDefinition()) +          Flags |= CGCUDARuntime::ExternDeviceVar; +        if (D->hasAttr<CUDAConstantAttr>()) +          Flags |= CGCUDARuntime::ConstantDeviceVar; +        // Extern global variables will be registered in the TU where they are +        // defined. +        if (!D->hasExternalStorage()) +          getCUDARuntime().registerDeviceVar(D, *GV, Flags); +      } else if (D->hasAttr<CUDASharedAttr>()) +        // __shared__ variables are odd. Shadows do get created, but +        // they are not registered with the CUDA runtime, so they +        // can't really be used to access their device-side +        // counterparts. It's not clear yet whether it's nvcc's bug or +        // a feature, but we've got to do the same for compatibility. +        Linkage = llvm::GlobalValue::InternalLinkage; +    } +  } + +  if (!IsHIPPinnedShadowVar) +    GV->setInitializer(Init); +  if (emitter) emitter->finalize(GV); + +  // If it is safe to mark the global 'constant', do so now. +  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && +                  isTypeConstant(D->getType(), true)); + +  // If it is in a read-only section, mark it 'constant'. +  if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { +    const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; +    if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) +      GV->setConstant(true); +  } + +  GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); + + +  // On Darwin, if the normal linkage of a C++ thread_local variable is +  // LinkOnce or Weak, we keep the normal linkage to prevent multiple +  // copies within a linkage unit; otherwise, the backing variable has +  // internal linkage and all accesses should just be calls to the +  // Itanium-specified entry point, which has the normal linkage of the +  // variable. This is to preserve the ability to change the implementation +  // behind the scenes. +  if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && +      Context.getTargetInfo().getTriple().isOSDarwin() && +      !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && +      !llvm::GlobalVariable::isWeakLinkage(Linkage)) +    Linkage = llvm::GlobalValue::InternalLinkage; + +  GV->setLinkage(Linkage); +  if (D->hasAttr<DLLImportAttr>()) +    GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); +  else if (D->hasAttr<DLLExportAttr>()) +    GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); +  else +    GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); + +  if (Linkage == llvm::GlobalVariable::CommonLinkage) { +    // common vars aren't constant even if declared const. +    GV->setConstant(false); +    // Tentative definition of global variables may be initialized with +    // non-zero null pointers. In this case they should have weak linkage +    // since common linkage must have zero initializer and must not have +    // explicit section therefore cannot have non-zero initial value. +    if (!GV->getInitializer()->isNullValue()) +      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); +  } + +  setNonAliasAttributes(D, GV); + +  if (D->getTLSKind() && !GV->isThreadLocal()) { +    if (D->getTLSKind() == VarDecl::TLS_Dynamic) +      CXXThreadLocals.push_back(D); +    setTLSMode(GV, *D); +  } + +  maybeSetTrivialComdat(*D, *GV); + +  // Emit the initializer function if necessary. +  if (NeedsGlobalCtor || NeedsGlobalDtor) +    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); + +  SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); + +  // Emit global variable debug information. +  if (CGDebugInfo *DI = getModuleDebugInfo()) +    if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) +      DI->EmitGlobalVariable(GV, D); +} + +static bool isVarDeclStrongDefinition(const ASTContext &Context, +                                      CodeGenModule &CGM, const VarDecl *D, +                                      bool NoCommon) { +  // Don't give variables common linkage if -fno-common was specified unless it +  // was overridden by a NoCommon attribute. +  if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) +    return true; + +  // C11 6.9.2/2: +  //   A declaration of an identifier for an object that has file scope without +  //   an initializer, and without a storage-class specifier or with the +  //   storage-class specifier static, constitutes a tentative definition. +  if (D->getInit() || D->hasExternalStorage()) +    return true; + +  // A variable cannot be both common and exist in a section. +  if (D->hasAttr<SectionAttr>()) +    return true; + +  // A variable cannot be both common and exist in a section. +  // We don't try to determine which is the right section in the front-end. +  // If no specialized section name is applicable, it will resort to default. +  if (D->hasAttr<PragmaClangBSSSectionAttr>() || +      D->hasAttr<PragmaClangDataSectionAttr>() || +      D->hasAttr<PragmaClangRodataSectionAttr>()) +    return true; + +  // Thread local vars aren't considered common linkage. +  if (D->getTLSKind()) +    return true; + +  // Tentative definitions marked with WeakImportAttr are true definitions. +  if (D->hasAttr<WeakImportAttr>()) +    return true; + +  // A variable cannot be both common and exist in a comdat. +  if (shouldBeInCOMDAT(CGM, *D)) +    return true; + +  // Declarations with a required alignment do not have common linkage in MSVC +  // mode. +  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { +    if (D->hasAttr<AlignedAttr>()) +      return true; +    QualType VarType = D->getType(); +    if (Context.isAlignmentRequired(VarType)) +      return true; + +    if (const auto *RT = VarType->getAs<RecordType>()) { +      const RecordDecl *RD = RT->getDecl(); +      for (const FieldDecl *FD : RD->fields()) { +        if (FD->isBitField()) +          continue; +        if (FD->hasAttr<AlignedAttr>()) +          return true; +        if (Context.isAlignmentRequired(FD->getType())) +          return true; +      } +    } +  } + +  // Microsoft's link.exe doesn't support alignments greater than 32 bytes for +  // common symbols, so symbols with greater alignment requirements cannot be +  // common. +  // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two +  // alignments for common symbols via the aligncomm directive, so this +  // restriction only applies to MSVC environments. +  if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && +      Context.getTypeAlignIfKnown(D->getType()) > +          Context.toBits(CharUnits::fromQuantity(32))) +    return true; + +  return false; +} + +llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( +    const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { +  if (Linkage == GVA_Internal) +    return llvm::Function::InternalLinkage; + +  if (D->hasAttr<WeakAttr>()) { +    if (IsConstantVariable) +      return llvm::GlobalVariable::WeakODRLinkage; +    else +      return llvm::GlobalVariable::WeakAnyLinkage; +  } + +  if (const auto *FD = D->getAsFunction()) +    if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) +      return llvm::GlobalVariable::LinkOnceAnyLinkage; + +  // We are guaranteed to have a strong definition somewhere else, +  // so we can use available_externally linkage. +  if (Linkage == GVA_AvailableExternally) +    return llvm::GlobalValue::AvailableExternallyLinkage; + +  // Note that Apple's kernel linker doesn't support symbol +  // coalescing, so we need to avoid linkonce and weak linkages there. +  // Normally, this means we just map to internal, but for explicit +  // instantiations we'll map to external. + +  // In C++, the compiler has to emit a definition in every translation unit +  // that references the function.  We should use linkonce_odr because +  // a) if all references in this translation unit are optimized away, we +  // don't need to codegen it.  b) if the function persists, it needs to be +  // merged with other definitions. c) C++ has the ODR, so we know the +  // definition is dependable. +  if (Linkage == GVA_DiscardableODR) +    return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage +                                            : llvm::Function::InternalLinkage; + +  // An explicit instantiation of a template has weak linkage, since +  // explicit instantiations can occur in multiple translation units +  // and must all be equivalent. However, we are not allowed to +  // throw away these explicit instantiations. +  // +  // We don't currently support CUDA device code spread out across multiple TUs, +  // so say that CUDA templates are either external (for kernels) or internal. +  // This lets llvm perform aggressive inter-procedural optimizations. +  if (Linkage == GVA_StrongODR) { +    if (Context.getLangOpts().AppleKext) +      return llvm::Function::ExternalLinkage; +    if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) +      return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage +                                          : llvm::Function::InternalLinkage; +    return llvm::Function::WeakODRLinkage; +  } + +  // C++ doesn't have tentative definitions and thus cannot have common +  // linkage. +  if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && +      !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), +                                 CodeGenOpts.NoCommon)) +    return llvm::GlobalVariable::CommonLinkage; + +  // selectany symbols are externally visible, so use weak instead of +  // linkonce.  MSVC optimizes away references to const selectany globals, so +  // all definitions should be the same and ODR linkage should be used. +  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx +  if (D->hasAttr<SelectAnyAttr>()) +    return llvm::GlobalVariable::WeakODRLinkage; + +  // Otherwise, we have strong external linkage. +  assert(Linkage == GVA_StrongExternal); +  return llvm::GlobalVariable::ExternalLinkage; +} + +llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( +    const VarDecl *VD, bool IsConstant) { +  GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); +  return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); +} + +/// Replace the uses of a function that was declared with a non-proto type. +/// We want to silently drop extra arguments from call sites +static void replaceUsesOfNonProtoConstant(llvm::Constant *old, +                                          llvm::Function *newFn) { +  // Fast path. +  if (old->use_empty()) return; + +  llvm::Type *newRetTy = newFn->getReturnType(); +  SmallVector<llvm::Value*, 4> newArgs; +  SmallVector<llvm::OperandBundleDef, 1> newBundles; + +  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); +         ui != ue; ) { +    llvm::Value::use_iterator use = ui++; // Increment before the use is erased. +    llvm::User *user = use->getUser(); + +    // Recognize and replace uses of bitcasts.  Most calls to +    // unprototyped functions will use bitcasts. +    if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { +      if (bitcast->getOpcode() == llvm::Instruction::BitCast) +        replaceUsesOfNonProtoConstant(bitcast, newFn); +      continue; +    } + +    // Recognize calls to the function. +    llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); +    if (!callSite) continue; +    if (!callSite->isCallee(&*use)) +      continue; + +    // If the return types don't match exactly, then we can't +    // transform this call unless it's dead. +    if (callSite->getType() != newRetTy && !callSite->use_empty()) +      continue; + +    // Get the call site's attribute list. +    SmallVector<llvm::AttributeSet, 8> newArgAttrs; +    llvm::AttributeList oldAttrs = callSite->getAttributes(); + +    // If the function was passed too few arguments, don't transform. +    unsigned newNumArgs = newFn->arg_size(); +    if (callSite->arg_size() < newNumArgs) +      continue; + +    // If extra arguments were passed, we silently drop them. +    // If any of the types mismatch, we don't transform. +    unsigned argNo = 0; +    bool dontTransform = false; +    for (llvm::Argument &A : newFn->args()) { +      if (callSite->getArgOperand(argNo)->getType() != A.getType()) { +        dontTransform = true; +        break; +      } + +      // Add any parameter attributes. +      newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); +      argNo++; +    } +    if (dontTransform) +      continue; + +    // Okay, we can transform this.  Create the new call instruction and copy +    // over the required information. +    newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); + +    // Copy over any operand bundles. +    callSite->getOperandBundlesAsDefs(newBundles); + +    llvm::CallBase *newCall; +    if (dyn_cast<llvm::CallInst>(callSite)) { +      newCall = +          llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); +    } else { +      auto *oldInvoke = cast<llvm::InvokeInst>(callSite); +      newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), +                                         oldInvoke->getUnwindDest(), newArgs, +                                         newBundles, "", callSite); +    } +    newArgs.clear(); // for the next iteration + +    if (!newCall->getType()->isVoidTy()) +      newCall->takeName(callSite); +    newCall->setAttributes(llvm::AttributeList::get( +        newFn->getContext(), oldAttrs.getFnAttributes(), +        oldAttrs.getRetAttributes(), newArgAttrs)); +    newCall->setCallingConv(callSite->getCallingConv()); + +    // Finally, remove the old call, replacing any uses with the new one. +    if (!callSite->use_empty()) +      callSite->replaceAllUsesWith(newCall); + +    // Copy debug location attached to CI. +    if (callSite->getDebugLoc()) +      newCall->setDebugLoc(callSite->getDebugLoc()); + +    callSite->eraseFromParent(); +  } +} + +/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we +/// implement a function with no prototype, e.g. "int foo() {}".  If there are +/// existing call uses of the old function in the module, this adjusts them to +/// call the new function directly. +/// +/// This is not just a cleanup: the always_inline pass requires direct calls to +/// functions to be able to inline them.  If there is a bitcast in the way, it +/// won't inline them.  Instcombine normally deletes these calls, but it isn't +/// run at -O0. +static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, +                                                      llvm::Function *NewFn) { +  // If we're redefining a global as a function, don't transform it. +  if (!isa<llvm::Function>(Old)) return; + +  replaceUsesOfNonProtoConstant(Old, NewFn); +} + +void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { +  auto DK = VD->isThisDeclarationADefinition(); +  if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) +    return; + +  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); +  // If we have a definition, this might be a deferred decl. If the +  // instantiation is explicit, make sure we emit it at the end. +  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) +    GetAddrOfGlobalVar(VD); + +  EmitTopLevelDecl(VD); +} + +void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, +                                                 llvm::GlobalValue *GV) { +  const auto *D = cast<FunctionDecl>(GD.getDecl()); + +  // Compute the function info and LLVM type. +  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); +  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); + +  // Get or create the prototype for the function. +  if (!GV || (GV->getType()->getElementType() != Ty)) +    GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, +                                                   /*DontDefer=*/true, +                                                   ForDefinition)); + +  // Already emitted. +  if (!GV->isDeclaration()) +    return; + +  // We need to set linkage and visibility on the function before +  // generating code for it because various parts of IR generation +  // want to propagate this information down (e.g. to local static +  // declarations). +  auto *Fn = cast<llvm::Function>(GV); +  setFunctionLinkage(GD, Fn); + +  // FIXME: this is redundant with part of setFunctionDefinitionAttributes +  setGVProperties(Fn, GD); + +  MaybeHandleStaticInExternC(D, Fn); + + +  maybeSetTrivialComdat(*D, *Fn); + +  CodeGenFunction(*this).GenerateCode(D, Fn, FI); + +  setNonAliasAttributes(GD, Fn); +  SetLLVMFunctionAttributesForDefinition(D, Fn); + +  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) +    AddGlobalCtor(Fn, CA->getPriority()); +  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) +    AddGlobalDtor(Fn, DA->getPriority()); +  if (D->hasAttr<AnnotateAttr>()) +    AddGlobalAnnotations(D, Fn); +} + +void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { +  const auto *D = cast<ValueDecl>(GD.getDecl()); +  const AliasAttr *AA = D->getAttr<AliasAttr>(); +  assert(AA && "Not an alias?"); + +  StringRef MangledName = getMangledName(GD); + +  if (AA->getAliasee() == MangledName) { +    Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; +    return; +  } + +  // If there is a definition in the module, then it wins over the alias. +  // This is dubious, but allow it to be safe.  Just ignore the alias. +  llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +  if (Entry && !Entry->isDeclaration()) +    return; + +  Aliases.push_back(GD); + +  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); + +  // Create a reference to the named value.  This ensures that it is emitted +  // if a deferred decl. +  llvm::Constant *Aliasee; +  llvm::GlobalValue::LinkageTypes LT; +  if (isa<llvm::FunctionType>(DeclTy)) { +    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, +                                      /*ForVTable=*/false); +    LT = getFunctionLinkage(GD); +  } else { +    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), +                                    llvm::PointerType::getUnqual(DeclTy), +                                    /*D=*/nullptr); +    LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), +                                     D->getType().isConstQualified()); +  } + +  // Create the new alias itself, but don't set a name yet. +  auto *GA = +      llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); + +  if (Entry) { +    if (GA->getAliasee() == Entry) { +      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; +      return; +    } + +    assert(Entry->isDeclaration()); + +    // If there is a declaration in the module, then we had an extern followed +    // by the alias, as in: +    //   extern int test6(); +    //   ... +    //   int test6() __attribute__((alias("test7"))); +    // +    // Remove it and replace uses of it with the alias. +    GA->takeName(Entry); + +    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, +                                                          Entry->getType())); +    Entry->eraseFromParent(); +  } else { +    GA->setName(MangledName); +  } + +  // Set attributes which are particular to an alias; this is a +  // specialization of the attributes which may be set on a global +  // variable/function. +  if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || +      D->isWeakImported()) { +    GA->setLinkage(llvm::Function::WeakAnyLinkage); +  } + +  if (const auto *VD = dyn_cast<VarDecl>(D)) +    if (VD->getTLSKind()) +      setTLSMode(GA, *VD); + +  SetCommonAttributes(GD, GA); +} + +void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { +  const auto *D = cast<ValueDecl>(GD.getDecl()); +  const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); +  assert(IFA && "Not an ifunc?"); + +  StringRef MangledName = getMangledName(GD); + +  if (IFA->getResolver() == MangledName) { +    Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; +    return; +  } + +  // Report an error if some definition overrides ifunc. +  llvm::GlobalValue *Entry = GetGlobalValue(MangledName); +  if (Entry && !Entry->isDeclaration()) { +    GlobalDecl OtherGD; +    if (lookupRepresentativeDecl(MangledName, OtherGD) && +        DiagnosedConflictingDefinitions.insert(GD).second) { +      Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) +          << MangledName; +      Diags.Report(OtherGD.getDecl()->getLocation(), +                   diag::note_previous_definition); +    } +    return; +  } + +  Aliases.push_back(GD); + +  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); +  llvm::Constant *Resolver = +      GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, +                              /*ForVTable=*/false); +  llvm::GlobalIFunc *GIF = +      llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, +                                "", Resolver, &getModule()); +  if (Entry) { +    if (GIF->getResolver() == Entry) { +      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; +      return; +    } +    assert(Entry->isDeclaration()); + +    // If there is a declaration in the module, then we had an extern followed +    // by the ifunc, as in: +    //   extern int test(); +    //   ... +    //   int test() __attribute__((ifunc("resolver"))); +    // +    // Remove it and replace uses of it with the ifunc. +    GIF->takeName(Entry); + +    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, +                                                          Entry->getType())); +    Entry->eraseFromParent(); +  } else +    GIF->setName(MangledName); + +  SetCommonAttributes(GD, GIF); +} + +llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, +                                            ArrayRef<llvm::Type*> Tys) { +  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, +                                         Tys); +} + +static llvm::StringMapEntry<llvm::GlobalVariable *> & +GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, +                         const StringLiteral *Literal, bool TargetIsLSB, +                         bool &IsUTF16, unsigned &StringLength) { +  StringRef String = Literal->getString(); +  unsigned NumBytes = String.size(); + +  // Check for simple case. +  if (!Literal->containsNonAsciiOrNull()) { +    StringLength = NumBytes; +    return *Map.insert(std::make_pair(String, nullptr)).first; +  } + +  // Otherwise, convert the UTF8 literals into a string of shorts. +  IsUTF16 = true; + +  SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. +  const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); +  llvm::UTF16 *ToPtr = &ToBuf[0]; + +  (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, +                                 ToPtr + NumBytes, llvm::strictConversion); + +  // ConvertUTF8toUTF16 returns the length in ToPtr. +  StringLength = ToPtr - &ToBuf[0]; + +  // Add an explicit null. +  *ToPtr = 0; +  return *Map.insert(std::make_pair( +                         StringRef(reinterpret_cast<const char *>(ToBuf.data()), +                                   (StringLength + 1) * 2), +                         nullptr)).first; +} + +ConstantAddress +CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { +  unsigned StringLength = 0; +  bool isUTF16 = false; +  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = +      GetConstantCFStringEntry(CFConstantStringMap, Literal, +                               getDataLayout().isLittleEndian(), isUTF16, +                               StringLength); + +  if (auto *C = Entry.second) +    return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); + +  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); +  llvm::Constant *Zeros[] = { Zero, Zero }; + +  const ASTContext &Context = getContext(); +  const llvm::Triple &Triple = getTriple(); + +  const auto CFRuntime = getLangOpts().CFRuntime; +  const bool IsSwiftABI = +      static_cast<unsigned>(CFRuntime) >= +      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); +  const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; + +  // If we don't already have it, get __CFConstantStringClassReference. +  if (!CFConstantStringClassRef) { +    const char *CFConstantStringClassName = "__CFConstantStringClassReference"; +    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); +    Ty = llvm::ArrayType::get(Ty, 0); + +    switch (CFRuntime) { +    default: break; +    case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; +    case LangOptions::CoreFoundationABI::Swift5_0: +      CFConstantStringClassName = +          Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" +                              : "$s10Foundation19_NSCFConstantStringCN"; +      Ty = IntPtrTy; +      break; +    case LangOptions::CoreFoundationABI::Swift4_2: +      CFConstantStringClassName = +          Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" +                              : "$S10Foundation19_NSCFConstantStringCN"; +      Ty = IntPtrTy; +      break; +    case LangOptions::CoreFoundationABI::Swift4_1: +      CFConstantStringClassName = +          Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" +                              : "__T010Foundation19_NSCFConstantStringCN"; +      Ty = IntPtrTy; +      break; +    } + +    llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); + +    if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { +      llvm::GlobalValue *GV = nullptr; + +      if ((GV = dyn_cast<llvm::GlobalValue>(C))) { +        IdentifierInfo &II = Context.Idents.get(GV->getName()); +        TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); +        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); + +        const VarDecl *VD = nullptr; +        for (const auto &Result : DC->lookup(&II)) +          if ((VD = dyn_cast<VarDecl>(Result))) +            break; + +        if (Triple.isOSBinFormatELF()) { +          if (!VD) +            GV->setLinkage(llvm::GlobalValue::ExternalLinkage); +        } else { +          GV->setLinkage(llvm::GlobalValue::ExternalLinkage); +          if (!VD || !VD->hasAttr<DLLExportAttr>()) +            GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); +          else +            GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); +        } + +        setDSOLocal(GV); +      } +    } + +    // Decay array -> ptr +    CFConstantStringClassRef = +        IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) +                   : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); +  } + +  QualType CFTy = Context.getCFConstantStringType(); + +  auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); + +  ConstantInitBuilder Builder(*this); +  auto Fields = Builder.beginStruct(STy); + +  // Class pointer. +  Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); + +  // Flags. +  if (IsSwiftABI) { +    Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); +    Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); +  } else { +    Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); +  } + +  // String pointer. +  llvm::Constant *C = nullptr; +  if (isUTF16) { +    auto Arr = llvm::makeArrayRef( +        reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), +        Entry.first().size() / 2); +    C = llvm::ConstantDataArray::get(VMContext, Arr); +  } else { +    C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); +  } + +  // Note: -fwritable-strings doesn't make the backing store strings of +  // CFStrings writable. (See <rdar://problem/10657500>) +  auto *GV = +      new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, +                               llvm::GlobalValue::PrivateLinkage, C, ".str"); +  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  // Don't enforce the target's minimum global alignment, since the only use +  // of the string is via this class initializer. +  CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) +                            : Context.getTypeAlignInChars(Context.CharTy); +  GV->setAlignment(Align.getQuantity()); + +  // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. +  // Without it LLVM can merge the string with a non unnamed_addr one during +  // LTO.  Doing that changes the section it ends in, which surprises ld64. +  if (Triple.isOSBinFormatMachO()) +    GV->setSection(isUTF16 ? "__TEXT,__ustring" +                           : "__TEXT,__cstring,cstring_literals"); +  // Make sure the literal ends up in .rodata to allow for safe ICF and for +  // the static linker to adjust permissions to read-only later on. +  else if (Triple.isOSBinFormatELF()) +    GV->setSection(".rodata"); + +  // String. +  llvm::Constant *Str = +      llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); + +  if (isUTF16) +    // Cast the UTF16 string to the correct type. +    Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); +  Fields.add(Str); + +  // String length. +  llvm::IntegerType *LengthTy = +      llvm::IntegerType::get(getModule().getContext(), +                             Context.getTargetInfo().getLongWidth()); +  if (IsSwiftABI) { +    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || +        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) +      LengthTy = Int32Ty; +    else +      LengthTy = IntPtrTy; +  } +  Fields.addInt(LengthTy, StringLength); + +  CharUnits Alignment = getPointerAlign(); + +  // The struct. +  GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, +                                    /*isConstant=*/false, +                                    llvm::GlobalVariable::PrivateLinkage); +  GV->addAttribute("objc_arc_inert"); +  switch (Triple.getObjectFormat()) { +  case llvm::Triple::UnknownObjectFormat: +    llvm_unreachable("unknown file format"); +  case llvm::Triple::XCOFF: +    llvm_unreachable("XCOFF is not yet implemented"); +  case llvm::Triple::COFF: +  case llvm::Triple::ELF: +  case llvm::Triple::Wasm: +    GV->setSection("cfstring"); +    break; +  case llvm::Triple::MachO: +    GV->setSection("__DATA,__cfstring"); +    break; +  } +  Entry.second = GV; + +  return ConstantAddress(GV, Alignment); +} + +bool CodeGenModule::getExpressionLocationsEnabled() const { +  return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; +} + +QualType CodeGenModule::getObjCFastEnumerationStateType() { +  if (ObjCFastEnumerationStateType.isNull()) { +    RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); +    D->startDefinition(); + +    QualType FieldTypes[] = { +      Context.UnsignedLongTy, +      Context.getPointerType(Context.getObjCIdType()), +      Context.getPointerType(Context.UnsignedLongTy), +      Context.getConstantArrayType(Context.UnsignedLongTy, +                           llvm::APInt(32, 5), ArrayType::Normal, 0) +    }; + +    for (size_t i = 0; i < 4; ++i) { +      FieldDecl *Field = FieldDecl::Create(Context, +                                           D, +                                           SourceLocation(), +                                           SourceLocation(), nullptr, +                                           FieldTypes[i], /*TInfo=*/nullptr, +                                           /*BitWidth=*/nullptr, +                                           /*Mutable=*/false, +                                           ICIS_NoInit); +      Field->setAccess(AS_public); +      D->addDecl(Field); +    } + +    D->completeDefinition(); +    ObjCFastEnumerationStateType = Context.getTagDeclType(D); +  } + +  return ObjCFastEnumerationStateType; +} + +llvm::Constant * +CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { +  assert(!E->getType()->isPointerType() && "Strings are always arrays"); + +  // Don't emit it as the address of the string, emit the string data itself +  // as an inline array. +  if (E->getCharByteWidth() == 1) { +    SmallString<64> Str(E->getString()); + +    // Resize the string to the right size, which is indicated by its type. +    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); +    Str.resize(CAT->getSize().getZExtValue()); +    return llvm::ConstantDataArray::getString(VMContext, Str, false); +  } + +  auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); +  llvm::Type *ElemTy = AType->getElementType(); +  unsigned NumElements = AType->getNumElements(); + +  // Wide strings have either 2-byte or 4-byte elements. +  if (ElemTy->getPrimitiveSizeInBits() == 16) { +    SmallVector<uint16_t, 32> Elements; +    Elements.reserve(NumElements); + +    for(unsigned i = 0, e = E->getLength(); i != e; ++i) +      Elements.push_back(E->getCodeUnit(i)); +    Elements.resize(NumElements); +    return llvm::ConstantDataArray::get(VMContext, Elements); +  } + +  assert(ElemTy->getPrimitiveSizeInBits() == 32); +  SmallVector<uint32_t, 32> Elements; +  Elements.reserve(NumElements); + +  for(unsigned i = 0, e = E->getLength(); i != e; ++i) +    Elements.push_back(E->getCodeUnit(i)); +  Elements.resize(NumElements); +  return llvm::ConstantDataArray::get(VMContext, Elements); +} + +static llvm::GlobalVariable * +GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, +                      CodeGenModule &CGM, StringRef GlobalName, +                      CharUnits Alignment) { +  unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( +      CGM.getStringLiteralAddressSpace()); + +  llvm::Module &M = CGM.getModule(); +  // Create a global variable for this string +  auto *GV = new llvm::GlobalVariable( +      M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, +      nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); +  GV->setAlignment(Alignment.getQuantity()); +  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  if (GV->isWeakForLinker()) { +    assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); +    GV->setComdat(M.getOrInsertComdat(GV->getName())); +  } +  CGM.setDSOLocal(GV); + +  return GV; +} + +/// GetAddrOfConstantStringFromLiteral - Return a pointer to a +/// constant array for the given string literal. +ConstantAddress +CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, +                                                  StringRef Name) { +  CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); + +  llvm::Constant *C = GetConstantArrayFromStringLiteral(S); +  llvm::GlobalVariable **Entry = nullptr; +  if (!LangOpts.WritableStrings) { +    Entry = &ConstantStringMap[C]; +    if (auto GV = *Entry) { +      if (Alignment.getQuantity() > GV->getAlignment()) +        GV->setAlignment(Alignment.getQuantity()); +      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), +                             Alignment); +    } +  } + +  SmallString<256> MangledNameBuffer; +  StringRef GlobalVariableName; +  llvm::GlobalValue::LinkageTypes LT; + +  // Mangle the string literal if that's how the ABI merges duplicate strings. +  // Don't do it if they are writable, since we don't want writes in one TU to +  // affect strings in another. +  if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && +      !LangOpts.WritableStrings) { +    llvm::raw_svector_ostream Out(MangledNameBuffer); +    getCXXABI().getMangleContext().mangleStringLiteral(S, Out); +    LT = llvm::GlobalValue::LinkOnceODRLinkage; +    GlobalVariableName = MangledNameBuffer; +  } else { +    LT = llvm::GlobalValue::PrivateLinkage; +    GlobalVariableName = Name; +  } + +  auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); +  if (Entry) +    *Entry = GV; + +  SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", +                                  QualType()); + +  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), +                         Alignment); +} + +/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant +/// array for the given ObjCEncodeExpr node. +ConstantAddress +CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { +  std::string Str; +  getContext().getObjCEncodingForType(E->getEncodedType(), Str); + +  return GetAddrOfConstantCString(Str); +} + +/// GetAddrOfConstantCString - Returns a pointer to a character array containing +/// the literal and a terminating '\0' character. +/// The result has pointer to array type. +ConstantAddress CodeGenModule::GetAddrOfConstantCString( +    const std::string &Str, const char *GlobalName) { +  StringRef StrWithNull(Str.c_str(), Str.size() + 1); +  CharUnits Alignment = +    getContext().getAlignOfGlobalVarInChars(getContext().CharTy); + +  llvm::Constant *C = +      llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); + +  // Don't share any string literals if strings aren't constant. +  llvm::GlobalVariable **Entry = nullptr; +  if (!LangOpts.WritableStrings) { +    Entry = &ConstantStringMap[C]; +    if (auto GV = *Entry) { +      if (Alignment.getQuantity() > GV->getAlignment()) +        GV->setAlignment(Alignment.getQuantity()); +      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), +                             Alignment); +    } +  } + +  // Get the default prefix if a name wasn't specified. +  if (!GlobalName) +    GlobalName = ".str"; +  // Create a global variable for this. +  auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, +                                  GlobalName, Alignment); +  if (Entry) +    *Entry = GV; + +  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), +                         Alignment); +} + +ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( +    const MaterializeTemporaryExpr *E, const Expr *Init) { +  assert((E->getStorageDuration() == SD_Static || +          E->getStorageDuration() == SD_Thread) && "not a global temporary"); +  const auto *VD = cast<VarDecl>(E->getExtendingDecl()); + +  // If we're not materializing a subobject of the temporary, keep the +  // cv-qualifiers from the type of the MaterializeTemporaryExpr. +  QualType MaterializedType = Init->getType(); +  if (Init == E->GetTemporaryExpr()) +    MaterializedType = E->getType(); + +  CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); + +  if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) +    return ConstantAddress(Slot, Align); + +  // FIXME: If an externally-visible declaration extends multiple temporaries, +  // we need to give each temporary the same name in every translation unit (and +  // we also need to make the temporaries externally-visible). +  SmallString<256> Name; +  llvm::raw_svector_ostream Out(Name); +  getCXXABI().getMangleContext().mangleReferenceTemporary( +      VD, E->getManglingNumber(), Out); + +  APValue *Value = nullptr; +  if (E->getStorageDuration() == SD_Static) { +    // We might have a cached constant initializer for this temporary. Note +    // that this might have a different value from the value computed by +    // evaluating the initializer if the surrounding constant expression +    // modifies the temporary. +    Value = getContext().getMaterializedTemporaryValue(E, false); +    if (Value && Value->isAbsent()) +      Value = nullptr; +  } + +  // Try evaluating it now, it might have a constant initializer. +  Expr::EvalResult EvalResult; +  if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && +      !EvalResult.hasSideEffects()) +    Value = &EvalResult.Val; + +  LangAS AddrSpace = +      VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); + +  Optional<ConstantEmitter> emitter; +  llvm::Constant *InitialValue = nullptr; +  bool Constant = false; +  llvm::Type *Type; +  if (Value) { +    // The temporary has a constant initializer, use it. +    emitter.emplace(*this); +    InitialValue = emitter->emitForInitializer(*Value, AddrSpace, +                                               MaterializedType); +    Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); +    Type = InitialValue->getType(); +  } else { +    // No initializer, the initialization will be provided when we +    // initialize the declaration which performed lifetime extension. +    Type = getTypes().ConvertTypeForMem(MaterializedType); +  } + +  // Create a global variable for this lifetime-extended temporary. +  llvm::GlobalValue::LinkageTypes Linkage = +      getLLVMLinkageVarDefinition(VD, Constant); +  if (Linkage == llvm::GlobalVariable::ExternalLinkage) { +    const VarDecl *InitVD; +    if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && +        isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { +      // Temporaries defined inside a class get linkonce_odr linkage because the +      // class can be defined in multiple translation units. +      Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; +    } else { +      // There is no need for this temporary to have external linkage if the +      // VarDecl has external linkage. +      Linkage = llvm::GlobalVariable::InternalLinkage; +    } +  } +  auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); +  auto *GV = new llvm::GlobalVariable( +      getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), +      /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); +  if (emitter) emitter->finalize(GV); +  setGVProperties(GV, VD); +  GV->setAlignment(Align.getQuantity()); +  if (supportsCOMDAT() && GV->isWeakForLinker()) +    GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); +  if (VD->getTLSKind()) +    setTLSMode(GV, *VD); +  llvm::Constant *CV = GV; +  if (AddrSpace != LangAS::Default) +    CV = getTargetCodeGenInfo().performAddrSpaceCast( +        *this, GV, AddrSpace, LangAS::Default, +        Type->getPointerTo( +            getContext().getTargetAddressSpace(LangAS::Default))); +  MaterializedGlobalTemporaryMap[E] = CV; +  return ConstantAddress(CV, Align); +} + +/// EmitObjCPropertyImplementations - Emit information for synthesized +/// properties for an implementation. +void CodeGenModule::EmitObjCPropertyImplementations(const +                                                    ObjCImplementationDecl *D) { +  for (const auto *PID : D->property_impls()) { +    // Dynamic is just for type-checking. +    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { +      ObjCPropertyDecl *PD = PID->getPropertyDecl(); + +      // Determine which methods need to be implemented, some may have +      // been overridden. Note that ::isPropertyAccessor is not the method +      // we want, that just indicates if the decl came from a +      // property. What we want to know is if the method is defined in +      // this implementation. +      if (!D->getInstanceMethod(PD->getGetterName())) +        CodeGenFunction(*this).GenerateObjCGetter( +                                 const_cast<ObjCImplementationDecl *>(D), PID); +      if (!PD->isReadOnly() && +          !D->getInstanceMethod(PD->getSetterName())) +        CodeGenFunction(*this).GenerateObjCSetter( +                                 const_cast<ObjCImplementationDecl *>(D), PID); +    } +  } +} + +static bool needsDestructMethod(ObjCImplementationDecl *impl) { +  const ObjCInterfaceDecl *iface = impl->getClassInterface(); +  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); +       ivar; ivar = ivar->getNextIvar()) +    if (ivar->getType().isDestructedType()) +      return true; + +  return false; +} + +static bool AllTrivialInitializers(CodeGenModule &CGM, +                                   ObjCImplementationDecl *D) { +  CodeGenFunction CGF(CGM); +  for (ObjCImplementationDecl::init_iterator B = D->init_begin(), +       E = D->init_end(); B != E; ++B) { +    CXXCtorInitializer *CtorInitExp = *B; +    Expr *Init = CtorInitExp->getInit(); +    if (!CGF.isTrivialInitializer(Init)) +      return false; +  } +  return true; +} + +/// EmitObjCIvarInitializations - Emit information for ivar initialization +/// for an implementation. +void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { +  // We might need a .cxx_destruct even if we don't have any ivar initializers. +  if (needsDestructMethod(D)) { +    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); +    Selector cxxSelector = getContext().Selectors.getSelector(0, &II); +    ObjCMethodDecl *DTORMethod = +      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), +                             cxxSelector, getContext().VoidTy, nullptr, D, +                             /*isInstance=*/true, /*isVariadic=*/false, +                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, +                             /*isDefined=*/false, ObjCMethodDecl::Required); +    D->addInstanceMethod(DTORMethod); +    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); +    D->setHasDestructors(true); +  } + +  // If the implementation doesn't have any ivar initializers, we don't need +  // a .cxx_construct. +  if (D->getNumIvarInitializers() == 0 || +      AllTrivialInitializers(*this, D)) +    return; + +  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); +  Selector cxxSelector = getContext().Selectors.getSelector(0, &II); +  // The constructor returns 'self'. +  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), +                                                D->getLocation(), +                                                D->getLocation(), +                                                cxxSelector, +                                                getContext().getObjCIdType(), +                                                nullptr, D, /*isInstance=*/true, +                                                /*isVariadic=*/false, +                                                /*isPropertyAccessor=*/true, +                                                /*isImplicitlyDeclared=*/true, +                                                /*isDefined=*/false, +                                                ObjCMethodDecl::Required); +  D->addInstanceMethod(CTORMethod); +  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); +  D->setHasNonZeroConstructors(true); +} + +// EmitLinkageSpec - Emit all declarations in a linkage spec. +void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { +  if (LSD->getLanguage() != LinkageSpecDecl::lang_c && +      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { +    ErrorUnsupported(LSD, "linkage spec"); +    return; +  } + +  EmitDeclContext(LSD); +} + +void CodeGenModule::EmitDeclContext(const DeclContext *DC) { +  for (auto *I : DC->decls()) { +    // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope +    // are themselves considered "top-level", so EmitTopLevelDecl on an +    // ObjCImplDecl does not recursively visit them. We need to do that in +    // case they're nested inside another construct (LinkageSpecDecl / +    // ExportDecl) that does stop them from being considered "top-level". +    if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { +      for (auto *M : OID->methods()) +        EmitTopLevelDecl(M); +    } + +    EmitTopLevelDecl(I); +  } +} + +/// EmitTopLevelDecl - Emit code for a single top level declaration. +void CodeGenModule::EmitTopLevelDecl(Decl *D) { +  // Ignore dependent declarations. +  if (D->isTemplated()) +    return; + +  switch (D->getKind()) { +  case Decl::CXXConversion: +  case Decl::CXXMethod: +  case Decl::Function: +    EmitGlobal(cast<FunctionDecl>(D)); +    // Always provide some coverage mapping +    // even for the functions that aren't emitted. +    AddDeferredUnusedCoverageMapping(D); +    break; + +  case Decl::CXXDeductionGuide: +    // Function-like, but does not result in code emission. +    break; + +  case Decl::Var: +  case Decl::Decomposition: +  case Decl::VarTemplateSpecialization: +    EmitGlobal(cast<VarDecl>(D)); +    if (auto *DD = dyn_cast<DecompositionDecl>(D)) +      for (auto *B : DD->bindings()) +        if (auto *HD = B->getHoldingVar()) +          EmitGlobal(HD); +    break; + +  // Indirect fields from global anonymous structs and unions can be +  // ignored; only the actual variable requires IR gen support. +  case Decl::IndirectField: +    break; + +  // C++ Decls +  case Decl::Namespace: +    EmitDeclContext(cast<NamespaceDecl>(D)); +    break; +  case Decl::ClassTemplateSpecialization: { +    const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); +    if (DebugInfo && +        Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && +        Spec->hasDefinition()) +      DebugInfo->completeTemplateDefinition(*Spec); +  } LLVM_FALLTHROUGH; +  case Decl::CXXRecord: +    if (DebugInfo) { +      if (auto *ES = D->getASTContext().getExternalSource()) +        if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) +          DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); +    } +    // Emit any static data members, they may be definitions. +    for (auto *I : cast<CXXRecordDecl>(D)->decls()) +      if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) +        EmitTopLevelDecl(I); +    break; +    // No code generation needed. +  case Decl::UsingShadow: +  case Decl::ClassTemplate: +  case Decl::VarTemplate: +  case Decl::Concept: +  case Decl::VarTemplatePartialSpecialization: +  case Decl::FunctionTemplate: +  case Decl::TypeAliasTemplate: +  case Decl::Block: +  case Decl::Empty: +  case Decl::Binding: +    break; +  case Decl::Using:          // using X; [C++] +    if (CGDebugInfo *DI = getModuleDebugInfo()) +        DI->EmitUsingDecl(cast<UsingDecl>(*D)); +    return; +  case Decl::NamespaceAlias: +    if (CGDebugInfo *DI = getModuleDebugInfo()) +        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); +    return; +  case Decl::UsingDirective: // using namespace X; [C++] +    if (CGDebugInfo *DI = getModuleDebugInfo()) +      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); +    return; +  case Decl::CXXConstructor: +    getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); +    break; +  case Decl::CXXDestructor: +    getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); +    break; + +  case Decl::StaticAssert: +    // Nothing to do. +    break; + +  // Objective-C Decls + +  // Forward declarations, no (immediate) code generation. +  case Decl::ObjCInterface: +  case Decl::ObjCCategory: +    break; + +  case Decl::ObjCProtocol: { +    auto *Proto = cast<ObjCProtocolDecl>(D); +    if (Proto->isThisDeclarationADefinition()) +      ObjCRuntime->GenerateProtocol(Proto); +    break; +  } + +  case Decl::ObjCCategoryImpl: +    // Categories have properties but don't support synthesize so we +    // can ignore them here. +    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); +    break; + +  case Decl::ObjCImplementation: { +    auto *OMD = cast<ObjCImplementationDecl>(D); +    EmitObjCPropertyImplementations(OMD); +    EmitObjCIvarInitializations(OMD); +    ObjCRuntime->GenerateClass(OMD); +    // Emit global variable debug information. +    if (CGDebugInfo *DI = getModuleDebugInfo()) +      if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) +        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( +            OMD->getClassInterface()), OMD->getLocation()); +    break; +  } +  case Decl::ObjCMethod: { +    auto *OMD = cast<ObjCMethodDecl>(D); +    // If this is not a prototype, emit the body. +    if (OMD->getBody()) +      CodeGenFunction(*this).GenerateObjCMethod(OMD); +    break; +  } +  case Decl::ObjCCompatibleAlias: +    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); +    break; + +  case Decl::PragmaComment: { +    const auto *PCD = cast<PragmaCommentDecl>(D); +    switch (PCD->getCommentKind()) { +    case PCK_Unknown: +      llvm_unreachable("unexpected pragma comment kind"); +    case PCK_Linker: +      AppendLinkerOptions(PCD->getArg()); +      break; +    case PCK_Lib: +        AddDependentLib(PCD->getArg()); +      break; +    case PCK_Compiler: +    case PCK_ExeStr: +    case PCK_User: +      break; // We ignore all of these. +    } +    break; +  } + +  case Decl::PragmaDetectMismatch: { +    const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); +    AddDetectMismatch(PDMD->getName(), PDMD->getValue()); +    break; +  } + +  case Decl::LinkageSpec: +    EmitLinkageSpec(cast<LinkageSpecDecl>(D)); +    break; + +  case Decl::FileScopeAsm: { +    // File-scope asm is ignored during device-side CUDA compilation. +    if (LangOpts.CUDA && LangOpts.CUDAIsDevice) +      break; +    // File-scope asm is ignored during device-side OpenMP compilation. +    if (LangOpts.OpenMPIsDevice) +      break; +    auto *AD = cast<FileScopeAsmDecl>(D); +    getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); +    break; +  } + +  case Decl::Import: { +    auto *Import = cast<ImportDecl>(D); + +    // If we've already imported this module, we're done. +    if (!ImportedModules.insert(Import->getImportedModule())) +      break; + +    // Emit debug information for direct imports. +    if (!Import->getImportedOwningModule()) { +      if (CGDebugInfo *DI = getModuleDebugInfo()) +        DI->EmitImportDecl(*Import); +    } + +    // Find all of the submodules and emit the module initializers. +    llvm::SmallPtrSet<clang::Module *, 16> Visited; +    SmallVector<clang::Module *, 16> Stack; +    Visited.insert(Import->getImportedModule()); +    Stack.push_back(Import->getImportedModule()); + +    while (!Stack.empty()) { +      clang::Module *Mod = Stack.pop_back_val(); +      if (!EmittedModuleInitializers.insert(Mod).second) +        continue; + +      for (auto *D : Context.getModuleInitializers(Mod)) +        EmitTopLevelDecl(D); + +      // Visit the submodules of this module. +      for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), +                                             SubEnd = Mod->submodule_end(); +           Sub != SubEnd; ++Sub) { +        // Skip explicit children; they need to be explicitly imported to emit +        // the initializers. +        if ((*Sub)->IsExplicit) +          continue; + +        if (Visited.insert(*Sub).second) +          Stack.push_back(*Sub); +      } +    } +    break; +  } + +  case Decl::Export: +    EmitDeclContext(cast<ExportDecl>(D)); +    break; + +  case Decl::OMPThreadPrivate: +    EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); +    break; + +  case Decl::OMPAllocate: +    break; + +  case Decl::OMPDeclareReduction: +    EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); +    break; + +  case Decl::OMPDeclareMapper: +    EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); +    break; + +  case Decl::OMPRequires: +    EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); +    break; + +  default: +    // Make sure we handled everything we should, every other kind is a +    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind +    // function. Need to recode Decl::Kind to do that easily. +    assert(isa<TypeDecl>(D) && "Unsupported decl kind"); +    break; +  } +} + +void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { +  // Do we need to generate coverage mapping? +  if (!CodeGenOpts.CoverageMapping) +    return; +  switch (D->getKind()) { +  case Decl::CXXConversion: +  case Decl::CXXMethod: +  case Decl::Function: +  case Decl::ObjCMethod: +  case Decl::CXXConstructor: +  case Decl::CXXDestructor: { +    if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) +      return; +    SourceManager &SM = getContext().getSourceManager(); +    if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) +      return; +    auto I = DeferredEmptyCoverageMappingDecls.find(D); +    if (I == DeferredEmptyCoverageMappingDecls.end()) +      DeferredEmptyCoverageMappingDecls[D] = true; +    break; +  } +  default: +    break; +  }; +} + +void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { +  // Do we need to generate coverage mapping? +  if (!CodeGenOpts.CoverageMapping) +    return; +  if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { +    if (Fn->isTemplateInstantiation()) +      ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); +  } +  auto I = DeferredEmptyCoverageMappingDecls.find(D); +  if (I == DeferredEmptyCoverageMappingDecls.end()) +    DeferredEmptyCoverageMappingDecls[D] = false; +  else +    I->second = false; +} + +void CodeGenModule::EmitDeferredUnusedCoverageMappings() { +  // We call takeVector() here to avoid use-after-free. +  // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because +  // we deserialize function bodies to emit coverage info for them, and that +  // deserializes more declarations. How should we handle that case? +  for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { +    if (!Entry.second) +      continue; +    const Decl *D = Entry.first; +    switch (D->getKind()) { +    case Decl::CXXConversion: +    case Decl::CXXMethod: +    case Decl::Function: +    case Decl::ObjCMethod: { +      CodeGenPGO PGO(*this); +      GlobalDecl GD(cast<FunctionDecl>(D)); +      PGO.emitEmptyCounterMapping(D, getMangledName(GD), +                                  getFunctionLinkage(GD)); +      break; +    } +    case Decl::CXXConstructor: { +      CodeGenPGO PGO(*this); +      GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); +      PGO.emitEmptyCounterMapping(D, getMangledName(GD), +                                  getFunctionLinkage(GD)); +      break; +    } +    case Decl::CXXDestructor: { +      CodeGenPGO PGO(*this); +      GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); +      PGO.emitEmptyCounterMapping(D, getMangledName(GD), +                                  getFunctionLinkage(GD)); +      break; +    } +    default: +      break; +    }; +  } +} + +/// Turns the given pointer into a constant. +static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, +                                          const void *Ptr) { +  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); +  llvm::Type *i64 = llvm::Type::getInt64Ty(Context); +  return llvm::ConstantInt::get(i64, PtrInt); +} + +static void EmitGlobalDeclMetadata(CodeGenModule &CGM, +                                   llvm::NamedMDNode *&GlobalMetadata, +                                   GlobalDecl D, +                                   llvm::GlobalValue *Addr) { +  if (!GlobalMetadata) +    GlobalMetadata = +      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); + +  // TODO: should we report variant information for ctors/dtors? +  llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), +                           llvm::ConstantAsMetadata::get(GetPointerConstant( +                               CGM.getLLVMContext(), D.getDecl()))}; +  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); +} + +/// For each function which is declared within an extern "C" region and marked +/// as 'used', but has internal linkage, create an alias from the unmangled +/// name to the mangled name if possible. People expect to be able to refer +/// to such functions with an unmangled name from inline assembly within the +/// same translation unit. +void CodeGenModule::EmitStaticExternCAliases() { +  if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) +    return; +  for (auto &I : StaticExternCValues) { +    IdentifierInfo *Name = I.first; +    llvm::GlobalValue *Val = I.second; +    if (Val && !getModule().getNamedValue(Name->getName())) +      addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); +  } +} + +bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, +                                             GlobalDecl &Result) const { +  auto Res = Manglings.find(MangledName); +  if (Res == Manglings.end()) +    return false; +  Result = Res->getValue(); +  return true; +} + +/// Emits metadata nodes associating all the global values in the +/// current module with the Decls they came from.  This is useful for +/// projects using IR gen as a subroutine. +/// +/// Since there's currently no way to associate an MDNode directly +/// with an llvm::GlobalValue, we create a global named metadata +/// with the name 'clang.global.decl.ptrs'. +void CodeGenModule::EmitDeclMetadata() { +  llvm::NamedMDNode *GlobalMetadata = nullptr; + +  for (auto &I : MangledDeclNames) { +    llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); +    // Some mangled names don't necessarily have an associated GlobalValue +    // in this module, e.g. if we mangled it for DebugInfo. +    if (Addr) +      EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); +  } +} + +/// Emits metadata nodes for all the local variables in the current +/// function. +void CodeGenFunction::EmitDeclMetadata() { +  if (LocalDeclMap.empty()) return; + +  llvm::LLVMContext &Context = getLLVMContext(); + +  // Find the unique metadata ID for this name. +  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); + +  llvm::NamedMDNode *GlobalMetadata = nullptr; + +  for (auto &I : LocalDeclMap) { +    const Decl *D = I.first; +    llvm::Value *Addr = I.second.getPointer(); +    if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { +      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); +      Alloca->setMetadata( +          DeclPtrKind, llvm::MDNode::get( +                           Context, llvm::ValueAsMetadata::getConstant(DAddr))); +    } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { +      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); +      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); +    } +  } +} + +void CodeGenModule::EmitVersionIdentMetadata() { +  llvm::NamedMDNode *IdentMetadata = +    TheModule.getOrInsertNamedMetadata("llvm.ident"); +  std::string Version = getClangFullVersion(); +  llvm::LLVMContext &Ctx = TheModule.getContext(); + +  llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; +  IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); +} + +void CodeGenModule::EmitCommandLineMetadata() { +  llvm::NamedMDNode *CommandLineMetadata = +    TheModule.getOrInsertNamedMetadata("llvm.commandline"); +  std::string CommandLine = getCodeGenOpts().RecordCommandLine; +  llvm::LLVMContext &Ctx = TheModule.getContext(); + +  llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; +  CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); +} + +void CodeGenModule::EmitTargetMetadata() { +  // Warning, new MangledDeclNames may be appended within this loop. +  // We rely on MapVector insertions adding new elements to the end +  // of the container. +  // FIXME: Move this loop into the one target that needs it, and only +  // loop over those declarations for which we couldn't emit the target +  // metadata when we emitted the declaration. +  for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { +    auto Val = *(MangledDeclNames.begin() + I); +    const Decl *D = Val.first.getDecl()->getMostRecentDecl(); +    llvm::GlobalValue *GV = GetGlobalValue(Val.second); +    getTargetCodeGenInfo().emitTargetMD(D, GV, *this); +  } +} + +void CodeGenModule::EmitCoverageFile() { +  if (getCodeGenOpts().CoverageDataFile.empty() && +      getCodeGenOpts().CoverageNotesFile.empty()) +    return; + +  llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); +  if (!CUNode) +    return; + +  llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); +  llvm::LLVMContext &Ctx = TheModule.getContext(); +  auto *CoverageDataFile = +      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); +  auto *CoverageNotesFile = +      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); +  for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { +    llvm::MDNode *CU = CUNode->getOperand(i); +    llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; +    GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); +  } +} + +llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { +  // Sema has checked that all uuid strings are of the form +  // "12345678-1234-1234-1234-1234567890ab". +  assert(Uuid.size() == 36); +  for (unsigned i = 0; i < 36; ++i) { +    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); +    else                                         assert(isHexDigit(Uuid[i])); +  } + +  // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". +  const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; + +  llvm::Constant *Field3[8]; +  for (unsigned Idx = 0; Idx < 8; ++Idx) +    Field3[Idx] = llvm::ConstantInt::get( +        Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); + +  llvm::Constant *Fields[4] = { +    llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16), +    llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16), +    llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), +    llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) +  }; + +  return llvm::ConstantStruct::getAnon(Fields); +} + +llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, +                                                       bool ForEH) { +  // Return a bogus pointer if RTTI is disabled, unless it's for EH. +  // FIXME: should we even be calling this method if RTTI is disabled +  // and it's not for EH? +  if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) +    return llvm::Constant::getNullValue(Int8PtrTy); + +  if (ForEH && Ty->isObjCObjectPointerType() && +      LangOpts.ObjCRuntime.isGNUFamily()) +    return ObjCRuntime->GetEHType(Ty); + +  return getCXXABI().getAddrOfRTTIDescriptor(Ty); +} + +void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { +  // Do not emit threadprivates in simd-only mode. +  if (LangOpts.OpenMP && LangOpts.OpenMPSimd) +    return; +  for (auto RefExpr : D->varlists()) { +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); +    bool PerformInit = +        VD->getAnyInitializer() && +        !VD->getAnyInitializer()->isConstantInitializer(getContext(), +                                                        /*ForRef=*/false); + +    Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); +    if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( +            VD, Addr, RefExpr->getBeginLoc(), PerformInit)) +      CXXGlobalInits.push_back(InitFunction); +  } +} + +llvm::Metadata * +CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, +                                            StringRef Suffix) { +  llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; +  if (InternalId) +    return InternalId; + +  if (isExternallyVisible(T->getLinkage())) { +    std::string OutName; +    llvm::raw_string_ostream Out(OutName); +    getCXXABI().getMangleContext().mangleTypeName(T, Out); +    Out << Suffix; + +    InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); +  } else { +    InternalId = llvm::MDNode::getDistinct(getLLVMContext(), +                                           llvm::ArrayRef<llvm::Metadata *>()); +  } + +  return InternalId; +} + +llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { +  return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); +} + +llvm::Metadata * +CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { +  return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); +} + +// Generalize pointer types to a void pointer with the qualifiers of the +// originally pointed-to type, e.g. 'const char *' and 'char * const *' +// generalize to 'const void *' while 'char *' and 'const char **' generalize to +// 'void *'. +static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { +  if (!Ty->isPointerType()) +    return Ty; + +  return Ctx.getPointerType( +      QualType(Ctx.VoidTy).withCVRQualifiers( +          Ty->getPointeeType().getCVRQualifiers())); +} + +// Apply type generalization to a FunctionType's return and argument types +static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { +  if (auto *FnType = Ty->getAs<FunctionProtoType>()) { +    SmallVector<QualType, 8> GeneralizedParams; +    for (auto &Param : FnType->param_types()) +      GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); + +    return Ctx.getFunctionType( +        GeneralizeType(Ctx, FnType->getReturnType()), +        GeneralizedParams, FnType->getExtProtoInfo()); +  } + +  if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) +    return Ctx.getFunctionNoProtoType( +        GeneralizeType(Ctx, FnType->getReturnType())); + +  llvm_unreachable("Encountered unknown FunctionType"); +} + +llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { +  return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), +                                      GeneralizedMetadataIdMap, ".generalized"); +} + +/// Returns whether this module needs the "all-vtables" type identifier. +bool CodeGenModule::NeedAllVtablesTypeId() const { +  // Returns true if at least one of vtable-based CFI checkers is enabled and +  // is not in the trapping mode. +  return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && +           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || +          (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && +           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || +          (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && +           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || +          (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && +           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); +} + +void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, +                                          CharUnits Offset, +                                          const CXXRecordDecl *RD) { +  llvm::Metadata *MD = +      CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); +  VTable->addTypeMetadata(Offset.getQuantity(), MD); + +  if (CodeGenOpts.SanitizeCfiCrossDso) +    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) +      VTable->addTypeMetadata(Offset.getQuantity(), +                              llvm::ConstantAsMetadata::get(CrossDsoTypeId)); + +  if (NeedAllVtablesTypeId()) { +    llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); +    VTable->addTypeMetadata(Offset.getQuantity(), MD); +  } +} + +TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { +  assert(TD != nullptr); +  TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); + +  ParsedAttr.Features.erase( +      llvm::remove_if(ParsedAttr.Features, +                      [&](const std::string &Feat) { +                        return !Target.isValidFeatureName( +                            StringRef{Feat}.substr(1)); +                      }), +      ParsedAttr.Features.end()); +  return ParsedAttr; +} + + +// Fills in the supplied string map with the set of target features for the +// passed in function. +void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, +                                          GlobalDecl GD) { +  StringRef TargetCPU = Target.getTargetOpts().CPU; +  const FunctionDecl *FD = GD.getDecl()->getAsFunction(); +  if (const auto *TD = FD->getAttr<TargetAttr>()) { +    TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); + +    // Make a copy of the features as passed on the command line into the +    // beginning of the additional features from the function to override. +    ParsedAttr.Features.insert(ParsedAttr.Features.begin(), +                            Target.getTargetOpts().FeaturesAsWritten.begin(), +                            Target.getTargetOpts().FeaturesAsWritten.end()); + +    if (ParsedAttr.Architecture != "" && +        Target.isValidCPUName(ParsedAttr.Architecture)) +      TargetCPU = ParsedAttr.Architecture; + +    // Now populate the feature map, first with the TargetCPU which is either +    // the default or a new one from the target attribute string. Then we'll use +    // the passed in features (FeaturesAsWritten) along with the new ones from +    // the attribute. +    Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, +                          ParsedAttr.Features); +  } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { +    llvm::SmallVector<StringRef, 32> FeaturesTmp; +    Target.getCPUSpecificCPUDispatchFeatures( +        SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); +    std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); +    Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); +  } else { +    Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, +                          Target.getTargetOpts().Features); +  } +} + +llvm::SanitizerStatReport &CodeGenModule::getSanStats() { +  if (!SanStats) +    SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); + +  return *SanStats; +} +llvm::Value * +CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, +                                                  CodeGenFunction &CGF) { +  llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); +  auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); +  auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); +  return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, +                                "__translate_sampler_initializer"), +                                {C}); +} | 
